
Formal Specification of the x86
Instruction Set Architecture

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurswissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Ulan Degenbaev

Saarbrücken, Februar 2012

ii

Tag des Kolloquiums: 6. Februar 2012

Dekan: Prof. Dr. Holger Hermanns

Vorsitzender des Prüfungsausschusses: Prof. Dr. Sebastian Hack

1. Berichterstatter: Prof. Dr. Wolfgang J. Paul

2. Berichterstatter: Dr. habil. Peter-Michael Seidel

Akademischer Mitarbeiter: Dr. Art Tevs

Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Saarbrücken, im Februar 2012

iii

iv

Abstract

In this thesis we formally specify the x86 instruction set architecture (ISA) by develop-
ing an abstract machine that models the behaviour of a modern computer with multiple
x86 processors. Our model enables reasoning about low-level system software by pro-
viding formal interpretation of thousand pages of the processor vendor documentation
written in informal prose.

We show how to reduce the problem of ISA formalization to two simpler problems: mem-
ory model specification and instruction semantics specification. We solve the former
problem by extending the classical Total Store Ordering memory model with caches,
translation-lookaside buffers, memory fences, locks, and other features of the x86 pro-
cessor.

In order to make instruction semantics specification readable and compact, we design a
new domain-specific language. The language has intuitive syntax for defining registers
and instructions, so that any programmer should be able to understand the specifica-
tion. Although our language is external and not embedded into a formal proof system,
the language is based on the same principles as embedded, monadic domain-specific
languages. Thus, it is possible to translate specifications from our language to formal
proof systems.

Zusammenfassung

In dieser Arbeit spezifizieren wir den x86-Befehlssatz durch die Definition einer ab-
strakten Maschine, die das Verhalten eines modernen Computers mit mehreren x86-
Prozessoren modeliert. Unser Modell bietet eine formale Interpretation der Prozes-
sorherstellerdokumentationen, die über Tausend Seiten von informellen Spezifikatio-
nen enthalten.

Wir zeigen, wie das Problem der Befehlssatz-Formalisierung in zwei einfachere Prob-
leme zerlegt werden kann: Spezifikation von dem Speichermodell und Spezifikation von
der Maschinenbefehlsemantik. Wir lösen das erste Problem durch die Erweiterung des
klassischen “Total Store Ordering” Speichermodells mit Caches, Translation-Lookaside
Buffers, Memory Fences und Locks.

Um die Maschinenbefehlsemantikspezifikation lesbar und kompakt zu machen, entwer-
fen wir ein neue domänenspezifische Sprache. Die Sprache hat intuitive Syntax zur
Definition von Registern und Maschinenbefehlen, so dass jeder Programmierer in der
Lage sein sollte, die Spezifikation zu verstehen. Obwohl unsere Sprache nicht in ein
formales Beweissystem eingebettet ist, basiert sie auf den gleichen Grundsätzen wie
eingebette monadische domänenspezifische Sprachen. So ist es möglich, Spezifikatio-
nen aus unserer Sprache in ein formales Beweissystem zu übertragen.

v

vi

Acknowledgments

I would like to thank my supervisor Professor Wolfgang Paul for the guidance and en-
couragement.

I owe my graditute to many people in the Verisoft XT group for valuable suggestions,
stimulating discussions, and friendly atmosphere. Special thanks to Christian Müller,
Ernie Cohen, Eyad Alkassar, Mark A. Hillebrant, and Norbert Schirmer.

vii

viii

CONTENTS

1 Introduction 1
1.1 Motivation . 1
1.2 The Problem . 2
1.3 Related Work . 2
1.4 Methodology . 7
1.5 Scope of the model . 10
1.6 Outline . 11

I Abstract Machine 13

2 Notation 15
2.1 Relations . 16
2.2 Functions . 16
2.3 Conventions for memory accesses . 17

3 Model Overview 19
3.1 Instruction execution . 19
3.2 Abstract x86 machine . 24

4 Environment 27

5 Cache 29
5.1 MOESI protocol . 29
5.2 Memory types . 32
5.3 Cache model . 32

6 Store Buffer 37
6.1 Forwarding and writing . 37
6.2 Transitions . 38

7 Load Buffers 41
7.1 Loading code . 42
7.2 Loading data . 42
7.3 Flushing . 44

ix

8 Translation-Lookaside Buffer 45
8.1 Page Tables . 46
8.2 Creating and dropping walks . 48
8.3 Extending walks . 48
8.4 Loading translations into the Core . 50
8.5 Flushing . 52

9 Core 53
9.1 Core configuration . 53
9.2 Overview of transitions . 57
9.3 Instruction border . 59
9.4 RESET, INIT, HALT . 62
9.5 Memory accesses . 64
9.6 Fetch and decode . 65
9.7 Execution . 66
9.8 VMEXIT . 71
9.9 Serializing . 71
9.10 Jump to interrupt service routine . 72

10 Local APIC 77
10.1 Maskable interrupts . 78
10.2 INIT, NMI, SIPI . 81
10.3 Interprocessor interrupts . 83
10.4 Miscellaneous . 86
10.5 Register accesses . 88
10.6 IPI Delivery . 89

II Inside Processor Core 95

11 DSL Syntax and Semantics 97
11.1 Source Code Structure . 99
11.2 Types . 101
11.3 Registers . 105
11.4 Expressions . 106
11.5 Functions . 109
11.6 Actions . 109
11.7 Instructions . 110

12 Registers 113
12.1 General-Purpose Registers . 113
12.2 Control Registers . 113
12.3 Segment Registers . 118
12.4 Descriptor Table Registers . 120
12.5 Task Register . 120
12.6 Virtualization Registers . 120
12.7 Instruction Registers . 121
12.8 Memory Type Registers . 122
12.9 Fast System Call . 126
12.10 APIC Base Address . 128

x

12.11 Time-Stamp Counters . 128

13 Architecture 129
13.1 Operating Modes . 129
13.2 Exceptions . 132
13.3 Address spaces . 134
13.4 Memory System Interface . 134
13.5 Reading and Writing the Virtual Memory 136
13.6 Page Tables . 137
13.7 Segment Descriptors . 140
13.8 Gate Descriptors . 144
13.9 Descriptor Tables . 146
13.10 Protection . 149
13.11 Privilege Level Change . 151
13.12 Segmentation Translation . 152
13.13 Segment Register Access . 154
13.14 Task State Segment . 157

14 Instruction Fetch and Decode 161
14.1 Instruction Format . 161
14.2 Opcode . 161
14.3 Prefixes . 162
14.4 ModRM byte . 165
14.5 SIB byte . 165
14.6 Displacement . 166
14.7 Immediate Operand . 167
14.8 Opcode Table . 167
14.9 Instruction Fetch . 169
14.10 Operand Width . 172
14.11 Memory Operand Address Width . 173
14.12 Memory Operand Address . 174
14.13 Operand Decode . 175

15 Stack and Stack Operations 179
15.1 Inner Stack . 180

16 Far Control Transfer 183
16.1 Far Jump . 184
16.2 Far Procedure Call . 186
16.3 Control Transfer to an Interrupt Handler 193
16.4 Far Return . 195
16.5 Task Switch . 198

17 Virtualization 199
17.1 Guest State Save Area — VMCB SSA . 200
17.2 Guest Control Area — VMCB CA . 203
17.3 Injected Events and Virtual Interrupts . 209
17.4 Host State Save Area . 211

18 Instructions 213

xi

19 Conclusion 217
19.1 Validating the model . 217

III Appendix 219

A Move Instructions 221

B Arithmetic Instructions 227
B.1 Addition . 227
B.2 Subtraction . 229
B.3 Comparison . 231
B.4 Multiplication . 232
B.5 Division . 233

C Logic Instructions 237

D Bit String Instructions 241
D.1 Bit Test and Set . 241
D.2 Bit Search . 243
D.3 Bit String Conversions . 245
D.4 Shifts . 246
D.5 Rotations . 250

E Instructions for Binary Coded Decimals 253

F Flag Instructions 257

G Stack Instructions 261

H Near Control Transfer Instructions 267

I Far Control Transfer Instructions 271
I.1 Fast System Call Instructions . 271
I.2 Far JMP and CALL instructions . 276
I.3 Software Interrupt Instructions . 278
I.4 Return Instructions . 278

J String Instructions 281

K Input/Output Instructions 285

L Segmentation Instructions 289
L.1 Load SR and GPR from Memory . 289
L.2 SWAPGS . 290
L.3 Task Register Access . 290
L.4 Descriptor Table Register Access . 291

M Protection Instructions 295

N CR and MSR Access Instructions 297
N.1 Control Register Access . 297

xii

N.2 Model Specific Register Access . 300

O Memory Management Instructions 303
O.1 TLB Invalidation . 303
O.2 Memory Fences . 304
O.3 Cache Invalidation . 305

P Virtualization Instructions 307
P.1 Run Guest . 307
P.2 Exit Guest . 311
P.3 Save and Restore Guest Extended State 313
P.4 Exit Codes . 315

Q Miscellaneous Instructions 319

R Operand Read and Write 321

S Page Table Entries 325

xiii

xiv

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

In the first Quarter of 2011, the x86 processors comprised about 99.9% of the personal
computer market and 66.4% of the server market [Cor11a,Cor11b]. Even though these
processors are ubiquitous, there is still no publicly available, rigorous description of
how they execute instructions. Official vendor documentation is written in informal
prose, that is often ambiguous or inconsistent. A programmer who wishes to write
low-level software has to spend a vast amount of time interpreting the huge vendor
documents, experimenting with the real hardware, and collecting bits of the low-level
programming folklore. After finishing the software, the programmer is left with the
only option to ensure software correctness: testing.

Two recent technological advances have highlighted the need for formal specification
of the processor behaviour. The first is proliferation of multiprocessor computers. It
is difficult to write correct concurrent programs when the programmer does not know
how exactly the memory accesses from one processor are observed by another proces-
sor. Testing cannot catch subtle concurrency bugs which are triggered by a specific
interleaving of memory accesses. This interleaving might occur once in every million
executions of the program because the highly-optimized processors reorder memory ac-
cesses in practically unpredictable way. This means that the programmer has to prove
the correctness of a concurrent program for all possible interleavings. Such proofs
cannot exists without precise description of how a processor issues and reorders the
memory accesses.

The second advance is virtualization. Cloud and web hosting providers have embraced
this technology because it allows to run several independent operating systems on a
single server. Each operating system has an illusion that it fully controls the server, but
in reality there is a so-called hypervisor program running on the server and providing a
virtual hardware environment for an operating system. Using the processor’s virtualiza-
tion capabilities, the hypervisor can choose which instructions of the operating system
are to be executed natively by the processor and which instructions are to be emulated
by the hypervisor. Having formal specification of the instructions would help to prove

1

that the hypervisor emulates them correctly. Even more important concern is security
of the hypervisor. Since an operating system is free to run any code, including mali-
cious or invalid code, the hypervisor has to ensure that such code can never escape the
virtual environment. Malicious code might try to exploit obscure, poorly documented
effects of an instruction. The hypervisor has to be programmed to handle such effects.
Only with rigorous specification of the instructions, one can hope to prove the absence
of loopholes in the hypervisor.

We could list a dozen of other reasons for why formal specification of the x86 instruc-
tions is a good thing. However, the two arguments above were our main motivation
when we started formalizing the instructions as part of the Verisoft XT project on
Microsoft® Hyper-V™ hypervisor verification in 2007. This thesis summarizes our ef-
forts and answers the following question: "Is is possible to develop a useful formal
specification of the modern x86 instruction set architecture?"

1.2 The Problem

Instruction set architecture (ISA) is an interface between a processor and software. In
other words, an ISA is a high-level processor description that provides enough infor-
mation for a programmer to write and reason about low-level software. Ideally an ISA
would hide as much of processor implementation as possible. Thus, specifying an ISA is
a fine art of balancing between being too loose and too strict. A too loose specification
makes it impossible for a programmer to prove certain properties of software. A too
strict specification precludes performance optimizations in the processor hardware. An
ISA defines

• the processor registers and the meaning of each bit in a register;

• the memory model, i.e. how memory accesses are reordered;

• interrupts and interrupt handling;

• the data structures shared between the processor and software, such as descriptor
tables, page tables, control blocks, etc.

• the instruction opcodes and operands;

• the instruction semantics, i.e. the effects of instruction execution.

Processor vendors prefer to specify the x86 architecture in informal prose as it requires
considerably less effort than formal specification and it allows them to be vague in
certain places in order to leave a room for future hardware optimizations [Int09,Adv07].
Our goal is to develop a formalism that would allow us to express the behaviour of
modern x86 processor in readable, precise, and sound way.

1.3 Related Work

Extensive research has been done on memory models since Lamport first defined a se-
quentially consistent memory model in 1978 [Lam79]. A system of multiple processors

2

and of a shared memory is sequentially consistent if: “the result of any execution is
the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in the
order specified by its program.” Higham et. al. formalize this statement in two different
ways: axiomatic and operational [HKV98]. For the former, they consider a collection P
of processors, a collection J of memory cells, and a collection O of actions. An action
is either a read action or a write action. For each action they know the processor per-
forming it, the destination memory cell, and the data of the action’s memory operation
(data to be written or to be read). With such a setup, the memory consistency models
can be defined in terms of partial orders satisfying specific constraints. For example,
a computation with actions O is sequentially consistent if there exists a linearization
(O,<L) such that (O,

prog−→) ⊆ (O,<L), where
prog−→ is a partial order over O that defines

the program order, <L is a total order over O such that the data of each read action
from cell x matches the data of the most recent (in terms of <L) write to cell x or the
initial value of cell x if there are no previous writes.

The operational way is to define an abstract machine as a nondeterministic transition
system. Higham et. al. describe the following abstract machine that implements exactly
a sequential consistent memory model:

• the machine has n processors p1, p2 . . . pn and a shared memory.

• each processor pi is connected to the memory by two FIFO channels:

– the request i channel is directed from the processor to the memory,

– the reply i channel is directed from the memory to the processor.

• when processor pi needs to read from the memory, it puts the corresponding read
request in to the request i channel.

• when processor pi needs to write to the memory, it puts the corresponding write
request in to the request i channel.

• the memory nondeterministically chooses a nonempty request channel request i
and serves the incoming request:

– if the request is a read request, the memory puts the value of the requested
memory cell into the reply i channel.

– if the request is a write request, the memory updates the value of the re-
quested memory cell.

• if the reply i channel is not empty, processor pi reads the result from the channel.

Since we can order all memory accesses by the time they are served by the memory and
this order agrees with the program order, the abstract machine is sequentially consis-
tent. The reverse is also true, the machine admits all possible sequentially consistent
executions.

Ideally, the memory model of an ISA would be defined using both axiomatic and opera-
tional approaches. The axiomatic specification is easier to work with in formal proofs,
while the operational specification is more intuitive and is easier to understand. Real-
world architectures, however, are not sequentially consistent as it would prevent cer-
tain performance optimizations like write buffers. There are many relaxed memory

3

models, in which the processors do not necessarily agree on the global order of the
memory accesses [DSB98,AG96,HKV98,ANB+95].

We are not aware of any publicly available memory model that captures the effects of
the complete memory system of a modern x86 processor, including write-combining
buffers and caches. Vendor documents are particularly obscure in this aspect. They list
rules that allow or forbid certain reorderings of memory accesses. Sarkar et. al. tried
to formalize the rules for cacheable memory accesses that have the write-back caching
policy [SSN+09]. They developed the x86-CC – a relaxed memory model with causal
consistency. Later they discovered that the model was too strict, i.e. the model excluded
some executions that may appear in real processors. Based on the experiments, they
came up with a new, much simpler memory model, called x86-TSO [OSS09]. The model
is similar to the Total Store Ordering (TSO) model of the SPARC architecture [SPA92].
Sarkar et. al. formalized the x86-TSO in HOL4 both operationally and axiomatically. In
the operational model, they define the following abstract machine:

• the abstract machine has of multiple processors, a shared memory, and a global
lock;

• a processor has registers, represented as a function from a register name to a
value;

• a processor has a FIFO write buffer, represented as a list of address, value pairs;

• the shared memory is represented as a function from addresses to values;

• the global lock is either empty or contains the processor id, which is said to hold
the lock;

• when a processor needs to write to the memory, it puts the address, value pair in
to write buffer;

• when a processor needs to read from the memory, it checks whether the write
buffer already has the required address;

– if the address is in the buffer, the processor reads the corresponding value;

– otherwise, the processor reads the value from the shared memory if it holds
the lock or the lock is empty;

• a write operation at the front of a write buffer is applied to the shared memory if
the corresponding processor holds the lock or the lock is empty;

• a processor reads and writes registers;

• when a processor needs to execute a memory fence instruction, it waits until its
write buffer is empty;

• a processor acquires and releases the lock.

In the axiomatic model, they consider a set of events, where each event is an action
(read, write, memory fence) augmented with the processor id and the instruction id.
They define a valid execution in terms of partial orders on the event set and prove that
the axiomatic model is equivalent to the operational model. The authors report that

4

the x86-TSO was validated using their own tool. The tool takes program fragments
in an assembly-like syntax and runs the fragments multiple times in different threads
checking that the outcome of each run agrees with the memory model.

Having reviewed the work on memory models, we proceed to discuss the work on in-
struction semantics specification. Groups in academia have given formal specifications
for ARM, DLX, SPARC architectures [FF01,MP00,PPS+95]. There are two reasons why
it is difficult to apply these methodologies to the x86 instruction specification. First,
the x86 architecture is a complex instruction set computer (CISC) architecture, while
the other architectures mentioned above are reduced instruction set computer (RISC)
architectures. As the names imply, a RISC architecture has much simpler and more
uniform instructions and registers than a CISC architecture. Even if one uses simple
mathematical notation, the RISC instruction definitions tend to be compact and read-
able. However, such notation does not work for some huge x86 instructions that make
dozens of different memory accesses. The definitions quickly become incomprehensible
and error-prone.

The second reason is that there is a fundamental difference between instruction speci-
fication for a single-processor machine and for a multiprocessor machine. In the former
case, the processor owns the memory1, so the memory cannot change while the proces-
sor is executing an instruction. Thus, we can specify instruction semantics by defining
two functions:

fetch-and -decode ∈MachineState → (MachineState, Instruction),

execute ∈ (MachineState, Instruction)→ MachineState.

The first function takes the machine state (the processor registers and the memory) as
an argument, and returns the new machine state together with an abstract represen-
tation of the decoded instruction. The second function executes the given instruction
and returns the new machine state. Since the two function are ordinary mathematical
functions, they can easily be expressed in any formal language.

In a multiprocessor machine, we cannot execute an instruction in a single step, because
this would not interleave memory accesses of one processor with the accesses of an-
other, and thus would make instructions atomic. This means that we have to specify
each memory access of an instruction explicitly and then plug the accesses into a suit-
able memory model. Now we cannot just define a single execute function as was the
case for a single-processor machine. Instead, we have to turn the definition of the se-
quential execute inside-out, revealing each place where the function reads the memory
and replacing this place with a memory access request. Thus, the new execute function
does not have direct access to the memory, and it issues memory access requests:

execute ∈ (Registers, Instruction, set(Reply))→ (Registers, set(Request)).

The function takes the current state of the registers, the current instruction, and a set
of memory replies to the previous requests. The functions returns the new state of the
registers and a set of new memory requests. Given such a function, it would be easy to
plug the function into any operational memory model: apply the function, forward the
requests to the memory, collect the replies, and then apply the function again, etc. The
problem is that it is very difficult to explicitly define such a fine-grained function for

1assuming there are no devices

5

any non-trivial ISA. The functional programming community discovered that monads
are good for solving this kind of problems [Wad92]. Monads allow one to represents
computations as data. In monadic style programming, one first introduces primitive
computations such as accessing the memory, writing a register, etc. Then one builds
up more complex computations by combining the primitive computations with special
combinator functions. Thus, instruction semantics can be represented as blocks of
primitive computations glued together with combinator functions. By carefully defining
the combinator functions and the primitive computations, one can get the required
execute function, that can be plugged into the memory model.

Sarkar et. al. used monadic style to specify about 20 general-purpose instructions from
the x86 architecture [SSN+09]. The primitive computations are: reading and writing a
register (read_reg, write_reg), reading and writing 32-bit aligned memory (read_m32,
write_m32), reading and writing the instruction pointer (read_eip, write_eip), reading
and writing the flags register (read_eflags, write_eflags). Two computations can be
combined either sequentially using the seqT combinator, or in parallel using the parT
combinator. As an example, we list the definition of the POP instruction by Sarkar et. al.
The POP instruction reads four bytes from the top of the stack, which is pointed to by
the ESP register, and increments the ESP by four.

val x86_exec_pop_def = Define ‘
x86_exec_pop ii rm =

seqT (seqT (read_reg ii ESP) (\esp. addT esp (write_reg ii ESP (esp + 4w))))
(\(old_esp,x). seqT (parT (ea_Xrm ii rm) (read_m32 ii old_esp))

(\(ea,w). write_ea ii ea w))‘;

Fox and Myreen used the same approach to fully specify the ARMv7 architecture [FM10].
The size of the model is about 6500 lines of HOL4 code. The authors validated the model
by running thousands of tests.

Hunt is developing another x86 ISA specification using a domain-specific language em-
bedded into the ACL2 theorem-prover [WAH10]. This specification is used for verifica-
tion of processor components. Unfortunately the specification is not publicly available.

In 1990s several groups made effort on x86 formalization. Ramsey and Fernandez de-
veloped a toolkit for instruction format specification [RF95, RF97]. Using the toolkit
they formally specified the instruction format of the Pentium processor. The toolkit
employs a syntactic approach to define the instruction format and cannot specify se-
mantics of complex instructions. Papers [RM99, HHD97] present general frameworks
for ISA specification, which were successfully used to define simple instruction sets
(MIPS, PowerPC). The frameworks are claimed to be powerful enough to specify x86
ISA, however, such specification is not available yet. Moreover, the frameworks are
targeted at user level ISA and do not model such features as memory management,
interrupts and exceptions, multiple processors.

Although not quite formal, the source code of x86 emulators can be very helpful for re-
solving certain ambiguities in the processor vendor documentation. Virtual Box, Bochs,
and QEMU are open source emulators [Vir,Boc,QEM].

Our model is built upon previous work with Wolfgang Paul, Peter-Michael Seidel, Nor-
bert Schirmer, and Ernie Cohen [DPS09, Deg07]. Christoph Baumann’s master the-
sis [Bau08] complements our work by modeling floating-point instructions.

6

1.4 Methodology

We are going to specify the instruction set operationally. Thus, our aim is to define a
transition system that models the behaviour of an x86 multiprocessor machine. This
problem can be divided into two smaller problems:

• define a memory model assuming abstract instruction semantics. In other words,
we specify how memory accesses of one processor are reordered and observed by
other processors without knowing how exactly the processor issues the accesses.

• define instruction semantics assuming an abstract memory model. This means
that we specify how a single processor executes an instruction assuming that there
is a memory system that can answer memory requests.

If we define a good interface between the two problems, then the problems can be at-
tacked independently. Consider information flow between a processor and the memory
system, when the processor is executing an instruction after fetching the instruction:

1. The processor makes computation based on the registers and the fetched instruc-
tion.

2. If the processor needs data from the memory, the processor issues one or more
memory read requests.

3. The memory serves the requests and sends the replies back to the processor.

4. The processor makes computation based on the registers, the instruction, and the
replies to the previous requests.

5. If the processor needs data from the memory, the processor issues one or more
memory read requests.

6. The memory serves the requests and sends the replies back to the processor.

7. The previous three steps repeat until the processor needs no more data from the
memory.

8. Once the processor has all the necessary data for the instruction, the processor
actually executes the instruction, i.e. the processor computes the data to be writ-
ten to the registers and to the memory.

9. The processor updates the registers, issues zero or more memory write requests,
and completes the instruction.

In the previous section, we discussed a general execute function that models the pro-
cessor computations on steps 1, 2, 4, 5, 8, 9:

execute ∈ (Registers, Instruction, set(Reply))→ (Registers, set(Request)).

Note that this function is an interface between the processor and the memory system.
The memory model can use this function as a black box without knowing how exactly it
is defined. Thus, we already have the required interface, but we are going to adjust it
in order to make it more suitable for the x86 architecture.

7

First we separate read requests from write requests. Thus, instead of a single Request

type, we have a ReadReq type and a WriteReq type. Now we can factor out steps 2, 5
into a separate function:

data-req ∈ (Registers, Instruction, set(Reply))→ set(ReadReq).

We change the meaning of the execute function to denote only step 9:

execute ∈ (Registers, Instruction, set(Reply))→ (Registers, set(WriteReq)).

In the x86 architecture, an instruction may fail and trigger an exception. For example,
the division instruction generates an exception if the divisor is zero. Therefore, we
need a function that checks whether the current computation fails or not, and returns
information about the exception in case of failure.

fault ∈ (Registers, Instruction, set(Reply))→ (Exception ∪ ε).

An instruction can also be intercepted by the hypervisor if it being executed in the
virtual machine. Such intercept generates an exit from the virtual machine. We add a
function that checks for an intercept and returns information about the intercept if it
has occured:

vmexit ∈ (Registers, Instruction, set(Reply))→ (Intercept ∪ ε).

If paging address translation is enabled, then the processor may request the translation-
lookaside buffer (TLB) to translate a virtual address to a physical address. In our model,
the TLB is a unit outside the processor that caches translations and walks page tables.
We need to add another type of request and a function that computes the translation
requests:

trans-req ∈ (Registers, Instruction, set(Reply))→ set(TLBReq).

Assume that the Reply type contains both replies from the memory and replies from
the TLB. Besides the TLB, there are other external units such as caches and buffers.
Some instructions change the state of the external units. We introduce a new kind of
requests: commands to other units, and we change the execute function to return a set
of commands:

execute ∈ (Registers, Instruction, set(Reply))→ (Registers, set(WriteReq), set(Cmd)).

Now the data-req , trans-req , fault , vmexit , execute functions completely cover all possible
events that can occur during instruction execution and return all necessary information
about the execution. This means that they are an interface between a processor and
the rest of the machine2. Thus, we can use these functions to define transitions of
the abstract machine. Afterwards, we will be able to plug in an implementation of the
functions and obtain the complete ISA model.

Having fixed the interface, we can proceed to solving the two problems separately.

2In the next chapter we will extend the interface to cover other phases of the instruction processing cycle,
such as fetch/decode, jump to an interrupt service routine, etc.

8

 System Bus

CPU i

I
n
t
e
r
r
u
p
t

B
u
s

System Memory Device

Cache

SB

Core

A
P
I
C

I/O APIC

LB TLB

IPI

Figure 1.1: Abstract machine

1.4.1 Memory Model

The memory system consists of a shared physical memory, caches, store buffers, load
buffers, and translation lookaside buffers. Figure 1.1 shows the memory system units
together with other parts of the abstract machine. In the subsequent chapters we define
transitions of the abstract machine. Each transition has a guard condition. Any tran-
sition with the satisfied guard condition can trigger nondeterministically. A triggered
transition may change the state of one or more units of the abstract machine.

There is no need to justify why the abstract machine has the physical memory. However,
other units of the memory system deserve a few words:

• a store buffer: it is a queue of stores. It delays stores on their way from the
processor core to the caches/environment. Due to this delay, remote processors
observe reordering of new instructions and loads ahead of old stores.

• a load buffer: we need it to model effects of out-of-order/speculative instruc-
tion execution. It nondeterministically prefetches instructions and data with the
write-combining (WC) memory type. WC loads and instruction fetches can be
reordered ahead of old instructions and loads. By prefetching, the load buffer
introduces a negative delay, so that remote processors observe the required re-
ordering.

• a translation-lookaside buffer: it traverses page tables and collects translations.
• a cache: it models data and code caches of real processors and implements the

MOESI cache-coherence protocol. Effects of the caches become visible to soft-
ware, when software accesses the same address with cachable memory type and
uncacheable memory type.

Our memory model extends the total store ordering memory model with more relaxed
instruction fetches and write-combining load/stores.

9

1.4.2 Instruction Semantics

For instruction specification we designed a new domain-specific language. The lan-
guage has primitive operations such as read from memory, write to memory, get a trans-
lation from the TLB, write a register, stop execution with a failure. Using these prim-
itives and standard language constucts (expressions, conditionals, functions) we can
define more and more complex operations. Instruction semantics are then expressed in
terms of these complex operations.

Here is an example of the stack pop operation that uses the “read from logical address
space” operation:

action pop($n : : Width, rsp : : bits $sa) : : (bits $n, bits $sa)
cal l value = lread (stack , $n, SS, $sa , rsp)
return (value , rsp + bits ($sa , $n))

Based on the pop operation, we can specify the POP instruction:

opcode "8Fh /000b" reg_mem $v : cal l op1’ = POP($v)
opcode "58h" reg $v : cal l op1’ = POP($v)
opcode "17h" ss 16 : cal l op1’ = POP(16)

: when not $x64_mode
opcode "1Fh" ds 16 : cal l op1’ = POP(16)

: when not $x64_mode
opcode "07h" es 16 : cal l op1’ = POP(16)

: when not $x64_mode
opcode "0FA1h" fs 16 : cal l op1’ = POP(16)
opcode "0FA9h" gs 16 : cal l op1’ = POP(16)

action POP($n::{$v , 16}):: bits $n
cal l (value , new_rsp) = pop($v , RSP[$sa−1:0])
write gpr($sa , new_rsp, RSP) to RSP
return value [$n−1:0]

Notice that we specify both the semantics of the instruction and the information for
decoding the opcode. From such specification it is possible to generate the definitions
of the data-req , trans-req , fault , vmexit , execute functions by analysing the abstract syntax
tree of the specification.

1.5 Scope of the model

Our model specifies 140 general-purpose and system programming instructions. As we
had limited time, we omitted the following features:

• floating-point and multimedia instructions,

• debug facilities and alignment check exception,

• virtual-8086 mode and virtual interrupts,

• hardware task-switching,

• system management mode.

10

1.6 Outline

The thesis consists of two parts: Chapters 2-11 and Chapters 12-32. The first part
describes the overall transition system of interacting units: cores, caches, load/store
buffers, translation-lookaside buffers, and interrupt controllers. This part uses abstract
functions that specify memory loads, memory stores, and register updates performed
during instruction fetch, decode, and execution in a single core. These functions are
later obtained from the the second part of the thesis, which defines a specification
language and specifies instruction fetch, decode, execution in that language for a single
core.

Chapter 2 introduces notation that we use to define the configuration and the relations
of the transition system.

Chapter 5 gives high-level description of the transition system and defines the interface
between the first part and the second part of the thesis.

Chapters 6-8 define configuration and transitions of the memory system, including
caches, load and store buffers, and transition-lookaside buffers.

Chapter 9 describes the high-level configuration and transitions of a processor core.
Because of interrupt handling and virtual machine intercepts, the instruction process-
ing cycle of a core is quite sophisticated. This chapter defines several phases and shows
how the core transitions from one phase to another as it processes an instruction. Many
details are abstracted away and are filled in later in the second part of the thesis.

Chapter 10 describes the local advanced programmable interrupt controller (APIC),
which accepts interrupts from devices and other APICs and forwards them to the pro-
cessor core.

Chapter 11 introduces notation for the second part of the thesis. This notation is a
domain specific language (DSL) for register and instruction specification.

Chapter 12 uses the DSL to specify the register of a processor core.

Chapter 13 describes architectural features of a processor core, such as operating
modes, exceptions, segmentation, protection, etc.

Chapter 14 defines general instruction format and instruction fetch/decode in the DSL.

Chapters 15-18 and Appendix specify format and execution of concrete instructions.

11

12

Part I

ABSTRACT MACHINE

13

14

CHAPTER

TWO

NOTATION

A bitvector x of length n is denoted as x ∈ Bn. We overload standard operators + ,
− , ∗ , / to allow arithmetic operations modulo 2n on bitvectors Bn. The i-th bit of x is
denoted as x[i], and a range of bits from the i-th bit to the j-th bit is x[j : i]. Thus, the
second byte of x is x[15 : 8]. We denote concatenation of two bitvectors x and y as x ◦ y.
Concatenation of n copies of x is xk = x ◦ . . . ◦ x︸ ︷︷ ︸

k times

.

We use functions zxtm(x) and sxtm(x) for zero- and sign-extention of x to m bits:

zxtm(x) = 0m−n ◦ x,
sxtm(x) = x[n− 1]m−n ◦ x.

When it does not introduce ambiguity, we allow implicit zero-extension. For example,
x + t should be read as x + zxtn(t) if the width of t is smaller than n. Likewise, we
overload numeric literals to denote bitvectors of different widths, for example, 8 ∈ B8,
8 ∈ B64.

A map m with a domain B64 and a range B8 is denoted as m ∈ B64 → B8. We can define
a new map either using a lambda expression or by updating another map:

m= λx ∈ B64 : 0,

r =m with [1 7→ 8].

Using the if - then - else operator we can also define r as

r = λx ∈ B64 : if x = 1 then 8 else m[x].

We make a distinction between ordinary functions and functions that model memories
and arrays, which we call maps. Ordinary functions can have maps as parameters. To
emphasize the role of the maps, we write a map application as m[x] instead of more
conventional m(x).

One can think of a record as a tuple with named components. To define a record type
we list all its components:

R , [a ∈ B64, b ∈ B8].

15

The symbol , means ‘define’. Thus, if x ∈ R, then x.a ∈ B64 and x.b ∈ B8. There are two
operations on records: create and update. An example of the former is x = R with [a 7→
1, b 7→ 9], and of the latter is y = x with [a 7→ 2], which defines a record y ∈ R such that
y.a = 2 and y.b = x.b. When we need to update a component q of a nested record t.p.r,
we use shortcut t with [p.r.q 7→ s] instead of t with [p 7→ t.p with [r 7→ t.p.r with [q 7→ s]]]

A list l of n elements of type T is written as l ∈ Tn. We assume standard operations
on lists: construction l = x :: xs, concatenation l = a ◦ b, indexing the i-th element l[i],
indexing a range l = l[0 . . . n− 1], explicit enumeration l = [l[0], l[1], . . . , l[n− 1]].

2.1 Relations

The goal of this document is to define the transition relation of an abstract x86 machine.
As this relation is quite complex, we decompose it into a union of smaller relations each
of which represents a transition of a subset of the components of the abstract machine.
We specify each transition in a box with three parts: ‘label’, ‘guard’, and ‘effect’. The
first part defines the label of the transition. The second part contains a set of conditions
under which the transition can occur. Finally, the third part gives a set of equations
between the current configuration and the next configuration.

The label can have a number of parameters. In this case, the box specifies a family
of transitions, one for each possible value of the parameters. Each box has its own
syntactic scope, where only the following names are visible:

• names of the label parameters;
• names of the abstract machine components (current configuration);
• primed names of the abstract machine components (next configuration);
• names of the functions;
• names of local variables introduced in the box.

As an example, consider a transition of the cache component of processor i:

label drop-line(i ∈ pid , pa ∈ Bpq)

guard cache[i].state[pa] ∈ {E,S}
effect cache ′[i].state[pa] = I

This transition specifies that a cache line in a clean state can be invalidated at any time.
Note that all parts of the next configuration that are not mentioned in the ‘effect’ part
are assumed to be unchanged. Let c, c′ be configurations of the abstract machine and
∆ be the transition relation, then the above box can be translated into the following
expression:

(∃i ∈ pid : ∃pa ∈ Bpq : c.cache[i].state[pa] ∈ {E,S} ∧
c′ = c with [cache[i].state[pa] 7→ I])

⇒ (c, c′) ∈ ∆.

2.2 Functions

For each function we will give its signature: the function name, names and types of
the parameters, and the type of the function result. We define a function by writing

16

its body as an expression. The expression is a mathematical expression extended with
let−in, choose−in and if−then−else constructs. As an example, consider a function
that calculates the maximum of three numbers:

max3 (a ∈ N, b ∈ N, c ∈ N) ∈ N ,
let t = (if a > b then a else b) in

if t > c then t else c.

A function that calculates the remainder after division can be defined using the choice
operator choose−in:

mod(a ∈ N, b ∈ N) ∈ N , choose q, r ∈ N : a = b ∗ q + r ∧ 0 ≤ r < b in r.

Although we do not use recursion, functions are not necessarily total. It may happen
that there is no sensible result for the given values of parameters. In such cases we
define the function domain. A predicate with the name can-f defines the domain of a
function with name f . Functions that do not have the corresponding can-f predicate
are total.

For each memory component we will define read and write functions. For brevity, we
allow name overloading for these functions. Thus, instead of
read -cache(cache) and read -env(env), we will write read(cache) and read(env).

2.3 Conventions for memory accesses

All memory accesses are 8-byte (quadword) aligned. If the processor needs to access
only some part of a quadword, then the required bytes are selected with an 8-bit mask –
one bit for each byte of the quadword. Using this we can simulate unaligned accesses.

We will use the following types of physical addresses:

• Bpb – physical byte address;
• Bpq – physical quadword address, pq = pb − 3;
• Bpp – physical page address, pp = pb − 12.

The physical address width pb is not fixed by the ISA, but it is less than 64. For AMD
processors it is typically 52, and for Intel it is 36.

The virtual address width depends on the paging mode of the processor. We will use Bvb

to represent a virtual byte address, and assume that if the actual virtual byte address
has a smaller width, then it is zero-extended to vb bits. Thus, we have:

• Bvb – virtual byte address, vb = 48;
• Bvq – virtual quadword address, vq = vb − 3;
• Bvp – virtual page address, vp = vb − 12.

A physical memory access has addr ∈ Bpq, data ∈ B64, and mask ∈ B8 components. We
often need to combine the results of two memory accesses to the same address. Given
two store accesses to the same address, we can combine them using the following
function:

combine(old ∈ (B64,B8),new ∈ (B64,B8)) ∈ (B64,B8).

Let (data3,mask3) = combine((data1,mask1), (data2,mask2)), then

17

mask3 = mask1 ∨8 mask2 and ∀k ∈ N64 :

data3[k] =

{
data2[k] if mask2[k/8],

data1[k] otherwise.

18

CHAPTER

THREE

MODEL OVERVIEW

In this chapter we develop the ideas from section 1.4 and present a detailed interface
between a processor core and the memory system. After that, we describe the memory
system units and define the abstract machine configuration.

3.1 Instruction execution

The instructions are complex: some instructions make more than 50 memory accesses.
After performing a few memory accesses an instruction might raise an exception, which
discards changes to the processor registers and the memory system made by the in-
struction. Instructions usually make large case analyses because the x86 ISA is, actu-
ally, a combination of five ISAs, each of which is enabled by the corresponding operating
mode: 64-bit mode, compatibility mode, protected mode, virtual 8086 mode, and real
mode. This means that even in a single processor setting we need an advanced no-
tation/language to specify semantics of the instructions. As we discussed in section
1.4, semantics of instruction execution for a single processor can be captured with the
execute function:

execute ∈ (Registers, Instruction, set(Reply))→ (Registers, set(WriteReq), set(Cmd)).

The function takes as input:

• values of processor registers,
• a decoded instruction,
• a set of data loaded from the memory system,
• a set of paging translations from the TLB,

and produces as output:

• new values of processor registers,
• a set of memory stores,
• commands for other components of the processor, such as:

– invalidate the cache,

19

– invalidate a cache line,
– flush the TLB,
– invalidate translation in the TLB.

A processor state in our abstract machine is modelled by a Core component. This com-
ponent contains processor registers and information about the current instruction. In
order to simplify further definitions, we embed requests, replies, and commands in Core

component. Thus, the execute becomes a state transformer:

execute ∈Core → Core.

The Core is a record, which consists of the following components:

Core , [registers: . . . defined in section 9.1 and chapter 12

instruction info: . . . defined in section 12.7

commands:

invd ∈ CacheInvd ,

flush-line ∈ CacheLineFlush,

tlb-flush ∈ TLBFlush,

invlpg ∈ TLBFlushPage,

buffers:

mem-in ∈ ReadReq → ReadReply ,

mem-out ∈WriteReq → B,
tlb-in ∈ TLBReq → TLBReply ,

auxiliary components: . . .defined in section 9.1],

Each command contains a flag called valid , which indicates whether the command is
issued or not. Besides this flag, each command has information that is specific to the
command, such as cache line address, page address, etc. We give detailed description
of the commands in section 9.1.

More interesting is how we model requests and replies. A memory read request is a
record with the following components:

ReadReq , [addr ∈ Bpq,mask ∈ Mask ,mt ∈ MemType, code ∈ B]

where the addr is a quadword aligned physical address, the mask is a byte select mask
(Mask , B8), which selects requested bytes in the quadword, the mt is the memory
type (see section 5.2), and the code is a flag that indicates whether the request is a code
fetch request or an ordinary read request. For each served memory read request, the
mem-in buffers stores the reply:

ReadReply , [ready ∈ B, data ∈ Data],

where the ready indicates whether the request was served or not, and the data contains
the result of the read access if the request was served (Data , B64).

20

As we discussed in section 1.4, we can get the set of issued memory read requests using
the data-req function:

data-req ∈ Core → set(ReadReq).

Since any function f ∈ X → set(Y) can be turned into an equivalent predicate p ∈ X →
Y → B, we will use the following predicate to check whether a read request is issued
or not:

data-req-execute(core ∈ Core, pa ∈ Bpq ,mask ∈ B64,mt ∈ MemType, code ∈ B) ∈ B.

The suffix execute in the name of the predicate means that the predicate is valid only
when the core is executing an instruction, i.e. the core is in the execute phase. There
are several other phases such as decode, vmexit, etc. Section 9.2 describes the phases
in detail.

The mem-out buffer contains a set of issued memory write requests. A write request
looks like a read request but it has an additional component: the data to be written.

WriteReq , [addr ∈ Bpq,mask ∈ Mask ,mt ∈ MemType, data ∈ Data].

The tlb-in buffer is similar to the mem-in buffer, but it stores a TLB reply for each served
translation request. A translation request is a pair of a virtual page-aligned address and
access rights:

TLBReq , [va ∈ Bvp, r ∈ Rights],

Rights , [write ∈ B, user ∈ B, code ∈ B],

where the access rights indicate the type of the memory access for which the address
translantion is being requested.

A TLB reply is a record with the following fields:

TLBReply , [ready ∈ B, fault ∈ B, fault-code ∈ B8,

ba ∈ Bpp ,mt ∈ MemType],

where the ready flag indicates whether the translation request was served or not, the
fault flag indicates whether the translation produced a page fault or not, the fault-code

contains the page fault code in case of a page fault, the ba is the translated page-aligned
physical address, and the mt is the memory type translated address.

For each translation request, we can check whether it was issued or not using the
following predicate:

trans-req-execute(core ∈ Core, va ∈ Bvp, r ∈ Rights) ∈ B.

The execute function is partial, i.e. it might fail if

• more data from the memory is needed to complete the instruction execution;

• more translations from the TLB are needed to complete the instruction execution;

21

prepare completeexecute

execute()acquire
lock

border

fault

release
lock

write to sb,
apply

commands

load data and
translations

wait for lock
if atomic

Figure 3.1: Instruction execution

• an exception occurs during the instruction execution;

• an virtual machine intercept occurs during the instruction execution;

We already described the predicates that check the former two conditions. The latter
two conditions can be checked with the following predicates:

fault-on-execute(core ∈ Core, e ∈ Exception) ∈ B,
vmexit-on-execute(core ∈ Core, x ∈ Intercept) ∈ B,

where Exception and Intercept contain information describing the exception and the
intercept (see section 9.1). Thus, fault-on-execute(core, e) holds if and only if execut-
ing the current instruction raises the exception e, which is not intercepted. Likewise,
vmexit-on-execute(core, x) holds if and only if executing the current instruction triggers
the intercept x. Based on these predicates, we can define the domain of the execute

function:

can-execute(core ∈ Core) ∈ B ,
(∀pa,mask ,mt , code : ¬data-req-execute(core, pa,mask ,mt , code))

∧ (∀va, r : ¬trans-req-execute(core, va, r))

∧ (∀e : ¬fault-on-execute(core, e))

∧ (∀x : ¬vmexit-on-execute(core, x)),

so, can-execute(core) holds if and only if all necessary data are fetched into the buffers
and the current instruction can be successfully executed.

To show how the predicates and the execute function fit together, we describe a simpli-
fied instruction execution scheme. Figure 3.1 illustrates the phases of instruction exe-
cution and transitions between the phases. Assuming that the instruction was fetched
and decoded, the processor core executes it by making the following transitions:

1. Acquire the memory lock if the instruction must be executed atomically. When the
processor acquires the memory lock, then other processors cannot access caches,
physical memory, and memory-mapped devices.

2. (a) Collect translations from the TLB, using the trans-req-execute predicate to
detect the requested translations.

(b) Collect data from the memory, using the data-req-execute predicate to detect
the requested data.

22

3. Check, using the fault-on-execute and vmexit-on-execute predicates, whether the
instruction raises an exception or an intercept, and, in case of an exception or an
intercept, record the exception information and abort the instruction execution.

4. Invoke the execute function (if the instruction can be executed successfully), up-
date the registers, and enable:
(a) transitions that copy the stores into the store buffer,
(b) transitions that apply commands to other components.

Note that applying commands to other components never fails (i.e. never raises
an exception).

5. Release the memory lock if the lock was acquired.

Thus, the memory accesses of an atomic instruction are not interleaved with other
memory accesses. In case of a non-atomic instruction, fine-grained transitions of type
2.a and transitions of the store buffer allow other processors to make steps between
two consecutive accesses of the instruction.

We have defined an interface that allows us to abstract instruction execution. Besides
executing instructions, the processor fetches/decodes instructions, jumps to interrupt
service routines, and switches from guest mode to host mode. All these activities are
similar to instruction execution: they load data and translations, update registers, pro-
duce stores, and even can raise exceptions or be intercepted. Therefore, we call them
pseudo-instructions and specify them via the decode, jisr , and vmexit functions, which
are analogs of the execute function. Let xxxx denote one of these functions, then we
derive the following predicates from the definition of the xxxx :

data-req-xxxx (core ∈ Core, pa ∈ Bpq ,mask ∈ B64,mt ∈ MemType, code ∈ B) ∈ B,
trans-req-xxxx (core ∈ Core, va ∈ Bvp, r ∈ Rights) ∈ B,
fault-on-xxxx (core ∈ Core, e ∈ Exception) ∈ B,
vmexit-on-xxxx (core ∈ Core, x ∈ Intercept) ∈ B,
can-xxxx (core ∈ Core) ∈ B.

Summarizing this section, we divide the original problem of x86 formalization into the
following subproblems:

1. using a domain specific language (DSL), define instruction fetch/decode, execu-
tion, jump to interrupt service routine, switch to host mode for a single processor
machine.

2. from the definitions in DSL derive formal definitions for decode, execute, jisr , vmexit

and the corresponding predicates.
3. using functions from 2, define an abstract x86 machine as a transition system.

The first problem is solved partially in [Deg07], which specifies instructions in a func-
tional language. The functional style, however, impairs readability because of the gap
between formal specification and informal specification from the official manuals. Our
DSL expresses specifications in an imperative style. This minimizes the gap and in-
creases confidence in correctness of the specification. On the other hand, the DSL is
simple enough (not turing-complete), which allows us to define simple formal seman-
tics for the language and derive formal definitions for the functions listed in the second
problem.

In the subsequent sections we solve the third problem.

23

 System Bus

CPU i

I
n
t
e
r
r
u
p
t

B
u
s

System Memory Device

Cache

SB

Core

A
P
I
C

I/O APIC

LB TLB

IPI

Figure 3.2: Abstract machine

3.2 Abstract x86 machine

The abstract x86 machine is a labeled transition system. Let pid denote the set of
processor indices, and dvid – the set of device indices. Then we define the configuration
of the transition system as the following record:

AbsMachine , [core ∈ pid → Core,

sb ∈ pid → SB ,

lb ∈ pid → LB ,

tlb ∈ pid → TLB ,

lock ∈ Lock ,

cache ∈ pid → Cache,

ipi ∈ IPI ,

env ∈ Env],

where the environment is the physical memory and memory mapped devices:

Env , [memory ∈ Bpq → B64,

apic ∈ pid → APIC ,

ioapic ∈ IOAPIC ,

device ∈ dvid → Device].

Figure 3.2 illustrates a conceptual structure of the abstract machine.

Although there are buses in the figure, we do not explicitly model them. Data transfer
between two units occurs as a part of a transition that changes the state of both units.
As we can express complex guard conditions and effects for transitions, there is no need
for low-level handshake protocols, and, thus, units do not have request /response/ack
fields.

24

Each processor has the following components:

• a processor core: it fetches, decodes, and executes instructions sequentially in
the program order. After executing an instruction but before fetching the next in-
struction, the core checks for exceptions, intercepts, and collects interrupts from
the local APIC. Section 9 describes configuration and transitions of the core.

• a store buffer: it is a queue of stores. It delays stores on their way from the
processor core to the caches/environment. Due to this delay, remote processors
observe reordering of new instructions and loads ahead of old stores. More details
are in Section 6.

• a load buffer: we need it to model effects of out-of-order/speculative instruction ex-
ecution. It nondeterministically prefetches instructions and WC data. WC loads
and instruction fetches can be reordered ahead of old instructions and loads. By
prefetching, the load buffer introduces a negative delay, so that remote processors
observe the required reordering (Section 7).

• a translation-lookaside buffer: it traverses page tables and collects translations.
More details are in Section 8.

• a cache: it models data and code caches of real processors and implements the
MOESI cache-coherence protocol. More details are in Section 5.

• a local APIC: it accepts interrupts from devices and other processors, and for-
wards them to the local processor. It also allows to send interprocessor interrupts.
More details are in Section 10.

Besides processors, the abstract machine has a physical memory, devices, an I/O APIC,
an interprocessor interrupt (IPI) unit, and a memory lock. The physical memory is a
map from quadword aligned addresses to quadwords. We do not model devices and
the I/O APIC, so the device and ioapic components of the abstract machine are just
placeholders to simplify future extensions. There is no IPI unit in a real processor, but
we need it to specify how interprocessor interrupts are transfered between processors
(Section 10.6).

In order to simplify definitions, we group units that are accessible via the system bus
into a single component, which is called the environment (Section 4).

The lock component of the abstract machine has type Lock , pid ∪{ε}. When the lock is
acquired (lock 6= ε), only the processor whose index is equal to the lock , can access the
caches and the environment. This allows us to execute instructions atomically. We will
use the following functions to work with the lock:

busy(lock ∈ Lock , i ∈ pid) ∈ B , (lock 6= i ∧ lock 6= ε),

owns(lock ∈ Lock , i ∈ pid) ∈ B , (lock = i),

can-acquire(lock ∈ Lock , i ∈ pid) ∈ B , (lock = ε),

acquire(lock ∈ Lock , i ∈ pid) ∈ Lock , i,

can-release(lock ∈ Lock , i ∈ pid) ∈ B , (lock = i),

release(lock ∈ Lock , i ∈ pid) ∈ Lock , ε.

25

26

CHAPTER

FOUR

ENVIRONMENT

The environment includes the physical memory, APICs, and devices. We access the
environment with the following functions:

can-read(env , i, core, lock , pa,mask) ∈ B,
read(env , i, core, pa,mask) ∈ (Env ,B64),
can-write(env , i, core, lock , pa,mask , data) ∈ B,
write(env , i, core, pa,mask , data) ∈ Env ,

where env ∈ Env , i ∈ pid , core ∈ Core, pa ∈ Bpq,mask ∈ B8, data ∈ B64.

The write function processes the write access and returns a new environment. A read
access can have side effects, therefore, the read function returns the read result and a
new environment.

The functions simply forward the access to one of the env components. Which com-
ponent gets the access depends on the address pa and on a so-called memory map.
The memory map partitions the physical address space into regions. Each region is
backed up either by an APIC, a device, or the physical memory. The memory map is
implementation-dependent. We abstract it into predicates:

in-apic-range(core ∈ Core, pa ∈ Bpq,mask ∈ B8) ∈ B,
in-ioapic-range(ioapic ∈ IOAPIC , pa ∈ Bpq,mask ∈ B8) ∈ B,
in-device-range(device ∈ (dvid → Device), pa ∈ Bpq,mask ∈ B8) ∈ B.

The first predicate is defined in Section 10, and we leave the remaining two predicates
undefined since we do not model devices.

The read ,write functions have the following structure:

• check that the lock is not acquired by another processor;
• if the access is to a memory-mapped region, then forward the access to the corre-

sponding device, using its read ,write functions;
• otherwise, the access is to the physical memory, use env .memory component.

In case the check fails or the corresponding device is not ready, the guard predicate
can-read/can-write forbids invoking the read/write function. Formally, we define the
functions and the predicates as follows:

27

can-read(env , i, core, lock , pa,mask) ∈ B ,
if busy(lock , i) then 0
else if in-apic-range(core, pa,mask) then

can-read(env .apic[i], core, pa,mask)

else if in-ioapic-range(env .ioapic, pa,mask) then
can-read(env .ioapic, pa,mask)

else if in-device-range(env .device, pa,mask) then
can-read(env .device, pa,mask)

else 1,

read(env , i, core, pa,mask) ∈ (Env ,B64) ,
if in-apic-range(core, pa,mask) then

let (apic′, data) = read(env .apic[i], core, pa,mask) in
(env with [apic[i] 7→ apic′], data)

else if in-ioapic-range(env .ioapic, pa,mask) then
let (ioapic′, data) = read(env .ioapic, pa,mask) in
(env with [ioapic 7→ ioapic′], data)

else if in-device-range(env .device, pa,mask) then
let (device ′, data) = read(env .device, pa,mask) in
(env with [device 7→ device ′], data)

else (env , env .memory [pa]),

can-write(env , i, core, lock , pa,mask , data) ∈ B ,
if busy(lock , i) then 0
else if in-apic-range(core, pa,mask) then

can-write(env .apic[i], core, pa,mask , data)

else if in-ioapic-range(env .ioapic, pa,mask) then
can-write(env .ioapic, pa,mask , data)

else if in-device-range(env .ioapic, pa,mask) then
can-write(env .device, pa,mask , data)

else 1,

write(env , i, core, pa,mask , data) ∈ Env ,
if in-apic-range(core, pa,mask) then

let apic′ = write(env .apic[i], core, pa,mask , data) in
env with [apic[i] 7→ apic′]

else if in-ioapic-range(env .ioapic, pa,mask) then
let ioapic′ = write(env .ioapic, pa,mask , data) in
env with [ioapic 7→ ioapic′]

else if in-device-range(env .device, pa,mask) then
let device ′ = write(env .device, pa,mask , data) in
env with [device 7→ device ′]

else let x = combine((env .memory [pa], 18), (data,mask)) in
env with [memory [pa] 7→ x].

28

CHAPTER

FIVE

CACHE

A real processor has several caches: L1 data and instruction caches, L2 caches, and
sometimes L3 caches. Hardware guarantees consistency between all these caches.
Thus, we can model them as a single abstract cache. The size of a cache line is not fixed
by the ISA, but it is a multiple of 8 bytes. For real caches, the size is typically 64 bytes.
Transitions of our abstract cache are nondeterministic. This allows us to simulate any
cache lines size using 8-byte cache lines.

5.1 MOESI protocol

Consistency between caches on different processors is maintained with the help of the
MOESI cache coherence protocol [SS86]. Each line can be in one of the five states:

• Modified: only this cache contains the actual data, and it is responsible for the
writeback. The data in the memory might be stale.

• Owned: this cache contains the actual data, and it is responsible for writeback.
Other caches might contain the same data in the ‘shared’ state. The data in the
memory might be stale.

• Exclusive: only this cache contains the actual data, and no writeback is required.
The data in the memory is up-to-date.

• Shared: this cache contains the actual data, but it is not responsible for writeback.
The data in the memory might be stale if another cache has the data in the ‘owned’
state.

• Invalid: this cache line does not contain the actual data. Other caches might
contain the actual data. The data in the memory might be stale.

We define the abstract cache as a map from physical quadword addresses to line data
and line states:

Cache , [state ∈ Bpq → MOESI , data ∈ Bpq → B64],

where MOESI , {M,O,E, S, I}.

29

Consider a cache line corresponding to the address pa in a cache i. The MOESI protocol
specifies the following transitions for the cache line:

• if cache[i].state[pa] = M then
– on read request from the local processor:

* forward cache[i].data[pa] to the processor;

* leave the line state unchanged.
– on write request from the local processor:

* write the data to cache′[i].data[pa];

* leave the line state unchanged.
– on read probe from a remote cache j:

* forward cache[i].data[pa] to the remote cache;

* change the line state to cache′[i].state[pa] = O;

* the remote cache sets cache′[j].state[pa] = S.
– on write probe from a remote cache j:

* forward cache[i].data[pa] to the remote cache;

* change the line state to cache′[i].state[pa] = I;

* the remote cache sets cache′[j].state[pa] = M .
– at any time:

* writeback cache[i].data[pa] to the memory;

* change the line state to cache′[i].state[pa] = E.
• if cache[i].state[pa] = O then

– on read request from the local processor:

* forward cache[i].data[pa] to the processor;

* leave the line state unchanged.
– on write request from the local processor:

* issue write probe to other caches;

* write data to cache′[i].data[pa];

* change the line state to cache′[i].state[pa] = M ;

* remote caches invalidate the corresponding line.
– on read probe from a remote cache j:

* forward cache[i].data[pa] to the remote cache;

* leave the line state unchanged;

* the remote cache sets cache′[j].state[pa] = S.
– on write probe from a remote processor j:

* forward cache[i].data[pa] to the remote cache;

* change the line state to cache′[i].state[pa] = I;

* the remote cache sets cache′[j].state[pa] = M .
– at any time:

* writeback cache[i].data[pa] to the memory;

* change the line state to cache′[i].state[pa] = S.
• if cache[i].state[pa] = E then

– on read request from the local processor:

* forward cache[i].data[pa] to the processor;

* leave the line state unchanged.
– on write request from the local processor:

* write data to cache′[i].data[pa];

* change the line state to cache′[i].state[pa] = M .
– on read probe from a remote cache j:

30

* forward cache[i].data[pa] to the remote cache (this is optional);

* change the line state to cache′[j].state[pa] = S;

* the remote cache sets cache′[j].state[pa] = S.
– on write probe from a remote cache j:

* forward cache[i].data[pa] to the remote cache (this is optional);

* change the line state to cache′[i].state[pa] = I;

* the remote cache sets cache′[j].state[pa] = M .
– at any time:

* set the line state to cache′[i].state[pa] = I.
• if cache[i].state[pa] = S then

– on read request from the local processor:

* forward cache[i].data[pa] to the processor;

* leave the line state unchanged.
– on write request from the local processor:

* issue write probe to other caches;

* write data to cache′[i].data[pa];

* change the line state to cache′[i].state[pa] = M ;

* remote caches invalidate the corresponding line.
– on read probe from a remote cache j:

* forward cache[i].data[pa] to the remote cache (this is optional);

* leave the line state unchanged;

* the remote cache sets cache′[j].state[pa] = S.
– on write probe from a remote processor j:

* forward cache[i].data[pa] to the remote cache (this is optional);

* change the line state to cache′[i].state[pa] = I;

* the remote cache sets cache′[j].state[pa] = M .
– at any time:

* set the line state to cache′[i].state[pa] = I.
• if cache[i].state[pa] = I then

– on read request from the local processor:

* issue read probe to other processors;

* fetch the data from caches or from memory to cache′[i].data[pa];

* forward cache′[i].data[pa] to the local processor;

* if ∀j ∈ pid : j 6= i ⇒ cache[j].state[pa] = I then change the line state to
cache′[i].state[pa] = E;

* if ∃j ∈ pid : j 6= i ⇒ cache[j].state[pa] 6= I then change the line state to
cache′[i].state[pa] = S.

– on write request from the local processor:

* issue write probe to other processors;

* fetch the data from caches or from memory to temp;

* combine the data from the processor with temp into cache′[i].data[pa];

* change the line state to cache′[i].state[pa] = M ;

* remote caches invalidate the corresponding line.
– on read probe from a remote processor j: do nothing.
– on write probe from a remote processor j: do nothing.

In the subsequent section we formalize this protocol.

31

5.2 Memory types

Before we can describe how to integrate the MOESI protocol into our model, we need to
discuss memory types. Each physical memory access has an associated memory type,
which defines the caching policy and access reordering policy. The memory types have
the following effects on the cache:

• Uncacheable: the cache is ignored, the access goes directly to the memory;
• Cache Disable: a cache hit invalidates the corresponding cache line (if the line is

dirty it is written back), the access goes to the memory;
• Write-Combining: the cache is ignored, the access goes to the memory via the

write-combining buffer;
• Write-Protect: reads are cacheable, writes are not, a write hit invalidates the line

and updates the memory;
• Writethrough: reads are cacheable, a write hit updates the line and the memory,

a write miss does not allocate a line;
• Writeback: reads and writes are cacheable;

Both virtual and physical addresses of memory accesses are used for the memory type
computation. Each page table entry has a 3-bit field pat-idx , which is an index to the
Page Attribute Table (PAT). The table is stored in the 64-bit PAT register and maps 3-
bit indices into memory types. Thus, it is possible to control memory type of accesses
on page granularity. After the translation, the physical address is matched against the
memory type ranges, which are defined by the Memory Type Range Registers (MTRR).
The registers map physical address ranges into memory types. Once both virtual and
physical memory types are known, they are combined to produce the final memory type
of the memory access. We abstract these computations into two functions:

pat-lookup(core ∈ Core, pat-idx ∈ B3) ∈ MemType,
mtrr(core ∈ Core, pa ∈ Bpq, pat-mt ∈ MemType) ∈ MemType,

where MemType , {UC ,CD ,WC ,WP ,WT ,WB}.
The first function looks up the memory type in the PAT register. The second function
computes the MTRR memory type and combines it with the given PAT memory type.
The functions are defined in section 12.8.

5.3 Cache model

The abstract cache maps a physical quadword aligned address to the line data and the
line state:

Cache , [state ∈ Bpq → MOESI , data ∈ Bpq → B64].

In this section we define functions and transitions for the cache component of our ab-
stract machine. These functions and transitions together specify a cache model that is,
hopefully, sound with respect to the MOESI protocol and memory type semantics.

Other components of the abstract machine use the following interface to access the
cache:

can-read(cache, env , core, i, pa,mask ,mt) ∈ B,

32

read(cache, env , core, i, pa,mask ,mt) ∈ (Env ,B64),

can-write(cache, env , core, i, pa,mask , data,mt) ∈ B,
write(cache, env , core, i, pa,mask , data,mt) ∈ (Cache,Env),

where cache ∈ (pid → Cache), env ∈ Env , core ∈ Core, i ∈ pid , pa ∈ Bpq ,mask ∈
B8, data ∈ B64,mt ∈ MemType.

Note that the cache parameter is a map from processor indices to caches. This means
that we need to know the states of other caches in order to access a single cache. For
simplicity, we allow cache read ,write functions to work with uncacheable memory types
and require them to forward such accesses to the environment.

A cache read access is handled as follows:

• if the access is cacheable, then
– check that the line is valid in the local cache (read cache hit),
– return the line data.

• if the access is of type ‘Cache Disable’, then
– check that the line is invalid in the local cache,
– forward access to the environment.

• if the access is of type ‘Uncacheable’, then forward access to the environment.

In case any check fails,the can-read predicate does not hold.

Formalizing the above description, we get function definitions:

cacheable(mt ∈ MemType) ∈ B , mt ∈ {WB ,WP ,WT},

can-read(cache, env , core, i, pa,mask ,mt) ∈ B ,
if cacheable(mt) then cache[i].state[pa] 6= I

else if mt = CD then cache[i].state[pa] = I ∧ can-read(env , core, i, pa,mask)

else can-read(env , core, i, pa,mask),

read(cache, env , core, i, pa,mask ,mt) ∈ (Env ,B64) ,
if cacheable(mt) then (env , cache[i].data[pa])

else read(env , core, i, pa,mask).

Handling a cache write access is more complicated because it depends on states of
other caches, and updates the cache line data and state:

• if the access is of type ‘Writeback’, then
– check that the line is valid in the local cache,
– check that the line is invalid in all other caches,
– write the access data into the line,
– set the line state to ‘Modified’.

• if the access is of type ‘Writethrough’, then
– check that the line is invalid in all other caches,
– write the access data into the line in case of write hit,
– forward access to the environment.

Note that in this case the line state is not updated.
• if the access is of type ‘Write-Protect’, then

– check that the line is invalid in all other caches,
– invalidate the line in the local cache,
– forward access to the environment.

33

Note that mixing this access type with other types can lead to data loss as the
cache line is invalidated without writing back to the memory.

• if the access is of type ‘Cache Disable’, then
– check that the line is invalid in the local cache,
– forward access to the environment.

• if the access is of type ‘Uncacheable’, then forward access to the environment.

The corresponding formal definitions give more details:

can-write(cache, env , core, i, pa,mask , data,mt) ∈ B ,
if cacheable(mt) then

(∀j ∈ pid : j 6= i⇒ cache[j].state[pa] = I)

∧ (mt = WB ⇒ cache[i].state[pa] 6= I)

∧ (mt ∈ {WT ,WP} ⇒ can-write(env , core, i, pa,mask , data))

else if mt = CD then
cache[i].state[pa] = I ∧ can-write(env , core, i, pa,mask , data)

else can-write(env , core, i, pa,mask , data),

write(cache, env , core, i, pa,mask , data,mt) ∈ (Cache,Env) ,
let env ′ = write(env , core, i, pa,mask , data)

(data ′,mask ′) = combine((cache[i].data[pa], 18), (data,mask))

cache ′i = cache[i] with [data[pa] 7→ data ′] in
if cacheable(mt) then

if mt = WB then (cache ′i with [state[pa] 7→M], env)

else if mt = WT then (cache ′i, env ′)

else (cache ′i with [state[pa] 7→ I], env ′)

else (cache[i], env ′).

Now we describe how cache fetches, shares, writes back and drops lines. These actions
happen during cache transitions, which are labeled as follows:

fetch-line-from-env(i ∈ pid , pa ∈ Bpq ,mt ∈ MemType, code ∈ B),

fetch-line-from-cache(i ∈ pid , j ∈ pid , pa ∈ Bpq ,mt ∈ MemType, code ∈ B),

share-line(i ∈ pid , pa ∈ Bpq),

writeback -line(i ∈ pid , pa ∈ Bpq),

drop-line(i ∈ pid , pa ∈ Bpq)

Nondeterministic nature of the transitions allows us to simulate real caches regardless
of the cache size, the line size, associativity, and eviction policy. We can even simulate
effects of speculative/out-of-order instruction executions by allowing caches to specula-
tively fetch lines.

It is important that we do not allow caches to access uncacheable memory regions. A
cache can fetch a line with the physical address pa and the memory type mt (cacheable(mt) =

1) if

• the page tables and the core memory typing registers specify the mt memory type
for the address pa,

• or the store buffer needs to write to pa with the memory type mt .

If one of the condition holds, then the fetch is justified. More formally:

justified(core, sbi, tlbi, pa ∈ Bpq,mt ∈ MemType) ,
reachable(core, tlbi, pa,mt , 0)

34

∨ reachable(core, tlbi, pa,mt , 1)

∨ store-req(sbi, pa,mt).

The predicates reachable are defined in Section 9.5, and the predicate store-req is defined
in Section 6.1.

A cache can fill in a line only when it is enabled:

cache-enabled(core ∈ Core) , ¬core.CR0 .CD .

If other caches do not have a line, and the physical address corresponding to the line
is cacheable, then the cache may load the line from the environment. In this case, the
line goes to exclusive state, and the environment changes to reflect the read access:

label fetch-line-from-env(i ∈ pid , pa ∈ Bpq ,mt ∈ MemType)

guard

cache-enabled(core[i]),

∀j ∈ pid : cache[j].state[pa] = I,

cacheable(mt),

justified(core[i], sb[i], tlb[i], pa,mt),

can-read(env , core[i], pa, 18)

effect

cache ′[i].state[pa] = E,

(env ′, data) = read(env , core[i], pa, 18),

cache ′[i].data[pa] = data

A cache may fetch a line from some other cache, if the remote cache has the line in
owned or shared state:

label fetch-line-from-cache(i ∈ pid , j ∈ pid , pa ∈ Bpq ,mt ∈ MemType)

guard

cache-enabled(core[i]),

cache[i].state[pa] = I ,

cache[j].state[pa] ∈ {O,S},
cacheable(mt),

justified(core[i], sb[i], tlb[i], pa,mt)

effect
cache ′[i].state[pa] = S,

cache ′[i].data[pa] = cache[j].data[pa]

A cache may share any line in exclusive or modified state:

label share-line(i ∈ pid , pa ∈ Bpq)

guard cache[i].state[pa] ∈ {E,M}

effect cache ′[i].state[pa] =

{
S if cache[i].state[pa] = E,

O otherwise

A cache may writeback any line in modified or owned state:

35

label writeback -line(i ∈ pid , pa ∈ Bpq)

guard
cache[i].state[pa] ∈ {M ,O},
can-write(env , core[i], pa, 18, cache[i].data[pa])

effect
cache ′[i].state[pa] =

{
E if cache[i].state[pa] = M,

S otherwise,

env ′ = write(env , core[i], pa, 18, cache[i].data[pa])

A cache may drop any clean line:

label drop-line(i ∈ pid , pa ∈ Bpq)

guard cache[i].state[pa] ∈ {E,S}
effect cache ′[i].state[pa] = I

36

CHAPTER

SIX

STORE BUFFER

Each processor of our abstract machine has a store buffer, which models effects of the
write and write-combining buffers in real processors. The store buffer is a queue of
stores and store fences. Two adjacent stores in the buffer can be swapped. Moreover,
two adjacent WC stores with to the same address may be combined into a single store.

In order to simplify store forwarding, we maintain two maps in the store buffer: data

and cnt :

SB , [buffer ∈ SBItem∗, data ∈ Bpq → B64, cnt ∈ Bpq → N8, uc ∈ N],

where SBItem = Store ∪ {SFENCE} and

Store , [pa ∈ Bpq ,mask ∈ B8, data ∈ B64,mt ∈ MemType].

For each byte of every physical quadword we maintain the number of stores in the
buffer that modify the byte:

∀pa ∈ Bpq, k ∈ N8 :

sb.cnt [pa][k] = |{w ∈ Store | w ∈ sb.buffer ∧ w.pa = pa ∧ w.mask [k]}|

Since loads cannot overpass an old UC store, we can issue a load access only if the
store buffer does not contain an UC store. Thus, we need to maintain the number of
UC store in the store buffer:

sb.uc = |{w ∈ Store | w ∈ sb.buffer ∧ w.mt = UC}|

6.1 Forwarding and writing

Given the counter, it is easy to detect a byte hit:

byte-hit(sb ∈ SB , pa ∈ Bpq , k ∈ N8) ∈ B , sb.cnt [pa][k] > 0.

The data component of the store buffer maintains for each physical quadword the value
of the latest store to that quadword. Store buffer forwarding can be defined as follows:

37

forward(sb ∈ SB , pa ∈ Bpq) ∈ (B64,B8) ,
choose mask ∈ B8 : (∀k ∈ N8 : mask[i] = byte-hit(sb, pa, k)) in
(sb.data[pa],mask).

The processor core adds stores and store fences into the store buffer using the write

function:

write(sb ∈ SB , item ∈ SBItem) ∈ SB ,
if item = SFENCE then sb with [buffer 7→ sb.buffer ◦ [item]]

else
let pa = item.pa

mask = item.mask

mt = item.mt

x = combine((sb.data[pa], 18), (item.data,mask))

data ′ = sb.data with [pa 7→ x]

cnt ′ = sb.cnt with [pa 7→ inc(sb.cnt [pa],mask)]

uc′ = if mt = UC then sb.uc + 1 else sb.uc in
sb with [buffer 7→ sb.buffer ◦ [item], data 7→ data ′, cnt 7→ cnt ′, uc 7→ uc′].

A store fence is simply appended to the end of the queue. For a store access, we need
to maintain invariants of the data, cnt , uc components of the store buffer.

The function inc(x ∈ N8,mask ∈ B8) ∈ N8 increments the eight counters in x according
to the given mask. Let y = inc(x,mask), then ∀k ∈ N8 :

y[k] =

{
x[k] + 1 if mask [k],

x[k] otherwise.

Likewise, we define the dec function for decrementing the counters.

Using the store-req function, the cache detects a write request from the store buffer:

store-req(sb ∈ SB , pa ∈ Bpq,mt ∈ MemType) ,
length(sb.buffer) > 0 ∧ sb.buffer [0].pa = pa ∧ sb.buffer [0].mt = mt.

6.2 Transitions

The store buffer has four nondeterministic transitions:

reorder -stores(i ∈ pid , j ∈ N),

drop-leading-sfence(i ∈ pid),

combine-stores(i ∈ pid , j ∈ N),

commit-store(i ∈ pid , x ∈ Store).

Any two adjacent non-conflicting stores may be reordered if one of them has the WC

memory type:

38

label reorder -stores(i ∈ pid , j ∈ N)

guard

j + 1 < length(sb[i].buffer),

sb[i].buffer [j] 6= SFENCE ,

sb[i].buffer [j + 1] 6= SFENCE ,

¬conflict(sb.buffer [j], sb.buffer [j + 1]),

sb[i].buffer [j].mt = WC ∨ sb[i].buffer [j + 1].mt = WC

effect
sb′[i].buffer [j] = sb[i].buffer [j + 1],

sb′[i].buffer [j + 1] = sb[i].buffer [j]

where the conflict predicate is defined as

conflict(x ∈ Store, y ∈ Store) ∈ B , x.pa = y.pa ∧ (x.mask ∧8 y.mask) 6= 0.

A fence at the front of the queue may be dropped at any time:

label drop-leading-sfence(i ∈ pid)

guard
0 < length(sb[i].buffer),

SFENCE = sb[i].buffer [0]

effect
n = length(sb[i].buffer)− 1,

∀k ∈ N : k < n⇒ sb′[i].buffer [k] = sb[i].buffer [k + 1]

Two adjacent WC stores to the same address may be combined. Note that after com-
bining, we need to decrement byte counters corresponding to the overlapping bytes:

label combine-stores(i ∈ pid , j ∈ N)

guard

j + 1 < length(sb[i].buffer),

sb[i].buffer [j] 6= SFENCE ,

sb[i].buffer [j + 1] 6= SFENCE ,

sb[i].buffer [j].pa = sb[i].buffer [j + 1].pa,

sb[i].buffer [j].mt = WC ∧ sb[i].buffer [j + 1].mt = WC

effect

x = sb[i].buffer [j],

y = sb[i].buffer [j + 1],

mask ′ = x.mask ∨ y.mask ,

data ′ = combine((x.data, x.mask), (y.data, y.mask)),

x′ = x with [mask = mask′, data = data ′],

n = length(sb[i].buffer)− 1,

∀k ∈ N : k < j ⇒ sb′[i].buffer [k] = sb[i].buffer [k],

∀k ∈ N : j < k ∧ k < n⇒ sb′[i].buffer [k] = sb[i].buffer [k + 1],

sb′[i].buffer [j] = x,

sb′[i].cnt [x.pa] = dec(sb.cnt [x.pa], x.mask ∧8 y.mask)

A store at the front of the queue can be written to the cache/environment if the core is
not in the process of copying stores from the mem-out to the store buffer. We require
this condition to guarantee that all stores of an instruction are in the store buffer before
the first store of the instruction hits the cache/environment. The core copies stores
after it has completed the execution of an instruction or of a pseudo-instruction. In

39

such cases the core.phase is COMPLETE or SERIALIZE .

label commit-store(i ∈ pid , x ∈ Store)

guard

(core[i].phase ∈ {COMPLETE ,SERIALIZE} ⇒
core[i].mem-out = empty-mem-out),

0 < length(sb[i].buffer),

x = sb[i].buffer [0],

can-write(cache, env , core, i, x.pa, x.mask , x.data, x.mt)

effect

(cache ′, env ′) = write(cache, env , core, i, x.pa, x.mask , x.data, x.mt),

n = length(sb[i].buffer)− 1,

∀k ∈ N : k < n⇒ sb′[i].buffer [k] = sb[i].buffer [k + 1],

sb′[i].cnt [x.pa] = dec(sb.cnt [x.pa], x.mask),

sb′[i].uc =

{
sb.uc − 1 if x.mt = UC ,

sb.uc otherwise

40

CHAPTER

SEVEN

LOAD BUFFERS

A processor has two kind of buffers for loaded data: persistent and temporary. A per-
sistent buffer retains its data for more than one instruction. We use such buffers to
model

• out-of-order loads from the write-combining memory,
• out-of-order instruction fetches.

We group persistent buffers in the lb ∈ LB component of the abstract machine:

LB , [wc ∈ Bpq → (Data,Mask),

ib ∈ (Bpq ,MemType)→ (Data,Mask)]

where Data , B64 and Mask , B8.

There is one temporary load buffer – the mem-in component of the processor core. The
buffer contains data loaded by the current instruction or pseudo-instruction. Before
execution of the (pseudo-)instruction, the buffer is empty. Figure 7.1 illustrates how
the mem-in collects data.

Core

LBSB wc ib

mem-in

wc codeuccache

Figure 7.1: Load buffers

41

7.1 Loading code

When the core is in the instruction fetch/decode phase, the load -code transition fills the
mem-in buffer with data from the instruction buffer combined with the result of store
buffer forwarding.

label load -code(i ∈ pid , req ∈ ReadReq)

guard core[i].phase = DECODE

effect
(x ,m) = combine(lb[i].ib[req .pa, req .mt], forward(sb[i], req .pa)),

core ′[i].mem-in[req] = ReadReply with {ready 7→ 1, data 7→ x}

The instruction buffer may prefetch any instruction from cacheable and write-combining
memory.

label prefetch-code-cacheable(i ∈ pid , pa ∈ Bpq ,mt ∈ MemType)

guard

cacheable(mt),

cache[i].state[pa] 6= I,

reachable(core[i], tlb[i], pa,mt , 1),

effect
data = cache[i].data[pa],

lb′[i].ib[pa,mt] = (data, 18),

The predicate reachable checks whether the physical address pa can be accessed with
the memory type mt (Section 9.5).

label prefetch-code-wc(i ∈ pid , pa ∈ Bpq ,mask ∈ B8)

guard
can-read(env , core, i, pa,mask),

reachable(core[i], tlb[i], pa,WC , 1)

effect
(env ′, data) = read(env , core, i, pa,mask),

lb′[i].ib[pa,WC] = (data,mask)

Instructions in uncacheable memory are fetched only on core request. We define the
predicate code-req in section 9.5.

label fetch-code(i ∈ pid , pa ∈ Bpq ,mask ∈ B8,mt ∈ MemType)

guard

core[i].phase = DECODE ,

code-req(core[i], pa,mask ,mt),

can-read(env , core, i, pa,mask ,mt)

effect
(env ′, data) = read(env , core, i, pa,mask ,mt),

lb′[i].ib[pa,mt] = (data,mask)

7.2 Loading data

When the core is in a phase that requires data (execute, jump to interrupt service
routine, switch to host mode), the following transition fills in the mem-in buffer with
data from the cache:

42

label load -cacheable(i ∈ pid , req ∈ ReadReq)

guard

core[i].phase ∈ {EXECUTE ,VMEXIT , JISR1 , JISR2}
cacheable(req .mt),

cache[i].state[req .pa] 6= I,

reachable(core[i], tlb[i], req .pa, req .mt , 0),

sb[i].uc = 0

effect
(x ,m) = combine((cache[i].data[req .pa], req .mask), forward(sb[i], req .pa)),

core ′[i].mem-in[req] = ReadReply with {ready 7→ 1, data 7→ x}

Since loads cannot overpass old UC stores, the transition checks that the store buffer
does not contain UC stores.

Uncachable data can be loaded only on core request data-req , which is defined in Sec-
tion 9.5. Since an UC load cannot overpass an old store, so we check that there are no
stores in the store buffer.

label load -in-order(i ∈ pid , req ∈ ReadReq)

guard

core[i].phase ∈ {EXECUTE ,VMEXIT , JISR1 , JISR2},
data-req(core[i], req) = mask ,

can-read(cache, env , core, i, req .pa, req .mask , req .mt),

sb[i].uc = 0,

req .mt = UC ⇒ length(sb[i].buffer) = 0

effect

(cache ′, env ′, data) = read(cache, env , core, i, req .pa, req .idmask, req .mt),

(data ′,mask ′) = combine((data,mask), forward(sb[i], req .pa)),

core ′[i].mem-in[req] = ReadReply with {ready 7→ 1, data 7→ x}

We load WC data to the mem-in from the wc load buffer.

label load -wc(i ∈ pid , req ∈ ReadReq)

guard

core[i].phase ∈ {EXECUTE ,VMEXIT , JISR1 , JISR2},
sb[i].uc = 0

req .mt = WC

effect

(x,m) = combine(lb[i].wc[req .pa], forward(sb[i], req .pa)),

good -mask = (req .mask ∧8 m = req .mask),

core[i].mem-in[req] =

{
ReadReply with {ready 7→ 1, data 7→ x} if good -mask

core[i].mem-id [req] otherwise

The wc load buffer may prefetch data from the write-combining memory.

label prefetch-wc(i ∈ pid , pa ∈ Bpq ,mask ∈ B8)

guard

can-read(env , core, i, pa,mask),

reachable(core[i], tlb[i], pa,WC , 0),

sb[i].uc = 0

effect
(env ′, data) = read(env , core, i, pa,mask),

lb′[i].wc[pa] = (data,mask)

43

7.3 Flushing

The temporary load buffer mem-in is flushed before each instruction and pseudo-instruction.
In other words, its value is set to

empty-mem-in , λreq ∈ ReadReq → ReadReply(0, 0).

The wc load buffer is flushed after the LFENCE instruction, before a locked and I/O
instruction, and after a serializing event. The instruction buffer is flushed only after a
serializing event:

empty-wc , λpa ∈ Bpq → (0, 0),

empty-ib , λ(pa,mt) ∈ (Bpq,mt ∈ MemType)→ (0, 0),

flush-wc(lb ∈ LB) ∈ LB , lb with [wc 7→ empty-wc],

flush-all(lb ∈ LB) ∈ LB , lb with [wc 7→ empty-wc, ib 7→ empty-ib].

44

CHAPTER

EIGHT

TRANSLATION-LOOKASIDE
BUFFER

Real translation-lookaside buffer caches translations of virtual addresses. Our abstract
TLB stores not only translations but states of page table traversal, which we call walks.
Thus, a TLB is a set of walks:

TLB , [walks ∈Walk → B]

In order to get a translation for a virtual page address1 vpfn and access rights r, we
initiate a walk w with w.vpfn = vpfn ∧ w.r = r at the root page table. Then we per-
form several walk extensions until we reach a leaf page table. The walk w contains all
necessary information for walk extension, including

• w.level , the current page table level.
• w.large, the flag that indicates whether walk has reached a large page.
• w.asid , the address space identifier.
• w.g , the flag that indicates whether the walk is global or not. There are events

that flush non-global walks (such as writing to the CR3 register).
• w.ba, the physical base address of the current page table (quadword aligned);
• w.pat-idx , the index into the page attribute table, which is used to calculate the

memory type of the memory region where the page table lies.

Formally, we define a walk as a record:

Walk , [vpfn ∈ Bvp, r ∈ Rights, level ∈ N, large ∈ B, g ∈ B,
ba ∈ Bpq , pat-idx ∈ B3]

where Rights , [write ∈ B, user ∈ B, code ∈ B]

1virtual page address is also called virtual page frame number

45

8.1 Page Tables

The number of levels in the page table hierarchy depends on the paging mode, and it
can be 2, 3, or 4. Let us denote this number as dot (depth of translation). A virtual page
address x ∈ Bvp is split into dot bitvectors:

x[rdot − 1 : 0] = x[rdot − 1 : rdot−1] ◦ . . . ◦ x[r1 − 1 : r0],

The actual value of (rdot, . . . , r1, r0) also depends on the paging mode, and it is

• (20, 10, 0) in legacy 32-bit mode without physical address extensions,
• (20, 18, 9, 0) in legacy 32-bit mode with physical address extensions,
• (36, 27, 18, 9, 0) in long mode.

A bitvector x[rj − 1 : rj−1] is the index of a page table entry in the page table of level j.
We abstract the index calculation into function pte-idx :

pte-idx (core ∈ Core, vpfn ∈ Bvp, level ∈ {2, 3, 4}) ∈ Index .

Thus, pte-idx (core, x, j) = x[rj − 1 : rj−1] and Index =
⋃dot

j=1 Brj−rj−1 . Entries in all
page tables have the same size, which depends on the paging mode and is computed by
pte-size(core ∈ Core) ∈ {4, 8}. A page table has size 4096 bytes2, therefore, a page table
entry size is equal to mindot

j=1(4096/2rj−rj−1).

Once we know the page table base address ba, the entry index idx, the entry size size,
it is easy to compute the entry address ba+ idx ∗ size. However, there are some compli-
cations because the base address is quadword aligned, and we want the entry address
to be quadword aligned. Clearly, if the entry size is smaller that eight bytes, then we
need a byte select mask. We use function pte-addr and pte-mask to compute the entry
address and the byte select mask:

pte-addr(core ∈ Core, ba ∈ Bpq , idx ∈ Index) ∈ Bpq ,

pte-mask(core ∈ Core, ba ∈ Bpq , idx ∈ Index) ∈ B8.

Let s = pte-size(corei) and t = ba ◦ 03 + zxtpq+3(idx) ∗ s, then

pte-addr(core, ba, idx) = t[pq + 3 : 3],

pte-mask(core, ba, idx) =

18 if s = 8,

04 ◦ 14 if s = 4 ∧ t mod 8 = 0,

14 ◦ 04 otherwise.

Now we can define functions for reading and writing page table entries. Let PTE = B64

be the set of all page table entries zero extended to 64 bits, then

read -pte(cache, env , core, i ,w ∈Walk) ∈ (Env ,PTE) ,
let idx = pte-idx (w.vpfn, w.level)

pa = pte-addr(w.ba, idx)

mask = pte-mask(w.ba, idx)

mt = mtrr(core[i], pa, pat-lookup(core, w.pat-idx)) in
read(cache, env , core, i, pa,mask ,mt),

2except the top-level page table in legacy 32-bit mode with physical address extensions, which is 32 bytes
long and has four 8

46

write-pte(cache, env , core, i ,w ∈Walk , pte ∈ PTE) ∈ (Cache,Env) ,
let idx = pte-idx (w.vpfn, w.level)

pa = pte-addr(w.ba, idx)

mask = pte-mask(w.ba, idx)

mt = mtrr(core[i], pa, pat-lookup(core, w.pat-idx)) in
write(cache, env , core, i, pa,mask , pte,mt).

The corresponding guard predicates can-read -pte and can-write-pte are defined likewise
(replace ‘read ’ or ‘write’ with ‘can-read ’ or ‘can-write’).

A page table entry has many fields. The exact layout of the fields depends on the
paging mode. In order to simplify definitions, we introduce an abstract page table
entry AbsPTE and assume that there is a function

parse-pte(core ∈ Core, pte ∈ PTE) ∈ AbsPTE ,

which takes the binary representation of a page table entry, and returns the abstract
representation.

An abstract page table entry x has the following fields:

• x.p, the present flag,
• x.r, the entry access rights,
• x.a, the ‘accessed’ flag, which indicates whether the entry was accessed by the

TLB or not,
• x.d, the ‘dirty’ flag, which indicates whether the entry was used to translate a

virtual address for writing,
• x.g, the ‘global’ flag, which indicates whether a translation that uses this entry is

global or not,
• x.large, the large page indicator, when this flag is set, then the page table entry

specifies a large page.
• x.ba, the base address of the next level page table (quadword aligned),
• x.pat-idx , the index into the page attribute table, which is used to calculate the

memory type of the memory region where the next level page table lies,
• x.valid , the flag that indicates whether the binary representation of the entry is

valid, i.e. reserved fields are set to correct values.

Thus, AbsPTE is a record

AbsPTE , [p ∈ B, r ∈ Rights, a ∈ B, d ∈ B, g ∈ B, large ∈ B,
ba ∈ Bpq , pat-idx ∈ B3, valid ∈ B].

For setting ‘accesses’ and ‘dirty’ bits we will use functions

set-accessed(pte ∈ PTE) ∈ PTE ,

set-dirty(pte ∈ PTE) ∈ PTE .

These functions as well as pte-idx , pte-size, pte-addr , pte-mask , parse-pte are defined for-
mally in section 13.6.

47

8.2 Creating and dropping walks

The TLB makes transitions only if paging is enabled:

paging-enabled(core ∈ Core) , core.CR0 .PG .

A new walk starts the level equal to the depth of translation. The base address of the
root page table is taken from the CR3 register. The CR0 ,CR3 registers are defined in
section 12.2.

label new -walk(i ∈ pid , w ∈Walk)

guard

paging-enabled(core[i]),

w.level = dot(core[i]),

w.large = 0,

w.asi = current-asid(core[i]),

w.g = 0,

w.ba = core[i].CR3 .base[pq + 3 : 3],

w.pat-idx = 0 ◦ (core[i].CR3 .PCD) ◦ (core[i].CR3 .PWT)

effect tlb′[i].walks[w] = 1

The current-asid function is defined in section 13.5.

Any walk can be dropped at any moment.

label drop-walk(i ∈ pid , w ∈Walk)

guard
paging-enabled(core[i]),

tlb[i].walks[w] = 1

effect tlb′[i].walks[w] = 0

8.3 Extending walks

A walk w that has reached the level zero is complete, and w.ba contains the base address
of the physical page corresponding to the virtual page w.vpfn. There might be complete
walks with a level greater than zero. This happens when a walk reaches a large physical
page.

complete(w ∈Walk) ∈ B , w.level = 0 ∨ w.large.

To extend an incomplete walk, we calculate the page table entry index, fetch the cor-
responding page table entry, and replace some fields of the walk with the fields of the
page table entry.

Consider a walk w and a page table entry pte that is going to be used for walk extension.
It is possible that the page table entry is invalid (reserved bits have forbidden values),
the next level page table is not present, or the walk access right do not match the page
table entry access rights. Each of these conditions leads to a page fault.

page-fault(core ∈ Core,w ∈Walk , pte ∈ AbsPTE) ∈ B ,
¬pte.valid ∨ ¬pte.p ∨ access-violation(core, w.r , pte.r),

48

access-violation(core ∈ Core, request ∈ Rights, allow ∈ Rights) ∈ B ,
request .write ∧ ¬allow .write ∧ (request .user ∨ core.CR0 .WP) ∨
request .user ∧ ¬allow .user ∨
request .code ∧ ¬allow .code.

Since a real hardware TLB does not cache faulting translations, we cannot extend a
walk if there is a page fault condition. We also make sure that the ‘accessed‘ and ‘dirty‘
bits of the page table entry are set approriately before extending:

can-extend(core ∈ Core, w ∈Walk , pte ∈ AbsPTE) ∈ B ,
¬complete(w) ∧ ¬page-fault(core, w, pte) ∧ pte.a

∧ (w.r.write ∧ (w.level = 1 ∨ pte.large)⇒ pte.d).

The ‘accessed’ bit is checked for every access, while the ‘dirty’ bit is checked only for
write accesses in a leaf page table entry.

Once the preconditions are met, the walk can be extended.

extend(core ∈ Core, w ∈Walk , pte ∈ AbsPTE) ∈Walk ,
w with [level 7→ w.level − 1,

ba 7→ pte.ba,

pat-idx 7→ pte.pat-idx ,

g 7→ pte.g ,

large 7→ pte.large].

The level of the walk is decremented, the base address and memory type of the next
level page table are copied from the page table entry.

The corresponding transition looks as follows:

label extend -walk(i ∈ pid , w ∈Walk)

guard

paging-enabled(core[i]),

tlb[i].walks[w] = 1,

¬complete(w),

can-read -pte(cache, env , core, i, w)

effect

(env ′, pte-raw) = read -pte(cache, env , core, i, w)

pte = parse-pte(core[i], pte-raw),

w′ =

{
extend(core[i], w, pte) if can-extend(core[i], w, pte),

w otherwise,

tlb′[i].walks[w′] = 1

The ‘accessed‘ and ‘dirty’ bits are set in a separate transition, which

1. fetches the page table entry;
2. checks that the entry is valid;
3. sets its ‘accessed’ bit;
4. sets its ‘dirty‘ bit if the entry is a leaf entry and the walk is for a write access;
5. writes the updated page table entry back.

49

label set-accessed -dirty(i ∈ pid , w ∈Walk)

guard

paging-enabled(core[i]),

tlb[i].walks[w] = 1,

¬complete(w),

can-read -pte(cache, env , core, i, w)

effect

(env -temp, pte-raw) = read -pte(cache, env , core, i, w)

pte = parse-pte(core[i], pte-raw),

pte ′ = set-accessed(pte-raw),

pte ′′ =

{
set-dirty(pte ′) if w.r .write ∧ (w.level = 1 ∨ pte.large),

pte ′ otherwise,

ok1 = ¬page-fault(core[i], w, pte),

ok2 = can-write-pte(cache, env -temp, core, i, w, pte ′′),

ok = ok1 ∧ ok2 ,

(cache ′[i], env ′) =

{
write-pte(cache, env -temp, core, i, w, pte ′′) if ok ,

cache[i], env -temp otherwise

For a complete walk w in a large page, we need to combine the offset in the large page
(defined by the remaining parts of the w.vpfn) and the base address w.ba.

label extend -large-walk(i ∈ pid , w ∈Walk)

guard

paging-enabled(core[i]),

tlb[i].walks[w] = 1,

w.large, w.level > 0

effect

idx = zxtpq(pte-idx (core[i], w.vpfn, w.level),

size = zxtpq(2remaining-bits(core[i],w.level) ∗ 29),

w′ = w with [level 7→ 0, ba 7→ w.ba + idx ∗ size]

tlb′[i].walks[w′] = 1

where remaining-bits(core, level) = rlevel−1.

8.4 Loading translations into the Core

The TLB might contain several complete walks for a single virtual address. Any of these
walks can provide translation for the virtual address. We want to capture this nonde-
terministic choice in separate transitions that load translation into the tlb-in buffer of
the processor core.

Core , [. . .

tlb-in ∈ TLBReq → TLBReply ,

. . .].

The TLBReq and TLBReply types are defined in section 3.1.

The buffer is flushed before instruction fetch/decode, instruction execution, and pseudo-

50

instruction.

empty-tlb-in , λreq ∈ TLBReq → TLBReply with [ready 7→ 0].

After the flush, two transitions, successful -translation and faulting-translation, fill in the
buffer. The former transition selects a complete walk in the TLB and stores the corre-
sponding transition in the buffer:

label successful -translation(i ∈ pid , w ∈Walk , req ∈ TLBReq)

guard

paging-enabled(core[i]),

core[i].phase ∈ {DECODE ,EXECUTE ,VMEXIT , JISR1 , JISR2},
tlb[i].walks[w] = 1,

w.level = 0,

req .pfn = w.vpfn,

req .asid = w.asid ,

req .rw = w.r.rw ,

req .us = w.r.us,

req .exec = w.r.exec

effect

x = w.ba[pq − 1 : 9],

t = TLBReply with [ready 7→ 1, fault 7→ 0, ba 7→ x, pat-idx 7→ w.pat-idx],

core ′[i].tlb-in[req] = t

In case of a page fault, we need to compute the page fault code for the page fault
handler:

page-fault-code(present ∈ B, rights ∈ Rights) ∈ B8 ,
zxt8(rights.code ◦ 0 ◦ rights.user ◦ rights.write ◦ present).

Before loading a faulting translation to the core, we check whether the cause of the
fault is still there by trying to extend the walk.

51

label faulting-translation(i ∈ pid , w ∈Walk , req ∈ TLBReq)

guard

paging-enabled(core[i]),

core[i].phase ∈ {DECODE ,EXECUTE ,VMEXIT , JISR1 , JISR2},
tlb[i].walks[w] = 1,

¬complete(w),

can-read -pte(cache, env , core, i, w)

req .pfn = w.vpfn,

req .asid = w.asid ,

req .rw = w.r.rw ,

req .us = w.r.us,

req .exec = w.r.exec,

effect

(env ′, pte-raw) = read -pte(cache, env , core, i, w)

pte = parse-pte(core[i], pte-raw),

pf = page-fault(core[i], w, pte),

pf -code = page-fault-code(pte.p, w.r),

t =

{
TLBReply with [ready 7→ 1, fault 7→ 1, fault-code 7→ pf -code] if pf ,

core[i].tlb-view [req] otherwise

core ′[i].tlb-in[req] = t

8.5 Flushing

There are three types of TLB flushes: a global flush, a local flush, and a flush of a
specific translation.

A global flush removes all the walks from the TLB:

flush-global(tlb ∈ TLB) ∈ TLB , tlb with [walks 7→ (λw ∈Walk → 0)].

A local flush removes all incomplete walks and walks that do not have the global bit set:

flush-local(tlb ∈ TLB) ∈ TLB ,
tlb with [walks 7→ (λw ∈Walk → w.g ∧ complete(w) ∧ tlb.walks[w])].

It is possible to flush the translations for a specific address space:

flush-global -with-asid(tlb ∈ TLB , asid ∈ B32) ∈ TLB ,
tlb with [walks 7→ (λw ∈Walk → w.asid = asid ∧ tlb.walks[w])].

flush-local -with-asid(tlb ∈ TLB , asid ∈ B32) ∈ TLB ,
tlb with [walks 7→ (λw ∈Walk → (w.asid 6= asid ∨ w.g) ∧ complete(w) ∧ tlb.walks[w])].

A flush of a specific translation removes all incomplete walks and walks that correspond
to the given virtual page address:

invlpg(tlb ∈ TLB , vpfn ∈ Bvp, asid ∈ B32) ∈ TLB ,
tlb with [walks 7→ (λw ∈Walk → (w .asid 6= asid ∨ w.vpfn 6= vpfn) ∧

complete(w) ∧ tlb.walks[w])].

52

CHAPTER

NINE

CORE

9.1 Core configuration

The core configuration consists of architecture registers, the current instruction, an
auxiliary state, commands to other units, and the view buffers.

Chapter 12 describes all architecture registers. Most of them are used inside the execute

function. We will need the following registers to define the core transitions:

• CR0 : bits CD and PG in this register enable/disable caches and paging.
• CR3 : the base address and the memory type of the root page table.
• CR8 : bits [3 : 0] of this register are aliased with bits [7 : 4] of the APIC task priority

register. We synchronize these bits before and after instruction execution.
• RFLAGS : bit IF in this register enables/disables maskable interrupts.
• GIF : enables/disables all interrupts.
• SR[CS]: the code segment register contains the base address and attributes of the

code segment.
• RIP : the instruction pointer register stores an offset in the code segment. In the

decode phase, it contains the address of the current instruction. In the execute
phase, it contains the address of the next instruction, i.e. the address of the
current instruction plus the length of the current instruction.

• APIC -BASE : the ABA component of this register is the physical base address
of the memory-mapped local APIC page. The BSP bit indicates whether the cur-
rent processor is a bootstrap processor or an application processor. The AE bit
enables/disables the local APIC.

In the decode phase, the information about the current instruction is stored in the core
components: the instruction opcode, the instruction prefixes, the immediate operand,
the ModRM byte, the SIB byte, etc. This information is later used by the execute func-
tion. For the top-level transitions, we will need to know the type of the instruction:
atomic, I/O, serializing, fence, etc. The prefix .lock ∈ B component of the core indicates
whether the instruction is atomic or not. Later we will introduce the predicates that
check for other instruction types.

53

The auxiliary state of the core includes registers that are not part of the architecture,
but are necessary for the instruction processing cycle:

• phase: the phase of the instruction processing cycle, we describe this register
together with the core transitions in Section 9.2.

• vtmode ∈ VtMode: the virtualization mode, indicates whether the core is in guest
mode or host mode: VtMode , {HOST ,GUEST}.

• fault ∈ Exception: when a (pseudo-)instruction raises a fault exception, the infor-
mation about the exception is saved in this register until the jump to the interrupt
service routine.

Exception , [vector ∈ B8, ecode ∈ B16 ∪ {ε}, data ∈ B64 ∪ {ε}],

the vector component specifies the type of the exception; some exceptions have an
error code that is pushed into the stack before the jump to the interrupt service
routine; a page fault exception stores the faulting address in the data component,
which is written to the CR2 register before the jump.

• trap ∈ Exception: this register stores a trap exception that was triggered by the
instruction. The difference between a fault and a trap is that the trap does not
abort the instruction, so the trap is handled after the instruction completes.

• intercept ∈ Intercept : this register stores an intercept that was triggered by the
instruction in guest mode.

Intercept , [code ∈ B64, info1 ∈ B64, info2 ∈ B64, intinfo ∈ B64 ∪ {ε}],

the code component specifies the cause of the intercept and the ‘info’ components
contain additional information specific to the cause.

• intr -shadow ∈ B: the interrupt shadow indicator. After a POP SS and a MOV SS
instructions all external interrupts and debug traps are inhibited until the next
instruction is completed. It is necessary to allow to adjust the stack pointer in the
next instruction and to keep the stack consistent. This register is set to 1 in case
of successful execution of the POP SS and the MOV SS instructions. It is reset to
0 if an exception occurs or if the execution completes and the previous value of
the interrupt shadow was 1. Therefore, if the POP SS is followed by another POP
SS, only the first instruction inhibits interrupts.

• jisr -event ∈ Event : during a jump to an interrupt service routine, this register
stores the cause of the jump. We use term ‘event’ to denote anything that can
disrupt the fetch/decode/execute cycle (except intercepts). Interrupts and excep-
tions are events. In guest mode, events are either real or injected. All events
except for an initialization (INIT) interrupt and a startup interprocessor interrupt
(SIPI) require a jump to the interrupt service routine. We will discuss how events
are collected and processed in Section 9.3. An event has the following fields:

Event , [type ∈ EventType,

vector ∈ B8,

ecode ∈ B32 ∪ {ε},
data ∈ B64 ∪ {ε},
injected ∈ B],

54

where

EventType , { INIT ,

SIPI ,

NMI ,

INTR,VINTR,

SPURIOUS ,

EXCP ,SOFT -INT}.

Depending on the event type, the fields of the event record have the following
meaning:

– INIT: the vector , ecode, data fields are irrelevant because the processor starts
initialization (similar to RESET).

– SIPI: the ecode, data fields are irrelevant because the processor jumps directly
to the instruction whose address is calculated from the vector .

– non-maskable interrupt: the vector is assumed to be 2, and the ecode, data

fields are irrelevant.
– maskable interrupt: the ecode, data fields are irrelevant.
– virtual maskable interrupt: the ecode, data fields are irrelevant.
– spurious interrupt: the ecode, data fields are irrelevant.
– exception: all fields are relevant and correspond to the fields of the Exception

record.
– software interrupt: the ecode, data fields are irrelevant.

Section 10 describes interrupts in more details.

An instruction may update the core registers, the memory, and the processor local units.
We abstract instruction execution into the execute function, which takes the core regis-
ters, TLB translations, memory loads and returns the new core registers, the memory
stores, and commands to the processor local units. Thus, after the transition that in-
vokes the execute function, there are other transitions that carry out the commands to
the processor local units, which are specified in the command registers:

• invd ∈ CacheInvd : when the valid flag of this register is set, the processor invali-
dates the cache. If the writeback flag is set, then the cache writes back all modified
lines into the main memory before invalidation.

CacheInvd , [valid ∈ B,
writeback ∈ B].

• flush-line ∈ CacheLineFlush: when the valid flag of this register is set, the proces-
sor waits until the cache writes back and evicts the line with the physical address
specified by the addr field.

CacheLineFlush , [valid ∈ B,
addr ∈ Bpa].

• tlb-flush ∈ TLBFlush: when the valid flag of this register is set, then the processor
flushed the translations in the TLB. The local ,with-asid , asid fields of the register
specify whether to flush local translations or all translation and whether to flush
translation in the specified address space or to flush translation in all address

55

spaces.

TLBFlush , [valid ∈ B,
local ∈ B,
with-asid ∈ B,
asid ∈ B32].

• invlpg ∈ TLBFlushPage: when the valid flag of this register is set, then the proces-
sor invalidates all partial walks and walks corresponding to address specified in
the addr field within the specified address space.

TLBFlushPage , [valid ∈ B,
addr ∈ Bva ,

asid ∈ B32].

• sync-tpr ∈ B: when this register is 1, the processor synchronizes the task priority
register TPR of the APIC with the CR8 of the core.

56

Summarizing this section, we get the following definition of the core configuration:

Core , [architecture registers:

CR0 ∈ CtlReg0 ,

CR3 ∈ CtlReg3 ,

CR8 ∈ B64,

RFLAGS ∈ FlagsReg ,

GIF ∈ B,
. . . the rest is defined in chapter 12

instruction info:

prefix ∈ Prefix ,

. . . the rest is defined in section 12.7

the auxiliary state:

phase ∈ Phase,

vtmode ∈ VtMode,

fault ∈ Exception,

trap ∈ Exception,

intercept ∈ Intercept ,

intr -shadow ∈ B,
jisr -event ∈ Event ,

commands:

invd ∈ CacheInvd ,

flush-line ∈ CacheLineFlush,

tlb-flush ∈ TLBFlush,

invlpg ∈ TLBFlushPage,

sync-tpr ∈ B,
buffers:

mem-in ∈ ReadReq → ReadReply ,

mem-out ∈WriteReq → B,
tlb-in ∈ TLBReq → TLBReply].

9.2 Overview of transitions

As we are specifying an abstract machine, we can ignore performance issues and define
the simplest possible processor core. The core does not have a pipeline and processes
instructions sequentially in the program order.

The instruction processing cycle is quite complex, so we split it into phases as shown in
Figures 9.1 and 9.2, which extend Figure 3.1. After executing an instruction but before
decoding the next instruction, the core is in the border phase. In this phase the core
checks for interrupts and exceptions. In case of an INIT interrupt, the core goes to the
init phase. If there is another interrupt or an exception, then the core goes to the jump
to interrupt service routine (jisr) phase.

57

border prepare completeexecutedecode

vmexit

fault

halt

serialize

fault

Figure 9.1: Core Transitions: instruction processing

border JISR2JISR1

vmexit

shutdownreset

initwait SIPI

fault

serialize

fault

faultany phase

fault

Figure 9.2: Core Transitions: interrupt processing

If there is no active event, then the core proceeds to the fetch/decode phase. Once the
instruction is decoded, the core goes to the prepare execution phase, in which it tries to
acquire the memory lock if the instruction has the lock prefix. After that the instruction
is executed in the execute phase. Then the core gives the commands to processor local
units in the complete execution phase. Finally, the core releases the memory lock (in
case it has acquired it) and returns to the border phase.

The core might fail to decode or execute the instruction. This might happen either
because of an exception or because of an guest intercept. In the former case, the
exception is recorded in the core.fault , the execution is aborted, and the core returns
to the border phase. In the latter case, the core moves to the vmexit phase, where it
switches from guest mode to host mode.

An exception during the jisr phase may trigger a double fault exception, in this case the
core proceeds to the jump to double fault service routine (jisr2) phase. An exception
in this phase leads to the shutdown, i.e. the core switches to the shutdown phase and
never leaves it.

Jumping to an interrupt service routine is a serializing event, which means that load/s-
tore buffers are flushed before fetching the next instruction. Therefore, the core goes
to the serialize phase after a successful jump. In this phase, the core waits until the
buffers are flushed.

58

borderJISR1
start jisr

vmexit

reset init

intercept event

start reset start init

decode

start decode

Figure 9.3: Transitions from the border phase

An intercept during a jump to a service routine leads to the vmexit phase. An exception
in the vmexit phase results in the shutdown. Switching from guest mode to host mode
is a serializing event.

A RESET signal puts the core into the reset phase from any other phase.

There are two idle phases: halt and wait for a startup interprocessor interrupt (SIPI).
A HLT instruction moves the core to the halt phase. The core remains in this phase
until an external event occurs. The wait for SIPI phase is activated for non-bootstrap
processors after the reset and the init phases. When a multi-processor machine is
booting, one processor becomes the bootstrap processor, this processor initializes data
structures and devices. Other processors wait for a startup interrupt from the bootstrap
processor.

Thus, we have the following phases:

Phase , {BORDER,

DECODE ,

PREPARE ,EXECUTE ,COMPLETE ,

VMEXIT ,

JISR1 , JISR2 ,

SERIALIZE , INIT ,RESET ,WAIT -SIPI ,

HALT ,SHUTDOWN }.

In the subsequent sections, we discuss each phase in details.

9.3 Instruction border

In this phase the core collects interrupts from the local APIC and selects the highest
priority event according to Table 9.1. Depending on the selected event, the following
transitions are possible (Figure 9.3):

• if the event is empty, then start the decode phase.
• if the core is in guest mode and the event is intercepted, then start the vmexit

phase.

59

priority event

1 injected event

2 INIT

3 trap exception

4 NMI

5 interrupt

6 virtual interrupt

7 fault exception

Table 9.1: Event priority

• if the event is untercepted INIT, then start the init phase.
• otherwise, start the jump to the service routine phase.

We define the top-event function, which formalizes Table 9.1.

top-event(core ∈ Core, apic ∈ APIC) ∈ (Event ∪ {ε}) ,
if injected -event(core) 6= ε ∧ core.vtmode = GUEST -MODE

then injected -event(core)

else if init-pending(apic) ∧ core.GIF

then Event with [type 7→ INIT , injected 7→ 0]

else if core.trap.valid ∧ core.GIF ∧ ¬core.intr -shadow

then Event with [type 7→ EXCP , vector 7→ core.trap.vector ,

ecode 7→ ε, injected 7→ 0]

else if nmi -pending(apic) ∧ core.GIF

then Event with [type 7→ NMI , vector 7→ 2, ecode 7→ ε, injected 7→ 0]

else if intr -pending(apic) ∧ core.GIF ∧ core.RFLAGS .IF∧
¬core.intr -shadow

then Event with [type 7→ INTR, vector 7→ top-pending-intr(apic),

ecode 7→ ε, injected 7→ 0]

else if vintr -pending(core) ∧ core.GIF ∧ core.RFLAGS .IF∧
¬core.intr -shadow ∧ core.vtmode = GUEST -MODE

then Event with [type 7→ VINTR, vector 7→ vintr -vector(core),

ecode 7→ ε, injected 7→ 0]

else if spurious-pending(apic) ∧ core.GIF ∧ core.RFLAGS .IF∧
¬core.intr -shadow

then Event with [type 7→ SPURIOUS , vector 7→ (apic.SVR.VEC),

ecode 7→ ε, injected 7→ 0]

else if core.fault .valid

then Event with [type 7→ EXCP , vector 7→ core.fault .vector ,

ecode 7→ core.fault .ecode, injected 7→ 0]

else ε.

The functions injected -event , vintr -pending , and vintr -vector check the virtual machine
control area in the core and return the injected event or the virtual interrupt (see sec-
tion [Virtual Interrups and Injected Events]). Note that an injected interrupt is not the
same as a virtual interrupt. A virtual interrupt has a lower priority and is affected by

60

the interrupt flags, while an injected interrupt is handled unconditionally.

The remaining functions check the APIC state and are defined in Section 10.

If there is no active event, then the core starts the decode phase. The view buffers need
to be flushed because the core accesses memory in the decode phase.

label start-decode(i ∈ pid)

guard
core[i].phase = BORDER,

top-event(core[i], apic[i]) = ε

effect

core ′[i].phase = DECODE ,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

If there is an event, then we check whether the event is intercepted or not using the
predicate: vmexit-on-event(core ∈ Core, e ∈ Event , x ∈ Intercept).

The predicate holds if and only if the core is in guest mode, the event intercept bit in
the virtual machine control area is set and the x is an intercept of the event e.

label intercept-event(i ∈ pid , e ∈ Event , x ∈ Intercept)

guard

core[i].phase = BORDER,

e = top-event(core[i], apic[i]),

vmexit-on-event(core[i], e, x)

effect

core ′[i].phase = VMEXIT ,

core ′[i].intercept = x,

core ′[i].fault .valid = 0,

core ′[i].trap.valid = 0,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

If the top event is an INIT signal which is not intercepted, then the core proceeds to the
init phase.

label start-init(i ∈ pid , e ∈ Event)

guard

core[i].phase = BORDER,

e = top-event(core[i], apic[i]),

e.type = INIT ,

¬∃x ∈ Intercept : vmexit-on-event(core[i], e, x)

effect core ′[i].phase = INIT

Finally, if the top event is an interrupt or an exception which is not intercepted, the core
starts the jump to the interrupt service routine phase. The jisr -event stores the event e.

61

label start-jisr(i ∈ pid , e ∈ Event)

guard

core[i].phase = BORDER,

e = top-event(core[i], apic[i]),

e.type 6= INIT ∧ e.type 6= RESET ,

¬∃x ∈ Intercept : vmexit-on-event(core[i], e, x)

effect

core ′[i].phase = JISR1 ,

core ′[i].jisr -event = e,

core ′[i].fault .valid = 0,

core ′[i].trap.valid = 0,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

9.4 RESET, INIT, HALT

Both the RESET and the INIT signals activate processor initialization. The difference
between the signals is that after the INIT signal some parts of the processor do not
change: the memory system, some core registers (FPU, multimedia, MTRR), and the
local APIC.

We will define the values of the registers after RESET/INIT in chapter 12 , and in this
section we use predicates:

reset-core(i ∈ pid , core ∈ Core) ∈ B,
init-core(i ∈ pid , core ∈ Core) ∈ B.

The predicates hold if and only if the given core is a valid core configuration after the
initialization. We use predicates instead of functions that return a core configuration
because some registers have undefined values. Thus, there can be many valid ini-
tial configurations. The processor index i is necessary to set the bootstrap bit BSP in
the APIC -BASE register of the core. Only one processor in the machine is the boot-
strap processor, other processors are application processors. After initialization, an
application processor remains in an idle state and waits for a startup interrupt. The
index of the bootstrap processor is implementation dependent, so we abstract it by the
bootstrap(i ∈ pid) ∈ B predicate, such that

∃k ∈ pid : bootstrap(k) ∧ ∀j ∈ pid : j 6= k ⇒ ¬bootstrap(j).

Similarly, for initialization of the local APIC registers we use predicates:

reset-apic(i ∈ pid , apic ∈ APIC) ∈ B.

In this case, the processor index i is used to set the APIC -ID register.

The RESET signal invalidates all cache lines without writing them back:

reset-cache(cache ∈ Cache) ∈ B , ∀pa ∈ Bpq : cache.state[pa] = I.

The store buffer, the load buffer, and the TLB are all flushed after RESET. Stores in the
store buffer are not written to the memory.

62

reset-sb ∈ SB , SB with [buffer 7→ [], data 7→ (λx ∈ Bpq → 0),

cnt 7→ (λx ∈ Bpq → 08), uc 7→ 0],

reset-lb ∈ LB , LB with [wc 7→ (λx ∈ Bpq → (0, 0)),

ib 7→ (λx ∈ Bpq → (0, 0))],

reset-tlb ∈ TLB , TLB with [walks 7→ (λw ∈Walk → 0)].

Transition to the reset phase may happen at any moment:

label start-reset(i ∈ pid , e ∈ Event)

guard

effect core ′[i].phase = RESET

Using the predicates, it is easy to define transitions that reset/init the processor,

label reset(i ∈ pid ,new -core ∈ Core,new -apic ∈ Apic,new -cache ∈ Cache)

guard

core[i].phase = RESET ,

reset-core(i,new -core),

reset-apic(i,new -apic),

reset-cache(new -cache)

effect

sb′[i] = reset-sb,

lb′[i] = reset-lb,

tlb′[i] = reset-tlb,

core ′[i] =

{
new -core with [phase 7→ BORDER] if bootstrap(i),

new -core with [phase 7→WAIT -SIPI] otherwise,

env ′.apic[i] = new -apic,

env ′.cache[i] = new -cache

label init(i ∈ pid ,new -core ∈ Core)

guard
core[i].phase = INIT ,

init-core(i,new -core)

effect
core ′[i] =

{
new -core with [phase 7→ BORDER] if bootstrap(i),

new -core with [phase 7→WAIT -SIPI] otherwise,

env ′.apic[i] = init-delivered(env .apic[i])

After initialization, the bootstrap processor goes to the border phase, while an applica-
tion processor remains idle until a startup IPI arrives. The startup IPI does not trigger
a usual jump to an interrupt service routine. Instead, the vector of the interrupt di-
rectly specifies the jump target: the code segment base address is set to vector ◦ 012

and the instruction offset is set to 0. As the core is in real mode after initialization,
the code segment base address ba and the code segment selector selector are related:
ba = selector ◦ 04.

63

label wake-up-from-wait-sipi(i ∈ pid)

guard
core[i].phase = WAIT -SIPI ,

sipi -pending(env .apic[i])

effect

core ′[i].SR[CS].selector = sipi -vector(env .apic[i]) ◦ 08,

core ′[i].SR[CS].ba = sipi -vector(env .apic[i]) ◦ 012,

core ′[i].RIP = 0,

core ′[i].phase = BORDER,

env ′.apic[i] = sipi -delivered(env .apic[i])

The code segment register is defined in section 12.3.

The functions sipi -pending , sipi -vector , sipi -delivered are defined in Section 10.2.

There is another idle phase – halt. The core goes to this phase after executing the HLT
instruction, and remains in this phase until RESET, INIT, or an interrupt occurs. Official
manuals do not specify what happens if the core enters the halt phase when the global
interrupt flag GIF masks interrupts. We assume that in this case the core remains idle
until a RESET signal.

label wake-up-from-halt(i ∈ pid)

guard

core[i].phase = HALT ,

core[i].GIF ,

(init-pending(env .apic[i])∨
nmi -pending(env .apic[i])∨
intr -pending(env .apic[i]) ∧ core[i].RFLAGS .IF)

effect core ′[i].phase = BORDER

9.5 Memory accesses

In the subsequent sections we will describe the decode, the execute, the vmexit, and
the jump to interrupt service routine phases. As we have discussed in Section 3.1, we
will use functions decode, execute, jisr , vmexit to define the transitions for these phases.
Let xxxx denote one of the functions, then we derive the following predicate from the
definition of the xxxx :

data-req-xxxx (core ∈ Core, pa ∈ Bpq ,mask ∈ B64,mt ∈ MemType) ∈ B,

which holds until the load buffer transitions (Section 7) fetch enough data into the
mem-in buffer.

With the use of the data-req-xxxx predicate, we can define load -req , code-req , and data-req

predicates. The core makes a load request when it needs to fetch an instruction or to
load data:

load -req(core ∈ Core, pa ∈ Bpq,mask ∈ Mask ,mt ∈ MemType) ,
code-req(core, pa,mask ,mt) ∨ data-req(core, pa,mask ,mt).

We define an instruction fetch request as a data request of the decode phase:

64

border preparedecode

vmexit

successful

intercepted

failed

load data and
translations

Figure 9.4: Transitions from the decode phase

code-req(core ∈ Core, pa ∈ Bpq,mask ∈ Mask ,mt ∈ MemType) ,
if core.phase = DECODE then data-req-decode(core, pa,mask ,mt , 1)

else 0.

Similarly, we define a data load request:

data-req(core ∈ Core, pa ∈ Bpq,mask ∈ Mask ,mt ∈ MemType) ,
if core.phase = EXECUTE then data-req-execute(core, pa,mask ,mt , 0)

else if core.phase = VMEXIT then data-req-vmexit(core, pa,mask ,mt , 0)

else if core.phase = JISR1 then data-req-jisr(core, pa,mask ,mt , 0)

else if core.phase = JISR2 then data-req-jisr(core, pa,mask ,mt , 0)

else 0.

The load buffer transitions fetch cacheable and WC data nondeterministically because
such loads do not have side effects. Uncacheable data, on the other hand, is loaded
only on a core request. Thus, for any physical address, the transitions need to know the
corresponding memory type. We define a predicate that checks whether the TLB has
a walk that maps to the physical region which contains the given address and has the
given the memory type:

reachable(core ∈ Core, tlb ∈ TLB , pa ∈ Bpq,mt ∈ MemType, code ∈ B) ,
if paging-enabled(core) then

∃w ∈Walk : tlb.walks[w] ∧ w.ba ≤ pa < w.ba+ 4096/8 ∧
mtrr(core, pa, pat-lookup(core, w.pat-idx)) = mt ∧
w.r.code = code

else mtrr(core, pa,WB) = mt.

The code parameter indicates whether the access is for the instruction fetch or for a
data load. The function pat-lookup looks up the memory type in the PAT register. The
function mtrr computes the memory type, using the memory type range registers, and
combines it with the PAT memory type. The functions are defined in section 12.8.

9.6 Fetch and decode

In the decode phase, transitions described in Sections 7 and 8 fetch the instruction by
filling in the tlb-view and mem-in buffers. After the instruction is fetched, three cases

65

are possible (Figure 9.4):

• decode succeeds. In this case, the decode function saves the information about
the instruction in the core, increments the instruction pointer by the instruction
length, and switches the core to the prepare execution phase.

• decode raises an exception. In this case, the information about the exception is
saved in the fault field of the core, and the core returns to the border phase.

• decode is intercepted. In this case, the information about the intercept is saved in
the intercept field of the core, and the core starts the vmexit phase.

Formalizing the cases, we get the corresponding three transitions:

label successful -decode(i ∈ pid)

guard
core[i].phase = DECODE ,

can-decode(core[i])

effect core ′[i] = decode(core[i]) with [phase 7→ PREPARE]

Recall, that can-decode(core[i]) holds if and only if the instruction was fetched into the
mem-in buffer and the instruction can be successfully decoded.

label failed -decode(i ∈ pid , e ∈ Exception)

guard
core[i].phase = DECODE ,

fault-on-decode(core[i], e)

effect
core ′[i].fault = e,

core ′[i].phase = BORDER

label intercepted -decode(i ∈ pid , x ∈ Intercept)

guard
core[i].phase = DECODE ,

vmexit-on-decode(core[i], x)

effect

core ′[i].intercept = x,

core ′[i].phase = VMEXIT ,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

In the latter case, we flush the view buffers because the core accesses the memory in
the vmexit phase.

9.7 Execution

The instruction is executed in three phases (Figure 9.5):

1. the prepare execution phase takes care of acquiring the memory lock for atomic
instructions, flushing load/store buffers for atomic, I/O, and serializing instruc-
tions, and flushing the view buffers;

2. the execute phase executes the instructions with the help of the execute function,
this phase can fail either because of an exception or because of an intercept.

3. the complete execution phase moves stores from the mem-out buffer to the store
buffer and carries out commands to other units.

66

prepare completeexecute

vmexit

successful

intercepted

start

border

failed

halt

successful HLT

interrupt

completed

write to sb,
wait for cache
and sb to flush

load data and
translations

wait for lock,
wait for sb
to flush

Figure 9.5: Instruction execution

In the prepare execution phase, the core waits until the memory lock becomes free if the
current instruction is atomic. Since atomic, I/O, and serializing instructions guarantee
that all stores of previous instructions are written to the memory before any memory
access of the current instruction, the core waits until the store buffer becomes empty.
Once the conditions are satisfied, the core acquires the memory lock for an atomic
instruction, flushes the load buffer for atomic, I/O, and serializing instructions, flushes
the view buffers, and proceeds to the execute phase. If we would not flush the load
buffer, then a load access of an atomic, I/O, or serializing instruction could overpass a
store access of an older instruction. The official manuals state that the lower four bits
of the CR8 control register are aliased to the bits [7 : 4] of the task priority register
in the APIC. Therefore, we need to synchronize these bits before starting instruction
execution.

label start-execution(i ∈ pid)

guard

core[i].phase = PREPARE ,

core[i].prefix .lock ⇒ env .lock = ε,

core[i].prefix .lock ⇒ length(sb[i].buffer) = 0,

io(core[i])⇒ length(sb[i].buffer) = 0,

serializing(core[i])⇒ length(sb[i].buffer) = 0

effect

core ′[i].phase = EXECUTE ,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in,

core ′[i].CR8 [3 : 0] = env .apic[i].TPR[7 : 4],

x = core[i].prefix .lock ∨ io(core[i]) ∨ serializing(core[i]),

lb′[i] =

{
flush-wc(lb[i]) if x,

lb[i] otherwise,

env ′.lock =

{
i if core[i].prefix .lock ,

env .lock otherwise

The predicates io and serializing check whether the current instruction is an I/O instruc-
tion or a serializing instruction (see section [Opcode Table]).

67

In the execute phase, the core waits until load buffer and TLB transitions fill in the
mem-in and the tlb-in buffers. Once there is enough data to execute the instruction,
four cases are possible:

• instruction execution succeeds and the instruction is HLT;
• instruction execution succeeds and the instruction is not HLT;
• an exception is raised;
• the instruction is intercepted.

We define four transitions corresponding to these cases. The HLT instruction puts the
core into an idle state, where the core waits for an external signal or an interrupt:

label successful -hlt-execution(i ∈ pid)

guard

core[i].phase = EXECUTE ,

can-execute(core[i]),

hlt(core[i])

effect core ′[i] = execute(core[i]) with [phase 7→ HALT]

The hlt predicate compares the current instruction opcode with the opcode of the HLT
instruction. Note that there is no need to release the memory lock in this case because
the HLT instruction cannot have a lock prefix.

After executing a non-HLT instruction, the core proceeds to the complete execution
phase. As the main complexity is hidden inside the execute function, the transition is
trivial, except for the interrupt shadow handling:

label successful -execution(i ∈ pid)

guard

core[i].phase = EXECUTE ,

can-execute(core[i]),

¬hlt(core[i])

effect

x = execute(core[i]) with [phase 7→ COMPLETE],

y = x with [intr -shadow 7→ x.intr -shadow ∧ ¬core[i].intr -shadow],

core ′[i] = y

Interrupt shadow does not last more than one instruction. Thus, if there are two con-
secutive instructions with interrupt shadows, the shadow of the second instruction is
removed.

In case of an exception, the core saves the exception information in the fault field and
returns to the border phase. The memory lock is released if it has been acquired before.

label failed -execution(i ∈ pid , e ∈ Exception)

guard
core[i].phase = EXECUTE ,

fault-on-execute(core[i], e)

effect

env ′.lock =

{
ε if env .lock = i,

env .lock otherwise,

core ′[i].fault = e,

core ′[i].phase = BORDER

68

If the instruction triggers an intercept in guest mode, then the core goes to the vmexit
phase. The memory lock is released if it has been acquired before.

label intercepted -execution(i ∈ pid , x ∈ Intercept)

guard
core[i].phase = EXECUTE ,

vmexit-on-execute(core[i], x)

effect

env ′.lock =

{
ε if env .lock = i,

env .lock otherwise

core ′[i].intercept = x,

core ′[i].phase = VMEXIT ,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

In the complete execution phase, the core transfers stores from the mem-out buffer to
the store buffer. Since loads cannot overpass an old UC store, a UC store flushes the
load buffer.

label write-to-sb(i ∈ pid , s ∈ Store, req ∈WriteReq)

guard

core[i].phase ∈ {COMPLETE ,SERIALIZE},
s.mask 6= 0,

req .addr = s.pa,

req .mt = s.mt,

req .mask = s.mask,

req .data = s.data,

core[i].mem-out [req]

effect

sb′[i] = write(sb[i], s),

core ′[i].mem-out [req] = 0,

lb′[i] =

{
flush-wc(lb[i]) if s.mt = UC ,

lb[i] otherwise

After all stores are transferred, the core completes the instruction execution by carry-
ing out commands to other units. Atomic, I/O, serializing, and MFENCE instructions
guarantee that all stores are written to the memory before a load or a store access of
the next instruction. Therefore, the core waits until the store buffer is empty.

In case of the WBINVD instruction, the core waits until the cache drops all the lines.
The CLFLUSH instruction writes back and invalidates a specific cache line using the
wb-flush-line command of the core, which makes the core wait until the line becomes
invalid.

Once all the conditions are satisfied, the following transition takes place:

69

label complete-execution(i ∈ pid)

guard

core[i].phase = COMPLETE ,

core[i].mem-out = empty-mem-out ,

core[i].prefix .lock ⇒ length(sb[i].buffer) = 0,

io(core[i])⇒ length(sb[i].buffer) = 0,

serializing(core[i])⇒ length(sb[i].buffer) = 0,

mfence(core[i])⇒ length(sb[i].buffer) = 0,

core[i].invd .valid ∧ core[i].invd .wb ⇒ ∀pa ∈ Bpq : cache[i].state[pa] = I,

core[i].flush-line.valid 6= ε⇒ cache[i].state[core[i].flush-line.addr] = I

effect

cache ′[i] =

{
invalidate(cache[i]) if core[i].invd .valid ∧ ¬core[i].invd .wb,

cache[i] otherwise,

x = core[i].prefix .lock ∨ io(core[i]) ∨mfence(core[i]) ∨ lfence(core[i]),

lb′[i] =

flush-wc(lb[i]) if x,

flush-all(lb[i]) if serializing(core[i]),

lb[i] otherwise,

flush-tlb = core[i].flush-tlb.valid

asid = current-asid(core[i])

with-asid = core[i].flush-tlb.with-asid

local = core[i].flush-tlb.local

invlpg-addr = core[i].invlpg .addr

tlb′[i] =

flush-global(tlb[i]) if flush-tlb ∧ ¬local ∧ ¬with-asid ,

flush-local(tlb[i]) if flush-tlb ∧ local ∧ ¬with-asid ,

flush-global -with-asid(tlb[i], asid) if flush-tlb ∧ ¬local ∧ with-asid ,

flush-local -with-asid(tlb[i], asid) if flush-tlb ∧ local ∧ with-asid ,

invlpg(tlb[i], invlpg-addr , asid) if core[i].invlpg .valid ,

tlb[i] otherwise,

sb′[i] =

{
write(sb[i],SFENCE) if sfence(core[i]),

sb[i] otherwise,

env ′.lock =

{
ε if env .lock = i,

env .lock otherwise,

env ′.apic[i].TPR[7 : 0] =

{
core[i].CR8 [3 : 0] ◦ 04 if core[i].sync-tpr ,

env .apic[i].TPR[7 : 0] otherwise,

core ′[i].phase = BORDER

The predicates io,wbinvd , invd ,mfence, lfence, sfence check if the current opcode matches
the opcode of the corresponding instruction (see section [Opcode Table]).

The cache is invalidated without writing the dirty lines back if the current instruction
is INVD. Atomic, I/O, MFENCE, and LFENCE instructions flush the load buffer because
loads cannot be reordered before these instructions. A serializing instruction flushes
both the instruction and the data load buffers because it guarantees that all memory
accesses of the instruction complete before the next instruction is fetched. The TLB
flush commands update the TLB accordingly. SFENCE instruction enqueues a store

70

fence into the store buffer. The memory lock is released if it has been acquired before.
In case CR8 was written, the bits [7 : 4] of the TPR reflect it and the bits [3 : 0] are
cleared. After this transition, the instruction execution completes, and the core returns
to the border phase.

9.8 VMEXIT

In the vmexit phase, the core switches from guest mode to host mode. Transitions from
Section 7 load the host registers into the mem-in buffer. If the switch succeeds then
the core proceeds to the serialize phase, where the guest registers are copied from the
mem-out buffer to the store buffer and then to the memory. Official manuals specify
that VMEXIT is a serializing event, however, it is unclear at which point serialization
takes place. Either the load/store buffer are flushed before VMEXIT, or after it, or at
both points. We have chosen to serialize afterwards as it makes the model simpler, but
this might be unsound.

label successful -vmexit(i ∈ pid)

guard
core[i].phase = VMEXIT ,

can-vmexit(core[i])

effect core ′[i] = vmexit(core[i]) with [phase 7→ SERIALIZE]

If the switch fails, then the core shuts down.

label failed -vmexit(i ∈ pid , e ∈ Exception)

guard
core[i].phase = VMEXIT ,

fault-on-vmexit(core[i], e)

effect core ′[i].phase = SHUTDOWN

9.9 Serializing

In the serialize phase, the core waits until all the stores in the mem-out buffer are moved
to the store buffer, and until all stores in the store buffer are committed to the memory.
After that, the load buffer for instructions and WC data is flushed and the core returns
to the border phase.

label serialize(i ∈ pid)

guard

core[i].phase = SERIALIZE ,

core[i].mem-out = empty-mem-out ,

length(sb[i].buffer) = 0

effect
core ′[i].phase = BORDER

lb′[i] = flush-serializing(lb[i])

71

jisr2jisr1

vmexit

double fault,
not intercepted

serialize

successful

shutdown

fault,
shutdown

not intercepted

jisr intercepted,
shutdown intercepted

jisr intercepted,
 double fault intercepted

successfull

fault,
but not

double fault

load data and
translations

load data and
translations

Figure 9.6: Jump to interrupt service routine

9.10 Jump to interrupt service routine

The function jisr performs the jump to the interrupt service routine for the jisr -event .
The function looks up the jump target in the interrupt descriptor table using the event
vector as an index. Since the jump can raise an exception, for which another jump must
be performed, we have two phases: JISR1 and JISR2 . Each jump can succeed, fail with
an exception, or be intercepted. As a result, we have the following cases (Figure 9.6):

• the first jump succeeds: the core completes the jump in the serialize phase.
• the first jump is intercepted: the core starts the vmexit phase.
• the first jump raises an exception: certain combinations of the first event and the

raised exception trigger a double fault exception. Since the double fault exception
might be intercepted, we have three cases:

– a double fault exception is not triggered: the core starts a jump for the raised
exception in the JISR1 phase. Note that the new jump is considered as the
first jump (i.e. the jump counter is reset).

– a double fault exception is triggered but is not intercepted: the core starts a
jump to the double fault exception handler in the JISR2 phase.

– a double fault exception is triggered and intercepted: the core starts the
vmexit phase.

• the second jump succeeds: the core completes the jump in the serialize phase.
• the second jump is intercepted: the core starts the vmexit phase.
• the second jump raises an exception and the shutdown is not intercepted: the core

shuts down.
• the second jump raises an exception and the shutdown is intercepted: the core

starts the vmexit phase.

Transitions described in Sections 7 and 8 provide necessary data for a jump by filling in
the tlb-in and mem-in buffers. If the first jump succeeds, then the core marks the event
as delivered and proceeds to the serialize phase:

72

label successful -jisr1 (i ∈ pid)

guard
core[i].phase = JISR1 ,

can-jisr(core[i])

effect

c = jisr(core[i]) with [phase 7→ SERIALIZE , jisr -event 7→ ε],

e = core[i].jisr -event ,

core ′[i] =

vintr -delivered(c) if e.type = VINTR,

injected -delivered(c) if e.injected ∧ e.type 6= VINTR,

c otherwise,

real = ¬e.injected ∧ e.type 6= VINTR,

a = env .apic[i],

env ′.apic[i] =

nmi -delivered(a) if e.type = NMI ∧ real ,

intr -delivered(a, e.vector) if e.type = INTR ∧ real ,

spurious-delivered(a) if e.type = SPURIOUS ,

a otherwise

Recall that the jisr -event register was defined in the beginning of this chapter and it
stores information about the event that triggered the jump.

The functions [nmi , intr , spurious]-delivered update the local APIC to reflect the delivery
of the interrupt (Sections 10). Similarly, the functions vintr -delivered and injected -delivered

update the core to reflect the delivery of the virtual interrupt or of the injected event
(see section [Injected Events and Virtual Interrups] of chapter [Virtualization]).

If the jump is intercepted, then the core starts the vmexit phase:

label intercepted -jisr1 (i ∈ pid , x ∈ Intercept)

guard
core[i].phase = JISR1 ,

vmexit-on-jisr(core[i], x)

effect

core ′[i].intercept = x,

core ′[i].phase = VMEXIT ,

core ′[i].jisr -event = ε,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

If the jump fails with an exception, we need to check for double fault conditions. A
double fault occurs when a page fault is followed by another page fault or a so-called
contributory exception. It also occurs if a contributory exception is followed by another
contributory exception:

double-fault-trigger(event1 ∈ Event , vector2 ∈ B8) ∈ B ,
event1 .type = EXCP

∧ ((event1 .vector = PF ∧ vector2 = PF)

∨ (event1 .vector = PF ∧ contributory(vector2))

∨ (contributory(event1 .vector) ∧ contributory(vector2))).

The following exceptions are contributory exceptions: division by zero, task state seg-
ment exception, segment-not-present exception, stack segment exception, and general-
protection exception:

73

contributory(vector ∈ B8) ∈ B , vector ∈ {DE,TS,NP, SS,GP},

where DE = 0, TS = 10, NP = 11, SS = 12, GP = 13.

In case a double fault is triggered and is not intercepted, then the core sets jisr -event to
the double fault exception, flushes the view buffers, and proceeds to the JISR2 phase:

label double-fault-on-jisr(i ∈ pid , e ∈ Exception)

guard

core[i].phase = JISR1 ,

fault-on-jisr(core[i], e),

double-fault-trigger(core[i].jisr -event , e.vector),

¬∃x ∈ Intercept : vmexit-on-double-fault(core[i], x)

effect

core ′[i].jisr -event = Event with [type 7→ EXCP , vector 7→ DF,

ecode 7→ 0, injected 7→ 0],

core ′[i].phase = JISR2 ,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

In case the double fault is intercepted, the core starts the vmexit phase:

label double-fault-intercepted(i ∈ pid , e ∈ Exception, x ∈ Intercept)

guard

core[i].phase = JISR1 ,

fault-on-jisr(core[i], e),

double-fault-trigger(core[i].jisr -event , e.vector),

vmexit-on-double-fault(core[i], x)

effect

core ′[i].intercept = x,

core ′[i].phase = VMEXIT ,

core ′[i].jisr -event = ε,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

Otherwise, the core restarts the JISR1 phase for the raised exception:

label failed -jisr1 (i ∈ pid , e ∈ Exception)

guard

core[i].phase = JISR1 ,

fault-on-jisr(core[i], e),

¬double-fault-trigger(core[i].jisr -event , e.vector)

effect

core ′[i].jisr -event = Event with [type 7→ EXCP , vector 7→ e.vector ,

ecode 7→ e.ecode, injected 7→ 0],

core ′[i].phase = JISR1 ,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

If the jump to the double fault handler succeeds, then the core completes the jump in
the serialize phase:

74

label successful -jisr2 (i ∈ pid)

guard
core[i].phase = JISR2 ,

can-jisr(core[i])

effect core ′[i] = jisr(core[i]) with [phase 7→ SERIALIZE , jisr -event 7→ ε]

If the jump is intercepted, then the core starts the vmexit phase:

label intercepted -jisr2 (i ∈ pid , x ∈ Intercept)

guard
core[i].phase = JISR2 ,

vmexit-on-jisr(core[i], x)

effect

core ′[i].intercept = x,

core ′[i].phase = VMEXIT ,

core ′[i].jisr -event = ε,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

If the second jump raises an exception and the shutdown is not intercepted, then the
core shuts down:

label shutdown(i ∈ pid , e ∈ Exception)

guard

core[i].phase = JISR2 ,

fault-on-jisr(core[i], e),

¬∃x ∈ Intercept : vmexit-on-shutdown(core[i], x)

effect core ′[i].phase = SHUTDOWN

Otherwise, the core starts the vmexit phase:

label shutdown-intercepted(i ∈ pid , e ∈ Exception, x ∈ Intercept)

guard

core[i].phase = JISR2 ,

fault-on-jisr(core[i], e),

vmexit-on-shutdown(core[i], x)

effect

core ′[i].intercept = x,

core ′[i].phase = VMEXIT ,

core ′[i].jisr -event = ε,

core ′[i].tlb-in = empty-tlb-in,

core ′[i].mem-in = empty-mem-in

75

76

CHAPTER

TEN

LOCAL APIC

Each processor has a local advanced programmable interrupt controller (APIC), which
collects interrupts and forwards them to the processor. The local APIC also allows the
processor to send interprocessor interrupts.

The APIC registers control how interrupts are managed. The registers are memory-
mapped, so the processor sets them up by writing to the APIC page. The APIC -BASE

register of the processor core contains the physical base address of the APIC page:

apic-base(core ∈ Core) , core.APIC -BASE .ABA ◦ 012.

The AE bit in the APIC -BASE register enables and disables the local APIC:

apic-enabled(core ∈ Core) , core.APIC -BASE .AE .

Read and write memory accesses are forwarded to the APIC only when they are in the
APIC page and the APIC is enabled:

in-apic-range(core ∈ Core, pa ∈ Bpq) ∈ B ,
apic-base(core) ≤ pa ◦ 03 < apic-base(core) + 212 ∧ apic-enabled(core).

The APIC registers are 32 bits wide and are aligned on 16-byte boundaries. Unaligned
accesses and accesses to non-existent registers do not affect the APIC state except
for setting the ‘illegal register address’ bit in the error status register. A load access
returns undefined data in such cases.

The following kinds of interrupts exist:

• a maskable interrupt (INTR): it has a vector ∈ B8 and a trigger -mode ∈ B attributes.
The purpose of the vector is two-fold. First, it is used by the processor core as an
index into the interrupt descriptor table to locate the interrupt handler. Second,
the APIC uses the vector as a priority indicator. The APIC latches maskable in-
terrupts in the interrupt request register (IRR) and sends them one by one to the
processor core starting from the highest priority interrupt. The APIC is, in some
sense, a priority queue for maskable interrupts.
The trigger mode indicates how the the interrupt was signalled: by an active
level of the interrupt line or by a falling/raising edge. In the former case, the in-

77

terrupt is level-triggered and the source device holds the line at the active level
until it receives an end-of-interrupt (EOI) message from the APIC. In the latter
case, the interrupt is edge-triggered and the device does not expect an EOI mes-
sage. The APIC sends an EOI message only when the interrupt handler writes
to the EOI register and the interrupt being serviced is level-triggered. The APIC
stores the trigger mode for each pending maskable interrupt in the TMR register
(trigger -mode = 1 means ‘level-triggered’).
The processor can mask maskable interrupts by clearing the RFLAGS .IF bit or
by setting a priority threshold in the task priority register (TPR).

• a non-maskable interrupt (NMI): its attributes are fixed, vector = 2 and trigger -mode =

0. When an NMI arrives, the APIC sends it directly to the processor core in case
the core is not already handling another NMI. In order to keep track of pending
NMI interrupts, we add two registers to the APIC configuration: nmirr ∈ B and
nmisr ∈ B. The latter register indicates whether the core is handling an NMI (an
NMI is in service). The former register latches an NMI if another NMI is already
in service.

• a startup interprocessor interrupt (SIPI): the vector attribute specifies a jump tar-
get as described in Section 9.4. The trigger mode is irrelevant. An incoming SIPI
is latched in the sipirr ∈ B register, and the sipivec ∈ B8 stores the vector.

• an initialization interrupt (INIT): the vector and trigger mode attributes are irrel-
evant. The core starts initialization upon receiving this interrupt. The initrr ∈ B
register latches an incoming INIT.

• a system management interrupt (SMI): it switches the core to system management
mode (SMM). Since we do not model SMM, we leave SMI out.

• an external interrupt (ExtInt): it is a legacy interrupt, we do not model it.

We divide the APIC registers into five categories: INTR, IPI, local vector table (LVT),
miscellaneous, auxiliary. Table 10.1 lists the registers from the first four categories.
The auxiliary registers are not present in the official manuals, but we need them to
define the APIC transitions.

The APIC configuration is the following record:

APIC , [registers from Table 10.1: . . .

shadowESR ∈ ErrorStatusReg ,

initrr ∈ B,
nmirr ∈ B,nmisr ∈ B,
sipirr ∈ B, sipivec ∈ B8,

spuriousrr ∈ B,
undef ∈ B64].

The subsequent sections describe each register category in details.

10.1 Maskable interrupts

The APIC stores information about maskable interrupts in three bitmaps. Each bitmap
is 256 bits wide. Thus, for each interrupt vector, the APIC stores three bits. Due to the
32 bits limit on the register width, each bitmap is represented by eight registers:

78

Offset Register Description Type

020h APIC -ID ∈ APIC -ID APIC ID IPI

030h VERSION ∈ VERSION APIC Version Misc

080h TPR ∈ PriorityReg Task Priority INTR

090h APR ∈ PriorityReg Arbitration Priority IPI

0A0h PPR ∈ PriorityReg Processor Priority INTR

0B0h EOI ∈ B32 End Of Interrupt INTR

0C0h RRR ∈ B32 Remote Read IPI

0D0h LDR ∈ LDR Logical Destination IPI

0E0h DFR ∈ DFR Destination Format IPI

0F0h SVR ∈ SVR Spurious Interrupt Misc

100h + 10h ∗ i ISR[i] ∈ B32 In-Service INTR

180h + 10h ∗ i TMR[i] ∈ B32 Trigger Mode INTR

200h + 10h ∗ i IRR[i] ∈ B32 Interrupt Request INTR

280h ESR ∈ ESR Error Status Misc

300h ICRL ∈ ICRL Interrupt Command Low IPI

310h ICRH ∈ ICRH Interrupt Command High IPI

320h TIMER ∈ LvtReg Timer LVT

330h THERMAL ∈ LvtReg Thermal LVT

340h PERF ∈ LvtReg Performance LVT

350h LINT0 ∈ LvtReg Local Interrupt 0 LVT

360h LINT1 ∈ LvtReg Local Interrupt 1 LVT

370h ERROR ∈ LvtReg Internal Error LVT

380h TICR ∈ B32 Timer Initial Count LVT

390h TCCR ∈ B32 Timer Current Count LVT

3E0h TDCR ∈ DivConfReg Timer Divide Configuration LVT

Table 10.1: Local APIC Registers

79

• interrupt request registers: IRR ∈ B3 → B32;
• in-service registers: ISR ∈ B3 → B32;
• trigger mode registers: TMR ∈ B3 → B32.

An accepted maskable interrupt with the vector v and the trigger-mode tm is stored in
the IRR and the TMR:

accept-intr(apic ∈ APIC , v ∈ B8, tm ∈ B) ∈ APIC ,
if v < 32 then receive-illegal -vector(apic)

else
let i = v/32 in
let j = v mod 32 in
update-APR(apic with [IRR[i][j] 7→ 1,TMR[i][j] 7→ tm]),

where the receive-illegal -vector function records the error in the error status register,
and the update-APR function updates the arbitration priority to reflect the new inter-
rupt. We will discuss these functions later.

An incoming maskable interrupt is rejected if the corresponding bit in the IRR is already
set:

can-accept-intr(apic ∈ APIC , v ∈ B8, tm ∈ B) ∈ B ,
¬apic.IRR[v/32][v mod 32] ∧ apic.SVR.ASE .

The APIC software enable bit (ASE) of the SVR register enables/disables maskable
interrtupts (Section 10.4).

When the core is ready to service a maskable interrupt (Section 9.3), the APIC checks
whether there is a pending interrupt with the priority above the threshold:

intr -pending(apic ∈ APIC) ∈ B ,
∃i ∈ B8 : apic.IRR[i/32][i mod 32] 6= 0 ∧ i[7 : 4] > apic.PPR.priority .

For the threshold computation, the APIC has two priority registers:
TPR,PPR ∈ PriorityReg , where PriorityReg = B32 with the following abbreviations for
all x ∈ PriorityReg:

x[3 : 0] = x.subpriority ∈ B4,

x[7 : 4] = x.priority ∈ B4,

x[31 : 8] = x.reserved ∈ B24.

Software controls the task priority register (TPR), which is aliased with the CR8 of the
processor core. The processor priority register (PPR) is the maximum of the TPR and
the priority of the top in-service interrupt:

update-PPR(apic ∈ APIC) ∈ APIC ,
let v = top-in-service-intr(apic) in
let x = max (v [7 : 4] ◦ 04, apic.TPR) in
apic with [PPR 7→ x],

where

top-in-service-intr(apic ∈ APIC) ∈ B8 ,
choose i ∈ B8 : ((i = 0 ∨ apic.ISR[i/32][i mod 32] 6= 0) ∧
∀j ∈ B8 : j > i⇒ apic.ISR[j/32][j mod 32] = 0) in i.

80

Thus, if the priority of the top pending interrupt is above the threshold, then the APIC
sends it to the core for handling.

top-pending-intr(apic ∈ APIC) ∈ B8 ,
choose i ∈ B8 : ((i = 0 ∨ apic.IRR[i/32][i mod 32] 6= 0) ∧
∀j ∈ B8 : j > i⇒ apic.IRR[j/32][j mod 32] = 0) in i.

When the core completes the jump to the interrupt service routine, it notifies the APIC,
and the APIC changes the state of the interrupt from ‘pending’ to ‘in-service’:

intr -delivered(apic ∈ APIC , v ∈ B8) ∈ APIC ,
let i = v/32 in
let j = v mod 32 in
update-PPR(apic with [ISR[i][j] 7→ 1, IRR[i][j] 7→ 0]).

The interrupt service routine must write to the EOI register of the APIC before exiting.
The act of writing causes the APIC to reset the highest bit in the ISR register and thus
completes the interrupt handling:

write-EOI (apic ∈ APIC , data ∈ B32) ∈ APIC ,
let v = top-in-service-intr(apic) in
let i = v/32 in
let j = v mod 32 in
update-PPR(apic with [ISR[i][j] 7→ 0]).

Note that the APIC also sends an EOI message to the source device for level-triggered
interrupts. However, we cannot express it as we do not model devices.

The IRR, ISR,TMR,PPR registers are read-only, write accesses do not affect these
registers. Software can update the TPR register either by writing to the corresponding
APIC region or by writing to the CR8 core register. The APIC TPR register and the
core CR8 register are synchronized before and after instruction execution.

write-TPR(apic ∈ APIC , data ∈ PriorityReg) ∈ APIC ,
let x = data with [reserved 7→ 0] in
update-APR(update-PPR(apic with [TPR 7→ x])).

As we do not have devices, we add a trivial transition that fires interrupts nondetermin-
istically:

label incoming-intr(i ∈ pid , vector ∈ B8, trigger -mode ∈ B)

guard apic-enabled(core[i]) ∧ can-accept-intr(apic[i], vector , trigger -mode)

effect apic′[i] = accept-intr(apic[i], vector , trigger -mode)

10.2 INIT, NMI, SIPI

The APIC does not have software visible registers that control management of INIT,
NMI, and SIPI interrupts. Therefore, these interrupts are simply latched and forwarded
to the core when the core is ready to process them.

The initrr ∈ B register stores the pending INIT interrupt. An incoming INIT is accepted
if there is no pending INIT:

81

can-accept-init(apic ∈ APIC) ∈ APIC , ¬apic.initrr ,

accept-init(apic ∈ APIC) ∈ APIC , apic with [initrr 7→ 1}.

Testing for a pending INIT is straightforward:

init-pending(apic ∈ APIC) ∈ B , apic.initrr .

When the processor core finishes initialization, the initrr register is reset to 0:

init-delivered(apic ∈ APIC) ∈ B , apic with [initrr 7→ 0].

Startup interrupts are processed likewise:

can-accept-sipi(apic ∈ APIC) ∈ APIC , ¬apic.sipi ,

accept-sipi(apic ∈ APIC , vector ∈ B8) ∈ APIC ,
apic with [sipirr 7→ 1, sipi -vector 7→ vector},

sipi -pending(apic ∈ APIC) ∈ B , apic.sipirr ,

sipi -delivered(apic ∈ APIC) ∈ APIC , apic with [sipirr 7→ 0].

Non-maskable interrupts are slightly complicated because the APIC cannot forward an
NMI to the core if the core is already handling another NMI. Therefore, we need two
registers: nmirr ∈ B and nmisr ∈ B:

can-accept-nmi(apic ∈ APIC) ∈ B , ¬apic.nmirr ,

accept-nmi(apic ∈ APIC) ∈ APIC , apic with [nmirr 7→ 1],

nmi -pending(apic ∈ APIC) ∈ B , ¬apic.nmisr ∧ apic.nmirr ,

nmi -delivered(apic ∈ APIC) ∈ APIC , apic with [nmisr 7→ 1,nmirr 7→ 0],

nmi -served(apic ∈ APIC) ∈ APIC , apic with [nmisr 7→ 0].

Note that there is no end-of-interrupt register for non-maskable interrupts. The function
nmi -served is invoked when the core executes the return from interrupt service routine
(IRET) instruction.

INIT and SIPI are interprocessor interrupts. However, NMI can be sent by a device. We
model it with the following transition:

label incoming-nmi(i ∈ pid)

guard apic-enabled(core[i]) ∧ can-accept-nmi(apic[i])

effect apic′[i] = accept-nmi(apic[i])

82

10.3 Interprocessor interrupts

In order to send an interprocessor interrupt, software writes the information about
the interrupt to the interrupt control registers ICRH , ICRL. The act of writing to the
ICRL initiates the IPI delivery. The highest byte in the ICRH specifies the interrupt
destination:

ICRH[23 : 0] = ICRH.reserved ∈ B24,

ICRH[31 : 24] = ICRH.DES ∈ B8 (destination).

There are two destination modes: physical and logical, specified by the DM bit in the
ICRL. In physical mode, the interrupt destination is simply matched with the APIC ID,
which is the highest byte in the APIC -ID register:

APIC -ID [23 : 0] = APIC -ID .reserved ∈ B24,

APIC -ID [31 : 24] = APIC -ID .AID ∈ B8 (APIC ID).

Given the destination byte of the IPI, we check whether an APIC is a reciever using the
following function:

ipi -dest-physical(apic ∈ APIC , dest ∈ B8) ∈ B ,
apic.APIC -ID .AID = dest .

Logical mode has two submodes: flat and cluster. The destination format register DFR

of a receiving APIC selects the submode:

DFR[27 : 0] = DFR.reserved ∈ B28,

DFR[31 : 28] = DFR.model ∈ B4.

The DFR.model can be either FLAT = 15 or CLUSTER = 0. The official manuals do not
specify what happens if the model has other values. In flat submode, the IPI destination
byte is used as a mask to select a group of recievers. In cluster submode, the higher
nibble of the IPI destination byte specifies the cluster ID and the lower nibble is used
as a mask to select a group of recievers within the cluster:

ipi -dest-logical(apic ∈ APIC , dest ∈ B8) ∈ B ,
let x = apic.LDR.DLID in
if apic.DFR.model = FLAT then (x ∧8 dest) 6= 0

else x[7 : 4] = dest [7 : 4] ∧ (x[3 : 0] ∧4 dest [3 : 0]) 6= 0,

where the DLID is the highest byte in the logical destination register LDR:

LDR[23 : 0] = LDR.reserved ∈ B24,

LDR[31 : 24] = LDR.DLID ∈ B8 (destination logical ID).

The ICRL register is the main IPI register. It describes what kind of interrupt to trigger
at the remote processor. It also selects the delivery mode and shows the delivery status.

83

Let x denote the ICRL, then

x[7 : 0] = x.VEC ∈ B8 (vector),

x[10 : 8] = x.MT ∈ B3 (message type),

x[11] = x.DM ∈ B (destination mode),

x[12] = x.DS ∈ B (delivery status),

x[14 : 13] = x.reserved [1 : 0] ∈ B,
x[15] = x.TGM ∈ B (trigger mode),

x[17 : 16] = x.RRS ∈ B2 (remote read status),

x[19 : 18] = x.DSH ∈ B2 (destination shorthand),

x[31 : 20] = x.reserved [13 : 2] ∈ B12.

We have already discussed the destination mode except for the value encoding:

• PHYSICAL = 0,
• LOGICAL = 1.

The destination shorthand allows to broadcast interrupts ignoring the ICRH .DES :

• DESTINATION = 0: this value selects a regular delivery described above.
• SELF = 1: the IPI is sent only to the source APIC.
• ALL = 2: the IPI is sent to all APICs including the source.
• ALL-BUT -SELF = 3: the IPI is sent to all APICs excluding the source.

Formalizing this information, we derive a predicate that checks whether the i-th APIC
is a receiver of the IPI, defined by copies icrls, icrhs of ICR registers of the sender s:

ipi -dest(i ∈ pid , core, apic, s ∈ pid , icrls, icrhs) ∈ B ,
if ¬apic-enabled(core) then 0
else if icrls.DSH = DESTINATION then

if icrhs.DES = 0FFh then 1
else if icrls.DM = LOGICAL then

ipi -dest-logical(apic, icrhs.DES)

else if icrls.DM = PHYSICAL then
ipi -dest-physical(apic, icrhs.DES)

else 0
else if icrls.DSH = SELF then s = i

else if icrls.DSH = ALL-BUT -SELF then s 6= i

else icrls.DSH = ALL.

The definition is straightforward, except for one special case: when the IPI destination
is 0FFh, then the IPI is sent to all APICs.

The delivery status indicates whether the APIC is in the process of delivering the IPI
(DS = 1) or idle (DS = 0). This bit is read-only for software. The APIC sets it to 1 after
a write access to the ICRL and resets it to 0 after delivering the IPI. Subsequent write
accesses are stalled if DS = 1:

can-write-ICRL(apic ∈ APIC , data ∈ ICRegL) ∈ APIC ,
¬apic.ICRL.DS ,

write-ICRL(apic ∈ APIC , data ∈ ICRegL) ∈ APIC ,
let x = data with [DS 7→ 1, reserved 7→ 0] in

84

apic with [ICRL 7→ x].

The message type, the vector, and the trigger mode fields define the interrupt. There
are the following message types:

• MT -FIXED = 0: a maskable interrupt.
• MT -LOWEST -PRIORITY = 1: a maskable interrupt and it is delivered to the

APIC with the lowest value of the arbitration priority register. This register con-
tains the maximum of the PPR, the TPR, and the priority of the top pending
interrupt:

update-APR(apic ∈ APIC) ∈ APIC ,
let v = top-pending-intr(apic) in
let x = max (v [7 : 4] ◦ 04, apic.PPR, apic.TPR) in
apic with [APR 7→ x].

• MT -SMI = 2: a system management interrupt.
• MT -REMOTE -READ = 3: a read request of the remote APIC register with the

offset specified in the ICRL.VEC . As it seems to be a legacy feature, we do not
support it in the current model.

• MT -NMI = 4: a non-maskable interrupt, it is assumed to be edge-triggered and
the vector is assumed to be 2.

• MT -INIT = 5: an initialization request.
• MT -SIPI = 6: a startup interrupt.
• MT -EXT -INT = 7: an external interrupt.

Depending on whether the interrupt is a lowest-priority interrupt or not, we choose one
of the two ways to deliver the IPI:

• lowest-priority: iterate over all APICs that can accept the IPI and select the one
with the lowest ARP . Then deliver the IPI to the selected APIC. Note that the
selection is not atomic, so by the time we deliver the IPI, the selected APIC might
be unable to accept the IPI. The official manuals do not specify what happens in
such cases.

• otherwise: iterate over all APICs and deliver the IPI to each APIC that can accept
it.

We test whether the i-th APIC can accept the IPI, defined by copies icrls, icrhs of ICR
registers of the sender s, as follows:

can-accept-ipi(i, core, apic, s, icrls, icrhs) ∈ B ,
if ¬ipi -dest(i, core, apic, s, icrls, icrhs) then 0
else if icrls.MT ∈ {FIXED ,LOWEST -PRIORITY } then

can-accept-intr(apic, icrls.VEC , icrls.TGM)

else if icrls.MT = NMI then can-accept-nmi(apic)

else if icrls.MT = INIT then can-accept-init(apic)

else if icrls.MT = SIPI then can-accept-sipi(apic, icrls.VEC)

else 0.

To deliver the IPI, we use the accept-xxxx function for the xxxx message type:

accept-ipi(i, core, apic, s, icrl , icrh) ∈ APIC ,
if icrl .MT ∈ {FIXED ,LOWEST -PRIORITY } then

accept-intr(apic, icrl .VEC , icrl .TGM)

else if icrl .MT = NMI then accept-nmi(apic)

85

else if icrl .MT = INIT then accept-init(apic)

else if icrl .MT = SIPI then accept-sipi(apic, icrl .VEC)

else apic.

Note that the IPI delivery is stateful, i.e. we need to keep track of the already processed
APICs. For this reason, we add an auxiliary IPI component to the abstract machine and
formalize the IPI delivery as transitions of this component. Section 10.6 describes the
IPI component and the transitions in details.

10.4 Miscellaneous

The APIC version register is read-only, and the lowest byte contains the APIC version:

VERSION [7 : 0] = VERSION .VER ∈ B8 (apic version),

VERSION [31 : 8] = VERSION .reserved ∈ B24.

In real hardware, the APIC delivers a maskable interrupt to the processor in several
steps, i.e. non-atomically. During this process, the task priority register may change
and mask the interrupt. In such cases, the APIC delivers a spurious interrupt instead of
the original interrupt. The SVR register specifies the vector of the spurious interrupt:

SVR[7 : 0] = SVR.VEC ∈ B8 (vector),

SVR[8] = SVR.ASE ∈ B (APIC software enable),

SVR[31 : 9] = SVR.reserved ∈ B23.

We model spurious interrupts by allowing them to occur at any time nondeterministi-
cally. The spuriousrr ∈ B register indicates whether there is a pending spurious inter-
rupt:

spurious-pending(apic ∈ APIC) ∈ B , ¬apic.spuriousrr .

The register is reset to zero after the processor completes the jump to the service
routine:

spurious-delivered(apic ∈ APIC) ∈ APIC , apic with [spuriousrr 7→ 0].

A spurious interrupt may occur at any time:

label incoming-spurious(i ∈ pid)

guard apic-enabled(core[i]) ∧ ¬apic[i].spuriousrr

effect apic′[i].spuriousrr = 1

The ASE bit the of the SVR register has nothing to do with spurious interrupts. When
the bit is cleared, the APIC stops accepting/delivering maskable interrupts and sets the
mask bit in all LVT entries:

write-SVR(apic ∈ APIC , data ∈ SpuriousVectorReg) ∈ APIC ,
apic with [SVR 7→ (data with [reserved 7→ 0]),

TIMER.M 7→ apic.TIMER.M ∨ ¬data.ASE ,

THERMAL.M 7→ apic.THERMAL.M ∨ ¬data.ASE ,

86

PERF .M 7→ apic.PERF .M ∨ ¬data.ASE ,

LINT0 .M 7→ apic.LINT0 .M ∨ ¬data.ASE ,

LINT1 .M 7→ apic.LINT1 .M ∨ ¬data.ASE ,

ERROR.M 7→ apic.ERROR.M ∨ ¬data.ASE].

Software can check the APIC status by reading the error status register ESR. The APIC
records encountered errors in the shadow register shadowESR. On any write access to
the ESR, the APIC copies errors from the shadows register to the ESR and resets the
shadow register:

write-ESR(apic ∈ APIC , data ∈ B32) ∈ APIC ,
apic with [ESR 7→ apic.shadowESR, shadowESR 7→ 0].

Let x denote the ESR or the shadowESR, then:

x[1 : 0] = x.reserved [1 : 0] ∈ B2,

x[2] = x.SAE ∈ B (sent accept error),

x[3] = x.RAE ∈ B (receive accept error),

x[4] = x.reserved [2] ∈ B,
x[5] = x.SIV ∈ B (sent illegal vector error),

x[6] = x.RIV ∈ B (receive illegal vector error),

x[7] = x.IRA ∈ B (illegal register address error),

x[31 : 8] = x.reserved [26 : 3] ∈ B24.

A ‘sent accept error’ occurs when an IPI sent by the APIC is not accepted by any APIC.

sent-accept-error(apic ∈ APIC) ∈ APIC ,
apic with [shadowESR.SAE 7→ 1].

The precise meaning of the ‘receive accept error’ is not completely clear. The official
manuals say that the APIC detects this error when it receives an IPI that is not accepted
by any APIC, including itself.

receive-accept-error(apic ∈ APIC) ∈ APIC ,
apic with [shadowESR.RAE 7→ 1].

A ‘sent illegal vector error’ occurs when the APIC sends an IPI with an illegal vector.

sent-illegal -vector(apic ∈ APIC) ∈ APIC ,
apic with [shadowESR.SIV 7→ 1].

A ‘receive illegal vector error’ occurs when the APIC receives an IPI with an illegal
vector.

receive-illegal -vector(apic ∈ APIC) ∈ APIC ,
apic with [shadowESR.RIV 7→ 1].

An ‘illegal register address error’ occurs when the processor accesses the reserved area
in the APIC page.

illegal -register -address(apic ∈ APIC) ∈ APIC ,
apic with [shadowESR.IRA 7→ 1].

87

Besides the discussed registers, the APIC has a set of local vector table (LVT) registers.
The registers define how to process interrupt requests from the processor local devices,
such as the timer, the thermal sensor, etc. As we do not model devices, we exclude the
registers from the current version of the document.

10.5 Register accesses

In this section we describe how the APIC handles read/write accesses to its memory-
mapped page. If an access does not correspond to any register of the APIC, then an
illegal register address error is recorded. A read access in such case returns an unde-
fined result. Recall that the environment uses the read function of the APIC to carry out
a read access (Section 4). Since the function needs to return an undefined result some-
times, we introduce a dummy APIC register undef ∈ B64, which is allowed to change
nondeterministically. The read function uses the dummy register to return an undefined
result.

label set-undefined(i ∈ pid , x ∈ B64)

guard

effect apic′[i].undef = x

The precondition for the read function is that the access is in the APIC page:

can-read(apic ∈ APIC , core ∈ Core, pa ∈ Bpq,mask ∈ B8) ∈ B ,
in-apic-range(core, pa),

where

in-apic-range(core ∈ Core, pa ∈ Bpq) ∈ B ,
apic-base(core) ≤ pa ◦ 03 < apic-base(core) + 212 ∧ apic-enabled(core).

The read function checks that the access is aligned and then compares the access offset
with the offset of each register. If the matching register is the EOI , then the function
returns an undefined result because the EOI is a write-only register. For any other
register, the function simply returns the register value zero-extended to 64 bits:

read(apic ∈ APIC , core ∈ Core, pa ∈ Bpq,mask ∈ B8) ∈ (APIC ,B64) ,
let offset = pa ◦ 03 − apic-base(core)) in
if mask 6= 04 ◦ 14 then (illegal -register -address(apic), apic.undef)

else if offset = APIC -ID-OFFSET then (apic, zxt64(apic.APIC -ID))
. . .

else if offset = EOI -OFFSET then (apic, apic.undef)
. . .

else (illegal -register -address(apic), apic.undef).

A write access to the ICRL register stalls if the previous IPI is being delivered:

can-write(apic ∈ APIC , core ∈ Core, pa ∈ Bpq,mask ∈ B8, data ∈ B64) ∈ B ,
if ¬in-apic-range(core, pa) then 0
else let offset = pa ◦ 03 − apic-base(core)) in

if offset = ICRL-OFFSET then ¬apic.ICRL.DS

else 1.

88

Like the read function, the write function makes a big case distinction on the access
offset. In case it finds a matching register xxxx , it invokes the corresponding

write-xxxx (apic ∈ APIC , data ∈ B32) ∈ APIC .

In previous sections, we defined write-xxxx functions for non-trivial cases. For other
cases, we assume that the write-xxxx function simply updates the corresponding regis-
ter with the given data preserving the read-only bits.

write(apic ∈ APIC , core ∈ Core, pa ∈ Bpq,mask ∈ B8, data ∈ B64) ∈ APIC ,
let offset = pa ◦ 03 − apic-base(core)) in
if mask 6= 04 ◦ 14 then

illegal -register -address(apic)

else
if offset = APIC -ID-OFFSET then

write-APIC -ID(apic, data[31 : 0])

. . .

else illegal -register -address(apic).

10.6 IPI Delivery

In this section we attempt to model the IPI delivery mechanism, which is not described
precisely in the official manuals because it is implementation dependent. With the help
of nondeterminism, we try to abstract from implementation details and yet give the
meaning to the delivery status, the delivery errors, and the lowest-priority message. In
order to keep the model simple, we omit some obscure features:

• remote register read: an APIC can send a register read request to another APIC
via IPI. This seems to be a legacy feature.

• focus processor delivery: a processor can declare itself a focus processor for some
interrupt vector. When an interrupt with that vector is broadcast in lowest-priority
mode, the focus processor gets the interrupt regardless of its arbitration priority.

• receive accept error: an APIC detects this error when it receives an IPI that is
not accepted by any APIC, including itself. To model this error, we could add
another phase where all destination APICs get a notification that no other APIC
has accepted the interrupt.

The ipi ∈ IPI component of the abstract machine maintains the state of the IPI delivery:

IPI , [phase ∈ IPI -Phase,

sender ∈ pid ,

ICRL ∈ ICRegL,

ICRH ∈ ICRegH ,

lowest ∈ pid ∪ {ε},
delivered -any ∈ B,
done ∈ pid → B],

where

IPI -Phase , {IDLE ,FIND-LOWEST ,DELIVER-REGULAR,FINISH }.

89

idle finish

find
lowest

deliver
regular

start regular

start lowest

deliver

finish

skip i

deliver i

skip
skip i

lower i

failure

success

Figure 10.1: IPI Delivery

Figure 10.1 shows the phases and the transitions of the IPI delivery.

• in the idle phase we choose nondeterministically an APIC s that wants to send an
IPI (apic[s].ICRL.DS = 1). We set ipi .sender = s and save the ICR registers of
the APIC in the ipi .ICRL, ipi .ICRH. In case the IPI is a lowest-priority interrupt,
we proceed to the find -lowest phase. Otherwise, we proceed to the deliver-regular
phase.

• in the deliver-regular phase, we iterate over all APICs and deliver the IPI to an
APIC if it is in the destination set and can accept the IPI. After processing an APIC,
we set the corresponding bit in the ipi .done, so that we do not deliver to the same
APIC twice.
When all APIC are processed, we proceed to the finish phase.

• in the find-lowest phase, we iterate over all APICs and maintain in the ipi .lowest

the index of the APIC with the lowest value of the APR among the already pro-
cessed APICs that can accept the IPI. The ipi .done maintains the set of the pro-
cessed APICs.
When all APIC are processed, we deliver the IPI to the APIC with index ipi .lowest

(if ipi .lowest 6= ε) and proceed to the finish phase.
• the finish phase concludes the IPI delivery. In this phase we check if at least one

APIC has accepted the IPI (indicated by the ipi .delivered -any). In case none of the
APICs accepted the IPI, we record a ‘sent accept error’ in the error status register
of the sending APIC.
After that, we clear the delivery status bit of the sender and return to the idle
phase.

In the next two subsections we describe each transition in details.

10.6.1 Regular IPI

The delivery of a regular interrupt starts with the initialization of the ipi fields. Note
that we save the ICR registers of the sending APIC in the ipi fields. Otherwise, an
update of the ICRH register, while the IPI is being delivered, would make the IPI incon-
sistent.

90

label start(i ∈ pid)

guard

ipi .phase = IDLE ,

apic[i].ICRL.DS ,

apic[i].ICRL.MT 6= MT -LOWEST -PRIORITY

effect

ipi ′.sender = i,

ipi ′.ICRL = apic[i].ICRL,

ipi ′.ICRH = apic[i].ICRH ,

ipi ′.phase = DELIVER-REGULAR,

ipi ′.delivered -any = 0,

ipi ′.done = λk ∈ pid → 0

In the deliver-regular phase, we choose nondeterministically an unprocessed APIC and
check whether it can accept the IPI or not using the can-accept-ipi function, which
internally checks whether the APIC is in the destination set or not (Section 10.3). In the
former case, we deliver:

label deliver(j ∈ pid)

guard

ipi .phase = DELIVER-REGULAR,

¬ipi .done[j],

can-accept-ipi(j, core[j], apic[j], ipi .sender , ipi .ICRL, ipi .ICRH)

effect

ipi ′.done[j] = 1,

ipi ′.delivered -any = 1,

apic′[j] = accept-ipi(j, apic[j], core[j], ipi .sender , ipi .ICRL, ipi .ICRH)

Otherwise, we mark the APIC as ‘processed’ and skip it:

label skip(j ∈ pid)

guard

ipi .phase = DELIVER-REGULAR,

¬ipi .done[j],

¬can-accept-ipi(j, core[j], apic[j], ipi .sender , ipi .ICRL, ipi .ICRH)

effect ipi ′.done[j] = 1

When all APICs are processed, we go to the finish phase:

label finish-regular(j ∈ pid)

guard
ipi .phase = DELIVER-REGULAR,

∀k ∈ pid : ipi .done[k]

effect ipi ′.phase = FINISH

In the finish phase, we have two cases: either the IPI has been delivered to at least one
APIC or not. In the latter case, we record the error in the error status register of the
sender.

91

label success

guard
ipi .phase = FINISH ,

ipi .delivered -any

effect
ipi ′.phase = IDLE ,

apic′[ipi .sender] = apic[ipi .sender] with [ICRL.DS 7→ 0]

label failure

guard
ipi .phase = FINISH ,

¬ipi .delivered -any

effect

ipi ′.phase = IDLE ,

x = apic[ipi .sender] with [ICRL.DS 7→ 0],

apic′[ipi .sender] = sent-accept-error(x)

10.6.2 Lowest-Priority IPI

For the delivery of a lowest-priority interrupt, we initialize the same fields as for the
delivery of a regular interrupt. Additionally, we set the ipi .lowest to denote an empty
index :

label start-lowest(i ∈ pid)

guard

ipi .phase = IDLE ,

apic[i].ICRL.DS ,

apic[i].ICRL.MT = MT -LOWEST -PRIORITY

effect

ipi ′.sender = i,

ipi ′.ICRL = apic[i].ICRL,

ipi ′.ICRH = apic[i].ICRH ,

ipi ′.phase = FIND-LOWEST ,

ipi ′.lowest = ε,

ipi ′.delivered -any = 0,

ipi ′.done = λk ∈ pid → 0

In the find-lowest phase, we choose nondeterministically an unprocessed APIC and
check whether it can accept the IPI and its APR is lower than the APR of the lowest
priority APIC seen so far. In the former case, we update the ipi .lowest :

label lower(j ∈ pid)

guard

ipi .phase = FIND-LOWEST ,

¬ipi .done[j],

can-accept-ipi(j, core[j], apic[j], ipi .sender , ipi .ICRL, ipi .ICRH),

ipi .lowest = ε ∨ apic[j].APR < apic[ipi .lowest]

effect
ipi ′.lowest = j,

ipi ′.done[j] = 1

Otherwise, we skip the APIC:

92

label not-lower(j ∈ pid)

guard

ipi .phase = FIND-LOWEST ,

¬ipi .done[j],

(¬can-accept-ipi(j, core[j], apic[j], ipi .sender , ipi .ICRL, ipi .ICRH)

∨ipi .lowest 6= ε ∧ apic[j].APR ≥ apic[ipi .lowest].APR)

effect ipi ′.done[j] = 1

When all APICs are processed, the ipi .lowest field is either empty or contains the index
of the APIC with the lowest APR. In case the APIC can accept the IPI, we deliver it.

label deliver -lowest(j ∈ pid)

guard

ipi .phase = FIND-LOWEST ,

∀k ∈ pid : ipi .done[k],

ipi .lowest = j,

can-accept-ipi(j, core[j], apic[j], ipi .sender , ipi .ICRL, ipi .ICRH)

effect

ipi .phase = FINISH ,

ipi .delivered -any = 1,

apic′[j] = accept-ipi(j, apic[j], core[j], ipi .sender , ipi .ICRL, ipi .ICRH)

label skip-lowest(j ∈ pid)

guard

ipi .phase = FIND-LOWEST ,

∀k ∈ pid : ipi .done[k],

(ipi .lowest = ε ∨ ipi .lowest = j

∧¬can-accept-ipi(j, core[j], apic[j], ipi .sender , ipi .ICRL, ipi .ICRH)

effect ipi .phase = FINISH

Finally, we proceed to the finish phase.

93

94

Part II

INSIDE PROCESSOR CORE

95

96

CHAPTER

ELEVEN

DSL SYNTAX AND SEMANTICS

This chapter introduces a domain-specific language (DSL) for register and instruction
specification. In order to specify a register we need to provide its name, its width, its
fields, and its initial value. Instruction specification is more complex. First we need
information that allows us to fetch and decode the instruction. This includes the op-
code and the operands. After that we need to specify how the instruction is executed,
i.e we need to specify how the instruction changes the registers and the memory sys-
tem. Since the memory system of a multiprocessor machine is distributed, specification
of the memory system requires more sophisticated language than specification of the
registers. We want to make the DSL as simple as possible, therefore we abstract the
memory system by request/response registers. Thus, specification of instruction execu-
tion is reduced to specification of how the registers change. Note that registers change
only when instruction execution completes successfully. An instruction might fail be-
cause of an exception or an intercept. This means that our DSL has to be powerful
enough to express computations over registers with possibility of failure.

We represent a computation as a sequence of statements. There are nine kinds of
statements:

1. conditional statement:

if expr then stmts1
else stmts2

This statement evaluates the boolean expression expr. In case the expression is
true, the computation proceeds with statements stmts1. Otherwise, the computation
proceeds with statements stmts2. We will formally cover expressions in subsequent
sections. For now, it is sufficient to think of expressions as of usual mathematical
expressions enhanced with bit-string operations. Expressions can contain register
references. Each register reference evaluates to the value of the corresponding
register before the whole computation started.

2. “let” statement:

let ident = expr

97

This statement binds the identifier ident to the value of the expression expr. Thus,
in subsequent statements the identifier ident evaluates to the expression expr.

3. “register write” statement:

write expr to regname

This statement evaluates the expression expr and writes the value to the register
regname. In contrast to other languages, the write does not take place immediately
but deferred until the end of the whole computation. In the following example, the x

is bound to the value of the register RAX before the computation started. Thus, the x

is not necessarily equal to FFFFFFFFFFFFFFFFh.

write FFFFFFFFFFFFFFFFh to RAX
let x = RAX

The reason for deferred writes is that we want to collect writes and apply them all
at once without exposing intermediate processor state in the middle of the compu-
tation. An important consequence is that any register reference that appears in an
expression evaluates to the register value before the computation started.

4. “register undefine” statement:

undef regname

This statement marks the register regname as undefined. Likewise to the register
write statement, the effect of this statement is deferred until the end of the compu-
tation.

5. “fail” statement:

fail expr

This statement stops the computation and cancels all previous register writes. The
value of the expr is returned as the result of the computation.

6. “call” statement:

call action_res = action_name(action_args)

Same sequences of statements appear in instruction definitions over and over again.
The standard way to avoid such repetition is to introduce a way to group a sequence
of statements under a name. In most languages such named groups of statements
are called functions or procedures. In our DSL the word “function” refers to a named
expression (like in many functional languages). To highlight the imperative nature
of statements, we use word the “action” for a named group of statements. Later we
will show how to define an action. The “call” statement allows to insert the specified
action into the current computation. Actions can have arguments and can return a
value. Thus, the “call” statements executes the specified action and binds its result
to the specified identifier.

7. “return” statement:

return expr

This statement exits the current action and returns the value of the expr as the action
result.

98

8. “chain” statement:

chain action_name

We use this statement only three times in the whole instruction set specification.
The statement completes the current computation, applies all register writes, and
then starts a new computation using the statements of the specified action. If the
new computation fails, the register values are restored to the state before the old
computation. There is another version of the statement, which restores the registers
to the state after the old computation but before the new computation:

commit and chain action_name

The “chain” statement is necessary when the instruction has two contexts. For ex-
ample, a far control transfer instruction performs some actions in the context of the
old code segment, changes the code segment, and performs some action in the con-
text of the new code segment. We could do without the “chain” statement, but that
would lead to code duplication.

9. “assume” statement:

assume expr

This statement is a hint for the type checker and has no effect on the computation.
When the type checker sees this statement, it can assume that the boolean expres-
sion expr holds.

We specify an instruction by providing the instruction opcode, the operands, and the
statements, which describes how the instruction is executed. The subsequent sections
describe the syntax and semantics of the DSL more formally and in more detail.

11.1 Source Code Structure

Source code of the instruction set specification is written in ASCII-encoded text files.
The specification consists of a list of top-level definitions. Each definition starts in a
separate line and spans one or more lines. The end of each definition is detected using
indentation:

• let n be the indentation level of the first line of the definition. The indentation level
is the number of characters from the beginning of the line to the first non-space
character.

• The subsequent lines belong to the definition as long as their indentation level is
greater then n.

Comments are treated as spaces. A comment starts with the character # and extends to
the following newline character.

We present the DSL syntax using an extended BNF notation. Nonterminal symbols
in production rules are written in slanted font , while terminal symbols are written in

99

bold font. We use the following notational conventions in the right hand side of pro-
duction rules:

alt1 | alt2 choice between two alternatives

(group) parenthesis for grouping

many∗ repeat zero or more times

many+ repeat one or more times

optional? optional

bblockc indentation sensitive block that spans many lines

Using this notation we can express the fact that source code consists of a list of inden-
tation sensitive definitions as follows.

specification −→ bdefinitionc∗

A top-level definition is either a type related definition, a register definition, a function
definition, an action definition, or an instruction definition. We will elobarate on these
definitions in subsequent sections.

definition −→ parameter | invariant | set | record | layout |
union | register | function | action | instruction

We conclude this section with description of the lexical structure. Identifiers are strings
of alphanumeric, underscore (_), quote (’), and dollar ($) characters. An identifier can
start with a dollar character and cannot start with a digit. There is a number of reserved
keywords that cannot be used as identifiers.

id −→ $?letter(letter_ | digit)∗ except reserved

letter_ −→ _ | A | B | . . . | Z | a | b | . . . | z
digit −→ 0 | 1 | . . . | 9
reserved −→ if | then | elif | else | let | in | when | array | of | alias |

with | and | or | not | bit | bits | nat | int | zxt | sxt

There are two types of numeric literals: decimal literals and non-decimal literals. Lit-
erals of the former type evaluate to natural numbers, literals of the latter type evaluate
to bit-strings.

lit −→ decimal | bitstring

decimal −→ digit+

bitstring −→ hex+h | oct+o | bin+b

hex −→ digit | A | B | C | D | E | F
oct −→ 0 | 1 | . . . | 7
bin −→ 0 | 1

The length of a non-decimal literal is meaningful because it encodes the width of the
bit-string. Thus, 0001b evaluates to a bit-string of width four, while 1b evaluates to a

100

bit. Each character in a hexadecimal literal evaluates to four bits. Each character in an
octal literal evaluates to three bits. Thus, 0Fh evaluates to a byte, and 00o evaluates to
a bit-string of width six.

The following operators and special characters can appear in source code.

unop −→ - | ˜ | not
binop −→ * | / | % | + | - | << | >> | ++ | & | ˆ | | |

< | > | == | <> | <= | >= | and | or
special −→ (|) | [|] | { | } | " | = | , | . | :

11.2 Types

Our specification language is typed, which means that registers, expressions, function
arguments and results, action arguments and results, and instruction operands have
types. Note that by assigning a type to each register we implictly define the set of
possible configurations of the processor core.

We distinguish simple types and complex types. A complex type consists of named
subcomponents, which can be accessed using the dot operator. For example, if an
expression x has a complex type with a subcomponent ‘y’, then the expression ‘x.y’
refers to that subcomponent. There are three kinds of complex types: records, layouts,
and unions. A record is just a tuple with named subcomponents, a layout and a union
are bit-strings with named substrings. Each complex type must be be defined at the
top-level of the specification, and must have a name, by which it is referred to in other
parts of the specification. We describe the exact syntax of complex type definition at
the end of this section.

A simple type does not have named subcomponents, thus the dot operator is not appli-
cable to values of simple types. Simple types include bit-strings, integer and natural
numbers, tuples, and explictly enumerated sets of bit-strings or numbers. In specifica-
tion code we will use syntax x::type to denote that the x has the type type, where x can
be a register, an expression, a function argument or an action argument. The symbol
type stands for either an identifier (the name of a complex type), or a bit, or a bit-string,
or a natural number, or an integer number, or a tuple, or a finite set, or a range of
bit-strings/numbers:

type −→ id | bit | bits pexpr | nat | int |
type-tuple | set-expr | range-expr

type-tuple −→ (type1 , type2 , . . . , typen)

set-expr −→ { pexpr1 , pexpr2 , . . . , pexprn }

range-expr −→ [pexpr .. pexpr]

pexpr −→ expr (limited to bit-strings and numbers)

expr −→ (defined in section 11.4)

The range expression is just a shorthand for enumerating a set, for example, the range
[1 .. 3] is the same as a set {1, 2, 3}. The width of a bit-string and elements of sets
and ranges are primitive expressions pexpr . A primitive expression is an expression on

101

bit-strings and numbers which can be evaluated without knowing the exact values of
the registers.

An example of a primitive expression is a constant expression that contains only nu-
meric literals and operations over them. For example, the type bits (2+3) is the same
as the type bits 5 and is the set of bit-strings of width five. The following four types are
equivalent: bit, bits 1, {0b, 1b}, [0b .. 1b].

Unfortunately, bit-strings of constant width are not sufficient for instruction specifica-
tion. Many instructions have operands with variable widths that depend on operating
mode. Therefore, we have to allow non-constant primitive expressions. However, it
makes type checking very difficult. We solve this problem by giving hints for the type
checker using the following convention: any identifier that starts with the dollar ($)
sign must have finite (and small) number of possible values. Then we define a primitive
expression as an expression that depends only on constants or on identifiers that start
with the dollar sign. This allows the type checker to enumerate all possible values of a
primitive expression by enumerating all possible values of the dollar identifiers. We call
dollar identifiers type parameters, and they are defined at the top-level of the source
code with the following syntax.

parameter −→ parameter $id::type (= expr)?

The definition starts with the keyword parameter, followed by a dollar identifier and a
primitive type reference with finite number of possible values. The optional expression
expr binds the parameter to a register. In other words, the identifier id becomes an
alias for the expression expr when the expression is present.

An example of a unbound parameter is the physical address width, which is imple-
mentation dependent and is usually 36 bits (for Intel processors) or 52 bits (for AMD
processors). Thus, we can define this parameter as parameter $pa::{36, 52}.

An example of a bound parameter is the protection enable bit of the CR0 register. Since
operating mode depends on this bit, operand sizes also depend on this bit. We cannot
put the CR0.PE directly into a type expression, therefore, we introduce the following
parameter: parameter $PE::bit = CR0.PE. The type checker can now enumerate the
two values of the $PE without enumerating 264 possible values of the CR0.

Some parameters are interdependent. For example, long mode cannot be activated
without protection being enabled. We can express such relationships using invariants,
which are defined at the top-level according to the following syntax.

invariant −→ invariant pexpr

Thus, the invariant for the $LMA (long mode activated) and the $PE can be defined as
invariant not $LMA or $PE. Invariants allow the type checker to reduce the enumera-
tion space.

A group of related constants can be defined at the top-level as elements of a named set.
Definition of a named set starts with the keyword set followed by the set name and the
elements, which are written either as an indented block or as a comma separated list.

102

set −→ set id (set-elems-block | set-elems-line)

set-elems-block −→ bset-elemc+

set-elems-line −→ = { set-elem1 , set-elem2 , . . . , set-elemn>0 }

set-elem −→ id (= lit)?

For example, exception vectors are defined as follows.

set Vector = {xDE = 00h, xDB = 01h, xNMI = 02h, xBP = 03h, xOF = 04h,
xBR = 05h, xUD = 06h, xNM = 07h, xDF = 08h, xTS = 00h,
xNP = 01h, xSS = 02h, xGP = 03h, xPF = 04h, xMF = 10h,
xAC = 11h, xMC = 12h, xXF = 13h, xSX = 1Eh}

Now the identifier xPF can be used in any expression and always evaluates to a byte
with value 04h.

A record is a tuple with named components. A record type can be defined at the top-
level by writing the keyword record followed by the record name and the indented block
of the record components. For each component, its name and its type have to specified.

record −→ record id brecord -fieldc+

record -field −→ field id::type

A record X with an integer component i and a byte component b can be defined in the
following way.

record X
field i::int
field b::bits 8

Many registers are bit-strings with named substrings (fields). For example, control
registers have named bits. We call such bit-string layouts. In order to define a layout
type, we write the keyword layout followed by the layout name and an indented block
of named fields. Each field must have either a bit-string type or a layout type. For
example, a 16-bit segment selector has the following layout:

layout Selector
field RPL::bits 2
field TI::bit
field index::bits 13

This means that the two least significant bits of a selector are called RPL. The next bit
is called TI and the 13 most significant bits are called index.

Register fields can be reserved, read-only, or ignored. The layout syntax allows to
specify such attributes, as shown in the following example:

layout L
field a::bit reserved and must be 0b
field b::bit read only
field c::bit read only and read as 1b
field d::bit ignored

Let us assume that there is a register x with layout L. When software tries to load
a four-bit value v into the x, the field attributes have the following effects:

103

• the v.a must be zero. In case this condition does not hold, an exception is raised.

• the x.b is unchanged.

• the x.c is unchanged and its values is always 1b.

• the v.d is loaded into the x.d, but the processor never uses this bit, i.e. the bit is
ignored by the processor and software can load any value.

Fields can have multiple attributes, and attributes can have conditions:

layout L2
field a::bit reserved and must be 0b when $PE
field b::bit read only when $PE

ignored when not $PE

In this example, the field a is reserved only when protection is enabled. The field b is
read-only when protection is enabled, and is ignored otherwise.

Specifying field attributes in layout definitions allows us to mechanically generate two
useful functions: one that checks values of reserved fields and another that fixes the
values of read-only fields. Let X be a name of a layout type. Then the first function is
called isX, it takes a layout value and returns true if and only if all reserved fields of
the value are set correctly. The second function is called fixX, it takes the old layout
value and the new layout value. The function adjust the new layout value such that its
read-only fields are copied from the old value.

Besides fields, layouts can have pseudo-fields, which we call abbreviations.

layout L3
field a::bit
field b::bit
abbr c::bit = a or b

In this example, the abbreviation c is a pseudo-field. Let x be a register that has layout
L3, then writing x.c is the same as writing x.a or x.b. Thus, an abbreviation is merely
syntactic sugar.

Summarizing the above examples, we can give formal syntax for layout definitions:

layout −→ layout id blayout-fieldc+ blayout-abbrc+

layout-field −→ field id::type bfield -attrc∗

field -attr −→ readonly | ignored | reserved

readonly −→ read only (and read as pexpr)? bwhen pexprc?

ignored −→ ignored bwhen pexprc?

reserved −→ reserved and must be pexpr bwhen pexprc?

layout-abbr −→ abbr id::type = expr

There are times when we have a bit-string but do not know its exact layout. All we know
is a list of possible layouts that the bit-string might have. For such cases we use a union
type. In order to define a union type, we write the keyword union followed by the name
of the union and a list of layout types or union types. The widths of layouts and unions
must be the same.

union −→ union id bunion-partc+

union-part −→ (union | layout) id bwhen pexprc?

104

An example of a union type is a user segment descriptor, which can be either a data
segment descriptor or a code segment descriptor.

union UserSegment
layout DataSegment
layout CodeSegment

Only common fields of the DataSegment and the CodeSegment are accessible as fields of
the UserSegment. Let x be a union UserSegment, then we can write x.limit because both
the DataSegment and the CodeSegment have limit. The expression x.limit is evaluated as

if isDataSegment(x) then (x::DataSegment).limit
else (x::CodeSegment).limit

where x::DataSegment means convert x to DataSegment.

11.3 Registers

A register is defined at the top-level by writing the keyword register followed the reg-
ister name and the register type. Register names and type names are in disjoint names-
paces. Thus, assuming that there is a layout type CR3, we can define the CR3 register as
follows.

register CR3::CR3

There are registers that are grouped into an array. For example, general-purpose reg-
isters make up an array of 16 elements. We define a register array using the following
syntax.

register R::array bits 4 of bits 64

Thus, R is an array of bit-strings of width 64 indexed by bit-strings of width 4. The type
of an array index must be primitive. Arrays are not first-class objects, i.e. functions
cannot take array arguments and cannot return arrays. The only possible operation
over arrays is indexing, for example R[0010b].

Official manuals refer to register array elements by names instead of indices. In order
to maintain consistency with the manuals, we allow aliases for array elements. For
example, the register RCX is an alias for R[0001b]. We specify this fact in the following
way.

register RCX::bits 64 alias R[0001b]

Summarizing the above examples, we give formal syntax for register definition:

register −→ register id::register -type (alias id [lit])?

register -type −→ type | array type of type

Besides official registers, we will define a few “hidden” registers which are not de-
scribed in the manuals but necessary for instruction specification. In order to distin-
guish the hidden registers from local variables and official registers, we will always
start a hidden register name with the underscore (_) character.

105

11.4 Expressions

The following production rule shows the structure of expressions:

expr −→ lit | id |
unop expr | expr binop expr |
paren | tuple | apply |
index | dot | update | offset |
zxt | sxt | bits | int | nat

if | let | annot

Thus, an expression is

• either a literal,

• or an identifier,

• or a unary operator applied to an expression; there are three unary operators:

Operator Operand Result Meaning

- bits n bits n negation

~ bits n bits n complement

not bit bit complement

Thus, unop −→ - | ˜ | not. The negation operator is also defined for integer
operands.

• or a binary operator applied to two expressions; there are 19 binary operators:

106

Operator Left Operand Right Operand Result Meaning

* bits n bits n bits n multiplication

/ bits n bits n bits n division

% bits n bits n bits n modulo

+ bits n bits n bits n addition

- bits n bits n bits n subtraction

>> bits n nat bits n shift to right

<< bits n nat bits n shift to left

++ bits n bits m bits (n+m) concatenation

& bits n bits n bits n bitwise and

^ bits n bits n bits n bitwise xor

| bits n bits n bits n bitwise or

< bits n bits n bit less than

> bits n bits n bit greater than

== any any bit equal

<> any any bit inequal

<= bits n bits n bit less or equal

>= bits n bits n bit greater or equal

and bit bit bit boolean and

or bit bit bit boolean or

Thus,

binop −→ * | / | % | + | - | << | >> | ++ | & | ˆ | | |
< | > | == | <> | <= | >= | and | or

The comparison (<, <=, =>, >) and arithmetic operators (*, /, %, +, -) are also
defined for naturals and integers.

• or parenthesis: paren −→ (expr) ,

• or a tuple: tuple −→ (expr1 , expr2 , . . . , exprn>1) ,

• or function application:

apply −→ id args

args −→ (expr1 , expr2 , . . . , exprn>0)

• or element selection: index −→ expr [(expr | expr : expr)]. In expression
x[i], the x can be either a bit-string or a register array. In the former case, the
i is a zero-based index of the selected bit. In the latter case, the i is an array
index. The range selection x[i:j] is only applicable to bit-strings and the result is
a substring of bits with indices from j to i. For example 10110b[3:1] == 011b

• or subcomponent selection: dot −→ expr.id , the expression must have scoped
type and the identifier must be the name of a subcomponent.

107

• or subcomponent update:

update −→ expr with [upd1 , upd2 , . . . , updn>0]

upd −→ id = expr

Expression x with [a = 1b] is equal to the x with the value of the subcomponent
a replaced by 1b.

• or offset computation: offset −→ @id.id . The left identifier must be a name of
a layout and the right identifier must be a name of a field of the layout. The
expression @X.a returns the index of the least significant bit of the field a in the
layout X.

• or zero-extension: zxt −→ zxt (pexpr , expr). The first argument must be a nat-
ural number. The second argument must be a bit-string. The expression zxt(n, x)

is zero-extension of the x to n bits. The width of the x must not exceed n. Thus,
zxt(4, 10b) == 0010b.

• or sign-extension: sxt −→ sxt (pexpr , expr). The arguments must satisfy the
same conditions as the arguments of zero-extension. The expression sxt(n, x) is
sign-extension of the x to n bits, where the sign is the most significant bit of the x.
Thus, sxt(4, 10b) == 1110b and sxt(4, 01b) == 0001b.

• or conversion to a bit-string: bits −→ bits (pexpr , expr). The first arguments
must a natural number. The second argument can be either an integer or a nat-
ural number. The expression bits(n, a) is the result of two’s complement con-
version of the number a to a bit-string of width n. Thus, bits(4, 3) == 0011b and
bits(4, -1) == 1111b.

• or conversion to an integer: int −→ int (expr). The argument must be a bit-
string. The expression int(x) is the result of two’s complement conversion of the
bit-string x to an integer number. Thus, int(1111b) == -1 and int(0111b) == 7.

• or conversion to a natural: nat −→ nat (expr). The argument must be a bit-
string. The expression nat(x) is the result of unsigned conversion of the bit-string
x to a natural number. Thus, nat(1111b) == 15.

• or a conditional: if −→ if expr then expr (elif expr then expr)∗ else expr , where
elif is a short version of else if.

• or “let” expression:

let −→ let bind = expr in expr

bind −→ id | (bind1 , bind2 , . . . , bindn>1)

• or type annotation: annot −→ expr::type. The type of the expression expr must be
compatible with the specified type. Integer and natural number are compatible.
Bit-strings, layouts and unions are compatible if and only if they have the same
width. The expression x::T is equal to the x converted to the type T.

108

11.5 Functions

Functions are named and parameterized expressions. Functions can be defined at the
top-level using the following syntax.

function −→ function id decl -args? (::type)? (when pexpr)? = expr

decl -args −→ (arg1 , arg2 , . . . , argn>0)

arg −→ id::type

Function definition starts with the keyword function, which is followed by the function
name. The argument list, the result type, and the condition are optional. If the result
type is not specified, it is inferred from the type of the function body. It is possible
to defined multiple functions with the same name as long as their conditions do not
overlap. As an example, we define a few useful functions.

function max($a::[0..128], $b::[0..128])::[0..128]
= if $a < $b then $b else $a

function min($a::[0..128], $b::[0..128])::[0..128]
= if $a < $b then $a else $b

function zero($n::[1..128])::bits $n = bits($n, 0)
function one($n::[1..128])::bits $n = bits($n, 1)
function ones($n::[1..128])::bits $n = sxt($n, 1b)

11.6 Actions

Actions are named and parameterized lists of statements. Definition of an action is
similar to definition of a function, except the keyword action is used and the action
body is an indented block of statements. Another difference is that when the result
type is not specified, the action returns nothing.

action −→ action decl -args? (::type)? bwhen pexprc? stmt+

stmt −→ if -stmt | blet-stmtc | bcall -stmtc | breturn-stmtc | bfail -stmtc |
bwrite-stmtc | bundef -stmtc | bchain-stmtc | bassume-stmtc

We discussed the statements at the beginning of this chapter. Here we give formal
syntax and highlight the omitted details.

The “let” statement can bind an identifier or a tuple of identifiers.

let-stmt −→ let bind = expr

bind −→ id | (bind1 , bind2 , . . . , bindn>1)

The conditional statement has optional elif and else parts.

if -stmt −→ bif expr then stmt+c
belif expr then stmt+c∗

belse stmt+c?

109

Like the “let” statement, the “call” statement can bind an identifier or a tuple to the
result of the action execution.

call -stmt −→ call (bind =)? id args?

The expression parameter of the “return” statement is optional. When the expression
is not given, the action returns nothing.

return-stmt −→ return expr?

The “fail” statement has optional condition. When the condition is present and does not
hold, the statement is skipped.

fail -stmt −→ fail expr (when expr)?

The “write” and “undef” statements have optional conditions that act like the condition
of the “fail” statement. The destination of the statements is not limited to a register
name, but can be a part of a register. The wexpr symbol denotes an expression that
selects a writeable part of a register, i.e. a part of a register that is reachable via a
sequence of dot and index operators. For example, SR[000b].desc[3:0].

write-stmt −→ write expr to wexpr (when expr)?

undef -stmt −→ undef wexpr (when expr)?

The “chain” and “assume” statements have the following syntax.

chain-stmt −→ (commit and)? chain id

assume-stmt −→ assume pexpr

11.7 Instructions

Instruction definition starts with the keyword instruction, which is followed by the
instruction mnemonic. If the instruction is valid only in some operating modes, then
this fact can be specified using the optional condition after the mnemonic. Afterwards,
there is a list of opcodes, a list of attributes, and a semantic action, which specifies how
to execute the instruction.

instruction −→ instruction mnemonic bwhen pexprc?

bopcodec+

battributec∗

bexecutec?

mnemonic −→ "(any string except double quotes and newline)"

Instruction attributes specify whether the instruction has 64-bit default operand width
or not, whether the instruction is serializing or not, whether the instruction can have a
lock prefix or not.

attribute −→ default64 | serializing | lockable

110

A semanic action is a statement in our domain-specific language:

execute −→ execute stmt

The statement can use special identifiers op1, op2, op3, op1’ ,op2’, op3’, which repre-
sent the values of the operands before and after execution of the instruction. The widths
of the operands are denoted as special identifiers $n, $n1, $n2, $n3, where $n = $n1.
Chapter {instructions} explains semantic actions in more detail.

For each opcode we specify a bit-string pattern, an optional condition (if the opcode
is valid only in some operating modes), a list of operands, a list of attributes, and an
optional statement for execution. If the attributes/the statement are present, they over-
ride the attributes/the statement defined on the instruction level. For each operand we
specify its type and its width.

opcode −→ opcode pattern bwhen pexprc?

boperandc∗

battributec∗

bexecutec?

operand −→ operand expr pexpr

During instruction fetch, the opcode pattern is matched against the fetched bytes. The
pattern consists of one or more bit-strings followed by optional ModRM byte specifiers.
The last bit-string before the ModRM byte specifiers is matched against the fetched
opcode. All preceding bit-strings are matched against the fetches prefixes. The ModRM
byte specifiers are matched against the fetched ModRM byte.

pattern −→ "bitstring+ reg? mod? rm?"

reg −→ /bitstring

mod −→ mod bitstring

rm −→ rm bitstring

The ModRM byte is described in chapter {instruction-fetch-and-decode}.

As an example, we give the definition of the MOV instruction (first two opcodes):

instruction "MOV"
opcode "88h"
operand reg_mem 8
operand reg 8
execute let op1’ = op2

opcode "89h"
operand reg_mem $v
operand reg $v
execute let op1’ = op2

Since putting each operand in a separate line takes too much space, in this document
we will give condensed definitions:

instruction "MOV"
opcode "88h" reg_mem 8, reg 8 : let op1’ = op2
opcode "89h" reg_mem $v, reg $v : let op1’ = op2

Chapter {instructions} describes instruction specification notation in more detail.

111

112

CHAPTER

TWELVE

REGISTERS

12.1 General-Purpose Registers

There are 16 general-purpose registers. Some instructions access a register partially,
e.g. bits [15:8] may be updated, while the remaining bits remain intact. The architec-
ture defines aliases for these registers and their parts. We use aliases only for the whole
registers, and refer to the parts by ordinary bit selection.

register R::array bits 04 of bits 64
register RAX::bits 64 alias R[0000b]
register RCX::bits 64 alias R[0001b]
register RDX::bits 64 alias R[0010b]
register RBX::bits 64 alias R[0011b]
register RSP::bits 64 alias R[0100b]
register RBP::bits 64 alias R[0101b]
register RSI::bits 64 alias R[0110b]
register RDI::bits 64 alias R[0111b]
register R8::bits 64 alias R[1000b]
register R9::bits 64 alias R[1001b]
register R10::bits 64 alias R[1010b]
register R11::bits 64 alias R[1011b]
register R12::bits 64 alias R[1100b]
register R13::bits 64 alias R[1101b]
register R14::bits 64 alias R[1110b]
register R15::bits 64 alias R[1111b]

12.2 Control Registers

The control register array has 16 elements, however, only 5 of them are defined by the
architecture. We use the following aliases for them: CR0, CR2, CR3, CR4, and CR8. Access
to undefined registers generates an exception.

register CR::array bits 04 of bits 64

113

The CR0 register controls operating mode, memory and FPU features.

register CR0::CR0 alias CR[0000b]
layout CR0
field PE::bit
field MP::bit
field EM::bit
field TS::bit
field ET::bit read only and read as 1b
field NE::bit
field rsv1::bits 10 reserved and must be bits(10, 0)
field WP::bit
field ign::bit ignored
field AM::bit
field rsv2::bits 10 reserved and must be bits(10, 0)
field NW::bit ignored
field CD::bit
field PG::bit reserved and must be 0b when not $PE
field rsv3::bits 32 reserved and must be bits(32, 0)

PE (protected mode enable) When the bit is set, the processor uses the segmentation-
protection mechanism.

MP (monitor coprocessor) When the bit is set, executing the WAIT/FWAIT instruction after
a task switch (i.e CR0.TS==1b) raises an xNM exception.

EM (emulate coprocessor) When the bit is set, executing an FPU instruction raises an
xNM exception and executing a media instruction raises an xUD exception.

TS (task switched) The bit indicates whether a task switch was performed since the
last time the bit was cleared. When the bit is set, executing any FPU or media
instruction raises xNM exception.

ET (extension type) This legacy bit used to indicate whether FPU instructions are sup-
ported.

NE (numeric error) The bit controls how FPU errors are handled. When the bit is set,
the processor uses internal handling mechanism. Otherwise, it forwards errors to
an external device using FERR, IGNNE signals

WP (write protect) When the bit is set, all write accesses to write-protected pages pro-
duce an exception. When the bit is cleared, supervisor software (CPL==00b) can
write to write-protected pages.

AM (alignment mask) When the bit is set and RFLAGS.AC==1b, then alignment checking
is enabled, which means that unaligned memory accesses from user software
(CPL==11b) raise an xAC exception.

NW (not writethrough) This legacy bit is ignored

CD (cache disable) When the bit is set, the caches are disabled.

PG (paging) When the bit is set, paging is enabled.

If a page fault occurs, then the faulting virtual address is stored in the CR2 register.

register CR2::bits 64 alias CR[0010b]

The CR3 register contains the base physical address of the top-level page table. The
meaning of the some fields of this register depends on the $long_mode, $PAE, $pa param-
eters, which are defined in chapter 13.

114

register CR3::CR3 alias CR[0011b]
layout CR3
field rsv1::bits 3 reserved and must be 000b
field PWT::bit
field PCD::bit
field base0::bits 7
reserved and must be 0000000b when $long_mode or not $PAE

field base1::bits 20
field base2::bits 20
reserved and must be bits(20, 0) when $legacy_mode

field rsv2::bits 12 reserved and must be 000h
abbr base::bits $pa = if $long_mode then base2++base1++000h

elif $PAE then zxt($pa, base1)++base0++00000b
else zxt($pa, base1)++000h

PWT (page writethrough) When the bit is set, the top-level page table has write-through
caching policy. Otherwise, the caching policy is writeback.

PCD (page cache disable) When the bit is set, the top-level page table is uncacheable.
Otherwise, it is cacheable.

base0 the top-level page table base address (bits 11:5)

base1 the top-level page table base address (bits 31:12)

base2 the top-level page table base address (bits 51:32)

base page table base address

Bits in the CR4 register control model-specific features.

register CR4::CR4 alias CR[0100b]
layout CR4
field VME::bit
field PVI::bit
field TSD::bit
field DE::bit
field PSE::bit ignored when $PAE
field PAE::bit
field MCE::bit
field PGE::bit
field PCE::bit
field OSFXSR::bit
field OSXMMEXCPT::bit
field rsv::bits 53 reserved and must be bits(53, 0)

VME (virtual 8086-mode extensions) When the bit is set, the processor in virtual 8086
mode virtualizes the RFLAGS.IF using RFLAGS.VIF and RFLAGS.VIP and intercepts
software interrupts using intercept bitmap in the task state segment. The RFLAGS

register is defined later in this section.

PVI (protected mode virtual interrupts) When the bit is set, the processor in protected
mode virtualizes the RFLAGS.IF using RFLAGS.VIF and RFLAGS.VIP.

TSD (time stamp disable) When the bit is set, only supervisor software (CPL==00b) can
execute the RDTSC and RDTCP instructions. Otherwise, user software is also allowed
to execute these instructions.

115

DE (debugging extensions) The bit enables I/O breakpoints and makes debug registers
DR4 and DR5 reserved. When the bit is cleared, the registers DR4, DR5 are aliased
with DR6, DR7.

PSE (page size extensions) The bit enables 4MB pages in legacy mode. When the bit is
cleared, only 4KB pages are allowed. The bit is ignored when PAE is active.

PAE (physical address extensions) The bit controls the size of page table entries. When
the bit is set, a page table entry is 8 bytes wide. Otherwise, it is 4 bytes wide. The
bit also enables 2MB pages.

MCE (machine check enable) When the bit is set, a machine check error raises an xMC

exception.

PGE (page-global enable) The bit enables global paging translations, which are not af-
fected by local TLB flushes. The G bit in a leaf page table entry indicates whether
a translation is global or local.

PCE (performance-monitoring counter enable) When the bit is set, only supervisor soft-
ware (CPL==00b) can execute the RDPMC instruction. Otherwise, user software is
also allowed to execute this instruction.

OSFXSR (operating system FXSAVE/FXRSTOR support) When the bit is set, software can use
128-bit media instructions and the FXSAVE/FXRSTOR instructions save and restore
state for the FPU, 64-bit and 128-bit media instructions.

OSXMMEXCPT (operating system unmasked exception support) When the bit is set, un-
masked 128-bit SIMD media errors produce an xXF exception. Otherwise, they
produce an xUD exception.

The CR8 register is aliased with the TPR register of the local APIC.

register CR8::CR8 alias CR[1000b]
layout CR8
field TPR::bits 32
field rsv::bits 32 reserved and must be bits(32, 0)

TPR (task priority register alias) See the description of the TPR register.

The extended feature enable register EFER is a model-specific register. It controls oper-
ating mode and enables virtualization, fast system calls, and other features.

register EFER::EFER alias MSR[C0000080h]
layout EFER
field SCE::bit
field rsv1::bits 7 ignored and read as 0000000b
field LME::bit
field rsv2::bit reserved and must be 0b
field LMA::bit read only
field NXE::bit
field SVME::bit
field rsv3::bit reserved and must be 0b
field FFXR::bit
field rsv4::bits 49 reserved and must be bits(49, 0)

SCE (system call extensions) The bit enables the SYSCALL/SYSRET instructions.

116

LME (long mode enable) When the bit is set and LMA==0, the processor waits until paging
is enabled (CR0.PG==1) and then activates long mode (sets LMA).

LMA (long mode activated) When the bit is set, the processor is executing in long mode.

NXE no-execute enable When the bit is set, instruction fetch from a data page produces
a page fault. Otherwise, no checks are performed.

SVME (secure virtual machine enable) The bit enables virtualization instructions VMRUN,
VMLOAD, VMSAVE, etc. When the bit is cleared, these instructions raise an xUD excep-
tion.

FFXR (fast FXSAVE/FXRSTOR) When the bit is set and CPL==00b, the FXSAVE/FXRSTOR instruc-
tions in 64-bit mode do not save and restore the XMM registers.

The RFLAGS register stores various flags and control bits. Flags CF, PF, AF, ZF, SF, OF are
called status flags. Arithmetic-logical instructions update the status flags, according to
the result of the operation. Conditional control transfers are performed based on the
values of the status flags.

register RFLAGS::Flags
layout Flags
field CF::bit
field ro1::bit read only and read as 1b
field PF::bit
field ro2::bit read only and read as 0b
field AF::bit
field ro3::bit read only and read as 0b
field ZF::bit
field SF::bit
field TF::bit
field IF::bit
field DF::bit
field OF::bit
field IOPL::bits 2
field NT::bit
field ro4::bit read only and read as 0b
field RF::bit
field VM::bit reserved and must be 0b when $long_mode
field AC::bit
field VIF::bit
field VIP::bit
field ID::bit
field ro5::bits 42 read only and read as zero(42)

CF (carry flag) The carry bit of an unsigned operation.

PF (parity flag) The parity bit is set to one only when there are even number of set bits
in the least-significant byte in the result of the last arithmetic-logic operation.

AF (auxiliary flag) The carry bit from the 4 least significant bits of the operands.

ZF (zero flag) The bit is set if the result of the last operation is zero.

SF (sign flag) The bit is set if the result of the last operation is negative.

TF (trap flag) When the bit is set, single step debug mode is enabled, which means that
after each instruction execution, xDB debug exception is raised.

117

IF (interrupt flag) When the bit is cleared, the processor does not accept maskable
interrupts for handling.

DF (direction flag) When the bit is set, string instructions decrement the RDI/RSI string
pointers. Otherwise, the pointers are incremented.

OF (overflow flag) The overflow bit of a signed operation.

IOPL (I/O privilege level) The field defines the privilege level that is required to ex-
ecute the I/O instructions. Software can execute these instructions only when
IOPL <= CPL. Otherwise, xGP exception is raised.

NT (nested task) The bit indicates whether the current tast is nested in another task.
The IRET instruction uses the bit to perform a correct return from the interrupt
handler.

RF (resume flag) When the bit is set, instruction breakpoint does not raise xDB exception.

VM (virtual 8086 mode) The bit indicates that the processor is executing in virtual 8086
mode.

AC (alignment check) When the bit is set and CR0.AM==1b, then alignment checking
is enabled, which means that unaligned memory accesses from user software
(CPL==11b) raise xAC exception.

VIF (virtual interrupt) When IF virtualization is active, instructions modify this bit in-
stead of the IF bit.

VIP (virtual interrupt pending) When the bit is set and IF virtualization is active, setting
VIF generates xGP exception.

ID (CPUID present flag) The ability of software to modify this bit indicates that the
processor supports the CPUID instruction. In other words, the CPUID instruction
is supported if after negating this bit software reads the new value instead of the
old value.

Clearing the global interrupt flag GIF masks all external events (including non-maskable
interrupts).

register GIF::bit

After the POP SS and a MOV SS instructions all external interrupts and debug traps are
inhibited until the next instruction is completed. It is necessary to allow to adjust the
stack pointer in the next instruction and to keep the stack consistent. We use the hidden
_intr_shadow register to indicate whether or not to inhibit interrupts after executing the
current instruction.

register _intr_shadow::bit

12.3 Segment Registers

There are six segment registers: one code segment register (CS), one stack segment
register (SS), and four data segment registers (DS, ES, FS, GS). Access to undefined
registers in the SR array produces an xUD exception.

118

register SR::array bits 03 of SR
register ES::SR alias SR[000b]
register CS::SR alias SR[001b]
register SS::SR alias SR[010b]
register DS::SR alias SR[011b]
register FS::SR alias SR[100b]
register GS::SR alias SR[101b]

A segment register has a software visible part and a hidden part. The visible part is 16
bits wide and is called a selector. The selector is used as an index in the descriptor table
to locate the segment descriptor, which is then unpacked and loaded into the hidden
part of the segment register. The hidden part functions as a small cache, but it is not
kept consistent with the descriptor table. This means that if the descriptor table is
updated, the hidden part of the segment register is not reloaded automatically.

record SR
field sel::Selector
field attr::UserSegmentAttr
field limit::bits 32
field base::bits 64

sel This field contains, a selector which is used as an index in the descriptor table. See
section 13.9 for the definition of selectors.

attr (attributes) This field is extracted from the descriptor and defines segment at-
tributes, such as readable, writeable, etc. For more information, refer to the
definition of UserSegmentAttr in section 13.7.

limit (segment limit) This field is extracted from the descriptor and defines either the
upper or the lower limit of the segment, depending on attr.expand_down. For more
information, refer to the definition of UserSegment in section 13.7.

base (segment linear base address) This field is extracted from the descriptor and de-
fines the linear base address of the segment. In 64-bit mode, this field is assumed
to be zero for all segment registers except FS and GS.

Software can access FS.base and GS.base in 64-bit mode via the FSBase and GSBase model-
specific registers.

register FSBase::bits 64 alias MSR[C0000100h]
register GSBase::bits 64 alias MSR[C0000101h]

Another way to access GS.base in 64-bit mode is to use the SWAPGS instruction, which
swaps GS.base with the KernelGSBase model-specific register.

register KernelGSBase::bits 64 alias MSR[C0000102h]

Software cannot directly modify the CS register, instead, it uses far control transfer
instructions. Transfer to a different code segment may change the current privilege
level, which is stored in the CPL register.

register CPL::bits 2

119

12.4 Descriptor Table Registers

A descriptor table register specifies the location of the descriptor table in the linear
address space (the address space before paging translation). There are three descriptor
table registers: the global descriptor table register, the local descriptor table register,
and the interrupt descriptor table register.

register GDTR::DTR
register LDTR::LDTR
register IDTR::DTR

The GDTR and LDTR registers have two components: the table base address and the table
limit. The limit is the offset of the last valid byte in the table.

record DTR
field limit::bits 16
field base::bits 64

The local descriptor table is defined by a descriptor in the global descriptor table. The
LDTR registers stores the selector for the descriptor and the unpacked components of
the descriptor.

record LDTR
field sel::Selector
field attr::LDTAttr
field limit::bits 32
field base::bits 64

12.5 Task Register

The task register TR specifies the current Task State Segment (TSS), which stores the
task context, I/O permission bitmap, inner level stacks. Software can modify only
TR.sel, other parts of the register are loaded by hardware from the global descriptor
table.

register TR::TR
record TR
field sel::Selector
field attr::TSSAttr
field limit::bits 32
field base::bits 64

12.6 Virtualization Registers

When the secure virtual machine extensions are enabled (EFER.SVME==1b), the processor
runs either in host mode or in guest mode. Since the architecture does not define any
register to store the current virtualization mode, we add a hidden boolean register.

register _guest::bit

120

A set bit in the register means that the processor is running in guest mode. We intro-
duce parameters for the SVME and _guest bits, so that we can use them in type expres-
sions.

parameter $SVME::bit = EFER.SVME
parameter $GUEST::bit = _guest
function $HOST = not $GUEST
invariant not $GUEST or $SVME

Guest mode can be activated only by the VMRUN instruction, which saves the host reg-
isters in the memory area defined by the VM_HSAVE_PA register and loads the guest reg-
isters from the virtual machine control block (VMCB) defined by the RAX register. The
VM_HSAVE_PA stores a page aligned physical address of the host state save area.

register VM_HSAVE_PA::bits 64 alias MSR[C0010116h]

Before loading the guest state, the VMRUN instruction must save somewhere the physical
address of the VMCB. Otherwise, the processor would not know where to save the guest
context on VMEXIT. The architecture does not specify such a register, therefore, we add
a hidden register _vmcb_addr, which store a page aligned physical address of the VMCB.

register _vmcb_addr::bits 64

Along with the guest registers the VMRUN instruction loads control bits from the control
area of the VMCB. We use a hidden register _vmcb_ca to store these control bits. For
more information, refer to definition of VMCB_CA.

register _vmcb_ca::VMCB_CA

12.7 Instruction Registers

During instruction execution, the instruction pointer register RIP contains the address
of the next instruction. Software can observe this register using the CALL instruction,
which saves the RIP register in the stack. During instruction fetch and decode, the
register contains the address of the current instruction.

register RIP::bits 64

Although it is not defined in the architecture, we add a hidden register _old_RIP, which
stores the address of the current instruction during instruction execution. During in-
struction fetch and decode, _old_RIP == RIP. Instructions with the REP prefix a repeated
by setting RIP to _old_RIP.

register _old_RIP::bits 64

The length of an instruction cannot exceed 15 bytes as stated in the official manuals.
Instruction fetch raises an exception if the length exceeds 15 bytes.

register _instr_len::bits 4

The decoded components of the instruction are stored in the following hidden registers:

register _prefix::Prefix
register _opcode::Opcode

121

register _modrm::ModRM
register _sib::SIB
register _disp::bits 64
register _imm::bits 64

In case the instruction does not have some component, the corresponding register is
filled with zeros. The _disp register stores the sign-extended displacement. The _imm

register stores the zero-extended immediate operand. For more information on instruc-
tion format, refer to chapter [Instruction Fetch and Decode]

12.8 Memory Type Registers

As we defined in section 5.2, six memory types exist:

set MemType = {UC = 000b, WC = 001b, WP = 101b, WT = 100b,
WB = 110b, CD}

All memory types except the ‘cache-disable’ (CD) type have 3-bit binary encodings. The
CD memory type is assigned to a memory access with cacheable memory types when
caching is disabled (CR0.CD=1b). Other memory types are assigned based on the linear
address and the physical address of a memory access. We compute the memory type for
the linear address, the memory type for the physical address, and then combine both
memory types to get the memory type of the memory access.

Paging translation of a linear address produces a physical address and an index to the
Page Attribute Table (PAT). The table consists of eight elements and is stored in the PAT

register. Each element is a 3-bit binary encoding of a memory type.

register PAT::PAT alias MSR[00000277h]
layout PAT
field memType0::bits 3
field rsv0::bits 5 reserved and must be 00000b
field memType1::bits 3
field rsv1::bits 5 reserved and must be 00000b
field memType2::bits 3
field rsv2::bits 5 reserved and must be 00000b
field memType3::bits 3
field rsv3::bits 5 reserved and must be 00000b
field memType4::bits 3
field rsv4::bits 5 reserved and must be 00000b
field memType5::bits 3
field rsv5::bits 5 reserved and must be 00000b
field memType6::bits 3
field rsv6::bits 5 reserved and must be 00000b
field memType7::bits 3
field rsv7::bits 5 reserved and must be 00000b

Given an index to the PAT, the following function returns the corresponding memory
type:

function pat_lookup(pat_idx::bits 3)::MemType
= if pat_idx == 000b then PAT.memType0
elif pat_idx == 001b then PAT.memType1

122

elif pat_idx == 010b then PAT.memType2
elif pat_idx == 011b then PAT.memType3
elif pat_idx == 100b then PAT.memType4
elif pat_idx == 101b then PAT.memType5
elif pat_idx == 110b then PAT.memType6
else PAT.memType7

The memory type of a physical address is computed based on two sets of memory range
registers: variable-range registers and fixed-range registers. These registers map a
range of physical addressed to a memory type. A range can have either a variable
length or a fixed length.

Variable-range registers come in pairs. The first register in a pair specifies the base
address of the range and the memory type. The second register in a pair specifies the
length of the range via a binary mask:

layout MTRRphysBase
field type::bits 3
field rsv1::bits 9 reserved and must be 0
field base::bits 40
field rsv2::bits 12 reserved and must be 0

type is the memory type of the range.

base is the page-aligned physical base address of the range.

layout MTRRphysMask
field rsv1::bits 11 reserved and must be 0
field valid::bit
field mask::bits 40
field rsv2::bits 12 reserved and must be 0

valid indicates whether the range should be used for memory type computation or not.

mask is the page-aligned mask of the range. A page-aligned physical address x belongs
to the range if masking the x produces the masked base address of the range:
(x & mask) == (base & mask).

Given a pair of variable-range registers, the default memory type and a physical ad-
dress, the following function computes the memory type of the physical address:

function mtrr_var(b::MTRRphysBase,
m::MTRRphysMask,
def::MemType,
x::bits $pa)::MemType

= if not m.valid then def
elif (zxt(52,x)[52:12] & m.mask) == (b.base & m.mask) then

combine_mt(b.type, def)
else def

The function returns the default type if the range is invalid or the range does not cover
the given physical address. Otherwise, the function combines the range memory type
and the default memory type as follows:

123

function combine_mt(t1::MemType, t2::MemType)::MemType
= if t1 == t2 then t1
elif t1 == UC or t2 == UC then UC
elif t1 == WT and t2 == WB or t1 == WB and t2 == WT then WT
else undefined(3)

Eight pairs variable-range registers exist:

register MTRRphysBase0::MTRRphysBase alias MSR[00000200h]
register MTRRphysMask0::MTRRphysMask alias MSR[00000201h]
register MTRRphysBase1::MTRRphysBase alias MSR[00000202h]
register MTRRphysMask1::MTRRphysMask alias MSR[00000203h]
register MTRRphysBase2::MTRRphysBase alias MSR[00000204h]
register MTRRphysMask2::MTRRphysMask alias MSR[00000205h]
register MTRRphysBase3::MTRRphysBase alias MSR[00000206h]
register MTRRphysMask3::MTRRphysMask alias MSR[00000207h]
register MTRRphysBase4::MTRRphysBase alias MSR[00000208h]
register MTRRphysMask4::MTRRphysMask alias MSR[00000209h]
register MTRRphysBase5::MTRRphysBase alias MSR[0000020Ah]
register MTRRphysMask5::MTRRphysMask alias MSR[0000020Bh]
register MTRRphysBase6::MTRRphysBase alias MSR[0000020Ch]
register MTRRphysMask6::MTRRphysMask alias MSR[0000020Dh]
register MTRRphysBase7::MTRRphysBase alias MSR[0000020Eh]
register MTRRphysMask7::MTRRphysMask alias MSR[0000020Fh]

By chaining the mttr_var functions, we can take into accout all the variable-range reg-
isters:

function mtrr_vars(def_type::MemType, x::bits $pa)::MemType
= let t0 = mtrr_var(MTRRphysBase0, MTRRphysMask0, def_type, x) in
let t1 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t0, x) in
let t2 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t1, x) in
let t3 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t2, x) in
let t4 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t3, x) in
let t5 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t4, x) in
let t6 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t5, x) in
let t7 = mtrr_var(MTRRphysBase1, MTRRphysMask1, t6, x) in
t7

Fixed-range memory type registers have the base addresses and the lengths of the
ranges encoded in the register names with MTRRfix[size]K_[base] pattern:

register MTRRfix64K_00000::MTRRfix alias MSR[00000250h]
register MTRRfix16K_80000::MTRRfix alias MSR[00000258h]
register MTRRfix16K_A0000::MTRRfix alias MSR[00000259h]
register MTRRfix4K_C0000::MTRRfix alias MSR[00000268h]
register MTRRfix4K_C8000::MTRRfix alias MSR[00000269h]
register MTRRfix4K_D0000::MTRRfix alias MSR[0000026Ah]
register MTRRfix4K_D8000::MTRRfix alias MSR[0000026Bh]
register MTRRfix4K_E0000::MTRRfix alias MSR[0000026Ch]
register MTRRfix4K_E8000::MTRRfix alias MSR[0000026Dh]
register MTRRfix4K_F0000::MTRRfix alias MSR[0000026Eh]
register MTRRfix4K_F8000::MTRRfix alias MSR[0000026Fh]

124

Each register specifies the memory type for eight fixed consecutive ranges. The register
name contains the base address of the first range. A fixed-range register is partitioned
into eight bytes:

layout MTRRfix
field range0::bits 8
field range1::bits 8
field range2::bits 8
field range3::bits 8
field range4::bits 8
field range5::bits 8
field range6::bits 8
field range7::bits 8

The three least significant bits of each byte encode a memory type:

layout MTRRfixTypeExtended
field type::bits 3
field rsv::bits 5 reserved and must be 00000b

Given a physical address, the following function checks if the address is covered by any
fixed range:

function mtrr_fix_cover(x::bits $pa)::bit
= (x < zxt($pa, 1000000h))

Given a physical address that is covered by a fixed range, the following function returns
the memory type of the covering fixed range:

function mtrr_fix(addr::bits $pa)::bit
= let x = nat(addr) in
if x<nat(80000h) then lookup(MTRRfix64K_00000, x/65536)
elif x<nat(A0000h) then lookup(MTRRfix16K_80000, (x-nat(80000h))/16384)
elif x<nat(C0000h) then lookup(MTRRfix16K_A0000, (x-nat(A0000h))/16384)
elif x<nat(C8000h) then lookup(MTRRfix4K_C0000, (x-nat(C0000h))/4096)
elif x<nat(D0000h) then lookup(MTRRfix4K_C8000, (x-nat(C8000h))/4096)
elif x<nat(D8000h) then lookup(MTRRfix4K_D0000, (x-nat(D0000h))/4096)
elif x<nat(E0000h) then lookup(MTRRfix4K_D8000, (x-nat(D8000h))/4096)
elif x<nat(E8000h) then lookup(MTRRfix4K_E0000, (x-nat(E0000h))/4096)
elif x<nat(F0000h) then lookup(MTRRfix4K_E8000, (x-nat(E8000h))/4096)
elif x<nat(F8000h) then lookup(MTRRfix4K_F0000, (x-nat(F0000h))/4096)
else lookup(MTRRfix4K_F8000, (x-nat(F8000h))/4096)

where the lookup function takes a fixed-range register and the range index as arguments
and returns the memory type of the range in the register:

function lookup(r::MTRRfix, i::[0..7])::MemType
= if i == 0 then r.range0[2:0]
elif i == 1 then r.range1[2:0]
elif i == 2 then r.range2[2:0]
elif i == 3 then r.range3[2:0]
elif i == 4 then r.range4[2:0]
elif i == 5 then r.range5[2:0]
elif i == 6 then r.range6[2:0]
else r.range7[2:0]

125

If a physical is not covered by any memory type range, then it gets the default memory
type, which specified by the following register:

MTRR default memory type register

register MTRRdefType::MTRRdefType alias MSR[000002FFh]
layout MTRRdefType
field type::bits 3
field rsv1::bits 7 reserved and must be 0
field FIXE::bit
field E::bit
field rsv2::bits 52 reserved and must be 0

type the default memory type.

FIXE enables and disables fixed-range memory type registers.

E enables and disables all memory type registers.

Summarizing this section, we define a function that computes the memory type of a
physical address and combines it with the memory type from the PAT. The function
first checks if the MTRR are disabled, in which case the memory type of the physical
address is set to the UC. Otherwise, the function computes the memory type using fixed
and variable ranges. In case the physical address is covered by both a fixed range and
a variable range, the fixed range takes precedence:

function mtrr(addr::bits $pa, pat_mt::MemType)::MemType
= if not MTRRdefType.E then combine_mtrr_pat(UC, pat_mt)
elif mtrr_fix_cover(addr) and MTRRdefType.FIXE then

combine_mtrr_pat(mttr_fix(addr), pat_mt)
else combine_mtrr_pat(mtrr_vars(addr, MTRRdefType.type), pat_mt)

The combine_mtrr_pat function combines the memory type of the physical address with
the memory type of the linear address:

function combine_mtrr_pat(mtrr_mt::MemType, pat_mt::MemType)::MemType
= if pat_mt == UC then UC
elif pat_mt == WC then WC
elif pat_mt == WP then

if mtrr_mt == UC or mtrr_mt == WC or mtrr_mt == WT then UC
else WP

elif pat_mt == WT then
if mtrr_mt == UC or mtrr_mt == WC or mtrr_mt == WP then UC
else WT

else mtrr_mt

12.9 Fast System Call

Before fast system call instructions were introduced, the only way for user processes
(CPL==11b) to call system services (CPL==00b) was to perform a far control transfer via call
or task gate. This mechanism is complex and slow, because the target code and stack
segment descriptors and offsets have to be fetched from the descriptor table and the
task state segment. The bit EFER.SCE enables fast system call instructions. We introduce
a parameter alias for this bit.

126

parameter $SCE::bit = EFER.SCE

Fast system call instructions provide a shortcut: instead of fetching the descriptors and
offsets, the instructions compute them using a set of model-specific registers. There are
two pairs of fast system call instructions: SYSCALL/SYSRET and legacy SYSENTER/SYSEXIT.
The former pair uses STAR, LSTAR, CSTAR, and SFMASK registers. The latter pair uses
SYSENTER_CS, SYSENTER_ESP, and SYSENTER_EIP registers.

The system target address register is used by SYSCALL and SYSRET instructions.

register STAR::STAR alias MSR[C0000081h]
layout STAR
field EIP::bits 32
field SYSCALL_CS::Selector
field SYSRET_CS::Selector

EIP is used by the SYSCALL instruction to set the RIP in legacy mode.

SYSCALL_CS is used by the SYSCALL instruction to set the CS/SS selectors.

SYSRET_CS is used by the SYSRET instruction to set the CS/SS selectors.

The LSTAR and CSTAR registers are used by the SYSCALL instruction to set the RIP register
in long mode. In compatibility mode, RIP = CSTAR. In 64-bit mode, RIP = LSTAR.

register LSTAR::bits 64 alias MSR[C0000082h]
register CSTAR::bits 64 alias MSR[C0000083h]

The SYSCALL instruction clears bits in the flags registers RFLAGS using the mask SFMASK. A
set bit in the SFMASK indicates that the corresponding bit in the RFLAGS must be cleared.

register SFMASK::SFMASK alias MSR[C0000084h]
layout SFMASK
field mask::bits 32
field rsv::bits 32 reserved and must be 00000000h

The SYSENTER_XXX registers are used in a similar way by the SYSENTER/SYSEXIT instruc-
tions. For detailed information, refer to specifcation of the instruction in chapter I.

register SYSENTER_CS::SYSENTER_CS alias MSR[00000174h]
layout SYSENTER_CS
field CS::bits 16
field rsv::bits 48 reserved and must be bits(48, 0)

register SYSENTER_ESP::SYSENTER_ESP alias MSR[00000175h]
layout SYSENTER_ESP
field ESP::bits 32
field rsv::bits 32 reserved and must be 00000000h

register SYSENTER_EIP::SYSENTER_EIP alias MSR[00000176h]
layout SYSENTER_EIP
field EIP::bits 32
field rsv::bits 32 reserved and must be 00000000h

127

12.10 APIC Base Address

The APIC base register defines a page in the physical address range, where the local
APIC registers are mapped. Besides that, the register has a control bit that enables/dis-
ables the local APIC and a bit that indicates whether the current processor is the boot-
strap processor or not.

register APIC_BASE::APIC_BASE alias MSR[0000001Bh]
layout APIC_BASE
field rsv1::bits 8 reserved and must be 00h
field BSP::bit read only
field rsv2::bits 2 reserved and must be 00b
field AE::bit
field ABA::bits 40
field rsv3::bits 12 reserved and must be 000h
abbr base::bits 52 = ABA++000h

BSP (bootstrap processor) When the bit is set, the current processor is the bootstrap
processor. Otherwise, the current processor is an application processor. The boot-
strap processor is responsible for setting up all necessary system data structures
and for waking up other application processors during the system boot.

AE (APIC enable) When the bit is set, the local APIC is enabled and accepts interrupts.
Otherwise, the local APIC is disabled.

base (APIC base physical address)

12.11 Time-Stamp Counters

The time-stamp counter register is incremented on every processor cycle. Software can
read the register using the RDTSC/RDTSCP instructions.

register TSC::bits 64 alias MSR[00000010h]

The time-stamp counter auxiliary register is available for system software, i.e. software
can set the register to any value. The RDTSCP instruction loads the lower double word of
the register into the RCX[31:0].

register TSC_AUX::TSC_AUX alias MSR[C0000103h]
layout TSC_AUX
field value::bits 32
field rsv::bits 32 reserved and must be 00000000h

128

CHAPTER

THIRTEEN

ARCHITECTURE

13.1 Operating Modes

An operating mode is a combination of special control bits. We introduce parameter
aliases for these bits so that we can refer to them in type expressions:

parameter $PE::bit = CR0.PE
parameter $PG::bit = CR0.PG
parameter $LMA::bit = EFER.LMA
parameter $L::bit = CS.attr.L
parameter $VM::bit = RFLAGS.VM

Not every combination is an operating mode though. The following invariants hold:

invariant not $VM or $PE
invariant not $VM or not $LMA
invariant not $LMA or $PG
invariant not $L or $LMA

There are 5 operating modes:

• Real mode ($PE==0b, other special control bits are reserved and must be zero) This
is the initial operating mode, i.e the mode in which the processor starts running
after receiving a RESET or an INIT signal. In this mode the processor operates
similar to the intel–8086 processor:

– protection is effectively disabled (CPL = 00b),

– segmentation is simple (no descriptor tables, software can not change seg-
ment register attributes and limits),

– paging is disabled,

– interrupt handling is simple (no gate/task descriptors),

– default address and operand widths are 16 bits,

– 64-bit registers are not accessible

129

– some system instructions are not recognized (generate xUD exception)

– some system registers are not accessible Note that it is possible to switch
to the protected mode (PE = 1), change segment register attributes and lim-
its, and then switch back to the real mode. Software can access upto 4GB
memory.

• Legacy protected mode ($PE==1b, $VM==0b, $LMA==0b, $L is reserved and must be
zero) In this mode most of the processor features are enabled:

– protection is enabled (the processor checks accesses to the descriptor tables
and segments, I/O ports, system instructions),

– segmentation is enabled (software can update segment registers by loading
them from the descriptor tables or performing far control transfers),

– hardware task switching is supported,

– 32-bit paging is supported (software can enable paging by setting $PG==1b),

– virtualization is supported,

– interrupt handling goes through interrupt/trap/task gates,

– 64-bit registers are not accessible,

– most of the system instructions are recognized,

– most of the system registers are accessible.

• Virtual 8086 mode ($PE==1b, $VM==1b, other control bits are reserved and must be
zero) This mode simulates real mode. It was introduced to run legacy real mode
applications in a protected mode operating system:

– protection is enabled, the least privileged level is used (CPL==11b),

– segmentation is similar to that in real mode,

– 32-bit paging is supported,

– interrupts are handled either as in real mode or in legacy protected mode,
depending on RFLAGS.IOPL, CR4.VME, TSS interrupt redirection bitmap

– default address and operand widths are 16 bits,

– 64-bit registers are not accessible,

– some system instructions are not recognized (generate xUD exception),

– some system registers are not accessible.

• 64-bit mode ($PE==1b, $LMA==1b, $L==1b, $VM is reserved and must be zero) This
mode extends legacy protected mode with 64-bit registers and 64-bit paging. It
also simplifies the segmentation mechanism by ignoring the base address, limit,
and some attribute fields of segment registers, thus setting a single flat logical
address space. Among other changes to legacy protected mode are:

– hardware task switching is not supported,

– default address width is 64 bits,

– default operand width is 32 bits,

– RIP relative address mode is supported,

130

– slight modifications to the far control transfer mechanism,

– some instructions are redefined or not recognized.

• Compatibility mode ($PE==1b, $LMA==1b, $L==0b, $VM is reserved and must be zero)
This mode simulates legacy protected mode. A 64-bit OS can run legacy protected
mode applications in compatibility mode. Consequently, this mode combines fea-
tures of the 64-bit mode and legacy protected mode. Paging, control transfer,
interrupt handling are performed like in 64-bit mode. Segmentation, address
and operand widths, available instructions are similar to that in legacy protected
mode.

Some groups of operating modes have names.

• major mode: protected

– sub-mode: legacy protected mode,

– sub-mode: compatibility mode,

– sub-mode: 64-bit mode,

• major mode: legacy

– sub-mode: real mode,

– sub-mode: legacy protected mode,

– sub-mode: virtual 8068 mode,

• major mode: long mode

– sub-mode: 64-bit mode,

– sub-mode: compatibility mode.

function $legacy_mode = not $LMA
function $long_mode = $LMA
function $real_mode = not $PE
function $vm86_mode = $legacy_mode and $PE and $VM
function $protected_mode = $PE and not $VM
function $legacy_protected_mode = not $LMA and $protected_mode
function $compatibility_mode = $long_mode and not $L

Operating modes can also be grouped by register/address widths.

• major mode: x16 mode

– sub-mode: real mode

– sub-mode: virtual 8068 mode

• major mode: x32 mode

– sub-mode: legacy protected mode

– sub-mode: compatibility mode

• major mode: x64 mode

131

– sub-mode: 64-bit mode

function $x16_mode = $real_mode or $vm86_mode
function $x32_mode = $protected_mode and not $long_mode or $compatibility_mode
function $x64_mode = $long_mode and $L

13.2 Exceptions

Exceptions are internal events, that are generated by

• the processor, when it detects an error during instruction fetch and execution;

• software, using INTO and INT3 instructions.

This distinguishes exceptions from interrupts, which are asynchronous events that are
typically triggered by I/O devices. However, interrupts are recognized at instruction
boundary. Depending on how the interrupted program is restarted, exceptions are di-
vided into faults, traps, aborts.

• After handling a fault exception, the processor repeats execution of the instruction
that caused the exception.

• After handling a trap exception, the processor continues execution from the in-
struction immediately after the trapping instruction.

• Program restart is not supported for abort exceptions.

Each exception has a byte assigned to it, which is called a vector. This number is used
as an index in the interrupt descriptor table to determine the location of the interrupt
handler. Exceptions have associated 16-bit error code, which we store in the code field.
The field data is used only with page fault exception to store the faulting virtual address.

record Exception
field valid::bit
field vector::bits 8
field code::bits 16
field data::bits 64

The first 32 vectors are reserved for system exceptions and are used as shown in Table
13.2. Other vectors are available for software and external interrupts. We define a set
of reserved vectors.

set Vector = {xDE = 00h, xDB = 01h, xNMI = 02h, xBP = 03h,
xOF = 04h, xBR = 05h, xUD = 06h, xNM = 07h, xDF = 08h, xTS = 00h,
xNP = 01h, xSS = 02h, xGP = 03h, xPF = 04h, xMF = 10h, xAC = 11h,
xMC = 12h, xXF = 13h, xSX = 1Eh}

Actions raise an exception via the fail statement using the following helper function,
that constructs an exception given the vector and error code.

function exception(v::Vector, c::bits 16)::Exception
= Exception with [valid = 1b, vector = v, code = c, data = bits(64, 0)]

132

Vector Description Alias Type Source

0 Divide-by-Zero Error xDE Fault Internal

1 Debug xDB Fault or Trap Internal

2 Non-Maskable Interrupt xNMI N/A External

3 Breakpoint xBP Trap Software

4 Overflow xOF Trap Software

5 Bound-Range xBR Fault Internal

6 Invalid-Opcode xUD Fault Internal

7 Device-Not-Available xNM Fault Internal

8 Double-Fault xDF Fault Internal

9 Reserved N/A N/A N/A

10 Invalid-TSS xTS Fault Internal

11 Segment-Not-Present xNP Fault Internal

12 Stack-Segment xSS Fault Internal

13 General-Protection xGP Fault Internal

14 Page-Fault xPF Fault Internal

15 Reserved N/A N/A N/A

16 FP Exception Pending xMF Fault Internal

17 Alignment-Check xAC Fault Internal

18 Machine-Check xMC Fault External

19 SIMD Floating-Point xXF Fault Internal

20–31 Reserved N/A N/A N/A

Table 13.1: Exception and Interrupts

Sometimes the vector of an exception depends on the origin of the faulting memory
access. We define the following helper functions that select the correct vector.

function xGP_xTS(origin::Origin)::Vector
= if origin == task then xTS
else xGP

function xGP_xSS(origin::Origin)::Vector
= if origin == stack then xSS
else xGP

function xNP_xTS(origin::Origin)::Vector
= if origin == task then xTS
else xNP

function xSS_xTS(origin::Origin)::Vector
= if origin == task then xTS
else xSS

133

13.3 Address spaces

Software references memory using a logical address, which is a pair of a segment reg-
ister and an offset. The offset width depends on the type of the memory access. An
instructions is fetched using the RIP[$la-1:0] offset, where $la depends on the operat-
ing mode:

function $la
= if $x64_mode then 64
else if $x32_mode then 32

else 16

The width of an stack offset depends on the operating mode and the $B bit of the stack
descriptor:

function $sa
= if $x64_mode then 64
else if $B then 32

else 16

Where $B is an alias for the D/B bit of the stack segment descriptor.

parameter $B::bit = SS.attr.DB

Calculation of the address width of a memory operand is a bit involved. We describe it
in chapter 14. For now, we define a short alias $oa.

function $oa = $addr_width

Segmentation translation converts a logical address into a virtual (also referred to as
linear) address. The width of a virtual address is computed as follows:

function $va::{32, 48}
= if $long_mode then 48
else 32

Paging translation converts a virtual address into a physical address. The width of a
physical address is implementation dependent. However, it does not exceed 52 bits. We
introduce a parameter for physical address width:

parameter $pa::[32..52]

13.4 Memory System Interface

We are going to describe a number of abstract actions that define an interface to the
memory system. In section 9, we defined memory request/reply and command registers.
The following actions issue requests to the memory system by reading and writing those
registers:

• read from the physical memory: pread(origin, width, addr, memtype);

• write to the physical memory: pwrite(origin, width, data, addr, memtyp);

• read from an I/O port: read_port(port_addr, width);

134

• write to an I/O port: write_port(port_addr, width, data);

• invalidate the cache: invalidate_cache(writeback);

• flush a cache line: flush_cache_line(addr);

• read a translation from the TLB: read_tlb(va, asid, rw, us, exe);

• flush the TLB: flush_tlb(local, with_asid, asid);

• flush a translation: invlpg(addr, with_asid, asid);

These actions belong to the set of primitives of our domain-specific language along with
the write register, fail, etc. statements. Therefore, we do not define these actions,
but assume that they will be defined when our domain-specific language is integrated
to an abstract machine. In the rest of this section we specify the arguments and results
of the actions.

Actions for reading and writing the physical memory take as arguments the origin of
the access, the width of the data, the address of the data, the data (in case of the write
action), and the memory type of the access. The read action returns the requested data.

action pread(origin::Origin, $n::Width,
addr::bits $pa, memtype::MemType)::bits $n

action pwrite(origin::Origin, $n::Width, data::bits $n,
addr::bits $pa, memtype::MemType)

We distinguish the following origins of an access:

set Origin = {code, stack, data, fsgs, task, sys}

Memory access width is any multiple of 8 not exceeding 64.

set Width = {w8 = 8, w16 = 16, w24 = 24, w32 = 32, w40 = 40,
w48 = 48, w56 = 56, w64 = 64}

For reading and writing an I/O port, we need to specify the access width, the 16-bit port
address, and the data (in case of a write access). The read action returns the requested
data.

action read_port($n::{8, 16, 32}, port::bits 16)::bits $n
action write_port($n::{8, 16, 32}, data::bits $n, port::bits 16)

There are two types of cache invalidation: with writeback and without writeback. The
former write any updated data back to the main memory. The latter discards all updates.
Thus, the action for cache invalidation takes the writeback indicator as an argument.

action invalidate_cache(writeback::bit)

It is possible to flush a specific cache line, using the following action:

action flush_cache_line(addr::bits $pa)

If the cache line contains updates, it is written back to the main memory before the
flush.

The following action takes a virtual address, an address space identifier, access right in-
dicators (read/write, user/superuser, code/data) and returns a translation of the virtual
address along with page fault indicator, page fault error code, and the memory type:

135

action read_tlb(addr::bits $va, asid::bits 32, rw::bit,
us::bit, code::bit)::(bit, bits 32, bits $pa, MemType)

In the next section we show how to use this action to perform virtual read and virtual
write accesses.

To flush the TLB we specify whether the flush affects all translation or only local trans-
lation, and whether the flush affects only translation with in the specific address space.

action flush_tlb(local::bit, with_asid::bit, asid::bits 32)

If the with_asid is false, then the action flushes all translations in all address spaces.

Based on the flush_tlb action, we define helper actions:

action flush_tlb_all
call flush_tlb(0b, 0b, 00000000h)

action flush_tlb_local(asid::bits 32)
call flush_tlb(1b, 1b, asid)

It is possible to flush all translation of a specific virtual address. The following action
takes a virtual address and an address space identifier and flushes all translations of
the virtual address within the specified address space.

action invlpg(addr::bits $va, with_asid::bit, asid::bits 32)

The name of the action comes from ‘Invalidate a Page’.

13.5 Reading and Writing the Virtual Memory

The following action translates a virtual address to the physical address using the
read_tlb action. In case if translation is impossible, the action generates a page fault
exception.

action va_to_pa(addr::bits $va, rw::bit, us::bit, code::bit)::(bits $pa, MemType)
call (failed, ecode, paddr, memtype) = read_tlb(addr, current_asid, rw, us, exe)
let page_fault = Exception with [valid = 1b, vector = xPF,

code = ecode,
data = zxt(64, addr)]

fail page_fault when failed
return (paddr, memtype)

The current address space identifier depends on virtualization mode. In host mode, the
identifier is zero. In guest mode, it is read from the VMCB register.

function current_asid = if $GUEST then _vmcb_ca.GUEST_ASID
else 00000000h

Actions vread/vwrite perform memory read/write accesses using va_to_pa and pread/pwrite

actions. If the virtual memory access does not cross a page boundary, then the action
simply translates the virtual address and forwards the access to the physical memory.
Otherwise, the access is split into two accesses at the page boundary.

action vread(origin::Origin, $n::Width, addr::bits $va, cpl::bits 2)::bits $n
let to_next_page = nat(FFFh - addr[11:0]) + 1
if to_next_page <= $n / 8 then

136

call (physaddr, memtype) = va_to_pa(read, origin, addr, cpl)
call res = pread(origin, $n, physaddr, memtype)
return res
else let $k = (($n / 8) - to_next_page) :: [1 .. $n/8-1]

let $n0 = $k * 8
let $n1 = $n - $n0
let addr1 = (addr[$va-1:12] + bits ($va-12, 1)) ++ 000h
call (physaddr0, memtype0) = va_to_pa(addr, 0b, cpl==00b, origin==code)
call (physaddr1, memtype1) = va_to_pa(addr1, 0b, cpl==00b, origin==code)
call res0 = pread(origin, $n0, physaddr0, memtype0)
call res1 = pread(origin, $n1, physaddr1, memtype1)
return res1 ++ res0

action vwrite(origin::Origin, $n::Width, data::bits $n, addr::bits $va, cpl::bits 2)
let to_next_page = nat(FFFh - addr[11:0]) + 1
if to_next_page <= $n / 8 then
call (physaddr, memtype) = va_to_pa(write, origin, addr, cpl)
call pwrite(origin, $n, data, physaddr, memtype)
else let $k = (($n / 8) - to_next_page) :: [1 .. $n/8-1]

let $n0 = $k * 8
let $n1 = $n - $n0
let addr1 = (addr[$va-1:12] + one($va-12)) ++ 000h
call (physaddr0, memtype0) = va_to_pa(addr, 1b, cpl==00b, 0b)
call (physaddr1, memtype1) = va_to_pa(addr1, 1b, cpl==00b, 0b)
call pwrite(origin, $n0, data[$n0-1:0], physaddr0, memtype0)
call pwrite(origin, $n1, data[$n-1:$n0], physaddr1, memtype1)

13.6 Page Tables

Three paging modes exist:

1. paging mode in long mode, with the following properties:

• four page table levels;

• 512 page table entries in each page table;

• 64-bit wide virtual addresses;

• 64-bit wide page table entries.

2. paging mode in legacy mode with page addresses extenstions (PAE) enabled, with
the following properties:

• three page table levels;

• 8 page table entries in the top-level page tables, and 512 page table entries in
other page tables;

• 64-bit wide virtual addresses;

• 64-bit wide page table entries.

3. paging mode in lagacy mode with PAE disabled, with the following properties:

• two page table levels;

137

• 1024 page table entries in each page table;

• 32-bit wide virtual addresses;

• 32-bit wide page table entries.

The current paging mode can be detected by examining two control bits: EFER.LMA and
CR4.PAE. The former bit is aliased to $long_mode, and the latter bit is aliased to $PAE. Note
that $long_mode implies $PAE because long mode cannot be activated without enabling
page address extenstions.

The 12 least significant bits in a virtual address specify a byte offset in the page. The
remaining bits are partitioned into groups, such that each group specifies the index in
the page table at the corresponding level. The following layouts show how the bits are
grouped in all three paging modes:

layout VirtualAddress
field idx0::bits 12
field idx1::bits 9
field idx2::bits 9
field idx3::bits 9
field idx4::bits 9
field rsv::bits 16 ignored

layout VirtualAddressLegacyPAE
field idx0::bits 12
field idx1::bits 9
field idx2::bits 9
field idx3::bits 2

layout VirtualAddressLegacy
field idx0::bits 12
field idx1::bits 10
field idx2::bits 10

We compute the number of page table level using the following function:

function $max_level
= if $long_mode then 4
elif $PAE then 3
else 2

The size of a page table entry is 32 bits in legacy mode without PAE, and 64 bits in other
modes (recall that $long_mode implies $PAE):

function $pte_size = if $PAE then 64
else 32

As we have define in section 8, an abtract page table entry has the following fields:

record AbsPTE
field p::bit
field r::Rights
field a::bit
field d::bit
field g::bit
field large::bit
field ba::bits 64
field pat_idx::bits 3
field valid::bit

138

p the present flag.

r the entry access rights.

a the ‘accessed’ flag indicates whether the entry was accessed by the TLB or not.

d the ‘dirty’ flag indicates whether the entry was used to translate a virtual address for
a write access.

g the ‘global’ flag, which indicates whether a translation that uses this entry is global
or not.

large the large page indicator, when this flag is set, then the page table entry specifies
a large page.

ba the base address of the next level page table or the page.

pat_idx the index into the page attribute table, which is used to calculate the memory
type of the memory region where the next level page table lies.

valid the flag that indicates whether the binary representation of the entry is valid, i.e.
reserved fields are set to correct values.

The layout of a concrete page table entry depends on paging mode and on the page
table level. A 64-bit leaf page table entry has the following layout in long mode and in
legacy mode with PAE:

layout PTE1
field P::bit
field RW::bit
field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit
field PAT::bit
field G::bit
field AVL::bits 3 ignored
field PFN::bits 40
field ign::bits 11 ignored
field NX::bit

P the present flag.

RW the read-write flag, when this flag is set, writing to the page is allowed.

US the user-system flag, when this flag is set, user accesses to the page are allowed.

PWT the page-write-through flag, it is the pat_idx[0] bit of the abstract page table entry.

PCD the page-cache-disable flag, it is the pat_idx[1] bit of the abstract page table entry.

A the ‘accessed’ flag indicates whether the entry was accessed by the TLB or not.

D the ‘dirty’ flag indicates whether the entry was used to translate a virtual address for
a write access.

PAT the pat_idx[2] bit of the abstract page table entry.

G the ‘global’ flag, which indicates whether a translation that uses this entry is global
or not.

PFN the page-frame number of the page.

NX the not-execute flag, when the flag is cleared, code fetches from the page are al-
lowed.

139

We list the layouts of page table entries in other paging modes in Appendix S. They has
the same fields, but the fields are in other position.

Knowing the layouts of the page table entries, it is straightforward to define a func-
tion that converts from the conrete page table entries to abstrac page table entries by
checking the page table level, the paging mode and copying the bits:

function parse_pte($level::[1..$max_level], x::bits $pte_size)::AbsPTE
= if $level == 1 then parse_pte1(x)
elif $level == 2 then parse_pte2(x)
elif $level == 3 then parse_pte3(x)
else parse_pte4(x)

Functions parse_pte* are defined in Appendix S.

13.7 Segment Descriptors

When software writes a new selector to a segment register, the processor uses the new
selector as an index into the descriptor table to look up the corresponding user segment
descriptor. If software has enough privileges to access the descriptor, then it is loaded
into the hidden part of the segment register. The user segment descriptor defines the
virtual base address, the limit, readability, and other attributes of the segment. Besides
user segment descriptors, a descriptor table contains system segment descriptors and
control transfer gate descriptors. Thus, we define the Descriptor type as a union:

union Descriptor
union Segment
layout CallGate
layout IntrGate
layout TrapGate
layout TaskGate

union Segment
union UserSegment
union SystemSegment

Each descriptor is 64 bits wide. The type of a descriptor x can be determined from
bits x[44:40]. When x[44]==1b, the x is a user segment descriptor. A user segment
descriptor defines either a data segment or a code segment.

union UserSegment
layout DataSegment
layout CodeSegment

The layouts of a data segment descriptor and a code segment descriptor are similar and
differ in a few attribute bits.

layout DataSegment
field limit1::bits 16 ignored when $x64_mode
field base1::bits 24
field A::bit ignored when $x64_mode
field W::bit ignored when $x64_mode
field E::bit ignored when $x64_mode
field code::bit reserved and must be 0b

140

field S::bit reserved and must be 1b
field DPL::bits 2
field P::bit
field limit2::bits 4 ignored when $x64_mode
field AVL::bit ignored
field rsv::bit reserved and must be 0b
field DB::bit ignored when $x64_mode
field G::bit ignored when $x64_mode
field base2::bits 8
abbr readable::bit = 1b
abbr writeable::bit = W
abbr executable::bit = 0b
abbr expand_down::bit = E
abbr conforming::bit = 0b
abbr base::bits 32 = base2++base1
abbr limit::bits 32 = if G then limit2++limit1++000h

else 000h++limit2++limit1

DPL The segment descriptor privilege level is used by the protection mechanism when
software tries to load the descriptor into a segment register. See chapter 13.10
for more information.

P The present bit indicates whether the segment defined by the descriptor is in the
memory or not. An attempt to access a non-present segment generates an excep-
tion.

AVL This bit is available for software. In other words, software can set the bit to any
value.

DB For stack segments, this bit controls the stack address width. For expand-down
segments, this bit defines the upper limit of the segment. When the bit is set, the
stack address width is 32 and the upper limit is FFFFFFFFh. Otherwise, the stack
address width is 16, and the upper limit is FFFFh. In 64-bit mode, this bit is ignored
and the stack address width is 64.

G The granularity bit control the limit scaling factor. When the bit is set, the factor is
4096. Otherwise, the factor is 1.

readable All data segments are readable.

writeable When the bit is set, the data segment is writeable. Otherwise, it is read-only.
In 64-bit mode, all data segments are writeable

executable All data segments are not executable. Attempt to load a data segment de-
scriptor into the code segment register raises an exception.

expand_down When the bit is set, the data segment is expand-down. The limit field of an
expand-down segment defines the smallest valid offset (in other words, the limit

is a lower bound of the segment). In 64-bit mode, no data segment is expand-
down.

conforming All data segments are not conforming.

base Segmentation mechanism adds the segment base address to an offset to get a
virtual address. Note that the base address is 32 bits wide. In 64-bit mode, the
base address is zero-extended to 64 bits for the FS/GS registers. For other registers
in 64-bit mode, the base address is assumed to be zero.

141

limit When the granularity bit is set, the segment limit is scaled by 4096.
For expand-down segments the limit defines the lower bound (the smallest valid
offset), and for expand-up segments the limit defines the upper bound (the largest
valid offset). In 64-bit mode, no limit checks are performed.

layout CodeSegment
field limit1::bits 16 ignored when $x64_mode
field base1::bits 24 ignored when $x64_mode
field A::bit ignored when $x64_mode
field R::bit ignored when $x64_mode
field C::bit
field code::bit reserved and must be 1b
field S::bit reserved and must be 1b
field DPL::bits 2
field P::bit
field limit2::bits 4 ignored when $x64_mode
field AVL::bit ignored
field L::bit
field D::bit
field G::bit ignored when $x64_mode
field base2::bits 8
abbr readable::bit = R
abbr writeable::bit = 0b
abbr executable::bit = 1b
abbr expand_down::bit = 0b
abbr conforming::bit = C
abbr base::bits 32 = base2++base1
abbr limit::bits 32 = if G then limit2++limit1++000h

else 000h++limit2++limit1

readable When the bit is set, read from the segment are allowed. In 64-bit mode, all
code segments are readable.

writeable No code segment is writeable. An attempt to write to a code segment gener-
ates an exception.

executable All code segments are executable.

expand_down All code segments are expand-up.

conforming When the bit is set, the descriptor can be accessed from a lower privileged
software. Control transfer to a conforming code segment does not change the
current privilege level.

The following function extracts attributes from the given descriptor:

function desc_attr(desc::Descriptor)::Attr = 0h ++ desc[55:52] ++ desc[47:40]

The following two functions construct trivial data segment descriptors with valid at-
tributes:

function null_stack_desc::DataSegment
= DataSegment with [W = 1b]

function null_data_desc::DataSegment
= DataSegment

142

There are two types of system segments: a local descriptor table segment and a task
state segment.

union SystemSegment
layout LDT
layout TSS

Software cannot directly access a system segment descriptor. Therefore, a system de-
scriptor does not have readable, writeable, executable attributes. All system segments
are expand-up and non-conforming. In contrast to user segments, a system segment in
64-bit mode has a 64-bit base address. Since 64-bit system descriptor cannot accommo-
date a 64-bit base address, each system descriptor is followed by a dummy descriptor in
a descriptor table. The dummy descriptor stores the upper 32 bits of the base address.
The type bits of the dummy descriptor must all be zeros.

layout UpperDescriptor
field upper::bits 32
field ign1::bits 8 ignored
field rsv1::bits 5 reserved and must be 00000b
field ign2::bits 19

The type bits of an LDT descriptor must be 00010b. Other components of an LDT de-
scriptor have the same meaning as the corresponding components of a user segment.

layout LDT
field limit1::bits 16
field base1::bits 24
field type::bits 4 reserved and must be 0010b
field S::bit reserved and must be 0b
field DPL::bits 2
field P::bit
field limit2::bits 4
field AVL::bit ignored
field ign::bits 2 ignored
field G::bit
field base2::bits 8
abbr base::bits 32 = base2++base1
abbr limit::bits 32 = if G then limit2++limit1++000h

else 000h++limit2++limit1

Chapter [Task State Segment] describes the structure of a task state segment, which
stores the processor context between task switches and stack pointers for interrupt
handlers. The type bits 44, 42, and 40 of a TSS descriptor must be 0b, 0b, and 1b respec-
tively. A task segment can be either busy or available. The busy bit of a TSS descriptor
indicates whether the task segment is busy or not. If a task segment is busy, then there
exists a call sequence from that task segment to the current task segment referred by
the TR register. The current task cannot call a busy task. Thus, the busy bit prevents
recursive task calls.

In legacy mode, the size bit of a TSS descriptor indicates whether the task segment is
16-bit task segment or 32-bit task segment. When the bit is zero, the task segment is
16-bit, otherwise, it is 32-bit. These two types of task segments differ in the set of stored
registers. In long mode, there are only 64-bit registers, and the size bit must be one.

143

The remaining components of a TSS descriptor have the same meaning as the corre-
sponding components of an LDT descriptor.

layout TSS
field limit1::bits 16
field base1::bits 24
field rsv1::bit reserved and must be 1b
field busy::bit
field rsv2::bit reserved and must be 0b
field size::bit reserved and must be 1b when $long_mode
field S::bit reserved and must be 0b
field DPL::bits 2
field P::bit
field limit2::bits 4
field AVL::bit ignored
field ign::bits 2 ignored
field G::bit
field base2::bits 8
abbr base::bits 32 = base2++base1
abbr limit::bits 32 = if G then limit2++limit1++000h

else 000h++limit2++limit1

13.8 Gate Descriptors

A gate descriptor is used by control transfer instructions. It specifies the logical address
(selector and offset) of the target instruction and the minimal privilege level required
to perform the control transfer. There are four types of control transfer gates:

• call gate — a descriptor in the LDT or the GDT, which contains the address the
target instruction.

• trap gate — a descriptor in the IDT, which contains the address of the first instruc-
tion of the exception handler.

• interrupt gate — a descriptor in the IDT, which contains the address of the first
instruction of the interrupt handler. An interrupt gate is identical to a trap gate.
The only difference between them is that control transfer through interrupt gate
sets the IF flag to zero.

• task gate — a descriptor in the LDT or the GDT, which contains the selector of an
available TSS. A control transfer through a task gate leads to a task switch. In
long mode task gates are not supported.

The layouts of call, interrupt, and trap gates are similar. The layouts of interrupt and
trap gates are identical, except for the values of the type bits. We define Gate and
IntrOrTrapGate unions, so that we can work with multiple gate types simultaneously.

union Gate
layout CallGate
layout IntrGate
layout TrapGate

144

union IntrOrTrapGate
layout IntrGate
layout TrapGate

The type bits 44, 42, 41, 40 of a call gate descriptor must be respectively 0b, 1b, 0b, 0b. A
call gate descriptor has the following layout:

layout CallGate
field offset1::bits 16
field sel::Selector
field params_ign::bits 5 ignored and read as 00000b when $long_mode
field ign::bits 3 ignored
field rsv::bits 3 reserved and must be 100b
field wide::bit reserved and must be 1b when $long_mode
field S::bit reserved and must be 0b
field DPL::bits 2
field P::bit
field offset2::bits 16
abbr offset::bits 32 = offset2++offset1
abbr params::bits 5 = if $long_mode then 00000b

else params_ign

sel (selector) This field contains the selector of the target code segment.

wide In legacy mode, this bit controls the size of the gate. When the bit is set, the size
is 32 bits. Otherwise, the size is 16 bits. In long mode, the size is always 64 bits,
and this bit must be 1b. The gate size affects the operand size of stack push/pop
operations, which are used for saving the return address, parameters, and stack
pointer. More specifically, the operand size is equal to the gate size.

offset This field specifies the offset of the target instruction in the target code segment,
defined by the sel selector. In long mode, the gate descriptor is followed by a
dummy descriptor in a descriptor table. The dummy descriptor provides the upper
32 bits of the 64-bit offset (See definition of the UpperDescriptor).

params This field is meaningful only for call gates in legacy mode, and shows how
many parameters should be copied during a control transfer that requires a stack
switch.

Formalizing the description of the wide bit, we define the following function:

function gate_size(gate::Gate)::{16, 32, 64}
= if not gate.wide then 16
elif $legacy_mode then 32
else 64

An interrupt gate descriptor has the same fields as a call gate descriptor except for the
param field. An interrupt handler does not have parameters. Instead of the param field,
an interrupt gate descriptor has the ist field.

layout IntrGate
field offset1::bits 16
field sel::Selector
field ist_ign::bits 3 ignored and read as 000b when not $long_mode
field ign::bits 5 ignored

145

field rsv::bits 3 reserved and must be 110b
field wide::bit reserved and must be 1b when $long_mode
field S::bit reserved and must be 0b
field DPL::bits 2
field P::bit
field offset2::bits 16
abbr offset::bits 32 = offset2++offset1
abbr ist::bits 3 = if $long_mode then ist_ign

else 000b

ist (interrupt stack table) In long mode, this field contains an index into the interrupt
stack table in the current TSS. The entry in the table contains a stack pointer that
is used for the stack switch during control transfer.

A trap gate descriptor is almost identical to the interrupt gate descriptor. The only
difference is the values of the type bits.

layout TrapGate
field offset1::bits 16
field sel::Selector
field ist_ign::bits 3 ignored and read as 000b when not $long_mode
field ign::bits 5 ignored
field rsv::bits 3 reserved and must be 111b
field wide::bit reserved and must be 1b when $long_mode
field S::bit reserved and must be 0b
field DPL::bits 2
field P::bit
field offset2::bits 16
abbr offset::bits 32 = offset2++offset1
abbr ist::bits 3 = if $long_mode then ist_ign

else 000b

The sel of a task gate descriptor contains the selector of a TSS descriptor. The type bits
[44:40] must be 00010b.

layout TaskGate
field ign1::bits 16 ignored
field sel::Selector
field ign2::bits 8 ignored
field type::bits 4 reserved and must be 0010b
field S::bit reserved and must be 0b
field DPL::bits 2
field P::bit
field ign3::bits 16 ignored

13.9 Descriptor Tables

There are three descriptor tables: the global descriptor table, the local descriptor table,
and the interrupt descriptor table. The GDT can contain descriptors of any type except
interrupt and trap gate descriptors. The LDT can contain only user segment descriptors

146

and call, task gate descriptors. The IDT can contain only interrupt, trap, and task gate
descriptors.

Descriptors in the GDT and the LDT are accessed using selectors. A selector is a bit
string of width 16 bits, and has three fields.

layout Selector
field RPL::bits 2
field TI::bit
field index::bits 13

RPL (requestor privilege level) This field is used in protection checks. See chapter 13.10
for more information.

TI (table index) This bit specifies the descriptor table. If the bit is set, then the descrip-
tor is in the LDT. Otherwise, the descriptor is in the GDT.

index (descriptor index) This field contains a zero-based index of the descriptor in the
descriptor table. Since the descriptor size is 8 bytes. The virtual address of the
descriptor is equal to base + index*8, where the base is the virtual base address of
the table. Note that the fields RPL and TI have total width 3. Therefore, if x is the
value of the whole selector, then the address of the descriptor can be computed
as base + x & FFF8h.

Given the TI bit of a selector, the function gdt_or_ldt returns the base address and the
limit of the chosen descriptor table. In case the LDT must be returned, but the LDTR

points to a non-present descriptor, the function returns a dummy base address and a
zero limit.

function gdt_or_ldt(local::bit)::(bits $va, nat)
= if local then

if LDTR.attr.P then (LDTR.base[$va-1:0], nat(LDTR.limit))
else (zero($va), 0)

else (GDTR.base[$va-1:0], nat(GDTR.limit))

Fetching a descriptor is a frequently used action. It can occur during control transfer,
segment register update, exit from guest mode, etc. We define the read_desc action,
which given a selector fetches the corresponding descriptor from the descriptor table.
The action returns a bit which indicates whether the fetch was successful or not.

action read_desc(sel::Selector)::(Descriptor, bit)
let (dt_base, dt_limit) = gdt_or_ldt(sel.TI)
let offset = zxt($va, sel & FFF8h)
if nat(offset) + 7 <= dt_limit then
call entry = vread(sys, 64, dt_base + offset, 00b)
return (entry, 1b)

else return (zero(64), 0b)

The vread action is defined in section 13.5. It reads from the virtual memory. The
first argument is the origin of the access, which in this case indicates that the virtual
memory access is requested by the hardware system, not by software.

In 64-bit mode, system descriptors have the second part which contains the upper
32 bits of the base address. Given the selector of a system descriptor, the action
read_upper_desc fetches the second part of the descriptor. Similarly to the read_desc,
this action returns a success/fail bit.

147

action read_upper_desc(sel::Selector)::(UpperDescriptor, bit)
let (dt_base, dt_limit) = gdt_or_ldt(sel.TI)
let offset = zxt($va, sel & FFF8h) + bits($va, 8)
if nat(offset) + 7 <= dt_limit then
call entry = vread(sys, 64, dt_base + offset, 00b)
return (entry, isUpperDescriptor(entry))

else return (zero(64), 0b)

The following action fetches the upper part of a LDT/TSS descriptor in 64-bit mode us-
ing the read_upper_desc. In 32-bit mode, the action does not fetch anything and returns
a dummy zero descriptor. This allows to uniformly compute the 64-bit base address of
a LDT/TSS descriptor.

action read_upper_ldt_tss(sel::Selector)::(UpperDescriptor, bit)
if $x64_mode then
call (entry, valid) = read_upper_desc(sel)
return (entry, valid)

else return (zero(64), 1b)

The following action is similar to the read_upper_ldt_tss, but it fetches the upper part
of a gate descriptor.

action read_upper_gate(sel::Selector)::(UpperDescriptor, bit)
if $long_mode then
call (entry, valid) = read_upper_desc(sel)
return (entry, valid)

else return (zero(64), 1b)

Given a selector and a descriptor value, the write_desc action writes the value into the
descriptor table entry defined by the selector. The action returns a bit which indicates
whether the write was successful or not.

action write_desc(sel::Selector, desc::Descriptor)::bit
let (dt_base, dt_limit) = gdt_or_ldt(sel.TI)
let offset = zxt($va, sel & FFF8h)
if nat(offset) + 7 > dt_limit then return 0b
else call vwrite(sys, 64, desc, dt_base + offset, 00b)

return 1b

In contrast to the GDT/LDT, the IDT is accessed using a vector byte (instead of a selec-
tor). In 16-bit mode, the IDT does not contain descriptors, but contains 32-bit entries.
Each entry is a pair of 16-bit selector and 16-bit offset.

action read_idt(vector::bits 8)::(bits 16, bits 16) when $x16_mode
let offset = zxt($va, vector) << 2
fail exception(xGP, 0000h) when nat(offset) + 3 > nat(IDTR.limit)
call entry = vread(sys, 32, IDTR.base[$va-1:0] + offset, CPL)
return (entry[31:16], entry[15:0])

In legacy protected mode, the descriptors in the IDT do not have the upper part. There-
fore, the read_idt action returns a dummy zero descriptor instead of fetching the upper
part.

action read_idt(vector::bits 8)::(Descriptor, UpperDescriptor)
when $legacy_protected_mode

148

let offset = zxt($va, vector) << 3
let ecode = zxt(14, vector) ++ 10b
fail exception(xGP, ecode) when nat(offset) + 7 > nat(IDTR.limit)
call entry = vread(sys, 64, IDTR.base[$va-1:0] + offset, CPL)
fail exception(xGP, ecode) when not (entry::Descriptor).P
return (entry, zero(64))

In long mode, the read_idt action fetched both the descriptor and the upper part.

action read_idt(vector::bits 8)::(Descriptor, UpperDescriptor) when $long_mode
let offset = zxt($va, vector) << 4
let ecode = zxt(14, vector) ++ 10b
fail exception(xGP, ecode) when nat(offset) + 15 > nat(IDTR.limit)
call entry0 = vread(sys, 64, IDTR.base[$va-1:0] + offset, CPL)
call entry1 = vread(sys, 64, IDTR.base[$va-1:0] + offset + bits($va, 8), CPL)
fail exception(xGP, ecode) when not (entry0::Descriptor).P
fail exception(xGP, ecode) when not isUpperDescriptor(entry1)
return (entry0, entry1)

13.10 Protection

Each code segment in the system is associated with one of the four privilege levels. The
2-bit CPL register stores the current privilege level. System software runs at CPL = 00b,
user applications run at CPL = 11b. Privilege levels 01b and 10b are usually assigned to
device drivers.

The processor performs privilege checks (if protection is enabled, CR0.PE = 1b) on any
access to the system registers and instructions, descriptor tables, page tables and
pages, and input/output ports. The goal of these checks is to guarantee that user appli-
cations can not get an unauthorized access to system resources. In particular, a user
application should not be able to escalate its privilege level.

System instructions raise an exception when CPL > 00b. The system registers are pro-
tected from user software because they can be accessed only via the system instruc-
tions.

During paging translation of a virtual address va, the processor checks the SU bits in all
the page table entries that are used for translation of the va. If CPL > 00b and at least
one of the SU bits is cleared, the processor raises a page fault. Thus, it is possible to
protect regions of virtual memory on 4K page granularity.

Input/output ports can be accessed only via the IN/INS/OUT/OUTS instructions. These in-
structions raise an exception when CPL > RFLAGS.IOPL. Thus, I/O ports can be protected
from user software by setting RFLAGS.IOPL appropriately.

In the rest of this section, we describe how segments and descriptors are protected.
Descriptor privilege checks involve three elements:

• CPL — the current privilege level, which specifies the privilege level of the code
that is currently running on the processor.

• sel.RPL — the requestor privilege level, which is set by software when it accesses
a descriptor. Since this field is controlled by software, the privilege level checks

149

involving this field do not protect from malicious software, because software can
set this field to the highest privilege level. This field is useful only for guarding
from software bugs.

• desc.DPL — the descriptor privilege level, which protects the descriptor from user
software accesses.

For a system segment descriptor desc that is selected using selector sel, the processor
performs the following check:

function can_access_desc(sel::Selector, desc::Descriptor)::bit
= CPL <= desc.DPL and sel.RPL <= desc.DPL

When software tries to load a user segment descriptor into the DS/ES/FS/GS register, the
processor makes the following checks:

function can_access_data(sel::Selector, desc::UserSegment)::bit
= $x64_mode or desc.conforming or CPL <= desc.DPL and sel.RPL <= desc.DPL

Thus, there are no checks in 64-bit mode or if the descriptor is a conforming code
segment. Otherwise, the CPL and the RPL must not exceed the DPL.

Write to the stack segment register SS succeeds only if the RPL, the CPL, and the DPL

are all equal. In 64-bit mode, the DPL is not checked. Since far control transfer instruc-
tions might write to the SS, we define a more general can_access_stack function, which
accepts the new CPL and the new 64-bit mode indicator.

function can_access_stack(sel::Selector, desc::DataSegment,
new_cpl::bits 2, new_x64_mode::bit)::bit

= sel.RPL == new_cpl and (new_x64_mode or new_cpl == desc.DPL)

The code segment register CS can be updated only in far control transfer instructions,
task and guest switches. Given the new CPL and the target code segment selector and
descriptor, the following function checks whether the CS update is allowed or not.

function can_access_code(sel::Selector, desc::CodeSegment, new_cpl::bits 2)::bit
= if desc.conforming then desc.DPL <= CPL
else desc.DPL == new_cpl and sel.RPL <= new_cpl

When the target code segment is conforming the CPL does not change, otherwise, the
new CPL equals the DPL.

function code_cpl(desc::CodeSegment)::bits 2
= if desc.conforming then CPL
else desc.DPL

An access to a gate descriptor is allowed only if the CPL does not exceed the gate DPL.

function can_access_gate(desc::Gate)::bit = CPL <= desc.DPL

A far return from procedure pops the target code segment selector from the stack. The
RPL of the selector becomes the new CPL when the instruction completes. The processor
ensures that the new CPL (denoted by the sel.RPL) is less privileged that the old CPL.

function can_ret(sel::Selector)::bit = CPL <= sel.RPL

Normally, the following conditions hold:

150

• CPL == CS.sel.RPL

• CPL == SS.sel.RPL

• CPL == CS.attr.DPL if CS.attr.conforming

• CPL >= CS.attr.DPL if not CS.attr.conforming

However, in real mode the CPL is always 00b, and in virtual–8086 mode the CPL is always
11b. System software can violate the equations by providing invalid data to some control
transfer instructions (for example, SYSRET).

13.11 Privilege Level Change

A CPL change can occur only at the following places:

• far procedure call via a call gate (CALL instruction):

1. the processor checks that the CPL is sufficient to access the gate descriptor
(CPL==gate_sel.DPL and gate_sel.RPL==gate_desc.DPL);

2. using the gate_desc.sel selector field, the processor fetches the target code
segment descriptor cs_desc;

3. if the target code segment is conforming, then no CPL change occurs and cs_desc.DPL <= CPL

must hold;

4. otherwise, the cs_desc.DPL specifies the new CPL and cs_desc.DPL==CPL must
hold;

5. the processor starts executing instruction at offset gate_desc.offset in the tar-
get code segment; Note that, if the descriptor tables are write-protected from
user applications (either using segmentation-protection or paging-protection),
then the target code at (gate_desc.sel, gate_desc.offset) is set by system
software. Therefore, the privilege level change is safe.

• far return from the procedure (RETF instruction):

1. the processor loads the target instruction address (cs_sel, cs_offset) from
the stack;

2. CPL>=cs_sel.RPL must hold, and the new CPL is set to the cs_sel.RPL

3. the processor fetches the target code segment from the descriptor table using
cs_sel and it is unclear whether any checks on cs_desc.DPL are performed;

4. the processor starts executing instruction at offset cs_offset in the target code
segment; Note that the control is transfered to the same or less privileged code,
therefore no privilege level escalation can occur.

• fast system call (SYSENTER and SYSCALL instructions):

1. the processor computes the target code and stack segments from the SYSENTER_CS

and the STAR registers;

151

2. the target instruction offset is obtained from either the SYSENTER_EIP, the STAR,
the CSTAR, or the LSTAR registers, depending on operating mode and the instruc-
tion;

3. the new CPL is set to 00b;

4. the processor starts executing the target instruction; Note that the SYSENTER_CS,
the SYSENTER_EIP, the STAR, the CSTAR, and the LSTAR registers can only be writ-
ten using the WRMSR instruction when CPL==0. Therefore, the privilege level
change is safe.

• fast system return (SYSEXIT and SYSRET instructions): these instructions set the
new CPL to 11b, thus, no privilege level escalation can occur.

• control transfer to an interrupt handler via an interrupt or a trap gate: the proces-
sor actions are similar to those in the far procedure call via a call gate. The gate
descriptors are fetched from the IDT. Thus, the privilege change is safe as long as
the IDT is write-protected from user application.

• return from an interrupt handler IRET if the nested flag is off (RFLAGS.NT==0b): the
processor actions are similar to those in the case of RETF control transfer.

• task switch (only in legacy mode) initiated by:

– far JMP or CALL via an available TSS descriptor,

– far JMP or CALL via a task gate,

– control transfer to an interrupt handler via a task gate,

– far return from an interrupt handler if the nested flag is on (RFLAGS.NT==1b).
The new CPL and the target instruction address are read from the target task
state segment. Therefore, task state segments must be write-protected from
user applications.

• guest enter VMRUN: this instruction can be executed only when CPL==00b.

• guest exit vmexit: the target instruction address is read from the host state area
(VM_HSAVE_PA), which must be write-protected from user applications.

These checks are formalized in the definitions of the corresponding instructions.

13.12 Segmentation Translation

A logical address is a pair of a segment register and an offset into the segment. Seg-
mentation translation converts a logical address into a virtual (linear) address by adding
the segment base address to the offset. The lread action shows how logical read is per-
formed. It takes the source of the read access, the data width, the segment register,
the width of the offset, and the offset. The action first checks that the offset is within
the segment and the access is valid using the check_logical action. After that, the ac-
tion computes the virtual address as a sum of the segment base and the offset. Once
the virtual address is known, the action performs a virtual read access using the vread

action.

152

action lread(origin::Origin, $n::Width,
sr::SR, $k::{16, 32, 64}, offs::bits $k)::bits $n

call check_logical(read, origin, $n, sr, $k, offs)
let addr = zxt($va, effective_base(origin, sr.base)) + zxt($va, offs)
call res = vread(origin, $n, addr, CPL)
return res

In 64-bit mode the segment base address for CS/DS/ES/SS is assumed to be zero. There-
fore, we use the following function that checks the source of the access and returns the
correct base address.

function effective_base(origin::Origin,
base::bits 64)::bits $va

= if $x64_mode or origin == fsgs then base[$va-1:0]
else zero($va)

Similarly to the lread, we define the lwrite.

action lwrite(origin::Origin, $n::Width, data::bits $n,
sr::SR, $k::{16, 32, 64}, offs::bits $k)

call check_logical(write, origin, $n, sr, $k, offs)
let addr = zxt($va, effective_base(origin, sr.base)) + zxt($va, offs)
call vwrite(origin, $n, data, addr, CPL)

Checks performed by the processor for a logical memory access depend on operating
mode. In 64-bit mode the checks are simplified, while in
other modes the processor makes the following checks:

action check_logical(rw::RW, origin::Origin, $n::Width, sr::SR,
$k::{16, 32, 64}, offset::bits $k) when not $x64_mode

fail exception(xGP, sr.sel & FFF8h) when not sr.attr.P
fail exception(xGP, 0000h) when rw == write and not sr.attr.writeable
fail exception(xGP, 0000h) when rw == read and not sr.attr.readable
fail exception(xAC, 0000h)
when not aligned(offset[2:0], $n) and CR0.AM and RFLAGS.AC and CPL == 11b

fail exception(xGP_xSS(origin), 0000h)
when not check_limit(sr.attr, nat(sr.limit), nat(offset))

fail exception(xGP_xSS(origin), 0000h)
when not check_limit(sr.attr, nat(sr.limit), nat(offset) + $n/8-1)

An attempt to access a non-present segment, to write to a read-only segment, or to read
from read-protected code segment raises an exception.

Access alignment checks are enabled for user software at CPL==11b when the AM/AC flags
are set. Given the lowest 3 bits of the offset and the access width, the following function
check whether the
access is aligned or not.

function aligned(addr::bits 3, $n::Width)::bit
= if $n == 16 and addr[0] then 0b
elif $n == 32 and addr[1:0] <> 00b then 0b
elif $n == 64 and addr[2:0] <> 000b then 0b
else 1b

In order to check whether the offset is inside the segment, we check if the segment
is an expand-down segment or not. For an expand-down segment, the segment limit

153

specifies the lower bound of valid offsets. The upper bound is either FFFFFFFFh or FFFFh

depending on the DB attribute of the segment. For an expand-up segment, the limit
specifies the upper bound of valid offset.

function check_limit(attr::UserSegmentAttr,
limit::nat, addr::nat)::bit when not $x64_mode

= if attr.expand_down then
if (attr::DataAttr).DB then nat(FFFFFFFFh) >= addr and addr > limit
else 0000FFFFh::nat >= addr and addr >limit

else addr <= limit

In 64-bit mode, the processor does not check for readability/writeability, and, instead
of checking that the offset is in the segment, the processor ensures that the offset is
canonical. A 64-bit offset is canonical if bits [63:$va] are either all zeros or all ones.

function canonical(addr::bits 64)::bit
= addr[63:$va] == zxt(64-$va, 0b) or addr[63:$va] == sxt(64-$va, 1b)

action check_logical(rw::RW, origin::Origin, $n::Width, sr::SR,
$k::{16, 32, 64}, offset::bits $k) when $x64_mode

fail exception(xGP, sr.sel & FFF8h) when not sr.attr.P and origin <> stack
fail exception(xAC, 0000h)
when not aligned(offset[2:0], $n) and CR0.AM and RFLAGS.AC and CPL == 11b

fail exception(xGP_xSS(origin), 0000h) when not canonical(zxt(64, offset))

Note that the SS segment register is allowed to be null.

Control transfer instructions use the following action to check the validity of the new
instruction pointer. The action takes the new code segment descriptor and the new
instruction pointer. If the new operating mode is 64-bit mode, then the pointer must be
canonical. Otherwise, the pointer must be in the segment bounds.

action check_rip(desc::CodeSegment, rip::bits 64)
if $long_mode and desc.L then
fail exception(xGP, 0000h) when not canonical(rip)

else assume not $long_mode
let attr = desc_attr(desc)
let limit = desc.limit
fail exception(xGP, 0000h)
when not check_limit(attr, nat(limit), nat(rip))

13.13 Segment Register Access

In this section we define actions that read from and write to the user segment registers.
These segment registers are stored in the SR register array in the following way:

SR[000b] = SR[iES] = ES
SR[001b] = SR[iCS] = CS
SR[010b] = SR[iSS] = SS
SR[011b] = SR[iDS] = DS
SR[100b] = SR[iFS] = FS
SR[101b] = SR[iGS] = GS

154

A segment register has four components: the 16-bit selector, the 16-bit attributes, the
32-bit limit, and the 64-bit base address. Software cannot access the latter three compo-
nents directly. Instead, it can only read and write the first component. On each segment
register write, the processor fetches the latter three components from the descriptor
table using the selector as an index.

Thus, the action for reading a segment register is very simple: it returns the selector.

action read_sr(idx::bits 3)::bits 16
return SR[idx].sel

Writing a segment register is more involved, as we need to update the hidden compo-
nents too. We describe writes in 16-bit mode and writes in 32/64-bit mode separately.
In 16-bit mode the attributes and the limit do not change, and the bases address is sim-
ply the selector multiplied by 16. The write_sr action has three arguments: the origin
of the write, the new value of the selector, and the segment register index. The first
argument is not used in 16-bit mode.

action write_sr(origin::Origin, sel::Selector, idx::SRIndex) when $x16_mode
write sel to SR[idx].sel
write zxt(64, sel) << 4 to SR[idx].base

In 32/64-bit mode, there two cases: the selector is null or not. It is possible to write a
null selector to the data segment registers ES, DS, GS, FS without raising an exception.
The exception will be raised later if software attempts to read these registers.

In case the selector is not null, the action performs the following steps:

1. Fetch the descriptor from the descriptor table using the selector as an index.

2. Check that the descriptor is a valid user segment descriptor.

3. Parse the descriptor components and write them to the corresponding segment reg-
ister components.

4. In case of the FS, GS segment registers, update the FSBase, GSBase model specific
registers, which store the base address component.

action write_sr(origin::Origin, sel::Selector, idx::SRIndex) when not $x16_mode
if (sel & FFF8h) == 0000h then
fail exception(xGP_xTS(origin), sel & FFF8h) when idx == iSS or idx == iCS
write sel to SR[idx].sel
write 0000h to SR[idx].attr
write 00000000h to SR[idx].limit
write zero(64) to SR[idx].base

else call (desc_temp, desc_valid) = read_desc(sel)
fail exception(xGP, sel & FFF8h) when not desc_valid
let desc = desc_temp::UserSegment
call check_segment(origin, sel, desc, idx)
write sel to SR[idx].sel
write desc_attr(desc) to SR[idx].attr
write desc.limit to SR[idx].limit
write zxt(64, desc.base) to SR[idx].base
write zxt(64, desc.base) to FSBase when idx == iFS
write zxt(64, desc.base) to GSBase when idx == iFS

155

The read_desc action is defined in section 13.9. The action check_segment makes sure
that the given descriptor is present, valid, and can be written to the given segment
register. The validity checks are different for the code segment register, stack segment
register, and data segment registers. Therefore, this action makes case distinction on
the segment register index, and invokes the appropriate action.

action check_segment(origin::Origin, sel::Selector,
desc::UserSegment, idx::SRIndex)

if idx == iCS then call check_code(origin, sel, desc)
elif idx == iSS then call check_stack(origin, sel, desc, CPL, $x64_mode)
else call check_data(origin, sel, desc)

The code segment register is only written to in control transfer and virtualization in-
structions. The descriptor must be present, must define a code segment, and must
have the reserved bits set to zero.

action check_code(origin::Origin, sel::Selector, desc::CodeSegment)
fail exception(xNP_xTS(origin), sel & FFF8h) when not desc.P
fail exception(xGP_xTS(origin), sel & FFF8h) when not isCodeSegment(desc)
fail exception(xGP_xTS(origin), sel & FFF8h) when desc.L and $legacy_mode
fail exception(xGP_xTS(origin), sel & FFF8h)
when desc.D and desc.L and $long_mode

A present user segment descriptor can be written to a data segment register if the
current privilege level is sufficient to access it. The privilege level checks are performed
in the can_access_data function, which is defined in section 13.10. In 32-bit mode, the
user segment must be readable.

action check_data(origin::Origin, sel::Selector, desc::UserSegment)
fail exception(xNP_xTS(origin), sel & FFF8h) when not desc.P
fail exception(xGP_xTS(origin), sel & FFF8h) when not isUserSegment(desc)
fail exception(xGP_xTS(origin), sel & FFF8h)
when not desc.readable and not $x64_mode

fail exception(xGP_xTS(origin), sel & FFF8h)
when not can_access_data(sel, desc)

A present data segment descriptor can be written to the stack segment register if the
current privilege level is sufficient to access it. The privilege level checks are performed
in the can_access_stack function, which is defined in section 13.10. In 32-bit mode, the
segment must be writable.

action check_stack(origin::Origin, sel::Selector, desc::DataSegment,
new_cpl::bits 2, new_x64_mode::bit)

fail exception(xSS_xTS(origin), sel & FFF8h) when not desc.P
fail exception(xGP_xTS(origin), sel & FFF8h) when not isDataSegment(desc)
fail exception(xGP_xTS(origin), sel & FFF8h)
when not desc.writable and not new_x64_mode

let accessible = can_access_stack(sel, desc, new_cpl, new_x64_mode)
fail exception(xGP_xTS(origin), sel & FFF8h) when not accessible

156

13.14 Task State Segment

The task register TR contains a reference to the current task state segment. The follow-
ing action performs a read from the TSS, given the data width and the offset into the
segment.

action read_tss($n::Width, offset::bits $va)::bits $n
fail exception(xTS, TR.sel & FFF8h) when not TR.attr.P
fail exception(xTS, TR.sel & FFF8h) when nat(offset) + $n - 1 > nat(TR.limit)
call val = vread(task, $n, TR.base[$va-1:0] + offset, 00b)
return val

The long mode does not support hardware task switch. Therefore, the TSS is used only
for storing the stack pointers and the I/O permission bitmap.

layout TaskState
field rsv1::bits 32
field RSP0::bits 64
field RSP1::bits 64
field RSP2::bits 64
field rsv2::bits 64
field IST1::bits 64
field IST2::bits 64
field IST3::bits 64
field IST4::bits 64
field IST5::bits 64
field IST6::bits 64
field IST7::bits 64
field rsv3::bits 64
field rsv4::bits 16
field IOPB_BA::bits 16

There are two types of stack pointer in the TSS: privilege level stack pointers (RSPi) and
interrupt stack pointers (ISTi). These stack pointers define the new stacks for control
transfer instructions and for interrupt handlers. The ISTi pointers are available only
in long mode. The ist field of an interrupt/trap gate selects one of the seven pointers
(when ist > 000b). The RSP0, RSP1, RSP2 pointers are used when the CPL changes to 00b,
01b, 10b during far control transfer.

Given the new CPL and the ist field of a gate (or 000b if the gate does not have the ist

field), the following action fetches the pointer to the new stack.

action tss_rsp(new_cpl::bits 2, ist::bits 3)::bits 64
if ist > 000b and $long_mode then
let addr = (zxt($va, ist)<< 3) + bits($va, 28)
call res = read_tss(64, addr)
return res

else
let addr = (zxt($va, new_cpl) << 3) + bits($va, 4)
call res = read_tss(64, addr)
return res

The I/O intercept bitmap contains a bit for each I/O port. When user software attempts
to read or write a port and the corresponding bit in the bitmap is set, an exception is

157

raised. The IOPB_BA field of the TSS specifies the offset of the first byte of the bitmap in
the TSS.

action tss_iopb_base::bits $va
call res = read_tss(16, bits($va, 102))
return zxt($va, res)

Given the I/O access width $n and the port address port, the following action determines
whether the I/O permission bitmap allows the access or not. Depending on the access
width, the action must check 1, 2, or 4 bits in the bitmap. The offset of the byte that
contains the first bit is equal to port[15:3]. The last bit is either in the same byte or
in the next byte. Therefore, the action fetches two bytes from the bitmap. In case the
bytes are beyond the segment limits, the access is not permitted.

action tss_io_intercepted($n::{8, 16, 32}, port::bits 16)::bit
let offset = zxt($va, port[15:3])
let $bit_idx = nat(port[2:0])::[0..7]
call base = tss_iopb_base
let addr = base + offset
if nat(addr) + 1 > nat(TR.limit) then return 1b
else call mask = read_tss(16, addr)

return mask[$n/8+$bit_idx-1:$bit_idx] <> zero($n/8)

In legacy mode, the TSS contains the task context registers, the stack pointers, the
stack selectors, and the I/O permission bitmap. The bitmap has the same meaning as in
the long mode TSS. The stack pointers and the stack selectors correspond to the RSPi

stack pointers in the long mode TSS. The stack selectors are necessary because a stack
segment in legacy mode has a non-zero base address. Note that there are no interrupt
stack pointers (ISTi).

The task context registers are the general purporse registers, the segment registers,
and the CR3, LDT registers.

layout LegacyTaskState
field link::bits 16
field rsv1::bits 16
field ESP0::bits 32
field SS0::bits 16
field rsv2::bits 16
field ESP1::bits 32
field SS1::bits 16
field rsv3::bits 16
field ESP2::bits 32
field SS2::bits 16
field rsv4::bits 16
field CR3::bits 32
field EIP::bits 32
field EFLAGS::bits 32
field EAX::bits 32
field ECX::bits 32
field EDX::bits 32
field EBX::bits 32
field ESP::bits 32
field EBP::bits 32
field ESI::bits 32

158

field EDI::bits 32
field ES::bits 16
field rsv5::bits 16
field CS::bits 16
field rsv6::bits 16
field SS::bits 16
field rsv7::bits 16
field DS::bits 16
field rsv8::bits 16
field FS::bits 16
field rsv9::bits 16
field GS::bits 16
field rsv10::bits 16
field LDT::bits 16
field rsv11::bits 16
field trap::bit
field rsv12::bits 15
field IOPB_BA::bits 16

The following action shows how to fetch the new stack corresponding to the new CPL

from the legacy TSS.

action tss_esp_ss(new_cpl::bits 2)::(bits 32, bits 16)
let addr = (zxt($va, new_cpl) << 3) + bits($va, 4)
call esp = read_tss(32, addr)
call ss = read_tss(16, addr + bits($va, 4))
return (esp, ss)

159

160

CHAPTER

FOURTEEN

INSTRUCTION FETCH AND
DECODE

14.1 Instruction Format

imm operandreg/mem operandsopcode

legacy*
1 byte

REX modrm SIB dispopcode
1-3 bytes

imm

prefixes

1,2,4 bytes 1,2,4,8 bytes1 byte 1 byte 1 byte

Figure 14.1: Instruction Format

An instruction has four parts: optional prefixes, the opcode, optional register/memory
operand references, and an optional immediate operand. The length of each part is not
fixed, but the total length cannot exceed 15 bytes. In the following sections we discuss
each part in detail.

14.2 Opcode

The opcode of an instruction is preceded by zero or more prefixes, and is followed by
the operands. The opcodes have length from 1 to 3 bytes, and the opcode encoding
is prefix-free, which means that any valid opcode of length i bytes is not a prefix of a
valid i+1-byte opcode. It is achieved by using escape sequences: 1-byte opcode 0Fh is
not valid and is used as an escape to 2-byte opcodes; similarly, 2-byte opcodes 0F38h,
0F3Ah are escapes to 3-byte opcodes.

layout Opcode
field byte1::bits 8
field byte2::bits 8
field byte3::bits 8

161

byte1 the actual opcode for 1-byte instructions, or 0Fh escape code for 2- and 3-byte
instructions.

byte2 00h for 1-byte instructions, the actual opcode for 2-byte instructions, or 38h/3Ah
for 3-byte instructions.

byte3 00h for 1- and 2-byte instructions, or byte 3 of the actual opcode for 3-byte in-
structions.

Some opcodes are shared between several instructions. In such cases, either the pre-
fixes or the ModRM byte help to disambiguate.

14.3 Prefixes

The opcode defines the semantics of the instruction, and prefixes modify the default
behavior of the instruction. Any prefix has length one byte and precedes the opcode.
An instruction may have an arbitrary number of prefixes, but instructions with length
greater than 15 bytes are considered to be invalid. An important fact about prefix
values is that they do not collide with the first-byte values of a valid opcode. So, during
instruction fetch, it is easy to determine when the prefixes stop and the opcode starts.

There are 12 types of prefixes. All except the REX are called legacy. A legacy prefix can
appear several times in the same instruction. A REX prefix can appear at most one time
and must immediately precede the opcode.

For storing the fetched prefixes we use the following record. Note that the record has
one bit for each legacy prefix. The bit indicates whether the corresponding prefix was
fetched or not. Thus, multiple occurrences of the same legacy prefix have the same
effect as a single occurrence. The name of a bit-field coincides with the value of the
corresponding legacy prefix byte.

record Prefix
field x26::bit
field x2E::bit
field x36::bit
field x3E::bit
field x64::bit
field x65::bit
field x66::bit
field x67::bit
field xF0::bit
field xF2::bit
field xF3::bit
field rex::REX

x26 (ES segment override prefix)

x2E (CS segment override prefix)

x36 (SS segment override prefix)

x3E (DS segment override prefix)

x64 (FS segment override prefix)

162

x65 (GS segment override prefix) Instructions, that reference memory, implicitly use
one of the segment registers as part of a logical address, and a segment override
prefix allows to explicitly specify another segment register. Segment override
prefixes can not be used with stack instructions (PUSH, POP, etc). The use of the
prefixes with branch instructions is reserved for branch hints.

x66 (operand-size override prefix) This prefix selects the non-default operand size. See
the definition of the oper_width.

x67 (address-size override prefix) This prefix selects the non-default address size. See
the definition of the addr_width.

xF0 (LOCK prefix) Execution of an instruction usually takes several steps, such as fetch-
ing operands from the memory, calculating the result, writing the result to the
memory. In a multiprocessor environment, it is important to make sure that some
instructions execute atomically, i.e. no other processor reads/writes the memory
region that is accessed by the instruction. The lock prefix guarantees such atomic
execution. It can be used only with the following instructions: ADC, ADD, AND, BTC,
BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR.

xF2 (REPNE/REPNZ prefix)

xF3 (REP/REPE/REPZ prefix) An instruction with a repeat prefix is executed multiple
times until either the RCX register becomes zero or the RFLAGS.ZF stops to satisfy
the condition specified in the name of the prefix. In pseudocode, REPxx instr is
equivalent to the following loop:

while RCX > 0
instr
decrement RCX
if not condition then exit loop

where the condition depends on the type of the prefix:

• REPNE/REPNZ: condition = not RFLAGS.ZF,

• REPE/REPZ: condition = RFLAGS.ZF,

• REP: condition = 1b.

Whether the value F3h is interpreted as the REP prefix or the REPE/REPZ pre-
fix depends on the instruction. Instructions INS, OUTS, LODS, MOVS, STOS allow only
the REP prefix. Instructions CMPS and SCAS allow only REPNE/REPNZ/REPE/REPZ
prefixes. Other instructions do not support repeat prefixes. However, media in-
structions can be used with the F2h/F3h prefixes. In such cases, the prefixes do not
repeat the instruction, but disambiguate the opcode, which is mapped to multiple
instructions.

rex (REX prefix) This prefix is valid only in 64-bit mode, and can have 16 possible
values: 40h..4Fh. In other modes these byte values are opcodes of the INC and DEC

instructions. Since 00h is an invalid REX prefix, we set the rex field to this value
when the instruction has no REX prefix.

The number of general-purpose, XMM, control, and debug registers is doubled in 64-
bit mode, and to access these additional registers an instruction needs one more bit in
each field specifying a register. The lower nibble of the REX prefix provides these bits.

163

layout REX
field B::bit
field X::bit
field R::bit
field W::bit
field rsv::bits 4 reserved and must be 4h

B Base, extends ModRM.rm and SIB.base.

X indeX, extends SIB.index.

R Reg, extends ModRM.reg.

W Width, selects the 64-bit operand width.

We start the instruction fetch with the empty set of prefixes:

function empty_prefix::Prefix
= Prefix with [x26 = 0b, x2E = 0b, x36 = 0b, x3E = 0b,

x64 = 0b, x65 = 0b, x66 = 0b, x67 = 0b,
xF0 = 0b, xF2 = 0b, xF3 = 0b, rex = 00h]

For each fetched byte, we check whether the byte is a prefix or not using the following
function.

function is_prefix(b::bits 8)::bit
= isREX(b) or b == 26h or b == 2Eh
or b == 36h or b == 3Eh or b == 64h
or b == 65h or b == 66h or b == 67h
or b == F0h or b == F2h or b == F3h

In case the byte b is a prefix, we update the current set of prefixes p, using the following
function.

function save_prefix(b::bits 8, p::Prefix)::Prefix
= if b == 26h then p with [x26 = 1b]
elif b == 2Eh then p with [x2E = 1b]
elif b == 36h then p with [x36 = 1b]
elif b == 3Eh then p with [x3E = 1b]
elif b == 64h then p with [x64 = 1b]
elif b == 65h then p with [x65 = 1b]
elif b == 66h then p with [x66 = 1b]
elif b == 67h then p with [x67 = 1b]
elif b == F0h then p with [xF0 = 1b]
elif b == F2h then p with [xF2 = 1b]
elif b == F3h then p with [xF3 = 1b]
else p with [rex = b]

The following function checks whether a REX prefix was fetched or not.

function rex_present(prefix::Prefix)::bit
= isREX(prefix.rex) and $x64_mode

Once all the prefixes are fetched, they are stored in the _prefix register. We define the
following parameter aliases for the operand and address size override prefixes, because
we will refer to them in type expressions.

164

parameter $prefix66::bit = _prefix.x66
parameter $prefix67::bit = _prefix.x67
parameter $REX_W::bit = _prefix.REX.W
invariant not $REX_W or $LMA

14.4 ModRM byte

The Mode-Register-Memory byte contains information about the register/memory operands.
For some opcodes that are mapped to multiple instructions, the ModRM byte is used as
a secondary opcode. The byte has three parts.

layout ModRM
field rm::bits 3
field reg::bits 3
field mod::bits 2

rm (register/memory) Depending on the value of the mod field, this field either contains
the index of a register or specifies the addressing mode for the memory operand.

reg (register) This field either contains the index of a register or is a secondary operand.

mod (mode) When this field is 11b, then the rm field specifies a register. Otherwise,
this field together with the rm field defines the addressing mode for the memory
operand.

The presence of the ModRM byte in the instruction depends on the opcode. Thus, after
fetching the opcode, we can determine whether we need to fetch the ModRM byte or
not. In case the ModRM byte is fetched, it is stored in the _modrm register.

We will refer to the mod field in the context of type expressions, therefore, we define a
parameter alias.

parameter $mod::bits 2 = _modrm.mod

14.5 SIB byte

The Scale-Index-Base byte is used for memory operand address computation.

layout SIB
field base::bits 3
field index::bits 3
field scale::bits 2

base specifies the base register.

index specifies the index register.

scale specifies the scale factor applied to the index.

After fetching the ModRM byte, we can determine whether there is an SIB byte or not.
The SIB is present when there is a memory operand and the rm field specifies the SIB
addressing mode and the address width is not 16 bits. More formally, the following
conditions must hold if the SIB byte is present:

165

• The memory operand is present when the mod field of the ModRM byte is less the
three.

• The SIB addressing mode is active when the rm field of the ModRM byte is equal
to four.

• The address width is not equal to 16 bits if

– either the default address width is not 16 bits and there is not width override
prefix,

– or the default address width is 16 bits and there is a width override prefix.

function has_sib(prefix::Prefix, opcode::Opcode, modrm::ModRM)::bit
= modrm.mod < 11b and modrm.rm == 100b
and has_memop(prefix, opcode, modrm)
and ($def_addr_width == 16 and prefix.x67

or $def_addr_width > 16 and (prefix.rex.W or not prefix.x67))

The function has_memop is defined in section 14.8. The function $def_addr_width is de-
fined in section 14.10.

Generally, the SIB byte defines the memory address as the following expression:

R[base] + (R[index] << scale).

However, there are special cases. See the definition of the sib function for details.

14.6 Displacement

A displacement is a constant that is added to the linear combination of register to ob-
tain the memory operand address. The number of displacement byte in the instruction
depends on the addressing mode (mod, rm, base) and the operand address width ($oa).
The following function computes the displacement width.

function disp_width::{0, 8, 16} when $oa == 16
= if _modrm.mod == 00b and _modrm.rm == 110b then 16
elif _modrm.mod == 01b then 8
elif _modrm.mod == 10b then 16
else 0

function disp_width::{0, 8, 16, 32} when $oa > 16
= if _modrm.mod == 00b and _modrm.rm == 101b then 32
elif _modrm.mod == 00b and _modrm.rm == 100b and _sib.base == 101b then 32
elif _modrm.mod == 01b then 8
elif _modrm.mod == 10b then 32
else 0

The fetched displacement is sign-extended and stored in the _disp register. The follow-
ing function retrieves the displacement from the _disp register.

function disp::bits $oa
= if disp_width == 0 then (zero($oa))
else _disp[$oa-1:0]

166

14.7 Immediate Operand

An immediate operand is an operand that is embedded into the instruction. After fetch-
ing the opcode and possibly the ModRM byte, we can determine the presence and the
size of the immediate operand. In the next section we will define the imm_width function.
The fetched immediate operand is zero-extended and stored in the _imm register.

14.8 Opcode Table

In the appendix chapters we will describe instructions. For each instruction we list
opcodes and operands. Based on this information, it is possible to construct the opcode
table, which maps opcodes to operand types, operand widths, instruction attributes,
and actions. The following functions, that query the opcode table, can be derived from
the opcode table. Therefore, we do not explicitly define them in this document.

After fetching the prefixes and the opcode, we use the has_modrm function to check
whether the ModRM byte is present or not. In case the prefixes or the opcode are
invalid, the function returns 0b.

function has_modrm(prefix::Prefix, opc::Opcode)::bit
= implicit_definition

The prefixes, the opcode, and the ModRM byte (if present) uniquely determine the
instruction. The following function check whether the instruction is valid or not. In
case the instruction does not have the ModRM byte, the modrm argument should be 00h.

function valid_instr(prefix::Prefix, opc::Opcode, modrm::ModRM)::bit
= implicit_definition

In the definition of each instruction we give a list of attributes. We then use the follow-
ing function to get the attributes of an instruction.

function instr_attr(prefix::Prefix, opc::Opcode, modrm::ModRM)::InstrAttr
= implicit_definition

There are three instruction attributes.

record InstrAttr
field serializing::bit
field default64::bit
field lockable::bit

serializing Serializing instructions enforce strong memory ordering. All reads and
writes of the serializing instruction and of the previous instructions finish before
the first memory access of the next instruction.

default64 In 64-bit mode, the default operand width of the most instructions is 32 bits.
However, instructions with the default64 attribute have the 64-bit default operand
width.

lockable Instructions with this attribute are executed atomically when they have the
LOCK prefix.

167

Based on this function, we can define predicates that check the type of the current
instruction stored in the _opcode register:

function serializing()::bit
= instr_attr(_prefix, _opcode, _modrm).serializing

function default64()::bit
= instr_attr(_prefix, _opcode, _modrm).default64

function lockable()::bit
= instr_attr(_prefix, _opcode, _modrm).lockable

We also use several predicate that check whether the current instruction is a memory
fence, a store fence, a load fence, or an io instruction.

function mfence()::bit
= (_opcode == 000FAEF0h)

function sfence()::bit
= (_opcode == 000FAEF8h)

function lfence()::bit
= (_opcode == 000FAEE8h)

function io()::bit
= (_opcode == 000000E4h or

_opcode == 000000E5h or
_opcode == 000000ECh or
_opcode == 000000EDh or
_opcode == 000000E6h or
_opcode == 000000E7h or
_opcode == 000000EEh or
_opcode == 000000EFh or
_opcode == 0000006Ch or
_opcode == 0000006Dh or
_opcode == 0000006Eh or
_opcode == 0000006Fh
)

An instruction has up to three operands. In the instruction definition, we specify the
type and the width of each operand. The following functions are mechanically gener-
ated.

function op1type(prefix::Prefix, opc::Opcode, modrm::ModRM)::OpType
= generated_type

function op2type(prefix::Prefix, opc::Opcode, modrm::ModRM)::OpType
= generated_type

function op3type(prefix::Prefix, opc::Opcode, modrm::ModRM)::OpType
= generated_type

function op1width(prefix::Prefix, opc::Opcode, modrm::ModRM)::OpWidth
= generated_width

function op2width(prefix::Prefix, opc::Opcode, modrm::ModRM)::OpWidth
= generated_width

function op3width(prefix::Prefix, opc::Opcode, modrm::ModRM)::OpWidth
= generated_width

The functions op1type, op2type, op3type return none in case the instruction does not
have the corresponding operand. The OpType and the OpWidth are sets of operand types
and operand widths.

168

set OpType = {reg, reg_rm, reg_mem, mem, imm, imm2, mem_ptr,
mem_pair, imm_ptr, es_rdi, ds_rsi, creg, sreg, dreg, mmx, mmx_rm,
mmx_mem, xmm, xmm_rm, xmm_mem, moffset, rel_off, rax, rcx, rdx,
rbx, rsp, rbp, rsi, rdi, rax_r8, rcx_r9, rdx_r10, rbx_r11, rsp_r12,
rbp_r13, rsi_r14, rdi_r15, rflags, es, cs, ss, ds, fs, gs, cr8,
const_0, const_1, none}

set OpWidth = {_0 = 0, _8 = 8, _16 = 16, _32 = 32, _48 = 48,
_64 = 64, _80 = 80, _128 = 128}

Section 14.13 describes the meaning of each operand type. We conclude this section by
defining a helper function that checks whether the instruction has a memory operand
or not.

function has_memop(prefix::Prefix, opcode::Opcode, modrm::ModRM)::bit
= is_memop(op1type(prefix, opcode, modrm))
or is_memop(op2type(prefix, opcode, modrm))
or is_memop(op3type(prefix, opcode, modrm))

function is_memop(op::OpType)::bit
= op == reg_mem or op == mem or op == mem_ptr or op == mmx_mem or op == xmm_mem

14.9 Instruction Fetch

The instruction is fetched in two stages. The first stage fetches

• the prefixes,

• the opcode,

• the ModRM byte (if present),

• the SIB byte (if present).

The fetched bytes are stored in the _prefix, _opcode, _modrm, and _sib registers. The
second stage uses these registers to determine the size of the displacement and the size
of the immediate operand. Afterwards, the displacement and the immediate operand
are fetched (if present), and the RIP is set to the next instruction. Thus, the fetch action
has the following definition.

action fetch
call fetch1
chain fetch2

The chain statement calls the specified action with the updated registers. This means
that all register writes made by the fetch1 are visible in the fetch2. The compli-
cated business with two stages is necessary because the operand address size and
the operand width depend on prefixes and on the default64 attribute of the instruction.
There are two solutions to this problem:

• either provide the prefixes as explicit arguments to the $addr_width, $oper_width

functions.

• or save the prefixes into a register so that the functions access them implicitly.

169

We have chosen the second approach because it simplifies many definitions.

Besides what is described above, the fetch1 action checks that the instruction is valid
and writes the instruction attributes and the intermediate instruction length into the
_instr_attr and the _instr_len registers.

action fetch1
call (len1, byte1, prefix) = fetch_prefixes
call (len2, opc) = fetch_opcode(len1, byte1)
call (len3, modrm) = fetch_modrm(len2, prefix, opc)
fail exception(xUD, 0000h) when not valid_instr(prefix, opc, modrm)
write prefix to _prefix
write opc to _opcode
write modrm to _modrm
write instr_attr(prefix, opc, modrm) to _instr_attr
write bits(4, len3) to _instr_len

The fetch2 action saves the displacement and the immediate operand in the _disp and
the _imm registers. It also updates the _instr_len, the _old_RIP, and the RIP registers.

action fetch2
call (len1, disp) = fetch_disp
call (len2, imm) = fetch_imm(len1)
write disp to _disp
write imm to _imm
write bits(4, len2) to _instr_len
write RIP to _old_RIP
write RIP + bits(64, len2) to RIP

The prefixes are fetched byte by byte until either the instruction length exceeds 15 bytes
or the fetched byte is the first byte of the opcode. In pseudocode the fetch_prefixes

action could be defined as follows

byte := read byte at RIP
length := 1
prefix := empty_prefix
while length < 15 and (byte is a prefix)
prefix := save_prefix(byte, prefix)
byte := read byte at RIP + length
length := length + 1

return (length, byte, prefix)

Since our DSL does not have loop constructs, we manually unroll the loop.

action fetch_prefixes::(nat, bits 8, Prefix)
call byte00 = lread(code, 8, CS, $la, RIP[$la-1:0])
call (len01, byte01, prefix01) = fetch_prefix(1, byte00, empty_prefix)
call (len02, byte02, prefix02) = fetch_prefix(len01, byte01, prefix01)
call (len03, byte03, prefix03) = fetch_prefix(len02, byte02, prefix02)
call (len04, byte04, prefix04) = fetch_prefix(len03, byte03, prefix03)
call (len05, byte05, prefix05) = fetch_prefix(len04, byte04, prefix04)
call (len06, byte06, prefix06) = fetch_prefix(len05, byte05, prefix05)
call (len07, byte07, prefix07) = fetch_prefix(len06, byte06, prefix06)
call (len08, byte08, prefix08) = fetch_prefix(len07, byte07, prefix07)
call (len09, byte09, prefix09) = fetch_prefix(len08, byte08, prefix08)
call (len10, byte10, prefix10) = fetch_prefix(len09, byte09, prefix09)

170

call (len11, byte11, prefix11) = fetch_prefix(len10, byte10, prefix10)
call (len12, byte12, prefix12) = fetch_prefix(len11, byte11, prefix11)
call (len13, byte13, prefix13) = fetch_prefix(len12, byte12, prefix12)
call (len14, byte14, prefix14) = fetch_prefix(len13, byte13, prefix13)
fail exception(xUD, 0000h) when is_prefix(byte14)
return (len14, byte14, prefix14)

The fetch_prefix action is called 14 times. As arguments the fetch_prefix action ex-
pects the number of fetched bytes, the last fetched byte and the accumulated prefixes.
In case the action detects that the last fetched byte is the first byte of the opcode, the it
does nothing and returns the arguments intact. Otherwise, it adds the last fetched byte
into prefixes and fetches another byte.

action fetch_prefix(len::nat, last::bits 8, prefix::Prefix)::(nat, bits 8, Prefix)
if is_prefix(last) and not rex_present(prefix) then
let offset = RIP[$la-1:0] + bits($la, len)
call next = lread(code, 8, CS, $la, offset)
return (len+1, next, save_prefix(last, prefix))

else return (len, last, prefix)

The first byte of the opcode was already fetched either by the fetch_prefixes. If this
byte is an escape byte, then the fetch_opcode action fetches the second byte of the
opcode. If the second byte is also an escape byte, then the third byte is fetched. In any
case, the action zero-extends the opcode and returns a 3-byte opcode.

action fetch_opcode(len::nat, last::bits 8)::(nat, Opcode)
if last <> 0Fh then return (len, zxt(24, last))
else fail exception(xUD, 0000h) when len == 15

call byte2 = lread(code, 8, CS, $la, RIP[$la-1:0] + bits($la, len))
if byte2 <> 38h and byte2 <> 3Ah then return (len+1, zxt(24, byte2++last))
else fail exception(xUD, 0000h) when len+1 == 15
call byte3 = lread(code, 8, CS, $la, RIP[$la-1:0] + bits($la, len+1))
return (len+2, byte3++byte2++last)

The presence of the ModRM byte is detected by the has_modrm function that looks up
the opcode table. The following action returns the ModRM byte in case it is present, or
returns 00h otherwise.

action fetch_modrm(len::nat, prefix::Prefix, opc::Opcode)::(nat, ModRM)
if not has_modrm(prefix, opc) then return (len, 00h)
else fail exception(xUD, 0000h) when len == 15

call modrm = lread(code, 8, CS, $la, RIP[$la-1:0] + bits($la, len))
return (len+1, modrm)

The presence of the SIB byte is detected by the has_sib function that we defined in
section 14.5. The following action returns the SIB byte in case it is present, or returns
00h otherwise.

action fetch_sib(len::nat, prefix::Prefix, opc::Opcode, modrm::ModRM)::(nat, SIB)
if not has_sib(prefix, opc, modrm) then return (len, 00h)
else fail exception(xUD, 0000h) when len == 15

call sib = lread(code, 8, CS, $la, RIP[$la-1:0] + bits($la, len))
return (len+1, sib)

171

Recall that the fetch_disp and the fetch_imm actions are invoke during the second stage
of the instruction fetch. This means that the operand address width is well-defined
and we can use the disp_width function (which depends on the operand address width).
We defined the disp_width function in section 14.6. The following action fetches the
displacement.

action fetch_disp::(nat, bits 64)
let len = nat(_instr_len)
if disp_width == 0 then return (len, zero(64))
else let $n = disp_width::{8, 16, 32}

fail exception(xUD, 0000h) when len + $n/8 > 15
call disp = lread(code, $n, iCS, $la, RIP[$la-1:0] + bits($la, len))
return (len+$n/8, sxt(64, disp))

We determine the width of the immediate operand by examining all three operands and
checking whether any of the is an immediate operand or not.

function imm_width::OpWidth
= imm1_width + imm2_width + imm3_width

function imm1_width::OpWidth
= if is_immop(op1type(_prefix, _opcode, _modrm)) then

op1width(_prefix, _opcode, _modrm)
else 0

function imm2_width::OpWidth
= if is_immop(op2type(_prefix, _opcode, _modrm)) then

op2width(_prefix, _opcode, _modrm)
else 0

function imm3_width::OpWidth
= if is_immop(op3type(_prefix, _opcode, _modrm)) then

op3width(_prefix, _opcode, _modrm)
else 0

function is_immop(op::OpType)::bit
= op == imm or op == imm2 or op == imm_ptr or op == moffset or op == rel_off

The following action fetches the immediate operand.

action fetch_imm(len::nat)::(nat, bits 64)
let $n = imm_width::OpWidth
if $n == 0 then return (len, zero(64))
else fail exception(xUD, 0000h) when len + $n/8 > 15

call imm = lread(code, $n, CS, $la, RIP[$la-1:0] + bits($la, len))
return (len+$n/8, zxt(64, imm))

14.10 Operand Width

When defining an instruction, we specify for each operand its width. The width is either
a constant or an expression that uses one of the following functions:

• $v — effective operand width,

• $vw — the same as $v for register operands and 16 bits for memory operands,

• $z — the same as $v but capped to 32 bits,

172

• $qd — quad word in 64-bit mode, and double word in other modes.

function $v = $oper_width
function $vw = if $mod == 11b then $v

else 16
function $z = if $oper_width == 16 then 16

else 32
function $qd = if $x64_mode then 64

else 32

The effective operand width is computed as follows. If the W bit of the REX prefix is set
then the effective width is 64 bits. Otherwise, the width depends on the presence of the
66h prefix. If the prefix is not present, then the effective width is equal to the default
operand width. Otherwise, the effective width is equal to the non-default operand width.

function $oper_width
= if $x64_mode and $REX_W then 64
else if not $prefix66 then $def_oper_width

else $flip($def_oper_width)

Where the $flip function selects the non-default width, given the default width.

function $flip(x::{16, 32})
= if x == 16 then 32
else 16

In 64-bit mode the default operand width depends on the default64 attribute of the
current instruction. In other modes, the width depends on the D/B bit of the current
code segment descriptor.

function $def_oper_width
= if not $x64_mode and not $D then 16
else if not $x64_mode and $D then 32

else if not $default64 then 32
else 64

Where the $D is an alias for the D/B bit of the code segment descriptor, and the $default64

is an alias for the default64 attribute of the current instruction.

parameter $D::bit = CS.attr.DB
invariant not ($L and $D)
parameter $default64::bit = _instr_attr.default64

14.11 Memory Operand Address Width

The effective address width of the memory operand depends on the presence of the
67h prefix. If the prefix is not present, then the effective width is equal to the default
address width. Otherwise, the effective width is equal to the non-default address width.

function $addr_width
= if not $prefix67 then $def_addr_width
else $flip($def_addr_width)

173

We will use a short alias $oa (operand address) instead of $addr_width.

The default address in 64-bit mode is always 64 bits. In other modes, the default address
width depends on the D/B bit of the code segment descriptor.

function $def_addr_width
= if not $x64_mode and not $D then 16
else if not $x64_mode and $D then 32

else 64

14.12 Memory Operand Address

The logical address of the memory operand consists of two parts: the segment register
and the offset. The index of the segment register is computed by the segment function,
the offset is computed by the ea function (effective address). Both computations depend
on the addressing mode specified by the ModRM byte.

There are two sets of addressing modes. Legacy addressing modes are enabled when
the operand address width is 16 bits ($oa==16). Legacy addressing modes do not use
the SIB byte, and the rm field of the ModRM byte selects a linear combination of the RBX,
RBP, RSI, RDI registers and the displacement. Note that the disp function returns zero
when there is no displacement.

function ea::bits 16 when $oa == 16
= if _modrm.mod == 00b and _modrm.rm == 110b then disp
elif _modrm.rm == 000b then RBX[15:0] + RSI[15:0] + disp
elif _modrm.rm == 001b then RBX[15:0] + RDI[15:0] + disp
elif _modrm.rm == 010b then RBP[15:0] + RSI[15:0] + disp
elif _modrm.rm == 011b then RBP[15:0] + RDI[15:0] + disp
elif _modrm.rm == 100b then RSI[15:0] + disp
elif _modrm.rm == 101b then RDI[15:0] + disp
elif _modrm.rm == 110b then RBP[15:0] + disp
else RBX[15:0] + disp

When the operand address width is 32 or 64 bits, the effective address is computed as
follows.

function ea::bits $oa when $oa > 16
= if $x64_mode and _modrm.mod==00b and _modrm.rm==101b then RIP[$oa-1:0] + disp
elif _modrm.rm <> 100b and (_modrm.mod <> 00b or _modrm.rm <> 101b) then
R[_prefix.rex.B++_modrm.rm][$oa-1:0] + disp

else sib + disp

Thus, the effective address is the displacement added to either the instruction pointer,
or a general-purpose register, or a combination of the general-purpose registers speci-
fied by the SIB byte. The SIB combination is R[base] + (R[index] << scale). However,
there is special case when the index is 0100.

function sib::bits $oa when $oa > 16
= if _prefix.rex.X == 0b and SIB.index == 100b then ebase
else ebase + (R[_prefix.rex.X ++ SIB.index][$oa-1:0] << nat(SIB.scale))

The base component of the SIB combination is either zero or a general-purpose register
selected by the base field of the SIB byte.

174

function ebase::bits $oa when $oa > 16
= if _modrm.mod == 00b and SIB.base == 101b then (zero($oa))
else R[_prefix.rex.B ++ SIB.base][$oa-1:0]

For segment computation, we take into account the segment override prefixes. The
segment function takes the default segment register index and returnes the effective
index after applying the segment override prefixes.

function segment(def::bits 3)::bits 3
= if _prefix.x26 and not $x64_mode then iES
elif _prefix.x2E and not $x64_mode then iCS
elif _prefix.x36 and not $x64_mode then iSS
elif _prefix.x64 then iFS
elif _prefix.x65 then iGS
else def

The default segment register depends on the operand type. When the operand type is
es_rdi/ds_rsi the default segment register is the ES/DS segment. Otherwise, it either
the data segment DS or the stack segment SS. If any register except RBP and RSP was
used as the base register for effective address computation, then the default segment
register is the DS, otherwise it is the SS. The following function computes the default
segment when the operand type is not es_rdi/ds_rsi.

function def_segment::bits 3 when $oa == 16
= if _modrm.mod <> 00b and _modrm.rm == 110b then iSS
else iDS

function def_segment::bits 3 when $oa > 16
= if _prefix.rex.B == 0b then

if _modrm.mod <> 00b and _modrm.rm == 101b then iSS
elif _modrm.rm == 100b and _sib.base == 100b then iSS
elif _modrm.rm == 100b and _sib.base == 101b and _modrm.mod <> 00b then iSS
else iDS

else iDS

14.13 Operand Decode

In this section we describe two actions that read and write instruction operands:

action read_op($w::OpWidth, t::OpType)::bits $w
action write_op($w::OpWidth, value::bits $w, t::OpType)

Given the operand width and type, the first action fetches the operand. The second
action writes the new value to the given operand. The definition of both actions is
rather long because we need to make case discrimination on operand type, and there
are many operand types. We put the full definition of the action into Appendix R. In this
section we describe operand types and define helper actions for reading and writing
each operand type.

Table 14.1 shows the meaning of each operand. There are eight groups of operand
types:

1. general-purpose registers,

175

Type Meaning

reg R[_prefix.rex.R++_modrm.reg]

reg_rm R[_prefix.rex.B++_modrm.rm] and _modrm.mod==11b

reg_mem R[_prefix.rex.B++_modrm.rm] if _modrm.mod==11b

reg_mem memory at (segment, ea) if _modrm.mod<>11b

mem memory at (segment, ea) and _modrm.mod<>11b

imm immediate operand in the instruction

imm2 second immediate operand in the instruction

mem_ptr (sel, offset) pair in memory at (segment, ea)

mem_pair pair in memory at (segment, ea)

imm_ptr (sel, offset) pair in the instruction

es_rdi memory at (ES, RDI)

ds_rsi memory at (segment, RSI)

creg CR[_prefix.reg.R++_modrm.reg]

sreg SR[_modrm.reg]

dreg DR[_modrm.reg]

mmx FPR[_modrm.reg]

mmx_rm FPR[_modrm.rm] and _modrm.mod==11b

mmx_mem FPR[_modrm.rm] if _modrm.mod==11b

mmx_mem memory at (segment, ea) if _modrm.mod<>11b

xmm XMM[_prefix.rex.R++_modrm.reg]

xmm_rm XMM[_prefix.rex.B++_modrm.rm] and _modrm.mod==11b

xmm_mem XMM[_prefix.rex.B++_modrm.rm] if _modrm.mod==11b

xmm_mem memory at (segment, ea) if _modrm.mod<>11b

moffset memory at (DS, _imm)

rel_off relative offset in the instruction

rax..r15 R[0++i]

rax_r8..rdi_r15 R[_prefix.rex.B++i]

rflags RFLAGS

cs..gs SR[i]

cr8 CR[1000b]

const_0 constant operand with value 0

const_1 constant operand with value 1

Table 14.1: Operand Decode

2. segment register,

3. control registers,

4. debug registers,

5. floating-point and multimedia registers,

176

6. memory operands,

7. immediate operands,

8. constants: 0 and 1.

Constant and immediate operand are read-only. Memory operands are read and writ-
ten using logical memory access actions lread and lwrite. For each type of register
operand, we define separate read/write actions which are then invoked in the read_op/write_op
actions.

The following operand types specify general-purpose registers:

reg, reg_rm, reg_mem (when _modrm.mod==11b),
rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi,
rax_r8, rcx_r9, rdx_r10, rbx_r11, rsp_r12, rbp_r13, rsi_r14, rdi_r15.

For the first three types, the REX and the ModRM provide the register index. For the
remaining types, the index is computed as follows.

function encode_gpr(t::OpType)::bits 4
= if t == rax then 0000b
elif t == rcx then 0001b
elif t == rdx then 0010b
elif t == rbx then 0011b
elif t == rsp then 0100b
elif t == rbp then 0101b
elif t == rsi then 0110b
elif t == rdi then 0111b
elif t == rax_r8 then _prefix.rex.B ++ 000b
elif t == rcx_r9 then _prefix.rex.B ++ 001b
elif t == rdx_r10 then _prefix.rex.B ++ 010b
elif t == rbx_r11 then _prefix.rex.B ++ 011b
elif t == rsp_r12 then _prefix.rex.B ++ 100b
elif t == rbp_r13 then _prefix.rex.B ++ 101b
elif t == rsi_r14 then _prefix.rex.B ++ 110b
else _prefix.rex.B ++ 111b

One would expect that reading $w bits from the register with the index idx is simply
R[idx][$w-1:0]. However, the architecture allows to access the second byte of the first
eight registers when there is no REX prefix.

action read_gpr($w::{8, 16, 32, 64}, idx::bits 4)::bits $w
if $w > 8 or rex_present(_prefix) or idx < 0100b then return R[idx][$w-1:0]
else assume $w == 8

return R[idx & 0011b][15:8]

Writing a general-purpose register is further complicated with the fact that 32-bit writes
are zero-extended to 64-bit writes.

action write_gpr($w::{8, 16, 32, 64}, val::bits $w, idx::bits 4)
if $w > 8 or rex_present(_prefix) or idx < 0100b then
write val to R[idx][$w-1:0]
if $w == 32 then write zero(32) to R[idx][63:32]

else assume $w == 8
write val to R[idx & 0011b][15:8]

177

When we want to write a register by its name rather than by its index, we use the
following pattern:

write gpr($w, x, RSP) to RSP

where the function gpr takes care of zero-extending 32-bit values.

function gpr($w::{8, 16, 32, 64}, new_val::bits $w, old_val::bits 64)::bits 64
= if $w >= 32 then zxt(64, new_val)
else old_val[63:$w]++new_val[$w-1:0]

The operand types sreg, es, cs, ss, ds, and fs refer to the segment registers. The index
of the segment register for the sreg operand type is equal to _modrm.reg. For the other
types, the index is computed as follows.

function encode_sr(t::OpType)::bits 3
= if t == es then 000b
elif t == cs then 001b
elif t == ss then 010b
elif t == ds then 011b
elif t == fs then 100b
else 101b

Writing segment registers is complicated because it involves fetching a descriptor from
the descriptor. We define actions read_sr and write_sr in chapter L.

The operand types creg and cr8 refer to the control registers. The register index for the
creg type is equal to _prefix.rex.R++_modrm.reg. For the cr8 type the register index is
1000b. We define actions read_cr and write_cr in chapter N.

The operand types xmm*, mmx*, dreg refer to media registers and debug registers. As
we do not model media and debug features, we give dummy definitions for reading and
writing these registers.

action write_dr($w::{32, 64}, val::bits $w, idx::bits 3)
write zxt(64, val) to DR[idx]

action read_dr($w::{32, 64}, idx::bits 3)::bits $w
return DR[idx][$w-1:0]

action write_mmx($w::{8, 16, 32, 64}, val::bits $w, idx::bits 3)
write val to FPR[idx][$w-1:0]

action read_mmx($w::{8, 16, 32, 64}, idx::bits 3)::bits $w
return FPR[idx][$w-1:0]

action write_xmm($w::{8, 16, 32, 64, 128}, val::bits $w, idx::bits 4)
write val to XMM[idx][$w-1:0]

action read_xmm($w::{8, 16, 32, 64, 128}, idx::bits 4)::bits $w
return XMM[idx][$w-1:0]

We already discussed address computation for memory operands in previous sections.
For reading and writing the logical memory we need to provide the origin of the access
as one of the arguments. Since we are reading/writing the memory operand, the origin
is either data or fsgs depending on the chosen segment register.

function segment_origin(x::SRIndex)::Origin
= if x == iFS or x == iGS then fsgs
else data

Note that even if the memory operand is in the code or the stack segment, the origin is
data, because the memory operand is data.

178

CHAPTER

FIFTEEN

STACK AND STACK OPERATIONS

The current stack is defined by two registers: SS and RSP. The SS register specifies the
stack segment. The RSP register points to the top of the stack, which is the offset of the
last pushed data. The stack grows downwards, i.e. a push operation decrements the
RSP, and a pop operation increments the RSP. The width of the stack pointer depends on
operating mode, and we denote it as $sa (stack address width, see section 13.3).

We define a push operation as an action that

• takes the data width in bits, the data, and the current stack pointer,

• decrements the stack pointer by the data width,

• writes the given data into the stack segment at the new stack pointer.

action push($n::Width, val::bits $n, rsp::bits $sa)::bits $sa
let next_rsp = rsp - bits($sa, $n)
call lwrite(stack, $n, val, SS, $sa, next_rsp)
return next_rsp

A pop operation does the opposite of a push operation:

• it takes the data width in bits and the current stack pointer,

• it reads the stack segment at the current stack pointer,

• increments the stack pointer by the data width,

• returns the read data and the new stack pointer.

action pop($n::Width, rsp::bits $sa)::(bits $n, bits $sa)
call val = lread(stack, $n, SS, $sa, rsp)
return (val, rsp + bits($sa, $n))

For the sake of convenience, we define two more actions that perform push/pop condi-
tionally depending of the given flag:

179

action push_if(cond::bit, $n::Width, val::bits $n, rsp::bits $sa)::bits $sa
if cond then call next_rsp = push($n, val, rsp)

return next_rsp
else return rsp

action pop_if(cond::bit, $n::Width, rsp::bits $sa)::(bits $n, bits $sa)
if cond then call (val, next_rsp) = pop($n, rsp)

return (val, next_rsp)
else return (zero($n), rsp)

15.1 Inner Stack

In legacy mode, the task segment stores a stack segment selector and a stack pointer
for each system privilege level. So, there are three 48-bit strings in the task segment.
The upper 16-bits of a bit string contain the stack selector, the remaining bits contain
the stack pointer. In long mode, a stack is specified only by the 64-bit stack pointer and
the stack selector is assumed to be null. The task segment stores three stacks corre-
sponding to the privilege levels. But in addition to it, the task segment also stores stacks
in the interrupt-stack-table (IST). These stacks are used to during control transfer to an
interrupt handler if the ist field of the gate descriptor is not zero. Taking all this into
account, we define the inner_stack function that returns the new stack corresponding
to the specified cpl and ist values. In long mode, if ist is not zero then the stack is read
from IST, otherwise the stack corresponding to the specified privilege level is returned.
The stack is returned as a pair of stack segment register and stack pointer. Therefore,
in legacy mode, the inner_stack function fetches the descriptor corresponding to the
stack selector and performs validity checks.

action inner_stack(ist::bits 3,
new_cpl::bits 2)::(bits 16, DataSegment, bits 64) when $long_mode

if ist == 000b and new_cpl == CPL then
return (SS.sel, desc_from_sr(SS), RSP & FFFFFFFFFFFFFFF0h)

else call rsp = tss_rsp(new_cpl, ist)
return (zxt(16, new_cpl), null_stack_desc, rsp)

The null_stack_desc function returns a dummy data descriptor with attributes that
specify a present, writable data segment. The function is defined in section 13.7. The
tss_rsp action reads the stack pointer from the IST and is defined in section 13.14.

The desc_from_sr function takes a segment register and reconstructs a data segment
descriptor from the segment register components. It unscales the limit and copies the
attribute bits.

function desc_from_sr(sr::SR)::DataSegment
= let attr = sr.attr::DataAttr in
let limit = (if attr.G then sr.limit[31:12]

else sr.limit[19:0]) in
DataSegment with [limit1 = limit[15:0], base1 = sr.base[23:0],

A = attr.A, W = attr.W, E = attr.E,
DPL = attr.DPL, P = attr.P,
limit2 = limit[19:16], AVL = attr.AVL,
DB = attr.DB, G = attr.G,
base2 = sr.base[31:24]]

180

In legacy mode, the inner_stack action reads both the stack selector and the stack
pointer from the task state segment and fetches the stack descriptor from the descriptor
table.

action inner_stack(ist::bits 3,
new_cpl::bits 2)::(bits 16, DataSegment, bits 64) when $legacy_mode

call (esp, sel) = tss_esp_ss(new_cpl)
call (desc, desc_valid) = read_desc(sel)
fail exception(xTS, sel & FFF8h) when not desc_valid
call check_stack(task, sel, desc, new_cpl, 0b)
return (sel, desc, zxt(64, esp))

The tss_esp_ss action is defined in section 13.14. This action reads the stack selector
and the stack pointer corresponding to the given privilege level from the TSS.

181

182

CHAPTER

SIXTEEN

FAR CONTROL TRANSFER

This chapter describes the mechanism for control transfer between two code segments.
Such control transfer is called far control transfer, and it occurs during a far jump, a far
procedure call, and an interrupt handler call. In all three cases, control transfer follows
the same general algorithm, although each case has its own peculiarities:

1. The jump and procedure call instructions take the target of control transfer as a pair
of (selector, offset), where the selector defines the target code segment and the
offset defines the offset of the target instruction in the target code segment. In case
of an interrupt handler call, the address of the handler is computed based on the
interrupt vector, which defines the target entry in the interrupt descriptor table.

2. In case of an interrupt handler/procedure call, the return address is saved in the
stack.

3. A descriptor desc is fetched from the descriptor table using the selector or the vector

as an index.

4. Privilege level checks are performed to ensure that the current code is allowed to
access the desc.

5. The rest of control transfer depends on the type of the desc descriptor.

• if desc is a code segment then it is the target code segment (this case cannot
happen during an interrupt handler call):

– load the selector and desc into the CS register,

– load the offset into the RIP register.

• if desc is a call-gate descriptor then the target code segment selector and offset
are stored in desc (this case cannot happen during interrupt handler call):

– fetch the target code segment descriptor cs_desc from the descriptor table
using desc.sel,

– check that the current code is allowed to access the fetched descriptor,

183

– switch the stacks and copy parameters if necessary,

– load desc.sel and cs_desc into the CS register,

– load desc.offset into the RIP register,

– update the CPL according to the cs_desc.DPL.

• if desc is a task segment descriptor, then perform a task switch by loading reg-
ister states from the task segment.

• if desc is a task gate descriptor, then the selector of the target task segment is
stored in desc.sel:

– fetch the task segment descriptor tss_desc from the descriptor table using
desc.sel.

– check that the current code is allowed to access the fetched descriptor.

– perform a task switch to the task defined by tss_desc.

• if desc is a trap gate descriptor then perform all the steps from the call-gate
descriptor case. Additionally, save the flags register into the stack and if there
is an error code associated with vector then push the error code into stack. This
case can happen only during an interrupt handler call.

• if desc is an interrupt gate descriptor then disable maskable interrupt and per-
form the same steps as in the trap gate descriptor case. This case can happen
only during an interrupt handler call.

It is possible to return from an interrupt handler or a procedure using the IRET and the
RETF instructions, which perform control transfer to the return address loaded from the
stack. In the subsequent sections we formally define

• far jump,

• far procedure call,

• interrupt handler call,

• return from a procedure,

• return from an interrupt handler.

16.1 Far Jump

In 16-bit mode, the far jump instruction follows a simplified scheme. It computes the
base address of the target code segment directly from the given selector. The current
privilege level and the attributes of the code segment remain unchanged:

action jmp_far(sel::Selector, offset::bits $z) when $x16_mode
fail exception(xGP, 0000h) when nat(offset) > nat(CS.limit)
write sel to CS.sel
write zxt(64, sel ++ 0h) to CS.base
write zxt(64, offset) to RIP

In protected mode, the far jump instruction fetches a descriptor from the descriptor ta-
ble using the given selector as an index, asserts that the descriptor is valid and present,
and makes a case distinction based on the descriptor type.

184

action jmp_far(sel::Selector, offset::bits $z) when not $x16_mode
call (desc, desc_valid) = read_desc(sel)
fail exception(xGP, sel & FFF8h) when not desc_valid
fail exception(xNP, sel & FFF8h) when not desc.P
if isCodeSegment(desc) then call jmp_code_segment(sel, desc, zxt(64, offset))
elif isCallGate(desc) then call jmp_via_call_gate(sel, desc)
elif isTSS(desc) then call task_switch(sel, desc)
elif isTaskGate(desc) then call task_switch_gate(sel, desc)
else fail exception(xGP, sel & FFF8h)

The read_desc action is defined in section 13.9. It returns a (descriptor, success indica-
tor) pair. The descriptor type-check predicates (isCodeSegment, etc) are defined implic-
itly based on the reserved bits of the corresponding layouts specified in sections 13.7,
13.8. The task switch actions task_switch and task_switch_gate are defined in section
16.5. In the rest of this section, we discuss the two remaining actions: jmp_code_segment
and jmp_via_call_gate.

The jmp_code_segment action performs a direct jump to the given target code segment
and the offset. Before changing the CS and the RIP registers, the action makes sure that

• the target code segment is accessible at the current privilege level,

• the target code segment is a valid code segment,

• the target offset is within the target code segment.

action jmp_code_segment(sel::Selector, desc::CodeSegment, rip::bits 64)
fail exception(xGP, sel & FFF8h) when not can_access_code(sel, desc, CPL)
call check_code(sys, sel, desc)
call check_rip(desc, rip)
write (sel with [RPL = CS.sel.RPL]) to CS.sel
write desc_attr(desc) to CS.attr
write zxt(64, desc.base) to CS.base
write desc.limit to CS.limit
write rip to RIP

The can_access_code function is defined in section 13.10. The check_code and check_rip

actions are defined in section 13.12. If any these checks fails, the processor raises an
exception. Note that the current privilege level CPL does not change and the request
privilege level of the new code segment selector CS.sel.RPL is inherited from the old
code segment selector.

The jmp_via_call_gate action reads the target code segment selector and the offset
from the given call-gate descriptor, fetches the target code segment descriptor, and
then performs a direct jump to the target code segment.

action jmp_via_call_gate(sel::Selector, gate::CallGate) when not $x16_mode
fail exception(xGP, sel & FFF8h) when not can_access_gate(gate)
call (upper, upper_valid) = read_upper_gate(sel)
fail exception(xGP, sel & FFF8h) when not upper_valid
let cs_sel = gate.sel with [RPL = 00b]
let rip = upper[31:0] ++ gate.offset
call (cs_desc, cs_desc_valid) = read_desc(cs_sel)
fail exception(xGP, cs_sel & FFF8h) when not cs_desc_valid
call jmp_code_segment(cs_sel, cs_desc, rip)

185

The can_access_gate function is defined in section 13.10. In long mode the upper 32
bits of the target offset are stored in the descriptor table entry next to the call-gate
descriptor. The action read_upper_gate takes care of checking the mode and fetching
the upper bits of the target offset. This action is defined in section 13.9.

16.2 Far Procedure Call

Procedures are implemented using the CALL and the RET instructions. The CALL instruc-
tion pushes the current instruction address in the stack and transfers control to the
first instruction of the procedure. The last instruction of the procedure must be a RET

instruction, which reads the return address from the stack, and transfers the control
back to the code that called the procedure.

In 16-bit mode, a far procedure call is similar to a far jump. The only difference is that
a procedure call saves the current code segment selector and the current instruction
pointer into the stack using the push action defined in chapter G.

action call_far(sel::Selector, offset::bits $z) when $x16_mode
fail exception(xGP, 0000h) when nat(offset) > nat(CS.limit)
call rsp1 = push($v, zxt($v, CS.sel), RSP[$sa-1:0])
call rsp2 = push($v, RIP[$v-1:0], rsp1)
write gpr($sa, rsp2, RSP) to RSP
write sel to CS.sel
write zxt(64, sel ++ 0h) to CS.base
write zxt(64, offset) to RIP

In protected mode, the far call instruction fetches a descriptor from the descriptor table
using the given selector as an index, asserts that the descriptor is valid and present,
and makes a case distinction based on the descriptor type.

action call_far(sel::Selector, offset::bits $z) when not $x16_mode
call (desc, desc_valid) = read_desc(sel)
fail exception(xGP, sel & FFF8h) when not desc_valid
fail exception(xNP, sel & FFF8h) when not desc.P
if isCodeSegment(desc) then call call_code_segment(sel, desc, zxt(64, offset))
elif isCallGate(desc) then call call_via_call_gate(sel, desc)
elif isTSS(desc) then call task_switch(sel, desc)
elif isTaskGate(desc) then call task_switch_gate(sel, desc)
else fail exception(xGP, sel & FFF8h)

Note that the definition of the call_far action is almost the same as the definition of the
jmp_far action except for invocations of the call_code_segment and call_via_call_gate

actions. Before we define these actions formally, let us describe the high-level algorithm
of these actions. Given the target code segment selector, descriptor, and the target
offset, the call_code_segment action makes a direct procedure call as follows:

1. Check that the code segment descriptor is accessible at the current privilege level.

2. Check that the code segment descriptor defines a valid code segment and the target
offset is within the code segment.

3. Push the current code segment selector CS.sel into the stack.

186

4. Push the current instruction pointer RIP into the stack.

5. Load the target code segment selector and descriptor into the CS register.

6. Load the target offset into the RIP register.

Notice that the current privilege level CPL remains unchanged throughout the direct
procedure call. When the procedure call is performed via a call-gate, the CPL can
change into a more privileged level. The change of the CPL triggers a stack switch.
A new stack is used in order to protect the higher privileged target code from the
lower privileged current code. Given the selector and the descriptor of a call-gate, the
call_via_call_gate action makes the following steps:

1. Check that the call-gate descriptor is accessible at the current privilege level.

2. Read the target code segment selector and the lower 32 bits of the target offset from
the call-gate descriptor.

3. If the operating mode is long mode then fetch the upper 32 bits of the target offset
from the descriptor table entry immediately next to the given call-gate descriptor.

4. Fetch the target code segment descriptor from the descriptor table using the target
code segment selector.

5. Check that the fetched code segment descriptor is valid and present.

6. Compute the new privilege level from DPL field of the code segment descriptor.

7. If the new privilege level is the same as the old privilege level then perform a direct
procedure call to the target code segment in the same way as in the call_code_segment

action.

8. If the new privilege level is more privileged than the old privilege level then

1. Load the new stack segment selector and the new stack pointer from the current
task state segment.

2. Fetch the new stack segment descriptor from the descriptor table and check that
it is valid and present.

3. Push the old stack segment selector and old stack pointer into the new stack.

4. Copy parameters from the old stack segment to the new stack segment. The
number of parameters to be copied is given in the params field of the call-gate
descriptor.

5. Push the current code segment selector CS.sel into the new stack.

6. Push the current instruction pointer RIP into the new stack.

7. Load the target code segment selector and descriptor into the CS register.

8. Load the target offset into the RIP register.

9. Load the new privilege level into the CPL register.

187

Control transfer to an interrupt handler makes the same steps with the exception that
it additionally pushes the flags register and the error code into the stack. As we do
not want to formally specify the shared steps twice, we extract these steps into actions
call_with_old_stack and call_with_new_stack, which perform direct call to the target
code segment in the old stack and the new stack respectively. Before proceeding with
the call_code_segment action, we need to explain the call_with_old_stack action.

The call_with_old_stack action makes all the steps from the algorithm that was de-
scribed for the call_code_segment action. Additionally, the call_with_old_stack action
can also push the flags and the error code into the stack depending on the given call
options. Call options is a record the fields of which enable/disable some steps in the
call_with_old_stack and the call_with_new_stack actions.

record CallOptions
field cpl::bits 2
field ist::bits 3
field params::bits 5
field flags::bit
field ecode::bit
field ecodeval::bits 16

cpl is the new privilege level.

ist is the index into the interrupt stack table.

params is the number of parameters to be copied between the old and the new stack.

flags indicates whether to push the flags into the stack or not.

ecode indicates whether to push the error code into the stack or not.

ecodeval is the value of the error code.

The call_with_old_stack action takes five arguments: the target code segment selector
and descriptor, the target offset, the width of the push operation, and the call options.

action call_with_old_stack(sel::Selector, desc::CodeSegment,
rip::bits 64, $n::{16, 32, 64}, options::CallOptions)

fail exception(xGP, sel & FFF8h) when not can_access_code(sel, desc, CPL)
call check_code(sys, sel, desc)
call check_rip(desc, rip)
call rsp1 = push_if(options.flags, $n, RFLAGS[$n-1:0], RSP[$sa-1:0])
call rsp2 = push($n, zxt($n, CS.sel), rsp1)
call rsp3 = push($n, RIP[$n-1:0], rsp2)
call rsp4 = push_if(options.ecode, $n, zxt($n, options.ecodeval), rsp3)
write gpr($sa, rsp4, RSP) to RSP
write (sel with [RPL = CS.sel.RPL]) to CS.sel
write desc_attr(desc) to CS.attr
write zxt(64, desc.base) to CS.base
write desc.limit to CS.limit
write rip to RIP

The can_access_code function is defined in section 13.10. The check_code and check_rip

actions are defined in section 13.12. The push and push_if actions are defined in chapter
G. Note that the current privilege level CPL does not change and the request privilege
level of the new code segment selector CS.sel.RPL is inherited from the old code seg-
ment selector.

188

The call_code_segment action simply invokes the call_with_old_stack action with the
correct call options.

action call_code_segment(sel::Selector, desc::CodeSegment, offset::bits 64)
let options = CallOptions with [flags=0b, ecode=0b]
call call_with_old_stack(sel, desc, offset, $v, options)

Assuming the existence of the call_with_new_stack action, we can define the call_via_call_gate

action following the algorithm described above:

action call_via_call_gate(sel::Selector, gate::CallGate)
fail exception(xGP, sel & FFF8h) when not can_access_gate(gate)
call (upper, upper_valid) = read_upper_gate(sel)
fail exception(xGP, sel & FFF8h) when not upper_valid
let cs_sel = gate.sel with [RPL = 00b]
let rip = upper[31:0] ++ gate.offset
call (cs_desc, cs_desc_valid) = read_desc(cs_sel)
fail exception(xGP, cs_sel & FFF8h) when not cs_desc_valid
let new_cpl = code_cpl(cs_desc)
let $gs = gate_size(gate)::{16, 32, 64}
if new_cpl == CPL then
let options = CallOptions with [flags=0b, ecode=0b]
call call_with_old_stack(cs_sel, cs_desc, rip, $gs, options)

else
let options = CallOptions with [cpl = new_cpl, ist = 000b,

params = gate.params,
flags=0b, ecode=0b]

call call_with_new_stack(cs_sel, cs_desc, rip, $gs, options)

The can_access_gate function is defined in section 13.10. The action read_upper_gate

fetches the upper bits of the target offset. This action is defined in section 13.9. The
function code_cpl computes the new privilege level based on the target code segment
descriptor, and it is defined in section 13.10.

In the rest of this section we define the call_with_new_stack action. This action is the
most difficult action in the whole instruction set because it operates on two stacks: the
old stack and the new stack. Before we dive into details, let us discuss the high-level
steps of the action. The action takes five arguments: the target code segment selector
and descriptor, the target offset, the width of the push operation, and the call options.
The algorithm for the action looks like this:

1. Check that

• the target code segment descriptor is accessible at the new privilege level.

• the target code segment descriptor defines a valid code segment.

• the target offset is within the target code segment limits.

2. Load the new stack segment selector and pointer from the task state segment.

3. Fetch the new stack segment descriptor from the descriptor table and checks that it
is valid and present.

4. Load all the parameters from the old stack and saves them in a temporary array.

5. Save the old stack segment selector and the old stack pointer in temporary registers.

189

6. Save the old code segment selector and the old instruction pointer in temporary
registers.

7. Load the new stack segment selector and descriptor into the SS register.

8. Load the new stack pointer into the RSP register.

9. Load the target code segment selector and descriptor into the CS register.

10. Load the target offset into the RIP register.

11. Load the new privilege level into the CPL register.

12. Use the chain statement in order to apply all register writes. As a result of this
statement, the SS and the RSP registers point to the new stack in the subsequent
steps of the algorithm.

13. Push the old stack selector from the temporary register into the new stack.

14. Push the old stack pointer from the temporary register into the new stack.

15. Push the parameters from the temporary array into the new stack.

16. Push the flags register into the new stack if the call options require it.

17. Push the old code selector from the temporary register into the new stack.

18. Push the old instruction pointer from the temporary register into the new stack.

19. Push the error code into the new stack if the call options require it.

We need temporary registers for steps 5, 6, 7. For storing the parameters we use an
array of 32 elements because the number of parameters cannot exceed 32:

register _params::array bits 5 of bits 64

As the number of parameters can be less than 32, we also need to store the counter:

register _params_cnt::bits 5

For storing the selector, pointers, and options we use the following register:

register _call_context::CallContext
record CallContext
field ss_sel::bits 16
field rsp::bits 64
field cs_sel::bits 16
field rip::bits 64
field gate_size::bits 3
field options::CallOptions

Now we can give the definition of the call_with_new_stack action.

action call_with_new_stack(sel::Selector, desc::CodeSegment,
rip::bits 64, $n::{16, 32, 64}, options::CallOptions)

fail exception(xGP, sel & FFF8h) when not can_access_code(sel, desc, options.cpl)
call check_code(sys, sel, desc)
call check_rip(desc, rip)

190

call (ss_sel, ss_desc, rsp) = inner_stack(options.ist, options.cpl)
call load_params($n, options.params)
call save_context($n, options)
write ss_sel to SS.sel
write desc_attr(ss_desc) to SS.attr
write zxt(64, ss_desc.base) to SS.base
write rsp to RSP
write (sel with [RPL = options.cpl]) to CS.sel
write desc_attr(desc) to CS.attr
write zxt(64, desc.base) to CS.base
write desc.limit to CS.limit
write rip to RIP
write options.cpl to CPL
chain push_in_new_stack

The inner_stack action is defined in chapter G. Given the interrupt stack table index ist

and the new privilege level cpl, the action loads the new stack selector, descriptor, and
pointer.

The load_params action will be defined later in this section. Given the width of a param-
eter and the number of the parameters, the action loads the parameters from the old
stack into the _params array and saves the number of the parameters in the _params_cnt

register.

The save_context action stores the options, the gate size, and the old values of the stack
and code registers into the _call_context register.

action save_context($n::{16, 32, 64}, options::CallOptions)
write options to _call_context.options
write bits(3, $n/16) to _call_context.gate_size
write SS.sel to _call_context.ss_sel
write RSP to _call_context.rsp
write CS.sel to _call_context.cs_sel
write RIP to _call_context.rip

The push_in_new_stack action performs steps 13–20 from the algorithm. Since this ac-
tion is invoked using the chain statement, all register writes are already applied when
the action starts executing. Thus, the SS and the RIP registers define the new stack, and
the _call_context register fields contain values written by the save_context action.

action push_in_new_stack
let ctx = _call_context
let opt = ctx.options
let $n = (nat(ctx.gate_size) * 16)::{16, 32, 64}
call rsp1 = push($n, zxt($n, ctx.ss_sel), RSP[$sa-1:0])
call rsp2 = push($n, ctx.rsp[$n-1:0], rsp1)
call rsp3 = push_params($n, rsp2)
call rsp4 = push_if(opt.flags, $n, RFLAGS[$n-1:0], rsp3)
call rsp5 = push($n, zxt($n, ctx.cs_sel), rsp4)
call rsp6 = push($n, ctx.rip[$n-1:0], rsp5)
call rsp7 = push_if(opt.ecode, $n, zxt($n, opt.ecodeval), rsp6)
write gpr($sa, rsp7, RSP) to RSP

In order to complete the description of the far procedure call mechanism, we need
to define how the parameters are copied from the old stack into the new stack. This

191

happens in two steps:

1. Load the parameters from the old stack into the _params array using the load_params

action.

2. Push the parameters from the _params array into the new stack using the push_params

action.

The load_params action is an unrolled loop, where each iteration of the loop loads a
single parameter from the stack. Let the $n denote the width of each parameter and
the cnt denote the number of parameters, then the load_params action has the following
pseudocode:

_params_cnt = cnt
for idx from 11110b downto 00000b do
if idx < param_cnt then
_params[idx] = pop $n bytes from the stack

By putting the body of the loop into the load_param action and unrolling the loop, we get
the definition of the load_params action (we do not show iterations 28–1 for brevity):

action load_params($n::{16, 32, 64}, cnt::bits 5)
let rsp30 = RSP[$sa-1:0]
let idx30 = 11110b
write cnt to _params_cnt
call (idx29, rsp29) = load_param($n, cnt, idx30, rsp30)
call (idx28, rsp28) = load_param($n, cnt, idx29, rsp29)
call (idx0, rsp0) = load_param($n, cnt, idx1, rsp1)
call (idx_, rsp_) = load_param($n, cnt, idx0, rsp0)

The load_param action takes four arguments: the width of each parameter, the number
of the parameters, the index of the current parameter, the stack pointer. If the pa-
rameter index is smaller then the number of the parameters then the action loads the
parameter from the stack. The action returns a decremented index and the new stack
pointer.

action load_param($n::{16, 32, 64}, cnt::bits 5,
idx::bits 5, rsp::bits $sa)::(bits 5, bits $sa)

if idx >= cnt then return (idx - 00001b, rsp)
else call (val, new_rsp) = pop($n, rsp)

write zxt(64, val) to _params[idx]
return (idx - 00001b, new_rsp)

The push_params action does exact opposite of the load_params action as shown in the
following pseudocode:

for idx from 00000b to 11110b do
if idx < param_cnt then
push _params[idx] into the stack

By unrolling the loop and putting the loop body into the push_param action, we get the
definition of the push_params action (we do not show iterations 2–30 for brevity):

action push_params($n::{16, 32, 64}, rsp::bits $sa)::bits $sa
let rsp0 = rsp

192

let idx0 = 00000b
let cnt = _params_cnt
call (idx1, rsp1) = push_param($n, cnt, idx0, rsp0)
call (idx2, rsp2) = push_param($n, cnt, idx1, rsp1)
call (idx31, rsp31) = push_param($n, cnt, idx30, rsp30)
return rsp31

Similarly to the load_param action, the push_param action checks if the parameter index
is smaller that the number of the parameters, and then pushes the parameter into the
stack.

action push_param($n::{16, 32, 64}, cnt::bits 5,
idx::bits 5, rsp::bits $sa)::(bits 5, bits $sa)

if idx >= cnt then return (idx + 00001b, rsp)
else call new_rsp = push($n, _params[idx][$n-1:0], rsp)

return (idx + 00001b, new_rsp)

16.3 Control Transfer to an Interrupt Handler

In this section we describe the control transfer mechanism to an interrupt handler. The
jisr action is defined as follows:

action jisr
if jisr_event.ecode == epsilon then
call icall(jisr_event.vector, 0b, 0000h)

else
call icall(jisr_event.vector, 1b, jisr_event.ecode)

where the icall action calls the interrupt handler corresponding to the given vector.
The second argument of the icall indicates whether the interrupt has an associated
error code. The third argument contains the actual value of the error code.

In real mode an interrupt descriptor table entry is a pair of a code segment selector and
an offset within the code segment. The icall action fetches the entry corresponding
to the given vector and computes the address of the handler using simplified the seg-
mentation mechanism of real mode. Before performing the control transfer, the action
pushes the flags, the old code segment selector, and the old instruction pointer into the
stack. Besides that, the action disables maskable interrupt and clears debug flags.

action icall(vector::bits 8, ecode::bit, ecodeval::bits 16) when $x16_mode
call (sel, ip) = read_idt(vector)
fail exception(xGP, 0000h) when nat(ip) > nat(CS.limit)
call rsp1 = push(16, RFLAGS[15:0], RSP[$sa-1:0])
call rsp2 = push(16, CS.sel, rsp1)
call rsp3 = push(16, RIP[15:0], rsp2)
let adjucted_flags = RFLAGS with [TF = 0b, IF = 0b, AC = 0b, RF = 0b]
write adjucted_flags to RFLAGS
write gpr($sa, rsp3, RSP) to RSP
write sel to CS.sel
write zxt(64, sel ++ 0h) to CS.base
write zxt(64, ip) to RIP

The read_idt action is defined in section 13.9. The push action is defined in chapter G.

193

In protected mode, an interrupt table entry is either a trap gate, or an interrupt gate, or
a task gate. In this mode, the read_idt action returns the gate descriptor and the upper
32 bits of the handler’s offset (the lower 32 bits are stored inside the gate descriptor).
Depending on the gate type, the icall action invokes either the icall_via_gate action
or the task_switch_gate action. The latter action is defined in chapter 16.5.

action icall(vector::bits 8, ecode::bit, ecodeval::bits 16) when not $x16_mode
call (desc, upper) = read_idt(vector)
if isIntrGate(desc) or isTrapGate(desc) then
call icall_via_gate(desc, upper, vector, ecode, ecodeval)

elif isTaskGate(desc) then
call task_switch_gate(zxt(14, vector) ++ 10b, desc)

else fail exception(xGP, zxt(14, vector) ++ 10b)

The icall_via_gate action is very similar to the call_via_call_gate action defined in the
previous section. The action takes the gate descriptor, the upper 32 bits of the target
offset, the vector, the error code indicator, and the error code value. The action makes
the following steps:

1. Check that the given gate is accessible at the current privilege level.

2. From the gate descriptor read the target code segment selector and the lower 32
bits of the target offset.

3. Compute the full target offset by combining the upper bits with the lower bits.

4. Fetch the target code segment descriptor from the descriptor table using the target
selector.

5. Check that the fetched descriptor is valid and present.

6. Clear debug flags and the interrupt flag (if the gate is an interrupt gate).

7. Compute the new privilege level based on the target code segment descriptor.

8. If the new privilege level is the same as the current privilege level then make a direct
call to the handler with the old stack.

9. Otherwise, make a direct call to the handler with the new stack.

The described algorithm can be translated into a formal definition as follows:

action icall_via_gate(gate::IntrOrTrapGate, upper::bits 32,
vector::bits 8, ecode::bit, ecodeval::bits 16)

fail exception(xGP, sel) when not can_access_gate(gate)
let rip = upper[31:0] ++ gate.offset
let cs_sel = gate.sel with [RPL = 00b]
call (cs_desc, cs_valid) = read_desc(cs_sel)
fail exception(xGP, cs_sel & FFF8h) when not cs_valid
fail exception(xGP, cs_sel & FFF8h) when not cs_desc.P
write 0b to RFLAGS.TF
write 0b to RFLAGS.NT
write 0b to RFLAGS.RF
write 0b to RFLAGS.VM
write 0b to RFLAGS.IF when isIntrGate(gate)

194

let $gs = gate_size(gate)::{16, 32, 64}
let new_cpl = code_cpl(cs_desc)
if $legacy_mode and new_cpl == CPL then
let options = CallOptions with [flags=1b, ecode=ecode, ecodeval=ecodeval]
call call_with_old_stack(cs_sel, cs_desc, rip, $gs, options)

else
let options = CallOptions with [cpl = new_cpl, ist = gate.ist,

params = 00000b, flags=1b,
ecode = ecode, ecodeval = ecodeval]

call call_with_new_stack(cs_sel, cs_desc, rip, $gs, options)

The can_access_gate function is defined in section 13.10. The action read_upper_gate

fetches the upper bits of the target offset. This action is defined in section 13.9.
The function code_cpl computes the new privilege level based on the target code seg-
ment descriptor, and it is defined in section 13.10. The call_with_old_stack and the
call_with_new_stack stack actions are defined in the previous section.

16.4 Far Return

Far return control transfer occurs when a procedure exits using the RETF instruction
or when an interrupt handler exits using the IRET instruction. These instructions read
the return address from the stack and load it into the RIP and CS registers. The IRET

instruction also loads the flags from the stack. In case the stack was switched during
control transfer to the procedure or the interrupt handler, the return instructions read
the old stack pointers from the current stack and switch the stacks back.

We extract the common steps from the RETF and IRET instructions into the ret_far action,
which takes two arguments: skip and intr. The first argument specifies how many bytes
must be popped from the stack in order to remove the parameters of the procedure. The
second argument indicates whether the action is called from the IRET or from the RETF.

In 16-bit mode, the ret_far action makes the following steps:

1. Pop the return address (code segment selector, instruction pointer) from the stack.

2. In case of a return from an interrupt handler, pop the flags from the stack.

3. Pop and discard the parameters from the stack, i.e. pop the skip number of bytes
from the stack.

4. Adjust and write the popped flags into the RFLAGS register.

5. Compute the base address of the return code segment as selector * 16.

6. Write the return code segment selector and base address to the CS register.

7. Write the return instruction pointer to the RIP register.

8. Write the new stack pointer to the RSP register.

By formalizing these steps we get the following definition:

195

action ret_far(skip::bits 16, intr::bit) when $x16_mode
call (rip, cs_sel, flags, rsp) = pop_rip_cs_flags(skip, intr, RSP[$sa-1:0])
write adjust_flags_ret(RFLAGS[63:$v]++flags) to RFLAGS when intr
fail exception(xGP, 0000h) when nat(rip) > nat(CS.limit)
call write_rip_cs(zxt(64, rip), cs_sel, CS.attr,

zxt(64, cs_sel ++ 0h), CS.limit)
write gpr($sa, rsp, RSP) to RSP

The action pop_rip_cs_flags pops the instruction pointer, pops the code segment selec-
tor, conditionally pops the flags, and skips over the parameters in the stack.

action pop_rip_cs_flags(skip::bits 16, intr::bit, rsp::bits $sa)
::(bits $v, Selector, bits $v, bits $sa)

call (rip, rsp1) = pop($v, RSP[$sa-1:0])
call (x, rsp2) = pop($v, rsp1)
let cs_sel = x[15:0]::Selector
call (flags, rsp3) = pop_if(intr, $v, rsp2)
let rsp4 = rsp3 + zxt($sa, skip)
return (rip, cs_sel, flags, rsp4)

Before writing the popped flags into the RFLAGS register, we adjust them:

• Copy all read-only bits from the RFLAGS,

• Clear the debug resume flag RF,

• Copy the virtual 8086 indicator flags VM from the RFLAGS,

• Copy the virtual interrupt flags VIP and VIF from the RFLAGS if the current privilege
level indicates user software or the current operating mode is real mode.

• Copy the IO privilege level from the RFLAGS if the current privilege level indicates
user software.

• Copy the interrupt flag IF from the RFLAGS if the IO privilege level is higher (nu-
merically less) than the current privilege level.

The function adjust_flags_ret carries out all the discussed adjustments:

function adjust_flags_ret(f::Flags)::Flags
= let f1 = fixFlags(f, RFLAGS) in
let f2 = f1 with [RF = 0b, VM = RFLAGS.VM] in
adjust_IF_IOPL(adjust_VIF_VIP(f2))

function adjust_VIF_VIP(f::Flags)::Flags
= if 00b == CPL and not $real_mode then f
else f with [VIP = RFLAGS.VIP, VIF = RFLAGS.VIF]

function adjust_IF_IOPL(f::Flags)::Flags
= if RFLAGS.IOPL < CPL then f with [IF = RFLAGS.IF, IOPL = RFLAGS.IOPL]
elif 00b < CPL then f with [IOPL = RFLAGS.IOPL]
else f

Given the new flags and the old flags, the function fixFlags returns combined flags such
that all read-only flags are taken from the old flags and all remaining flags are taken
from the new flags. This function is defined implicitly based on the read-only attributes
of the Flags layout defined in section 12.2.

The action write_rip_cs updates the RIP and CS register with the given values:

196

action write_rip_cs(rip::bits 64, sel::Selector, attr::CodeAttr,
base::bits 64, limit::bits 32)

write rip to RIP
write sel to CS.sel
write attr to CS.attr
write base to CS.base
write limit to CS.limit

In 32- and 64-bit modes, the ret_far action is more complicated then in 16-bit mode.
The first difference is that we need to fetch the return code segment descriptor from
the descriptor table using the return code segment selector in the stack. We must
ensure that the descriptor is valid, present, and defines a code segment. Besides that,
we check that the return instruction pointer is within the return code segment and that
the return code is not more privileged than the current code (the privilege level of the
return code is specified by the RPL field of the return selector).

If the control transfer to the current procedure or the interrupt handler involved a stack
switch, the return action has to switch the stacks back. This is done by popping the old
stack selector and pointer from the current stack, and then writing them in to the SS

and RSP registers.

Summarizing all these differences, we get a definition of the ret_far action:

action ret_far(skip::bits 16, intr::bit) when not $x16_mode
call (rip, cs_sel, flags, rsp) = pop_rip_cs_flags(skip, intr, RSP[$sa-1:0])
write adjust_flags_ret(RFLAGS[63:$v]++flags) to RFLAGS when intr
call (temp_desc, cs_valid) = read_desc(cs_sel)
let cs_desc = temp_desc::CodeSegment
fail exception(xGP, cs_sel & FFF8h) when not cs_valid
fail exception(xNP, cs_sel & FFF8h) when not cs_desc.P
fail exception(xGP, cs_sel & FFF8h) when not can_ret(cs_sel)
let new_cpl = cs_sel.RPL
call check_code(sys, sel, cs_desc)
call check_rip(cs_desc, zxt(64, rip))
call write_rip_cs(zxt(64, rip), cs_sel, desc_attr(cs_desc),

cs_desc.base, cs_desc.limit)
if CPL == new_cpl and not ($long_mode and intr) then
write gpr($sa, rsp, RSP) to RSP

else call (new_rsp, rsp1) = pop($v, rsp)
call (x, rsp2) = pop($v, rsp1)
let ss_sel = x[15:0]::Selector
call ss_desc = ret_stack(ss_sel, new_cpl, $long_mode and cs_desc.L)
write ss_sel to SS.sel
write desc_attr(ss_desc) to SS.attr
write zxt(64, ss_desc.base) to SS.base
write ss_desc.limit to SS.limit
write gpr($v, new_rsp + zxt($v, skip), RSP) to RSP

The can_ret function is defined in section 13.10. The check_code and check_rip actions
are defined in section 13.12. The action ret_stack fetches the stack segment descriptor
using the stack segment selector, the new privilege level, and the new operating mode
indicator. The architecture allows null stack segments in system 64-bit mode. There-
fore, the ret_stack action checks whether the stack selector is null or not. If yes, it
returns a null stack descriptor as defined in section [Segment Descriptors] Otherwise,

197

the action fetches the stack descriptor from the descriptor table and checks that the
descriptor is valid using the check_stack action defined in section 13.13.

action ret_stack(sel::Selector, new_cpl::bits 2, new_x64_mode::bit)::DataSegment
if sel & FFF8h == 0000h then
fail exception(xGP, 0000h) when not new_x64_mode or new_cpl == 11b
fail exception(xGP, 0000h) when sel.RPL <> new_cpl
return null_stack_desc

else call (desc, desc_valid) = read_desc(sel)
fail exception(xGP, sel & FFF8h) when not desc_valid
call check_stack(sys, sel, desc, new_cpl, new_x64_mode)
return desc

16.5 Task Switch

Hardware task switch is a legacy operation, all modern operation systems implement
software task switch. In long mode hardware task switch is not supported at all. We
leave out formalization of hardware task switch as future work.

Assuming that the action task_switch performs hardware task switch, we can define the
action task_switch_gate which performs task switch via a given task gate.

action task_switch(sel::Selector, desc::TSS)
fail todo

action task_switch_gate(sel::Selector, gate::TaskGate)
fail exception(xGP, sel & FFF8h) when not can_access_gate(gate)
let tss_sel = gate.sel
call (temp_desc, tss_valid) = read_desc(tss_sel)
let tss_desc = temp_desc::TSS
fail exception(xGP, tss_sel & FFF8h) when not tss_valid
fail exception(xNP, tss_sel & FFF8h) when not tss_desc.P
fail exception(xGP, tss_sel & FFF8h) when not isTSS(tss_desc)
fail exception(xGP, tss_sel & FFF8h) when tss_desc.busy
call task_switch(tss_sel, tss_desc)

The action makes sure that the current code can access the given task gate descriptor,
and then fetches the task segment descriptor from the global descriptor table using the
selector field of the task gate. The task segment descriptor must be valid, present, and
available (not busy). If all these conditions hold, the action dispatches task switch to
the task segment.

198

CHAPTER

SEVENTEEN

VIRTUALIZATION

Besides operating modes, a processor with virtualization support has virtualization
modes, which are the host mode and the guest mode. We refer to software running
in host mode as a host, and to software running in guest mode as a guest. The goal
of virtualization is to execute the guest in a virtual machine with the ISA of the real
machine. The guest has full control of the virtual machine, in particular it can operate
at the system privilege level (CPL=00b). However, the guest does not control the real ma-
chine. The host with the hardware assistance monitors the guest execution and stops it
as soon as the guest makes a sensitive action, which is an action that would break virtu-
alization. After that, the host emulates the sensitive action for the guest and continues
the guest execution. In this chapter we describe the virtualization mechanism provided
by hardware.

The current virtualization mode is indicated by the _guest register. When the register
is set to one, then the processor is running in guest mode. Otherwise, the processor is
running in host mode. Any combination of an operating mode and a virtualization mode
is valid.

In order to switch to guest mode, the processor executes the VMRUN instruction. This
instruction has one operand: the physical address of the virtual machine control block
(VMCB), which stores the state of the guest registers, injected interrupts, and guest
exit conditions (also known as intercept conditions). The VMRUN instruction makes the
following steps:

1. Save the host registers into the special memory region, the physical address of which
is specified by the VM_HSAVE_PA register.

2. Load the guest registers from the state save area of the VMCB.

3. Load injected interrupts and exit conditions from the control area of the VMCB into
the _vmcb_ca register.

4. Run the instruction processing cycle until any of the exit conditions triggers.

5. Save the guest registers to the VMCB SSA.

199

6. Write the exit code, exit information into the control area of the VMCB.

7. Load the host registers from the VM_HSAVE_PA memory region.

Since the host instruction pointer RIP is saved in step 1 and restored in step 7, the
processor starts executing the instruction immediately next to the VMRUN instruction
when it returns from guest mode to host mode. Therefore, the host code that executes a
guest in a virtual machine is usually implemented as a loop around the VMRUN instruction:

initialize the VMCB at address x
repeat:
save extended host state
load extended guest state
VMRUN x
save extended guest state
load extended host state
check the exit code and fix the problem
enable and process interrupts
inject interrupts/exceptions to guest if necessary
goto repeat

In this code the extended guest/host state denotes all important registers that are not
saved and restored automatically by the VMRUN. The extended guest state can be saved
and restored using the VMSAVE and the VMLOAD instructions. There is no hardware assis-
tance for the extended host state, therefore it has to be saved and restored by software
explicitly.

Notice that the host controls guest execution by configuring the fields of the VMCB,
which is a 4K region in the physical memory space. The VMCB consists of two parts:
the control area (CA) and the state save area (SSA).

record VMCB
field CA::VMCB_CA
field SSA::VMCB_SSA

The CA starts at beginning of the VMCB, and the SSA starts at the offset 400h. Since the
size of the CA is much smaller than 400h, there is a region of reserved space between
the end of the CA and the start of the SSA. The purpose of the SSA is to store the values
of the guest registers. The CA stores guest exit conditions (intercepts), guest exit code,
injected events, guest TLB tag, the physical base address of the root nested page table.
In the following two sections we give detailed descriptions of the SSA and the CA.

17.1 Guest State Save Area — VMCB SSA

The guest state save area stores a large subset of the processor registers. These reg-
isters are saved and restored in the VMRUN, the VMLOAD and the VMSAVE instructions. The
registers that are not included in the SSA have to be saved and restored by the host
explicitly.

The VMRUN instruction saves and restores the following registers:

• the ES, CS, DS, SS segment registers including all the hidden state (the attributes,
the limit, the base address),

200

• the GDTR and the IDTR table descriptor registers,

• the CR0, CR3, CR4 control registers,

• the EFER register,

• the RFLAGS register,

• the DR6, DR7 debug registers,

• the CPL current privilege level register.

• the RSP stack pointer register,

• the RAX general-purpose register,

• the RIP instruction pointer register,

• the G_PAT guest page attribute table register if nested paging is enabled.

The remaining registers in the SSA are saved and restored by the VMSAVE/VMLOAD pair of
instructions. These register are:

• the FS, GS segment registers, including all the hidden state (the attributes, the
limit, and the base address),

• the LDTR local descriptor table register, including all the hidden state,

• the TR task segment register, including all the hidden state,

• the LSTAR, CSTAR, SFMASK fast control transfer registers,

• the KernelGSBase register,

• the SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP legacy fast control transfer registers,

• the CR2 page-fault address register,

• the branch optimization and debug registers that we do not include in our model:
DBGCTL, BR_FROM, BR_TO, LASTEXCPFROM, LASTEXCPTO.

We conclude this section by listing the definition of the VMCB_SSA. Because of many
reserved fields the definition is quite large.

layout VMCB_SSA
field ES_sel::bits 16
field ES_attr::bits 16
field ES_limit::bits 32
field ES_base::bits 64
field CS_sel::bits 16
field CS_attr::bits 16
field CS_limit::bits 32
field CS_base::bits 64
field SS_sel::bits 16
field SS_attr::bits 16
field SS_limit::bits 32
field SS_base::bits 64

201

field DS_sel::bits 16
field DS_attr::bits 16
field DS_limit::bits 32
field DS_base::bits 64
field FS_sel::bits 16
field FS_attr::bits 16
field FS_limit::bits 32
field FS_base::bits 64
field GS_sel::bits 16
field GS_attr::bits 16
field GS_limit::bits 32
field GS_base::bits 64
field GDTR_rsv1::bits 32
field GDTR_limit::bits 16
field GDTR_rsv2::bits 16 ignored
field GDTR_base::bits 64
field LDTR_sel::bits 16
field LDTR_attr::bits 16
field LDTR_limit::bits 32
field LDTR_base::bits 64
field IDTR_rsv1::bits 32 ignored
field IDTR_limit::bits 16
field IDTR_rsv2::bits 16 ignored
field IDTR_base::bits 64
field TR_sel::bits 16
field TR_attr::bits 16
field TR_limit::bits 32
field TR_base::bits 64
field rsv1::bits 64 ignored
field rsv2::bits 64 ignored
field rsv3::bits 64 ignored
field rsv4::bits 64 ignored
field rsv5::bits 64 ignored
field rsv6::bits 24 ignored
field CPL::bits 8
field rsv7::bits 32 ignored
field EFER::bits 64
field rsv8::bits 64 ignored
field rsv9::bits 64 ignored
field rsv10::bits 64 ignored
field rsv11::bits 64 ignored
field rsv12::bits 64 ignored
field rsv13::bits 64 ignored
field rsv14::bits 64 ignored
field rsv15::bits 64 ignored
field rsv16::bits 64 ignored
field rsv17::bits 64 ignored
field rsv18::bits 64 ignored
field rsv19::bits 64 ignored
field rsv20::bits 64 ignored
field rsv21::bits 64 ignored
field CR4::bits 64
field CR3::bits 64

202

field CR0::bits 64
field DR7::bits 64
field DR6::bits 64
field RFLAGS::bits 64
field RIP::bits 64
field rsv22::bits 64 ignored
field rsv23::bits 64 ignored
field rsv24::bits 64 ignored
field rsv25::bits 64 ignored
field rsv26::bits 64 ignored
field rsv27::bits 64 ignored
field rsv28::bits 64 ignored
field rsv29::bits 64 ignored
field rsv30::bits 64 ignored
field rsv31::bits 64 ignored
field rsv32::bits 64 ignored
field RSP::bits 64
field rsv33::bits 64 ignored
field rsv34::bits 64 ignored
field rsv35::bits 64 ignored
field RAX::bits 64
field STAR::bits 64
field LSTAR::bits 64
field CSTAR::bits 64
field SFMASK::bits 64
field KernelGSBase::bits 64
field SYSENTER_CS::bits 64
field SYSENTER_ESP::bits 64
field SYSENTER_EIP::bits 64
field CR2::bits 64
field rsv36::bits 64 ignored
field rsv37::bits 64 ignored
field rsv38::bits 64 ignored
field rsv39::bits 64 ignored
field G_PAT::bits 64
field DBGCTL::bits 64
field BR_FROM::bits 64
field BR_TO::bits 64
field LASTEXCPFROM::bits 64
field LASTEXCPTO::bits 64

17.2 Guest Control Area — VMCB CA

By writing to the guest control area, the host can

• enable or disable guest exits (intercepts) on various predefined conditions,

• specify the guest TLB tag, also known as the guest address space identifier (ASID),

• request a full TLB flush during the switch to the guest,

203

• specify the physical address of the nested root page table in case the nested pag-
ing is enabled,

• inject virtual interrupts and exceptions into the guest.

After a guest exit, the host can examine the guest control area and learn

• the guest exit code, which specifies the condition that triggered the intercept,

• the guest exit information, which helps to handle the intercept.

We will give the formal definition of the guest control area at the end of this section.
Before that we need to discuss each of the above mentioned aspects. We start with the
intercept conditions.

There is a predefined set of sensitive actions which could potentially break guest virtual-
ization. The host can enable intercept of each of those actions by setting the associated
bit in the guest control area. The set of sensitive actions includes:

• access to the control registers, the flags register, the debug registers, the descrip-
tor table registers, the task register, and the model-specific registers;

• access to the input/output ports;

• execution of the system instructions;

• exceptions and interrupts;

• the INIT signal and processor shutdown.

The set of the input/output ports and the set of the model-specific registers are quite
large. Therefore, the intercept enable bits for the ports and the model-specific registers
are located in bitmaps outside of the control area, which only stores the physical base
addresses of the bitmaps. For all other actions, the intercept enable bits are stored
directly in the control area. These bits are grouped into the following fields according
to the intercept type:

field READ_CR::bits 16
field WRITE_CR::bits 16
field READ_DR::bits 16
field WRITE_DR::bits 16
field EXCP::bits 32
field intercept::Intercepts

The i-th bit of the READ_CR field enables interception of reads from the i-th control
register CR[i]. When the bit is set, a read from the control register triggers guest exit.
Otherwise, the read access succeeds inside the guest. The bits of the WRITE_CR, READ_DR,
WRITE_DR have similar meaning, which can be deduced from the field names.

The EXCP field enables intercepts of the exceptions. Each exception has an associated
vector, which can have a value in range [0..31]. When the i-th bit of the EXCP field
is set, then a raised exception with the vector i triggers guest exit. When the bit is
cleared, the exception is handled within the guest.

The intercept field is 64 bits wide and controls the all the remaining intercepts. We
first give the definition and then discuss each bit of this field.

204

layout Intercepts
field INTR::bit
field NMI::bit
field SMI::bit
field INIT::bit
field VINTR::bit
field WRITE_CR0::bit
field READ_IDTR::bit
field READ_GDTR::bit
field READ_LDTR::bit
field READ_TR::bit
field WRITE_IDTR::bit
field WRITE_GDTR::bit
field WRITE_LDTR::bit
field WRITE_TR::bit
field RDTSC::bit
field RDPMC::bit
field PUSHF::bit
field POPF::bit
field CPUID::bit
field RSM::bit
field IRET::bit
field INT::bit
field INVD::bit
field PAUSE::bit
field HLT::bit
field INVLPG::bit
field INVLPGA::bit
field IO_PROT::bit
field MSR_PROT::bit
field TASK_SWITCH::bit
field FERR_FREEZE::bit
field SHUTDOWN::bit
field VMRUN::bit
field VMMCALL::bit
field VMLOAD::bit
field VMSAVE::bit
field STGI::bit
field CLGI::bit
field SKINIT::bit
field RDTSCP::bit
field ICEBP::bit
field WBINVD::bit
field MONITOR::bit
field MWAIT::bit
field ARMED_MWAIT::bit
field rsv1::bits 19 ignored

INTR enables intercepts of the physical maskable interrupt.

NMI enables intercepts of the non-maskable interrupt.

SMI enables intercepts of the system-management interrupt.

INIT enables intercepts of INIT signal.

205

VINTR enables intercepts of the virtual maskable interrupts.

WRITE_CR0 enables intercepts of the CR0 writes that change bits other than CR0.TS or
CR0.MP.

READ_IDTR enables intercepts of reads from the IDTR.

READ_GDTR enables intercepts of reads from the GDTR.

READ_LDTR enables intercepts of reads from the LDTR.

READ_TR enables intercepts of reads from the TR.

WRITE_IDTR enables intercepts of writes to the IDTR.

WRITE_GDTR enables intercepts of writes to the GDTR.

WRITE_LDTR enables intercepts of writes to the LDTR.

WRITE_TR enables intercepts of writes to the TR.

RDTSC enables intercepts of the RDTSC instruction.

RDPMC enables intercepts of the RDPMC instruction.

PUSHF enables intercepts of the PUSHF instruction.

POPF enables intercepts of the POPF instruction.

CPUID enables intercepts of the CPUID instruction.

RSM enables intercepts of the RSM instruction.

IRET enables intercepts of the IRET instruction.

INT enables intercepts of the INT instruction.

INVD enables intercepts of the INVD instruction.

PAUSE enables intercepts of the PAUSEinstruction.

HLT enables intercepts of the HLT instruction.

INVLPG enables intercepts of the INVLPG instruction.

INVLPGA enables intercepts of the INVLPGA instruction.

IO_PROT enables intercepts of accesses to the I/O ports selected by the bitmap, the
physical address of which is stored in the IOPM_BASE_PA field.

MSR_PROT enables intercepts of accesses to the model-specific registers selected by the
bitmap, the physical address of which is stored in the MSRPM_BASE_PA field.

TASK_SWITCH enables intercepts of task switches.

FERR_FREEZE enables intercepts of processor freezing during legacy FERR handling.

SHUTDOWN enables intercepts of shutdown events.

VMRUN enables intercepts of the VMRUN instruction.

VMMCALL enables intercepts of the VMCALL instruction.

VMLOAD enables intercepts of the VMLOAD instruction.

VMSAVE enables intercepts of the VMSAVE instruction.

STGI enables intercepts of the STGI instruction.

CLGI enables intercepts of the CLGI instruction.

SKINIT enables intercepts of the SKINIT instruction.

RDTSCP enables intercepts of the RDTSCP instruction.

ICEBP enables intercepts of the ICEBP instruction.

WBINVD enables intercepts of the WBINVD instruction.

MONITOR enables intercepts of the MONITOR instruction.

MWAIT enables intercepts of the MWAIT instruction unconditionally.

ARMED_MWAIT enables intercepts of the MWAIT instruction if Monitor hardware is armed.

206

As we mentioned before, intercepts of I/O port accesses and of MSR accesses are en-
abled in external bitmaps. The IOPM_BASE_PA and the MSRPM_BASE_PA fields of the control
area contain page-aligned physical addresses of the bitmaps. For each port/register
the bitmaps store exactly two bits: the lower bit controls intercepts of read accesses,
and the higher bit controls interrupts of write accesses. For detailed description of bit
offset computations in the bitmaps, refer to the definitions of the check_msr_intercept

and check_io_intercept functions in section N.2 and in section K.

So far we specified how to enable intercepts of the sensitive guest actions. When an
action is intercepted, the processor exits guest mode and writes the exit code and exit
information into the EXITCODE, EXITINFO1, EXITINFO2, EXITINTINFO fields of the control
area. The exit code uniquely identifies the action, and the exit information describes
the action parameters so that the host could emulate the action. For the list of the exit
code refer to section P.4. Layout of the exit information fields is intercept specific. In
other words, the meaning of the exit information depends on the sensitive action that
triggered the intercept. When formally defining a sensitive action, we always write a
statement that checks for intercept conditions. If the conditions hold, we use the fail

statement of our specification language to stop the action and signal the intercept. As
an argument for the fail statement, we give a value of the following type:

record Intercept
field valid::bit
field exitcode::ExitCode
field exitinfo1::bits 64
field exitinfo2::bits 64
field exitintinfo::EventInfo

Thus, one can learn the meaning of the exit information fields by reading the specifica-
tion of the sensitive actions and examining the values in the exitinfo1, exitinfo2, and
exitintinfo fields. Most of the intercepts have no associated information or have only
the exitinfo1. The following helper functions construct a value of the Intercept type:

function intercept(ecode::ExitCode)::Intercept
= Intercept with [valid = 1, exitcode = ecode]

function intercept1(ecode::ExitCode, info1::bits 64)::Intercept
= Intercept with [valid = 1, exitcode = ecode, exitinfo1 = info1]

We conclude this section with the formal definition of the control area:

layout VMCB_CA
field READ_CR::bits 16
field WRITE_CR::bits 16
field READ_DR::bits 16
field WRITE_DR::bits 16
field EXCP::bits 32
field intercept::Intercepts
field rsv1::bits 32 ignored
field rsv2::bits 64 ignored
field rsv3::bits 64 ignored
field rsv4::bits 64 ignored
field rsv5::bits 64 ignored
field rsv6::bits 64 ignored
field IOPM_BASE_PA::bits 64
field MSRPM_BASE_PA::bits 64

207

field TSC_OFFSET::bits 64
field GUEST_ASID::bits 32
field TLB_CONTROL::bits 8
field rsv7::bits 24
field V_INTR::VirtualIntr
field INTERRUPT_SHADOW::bit
field rsv8::bits 63 ignored
field EXITCODE::bits 64
field EXITINFO1::bits 64
field EXITINFO2::bits 64
field EXITINTINFO::EventInfo
field NESTED_PAGING::bits 64
field rsv11::bits 64 ignored
field rsv12::bits 64 ignored
field EVENTINJ::EventInfo
field N_CR3::bits 64
field LBR_VE::bits 64

READ_CR the i-th bit of this field enables intercept of reads from the CR[i].

WRITE_CR the i-th bit of this field enables intercept of writes to the CR[i].

READ_DR the i-th bit of this field enables intercept of reads from the DR[i].

WRITE_DR the i-th bit of this field enables intercept of writes to the DR[i].

EXCP the i-th bit of this field enables intercept of the exception with the vector i.

intercept each bit of this field enables intercept of some event or some instruction.

IOPM_BASE_PA contains the page-aligned physical base address of the I/O permission
bitmap.

MSRPM_BASE_PA contains the page-aligned physical base address of the model-specific
permission bitmap.

TSC_OFFSET contains the timestamp counter offset, which is added to the result of the
RDTSC and RDTSCP instruction in guest mode.

GUEST_ASID contains the address space identifier that is used as a tag in the TLB during
guest execution.

TLB_CONTROL if this field is 01h, then the TLB is flushed before executing the first instruc-
tion of the guest.

V_INTR controls virtual interrupts, we will discuss it in the next section.

INTERRUPT_SHADOW if this bit is set then the guest is in interrupt shadow, which means
that the interrupts are not recognized until after the first guest instruction suc-
cessfully completes.

EXITCODE on guest exit the processor writes the exit code into this field.

EXITINFO1 contains complementary information for the exit code.

EXITINFO2 contains complementary information for the exit code.

EXITINTINFO if the guest exit is triggered during control transfer to an interrupt handler,
this field contains information about the interrupt.

NESTED_PAGING when this field is 1 then nested page tables are used to translate guest
physical address to system physical addresses.

EVENTINJ contains an interrupt or an exception that is to be enjected in the guest before
execution its first instruction.

N_CR3 contains the base address of the root nested page table.

LBR_VE enables last-branch virtualization (we do not model last branch).

208

17.3 Injected Events and Virtual Interrupts

The host can inject events into the guest by writing to the EVENTINJ field of the guest
control area. This field has the following layout:

layout EventInfo
field VECTOR::bits 8
field TYPE::bits 3
field EV::bit
field rsv::bits 19 ignored
field V::bit
field ERRORCODE::bits 32

VECTOR specifies the vector of the injected exception or maskable interrupt.

TYPE is the type of the injected event: maskable interrupt, non-maskable interrupt,
exception, or software interrupt.

EV when this bit is set, the injected event has an associated error code, which is stored
in the ERRORCODE field and will be given to the handler.

V when this bit is set, the injected event is valid and will be delivered to the guest before
executing its first instruction.

ERRORCODE contains the error code associated with the injected event.

The TYPE field of the injected event can take the following values:

set InjEventType::bits 3 = {EVENT_INTR = 000b, EVENT_NMI = 010b,
EVENT_EXCEPTION = 011b, EVENT_SOFT_INT = 100b}

The first value indicates that the injected event is an ordinary maskable interrupt. The
second value means that the injected event is a non-maskable interrupt. In this case, the
VECTOR field is ignored because non-maskable interrupts always have the vector equal to
2. By writing the third value, the host can inject exceptions. The fourth value indicates
that the injected event is to be delivered to the guest as if the guest executed the INT

instruction, which generates a software interrupt.

Injected events are delivered in the guest unconditionally, regardless of the interrupt
mask flag RFLAGS.IF. Injected events have priority before other events. There is another
mechanism, called virtual interrupts, which allows to inject maskable interrupts that
behave more like ordinary maskable interrupts. The host can inject virtual interrupts
by writing to the V_INTR field of the guest control area. The field has the following
layout:

layout VirtualIntr
field V_TPR::bits 8
field V_IRQ::bit
field rsv7::bits 7
field V_INTR_PRIO::bits 4
field V_IGN_TPR::bit
field rsv8::bits 3
field V_INTR_MASKING::bit
field rsv9::bits 7
field V_INTR_VECTOR::bits 8
field rsv10::bits 24

209

V_TPR is the virtual task priority level (TPR) of the guest. When the guest is running and
the V_INTR_MASKING bit is set, the V_TPR plays the same role for virtual interrupts
as the APIC TPR register does for real interrupts. In other words, the all virtual
interrupts that have the priority lower than the priority specified by the V_TPR are
masked.

V_IRQ indicates that the virtual interrupt is active. The processor clears this bit before
control transfer to the handler of the virtual interrupt.

V_INTR_PRIO is the priority of the virtual interrupt, the value in this field gets compared
with the V_TPR if the V_INTR_MASKING is set, or with the real TPR otherwise.

V_IGN_TPR when this bit is set, the processor does not check the priority of the virtual
interrupt.

V_INTR_MASKING enables virtual TPR and virtual RFLAGS.IF for virtual interrupts. When
this bit is set, the processor uses the real TPR and the host value of the RFLAGS.IF

for processing real interrupts. The virtual TPR and the guest value of the RFLAGS.IF

are used only for virtual interrupts. When the bit is cleared, the processor uses
the real TPR and the guest value of the RFLAGS.IF for all interrupts.

V_INTR_VECTOR is the vector of the virtual interrupt.

In chapter 9 we used the a few functions and actions that check the state of the injected
and virtual interrupt and mark them as delivered. We are going to define the function
and action here.

The following function returns the injected event:

function injected_event::Event
= Event with [valid = _vmcb_ca.EVENTINJ.V,

type = convert_type(_vmcb_ca.EVENTINJ.TYPE),
vector = _vmcb_ca.EVENTINJ.VECTOR,
ecode_valid = _vmcb_ca.EVENTINJ.EV,
ecode = _vmcb_ca.EVENTINJ.ERRORCODE,
data_valid = 0b,
injected = 1b

]

Where the Event is a type for general events, and was defined in chapter 9 as follows:

record Event
field valid::bit
field vector::bits 8
field type::EventType
field ecode_valid::bit
field ecode::bits 32
field data_valid::bit
field data::bits 64
field injected::bit

The EventType is a set of all possible events, including injected events:

set EventType = {INIT, SIPI, NMI, INTR, VINTR, SPURIOUS, EXCP,
SOFT_INT}

The convert_type function maps the injected event types into general event types:

210

function convert_type(inj_type::InjEventType)::EventType
= if inj_type == EVENT_INTR then INTR
elif inj_type == EVENT_NMI then NMI
elif inj_type == EVENT_EXCEPTION then EXCP
else SOFT_INT

The following function checks whether a virtual interrupt is pending or not:

function vintr_pending::bit
= if _vmcb_ca.VINTR.V_IRQ then

if _vmcb_ca.VINTR.V_INTR_MASKING then
(_vmcb_ca.VINTR.V_INTR_PRIO > _vmcb_ca.VINTR.V_TPR[7:4])

else
(_vmcb_ca.VINTR.V_INTR_PRIO > CR8[3:0])

else 0b

The following function returns the vector of the virtual interrupt:

function vintr_vector::bits 8
= _vmcb_ca.VINTR.V_INTR_VECTOR

The following two actions mark the injected event and the virtual interrupt as delivered,
making them inactive:

action vintr_delivered
write 0b to _vmcb_ca.VINTR.V_IRQ

action injected_delivered
write 0b to _vmcb_ca.EVENTINJ.V

17.4 Host State Save Area

Before switching to guest mode, the VMRUN instruction saves a subset of the host regis-
ters in host state save area . This area is a 4K page at the physical address that is stored
in the VM_HSAVE_PA register. After switching back to host mode, the VMRUN restores the
registers from this area. The layout of the area is implementation dependent and is left
unspecified by the official manuals. As we need some layout in order to define the VMRUN

instruction, we will use the following layout which contains a minimal subset of the host
registers:

layout HOST_SSA
field ES_sel::bits 16
field ES_attr::bits 16
field ES_limit::bits 32
field ES_base::bits 64
field CS_sel::bits 16
field CS_attr::bits 16
field CS_limit::bits 32
field CS_base::bits 64
field SS_sel::bits 16
field SS_attr::bits 16
field SS_limit::bits 32
field SS_base::bits 64
field DS_sel::bits 16

211

field DS_attr::bits 16
field DS_limit::bits 32
field DS_base::bits 64
field rsv::bits 32 ignored
field GDTR_limit::bits 16
field IDTR_limit::bits 16
field GDTR_base::bits 64
field IDTR_base::bits 64
field EFER::EFER
field CR4::CR4
field CR3::CR3
field CR0::CR0
field RFLAGS::Flags
field RIP::bits 64
field RSP::bits 64
field RAX::bits 64
field PAT::bits 64

From the names of the fields, one can easily deduce which registers are saved and
restored. We define the VMRUN, VMLOAD, and VMSAVE in chapter P.

212

CHAPTER

EIGHTEEN

INSTRUCTIONS

In the remainder of the document we formally specify instructions in our domain-
specific language. We group the instructions as follows:

Move instructions:

CMOVcc, CMPXCHG, CMPXCHG8B-CMPXCHG16B,
MOV, MOVSX, MOVSXD, MOVZX, SETcc, XCHG.

Arithmetic instructions:

ADC, ADD, CMP, DEC, DIV, IDIV, IMUL,
INC, MUL, NEG, SBB, SUB, XADD.

Logic instructions:

AND, NOT, OR, TEST, XOR.

Bit-string instructions:

BSF, BSR, BSWAP, BT, BTC, BTR, BTS,
CBW-CWDE-CDQE, CWD-CDQ-CQO, RCL, RCR,
ROL, ROR, SAL-SHL, SAR, SHLD, SHR, SHRD,

BCD instructions:

AAA, AAD, AAM, AAS, DAA, DAS.

Flag instructions:

CLC, CLD, CLI, CMC, LAHF, SAHF,
STC, STD, STI.

Stack instructions:

ENTER, LEAVE, POP, POPA, POPF,
PUSH, PUSHA, PUSHF.

Near control transfer instructions:

213

CALL, JCXZ, JMP, Jcc, LOOPcc, RET.

Far control transfer instructions:

SYSCALL, SYSRET, SYSENTER, SYSEXIT,
JMP, CALL, INT, INT3, INT0, RETF, IRET.

String instructions:

CMPS, LODS, MOVS, SCAS, STOS.

Input/Output instructions:

IN, INS, OUT, OUTS.

Segmentation instructions:

LDS, LES, LFS, LGDT, LGS, LIDT, LLDT,
LSS, LTR, SGDT, SIDT, SLDT, STR, SWAPGS.

Protection instructions:

ARPL, LAR, LSL, VERR, VERW.

CR and MSR access instructions:

LMSW, MOV(CRn), RDMSR, RDTSC, RDTSCP, SMSW, WRMSR.

Memory-management instructions:

CLFLUSH, INVD, INVLPG, INVLPGA,
LFENCE, MFENCE, SFENCE, WBINVD.

Virtualization instructions:

VMRUN, VMMCALL, VMLOAD, VMSAVE, CLGI, STGI.

Miscellaneous instructions:

BOUND, HLT, LEA, XLAT, PAUSE.

Each group has a separate chapter in the Appendix. Specification of an instruction in a
group starts with a citation from the official manuals. Then we give a list of opcodes that
decode into the instruction. Each opcode has a list of operands. For each operand we
specify its width and type. Finally, we specify a semantic action that describes how the
instructions executes. A semantic action is a statement in our domain-specific language,
the statement can read from special variables op1, op2, op3, which represent the values
of the operands. When the statement declares primes versions of the special variables
op1’ ,op2’, op3’, this means that the instruction writes to the associated operands.

As an example, consider the specification of the MOVZX instruction:

Instruction MOVZX

Copies the value in a register or memory location (second operand) into a register (first
operand), zero- extending the value to fit in the destination register. The operand-size
attribute determines the size of the zero-extended value.

[cited from AMD volume 3]

214

opcode "0FB6h" reg $v, reg_mem 8 : let op1’ = zxt($v, op2)
opcode "0FB7h" reg max($v, 16), reg_mem 16 : let op1’ = zxt(max($v, 16), op2)

The semantic action let op1’ = zxt($v, op2) means the instruction reads the value of
the second operand, zero-extends it to the instruction operand width $v and writes the
new value to the first operand. Thus, the explicit specification of instruction execution
has a read_op action before the semantic action, and a write_op action after the semantic
action:

let $n1 = op1width(_prefix, _opcode, _modrm)::[1..128]
let $n2 = op2width(_prefix, _opcode, _modrm)::[1..128]
let $n = $n1
let t1 = op1type(_prefix, _opcode, _modrm)
let t2 = op2type(_prefix, _opcode, _modrm)
op2 = read_op($n2, t2)
let op1’ = zxt($v, op2)
write_op($n1, t1, op1’)

where the op1width, op2width, op1type, op2type functions return the types and widths of
the operands.

More complex instructions have semantic actions that invoke other actions, that are de-
fined in the main part of the document or are defined immediately after the instruction.

215

216

CHAPTER

NINETEEN

CONCLUSION

We developed an operational model for the x86 instruction set architecture of a mod-
ern multiprocessor machine. The model is a nondeterministic abstract machine that
executes instructions on multiple processors. We specified the abstract machine in two
parts: first we specified the memory model, and then we specified instruction fetch, de-
code, and execution. Instruction semantics was defined in a domain specific language
locally for a single core. By transforming the single-core instruction specification and
plugging it into the transition system, we obtained a multiprocessor x86 model.

19.1 Validating the model

Our model might contain the following types of errors:

1. the memory model forbids memory access reordering that can occur in real hard-
ware;

2. the memory model allows memory access reordering that can never occur in real
hardware;

3. sequential instruction execution is incorrect, i.e. register and memory contents after
instruction execution in the abstract machine with a single processor do not agree
with those in real hardware with a single processor.

We could validate the absence of errors of the first type by running multiprocessor test
programs on real computer and checking whether any forbidden reordering has actually
occurred. Additionally, we could construct a simplified hardware that implements our
model or to make the model executable. This would at least show that the model is not
inconsistent.

In order to make the model executable we need to schedule the transitions of the ab-
stract machine in such a way that it makes progress in executing instructions. Recall
that each transition is parameterized with arguments and has a guard condition. So we

217

need to find a method to fill-in the arguments of each transition such that the guard con-
dition of the transition is satisfied and the transition effects contribute to the progress.
For many transitions it is obvious what arguments satisfy the guard conditions. For the
remaining transitions we can use the following scheme:

• iterate over each processor core i in the abstract machine:

– if core i is not in the decode, execute, vmexit, JISR1 , JISR2 phase then try to
trigger all possible transitions in the phase. The transitions are simple and it
is easy to choose arguments that satisfy the guard conditions.

– otherwise, core i needs to execute one the actions defined in our domain
specific language: interpret the action statements. One of the following out-
comes can occur:

* the action needs to fetch a translation for a virtual address from the TLB:

1. if the corresponding complete walk is not in the TLB, then initiate a
walk for the requested virtual address and extend the walk until it is
complete.

2. return the result to the core, by writing to its tlb-in buffer.

* the action needs to fetch code or data at a physical address from the
memory:

1. make cache transitions for that physical address to fill in the line if the
access memory type is cacheable.

2. make load buffer transitions to fetch the code or data from the cache/mem-
ory.

3. return the result to the core, by writing to its mem-in buffer.

* the action raises an exception or an intercept: make core transitions that
change phase to JISR1/2 or vmexit.

* the action completes: update the registers and save the memory write
accesses and make core transition to the next phase.

– make a store buffer transition if possible. In case the store buffer tries to
commit a write access to the cache, and the cache does not have the corre-
sponding line, make cache transition to fill-in the line.

– make an APIC transition of possible

• iterate over all pair of processor cores i, j in the abstract machine and make an
IPI transition for that pair if possible.

Thus, the above scheme makes round-robin transition scheduling for the processor
cores, the store buffers, the APICs, and the IPI. The load buffers, the TLBs, and the
caches make transitions depending on processor core requests.

Errors of the second type are not as critical as error of the first type. They can be
detected when one tries to prove correctness of programs which rely on the fact that
certain memory access reorderings are not possible. If our model allows ‘impossible’
memory access reorderings, then one will not be able to prove such programs.

Errors of the third type can be detected by test programs on the executable model and
comparing the outcome with the expected outcome.

218

Part III

APPENDIX

219

220

APPENDIX

A

MOVE INSTRUCTIONS

Instruction MOV

Copies an immediate value or the value in a general-purpose register, or memory loca-
tion (second operand) to a general-purpose register, or memory location. The source
and destination must be the same size (byte, word, doubleword, or quadword) and can-
not both be memory locations. In opcodes A0 through A3, the memory offsets (called
moffsets) are address sized. In 64-bit mode, memory offsets default to 64 bits. Opcodes
A0-A3, in 64-bit mode, are the only cases that support a 64-bit offset value. (In all other
cases, offsets and displacements are a maximum of 32 bits.) The B8 through BF (B8
+rq) opcodes, in 64-bit mode, are the only cases that support a 64-bit immediate value
(in all other cases, immediate values are a maximum of 32 bits). It is possible to move
a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register. This
action does not cause a general protection fault, but a subsequent reference to such a
segment does cause a #GP exception. When the MOV instruction is used to load the
SS register, the processor blocks external interrupts until after the execution of the fol-
lowing instruction. This action allows the following instruction to be a MOV instruction
to load a stack pointer into the ESP register (MOV ESP,val) before an interrupt occurs.
However, the LSS instruction provides a more efficient method of loading SS and ESP.
[cited from AMD volume 3]

opcode "88h" reg_mem 8, reg 8 : let op1’ = op2
opcode "89h" reg_mem $v, reg $v : let op1’ = op2
opcode "8Ah" reg 8, reg_mem 8 : let op1’ = op2
opcode "8Bh" reg $v, reg_mem $v : let op1’ = op2
opcode "8Ch" reg_mem $vw, sreg 16 : let op1’ = zxt($vw, op2)
opcode "8Eh" sreg 16, reg_mem 16 : let op1’ = op2
opcode "A0h" rax 8, moffset 8 : let op1’ = op2
opcode "A1h" rax $v, moffset $v : let op1’ = op2
opcode "A2h" moffset 8, rax 8 : let op1’ = op2
opcode "A3h" moffset $v, rax $v : let op1’ = op2
opcode "B0h" reg 8, imm 8 : let op1’ = op2
opcode "B8h" reg $v, imm $v : let op1’ = op2
opcode "C6h" reg_mem 8, imm 8 : let op1’ = op2

221

opcode "C7h" reg_mem $v, imm $z : let op1’ = sxt($v, op2)

The real work happens in the read_op and the write_op actions that are invoked before
and after the execute statement of this instruction. These action are defined in section
14.13.

Instruction MOVSX

Copies the value in a register or memory location (second operand) into a register (first
operand), extending the most significant bit of an 8-bit or 16-bit value into all higher
bits in a 16-bit, 32-bit, or 64-bit register.

[cited from AMD volume 3]

opcode "0FBEh" reg $v, reg_mem 8 : let op1’ = sxt($v, op2)
opcode "0FBFh" reg max($v, 16), reg_mem 16 : let op1’ = sxt(max($v, 16), op2)

Instruction MOVZX

Copies the value in a register or memory location (second operand) into a register (first
operand), zero- extending the value to fit in the destination register. The operand-size
attribute determines the size of the zero-extended value.

[cited from AMD volume 3]

opcode "0FB6h" reg $v, reg_mem 8 : let op1’ = zxt($v, op2)
opcode "0FB7h" reg max($v, 16), reg_mem 16 : let op1’ = zxt(max($v, 16), op2)

Instruction MOVSXD (when $x64_mode)

Copies the 32-bit value in a register or memory location (second operand) into a 64-
bit register (first operand), extending the most significant bit of the 32-bit value into
all higher bits of the 64-bit register. This instruction requires the REX prefix 64-bit
operand size bit (REX.W) to be set to 1 to sign-extend a 32-bit source operand to a
64-bit result. Without the REX operand-size prefix, the operand size will be 32 bits, the
default for 64-bit mode, and the source is zero-extended into a 64-bit register. With a
16- bit operand size, only 16 bits are copied, without modifying the upper 48 bits in the
destination. This instruction is available only in 64-bit mode. In legacy or compatibility
mode this opcode is interpreted as ARPL.

[cited from AMD volume 3]

opcode "63h" reg $v, reg_mem $z : let op1’ = sxt($v, op2)

Instruction CMOVcc (when $CPUID_80000001_CMOV)

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose
register (second operand) into a register (first operand), depending upon the settings
of condition flags in the rFLAGS register. If the condition is not satisfied, the instruction
has no effect. The mnemonics of CMOVcc instructions denote the condition that must
be satisfied. Most assemblers provide instruction mnemonics with A (above) and B
(below) tags to supply the semantics for manipulating unsigned integers. Those with
G (greater than) and L (less than) tags deal with signed integers. Many opcodes may
be represented by synonymous mnemonics. For example, the CMOVL instruction is
synonymous with the CMOVNGE instruction and denote the instruction with the opcode
0F 4C. Support for CMOVcc instructions depends on the processor implementation.
To determine whether a processor can perform CMOVcc instructions, use the CPUID

222

instruction to determine whether EDX bit 15 of CPUID function 0000_0001h or function
8000_0001h is set to 1. [cited from AMD volume 3]

opcode "0F40h" reg $v, reg_mem $v
opcode "0F41h" reg $v, reg_mem $v
opcode "0F42h" reg $v, reg_mem $v
opcode "0F43h" reg $v, reg_mem $v
opcode "0F44h" reg $v, reg_mem $v
opcode "0F45h" reg $v, reg_mem $v
opcode "0F46h" reg $v, reg_mem $v
opcode "0F47h" reg $v, reg_mem $v
opcode "0F48h" reg $v, reg_mem $v
opcode "0F49h" reg $v, reg_mem $v
opcode "0F4Ah" reg $v, reg_mem $v
opcode "0F4Ah" reg $v, reg_mem $v
opcode "0F4Ch" reg $v, reg_mem $v
opcode "0F4Dh" reg $v, reg_mem $v
opcode "0F4Eh" reg $v, reg_mem $v
opcode "0F4Fh" reg $v, reg_mem $v
call CMOVcc
action CMOVcc
if cc(Opcode[3:0]) then
call op1 = read_op($v, reg)
call write_op($v, op1, reg_mem)

The cc function maps the lower 4 bits of the opcode to a condition on flags, in the
following way:

function cc(code::bits 4)::bit =
if code == 0h then RFLAGS.OF
else if code == 1h then not RFLAGS.OF
else if code == 2h then RFLAGS.CF
else if code == 3h then not RFLAGS.CF
else if code == 4h then RFLAGS.ZF
else if code == 5h then not RFLAGS.ZF
else if code == 6h then RFLAGS.CF or RFLAGS.ZF
else if code == 7h then not (RFLAGS.CF or RFLAGS.ZF)
else if code == 8h then RFLAGS.SF
else if code == 9h then not RFLAGS.SF
else if code == Ah then RFLAGS.PF
else if code == Bh then not RFLAGS.PF
else if code == Ch then RFLAGS.OF <> RFLAGS.SF
else if code == Dh then RFLAGS.OF == RFLAGS.SF
else if code == Eh then RFLAGS.ZF or RFLAGS.OF <> RFLAGS.SF
else not RFLAGS.ZF and RFLAGS.OF == RFLAGS.SF

Instruction SETcc

Checks the status flags in the rFLAGS register and, if the flags meet the condition
specified in the mnemonic (cc), sets the value in the specified 8-bit memory location or
register to 1. If the flags do not meet the specified condition, SETcc clears the memory
location or register to 0. Mnemonics with the A (above) and B (below) tags are intended
for use when performing unsigned integer comparisons; those with G (greater) and L
(less) tags are intended for use with signed integer comparisons. Software typically
uses the SETcc instructions to set logical indicators. Like the CMOVcc instructions

223

(page 91), the SETcc instructions can replace two instructions - a conditional jump
and a move. Replacing conditional jumps with conditional sets can help avoid branch-
prediction penalties that may result from conditional jumps. If the logical value “true”
(logical one) is represented in a high-level language as an integer with all bits set to
1, software can accomplish such representation by first executing the opposite SETcc
instruction - for example, the opposite of SETZ is SETNZ - and then decrementing the
result. A ModR/M byte is used to identify the operand. The reg field in the ModR/M
byte is unused. [cited from AMD volume 3]

opcode "0F90h" reg_mem 8
opcode "0F91h" reg_mem 8
opcode "0F92h" reg_mem 8
opcode "0F93h" reg_mem 8
opcode "0F94h" reg_mem 8
opcode "0F95h" reg_mem 8
opcode "0F96h" reg_mem 8
opcode "0F97h" reg_mem 8
opcode "0F98h" reg_mem 8
opcode "0F99h" reg_mem 8
opcode "0F9Ah" reg_mem 8
opcode "0F9Bh" reg_mem 8
opcode "0F9Ch" reg_mem 8
opcode "0F9Dh" reg_mem 8
opcode "0F9Eh" reg_mem 8
opcode "0F9Fh" reg_mem 8
call op1’ = SETcc
action SETcc::bits 8
if cc(Opcode[3:0]) then return 01h
else return 00h

Instruction XCHG

Exchanges the contents of the two operands. The operands can be two general-purpose
registers or a register and a memory location. If either operand references memory,
the processor locks automatically, whether or not the LOCK prefix is used and indepen-
dently of the value of IOPL. For details about the LOCK prefix, see “Lock Prefix” on page
8. The x86 architecture commonly uses the XCHG EAX, EAX instruction (opcode 90h)
as a one-byte NOP. In 64-bit mode, the processor treats opcode 90h as a true NOP only if
it would exchange rAX with itself. Without this special handling, the instruction would
zero-extend the upper 32 bits of RAX, and thus it would not be a true no-operation.
Opcode 90h can still be used to exchange rAX and r8 if the appropriate REX prefix is
used. This special handling does not apply to the two-byte ModRM form of the XCHG
instruction. [cited from AMD volume 3]

opcode "86h" reg_mem 8, reg 8
opcode "87h" reg_mem $v, reg $v
opcode "90h" rax $v, rax_r8 $v
opcode "91h" rax $v, rcx_r9 $v
opcode "92h" rax $v, rdx_r10 $v
opcode "93h" rax $v, rbx_r11 $v
opcode "92h" rax $v, rsp_r12 $v
opcode "92h" rax $v, rbp_r13 $v
opcode "92h" rax $v, rsi_r14 $v
opcode "92h" rax $v, rdi_r15 $v

224

let (op1’, op2’) = (op2, op1)

Instruction CMPXCHG

Compares the value in the AL, AX, EAX, or RAX register with the value in a register or
a memory location (first operand). If the two values are equal, the instruction copies
the value in the second operand to the first operand and sets the ZF flag in the rFLAGS
register to 1. Otherwise, it copies the value in the first operand to the AL, AX, EAX,
or RAX register and clears the ZF flag to 0. The OF, SF, AF, PF, and CF flags are set
to reflect the results of the compare. When the first operand is a memory operand,
CMPXCHG always does a read-modify-write on the memory operand. If the compared
operands were unequal, CMPXCHG writes the same value to the memory operand that
was read. [cited from AMD volume 3]

opcode "0FB0h" reg_mem 8, reg 8
opcode "0FB1h" reg_mem $v, reg $v
call op1’ = CMPXCHG($n, op1, op2)

Given the two operands, the CMPXCHG action compares the RAX register with the first
operand using the sub action that subtracts the first operand from the RAX and sets the
zero flags appropriately. If the result of subtraction is zero, then the CMPXCHG action
returns the second operand. Otherwise, the action writes the first operand to the RAX

and returns it. The sub action is defined in section B.2.

action CMPXCHG($n::{8, $v}, op1::bits $n, op2::bits $n)::bits $n
let x = RAX[$n-1:0]
call r = sub($n, x, op1, 0b)
if r == zero($n) then return op2
else write gpr($n, op1, RAX) to RAX

return op1

Instruction CMPXCHG8B-CMPXCHG16B

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the spec-
ified memory location. If the values are equal, the instruction copies the value in the
rCX:rBX registers to the memory location and sets the zero flag (ZF) of the rFLAGS
register to 1. Otherwise, it copies the value in memory to the rDX:rAX registers and
clears ZF to 0. If the effective operand size is 16-bit or 32-bit, the CMPXCHG8B in-
struction is used. This instruction uses the EDX:EAX and ECX:EBX register operands
and a 64-bit memory operand. If the effective operand size is 64-bit, the CMPXCHG16B
instruction is used; this instruction uses rdx:RAX and rcx:RBX register operands and
a 128-bit memory operand. The CMPXCHG8B and CMPXCHG16B instructions always
do a read-modify-write on the memory operand. If the compared operands were un-
equal, the instructions write the same value to the memory operand that was read.
The CMPXCHG8B and CMPXCHG16B instructions support the LOCK prefix. For details
about the LOCK prefix, see “Lock Prefix” on page 8. Support for the CMPXCHG8B and
CMPXCHG16B instructions depends on the processor implementation. To find out if a
processor can execute the CMPXCHG8B instruction, use the CPUID instruction to de-
termine whether EDX bit 8 of CPUID function 0000_0001h or function 8000_0001h is
set to 1. To find out if a processor can execute the CMPXCHG16B instruction, use the
CPUID instruction to determine whether ECX bit 13 of CPUID function 0000_0001h is
set to 1. [cited from AMD volume 3]

opcode "0FC7h" mem_pair 2*$qd : call op1’ = CMPXCHG8B_16B(op1)

225

action CMPXCHG8B_16B(a::bits (2*$qd))::bits (2*$qd)
let b = RDX[$qd-1:0] ++ RAX[$qd-1:0]
if a == b then
write 1b to RFLAGS.ZF
return RCX[$qd-1:0] ++ RBX[$qd-1:0]

else
write 0b to RFLAGS.ZF
write gpr($qd, a[$qd-1:0], RAX) to RAX
write gpr($qd, a[2*$qd-1:$qd], RDX) to RDX
return a

226

APPENDIX

B

ARITHMETIC INSTRUCTIONS

B.1 Addition

Instruction ADC

Adds the carry flag (CF), the value in a register or memory location (first operand), and
an immediate value or the value in a register or memory location (second operand), and
stores the result in the first operand location. The instruction cannot add two memory
operands. The CF flag indicates a pending carry from a previous addition operation.
The instruction sign-extends an immediate value to the length of the destination register
or memory location. This instruction evaluates the result for both signed and unsigned
data types and sets the OF and CF flags to indicate a carry in a signed or unsigned
result, respectively. It sets the SF flag to indicate the sign of a signed result. Use the
ADC instruction after an ADD instruction as part of a multibyte or multiword addition.
[cited from AMD volume 3]

opcode "10h" reg_mem 8, reg 8
opcode "11h" reg_mem $v, reg $v
opcode "12h" reg 8, reg_mem 8
opcode "13h" reg $v, reg_mem $v
opcode "14h" rax 8, imm 8
opcode "15h" rax $v, imm $z
opcode "80h /010b" reg_mem 8, imm 8
opcode "81h /010b" reg_mem $v, imm $z
opcode "83h /010b" reg_mem $v, imm 8
call op1’ = add($n, op1, sxt($n, op2), RFLAGS.CF)

Given the operand width, the operands and the carry bit, the add action updates the
status flags and returns the result of the addition.

action add($n::{4, 8, 16, 32, 64}, a::bits $n, b::bits $n, carry::bit)::bits $n
let res = a + b + zxt($n, carry)
write carry_add($n, a, b, carry) to RFLAGS.CF
write parity($n, res) to RFLAGS.PF
write carry_add(4, a[3:0], b[3:0], carry) to RFLAGS.AF

227

write (res == zero($n)) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write overflow_add($n, a, b, carry) to RFLAGS.OF
return res

We compute the carry bit of the addition by adding the operands zero-extended to ($n+1)

bits and looking-up the most-significant bit of the result.

function carry_add($n::{4, 8, 16, 32, 64},
a::bits $n, b::bits $n, carry::bit)::bit

= let x = (0b++a) + (0b++b) + zxt($n+1, carry) in x[$n]

The overflow flag indicates that the sign-bit of the result is not equal to the sign-bit of
the first operand.

function overflow_add($n::{4, 8, 16, 32, 64},
a::bits $n, b::bits $n, carry::bit)::bit

= let x = a + b + zxt($n, carry) in x[$n-1] <> a[$n-1]

The parity flag is 1 if and only if the least significant bit of the result has even number
of the set bits. The result of xoring the 8 least-significant bits is exactly the negation of
the parity bit. Therefore, we can compute the parity bit by negating (the same as xoring
with 1) the result of the xor.

function parity(a::bits 08)::bit
= a[0] ^ a[1] ^ a[2] ^ a[3] ^ a[4] ^ a[5] ^ a[6] ^ a[7] ^ 1

Instruction ADD

Adds the value in a register or memory location (first operand) and an immediate value
or the value in a register or memory location (second operand), and stores the return
in the first operand location. The instruction cannot add two memory operands. The
instruction sign-extends an immediate value to the length of the destination register or
memory operand. This instruction evaluates the return for both signed and unsigned
data types and sets the OF and CF flags to indicate a carry in a signed or unsigned
result, respectively. It sets the SF flag to indicate the sign of a signed result. [cited
from AMD volume 3]

opcode "00h" reg_mem 8, reg 8
opcode "01h" reg_mem $v, reg $v
opcode "02h" reg 8, reg_mem 8
opcode "03h" reg $v, reg_mem $v
opcode "04h" rax 8, imm 8
opcode "05h" rax $v, imm $z
opcode "80h /000b" reg_mem 8, imm 8
opcode "81h /000b" reg_mem $v, imm $z
opcode "83h /000b" reg_mem $v, imm 8
call op1’ = add($n, op1, sxt($n, op2), 0b)

Instruction XADD

Exchanges the contents of a register (second operand) with the contents of a register
or memory location (first operand), computes the sum of the two values, and stores the
result in the first operand location. [cited from AMD volume 3]

opcode "0FC0h" reg_mem 8, reg 8

228

opcode "0FC1h" reg_mem $v, reg $v
call (op1’, op2’) = xadd($n, op1, op2)
action xadd($n::{8, $v}, a::bits $n, b::bits $n)::(bits $n, bits $n)
call sum = add($n, a, b, 0b)
return (sum, a)

Instruction INC

Adds 1 to the specified register or memory location. The CF flag is not affected, even if
the operand is incremented to 0000. [cited from AMD volume 3]

opcode "FEh /000b" reg_mem 8
opcode "FFh /000b" reg_mem $v
opcode "40h" rax $v : when not $x64_mode
opcode "41h" rcx $v : when not $x64_mode
opcode "42h" rdx $v : when not $x64_mode
opcode "43h" RBX $v : when not $x64_mode
opcode "44h" RSP $v : when not $x64_mode
opcode "45h" RBP $v : when not $x64_mode
opcode "46h" RSI $v : when not $x64_mode
opcode "47h" RDI $v : when not $x64_mode
call op1’ = inc($n, op1)
action inc($n::{4, 8, 16, 32, 64}, a::bits $n)::bits $n
let b = one($n)
let res = a + b
write parity($n, res) to RFLAGS.PF
write carry_add(4, a[3:0], b[3:0], 0b) to RFLAGS.AF
write (res == zero($n)) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write overflow_add($n, a, b, 0b) to RFLAGS.OF
return res

B.2 Subtraction

Instruction SBB

Subtracts an immediate value or the value in a register or a memory location (second
operand) from a register or a memory location (first operand), and stores the result in
the first operand location. If the carry flag (CF) is 8, the instruction subtracts 1 from the
result. Otherwise, it operates like SUB. The SBB instruction sign-extends immediate
value operands to the length of the first operand size. This instruction evaluates the
result for both signed and unsigned data types and sets the OF and CF flags to indicate
a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result. This instruction is useful for multibyte (multiword) numbers
because it takes into account the borrow from a previous SUB instruction. [cited from
AMD volume 3]

opcode "18h" reg_mem 8, reg 8
opcode "19h" reg_mem $v, reg $v
opcode "1Ah" reg 8, reg_mem 8
opcode "1Bh" reg $v, reg_mem $v
opcode "1Ch" rax 8, imm 8
opcode "1Dh" rax $v, imm $z

229

opcode "80h /011b" reg_mem 8, imm 8
opcode "81h /011b" reg_mem $v, imm $z
opcode "83h /011b" reg_mem $v, imm 8
call op1’ = sub($n, op1, sxt($n, op2), RFLAGS.CF)

Given the operand width, the operands and the carry bit, the sub action updates the
status flags and returns the result of the subtraction.

action sub($n::{4, 8, 16, 32, 64, 128},
a::bits $n, b::bits $n, borrow::bit)::bits $n

let res = a - b - zxt($n, borrow)
write carry_sub($n, a, b, borrow) to RFLAGS.CF
write parity($n, res) to RFLAGS.PF
write carry_sub(4, a[3:0], b[3:0], borrow) to RFLAGS.AF
write (res == zero($n)) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write overflow_sub($n, a, b, borrow) to RFLAGS.OF
return res

The parity function is defined in section B.1.

The carry flag of subtraction of two $n bit operands can be computed by performing
subtracting the operands sign-extended to the ($n+1) bits and comparing the most-
significant bit of the result with the most-significant bit of the first operand.

function carry_sub($n::{4, 8, 16, 32, 64, 128},
a::bits $n, b::bits $n, borrow::bit)::bit

= let x = (a[n-1]++a) - (b[n-1]++b) - zxt($n+1, borrow) in x[$n] <> a[$n]

The overflow flag indicates that the sign-bit of the result is not equalt to the sign-bit of
the first bit.

function overflow_sub($n::{4, 8, 16, 32, 64, 128},
a::bits $n, b::bits $n, borrow::bit)::bit

= let x = a - b - zxt($n, borrow) in x[$n-1] <> a[$n-1]

Instruction SUB

Subtracts an immediate value or the value in a register or memory location (second
operand) from a register or a memory location (first operand) and stores the result in
the first operand location. An immediate value is sign-extended to the length of the
first operand. This instruction evaluates the result for both signed and unsigned data
types and sets the OF and CF flags to indicate a borrow in a signed or unsigned result,
respectively. It sets the SF flag to indicate the sign of a signed result. [cited from AMD
volume 3]

opcode "28h" reg_mem 8, reg 8
opcode "29h" reg_mem $v, reg $v
opcode "2Ah" reg 8, reg_mem 8
opcode "2Bh" reg $v, reg_mem $v
opcode "2Ch" rax 8, imm 8
opcode "2Dh" rax $v, imm $z
opcode "80h /101b" reg_mem 8, imm 8
opcode "81h /101b" reg_mem $v, imm $z
opcode "83h /101b" reg_mem $v, imm 8
call op1’ = sub($n, op1, sxt($n, op2), 0b)

230

Instruction DEC

Subtracts 1 from the specified register or memory location. The CF flag is not affected.
[cited from AMD volume 3]

opcode "FEh /001b" reg_mem 8
opcode "FFh /001b" reg_mem $v
opcode "48h" rax $v : when not $x64_mode
opcode "49h" rcx $v : when not $x64_mode
opcode "4Ah" rdx $v : when not $x64_mode
opcode "4Bh" RBX $v : when not $x64_mode
opcode "4Ch" RSP $v : when not $x64_mode
opcode "4Dh" RBP $v : when not $x64_mode
opcode "4Eh" RSI $v : when not $x64_mode
opcode "4Fh" RDI $v : when not $x64_mode
call op1’ = dec($n, op1)

The dec action is the same as the sub action except it does not update the CF flag and
the second operand is one.

action dec($n::{4, 8, 16, 32, 64}, a::bits $n)::bits $n
let b = one($n)
let res = a - b
write parity($n, res) to RFLAGS.PF
write carry_sub(4, a[3:0], b[3:0], 0b) to RFLAGS.AF
write (res == zero($n)) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write overflow_sub($n, a, b, 0b) to RFLAGS.OF
return res

Instruction NEG

Performs the two’s complement negation of the value in the specified register or mem-
ory location by subtracting the value from 0. Use this instruction only on signed integer
numbers. If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF
to 1. The OF, SF, ZF, AF, and PF flag settings depend on the result of the operation.
[cited from AMD volume 3]

opcode "F6h /011b" reg_mem 8
opcode "F7h /011b" reg_mem $v
call op1’ = sub($n, zero($n), op1, 0b)

B.3 Comparison

Instruction CMP

Compares the contents of a register or memory location (first operand) with an imme-
diate value or the contents of a register or memory location (second operand), and sets
or clears the status flags in the rFLAGS register to reflect the results. To perform the
comparison, the instruction subtracts the second operand from the first operand and
sets the status flags in the same manner as the SUB instruction, but does not alter the
first operand. If the second operand is an immediate value, the instruction sign- ex-
tends the value to the length of the first operand. Use the CMP instruction to set the
condition codes for a subsequent conditional jump (Jcc), conditional move (CMOVcc),

231

or conditional SETcc instruction. Appendix E, “Instruction Effects on RFLAGS,” shows
how instructions affect the rFLAGS status flags. [cited from AMD volume 3]

opcode "38h" reg_mem 8, reg 8
opcode "39h" reg_mem $v, reg $v
opcode "3Ah" reg 8, reg_mem 8
opcode "3Bh" reg $v, reg_mem $v
opcode "3Ch" rax 8, imm 8
opcode "3Dh" rax $v, imm $z
opcode "80h /111b" reg_mem 8, imm 8
opcode "81h /111b" reg_mem $v, imm $z
opcode "83h /111b" reg_mem $v, imm 8
call sub($n, op1, sxt($n, op2), 0b)

B.4 Multiplication

Instruction MUL

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified
register or memory location by the value in AL, AX, EAX, or RAX and stores the result
in AX, DX:AX, EDX:EAX, or rdx:RAX (depending on the operand size). It puts the high-
order bits of the product in AH, DX, EDX, or rdx. If the upper half of the product
is non-zero, the instruction sets the carry flag (CF) and overflow flag (OF) both to 1.
Otherwise, it clears CF and OF to 0. The other arithmetic flags (SF, ZF, AF, PF) are
undefined. [cited from AMD volume 3]

opcode "F6h /100b" reg_mem 8
opcode "F7h /100b" reg_mem $v
call mul_rax($n, op1, 0b)

The mul_rax gets the result from the mul action and writes it into the RAX register or the
RDX, RAX register pair depending on the width of the operands.

action mul_rax($n::{8, 16, 32, 64}, a::bits $n, sign::bit)
call res = mul($n, a, RAX[$n-1:0], sign)
if $n == 8 then write res to RAX[2*$n-1:0]
else write gpr($n, res[$n-1:0], RAX) to RAX

write gpr($n, res[2*$n-1:$n], RDX) to RDX

The mul action takes the operand width, the operands, and the sign indicator. It updates
the status flags and returns the double-width result of the multiplication.

action mul($n::{8, 16, 32, 64}, a::bits $n, b::bits $n, sign::bit)::bits (2*$n)
undef RFLAGS.PF
undef RFLAGS.AF
undef RFLAGS.SF
undef RFLAGS.ZF
if sign then
let res = sxt(2*$n, a) * sxt(2*$n, b)
let overflow = res[2*$n-1:0] <> sxt(2*$n, res[$n-1:0])
write overflow to RFLAGS.CF
write overflow to RFLAGS.OF
return res

232

else
let res = zxt(2*$n, a) * zxt(2*$n, b)
let overflow = res[2*$n-1:$n] <> zero($n)
write overflow to RFLAGS.CF
write overflow to RFLAGS.OF
return res

Instruction IMUL

Multiplies two signed operands. The number of operands determines the form of the
instruction. If a single operand is specified, the instruction multiplies the value in the
specified general-purpose register or memory location by the value in the AL, AX, EAX,
or RAX register (depending on the operand size) and stores the product in AX, DX:AX,
EDX:EAX, or rdx:RAX, respectively. If two operands are specified, the instruction mul-
tiplies the value in a general-purpose register (first operand) by an immediate value
or the value in a general-purpose register or memory location (second operand) and
stores the product in the first operand location. If three operands are specified, the in-
struction multiplies the value in a general-purpose register or memory location (second
operand), by an immediate value (third operand) and stores the product in a register
(first operand). The IMUL instruction sign-extends an immediate operand to the length
of the other register/memory operand. The CF and OF flags are set if, due to integer
overflow, the double-width multiplication result cannot be represented in the half-width
destination register. Otherwise the CF and OF flags are cleared. [cited from AMD
volume 3]

opcode "F6h /101b" reg_mem 8 : call mul_rax(8, op1, 1b)
opcode "F7h /101b" reg_mem $v : call mul_rax($v, op1, 1b)
opcode "0FAFh" reg $v, reg_mem $v : call op1’ = IMUL($v, op1, op2)
opcode "6Bh" reg $v, reg_mem $v, imm 8 : call op1’ = IMUL($v, op2, sxt($v, op3))
opcode "69h" reg $v, reg_mem $v, imm $z : call op1’ = IMUL($v, op2, sxt($v, op3))

The IMUL action simply truncates the result of the mul action.

action IMUL($n::{8, 16, 32, 64}, a::bits $n, b::bits $n)::bits $n
call res = mul($n, a, b, 1b)
return res[$n-1:0]

B.5 Division

Instruction DIV

Divides the unsigned value in a register by the unsigned value in the specified register
or memory location. The register to be divided depends on the size of the divisor. When
dividing a word, the dividend is in the AX register. The instruction stores the quotient
in the AL register and the remainder in the AH register. When dividing a doubleword,
quadword, or double quadword, the most-significant word of the dividend is in the
rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX
register. The instruction truncates non-integral results towards 0 and the remainder
is always less than the divisor. An overflow generates a #DE (divide error) exception,
rather than setting the CF flag. Division by zero generates a divide-by-zero exception.
[cited from AMD volume 3]

233

opcode "F6h /110b" reg_mem 8
opcode "F7h /110b" reg_mem $v
call div_rax($n, op1)

The div_rax action reconstructs the dividend from the RAX register or the RDX, RAX regis-
ter pair depending on the operand width. After that, the action invokes the div action,
which performs unsigned division and returns the quotient and the remainder.

action div_rax($n::{8, 16, 32, 64}, divisor::bits $n)::bits $n
let dividend = if $n == 8 then RAX[15:0]

else RDX[$n-1:0]++RAX[$n-1:0]
call (quo, rem) = div($n, dividend, divisor)
write quo to RAX[$n-1:0]
write rem to RDX[$n-1:0]

The div action takes the width of the divisor, the dividend, and the divisor and performs
unsigned division. The width of the dividend is twice the width of the divisor. The action
returns the quotient and the remainder. In case the divisor is zero or the quotient is too
large, the action raises an exception.

action div($n::{8, 16, 32, 64}, a::bits (2*$n), b::bits $n)::(bits $n, bits $n)
fail exception(xDE, 0000h) when b == zero($n)
let quo = a / zxt(2*$n, b)
let rem = a % zxt(2*$n, b)
fail exception(xDE, 0000h) when quo[2*$n-1:$n] <> zero($n)
return (quo[$n-1:0], rem[$n-1:0])

Instruction IDIV

Divides the signed value in a register by the signed value in the specified register or
memory location. The register to be divided depends on the size of the divisor. When
dividing a word, the dividend is in the AX register. The instruction stores the quotient
in the AL register and the remainder in the AH register. When dividing a doubleword,
quadword, or double quadword, the most-significant word of the dividend is in the
rDX register and the least-significant word is in the rAX register. After the division, the
instruction stores the quotient in the rAX register and the remainder in the rDX register.
The instruction truncates non-integral results towards 0. The sign of the remainder is
always the same as the sign of the dividend, and the absolute value of the remainder is
less than the absolute value of the divisor. An overflow generates a #DE (divide error)
exception, rather than setting the OF flag. To avoid overflow problems, precede this
instruction with a CBW, CWD, CDQ, or CQO instruction to sign-extend the dividend.
[cited from AMD volume 3]

opcode "F6h /111b" reg_mem 8
opcode "F7h /111b" reg_mem $v
call idiv_rax($n, op1)

The idiv_rax action reconstructs the dividend from the RAX register or the RDX, RAX

register pair depending on the operand width. After that, the action invokes the idiv

action, which performs signed division and returns the quotient and the remainder.

action idiv_rax($n::{8, 16, 32, 64}, divisor::bits $n)::bits $n
let dividend = if $n == 8 then RAX[15:0]

else RDX[$n-1:0]++RAX[$n-1:0]
call (quo, rem) = idiv($n, dividend, divisor)

234

write quo to RAX[$n-1:0]
write rem to RDX[$n-1:0]

The idiv action takes the width of the divisor, the dividend and the divisor and performs
signed division. Since the division operator in our specification language performs only
unsigned division, the idiv action makes division of the absolute values of the operands
and then adjust the sign of the result.

action idiv($n::{8, 16, 32, 64}, a::bits (2*$n), b::bits $n)::(bits $n, bits $n)
fail exception(xDE, 0000h) when b == zero($n)
let c = sxt(2*$n+1, a)
let d = sxt(2*$n+1, b)
let (quo, rem) = if not c[2*$n] and not d[2*$n] then (c/d, c%d)

elif c[2*$n] and not d[2*$n] then (-((-c)/d), -((-c)%d))
elif c[2*$n] and d[2*$n] then ((-c)/(-d), -(-c)%(-d))
else (-(c/(-d)), c%(-d))

fail exception(xDE, 0000h) when quo[2*$n:0] <> sxt(2*$n+1, quo[$n-1:0])
return (quo[$n-1:0], rem[$n-1:0])

235

236

APPENDIX

C

LOGIC INSTRUCTIONS

Instruction AND

Performs a bitwise AND operation on the value in a register or memory location (first
operand) and an immediate value or the value in a register or memory location (second
operand), and stores the result in the first operand location. The instruction cannot
AND two memory operands. The instruction sets each bit of the result to 1 if the corre-
sponding bit of both operands is set; otherwise, it clears the bit to 0. [cited from AMD
volume 3]

opcode "20h" reg_mem 8, reg 8
opcode "21h" reg_mem $v, reg $v
opcode "22h" reg 8, reg_mem 8
opcode "23h" reg $v, reg_mem $v
opcode "24h" rax 8, imm 8
opcode "25h" rax $v, imm $z
opcode "80h /100b" reg_mem 8, imm 8
opcode "81h /100b" reg_mem $v, imm $z
opcode "83h /100b" reg_mem $v, imm 8
call op1’ = AND($n, op1, zxt($n, op2))
action AND($n::{8, $v}, a::bits $n, b::bits $n)::bits $n
let r = a & b
call flags_after_logic_op($n, r)
return r

After any logic instruction specified in this section the flags are set as follows:

action flags_after_logic_op($n::{8, 16, 32, 64}, res::bits $n)
write 0b to RFLAGS.CF
write parity($n, res) to RFLAGS.PF
undef RFLAGS.AF
write res == zero($n) to RFLAGS.ZF
write res[$n-1] to RFLAGS.SF
write 0b to RFLAGS.OF

The parity function is defined in section B.1.

237

Instruction TEST

Performs a bit-wise logical AND on the value in a register or memory location (first
operand) with an immediate value or the value in a register (second operand) and sets
the flags in the rFLAGS register based on the result. While the AND instruction changes
the contents of the destination and the flag bits, the TEST instruction changes only the
flag bits. [cited from AMD volume 3]

opcode "84h" reg_mem 8, reg 8
opcode "85h" reg_mem $v, reg $v
opcode "A8h" rax 8, imm 8
opcode "A9h" rax $v, imm $z
opcode "F6h /000b" reg_mem 8, imm 8
opcode "F7h /000b" reg_mem $v, imm $z
call AND($n, op1, zxt($n, op2))

Instruction OR

Performs a logical OR on the bits in a register, memory location, or immediate value
(second operand) and a register or memory location (first operand) and stores the result
in the first operand location. The two operands cannot both be memory locations. [cited
from AMD volume 3]

opcode "08h" reg_mem 8, reg 8
opcode "09h" reg_mem $v, reg $v
opcode "0Ah" reg 8, reg_mem 8
opcode "0Bh" reg $v, reg_mem $v
opcode "0Ch" rax 8, imm 8
opcode "0Dh" rax $v, imm $z
opcode "80h /001b" reg_mem 8, imm 8
opcode "81h /001b" reg_mem $v, imm $z
opcode "83h /001b" reg_mem $v, imm 8
call op1’ = OR($n, op1, zxt($n, op2))
action OR($n::{8, $v}, a::bits $n, b::bits $n)::bits $n
let r = a | b
call flags_after_logic_op($n, r)
return r

Instruction XOR

Performs a bitwise exclusive OR operation on both operands and stores the result in
the first operand location. The first operand can be a register or memory location. The
second operand can be an immediate value, a register, or a memory location. XOR-ing
a register with itself clears the register. [cited from AMD volume 3]

opcode "30h" reg_mem 8, reg 8
opcode "31h" reg_mem $v, reg $v
opcode "32h" reg 8, reg_mem 8
opcode "33h" reg $v, reg_mem $v
opcode "34h" rax 8, imm 8
opcode "35h" rax $v, imm $z
opcode "80h /110b" reg_mem 8, imm 8
opcode "81h /110b" reg_mem $v, imm $z
opcode "83h /110b" reg_mem $v, imm 8
call op1’ = XOR($n, op1, zxt($n, op2))
action XOR($n::{8, $v}, a::bits $n, b::bits $n)::bits $n

238

let r = a ^ b
call flags_after_logic_op($n, r)
return r

Instruction NOT

Performs the one’s complement negation of the value in the specified register or mem-
ory location by inverting each bit of the value. [cited from AMD volume 3]

opcode "F6h /010b" reg_mem 8
opcode "F7h /010b" reg_mem $v
let op1’ = ~op1

Notice that the NOT instruction does not change any status flag.

239

240

APPENDIX

D

BIT STRING INSTRUCTIONS

D.1 Bit Test and Set

Instruction BT

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register. If the bit base operand is a register, the instruction uses
the modulo 16, 32, or 64 (depending on the operand size) of the bit index to select a
bit in the register. If the bit base operand is a memory location, bit 0 of the byte at the
specified address is the bit base of the bit string. If the bit index is in a register, the
instruction selects a bit position relative to the bit base When the instruction attempts
to copy a bit from memory, it accesses 2, 4, or 8 bytes starting from the specified mem-
ory address for 16-bit, 32-bit, or 64-bit operand sizes, respectively, using the following
formula: Effective Address + (NumBytesi * (BitOffset DIV NumBitsi8)) [cited from AMD
volume 3]*

opcode "0FA3h" reg_mem $v, reg $v : call BT(int(op2))
opcode "0FBAh /100b" reg_mem $v, imm 8 : call BT(nat(op2)%$v)
action BT(idx::int)
call x = read_bit_container(idx)
let $k = (idx % $v)::[0..$v-1]
write x[$k] to RFLAGS.CF

The read_bit_container action splits the bit-string operand of the instruction into chunks
of width $v. The action returns the chunk that contains the bit with the given index idx.

action read_bit_container(idx::int)::(bits $v)
if _modrm.mod == 11b then
call x = read_op($v, reg_rm)
return x

else
let offset = (idx / $v) * ($v / 8)
let s = segment(iDS)
let origin = segment_origin(s)

241

call x = lread(origin, $v, SR[s], $oa, ea + bits($oa, offset))
return x

The _modrm byte defines whether the bit-string is in a register or in the memory. In
the former case, we simply return the register value using the read_op action, which is
defined in section 14.13. In the latter case, we compute the offset of the chunk that
contains the specified bit and perform a logical read lread. Functions that compute the
segment and the effective address of the memory operand are defined in section 14.12.
The logical read action is defined in section 13.12.

Instruction BTC

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then complements (toggles) the bit in the bit string.
If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register. If the
bit base operand is a memory location, bit 0 of the byte at the specified address is
the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base When the instruction attempts to copy a bit from
memory, it accesses 2, 4, or 8 bytes starting from the specified memory address for 16-
bit, 32-bit, or 64-bit operand sizes, respectively, using the following formula: Effective
Address + (NumBytesi * (BitOffset DIV NumBitsi8)) [cited from AMD volume 3]*

opcode "0FBBh" reg_mem $v, reg $v : call BTC(int(op2))
opcode "0FBAh /111b" reg_mem $v, imm 8 : call BTC(nat(op2)%$v)
action BTC(idx::int)
call x = read_bit_container(idx)
let $k = (idx % $v)::[0..$v-1]
write x[$k] to RFLAGS.CF
call write_bit_container(idx, x ^ (zxt($v, 1b) << $k))

The write_bit_container action splits the bit-string operand of the instruction into chunks
of width $v. The action writes the given chunk val into the chunk that contains the bit
with the given index idx. Refer to the description of the read_bit_container for more
explanation.

action write_bit_container(idx::int, val::bits $v)
if ModRM.mod == 11b then
call write_op($v, val, reg_rm)

else
let offset = (idx / $v)*($v / 8)
let s = segment(iDS)
let origin = segment_origin(s)
call lwrite(origin, $v, val, SR[s], $oa, ea + bits($oa, offset))

Instruction BTR

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then clears the bit in the bit string to 0. If the bit
base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending
on the operand size) of the bit index to select a bit in the register. If the bit base
operand is a memory location, bit 0 of the byte at the specified address is the bit base

242

of the bit string. If the bit index is in a register, the instruction selects a bit position
relative to the bit base When the instruction attempts to copy a bit from memory, it
accesses 2, 4, or 8 bytes starting from the specified memory address for 16-bit, 32-bit,
or 64-bit operand sizes, respectively, using the following formula: Effective Address +
(NumBytesi * (BitOffset DIV NumBitsi8)) [cited from AMD volume 3]*

opcode "0FB3h" reg_mem $v, reg $v : call BTR(int(op2))
opcode "0FBAh /110b" reg_mem $v, imm 8 : call BTR(nat(op2)%$v)
action BTR(idx::int)
call x = read_bit_container(idx)
let $k = (idx % $v)::[0..$v-1]
write x[$k] to RFLAGS.CF
call write_bit_container(idx, x ^ (zxt($v, x[$k]) << $k))

Instruction BTS

Copies a bit, specified by bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then sets the bit in the bit string to 1. If the bit base
operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register. If the bit base operand is
a memory location, bit 0 of the byte at the specified address is the bit base of the bit
string. If the bit index is in a register, the instruction selects a bit position relative to
the bit base When the instruction attempts to copy a bit from memory, it accesses 2,
4, or 8 bytes starting from the specified memory address for 16-bit, 32-bit, or 64-bit
operand sizes, respectively, using the following formula: Effective Address + (Num-
Bytesi * (BitOffset DIV NumBitsi8)) [cited from AMD volume 3]*

opcode "0FABh" reg_mem $v, reg $v : call BTS(int(op2))
opcode "0FBAh /101b" reg_mem $v, imm 8 : call BTS(nat(op2)%$v)
action BTS(idx::int)
call x = read_bit_container(idx)
let $k = (idx % $v)::[0..$v-1]
write x[$k] to RFLAGS.CF
call write_bit_container(idx, x | (zxt($v, 1b) << $k))

D.2 Bit Search

Instruction BSF

Searches the value in a register or a memory location (second operand) for the least-
significant set bit. If a set bit is found, the instruction clears the zero flag (ZF) and
stores the index of the least-significant set bit in a destination register (first operand).
If the second operand contains 0, the instruction sets ZF to 1 and does not change the
contents of the destination register. The bit index is an unsigned offset from bit 0 of the
searched value. [cited from AMD volume 3]

opcode "0FBCh" reg $v, reg_mem $v : call BSF(op2)
action BSF(x::bits $v)
if x == zero($v) then write 1b to RFLAGS.ZF
else let idx = tzcnt64(zxt(64, x))

call write_op($v, bits($v, idx), reg)
write 0b to RFLAGS.ZF

243

The tzcnt64 function returns the number of the trailing zeros in the given 64-bit wide
bit-string. Notice that the number of trailing zero coincides with the index of the least-
significant set bit if there exists a set bit. The function is defined in terms of the tzcnt32

function which counts the number of trailing zeros in a 32-bit wide bit-string. We apply
the same pattern several times, until we get to the tzcnt04 function, which explicitly
counts the number of trailing zeros.

function tzcnt64(x::bits 64)::[0..64]
= if x[31:0] <> zero(32) then tzcnt32(x[31:0])
else 32 + tzcnt32(x[63:32])

function tzcnt32(x::bits 32)::[0..32]
= if x[15:0] <> zero(16) then tzcnt16(x[15:0])
else 16 + tzcnt16(x[31:16])

function tzcnt16(x::bits 16)::[0..16]
= if x[7:0] <> zero(08) then tzcnt08(x[7:0])
else 8 + tzcnt08(x[15:8])

function tzcnt08(x::bits 8)::[0..8]
= if x[3:0] <> zero(04) then tzcnt04(x[3:0])
else 4 + tzcnt04(x[7:4])

function tzcnt04(x::bits 4)::[0..4]
= if x[0] then 0
elif x[1] then 1
elif x[2] then 2
elif x[3] then 3
else 4

Instruction BSR

Searches the value in a register or a memory location (second operand) for the most-
significant set bit. If a set bit is found, the instruction clears the zero flag (ZF) and
stores the index of the most-significant set bit in a destination register (first operand).
If the second operand contains 0, the instruction sets ZF to 1 and does not change the
contents of the destination register. The bit index is an unsigned offset from bit 0 of the
searched value. [cited from AMD volume 3]

opcode "0FBDh" reg $v, reg_mem $v : call BSR(op2)
action BSR(x::bits $v)
if x == zero($v) then write 1b to RFLAGS.ZF
else let idx = 64-lzcnt64(zxt(64, x))

call write_op($v, bits($v, idx), reg)
write 0b to RFLAGS.ZF

The lzcnt64 function counts the number of the leading zeros. Refer to the description
of the tzcnt64 function for more explanation.

function lzcnt64(x::bits 64)::[0..64]
= if x[63:32] <> zero(32) then lzcnt32(x[63:32])
else 32 + lzcnt32(x[31:0])

function lzcnt32(x::bits 32)::[0..32]
= if x[31:16] <> zero(16) then lzcnt16(x[31:16])
else 16 + lzcnt16(x[15:0])

function lzcnt16(x::bits 16)::[0..16]
= if x[15:8] <> zero(8) then lzcnt08(x[15:8])
else 8 + lzcnt08(x[7:0])

function lzcnt08(x::bits 8)::[0..8]

244

= if x[7:4] <> zero(4) then lzcnt04(x[7:4])
else 4 + lzcnt04(x[3:0])

function lzcnt04(x::bits 4)::[0..4]
= if x[3] then 0
elif x[2] then 1
elif x[1] then 2
elif x[0] then 3
else 4

D.3 Bit String Conversions

Instruction BSWAP

Reverses the byte order of the specified register. This action converts the contents of
the register from little endian to big endian or vice versa. In a doubleword, bits 7–
0 are exchanged with bits 31–24, and bits 15–8 are exchanged with bits 23–16. In a
quadword, bits 7–0 are exchanged with bits 63–56, bits 15–8 with bits 55–48, bits 23–
16 with bits 47–40, and bits 31–24 with bits 39–32. A subsequent use of the BSWAP
instruction with the same operand restores the original value of the operand. [cited
from AMD volume 3]

opcode "0FC8h" reg $v : call op1’ = BSWAP(op1)
action BSWAP(x::bits $v)::bits $v
if $v == 16 then return $undefined[$v-1:0]
elif $v == 32 then return x[7:0] ++ x[15:8] ++ x[23:16] ++ x[31:24]
else let hi = x[7:0] ++ x[15:8] ++ x[23:16] ++ x[31:24]

let lo = x[39:32] ++ x[47:40] ++ x[55:48] ++ x[63:56]
return hi ++ lo

Instruction CBW-CWDE-CDQE

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The
effect of this instruction is to convert a signed byte, word, or doubleword in the AL or
eAX register into a signed word, doubleword, or double quadword in the rAX register.
This action helps avoid overflow problems in signed number arithmetic. [cited from
AMD volume 3]

opcode "98h" : write gpr($v, sxt($v, RAX[$v/2-1:0]), RAX) to RAX

The gpr function is defined in section 14.13.

Instruction CWD-CDQ-CQO

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this
instruction is to convert a signed word, doubleword, or quadword in the rAX register
into a signed doubleword, quadword, or double-quadword in the rDX:rAX registers.
This action helps avoid overflow problems in signed number arithmetic. [cited from
AMD volume 3]

opcode "99h" : write gpr($v, sxt($v, RAX[$v-1]), RDX) to RDX

The gpr function is defined in section 14.13.

245

D.4 Shifts

Instruction SAL-SHL

Shifts the bits of a register or memory location (first operand) to the left through the
CF bit by the number of bit positions in an unsigned immediate value or the CL register
(second operand). The instruction discards bits shifted out of the CF flag. For each
bit shift, the SAL instruction clears the least-significant bit to 0. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand. The
processor masks the upper three bits of the count operand, thus restricting the count to
a number between 0 and 31. When the destination is 64 bits wide, the processor masks
the upper two bits of the count, providing a count in the range of 0 to 63. The effect of
this instruction is multiplication by powers of two. For 1-bit shifts, the instruction sets
the OF flag to the exclusive OR of the CF bit (after the shift) and the most significant
bit of the result. When the shift count is greater than 1, the OF flag is undefined. If the
shift count is 0, no flags are modified. [cited from AMD volume 3]

opcode "D0h /100b" reg_mem 8, const_1 8
opcode "D2h /100b" reg_mem 8, rcx 8
opcode "C0h /100b" reg_mem 8, imm 8
opcode "D1h /100b" reg_mem $v, const_1 8
opcode "D3h /100b" reg_mem $v, rcx 8
opcode "C1h /100b" reg_mem $v, imm 8
call op1’ = SHL($n, op1, op2)

The SHL action takes the operand width, the operand, and the shift amount. It computes
the real shift amount as $k by masking the given shift amount. In case the $k is zero,
the action does nothing. Otherwise, it computes the result and the status flags.

action SHL($n::{8, $v}, op1::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
else let res = op1 << $k

write op1[$n - $k] to RFLAGS.CF when $k <= $n
write 0b to RFLAGS.CF when $k > $n
write parity($n, res) to RFLAGS.PF
undef RFLAGS.AF
write res == zero($n) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write op1[$n - 1] ^ res[$n - 1] to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res

Instruction SHLD

Shifts the bits of a register or memory location (first operand) to the left by the number
of bit positions in an unsigned immediate value or the CL register (third operand), and
shifts in a bit pattern (second operand) from the right. At the end of the shift operation,
the CF flag contains the last bit shifted out of the first operand. The processor masks the
upper three bits of the count operand, thus restricting the count to a number between
0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits
of the count, providing a count in the range of 0 to 63. If the masked count is greater
than the operand size, the result in the destination register is undefined. If the shift

246

count is 0, no flags are modified. If the count is 1 and the sign of the operand being
shifted changes, the instruction sets the OF flag to 1. If the count is greater than 1, OF
is undefined. [cited from AMD volume 3]

opcode "0FA4h" reg_mem $v, reg $v, imm 8
opcode "0FA5h" reg_mem $v, reg $v, rcx 8
call op1’ = SHLD($n, op1, op2, op3)

The SHLD action takes the operand width, the operand, the fill-in pattern, and the shift
amount. It computes the real shift amount as $k by masking the given shift amount. In
case the $k is zero, the action does nothing. In case the $k exceeds the operand width,
the action returns an undefined result. Otherwise, it computes the result and the status
flags.

action SHLD($n::{8, $v}, op1::bits $n, pattern::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
elif $k > $n then undef RFLAGS.CF

undef RFLAGS.PF
undef RFLAGS.AF
undef RFLAGS.ZF
undef RFLAGS.SF
undef RFLAGS.OF
return $undefined[$n-1:0]

else let res = if $k == $n then pattern
else op1[$n-$k-1:0]++pattern[$k-1:0]

write op1[$n - $k] to RFLAGS.CF
write parity($n, res) to RFLAGS.PF
undef RFLAGS.AF
write res == zero($n) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write op1[$n - 1] ^ res[$n - 1] to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res

Instruction SAR

Shifts the bits of a register or memory location (first operand) to the right through the
CF bit by the number of bit positions in an unsigned immediate value or the CL register
(second operand). The instruction discards bits shifted out of the CF flag. At the end of
the shift operation, the CF flag contains the last bit shifted out of the first operand. The
SAR instruction does not change the sign bit of the target operand. For each bit shift,
it copies the sign bit to the next bit, preserving the sign of the result. The processor
masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper
two bits of the count, providing a count in the range of 0 to 63. For 1-bit shifts, the
instruction clears the OF flag to 0. When the shift count is greater than 1, the OF flag
is undefined. If the shift count is 0, no flags are modified. Although the SAR instruction
effectively divides the operand by a power of 2, the behavior is different from the IDIV
instruction. For example, shifting –11 (FFFFFFF5h) by two bits to the right (that is,
divide –11 by 4), gives a result of FFFFFFFDh, or –3, whereas the IDIV instruction
for dividing –11 by 4 gives a result of –2. This is because the IDIV instruction rounds

247

off the quotient to zero, whereas the SAR instruction rounds off the remainder to zero
for positive dividends and to negative infinity for negative dividends. So, for positive
operands, SAR behaves like the corresponding IDIV instruction. For negative operands,
it gives the same result if and only if all the shifted-out bits are zeroes; otherwise, the
result is smaller by 1. [cited from AMD volume 3]

opcode "D0h /111b" reg_mem 8, const_1 8
opcode "D2h /111b" reg_mem 8, rcx 8
opcode "C0h /111b" reg_mem 8, imm 8
opcode "D1h /111b" reg_mem $v, const_1 8
opcode "D3h /111b" reg_mem $v, rcx 8
opcode "C1h /111b" reg_mem $v, imm 8
call op1’ = SAHR($n, op1, sxt(64, op1[$n-1]), op2)

Since there are two right shifts: arithmetic shift, which fills in the sign-bit, and logic
shift, which fills in zero, we define a general shift action SAHR. The action takes as
parameters operand width, the operand, the fill-in pattern, and the shift amount. Notice
that the fill-in pattern has either all bits cleared or all bits set. The action computes the
real shift amount $k by masking the given shift amount. If the real shift is zero, the
action does nothing. Otherwise, the action computes the result and the status flags.

action SAHR($n::{8, $v}, op1::bits $n, pattern::bits 64, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
else let res = if $k >= $n then pattern[$n-1:0]

else pattern[$k-1:0] ++ op1[$n-1:$k]
write op1[$k-1] to RFLAGS.CF when $k <= $n
write pattern[0] to RFLAGS.CF when $k > $n
write parity($n, res) to RFLAGS.PF
undef RFLAGS.AF
write res == zero($n) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write 0b to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res

Instruction SHR

Shifts the bits of a register or memory location (first operand) to the right through the
CF bit by the number of bit positions in an unsigned immediate value or the CL register
(second operand). The instruction discards bits shifted out of the CF flag. At the end
of the shift operation, the CF flag contains the last bit shifted out of the first operand.
For each bit shift, the instruction clears the most-significant bit to 0. The effect of this
instruction is unsigned division by powers of two. The processor masks the upper three
bits of the count operand, thus restricting the count to a number between 0 and 31.
When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. For 8-bit shifts, the instruction sets the
OF flag to the most-significant bit of the original value. If the count is greater than 1,
the OF flag is undefined. If the shift count is 0, no flags are modified. [cited from AMD
volume 3]

opcode "D0h /101b" reg_mem 8, const_1 8
opcode "D2h /101b" reg_mem 8, rcx 8

248

opcode "C0h /101b" reg_mem 8, imm 8
opcode "D1h /101b" reg_mem $v, const_1 8
opcode "D3h /101b" reg_mem $v, rcx 8
opcode "C1h /101b" reg_mem $v, imm 8
call op1’ = SAHR($n, op1, zero(64), op2)

For the definition of the SAHR action refer to the description of the SAR instruction.

Instruction SHRD

Shifts the bits of a register or memory location (first operand) to the right by the number
of bit positions in an unsigned immediate value or the CL register (third operand), and
shifts in a bit pattern (second operand) from the left. At the end of the shift operation,
the CF flag contains the last bit shifted out of the first operand. The processor masks the
upper three bits of the count operand, thus restricting the count to a number between
0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits
of the count, providing a count in the range of 0 to 63. If the masked count is greater
than the operand size, the result in the destination register is undefined. If the shift
count is 0, no flags are modified. If the count is 8 and the sign of the value being shifted
changes, the instruction sets the OF flag to 1. If the count is greater than 1, the OF flag
is undefined. [cited from AMD volume 3]

opcode "0FACh" reg_mem $v, reg $v, imm 8
opcode "0FADh" reg_mem $v, reg $v, rcx 8
call op1’ = SHRD($n, op1, op2, op3)

The SHRD action takes the operand width, the operand, the fill-in pattern, and the shift
amount. It is similar to the SAHR action that we defined for the SAR and the SHR in-
structions, but it returns undefined result if the real shift amount exceeds the operand
width.

action SHRD($n::{8, $v}, op1::bits $n, pattern::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
elif $k > $n then undef RFLAGS.CF

undef RFLAGS.PF
undef RFLAGS.AF
undef RFLAGS.ZF
undef RFLAGS.SF
undef RFLAGS.OF
return $undefined[$n-1:0]

else let res = if $k == $n then pattern
else pattern[$k-1:0] ++ op1[$n-1:$k]

write op1[$k-1] to RFLAGS.CF
write parity($n, res) to RFLAGS.PF
undef RFLAGS.AF
write res == zero($n) to RFLAGS.ZF
write res[$n - 1] to RFLAGS.SF
write 0b to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res

249

D.5 Rotations

Instruction ROL

Rotates the bits of a register or memory location (first operand) to the left (toward the
more significant bit positions) by the number of bit positions in an unsigned immediate
value or the CL register (second operand). The bits rotated out left are rotated back
in at the right end (lsb) of the first operand location. The processor masks the upper
three bits of the count operand, thus restricting the count to a number between 0 and
31. When the destination is 64 bits wide, it masks the upper two bits of the count,
providing a count in the range of 0 to 63. After completing the rotation, the instruction
sets the CF flag to the last bit rotated out (the lsb of the result). For 1-bit rotates, the
instruction sets the OF flag to the exclusive OR of the CF bit (after the rotate) and the
most significant bit of the result. When the rotate count is greater than 1, the OF flag is
undefined. When the rotate count is 0, no flags are affected. [cited from AMD volume
3]

opcode "D0h /000b" reg_mem 8, const_1 8
opcode "D2h /000b" reg_mem 8, rcx 8
opcode "C0h /000b" reg_mem 8, imm 8
opcode "D1h /000b" reg_mem $v, const_1 8
opcode "D3h /000b" reg_mem $v, rcx 8
opcode "C1h /000b" reg_mem $v, imm 8
call op1’ = ROL($n, op1, op2)
action ROL($n::{8, $v}, op1::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
else let $m = $k % $n

let res = if $m == 0 then op1 else op1[$n-$m-1:0] ++ op1[$n-1:$n-$m]
write res[0] to RFLAGS.CF
write res[$n - 1] ^ op1[$n - 1] to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res

Instruction ROR

Rotates the bits of a register or memory location (first operand) to the right (toward the
less significant bit positions) by the number of bit positions in an unsigned immediate
value or the CL register (second operand). The bits rotated out right are rotated back
in at the left end (the most significant bit) of the first operand location. The processor
masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper
two bits of the count, providing a count in the range of 0 to 63. After completing the
rotation, the instruction sets the CF flag to the last bit rotated out (the most significant
bit of the result). For 1-bit rotates, the instruction sets the OF flag to the exclusive OR
of the two most significant bits of the result. When the rotate count is greater than 1,
the OF flag is undefined. When the rotate count is 0, no flags are affected. [cited from
AMD volume 3]

opcode "D0h /001b" reg_mem 8, const_1 8
opcode "D2h /001b" reg_mem 8, rcx 8
opcode "C0h /001b" reg_mem 8, imm 8

250

opcode "D1h /001b" reg_mem $v, const_1 8
opcode "D3h /001b" reg_mem $v, rcx 8
opcode "C1h /001b" reg_mem $v, imm 8
call op1’ = ROR($n, op1, op2)
action ROR($n::{8, $v}, op1::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
else let $m = $k % $n

let res = if $m == 0 then op1 else op1[$m-1:0] ++ op1[$n-1:$m]
write res[$n-1] to RFLAGS.CF
write res[$n-1] ^ op1[$n-1] to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res

Instruction RCL

Rotates the bits of a register or memory location (first operand) to the left (more signif-
icant bit positions) and through the carry flag by the number of bit positions in an un-
signed immediate value or the CL register (second operand). The bits rotated through
the carry flag are rotated back in at the right end (lsb) of the first operand location. The
processor masks the upper three bits of the count operand, thus restricting the count
to a number between 0 and 31. When the destination is 64 bits wide, the processor
masks the upper two bits of the count, providing a count in the range of 0 to 63. For
1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF bit (after the
rotate) and the most significant bit of the result. When the rotate count is greater than
1, the OF flag is undefined. When the rotate count is 0, no flags are affected. [cited
from AMD volume 3]

opcode "D0h /010b" reg_mem 8, const_1 8
opcode "D2h /010b" reg_mem 8, rcx 8
opcode "C0h /010b" reg_mem 8, imm 8
opcode "D1h /010b" reg_mem $v, const_1 8
opcode "D3h /010b" reg_mem $v, rcx 8
opcode "C1h /010b" reg_mem $v, imm 8
call op1’ = RCL($n, op1, op2)
action RCL($n::{8, $v}, op1::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
else let $m = $k % ($n+1)

let x = RFLAGS.CF ++ op1
let res = if $m == 0 then x else x[$n-$m:0] ++ x[$n:$n+1-$m]
write res[$n] to RFLAGS.CF
write res[$n - 1] ^ op1[$n - 1] to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res[$n-1:0]

Instruction RCR

Rotates the bits of a register or memory location (first operand) to the right (toward the
less significant bit positions) and through the carry flag by the number of bit positions
in an unsigned immediate value or the CL register (second operand). The bits rotated
through the carry flag are rotated back in at the left end (msb) of the first operand lo-

251

cation. The processor masks the upper three bits in the count operand, thus restricting
the count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63. For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF flag
(before the rotate) and the most significant bit of the original value. When the rotate
count is greater than 1, the OF flag is undefined. When the rotate count is 0, no flags
are affected. [cited from AMD volume 3]

opcode "D0h /011b" reg_mem 8, const_1 8
opcode "D2h /011b" reg_mem 8, rcx 8
opcode "C0h /011b" reg_mem 8, imm 8
opcode "D1h /011b" reg_mem $v, const_1 8
opcode "D3h /011b" reg_mem $v, rcx 8
opcode "C1h /011b" reg_mem $v, imm 8
call op1’ = RCR($n, op1, op2)
action RCR($n::{8, $v}, op1::bits $n, shift::bits 8)::bits $n
let $k = if $n == 64 then nat(shift[5:0])::[0..63]

else nat(shift[4:0])::[0..31]
if $k == 0 then return op1
else let $m = $k % ($n+1)

let x = RFLAGS.CF ++ op1
let res = if $m == 0 then x else x[$m-1:0] ++ x[$n:$m]
write res[$n] to RFLAGS.CF
write res[$n-1] ^ op1[$n-1] to RFLAGS.OF when $k == 1
undef RFLAGS.OF when $k > 1
return res[$n-1:0]

252

APPENDIX

E

INSTRUCTIONS FOR BINARY
CODED DECIMALS

Instruction AAA (when not $x64_mode)

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA instruction
after using the ADD instruction to add two unpacked BCD numbers. If the value in the
lower nibble of AL is greater than 9 or the AF flag is set to 1, the instruction increments
the AH register, adds 6 to the AL register, and sets the CF and AF flags to 1. Otherwise,
it does not change the AH register and clears the CF and AF flags to 0. In either case,
AAA clears bits 7–4 of the AL register, leaving the correct decimal digit in bits 3–0.
[cited from AMD volume 3]

opcode "37h" : call AAA
action AAA
if RAX[3:0] > 9h or RFLAGS.AF == 1b then

write RAX[15:8] + 01h to RAX[15:8]
write (RAX[7:0] + 06h) & 0Fh to RAX[7:0]
write 1b to RFLAGS.CF
write 1b to RFLAGS.AF

else write RAX[7:0] & 0Fh to RAX[7:0]
write 0b to RFLAGS.CF
write 0b to RFLAGS.AF

Instruction AAS (when not $x64_mode)

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS instruction
after using the SUB instruction to subtract two unpacked BCD numbers. If the value
in AL is greater than 9 or the AF flag is set to 1, the instruction decrements the value
in AH, subtracts 6 from the AL register, and sets the CF and AF flags to 1. Otherwise,
it clears the CF and AF flags and the AH register is unchanged. In either case, the
instruction clears bits 7–4 of the AL register, leaving the correct decimal digit in bits
3–0. [cited from AMD volume 3]

opcode "3Fh" : call AAS
action AAS

253

if RAX[3:0] > 9h or RFLAGS.AF == 1b then
write RAX[15:8] - 01h to RAX[15:8]
write (RAX[7:0] - 06h) & 0Fh to RAX[7:0]
write 1b to RFLAGS.CF
write 1b to RFLAGS.AF

else write RAX[7:0] & 0Fh to RAX[7:0]
write 0b to RFLAGS.CF
write 0b to RFLAGS.AF

Instruction AAD (when not $x64_mode)

Converts two unpacked BCD digits in the AL (least significant) and AH (most significant)
registers to a single binary value in the AL register using the following formula: AL
= ((10d * AH) + (AL)) After the conversion, AH is cleared to 00h. In most modern
assemblers, the AAD instruction adjusts from base–10 values. However, by coding the
instruction directly in binary, it can adjust from any base specified by the immediate
byte value (ib) suffixed onto the D5h opcode. For example, code D508h for octal, D50Ah
for decimal, and D50Ch for duodecimal (base 12). [cited from AMD volume 3]

opcode "D5h" imm 8 : call AAD(op1)
action AAD(base::bits 8)
let res = RAX[15:8] * base + RAX[7:0]
write zxt(16, res) to RAX[15:0]
write parity(8, res) to RFLAGS.PF
write res == 00h to RFLAGS.ZF
write res[7] to RFLAGS.SF
undef RFLAGS.CF
undef RFLAGS.AF
undef RFLAGS.OF

Instruction AAM (when not $x64_mode)

Converts the value in the AL register from binary to two unpacked BCD digits in the AH
(most significant) and AL (least significant) registers using the following formula: AH =
(AL/10d) AL = (AL mod 10d) In most modern assemblers, the AAM instruction adjusts
to base–10 values. However, by coding the instruction directly in binary, it can adjust to
any base specified by the immediate byte value (ib) suffixed onto the D4h opcode. For
example, code D408h for octal, D40Ah for decimal, and D40Ch for duodecimal (base
12). [cited from AMD volume 3]

opcode "D4h" imm 8 : call AAM(op1)
action AAM(base::bits 8)
let high = RAX[7:0] / base
let low = RAX[7:0] % base
let res = high ++ low
write res to RAX[15:0]
write parity(16, res) to RFLAGS.PF
write res == 0000h to RFLAGS.ZF
write res[15] to RFLAGS.SF
undef RFLAGS.CF
undef RFLAGS.AF
undef RFLAGS.OF

Instruction DAA (when not $x64_mode)

254

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF
flags in the rFLAGS register to indicate a decimal carry out of either nibble of AL. Use
this instruction to adjust the result of a byte ADD instruction that performed the binary
addition of one 2-digit packed BCD values to another. The instruction performs the
adjustment by adding 06h to AL if the lower nibble is greater than 9 or if AF = 1. Then
60h is added to AL if the original AL was greater than 99h or if CF = 1. If the lower
nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not modified. If the
upper nibble of AL was adjusted, the CF flag is set to 1. Otherwise, CF is not modified.
SF, ZF, and PF are set according to the final value of AL. [cited from AMD volume 3]

opcode "27h" : call DAA
action DAA
let al1 = if RAX[3:0] > 9h or RFLAGS.AF then RAX[7:0] + 06h else RAX[7:0]
let al2 = if RAX[7:0] > 99h or RFLAGS.CF then al1 + 60h else al1
write 1b to RFLAGS.AF when RAX[3:0] > 9h or RFLAGS.AF
write 1b to RFLAGS.CF when RAX[7:0] > 99h or RFLAGS.CF
write al2 to RAX[7:0]
write parity(8, al2) to RFLAGS.PF
write al2 == 00h to RFLAGS.ZF
write al2[7] to RFLAGS.SF

Instruction DAS (when not $x64_mode)

Adjusts the value in the AL register into a packed BCD result and sets the CF and
AF flags in the rFLAGS register to indicate a decimal borrow. Use this instruction to
adjust the result of a byte SUB instruction that performed a binary subtraction of one
2-digit, packed BCD value from another. This instruction performs the adjustment by
subtracting 06h from AL if the lower nibble is greater than 9 or if AF = 1. Then 60h
is subtracted from AL if the original AL was greater than 99h or if CF = 1. If the
adjustment changes the lower nibble of AL, the AF flag is set to 1; otherwise AF is not
modified. If the adjustment results in a borrow for either nibble of AL, the CF flag is
set to 1; otherwise CF is not modified. The SF, ZF, and PF flags are set according to the
final value of AL. [cited from AMD volume 3]

opcode "2Fh" : call DAS
action DAS
let al1 = if RAX[3:0] > 9h or RFLAGS.AF then RAX[7:0] - 06h else RAX[7:0]
let al2 = if RAX[7:0] > 99h or RFLAGS.CF then al1 - 60h else al1
write 1b to RFLAGS.AF when RAX[3:0] > 9h or RFLAGS.AF
write 1b to RFLAGS.CF when RAX[7:0] > 99h or RFLAGS.CF
write al2 to RAX[7:0]
write parity(8, al2) to RFLAGS.PF
write al2 == 00h to RFLAGS.ZF
write al2[7] to RFLAGS.SF

255

256

APPENDIX

F

FLAG INSTRUCTIONS

Instruction STI

Sets the interrupt flag (IF) in the rFLAGS register to 1, thereby allowing external inter-
rupts received on the INTR input. Interrupts received on the non-maskable interrupt
(NMI) input are not affected by this instruction. In real mode, this instruction sets IF
to 1. In protected mode and virtual–8086-mode, this instruction is IOPL-sensitive. If
the CPL is less than or equal to the rFLAGS.IOPL field, the instruction sets IF to 1.
In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are
enabled (CR4.PVI = 1), then the instruction instead sets rFLAGS.VIF to 1. If none of
these conditions apply, the processor raises a general protection exception (#GP). For
more information, see “Protected Mode Virtual Interrupts” in Volume 2. In virtual–8086
mode, if IOPL < 3 and the virtual–8086-mode extensions are enabled (CR4.VME = 1),
the STI instruction instead sets the virtual interrupt flag (rFLAGS.VIF) to 1. If STI sets
the IF flag and IF was initially clear, then interrupts are not enabled until after the
instruction following STI. [cited from AMD volume 3]

opcode "FBh" : call STI
action STI
if CPL <= RFLAGS.IOPL then
write 1b to _intr_shadow when RFLAGS.IF == 0b
write 0b to RFLAGS.IF

elif CPL == 11b and RFLAGS.IOPL < 11b
and ($vm86_mode and CR4.VME or $protected_mode and CR4.PVI) then

write 0b to RFLAGS.VIF
else fail exception(xGP, 0000h)

Instruction CLI

Clears the interrupt flag (IF) in the rFLAGS register to zero, thereby masking exter-
nal interrupts received on the INTR input. Interrupts received on the non-maskable
interrupt (NMI) input are not affected by this instruction. In real mode, this instruction
clears IF to 0. In protected mode and virtual–8086-mode, this instruction is IOPL-
sensitive. If the CPL is less than or equal to the rFLAGS.IOPL field, the instruction
clears IF to 0. In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual

257

interrupts are enabled (CR4.PVI = 1), then the instruction instead clears rFLAGS.VIF
to 0. If none of these conditions apply, the processor raises a general-purpose exception
(#GP). In virtual–8086 mode, if IOPL < 3 and the virtual–8086-mode extensions are en-
abled (CR4.VME = 1), the CLI instruction clears the virtual interrupt flag (rFLAGS.VIF)
to 0 instead. [cited from AMD volume 3]

opcode "FAh" : call CLI
action CLI
if CPL <= RFLAGS.IOPL then write 0b to RFLAGS.IF
elif CPL == 11b and RFLAGS.IOPL < 11b

and ($vm86_mode and CR4.VME or $protected_mode and CR4.PVI) then
write 0b to RFLAGS.VIF

else fail exception(xGP, 0000h)

Instruction STC

Sets the carry flag (CF) in the rFLAGS register to one. [cited from AMD volume 3]

opcode "F9h" : write 1b to RFLAGS.CF

Instruction CLC

Clears the carry flag (CF) in the rFLAGS register to zero. [cited from AMD volume 3]

opcode "F8h" : write 0b to RFLAGS.CF

Instruction STD

Set the direction flag (DF) in the rFLAGS register to 1. If the DF flag is 0, each iteration
of a string instruction increments the data pointer (index registers rSI or rDI). If the DF
flag is 1, the string instruction decrements the pointer. Use the CLD instruction before
a string instruction to make the data pointer increment. [cited from AMD volume 3]

opcode "FDh" : write 1b to RFLAGS.DF

Instruction CLD

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each
iteration of a string instruction increments the data pointer (index registers rSI or rDI).
If the DF flag is 1, the string instruction decrements the pointer. Use the CLD instruc-
tion before a string instruction to make the data pointer increment. [cited from AMD
volume 3]

opcode "FCh" : write 0b to RFLAGS.DF

Instruction CMC

Complements (toggles) the carry flag (CF) bit of the rFLAGS register. [cited from AMD
volume 3]

opcode "F5h" : write (not RFLAGS.CF) to RFLAGS.CF

Instruction LAHF (when not $x64_mode or $CPUID_80000001_LAHF_SAHF)

Loads the lower 8 bits of the rFLAGS register, including sign flag (SF), zero flag (ZF),
auxiliary carry flag (AF), parity flag (PF), and carry flag (CF), into the AH register. The
instruction sets the reserved bits 1, 3, and 5 of the rFLAGS register to 1, 0, and 0,
respectively, in the AH register. The LAHF instruction can only be executed in 64-bit
mode if supported by the processor implementation. Check the status of ECX bit 0

258

returned by CPUID function 8000_0001h to verify that the processor supports LAHF in
64-bit mode. [cited from AMD volume 3]

opcode "9Fh" : call LAHF
action LAHF
let x = fixFlags(RFLAGS, RFLAGS)
write x[7:0] to RAX[15:8]

Instruction SAHF (when not $x64_mode or $CPUID_80000001_LAHF_SAHF)

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the cor-
responding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). The instruction
ignores bits 1, 3, and 5 of register AH; it sets those bits in the EFLAGS register to 1,
0, and 0, respectively. The SAHF instruction can only be executed in 64-bit mode if
supported by the processor implementation. Check the status of ECX bit 0 returned by
CPUID function 8000_0001h to verify that the processor supports SAHF in 64-bit mode.
[cited from AMD volume 3]

opcode "9Eh" : call SAHF
action SAHF
let x = fixFlags(RFLAGS[63:8] ++ RAX[15:8], RFLAGS)
write x[7:0] to RFLAGS[7:0]

259

260

APPENDIX

G

STACK INSTRUCTIONS

Instruction PUSH

Decrements the stack pointer and then copies the specified immediate value or the
value in the specified register or memory location to the top of the stack (the memory
location pointed to by SS:rSP). The operand-size attribute determines the number of
bytes pushed to the stack. The stack-size attribute determines whether SP, ESP, or
RSP is the stack pointer. The address-size attribute is used only to locate the memory
operand when pushing a memory operand to the stack. If the instruction pushes the
stack pointer (rSP), the resulting value on the stack is that of rSP before execution of
the instruction. [cited from AMD volume 3]

opcode "FFh /110b" reg_mem $v : call PUSH(op1)
opcode "50h" reg $v : call PUSH(op1)
opcode "6Ah" imm 8 : call PUSH(sxt($v, op1))
opcode "68h" imm $z : call PUSH(sxt($v, op1))
opcode "0Eh" cs 16 : call PUSH(zxt($v, CS.sel))

: when not $x64_mode
opcode "16h" ss 16 : call PUSH(zxt($v, SS.sel))

: when not $x64_mode
opcode "1Eh" ds 16 : call PUSH(zxt($v, DS.sel))

: when not $x64_mode
opcode "06h" es 16 : call PUSH(zxt($v, ES.sel))

: when not $x64_mode
opcode "0FA0h" fs 16 : call PUSH(zxt($v, FS.sel))
opcode "0FA8h" gs 16 : call PUSH(zxt($v, GS.sel))

The PUSH action uses the push action from chapter 15.

action PUSH(val::bits $v)
call rsp_new = push($v, val, RSP[$sa-1:0])
write gpr($sa, rsp_new, RSP) to RSP

Instruction POP

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or
memory location and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit

261

pop, or 8 for a 64-bit pop. The operand-size attribute determines the amount by which
the stack pointer is incremented (2, 4 or 8 bytes). The stack-size attribute determines
whether SP, ESP, or RSP is incremented. It is possible to pop a null segment selector
value (0000–0003h) into the DS, ES, FS, or GS register. This action does not cause a
general protection fault, but a subsequent reference to such a segment does cause a
#GP exception. For more information about segment selectors, see “Segment Selectors
and Registers” on page 67. In 64-bit mode, the POP operand size defaults to 64 bits and
there is no prefix available to encode a 32- bit operand size. Using POP DS, POP ES, or
POP SS instruction in 64-bit mode generates an invalid- opcode exception. [cited from
AMD volume 3]

opcode "8Fh /000b" reg_mem $v : call op1’ = POP($v)
opcode "58h" reg $v : call op1’ = POP($v)
opcode "17h" ss 16 : call op1’ = POP(16)

: when not $x64_mode
opcode "1Fh" ds 16 : call op1’ = POP(16)

: when not $x64_mode
opcode "07h" es 16 : call op1’ = POP(16)

: when not $x64_mode
opcode "0FA1h" fs 16 : call op1’ = POP(16)
opcode "0FA9h" gs 16 : call op1’ = POP(16)

The POP action uses the pop action from chapter 15.

action POP($n::{$v, 16})::bits $n
call (val, new_rsp) = pop($v, RSP[$sa-1:0])
write gpr($sa, new_rsp, RSP) to RSP
return val[$n-1:0]

Instruction POPA (when not $x64_mode)

Pops words or doublewords from the stack into the general-purpose registers in the
following order: eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX,
and eAX. The instruction increments the stack pointer by 16 or 32, depending on the
operand size [cited from AMD volume 3]

opcode "61h" : call POPA
action POPA
call (rdi, rsp1) = pop($v, RSP[$sa-1:0])
call (rsi, rsp2) = pop($v, rsp1)
call (rbp, rsp3) = pop($v, rsp2)
call (rsp, rsp4) = pop($v, rsp3)
call (rbx, rsp5) = pop($v, rsp4)
call (rdx, rsp6) = pop($v, rsp5)
call (rcx, rsp7) = pop($v, rsp6)
call (rax, rsp8) = pop($v, rsp7)
write gpr($v, rdi, RDI) to RDI
write gpr($v, rsi, RSI) to RSI
write gpr($v, rbp, RBP) to RBP
write gpr($sa, rsp8, RSP) to RSP
write gpr($v, rbx, RBX) to RBX
write gpr($v, rdx, RDX) to RDX
write gpr($v, rcx, RCX) to RCX
write gpr($v, rax, RAX) to RAX

262

Instruction PUSHA (when not $x64_mode)

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and eDI
general- purpose registers onto the stack in that order. This instruction decrements the
stack pointer by 16 or 32 depending on operand size. [cited from AMD volume 3]

opcode "60h" : call PUSHA
action PUSHA
call rsp1 = push($v, RAX[$v-1:0], RSP[$sa-1:0])
call rsp2 = push($v, RCX[$v-1:0], rsp1)
call rsp3 = push($v, RDX[$v-1:0], rsp2)
call rsp4 = push($v, RBX[$v-1:0], rsp3)
call rsp5 = push($v, RSP[$v-1:0], rsp4)
call rsp6 = push($v, RBP[$v-1:0], rsp5)
call rsp7 = push($v, RSI[$v-1:0], rsp6)
call rsp8 = push($v, RDI[$v-1:0], rsp7)
write gpr($sa, rsp8, RSP) to RSP

Instruction PUSHF

Decrements the rSP register and copies the rFLAGS register (except for the VM and RF
flags) onto the stack. The instruction clears the VM and RF flags in the rFLAGS image
before putting it on the stack. The instruction pushes 2, 4, or 8 bytes, depending on the
operand size. In 64-bit mode, this instruction defaults to a 64-bit operand size and there
is no prefix available to encode a 32-bit operand size. In virtual–8086 mode, if system
software has set the IOPL field to a value less than 3, a general- protection exception
occurs if application software attempts to execute PUSHFx or POPFx while VME is not
enabled or the operand size is not 16-bit. [cited from AMD volume 3]

opcode "9Ch" : call PUSHF
action PUSHF
fail intercept(VMEXIT_PUSHF) when _vmcb_ca.intercept.PUSHF
let flags = RFLAGS with [RF = 0b, VM = 0b]
call new_rsp = push($v, flags[$v-1:0], RSP[$sa-1:0])
write gpr($sa, new_rsp, RSP) to RSP

Instruction POPF

Pops a word, doubleword, or quadword from the stack into the rFLAGS register and
then increments the stack pointer by 2, 4, or 8, depending on the operand size. In
protected or real mode, all the non-reserved flags in the rFLAGS register can be mod-
ified, except the VIP, VIF, and VM flags, which are unchanged. In protected mode, at
a privilege level greater than 0 the IOPL is also unchanged. The instruction alters the
interrupt flag (IF) only when the CPL is less than or equal to the IOPL. In virtual–8086
mode, if IOPL field is less than 3, attempting to execute a POPFx or PUSHFx instruction
while VME is not enabled, or the operand size is not 16-bit, generates a #GP exception.
[cited from AMD volume 3]

opcode "9Dh" : call POPF
action POPF
fail intercept(VMEXIT_POPF) when _vmcb_ca.intercept.POPF
if $vm86_mode and RFLAGS.IOPL < 11b then
fail exception(xGP, 0000h) when not CR4.VME or $v <> 16

call (flags, new_rsp) = pop($v, RSP[$sa-1:0])
let adjusted_flags = adjust_flags_POPF(RFLAGS[63:$v] ++ flags)

263

write adjusted_flags[$v-1:0] to RFLAGS[$v-1:0]
write gpr($sa, new_rsp, RSP) to RSP

Adjusting flags for the POPF instruction means retaining the old values of the VIP, VIF,
and VM flags and adjusting the IF flag and the IOPL I/O privilege level using the adjust_IF_IOPL

function from section 16.4.

function adjust_flags_POPF(f::Flags)::Flags
= let f1 = fixFlags(f, RFLAGS) in
let f2 = f1 with [VIP = RFLAGS.VIP, VIF = RFLAGS.VIF, VM = RFLAGS.VM] in
adjust_IF_IOPL(f2)

Instruction ENTER

Creates a stack frame for a procedure. The first operand specifies the size of the stack
frame allocated by the instruction. The second operand specifies the nesting level (0 to
31—the value is automatically masked to 5 bits). For nesting levels of 1 or greater, the
processor copies earlier stack frame pointers before adjusting the stack pointer. This
action provides a called procedure with access points to other nested stack frames. The
32-bit enter N, 0 (a nesting level of 0) instruction is equivalent to the following 32-bit
instruction sequence: push ebp ; save current EBP mov ebp, esp ; set stack frame
pointer value sub esp, N ; allocate space for local variables The ENTER and LEAVE
instructions provide support for block structured languages. The LEAVE instruction
releases the stack frame on returning from a procedure. In 64-bit mode, the operand
size of ENTER defaults to 64 bits, and there is no prefix available for encoding a 32-bit
operand size. [cited from AMD volume 3]

opcode "C8h" imm 16, imm2 8 : call ENTER(op1, op2)
action ENTER(space::bits 16, level::bits 8)
let k = level[4:0]
call rsp1 = push($v, RBP[$v-1:0], RSP[$sa-1:0])
let rbp = gpr($sa, rsp1, RSP)
call rsp2 = copy_stack_pointers(k, RBP[$sa-1:0], rbp)
let rsp3 = rsp2 - zxt($sa, space)
call check_logical(write, stack, $v, SS, $sa, rsp3)
write gpr($sa, rsp3, RSP) to RSP
write rbp to RBP

The most involved part of the ENTER instruction is copying the stack pointers. We use
the copy_stack_pointer action, which takes the number of stack pointers to copy, the
old base pointer rbp and the new stack pointer rsp. Let k be the number of paramters,
then the action is equivalent to the following pseudocode:

for i from 1 to 31 do
if i < k then
x = read logical memory at rbp - i*($v/8)
push x

As our specification language does not have loops, we express the loop body as a seper-
ate action copy_stack_pointer and unroll the loop in the copy_stack_pointers action.

The copy_stack_pointer action takes (k, rpb, i, rsp), copies the i-th stack pointer, and
returns the new values for the (i, rsp).

action copy_stack_pointer(k::bits 5, rbp::bits $sa,

264

i::bits 5, rsp ::bits $sa)::(bits 5, bits $sa)
if i >= k then return (i, rsp)
else call x = lread(stack, $v, SS, $sa, rbp - bits($sa, nat(i) * $v/8))

call new_rsp = push($v, x, rsp)
return (i+00001b, new_rsp)

The copy_stack_pointers action simply calls the copy_stack_pointer action 31 times.

action copy_stack_pointers(k::bits 5, rbp::bits $sa, rsp::bits 64)::bits $sa
if k == 00000b then return rsp[$sa-1:0]
else let i1 = 00001b

let rsp1 = rsp[$sa-1:0]
call (i2, rsp2) = copy_stack_pointer(k, rbp, i1, rsp1)
call (i3, rsp3) = copy_stack_pointer(k, rbp, i2, rsp2)
call (i4, rsp4) = copy_stack_pointer(k, rbp, i3, rsp3)
call (i5, rsp5) = copy_stack_pointer(k, rbp, i4, rsp4)
call (i6, rsp6) = copy_stack_pointer(k, rbp, i5, rsp5)
call (i7, rsp7) = copy_stack_pointer(k, rbp, i6, rsp6)
call (i8, rsp8) = copy_stack_pointer(k, rbp, i7, rsp7)
call (i9, rsp9) = copy_stack_pointer(k, rbp, i8, rsp8)
call (i10, rsp10) = copy_stack_pointer(k, rbp, i9, rsp9)
call (i11, rsp11) = copy_stack_pointer(k, rbp, i10, rsp10)
call (i12, rsp12) = copy_stack_pointer(k, rbp, i11, rsp11)
call (i13, rsp13) = copy_stack_pointer(k, rbp, i12, rsp12)
call (i14, rsp14) = copy_stack_pointer(k, rbp, i13, rsp13)
call (i15, rsp15) = copy_stack_pointer(k, rbp, i14, rsp14)
call (i16, rsp16) = copy_stack_pointer(k, rbp, i15, rsp15)
call (i17, rsp17) = copy_stack_pointer(k, rbp, i16, rsp16)
call (i18, rsp18) = copy_stack_pointer(k, rbp, i17, rsp17)
call (i19, rsp19) = copy_stack_pointer(k, rbp, i18, rsp18)
call (i20, rsp20) = copy_stack_pointer(k, rbp, i19, rsp19)
call (i21, rsp21) = copy_stack_pointer(k, rbp, i20, rsp20)
call (i22, rsp22) = copy_stack_pointer(k, rbp, i21, rsp21)
call (i23, rsp23) = copy_stack_pointer(k, rbp, i22, rsp22)
call (i24, rsp24) = copy_stack_pointer(k, rbp, i23, rsp23)
call (i25, rsp25) = copy_stack_pointer(k, rbp, i24, rsp24)
call (i26, rsp26) = copy_stack_pointer(k, rbp, i25, rsp25)
call (i27, rsp27) = copy_stack_pointer(k, rbp, i26, rsp26)
call (i28, rsp28) = copy_stack_pointer(k, rbp, i27, rsp27)
call (i29, rsp29) = copy_stack_pointer(k, rbp, i28, rsp28)
call (i30, rsp30) = copy_stack_pointer(k, rbp, i29, rsp29)
call (i31, rsp31) = copy_stack_pointer(k, rbp, i30, rsp30)
call rsp32 = push($v, rsp[$v-1:0], rsp31)
return rsp32

Instruction LEAVE

Releases a stack frame created by a previous ENTER instruction. To release the frame,
it copies the frame pointer (in the rBP register) to the stack pointer register (rSP), and
then pops the old frame pointer from the stack into the rBP register, thus restoring the
stack frame of the calling procedure. The 32-bit LEAVE instruction is equivalent to the
following 32-bit operation: MOV ESP,EBP POP EBP [cited from AMD volume 3]

opcode "C9h" : call LEAVE
action LEAVE

265

let rsp = gpr($v, RBP[$v-1:0], RSP)
call (rbp, new_rsp) = pop($v, rsp[$sa-1:0])
write gpr($v, rbp, RBP) to RBP
write gpr($sa, new_rsp, rsp) to RSP

266

APPENDIX

H

NEAR CONTROL TRANSFER
INSTRUCTIONS

Instruction JMP (Near)

Unconditionally transfers control to a new address without saving the current rIP value.
This form of the instruction jumps to an address in the current code segment and is
called a near jump. The target operand can specify a register, a memory location, or a
label. If the JMP target is specified in a register or memory location, then a 16-, 32-,
or 64-bit rIP is read from the operand, depending on operand size. This rIP is zero-
extended to 64 bits. If the JMP target is specified by a displacement in the instruction,
the signed displacement is added to the rIP (of the following instruction), and the result
is truncated to 16, 32, or 64 bits depending on operand size. The signed displacement
can be 8 bits, 16 bits, or 32 bits, depending on the opcode and the operand size. For
near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode results
in RIP = RIP + 32-bit signed displacement, and the FF /4 opcode results in RIP = 64-bit
offset from register or memory. No prefix is available to encode a 32-bit operand size in
64-bit mode. [cited from AMD volume 3]

opcode "EBh" imm 8 : call JMP(RIP[$v-1:0]+sxt($v, op1))
opcode "E9h" imm $z : call JMP(RIP[$v-1:0]+sxt($v, op1))
opcode "FFh /100b" reg_mem $v : call JMP(op1)
action JMP(rip::bits $v)
fail exception(xGP, 0000h) when not $x64_mode and nat(rip) > nat(CS.limit)
fail exception(xGP, 0000h) when $x64_mode and not canonical(zxt(64, rip))
write zxt(64, rip) to RIP

Instruction JCXZ

Checks the contents of the count register (rCX) and, if 0, jumps to the target instruction
located at the specified 8-bit relative offset. Otherwise, execution continues with the
instruction following the JrCXZ instruction. The size of the count register (CX, ECX, or
rcx) depends on the address-size attribute of the JrCXZ instruction. Therefore, JrcxZ
can only be executed in 64-bit mode and JCXZ cannot be executed in 64-bit mode. If the

267

jump is taken, the signed displacement is added to the rIP (of the following instruction)
and the result is truncated to 16, 32, or 64 bits, depending on operand size. [cited from
AMD volume 3]

opcode "E3h" imm 8 : call JCXZ(RIP[$v-1:0]+sxt($v, op1))
action JCXZ(rip::bits $v)
if RCX[$oa-1:0] == zero($oa) then
call JMP(rip)

Instruction Jcc

Checks the status flags in the rFLAGS register and, if the flags meet the condition spec-
ified by the condition code in the mnemonic (cc), jumps to the target instruction located
at the specified relative offset. Otherwise, execution continues with the instruction
following the Jcc instruction. Unlike the unconditional jump (JMP), conditional jump
instructions have only two forms—short and near conditional jumps. Different opcodes
correspond to different forms of one instruction. For example, the JO instruction (jump
if overflow) has opcode 0Fh 80h for its near form and 70h for its short form, but the
mnemonic is the same for both forms. The only difference is that the near form has a
16- or 32-bit relative displacement, while the short form always has an 8-bit relative
displacement. Mnemonics are provided to deal with the programming semantics of
both signed and unsigned numbers. Instructions tagged A (above) and B (below) are
intended for use in unsigned integer code; those tagged G (greater) and L (less) are
intended for use in signed integer code. If the jump is taken, the signed displacement
is added to the rIP (of the following instruction) and the result is truncated to 16, 32,
or 64 bits, depending on operand size. In 64-bit mode, the operand size defaults to 64
bits. The processor sign-extends the 8-bit or 32-bit displacement value to 64 bits before
adding it to the RIP. [cited from AMD volume 3]

opcode "70h" imm 8
opcode "0F80h" imm $z
opcode "71h" imm 8
opcode "0F81h" imm $z
opcode "72h" imm 8
opcode "0F82h" imm $z
opcode "73h" imm 8
opcode "0F83h" imm $z
opcode "74h" imm 8
opcode "0F84h" imm $z
opcode "75h" imm 8
opcode "0F85h" imm $z
opcode "76h" imm 8
opcode "0F86h" imm $z
opcode "77h" imm 8
opcode "0F87h" imm $z
opcode "78h" imm 8
opcode "0F88h" imm $z
opcode "79h" imm 8
opcode "0F89h" imm $z
opcode "7Ah" imm 8
opcode "0F8Ah" imm $z
opcode "7Bh" imm 8
opcode "0F8Bh" imm $z
opcode "7Ch" imm 8

268

opcode "0F8Ch" imm $z
opcode "7Dh" imm 8
opcode "0F8Dh" imm $z
opcode "7Eh" imm 8
opcode "0F8Eh" imm $z
opcode "7Fh" imm 8
opcode "0F8Fh" imm $z
call Jcc(RIP[$v-1:0]+sxt($v, op1))
action Jcc(rip::bits $v)
if cc(Opcode[3:0]) then
call JMP(rip)

The cc function is defined in chapter A, and it maps the lower 4 bits of the opcode to a
condition on flags.

Instruction LOOPcc

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets
the condition specified by the mnemonic, it jumps to the target instruction specified by
the signed 8-bit relative offset. Otherwise, it continues with the next instruction after
the LOOPcc instruction. The size of the count register used (CX, ECX, or rcx) depends
on the address-size attribute of the LOOPcc instruction. The LOOP instruction ignores
the state of the ZF flag. The LOOPE and LOOPZ instructions jump if rCX is not 0 and
the ZF flag is set to 1. In other words, the instruction exits the loop (falls through to the
next instruction) if rCX becomes 0 or ZF = 0. The LOOPNE and LOOPNZ instructions
jump if rCX is not 0 and ZF flag is cleared to 0. In other words, the instruction exits
the loop if rCX becomes 0 or ZF = 1. The LOOPcc instruction does not change the state
of the ZF flag. Typically, the loop contains a compare instruction to set or clear the ZF
flag. If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand size.
In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix,
and the processor sign-extends the 8-bit offset before adding it to the RIP. [cited from
AMD volume 3]

opcode "E0h" imm 8
opcode "E1h" imm 8
opcode "E2h" imm 8
call LOOPcc(RIP[$v-1:0]+sxt($v, op1))
action LOOPcc(rip::bits $v)
let rcx = RCX[$oa-1:0] - one($oa)
write gpr($oa, rcx, RCX) to RCX
if rcx <> zero($oa) and lcc(Opcode[1:0]) then
call JMP(rip)

The lcc function maps the lower two bits of the opcode to a condition on the zero flag:

function lcc(code::bits 2)::bit
= if code == 00b then not RFLAGS.ZF
elif code == 01b then RFLAGS.ZF
else 1b

Instruction CALL (Near)

Pushes the offset of the next instruction onto the stack and branches to the target
address, which contains the first instruction of the called procedure. The target operand

269

can specify a register, a memory location, or a label. A procedure accessed by a near
CALL is located in the same code segment as the CALL instruction. If the CALL target is
specified by a register or memory location, then a 16-, 32-, or 64-bit rIP is read from the
operand, depending on the operand size. A 16- or 32-bit rIP is zero-extended to 64 bits.
If the CALL target is specified by a displacement, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits,
depending on the operand size. The signed displacement is 16 or 32 bits, depending on
the operand size. In all cases, the rIP of the instruction after the CALL is pushed on the
stack, and the size of the stack push (16, 32, or 64 bits) depends on the operand size of
the CALL instruction. For near calls in 64-bit mode, the operand size defaults to 64 bits.
The E8 opcode results in RIP = RIP + 32-bit signed displacement and the FF /2 opcode
results in RIP = 64-bit offset from register or memory. No prefix is available to encode
a 32-bit operand size in 64-bit mode. At the end of the called procedure, RET is used
to return control to the instruction following the original CALL. When RET is executed,
the rIP is popped off the stack, which returns control to the instruction after the CALL.
[cited from AMD volume 3]

opcode "E8h" imm $z : call CALL(RIP[$v-1:0]+sxt($v, op1))
opcode "FFh /010b" reg_mem $v : call CALL(op1)
action CALL(rip::bits $v)
fail exception(xGP, 0000h) when not $x64_mode and nat(rip) > nat(CS.limit)
fail exception(xGP, 0000h) when $x64_mode and not canonical(zxt(64, rip))
call rsp = push($v, RIP[$v-1:0], RSP[$sa-1:0])
write gpr($sa, rsp, RSP) to RSP
write zxt(64, rip) to RIP

The push action is defined in chapter 15.

Instruction RET

Returns from a procedure previously entered by a CALL near instruction. This form
of the RET instruction returns to a calling procedure within the current code segment.
This instruction pops the rIP from the stack, with the size of the pop determined by the
operand size. The new rIP is then zero-extended to 64 bits. The RET instruction can
accept an immediate value operand that it adds to the rSP after it pops the target rIP.
This action skips over any parameters previously passed back to the subroutine that
are no longer needed. In 64-bit mode, the operand size defaults to 64 bits (eight bytes)
without the need for a REX prefix. No prefix is available to encode a 32-bit operand size
in 64-bit mode. [cited from AMD volume 3]

opcode "C3h" : call RET(0000h)
opcode "C2h" imm 16 : call RET(op1)
action RET(pop_bytes::bits 16)
call (rip, rsp) = pop($v, RSP[$sa-1:0])
fail exception(xGP, 0000h) when not $x64_mode and nat(rip) > nat(CS.limit)
fail exception(xGP, 0000h) when $x64_mode and not canonical(zxt(64, rip))
write gpr($sa, rsp + zxt($sa, pop_bytes), RSP) to RSP
write zxt(64, rip) to RIP

270

APPENDIX

I

FAR CONTROL TRANSFER
INSTRUCTIONS

I.1 Fast System Call Instructions

There are two pairs of fast system call instructions: SYSCALL/SYSRET and SYSENTER/SYSEXIT.
The latter pair is valid only in legacy 32-bit mode.

Both pairs of the instructions avoid costly descriptor table look-ups by loading the target
code/stack segment components and instruction/stack pointers from the special regis-
ters. The segment attributes that are loaded into the code and stack segment register
are predefined as follows:

function stackAttr = DataAttr with [A = 1b, W = 1b, E = 0b, DPL = 00b,
P = 1b, DB = 1b, G = 1b]

function codeAttr32 = CodeAttr with [A = 1b, R = 1b, C = 0b, DPL = 00b,
P = 1b, L = 0b, D = 0b, G = 1b]

function codeAttr64 = CodeAttr with [C = 0b, DPL = 00b, P = 1b, L = 1b, D = 0b]

Thus, the target stack segment is a present writeable data segment, which expands up.
In legacy mode, the target code segment is present, readable, non-conforming, and 32-
bit. In long mode, the target code segment is present, readable, non-conforming, and
64-bit.

Instruction SYSCALL (when $SCE)

In legacy x86 mode, when SYSCALL is executed, the EIP of the instruction following
the SYSCALL is copied into the ECX register. Bits 31:0 of the SYSCALL/SYSRET target
address register (STAR) are copied into the EIP register. (The STAR register is model-
specific register C000_0081h.) New selectors are loaded, without permission checking,
as follows:

• Bits 47:32 of the STAR register specify the selector that is copied into the CS
register.

271

• Bits 47:32 of the STAR register + 8 specify the selector that is copied into the SS
register.

• The CS_base and the SS_base are both forced to zero.

• The CS_limit and the SS_limit are both forced to 4 Gbyte.

• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack
referenced by ESP.

When long mode is activated, the behavior of the SYSCALL instruction depends on
whether the calling software is in 64-bit mode or compatibility mode. In 64-bit mode,
SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads
the new RIP from LSTAR bits 63:0. (The LSTAR register is model-specific register
C000_0082h.) In compatibility mode, SYSCALL saves the RIP of the instruction follow-
ing the SYSCALL into RCX and loads the new RIP from CSTAR bits 63:0. (The CSTAR
register is model-specific register C000_0083h.) New selectors are loaded, without
permission checking (see above), as follows:

• Bits 47:32 of the STAR register specify the selector that is copied into the CS
register.

• Bits 47:32 of the STAR register + 8 specify the selector that is copied into the SS
register.

• The CS_base and the SS_base are both forced to zero.

• The CS_limit and the SS_limit are both forced to 4 Gbyte.

• The CS segment attributes are set to execute/read 64-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 64-bit stack
referenced by RSP. [cited from AMD volume 3]

opcode "0F05h" : call SYSCALL
action SYSCALL when $legacy_mode
write RIP[31:0] to RCX[31:0]
write zxt(64, STAR.EIP) to RIP
write 00b to CPL
let sel = STAR.SYSCALL_CS with [RPL = 00b]
write codeAttr32 to CS.attr
write zero(64) to CS.base
write FFFFFFFFh to CS.limit
write sel + 0008h to SS.sel
write stackAttr to SS.attr
write zero(64) to SS.base
write FFFFFFFFh to SS.limit
write RFLAGS with [IF = 0b, RF = 0b, VM = 0b] to RFLAGS

action SYSCALL when $long_mode
write RIP to RCX
if $x64_mode then

272

write LSTAR to RIP
else
write CSTAR to RIP

write 00b to CPL
write RFLAGS to R11
write (RFLAGS with [RF = 0b]) & ~SFMASK to RFLAGS
let sel = STAR.SYSCALL_CS with [RPL = 00b]
write sel to CS.sel
write codeAttr64 to CS.attr
write zero(64) to CS.base
write FFFFFFFFh to CS.limit
write sel + 0008h to SS.sel
write stackAttr to SS.attr
write zero(64) to SS.base
write FFFFFFFFh to SS.limit

Instruction SYSRET (when $SCE)

When a system procedure performs a SYSRET back to application software, the CS
selector is updated from bits 63:50 of the STAR register (STAR.SYSRET_CS) as follows:

• If the return is to 32-bit mode (legacy or compatibility), CS is updated with the
value of STAR.SYSRET_CS.

• If the return is to 64-bit mode, CS is updated with the value of STAR.SYSRET_CS
+ 16.

In both cases, the CPL is forced to 3, effectively ignoring STAR bits 49:48. The SS
selector is updated to point to the next descriptor-table entry after the CS descriptor
(STAR.SYSRET_CS + 8), and its RPL is not forced to 3.

The hidden portions of the CS and SS segment registers are not loaded from the de-
scriptor table as they would be using a legacy x86 RET instruction. Instead, the hidden
portions are forced by the processor to the following values:

• The CS base value is forced to 0.

• The CS limit value is forced to 4 Gbytes.

The CS segment attributes are set to execute-read 32 bits or 64 bits (see below). The
SS segment base, limit, and attributes are not modified. When SYSCALLed system
software is running in 64-bit mode, it has been entered from either 64-bit mode or
compatibility mode. The corresponding SYSRET needs to know the mode to which it
must return. Executing SYSRET in non–64-bit mode or with a 16- or 32-bit operand
size returns to 32-bit mode with a 32-bit stack pointer. Executing SYSRET in 64-bit
mode with a 64-bit operand size returns to 64-bit mode with a 64-bit stack pointer. The
instruction pointer is updated with the return address based on the operating mode in
which SYSRET is executed:

• If returning to 64-bit mode, SYSRET loads RIP with the value of RCX.

• If returning to 32-bit mode, SYSRET loads EIP with the value of ECX.

273

How SYSRET handles RFLAGS depends on the processor’s operating mode:

• If executed in 64-bit mode, SYSRET loads the lower–32 RFLAGS bits from R11[31:0]
and clears the upper 32 RFLAGS bits.

• If executed in legacy mode or compatibility mode, SYSRET sets EFLAGS.IF. [cited
from AMD volume 3]

opcode "0F07h" : call SYSRET
action SYSRET when not $x64_mode
fail exception(xGP, 0000h) when CPL <> 00b
write zxt(64, RCX[31:0]) to RIP
write 11b to CPL
write RFLAGS with [IF = 1b] to RFLAGS
let sel = STAR.SYSRET_CS with [RPL = 00b]
write sel to CS.sel
write codeAttr32 to CS.attr
write zero(64) to CS.base
write FFFFFFFFh to CS.limit
write sel + 0008h to SS.sel
write zero(64) to SS.base
write FFFFFFFFh to SS.limit

action SYSRET when $x64_mode
fail exception(xGP, 0000h) when CPL <> 00b
write 11b to CPL
write R11 to RFLAGS
let sel = STAR.SYSRET_CS with [RPL = 00b]
write sel + 0008h to SS.sel
write zero(64) to CS.base
write FFFFFFFFh to CS.limit
if $v == 64 then
write RCX to RIP
write sel + 0010h to CS.sel
write codeAttr64 to CS.attr

else
write zxt(64, RCX[31:0]) to RIP
write sel to CS.sel
write codeAttr32 to CS.attr

Instruction SYSENTER (when $legacy_mode)

Three model-specific registers (MSRs) are used to specify the target address and stack
pointers for the SYSENTER instruction, as well as the CS and SS selectors of the called
and returned procedures:

• MSR_SYSENTER_CS: Contains the CS selector of the called procedure. The SS
selector is set to

• MSR_SYSENTER_CS + 8.

• MSR_SYSENTER_ESP: Contains the called procedure’s stack pointer.

• MSR_SYSENTER_EIP: Contains the offset into the CS of the called procedure.

274

The hidden portions of the CS and SS segment registers are not loaded from the de-
scriptor table as they would be using a legacy x86 CALL instruction. Instead, the hidden
portions are forced by the processor to the following values:

• The CS and SS base values are forced to 0.

• The CS and SS limit values are forced to 4 Gbytes.

• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack
referenced by ESP.

System software must create corresponding descriptor-table entries referenced by the
new CS and SS selectors that match the values described above. The return EIP and
application stack are not saved by this instruction. System software must explicitly save
that information. [cited from AMD volume 3]

opcode "0F34h" : call SYSENTER
action SYSENTER when $legacy_mode
fail exception(xGP, 0000h) when $x16_mode
let sel = SYSENTER_CS.CS
fail exception(xGP, 0000h) when sel & FFFEh == 0000h
write sel to CS.sel
write codeAttr32 to CS.attr
write zero(64) to CS.base
write FFFFFFFFh to CS.limit
write sel + 0008h to SS.sel
write stackAttr to SS.attr
write zero(64) to SS.base
write FFFFFFFFh to SS.limit
write zxt(64, SYSENTER_EIP.EIP) to RIP
write zxt(64, SYSENTER_ESP.ESP) to RSP
write 00b to CPL
write RFLAGS with [VM = 0b, IF = 0b] to RFLAGS

Instruction SYSEXIT (when $legacy_mode)

When a system procedure performs a SYSEXIT back to application software, the CS
selector is updated to point to the second descriptor entry after the SYSENTER CS value
(MSR SYSENTER_CS+16). The SS selector is updated to point to the third descriptor
entry after the SYSENTER CS value (MSR SYSENTER_CS+24). The CPL is forced to 3,
as are the descriptor privilege levels. The hidden portions of the CS and SS segment
registers are not loaded from the descriptor table as they would be using a legacy
x86 RET instruction. Instead, the hidden portions are forced by the processor to the
following values:

• The CS and SS base values are forced to 0.

• The CS and SS limit values are forced to 4 Gbytes.

• The CS segment attributes are set to 32-bit read/execute at CPL 3.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack
referenced by ESP.

275

System software must create corresponding descriptor-table entries referenced by the
new CS and SS selectors that match the values described above. The following addi-
tional actions result from executing SYSEXIT:

• EIP is loaded from EDX.

• ESP is loaded from ECX.

System software must explicitly load the return address and application software-stack
pointer into the EDX and ECX registers prior to executing SYSEXIT. [cited from AMD
volume 3]

opcode "0F35h" : call SYSEXIT
action SYSEXIT
fail exception(xGP, 0000h) when $x16_mode
fail exception(xGP, 0000h) when CPL <> 00b
let sel = SYSENTER_CS.CS
fail exception(xGP, 0000h) when sel & FFFEh == 0000h
write sel+0010h to CS.sel
write codeAttr32 to CS.attr
write zero(64) to CS.base
write FFFFFFFFh to CS.limit
write sel + 0018h to SS.sel
write stackAttr to SS.attr
write zero(64) to SS.base
write FFFFFFFFh to SS.limit
write zxt(64, RDX) to RIP
write zxt(64, RCX) to RSP
write 11b to CPL
write RFLAGS with [RF = 0b] to RFLAGS

I.2 Far JMP and CALL instructions

Instruction JMP (FAR)

Unconditionally transfers control to a new address without saving the current CS:rIP
values. This form of the instruction jumps to an address outside the current code seg-
ment and is called a far jump. The operand specifies a target selector and offset. The
target operand can be specified by the instruction directly, by containing the far pointer
in the jmp far opcode itself, or indirectly, by referencing a far pointer in memory. In 64-
bit mode, only indirect far jumps are allowed, executing a direct far jmp (opcode EA)
will generate an undefined opcode exception. For both direct and indirect far calls,
if the JMP (Far) operand-size is 16 bits, the instruction’s operand is a 16-bit selector
followed by a 16-bit offset. If the operand-size is 32 or 64 bits, the operand is a 16-bit
selector followed by a 32-bit offset. In all modes, the target selector used by the in-
struction can be a code selector. Additionally, the target selector can also be a call gate
in protected mode, or a task gate or TSS selector in legacy protected mode. - Target is a
code segment - Control is transferred to the target CS:rIP. In this case, the target offset
can only be a 16 or 32 bit value, depending on operand-size, and is zero-extended to 64
bits. No CPL change is allowed. - Target is a call gate - The call gate specifies the actual

276

target code segment and offset, and control is transferred to the target CS:rIP. When
jumping through a call gate, the size of the target rIP is 16, 32, or 64 bits, depending
on the size of the call gate. If the target rIP is less than 64 bits, it is zero- extended to
64 bits. In long mode, only 64-bit call gates are allowed, and they must point to 64-bit
code segments. No CPL change is allowed. - Target is a task gate or a TSS - If the mode
is legacy protected mode, then a task switch occurs. [cited from AMD volume 3]

opcode "EAh" imm_ptr $z+16 : when not $x64_mode
opcode "FFh /101b" mem_ptr $z+16
call jmp_far(op1[$z+15:$z], op1[$z-1:0])

Refer to section 16.1 for the definition of the jmp_far action.

Instruction CALL (Far)

Pushes procedure linking information onto the stack and branches to the target ad-
dress, which contains the first instruction of the called procedure. The operand spec-
ifies a target selector and offset. The instruction can specify the target directly, by
including the far pointer in the CALL (Far) opcode itself, or indirectly, by referencing
a far pointer in memory. In 64-bit mode, only indirect far calls are allowed, executing
a direct far call (opcode 9A) generates an undefined opcode exception. For both direct
and indirect far calls, if the CALL (Far) operand-size is 16 bits, the instruction’s operand
is a 16- bit selector followed by a 16-bit offset. If the operand-size is 32 or 64 bits, the
operand is a 16-bit selector followed by a 32-bit offset. The target selector used by the
instruction can be a code selector in all modes. Additionally, the target selector can
reference a call gate in protected mode, or a task gate or TSS selector in legacy pro-
tected mode. - Target is a code selector - The CS:rIP of the next instruction is pushed
to the stack, using operand- size stack pushes. Then code is executed from the target
CS:rIP. In this case, the target offset can only be a 16- or 32-bit value, depending on
operand-size, and is zero-extended to 64 bits. No CPL change is allowed. - Target is a
call gate - The call gate specifies the actual target code segment and offset. Call gates
allow calls to the same or more privileged code. If the target segment is at the same
CPL as the current code segment, the CS:rIP of the next instruction is pushed to the
stack. If the CALL (Far) changes privilege level, then a stack-switch occurs, using an
inner-level stack pointer from the TSS. The CS:rIP of the next instruction is pushed to
the new stack. If the mode is legacy mode and the param-count field in the call gate is
non-zero, then up to 31 operands are copied from the caller’s stack to the new stack.
Finally, the caller’s SS:rSP is pushed to the new stack. When calling through a call gate,
the stack pushes are 16-, 32-, or 64-bits, depending on the size of the call gate. The
size of the target rIP is also 16, 32, or 64 bits, depending on the size of the call gate. If
the target rIP is less than 64 bits, it is zero-extended to 64 bits. Long mode only allows
64- bit call gates that must point to 64-bit code segments. - Target is a task gate or a
TSS - If the mode is legacy protected mode, then a task switch occurs. [cited from AMD
volume 3]

opcode "9Ah" imm_ptr $z+16 : when not $x64_mode
opcode "FFh /011b" mem_ptr $z+16
call call_far(op1[$z+15:$z], op1[$z-1:0])

Refer to section 16.2 for the definition of the call_far action.

277

I.3 Software Interrupt Instructions

Instruction INT

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate
value. This value is an interrupt vector number (00h to FFh), which the processor uses
as an index into the interrupt- descriptor table (IDT). [cited from AMD volume 3]

opcode "CDh" imm 8 : call INT(op1)
action INT(op1::bits 8)
fail intercept(VMEXIT_SWINT) when _vmcb_ca.intercept.INT
call icall(op1, 0b, 0000h)

Refer to section 16.3 for the definition of the icall action.

Instruction INT3 (when not $x64_mode)

Calls the debug exception handler. This instruction maps to a 1-byte opcode (CC) that
raises a #BP exception. The INT 3 instruction is normally used by debug software to
set instruction breakpoints by replacing the first byte of the instruction opcode bytes
with the INT 3 opcode. This one-byte INT 3 instruction behaves differently from the
two-byte INT 3 instruction (opcode CD 03) in two ways: - The #BP exception is handled
without any IOPL checking in virtual x86 mode. (IOPL mismatches will not trigger
an exception.) - In VME mode, the #BP exception is not redirected via the interrupt
redirection table. (Instead, it is handled by a protected mode handler.) [cited from
AMD volume 3]

opcode "CCh" : call INT3
action INT3
fail intercept(VMEXIT_EXCP0 + zxt(64, xBP)) when _vmcb_ca.EXCP[nat(xBP)]
call icall(xBP, 0b, 0000h)

Refer to section 16.3 for the definition of the icall action.

Instruction INTO (when not $x64_mode)

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception
(#OF) handler if the OF flag is set to 1. This instruction has no effect if the OF flag is
cleared to 0. The INTO instruction detects overflow in signed number addition. [cited
from AMD volume 3]

opcode "CEh" : call INTO
action INTO
fail intercept(VMEXIT_EXCP0 + zxt(64, xOF)) when _vmcb_ca.EXCP[nat(xOF)]
call icall(xOF, 0b, 0000h)

Refer to section 16.3 for the definition of the icall action.

I.4 Return Instructions

Instruction RETF

Returns from a procedure previously entered by a CALL Far instruction. This form
of the RET instruction returns to a calling procedure in a different segment than the
current code segment. It can return to the same CPL or to a less privileged CPL. RET

278

Far pops a target CS and rIP from the stack. If the new code segment is less privileged
than the current code segment, the stack pointer is incremented by the number of bytes
indicated by the immediate operand, if present; then a new SS and rSP are also popped
from the stack. The final value of rSP is incremented by the number of bytes indicated
by the immediate operand, if present. This action skips over the parameters (previously
passed to the subroutine) that are no longer needed. All stack pops are determined
by the operand size. If necessary, the target rIP is zero-extended to 64 bits before
assuming program control. If the CPL changes, the data segment selectors are set to
NULL for any of the data segments (DS, ES, FS, GS) not accessible at the new CPL.
[cited from AMD volume 3]

opcode "CBh" : call ret_far(0000h, 0b)
opcode "CAh" imm 16 : call ret_far(op1, 0b)

Refer to section 16.4 for the definition of the ret_far action.

Instruction IRET

Returns program control from an exception or interrupt handler to a program or pro-
cedure previously interrupted by an exception, an external interrupt, or a software-
generated interrupt. These instructions also perform a return from a nested task. All
flags, CS, and rIP are restored to the values they had before the interrupt so that execu-
tion may continue at the next instruction following the interrupt or exception. In 64-bit
mode or if the CPL changes, SS and RSP are also restored. [cited from AMD volume 3]

opcode "CFh" : call IRET

If the nested flag NT is set then the IRET action performs a return from the nested task,
otherwise, it performs a far return from procedure.

action IRET
fail intercept(VMEXIT_IRET) when _vmcb_ca.intercept.IRET
if not RFLAGS.NT then call ret_far(0000h, 1b)
else fail exception(xGP, 0000h) when $long_mode
call tss_sel = read_tss(16, zero($va))
call (temp_desc, tss_valid) = read_desc(tss_sel)
let tss_desc = temp_desc::TSS
fail exception(xTS, tss_sel & FFF8h) when not tss_valid
fail exception(xTS, tss_sel & FFF8h) when not tss_desc.P
fail exception(xTS, tss_sel & FFF8h) when not isTSS(tss_desc)
fail exception(xTS, tss_sel & FFF8h) when tss_desc.busy
call task_switch(tss_sel, tss_desc)

Refer to section 16.4 for the definition of the ret_far action. For discussion of task
switch refer to section 16.5.

279

280

APPENDIX

J

STRING INSTRUCTIONS

String instructions LODS, MOVS, STOS, CMPS, SCAS work with strings that are located at log-
ical addresses (DS, RSI) and (ES, RDI). After performing an operation over the current
elements of the strings, they increment or decrement RSI and/or RDI depending on the
direction flags. If a string instruction has a repetition prefix REP (xF3), REPZ (xF3),
REPNZ (xF2) then the RCX register is decremented. If the new RCX is not zero and zero
flag satisfies the condition specified by the prefix, then the instruction is repeated. No-
tice that the values of REP and REPZ prefixes coincide. However, there is no ambiguity
because instruction that can have a REP prefix cannot have REPZ/REPNZ prefixes and
vice versa.

An instruction with a REP prefix executes according to the following scheme (pseu-
docode):

while (RCX > 0) do
process an element of the string
adjust RSI and/or RDI
decrement RCX

An instruction with a REPZ/REPNZ prefix does the same, but alse checks the value of
the zero flag before the next iteration:

while (RCX > 0) do
process an element of the string
adjust RSI and/or RDI
decrement RCX
if ZF does not match prefix condition then exit loop

Recall that the _old_RIP register stores the pointer to the current instruction and the
RIP register stores the pointer to the next instruction. Thus, we can repeat the current
instruction by setting the RIP to the _old_RIP. This allows us to model the while loops
from the pseudocode.

The following action checks for a REP prefix. If the prefix is present, then the action
decrements the RCX register and adjusts the RIP to repeat the instruction if the new RCX

is not zero.

281

action repeat
if _prefix.xF3 then
let rcx = RCX[$oa-1:0] - one($oa)
write gpr($oa, rcx, RCX) to RCX
write _old_RIP to RIP when rcx <> zero($oa)

The repeat_with_zf action does the same but also checks whether the new zero flag
matches the prefix condition:

action repeat_with_zf(zf::bit)
if _prefix.xF2 or _prefix.xF3 then
let rcx = RCX[$oa-1:0] - one($oa)
write gpr($oa, rcx, RCX) to RCX
if rcx <> zero($oa) then
if _prefix.xF2 and not zf or _prefix.xF3 and zf then
write _old_RIP to RIP

The RSI/RDI registers are incremented if the direction flag DF is cleared and are decre-
mented otherwise:

action adjust_rsi($n::{8, 16, 32, 64})
if RFLAGS.DF then
write gpr($oa, RSI[$oa-1:0] - bits($oa, $n/8), RSI) to RSI

else
write gpr($oa, RSI[$oa-1:0] + bits($oa, $n/8), RSI) to RSI

action adjust_rdi($n::{8, 16, 32, 64})
if RFLAGS.DF then
write gpr($oa, RDI[$oa-1:0] - bits($oa, $n/8), RDI) to RDI

else
write gpr($oa, RDI[$oa-1:0] + bits($oa, $n/8), RDI) to RDI

We will use these action in the definitions of the string instructions.

Instruction LODS

Copies the byte, word, doubleword, or quadword in the memory location pointed to by
the DS:rSI registers to the AL, AX, EAX, or RAX register, depending on the size of the
operand, and then increments or decrements the rSI register according to the state of
the DF flag in the rFLAGS register. If the DF flag is 0, the instruction increments rSI;
otherwise, it decrements rSI. It increments or decrements rSI by 1, 2, 4, or 8, depending
on the number of bytes being loaded. [cited from AMD volume 3]

opcode "ACh" ds_rsi 8
opcode "ADh" ds_rsi $v
call LODS($n)
action LODS($n::{8, $v})
if not _prefix.xF3 or RCX[$oa-1:0] <> zero($oa) then
call val = read_op($n, ds_rsi)
write gpr($n, val, RAX) to RAX
call adjust_rsi($n)
call repeat

Instruction STOS

Copies a byte, word, doubleword, or quadword from the AL, AX, EAX, or RAX registers
to the memory location pointed to by ES:rDI and increments or decrements the rDI

282

register according to the state of the DF flag in the rFLAGS register. If the DF flag
is 0, the instruction increments the pointer; otherwise, it decrements the pointer. It
increments or decrements the pointer by 1, 2, 4, or 8, depending on the size of the
value being copied. [cited from AMD volume 3]

opcode "AAh" es_rdi 8
opcode "ABh" es_rdi $v
call STOS($n)
action STOS($n::{8, $v})
if not _prefix.xF3 or RCX[$oa-1:0] <> zero($oa) then
call write_op($n, RAX[$n-1:0], es_rdi)
call adjust_rdi($n)
call repeat

Instruction MOVS

Moves a byte, word, doubleword, or quadword from the memory location pointed to by
DS:rSI to the memory location pointed to by ES:rDI, and then increments or decrements
the rSI and rDI registers according to the state of the DF flag in the rFLAGS register.
If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements
them. It increments or decrements the pointers by 1, 2, 4, or 8, depending on the size
of the operands. [cited from AMD volume 3]

opcode "A4h" es_rdi 8, ds_rsi 8
opcode "A5h" es_rdi $v, ds_rsi $v
call MOVS($n)
action MOVS($n::{8, $v})
if not _prefix.xF3 or RCX[$oa-1:0] <> zero($oa) then
call val = read_op($n, ds_rsi)
call write_op($n, val, es_rdi)
call adjust_rsi($n)
call adjust_rdi($n)
call repeat

Instruction SCAS

Compares the AL, AX, EAX, or RAX register with the byte, word, doubleword, or quad-
word pointed to by ES:rDI, sets the status flags in the rFLAGS register according to the
results, and then increments or decrements the rDI register according to the state of
the DF flag in the rFLAGS register. If the DF flag is 0, the instruction increments the
rDI register; otherwise, it decrements it. The instruction increments or decrements the
rDI register by 1, 2, 4, or 8, depending on the size of the operands. [cited from AMD
volume 3]

opcode "AEh" es_rdi 8
opcode "AFh" es_rdi $v
call SCAS($n)
action SCAS($n::{8, $v})
if not _prefix.xF3 and not _prefix.xF2 or RCX[$oa-1:0] <> zero($oa) then
call val = read_op($n, es_rdi)
call sub($n, RAX[$n-1:0], val, 0b)
call adjust_rdi($n)
call repeat_with_zf(RAX[$n-1:0] == val)

Instruction CMPS

283

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI
registers, sets or clears the status flags of the rFLAGS register to reflect the results, and
then increments or decrements the rSI and rDI registers according to the state of the
DF flag in the rFLAGS register. To perform the comparison, the instruction subtracts
the second operand from the first operand and sets the status flags in the same manner
as the SUB instruction, but does not alter the first operand. The two operands must be
the same size. If the DF flag is 0, the instruction increments rSI and rDI; otherwise,
it decrements the pointers. It increments or decrements the pointers by 1, 2, 4, or 8,
depending on the size of the operands. [cited from AMD volume 3]

opcode "A6h" es_rdi 8, ds_rsi 8
opcode "A7h" es_rdi $v, ds_rsi $v
call CMPS($n)
action CMPS($n::{8, $v})
if not _prefix.xF3 and not _prefix.xF2 or RCX[$oa-1:0] <> zero($oa) then
call op1 = read_op($n, es_rdi)
call op2 = read_op($n, ds_rsi)
call sub($n, op1, op2, 0b)
call adjust_rdi($n)
call adjust_rsi($n)
call repeat_with_zf(op1 == op2)

284

APPENDIX

K

INPUT/OUTPUT INSTRUCTIONS

Instructions IN, OUT, INS, OUTS read or write I/O ports using the read_port, write_port
actions defined in section 13.4. Each I/O port has the width of one byte. The instructions
can access several adjacent ports at the same time as if the I/O port space was a memory
space.

These instructions have complex interception logic. There two ways to intercept an I/O
instruction: via the permission bitmap in the task state segment and via the permission
bitmap in the guest control area. The former kind of intercept raises an exception, the
latter kind of intercept triggers guest exit.

The following action checks whether the given instruction is intercepted or not. The
instruction is specified by the access width, the port index, and two indicators: string

and input. The string flag indicates whether the instruction is a string instruction (INS,
OUTS) or not. The input flag indicates whether the instruction is an input instruction (IN,
INS) or an output instruction (OUT, OUTS).

action check_io_intercept($n::{8, 16, 32}, port::bits 16, string::bit, input::bit)
if CPL > RFLAGS.IOPL or $vm86_mode then

call tss_intercepted = tss_io_intercepted($n, port)
fail exception(xGP, 0000h) when tss_intercepted

call intercepted = io_intercepted($n, port)
let exitinfo = io_exitinfo(port, _prefix.xF2 or _prefix.xF3, string, input)
fail intercept1(VMEXIT_IOIO, exitinfo) when intercepted

The tss_io_intercepted action looks up the permission bitmap in the task segment and
is defined in section 13.14.

The io_intercepted action looks up the permission bitmap in guest control area if the
processor is running in guest mode. The physical address of the start of the bitmap is
stored in the _vmcb_ca.IOPM_BASE_PA field. The action reads a bit for each accessed byte.
If any of the bits is set, then the instruction is intercepted.

action io_intercepted($n::{8, 16, 32}, port::bits 16)::bit
if not _guest or not _vmcb_ca.intercept.IO_PROT then return 0b
else let offset = zxt($pa, port[15:3])

let $bit_idx = nat(port[2:0])::[0..7]

285

let addr = _vmcb_ca.IOPM_BASE_PA[$pa-1:0] + offset
call mask = pread(sys, $n+8, addr, WB)
return mask[$n+$bit_idx-1:$bit_idx] <> zero($n)

If the instruction is intercepted then the processor performs guest exits and writes
the exit information into the guest control area. The exit information specifies the
instruction type (input/output, string/not string), the presence of a repeat prefix, the
operand width, the address width, and the port index:

layout IOExitInfo
field input::bit
field rsv1::bit reserved and must be 0b
field string::bit
field repeat::bit
field op_width16::bit
field op_width32::bit
field op_width64::bit
field addr_width16::bit
field addr_width32::bit
field addr_width64::bit
field rsv2::bits 6 reserved and must be 000000b
field port::bits 16
field rsv3::bits 32 reserved and must be zero(32)

We will use the following function for constructing the I/O exit information:

function io_exitinfo(port::bits 16, repeat::bit, string::bit, input::bit)::bits 64
= (IOExitInfo) with [input = input,

string = string,
repeat = repeat,
op_width16 = $v == 16,
op_width32 = $v == 32,
op_width64 = $v == 64,
addr_width16 = $oa == 16,
addr_width32 = $oa == 32,
addr_width64 = $oa == 64,
port = port]

Instruction IN

Transfers a byte, word, or doubleword from an I/O port (second operand) to the AL,
AX or EAX register (first operand). The port address can be an 8-bit immediate value
(00h to FFh) or contained in the DX register (0000h to FFFFh). If the CPL is higher
than IOPL, or the mode is virtual mode, IN checks the I/O permission bitmap in the TSS
before allowing access to the I/O port. [cited from AMD volume 3]

opcode "E4h" rax 8, imm 8
opcode "E5h" rax $z, imm 8
opcode "ECh" rax 8, rdx 16
opcode "EDh" rax $z, rdx 16
call op1’ = IN($n, zxt(16, op2))
action IN($n::{8, 16, 32}, port::bits 16)::bits $n
call check_io_intercept($n, port, 0b, 1b)
call res = read_port($n, port)
return res

286

Instruction OUT

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port (first
operand). The port address can be a byte-immediate value (00h to FFh) or the value in
the DX register (0000h to FFFFh). The source register used determines the size of the
port (8, 16, or 32 bits). [cited from AMD volume 3]

opcode "E6h" imm 8, rax 8
opcode "E7h" imm 8, rax $z
opcode "EEh" rdx 16, rax 8
opcode "EFh" rdx 16, rax $z
call OUT(zxt(16, op1), $n2, op2)
action OUT(port::bits 16, $n::{8, 16, 32}, val::bits $n)
call check_io_intercept($n, port, 0b, 0b)
call write_port($n, val, port)

Instruction INS

Transfers data from the I/O port specified in the DX register to an input buffer spec-
ified in the rDI register and increments or decrements the rDI register according to
the setting of the DF flag in the rFLAGS register. If the DF flag is 0, the instruction
increments rDI by 1, 2, or 4, depending on the number of bytes read. If the DF flag is
1, it decrements the pointer by 1, 2, or 4. [cited from AMD volume 3]

opcode "6Ch" es_rdi 8, rdx 16
opcode "6Dh" es_rdi $z, rdx 16
call INS($n, op2)
action INS($n::{8, 16, 32}, port::bits 16)
if not _prefix.xF3 or RCX[$oa-1:0] <> zero($oa) then
call check_io_intercept($n, port, 0b, 1b)
call val = read_port($n, port)
call write_op($n, val, es_rdi)
call adjust_rdi($n)
call repeat

Instruction OUTS

Copies data from the memory location pointed to by DS:rSI to the I/O port address
(0000h to FFFFh) specified in the DX register, and then increments or decrements the
rSI register according to the setting of the DF flag in the rFLAGS register. If the DF
flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements the pointer by 1, 2, or 4, depending on the size of the value being copied.
[cited from AMD volume 3]

opcode "6Eh" rdx 16, ds_rsi 8
opcode "6Fh" rdx 16, ds_rsi $z
call OUTS($n2, op1)
action OUTS($n::{8, 16, 32}, port::bits 16)
if not _prefix.xF3 or RCX[$oa-1:0] <> zero($oa) then
call val = read_op($n, ds_rsi)
call check_io_intercept($n, port, 0b, 0b)
call write_port($n, val, port)
call adjust_rsi($n)
call repeat

287

288

APPENDIX

L

SEGMENTATION INSTRUCTIONS

L.1 Load SR and GPR from Memory

Instructions LDS, LES, LSS, LFS, LGS load “a far pointer from a memory location (sec-
ond operand) into a segment register (mnemonic) and general-purpose register (first
operand). The instruction stores the 16-bit segment selector of the pointer into the seg-
ment register and the 16-bit or 32-bit offset portion into the general-purpose register.
The operand-size attribute determines whether the pointer is 32-bit or 48-bit.” [cited
from AMD volume 3].

All these instructions use the following action that takes a segment register index and
a pair of (selector, offset), fetches the segment descriptor using the selector, loads the
selector and the segment descriptor into the segment register, and returns the offset,
which is later on is loaded into the GPR.

action LxS(idx::SRIndex, sel_offset::bits ($z+16))::bits $z
let sel = sel_offset[$z+15:$z]
let offset = sel_offset[$z-1:0]
call write_sr(sys, sel, idx)
return offset

Instruction LDS (when not $x64_mode) [cited from AMD volume 3]

opcode "C5h" reg $z, mem_ptr $z+16 : call op1’ = LxS(iDS, op2)

Instruction LES (when not $x64_mode) [cited from AMD volume 3]

opcode "C4h" reg $z, mem_ptr $z+16 : call op1’ = LxS(iES, op2)

Instruction LSS [cited from AMD volume 3]

opcode "0FB4h" reg $z, mem_ptr $z+16 : call op1’ = LxS(iSS, op2)

Instruction LFS [cited from AMD volume 3]

opcode "0FB4h" reg $z, mem_ptr $z+16 : call op1’ = LxS(iFS, op2)

289

Instruction LGS [cited from AMD volume 3]

opcode "0FB5h" reg $z, mem_ptr $z+16 : call op1’ = LxS(iGS, op2)

L.2 SWAPGS

Instruction SWAPGS (when $x64_mode)

The SWAPGS instruction only exchanges the base-address value located in the Ker-
nelGSBase model- specific register (MSR address C000_0102h) with the base-address
value located in the hidden-portion of the GS selector register (GS.base). This allows
the system-kernel software to access kernel data structures by using the GS segment-
override prefix during memory references. [cited from AMD volume 3]

opcode "0F01h /111b mod 11b rm 000b" : call SWAPGS
action SWAPGS
fail exception(xGP, 0000h) when CPL <> 00b
write KernelGSBase to GS.base
write GS.base to KernelGSBase

L.3 Task Register Access

Instruction LTR (when $protected_mode)

Loads the specified segment selector into the visible portion of the task register (‘TR’).
The processor uses the selector to locate the descriptor for the TSS in the global de-
scriptor table. It then loads this descriptor into the hidden portion of ‘TR’. The TSS
descriptor in the GDT is marked busy, but no task switch is made. [cited from AMD
volume 3]

opcode "0F00h /011b" reg_mem 16 : call LTR(op1)

The LTR action performs the following steps:

• Check that the processor is running at the most privileged level.

• Check for an intercept.

• Check that the new selector is not null.

• Fetch the task segment descriptor from the GDT.

• Fetch the upper descriptor in case the task segment descriptor has it.

• Check that the task segment descriptor is valid.

• Mark the new task state segment as busy.

• Write the new selector and descriptor into the TR register.

290

action LTR(sel::Selector)
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_TR_WRITE) when _vmcb_ca.intercept.WRITE_TR
fail exception(xGP, sel & FFF8h) when sel.TI
fail exception(xGP, sel & FFF8h) when (sel & FFF8h) == 0000h
call (desc_temp, desc_valid) = read_desc(sel)
fail exception(xGP, sel & FFF8h) when not desc_valid
call (upper, upper_valid) = read_upper_ldt_tss(sel)
fail exception(xGP, sel & FFF8h) when not upper_valid
let desc = desc_temp::TSS
let base = upper[31:0] ++ desc.base
call check_tss(sys, sel, desc, upper)
call mark_tss_busy(sel, desc)
write sel to TR.sel
write desc_attr(desc) to TR.attr
write base to TR.base
write desc.limit to TR.limit

The read_desc, read_upper_ldt_tss actions are defined in section 13.9. The check_tss

action makes sure that the given descriptor is present, accessible, and defines a valid
tast state segment.

action check_tss(origin::Origin, sel::Selector,
desc::TSS, upper::UpperDescriptor)

fail exception(xNP_xTS(origin), sel & FFF8h) when not desc.P
fail exception(xGP_xTS(origin), sel & FFF8h) when not isTSS(desc)
let base = upper[31:0] ++ desc.base
fail exception(xGP_xTS(origin), sel & FFF8h)
when $x64_mode and not canonical(base)

fail exception(xGP_xTS(origin), sel & FFF8h)
when not can_access_desc(sel, desc)

Marking the TSS busy means writing the TSS descriptor with the busy bit set into the
GDT.

action mark_tss_busy(sel::Selector, desc::TSS)
call write_desc(sel, desc with [busy = 1b])

The write_desc action is defined in section 13.9.

Instruction STR (when $protected_mode)

Stores the task register (‘TR’) selector to a register or memory destination operand.
[cited from AMD volume 3]

opcode "0F00h /001b" reg_mem $vw : call op1’ = STR
action STR::bits $vw
fail intercept(VMEXIT_TR_READ) when _vmcb_ca.intercept.READ_TR
return zxt($vw, TR.sel)

L.4 Descriptor Table Register Access

Instruction LLDT (when $protected_mode)

291

Loads the specified segment selector into the visible portion of the local descriptor table
(LDT). The processor uses the selector to locate the descriptor for the LDT in the global
descriptor table. It then loads this descriptor into the hidden portion of the LDTR. [cited
from AMD volume 3]

opcode "0F00h /010b" reg_mem 16 : call LLDT(op1)

The LLDT action works similarly to the LTR action described in the previous section, but
it is possible to load a null selector to the LDTR.

action LLDT(sel::Selector)
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_LDTR_WRITE) when _vmcb_ca.intercept.WRITE_LDTR
fail exception(xGP, sel & FFF8h) when sel.TI
if (sel & FFF8h) == 0000h then
write sel to LDTR.sel
write 0000h to LDTR.attr

else call (desc_temp, desc_valid) = read_desc(sel)
fail exception(xGP, sel & FFF8h) when not desc_valid
call (upper, upper_valid) = read_upper_ldt_tss(sel)
fail exception(xGP, sel & FFF8h) when not upper_valid
let desc = desc_temp::LDT
let base = upper[31:0] ++ desc.base
fail exception(xGP, sel & FFF8h) when not canonical(base) and $x64_mode
call check_ldt(sys, sel, desc, upper)
write sel to LDTR.sel
write desc_attr(desc) to LDTR.attr
write base to LDTR.base
write desc.limit to LDTR.limit

When a system segment descriptor is loaded into the LDTR register, the processor en-
sures that the descriptor is a present LDT descriptor and that the current code can
access the descriptor.

action check_ldt(origin::Origin, sel::Selector,
desc::LDT, upper::UpperDescriptor)

fail exception(xNP_xTS(origin), sel & FFF8h) when not desc.P
fail exception(xGP_xTS(origin), sel & FFF8h) when not isLDT(desc)
let base = upper[31:0] ++ desc.base
fail exception(xGP_xTS(origin), sel & FFF8h)
when $x64_mode and not canonical(base)

fail exception(xGP_xTS(origin), sel & FFF8h)
when not can_access_desc(sel, desc)

Instruction SLDT (when $protected_mode)

Stores the local descriptor table (LDT) selector to a register or memory destination
operand. [cited from AMD volume 3]

opcode "0F00h /000b" reg_mem $vw : call op1’ = SLDT
action SLDT::bits $vw
fail intercept(VMEXIT_LDTR_READ) when _vmcb_ca.intercept.READ_LDTR
return zxt($vw, LDTR.sel)

Instruction LGDT

292

Loads the pseudo-descriptor specified by the source operand into the global descrip-
tor table register (‘GDTR’). The pseudo-descriptor is a memory location containing the
GDTR base and limit. In legacy and compatibility mode, the pseudo-descriptor is 6
bytes; in 64-bit mode, it is 10 bytes. [cited from AMD volume 3]

opcode "0F01h /010b" mem_ptr 16+$qd : call LGDT(op1)
action LGDT(base_limit::bits ($qd+16))
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_GDTR_WRITE) when _vmcb_ca.intercept.WRITE_GDTR
let limit = base_limit[15:0]
let base = base_limit[$qd+15:16]
fail exception(xGP, 0000h) when $x64_mode and not canonical(zxt(64, base))
let adjusted_base = if $x64_mode or $v <> 16 then base

else zxt($qd, base[23:0])
write zxt(64, adjusted_base) to GDTR.base
write limit to GDTR.limit

Instruction SGDT

Stores the global descriptor table register (GDTR) into the destination operand. In
legacy and compatibility mode, the destination operand is 6 bytes; in 64-bit mode, it is
10 bytes. In all modes, operand-size prefixes are ignored. [cited from AMD volume 3]

opcode "0F01h /000b" mem_ptr 16+$qd : call SGDT
action SGDT::bits ($qd+16)
fail intercept(VMEXIT_GDTR_READ) when _vmcb_ca.intercept.READ_GDTR
return GDTR.base[$qd-1:0] ++ GDTR.limit

Instruction LIDT

Loads the pseudo-descriptor specified by the source operand into the interrupt descrip-
tor table register (IDTR). The pseudo-descriptor is a memory location containing the
IDTR base and limit. In legacy and compatibility mode, the pseudo-descriptor is six
bytes; in 64-bit mode, it is 10 bytes. [cited from AMD volume 3]

opcode "0F01h /011b" mem_ptr 16+$qd : call LIDT(op1)
action LIDT(base_limit::bits ($qd+16))
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_IDTR_WRITE) when _vmcb_ca.intercept.WRITE_IDTR
let limit = base_limit[15:0]
let base = base_limit[$qd+15:16]
fail exception(xGP, 0000h) when $x64_mode and not canonical(zxt(64, base))
let adjusted_base = if $x64_mode or $v <> 16 then base

else zxt($qd, base[23:0])
write zxt(64, adjusted_base) to IDTR.base
write limit to IDTR.limit

Instruction SIDT

Stores the interrupt descriptor table register (IDTR) in the destination operand. In
legacy and compatibility mode, the destination operand is 6 bytes; in 64-bit mode it is
10 bytes. In all modes, operand-size prefixes are ignored. [cited from AMD volume 3]

opcode "0F01h /001b" mem_ptr 16+$qd : call op1’ = SGDT
action SIDT::bits ($qd+16)
fail intercept(VMEXIT_IDTR_READ) when _vmcb_ca.intercept.READ_IDTR
return IDTR.base[$qd-1:0] ++ IDTR.limit

293

294

APPENDIX

M

PROTECTION INSTRUCTIONS

Instruction ARPL (when $protected_mode)

Compares the requestor privilege level (RPL) fields of two segment selectors in the
source and destination operands of the instruction. If the RPL field of the destination
operand is less than the RPL field of the segment selector in the source register, then
the zero flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the destination operand remains unchanged and
the zero flag is cleared. [cited from AMD volume 3]

opcode "63h" reg_mem 16, reg 16 : call op1’ = ARPL(op1, op2)
action ARPL(op1::Selector, op2::Selector)::Selector
if op1.RPL < op2.RPL then
write 1b to RFLAGS.ZF
return op1 with [RPL = op2.RPL]

else write 0b to RFLAGS.ZF
return op1

Instruction LAR (when $protected_mode)

Loads the access rights from the segment descriptor specified by a 16-bit source regis-
ter or memory operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register
and sets the zero (ZF) flag in the rFLAGS register if successful. LAR clears the zero flag
if the descriptor is invalid for any reason. [cited from AMD volume 3]

opcode "0F02h" reg $v, reg_mem 16 : call op1’ = LAR(op1, op2)
function can_access(sel::Selector, desc::Descriptor)::bit
= if (sel & FFF8h) == 0000h or not desc.P then 0b
elif isUserSegment(desc) then can_access_data(sel, desc)
elif isSystemSegment(desc) then can_access_desc(sel, desc)
else 0b

action LAR(op1::bits $v, sel::Selector)::bits $v
call (desc, valid) = read_desc(sel)
if valid and can_access(sel, desc) then
write 1b to RFLAGS.ZF
return zxt($v, desc.DPL)

else write 0b to RFLAGS.ZF

295

return op1

Instruction LSL (when $protected_mode)

Loads the segment limit from the segment descriptor specified by a 16-bit source regis-
ter or memory operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register
and sets the zero (ZF) flag in the rFLAGS register if successful. LSL clears the zero flag
if the descriptor is invalid for any reason. [cited from AMD volume 3]

opcode "0F03h" reg $v, reg_mem 16 : call op1’ = LSL(op1, op2)
action LSL(op1::bits $v, sel::bits 16)::bits $v
call (desc, valid) = read_desc(sel)
if valid and can_access(sel, desc) and isSegment(desc) then
write 1b to RFLAGS.ZF
return zxt(64, (desc::Segment).limit)[$v-1:0]

else write 0b to RFLAGS.ZF
return op1

Instruction VERR (when $protected_mode)

Verifies whether a code or data segment specified by the segment selector in the 16-bit
register or memory operand is readable from the current privilege level. The zero flag
(ZF) is set to 1 if the specified segment is readable. Otherwise, ZF is cleared. [cited
from AMD volume 3]

opcode "0F00h /010b" reg_mem 16 : call VERR(op1)
action VERR(sel::bits 16)::bits 64
call (desc, valid) = read_desc(sel)
let accessable = valid and can_access(sel, desc)
let readable = isUserSegment(desc) and (desc::UserSegment).readable
write (accessable and readable) to RFLAGS.ZF

Instruction VERW (when $protected_mode)

Verifies whether a data segment specified by the segment selector in the 16-bit register
or memory operand is writable from the current privilege level. The zero flag (ZF) is
set to 1 if the specified segment is writable. Otherwise, ZF is cleared. [cited from AMD
volume 3]

opcode "0F00h /101b" reg_mem 16 : call VERW(op1)
action VERW(sel::bits 16)::bits 64
call (desc, valid) = read_desc(sel)
let accessable = valid and can_access(sel, desc)
let writable = isDataSegment(desc) and (desc::DataSegment).writable
write (accessable and writable) to RFLAGS.ZF

296

APPENDIX

N

CR AND MSR ACCESS
INSTRUCTIONS

N.1 Control Register Access

Instruction MOV(CRn)

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register.
In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix.
In non–64-bit mode, the operand size is fixed at 32 bits and the upper 32 bits of the
destination are forced to 0. CR0 maintains the state of various control bits. CR2 and
CR3 are used for page translation. CR4 holds various feature enable bits. CR8 is used
to prioritize external interrupts. CR1, CR5, CR6, CR7, and CR9 through CR15 are all
reserved and raise an undefined opcode exception (#UD) if referenced. CR8 can be
read and written in 64-bit mode, using a REX prefix. CR8 can be read and written in all
modes using a LOCK prefix instead of a REX prefix to specify the additional opcode bit.
To verify whether the LOCK prefix can be used in this way, check the status of ECX bit
4 returned by CPUID function 8000_0001h. [cited from AMD volume 3]

opcode "0F20h" reg $qd, creg $qd
opcode "F0h 0F20h" reg $qd, creg8 $qd
opcode "0F22h" creg $qd, reg $qd
opcode "F0h 0F22h" creg8 $qd, reg $qd
let op1’ = op2

For reading and writing the creg operand type, we use the read_cr and the write_cr

actions. Reading is simple, given the operand width and the register index:

1. make sure that CPL == 00b,

2. check for the control register read intercept,

3. make sure that the index specifies an existing register.

297

4. return the appropiate element from the CR array.

action read_cr($w::{32, 64}, idx::bits 4)::bits $w
fail exception(xGP, 0000h) when CPL <> 00b
let $idx = nat(idx)::[0..15]
fail intercept(VMEXIT_READ_CR0 + zxt(64, idx)) when _vmcb_ca.READ_CR[$idx]
fail exception(xUD, 0000h) when idx <> 0h and idx <> 2h and idx <> 3h

and idx <> 4h and idx <> 8h
return CR[idx][$w-1:0]

Writing is more complex, because we need to check that the reserved bits in the new
register value are set correctly and in some cases flush the TLB and the store buffer.

The write_cr action makes privilege level and intercept checks, and then invokes the
specific write_cr0, write_cr2, etc. action.

action write_cr($w::{32, 64}, val::bits $w, idx::bits 4)
fail exception(xGP, 0000h) when CPL <> 00b
let $idx = nat(idx)::[0..15]
fail intercept(VMEXIT_WRITE_CR0 + zxt(64, idx)) when _vmcb_ca.WRITE_CR[$idx]
if idx == 0h then
call write_cr0($w, val)

elif idx == 2h then
call write_cr2($w, val)

elif idx == 3h then
call write_cr3($w, val)

elif idx == 4h then
call write_cr4($w, val)

elif idx == 8h then
call write_cr8($w, val)

else fail exception(xUD, 0000h)

Given the new CR0 register value, the write_cr0 action copies the read-only bits from
the old value (using function fixCR0) and checks that all reserved bits have the correct
value (using function isCR0). These functions are defined implicitly based on the layout
of the CR0 register. When the MP bit or the TS bit changes, an intercept might be raised
depending on the WRITE_CR0 bit in the guest control area. When the PG changes, all local
entries in the TLB are flushed. When the PG changes from 0b to 1b and the long mode is
enabled, then the long mode is activated.

action write_cr0($w::{32, 64}, val::bits $w)
let cr0 = fixCR0(CR0[63:$w] ++ val, CR0)
fail exception(xGP, 0000h) when not isCR0(cr0)
let written = (cr0 with [MP = 0b, TS = 0b]) <> (CR0 with [MP = 0b, TS = 0b])
fail intercept(VMEXIT_CR0_SEL_WRITE)
when _vmcb_ca.intercept.WRITE_CR0 and written

call flush_tlb_local(current_asid) when cr0.PG <> CR0.PG
write 1b to EFER.LMA when EFER.LME and cr0.PG and not CR0.PG
write cr0 to CR0

A write to the CR2 simply updates the register without any side-effects.

action write_cr2($w::{32, 64}, val::bits $w)
write val to CR2[$w-1:0]

298

A write to the CR3 flushes all local entries in the TLB.

action write_cr3($w::{32, 64}, val::bits $w)
let cr3 = fixCR3(CR3[63:$w] ++ val, CR3)
fail exception(xGP, 0000h) when not isCR3(cr3)
call flush_tlb_local(current_asid)
write cr3 to CR3

A write to the CR4 register flushes all entries in the TLB if the page-mode related bits
are changed.

action write_cr4($w::{32, 64}, val::bits $w)
let cr4 = fixCR4(CR4[63:$w] ++ val, CR4)
fail exception(xGP, 0000h) when not isCR4(cr4)
call flush_tlb_global(current_asid)
when cr4.PAE <> CR4.PAE or cr4.PSE <> CR4.PSE or cr4.PGE <> CR4.PGE

write cr4 to CR4

A write to the CR8 updates the _vmcb_ca.V_INTR.V_TPR in guest mode if virtual interrupt
masking is enabled.

action write_cr8($w::{32, 64}, val::bits $w)
let cr8 = fixCR8(CR8[63:$w] ++ val, CR8)
fail exception(xGP, 0000h) when not isCR8(cr8)
write cr8 to CR8
if _guest and _vmcb_ca.V_INTR.V_INTR_MASKING then
write cr8[3:0] ++ 0000b to _vmcb_ca.V_INTR.V_TPR

Instruction SMSW

Stores the lower bits of the machine status word (CR0). The target can be a 16-, 32-, or
64-bit register or a 16-bit memory operand. [cited from AMD volume 3]

opcode "0F01h /100b" reg_mem $vw : call op1’ = SMSW
action SMSW::bits $vw
fail intercept(VMEXIT_READ_CR0) when _vmcb_ca.READ_CR[0]
return CR0[$vw-1:0]

Instruction LMSW

Loads the lower four bits of the 16-bit register or memory operand into bits 3–0 of
the machine status word in register CR0. Only the protection enabled (PE), monitor
coprocessor (MP), emulation (EM), and task switched (TS) bits of CR0 are modified.
Additionally, LMSW can set CR0.PE, but cannot clear it. [cited from AMD volume 3]

opcode "0F01h /110b" reg_mem 16 : call LMSW(op1)

The LMSW action is similar to the write_cr0 action.

action LMSW(val::bits 16)
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_WRITE_CR0) when _vmcb_ca.WRITE_CR[0]
let x = zxt(64, val)::CR0
let cr0 = CR0 with [TS = x.TS, EM = x.EM, MP = x.MP, PE = (x.PE | CR0.PE)]
let written = (cr0 with [MP = 0b, TS = 0b]) <> (CR0 with [MP = 0b, TS = 0b])
fail intercept(VMEXIT_CR0_SEL_WRITE)
when _vmcb_ca.intercept.WRITE_CR0 and written

write cr0 to CR0

299

N.2 Model Specific Register Access

Instruction RDMSR

Loads the contents of a 64-bit model-specific register (MSR) specified in the ECX reg-
ister into registers EDX:EAX. The EDX register receives the high-order 32 bits and the
EAX register receives the low order bits. The RDMSR instruction ignores operand size;
ECX always holds the MSR number, and EDX:EAX holds the data. If a model-specific
register has fewer than 64 bits, the unimplemented bit positions loaded into the desti-
nation registers are undefined. This instruction must be executed at a privilege level of
0 or a general protection exception (#GP) will be raised. This exception is also gener-
ated if a reserved or unimplemented model-specific register is specified in ECX. [cited
from AMD volume 3]

opcode "0F32h" : call RDMSR
action RDMSR
fail exception(xGP, 0000h) when CPL <> 00b
let idx = RCX[31:0]
call check_msr_intercept(rd, idx)
call val = read_msr(idx)
write val[63:32] to RDX[31:0]
write val[31:0] to RCX[63:32]

In guest mode, the check_msr_intercept action looks up the intercept bit in the MSR
permission bitmap located at the _vmcb_ca.MSRPM_BASE_PA. When the bit is set, it raises
an intercept.

action check_msr_intercept(rw::RW, idx::bits 32)
if _guest and _vmcb_ca.intercept.MSR_PROT then
let x = if rw == read then zero(64) else one(64)
let $bit_idx = nat(idx[4:0]++x[0])::[0..63]
let base = _vmcb_ca.MSRPM_BASE_PA[$pa-1:12] ++ 000h
if idx < 00002000h then
let addr = base + zxt($pa, idx[12:5]++000b)
call map = pread(sys, 64, addr, WB)
fail intercept1(VMEXIT_MSR, x) when map[$bit_idx]

elif C0000000h <= idx and idx < C0002000h then
let addr = base + zxt($pa, idx[12:5]++000b) + zxt($pa, 800h)
call map = pread(sys, 64, addr, WB)
fail intercept1(VMEXIT_MSR, x) when map[$bit_idx]

elif C0002000h <= idx and idx < C0004000h then
let addr = base + zxt($pa, idx[12:5]++000b) + zxt($pa, 1000h)
call map = pread(sys, 64, addr, WB)
fail intercept1(VMEXIT_MSR, x) when map[$bit_idx]

else fail intercept1(VMEXIT_MSR, x)

As there are too many model-specific registers, we will not list the full read_msr action.
Instead, we just define a scheme based on two registers and assume that other registers
are added according to the scheme.

action read_msr(idx::bits 32)::bits 64
if idx == iAPIC_BASE then return APIC_BASE
elif idx == iEFER then return EFER
else fail exception(xGP, 0000h)

300

Instruction WRMSR

Writes data to 64-bit model-specific registers (MSRs). These registers are widely used
in performance- monitoring and debugging applications, as well as testability and pro-
gram execution tracing. This instruction writes the contents of the EDX:EAX register
pair into a 64-bit model-specific register specified in the ECX register. The 32 bits in the
EDX register are mapped into the high-order bits of the model-specific register and the
32 bits in EAX form the low-order 32 bits. This instruction must be executed at a privi-
lege level of 0 or a general protection fault #GP(0) will be raised. This exception is also
generated if an attempt is made to specify a reserved or unimplemented model-specific
register in ECX. [cited from AMD volume 3]

opcode "0F30h" : call WRMSR
action WRMSR
fail exception(xGP, 0000h) when CPL <> 00b
let idx = RCX[31:0]
call check_msr_intercept(wr, idx)
let val = RDX[31:0] ++ RAX[31:0]
call write_msr(val, idx)

Refer to the description of the RDMSR instruction for the check_msr_intercept action. As
we did for the read_msr action, we do not list the full write_msr action. Instead, we define
a scheme based on two registers, and assume that other register are added according
to the scheme.

action write_msr(val::bits 64, idx::bits 32)
if idx == iAPIC_BASE then
let x = fixAPIC_BASE(val, APIC_BASE)
fail exception(xGP, 0000h) when not isAPIC_BASE(x)
write x to APIC_BASE

elif idx == iEFER then
let x = fixEFER(val, EFER)
fail exception(xGP, 0000h) when not isEFER(x)
write x to EFER

else fail exception(xGP, 0000h)

Instruction RDTSC

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX.
The time-stamp counter (TSC) is contained in a 64-bit model-specific register (MSR).
The processor sets the counter to 0 upon reset and increments the counter every clock
cycle. INIT does not modify the TSC. The high-order 32 bits are loaded into EDX, and
the low-order 32 bits are loaded into the EAX register. This instruction ignores operand
size. When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSC instruction
can only be used at privilege level 0. If the TSD flag is 0, this instruction can be used at
any privilege level. This instruction is not serializing. Therefore, there is no guarantee
that all instructions have completed at the time the time-stamp counter is read. The
behavior of the RDTSC instruction is implementation dependent. The TSC counts at a
constant rate, but may be affected by power management events (such as frequency
changes), depending on the processor implementation. If CPUID 8000_0007.edx[8] =
1, then the TSC rate is ensured to be invariant across all P-States, C-States, and stop-
grant transitions (such as STPCLK Throttling); therefore, the TSC is suitable for use
as a source of time. Consult the BIOS and kernel developer’s guide for your AMD

301

processor implementation for information concerning the effect of power management
on the TSC. [cited from AMD volume 3]

opcode "0F31h" : call RDTSC
action RDTSC
fail exception(xGP, 0000h) when CPL <> 00b and CR4.TSD
fail intercept(VMEXIT_RDTSC) when _vmcb_ca.intercept.RDTSC
write TSC >> 32 to RDX
write TSC & 00000000FFFFFFFFh to RAX

Instruction RDTSCP

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX,
and loads the value of TSC_AUX into ECX. This instruction ignores operand size. The
time-stamp counter is contained in a 64-bit model-specific register (MSR). The proces-
sor sets the counter to 0 upon reset and increments the counter every clock cycle. INIT
does not modify the TSC. The high-order 32 bits are loaded into EDX, and the low-
order 32 bits are loaded into the EAX register. The TSC_AUX value is contained in the
low-order 32 bits of the TSC_AUX register (MSR address C000_0103h). This MSR is
initialized by privileged software to any meaningful value, such as a processor ID, that
software wants to associate with the returned TSC value. When the time-stamp disable
flag (TSD) in CR4 is set to 1, the RDTSCP instruction can only be used at privilege level
0. If the TSD flag is 0, this instruction can be used at any privilege level. Unlike the
RDTSC instruction, RDTSCP forces all older instructions to retire before reading the
time- stamp counter. The behavior of the RDTSCP instruction is implementation depen-
dent. The TSC counts at a constant rate, but may be affected by power management
events (such as frequency changes), depending on the processor implementation. If
CPUID 8000_0007.edx[8] = 1, then the TSC rate is ensured to be invariant across all
P-States, C-States, and stop-grant transitions (such as STPCLK Throttling); therefore,
the TSC is suitable for use as a source of time. Consult the BIOS and kernel developer’s
guide for your AMD processor implementation for information concerning the effect of
power management on the TSC. [cited from AMD volume 3]

opcode "0F01h /111b mod 11b rm 001b" : call RDTSCP
action RDTSCP
fail exception(xGP, 0000h) when CPL <> 00b and CR4.TSD
fail intercept(VMEXIT_RDTSC) when _vmcb_ca.intercept.RDTSCP
write TSC >> 32 to RDX
write TSC & 00000000FFFFFFFFh to RAX
write TSC_AUX & 00000000FFFFFFFFh to RCX

302

APPENDIX

O

MEMORY MANAGEMENT
INSTRUCTIONS

O.1 TLB Invalidation

Instruction INVLPG

Invalidates the TLB entry that would be used for the 1-byte memory operand. This
instruction invalidates the TLB entry, regardless of the G (Global) bit setting in the
associated PDE or PTE entry and regardless of the page size (4 Kbytes, 2 Mbytes, or
4 Mbytes). It may invalidate any number of additional TLB entries, in addition to the
targeted entry. [cited from AMD volume 3]

opcode "0F01h /111b" mem 8 : call INVLPG
action INVLPG
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_INVLPG) when _vmcb_ca.intercept.INVLPG
let s = segment(iDS)
let origin = segment_origin(s)
let addr = zxt($va, effective_base(origin, SR[s].base)) + zxt($va, ea)
call invlpg(addr, current_asid)

The invlpg action takes a virtual address and a TLB tag. It flushes all TLB entries that
translate the given virtual address with the given tag. This action and the current_asid

function are defined in section 13.4.

Instruction INVLPGA (when $SVME)

Invalidates the TLB mapping for a given virtual page and a given current_asid. The
virtual address is specified in the implicit register operand rAX. The portion of RAX
used to form the address is determined by the effective address size. The current_asid
is taken from ECX. The INVLPGA instruction may invalidate any number of additional
TLB entries, in addition to the targeted entry. The INVLPGA instruction is a serializing
instruction and a privileged instruction. The current privilege level must be 0 to execute
this instruction. [cited from AMD volume 3]

303

opcode "0F01h /011b mod 11b rm 111b" : call INVLPGA
action INVLPGA
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_INVLPGA) when _vmcb_ca.intercept.INVLPGA
call invlpg(zxt($va, RAX[$oa-1:0]), RCX[31:0])

O.2 Memory Fences

All memory fences are modelled at the store buffer level (see Part I), therefore they are
no-operations in out domain-specific language.

Instruction MFENCE

Acts as a barrier to force strong memory ordering (serialization) between load and
store instructions preceding the MFENCE, and load and store instructions that follow
the MFENCE. The processor may perform loads out of program order with respect to
non-conflicting stores for certain memory types. The MFENCE instruction guarantees
that the system completes all previous memory accesses before executing subsequent
accesses. The MFENCE instruction is weakly-ordered with respect to data and instruc-
tion prefetches. Speculative loads initiated by the processor, or specified explicitly
using cache-prefetch instructions, can be reordered around an MFENCE. [cited from
AMD volume 3]

opcode "0FAEF0h" : call NOP

Instruction SFENCE

Acts as a barrier to force strong memory ordering (serialization) between store instruc-
tions preceding the SFENCE and store instructions that follow the SFENCE. Stores to
differing memory types, or within the WC memory type, may become visible out of pro-
gram order; the SFENCE instruction ensures that the system completes all previous
stores in such a way that they are globally visible before executing subsequent stores.
This includes emptying the store buffer and all write-combining buffers. The SFENCE
instruction is weakly-ordered with respect to load instructions, data and instruction
prefetches, and the LFENCE instruction. Speculative loads initiated by the processor,
or specified explicitly using cache-prefetch instructions, can be reordered around an
SFENCE. [cited from AMD volume 3]

opcode "0FAEF8h" : call NOP

Instruction LFENCE

Acts as a barrier to force strong memory ordering (serialization) between load instruc-
tions preceding the LFENCE and load instructions that follow the LFENCE. Loads from
differing memory types may be performed out of order, in particular between WC/WC+
and other memory types. The LFENCE instruction assures that the system completes all
previous loads before executing subsequent loads. The LFENCE instruction is weakly-
ordered with respect to store instructions, data and instruction prefetches, and the
SFENCE instruction. Speculative loads initiated by the processor, or specified explic-
itly using cache-prefetch instructions, can be reordered around an LFENCE. [cited from
AMD volume 3]

opcode "0FAEE8h" : call NOP

304

O.3 Cache Invalidation

Instruction WBINVD

Writes all modified cache lines in the internal caches back to main memory and inval-
idates (flushes) internal caches. It then causes external caches to write back modified
data to main memory; the external caches are subsequently invalidated. After invali-
dating internal caches, the processor proceeds immediately with the execution of the
next instruction without waiting for external hardware to invalidate its caches. [cited
from AMD volume 3]

opcode "0F09h" : call WBINVD
action WBINVD
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_WBINVD) when _vmcb_ca.intercept.WBINVD
call invalidate_cache(1b)

The invalidate_cache action takes a flag that indicates whether to write back a dirty
line before invalidation or not. The action is defined in section 13.4.

Instruction INVD

Invalidates internal caches (data cache, instruction cache, and on-chip L2 cache) and
triggers a bus cycle that causes external caches to invalidate themselves as well. No
data is written back to main memory from invalidating internal caches. After invali-
dating internal caches, the processor proceeds immediately with the execution of the
next instruction without waiting for external hardware to invalidate its caches. This is
a privileged instruction. The current privilege level (CPL) of a procedure invalidating
the processor’s internal caches must be 0. [cited from AMD volume 3]

opcode "0F08h" : call INVD
action INVD
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_INVD) when _vmcb_ca.intercept.INVD
call invalidate_cache(0b)

Instruction CLFLUSH

Flushes the cache line specified by the mem8 linear-address. The instruction checks
all levels of the cache hierarchy—internal caches and external caches—and invalidates
the cache line in every cache in which it is found. If a cache contains a dirty copy
of the cache line (that is, the cache line is in the modified or owned MOESI state),
the line is written back to memory before it is invalidated. The instruction sets the
cache-line MOESI state to invalid. The instruction also checks the physical address
corresponding to the linear-address operand against the processor’s write-combining
buffers. If the write-combining buffer holds data intended for that physical address,
the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the
instruction checks the write-combining buffers only on the processor that executed the
CLFLUSH instruction. [cited from AMD volume 3]

opcode "0FAEh /111b" mem 8 : call CLFLUSH
action CLFLUSH
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_INVD) when _vmcb_ca.intercept.INVD

305

let s = segment(iDS)
let origin = segment_origin(s)
call check_logical(read, origin, 8, SR[s], $oa, ea)
let addr = zxt($va, effective_base(origin, SR[s].base)) + zxt($va, ea)
call (paddr, memtype) = va_to_pa(read, origin, addr, CPL)
call flush_cache_line(paddr)

The flush_cache_line action is defined in section 13.4.

306

APPENDIX

P

VIRTUALIZATION
INSTRUCTIONS

P.1 Run Guest

Instruction VMRUN

Starts execution of a guest instruction stream. The physical address of the virtual
machine control block (VMCB) describing the guest is taken from the rAX register (the
portion of RAX used to form the address is determined by the effective address size).
VMRUN saves a subset of host processor state to the host state-save area specified by
the physical address in the VM_HSAVE_PA MSR. VMRUN then loads guest processor
state (and control information) from the VMCB at the physical address specified in rAX.
The processor then executes guest instructions until one of several intercept events
(specified in the VMCB) is triggered. When an intercept event occurs, the processor
stores a snapshot of the guest state back into the VMCB, reloads the host state, and
continues execution of host code at the instruction following the VMRUN instruction.
[cited from AMD volume 3]

opcode "0F01h /011b mod 11b rm 000b" rax $oa : when $SVME
: call VMRUN(zxt(64, op1)[$pa-1:0])

action VMRUN(addr::bits $pa)
fail exception(xGP, 0000h) when CPL <> 00b
fail exception(xGP, 0000h) when addr[11:0] <> 000h
fail intercept(VMEXIT_VMRUN) when $GUEST and _vmcb_ca.intercept.VMRUN
call save_host(addr)
call load_guest(addr)
commit and chain check_guest_state

We will define the save_host and the load_guest actions later. The check_guest_state

action goes over subset of the guest registers and checks whether their values are valid
or not. After that the action carries out the TLB flush request, enables interrupts, and
copies the interrupt shadow indicator from the guest control area to the _intr_shadow

307

register.

action check_guest_state
fail intercept(VMEXIT_INVALID) when not check_registers
fail intercept(VMEXIT_INVALID) when not _vmcb.intercept.VMRUN
fail intercept(VMEXIT_INVALID) when _vmcb.intercept.GUEST_ASID == zero(32)
if _vmcb_ca.TLB_CONTROL == 01h then
call flush_tlb_all

write 1b to GIF
write _vmcb_ca.INTERRUPT_SHADOW to _intr_shadow

The check_registers function returns true if and only if the control registers, the EFER

register, and the CS register specify a valid operating mode, and have reserved bits set
to correct values.

function check_registers
= if EFER.LME and CR0.PG and (not CR4.PAE or not CR0.PE)then 0b
else if CS.attr.L and CS.attr.D then 0b
else isCR0(CR0)

and isCR3(CR3)
and isCR4(CR4)
and isEFER(EFER)

The save_host and the load_guest are straightforward: for each register in the host/guest
state they issue a physical memory write/read. The only noteworthy thing is computa-
tion of register offsets. We use the @ operator that returns the field offset in a layout
measured in bits. To convert the bits into byte we use the following function:

function as_pa(offset::nat)::bits $pa = bits($pa, (offset / 8))

For discussion of the host and guest save state are refer to chapter 17.

action save_host(addr::bits $pa)
call pwrite(sys, 16, ES.sel, addr + as_pa(@HOST_SSA.ES_sel), WB)
call pwrite(sys, 16, ES.attr, addr + as_pa(@HOST_SSA.ES_attr), WB)
call pwrite(sys, 32, ES.limit, addr + as_pa(@HOST_SSA.ES_limit), WB)
call pwrite(sys, 64, ES.base, addr + as_pa(@HOST_SSA.ES_base), WB)
call pwrite(sys, 16, CS.sel, addr + as_pa(@HOST_SSA.CS_sel), WB)
call pwrite(sys, 16, CS.attr, addr + as_pa(@HOST_SSA.CS_attr), WB)
call pwrite(sys, 32, CS.limit, addr + as_pa(@HOST_SSA.CS_limit), WB)
call pwrite(sys, 64, CS.base, addr + as_pa(@HOST_SSA.CS_base), WB)
call pwrite(sys, 16, SS.sel, addr + as_pa(@HOST_SSA.SS_sel), WB)
call pwrite(sys, 16, SS.attr, addr + as_pa(@HOST_SSA.SS_attr), WB)
call pwrite(sys, 32, SS.limit, addr + as_pa(@HOST_SSA.SS_limit), WB)
call pwrite(sys, 64, SS.base, addr + as_pa(@HOST_SSA.SS_base), WB)
call pwrite(sys, 16, DS.sel, addr + as_pa(@HOST_SSA.DS_sel), WB)
call pwrite(sys, 16, DS.attr, addr + as_pa(@HOST_SSA.DS_attr), WB)
call pwrite(sys, 32, DS.limit, addr + as_pa(@HOST_SSA.DS_limit), WB)
call pwrite(sys, 64, DS.base, addr + as_pa(@HOST_SSA.DS_base), WB)
call pwrite(sys, 16, GDTR.limit, addr + as_pa(@HOST_SSA.GDTR_limit), WB)
call pwrite(sys, 64, GDTR.base, addr + as_pa(@HOST_SSA.GDTR_base), WB)
call pwrite(sys, 16, IDTR.limit, addr + as_pa(@HOST_SSA.IDTR_limit), WB)
call pwrite(sys, 64, IDTR.base, addr + as_pa(@HOST_SSA.IDTR_base), WB)
call pwrite(sys, 64, EFER, addr + as_pa(@HOST_SSA.EFER), WB)
call pwrite(sys, 64, CR4, addr + as_pa(@HOST_SSA.CR4), WB)

308

call pwrite(sys, 64, CR3, addr + as_pa(@HOST_SSA.CR3), WB)
call pwrite(sys, 64, CR0, addr + as_pa(@HOST_SSA.CR0), WB)
call pwrite(sys, 64, RFLAGS, addr + as_pa(@HOST_SSA.RFLAGS), WB)
call pwrite(sys, 64, RIP, addr + as_pa(@HOST_SSA.RIP), WB)
call pwrite(sys, 64, RSP, addr + as_pa(@HOST_SSA.RSP), WB)
call pwrite(sys, 64, RAX, addr + as_pa(@HOST_SSA.RAX), WB)
call pwrite(sys, 64, PAT, addr + as_pa(@HOST_SSA.PAT), WB)

action load_guest(addr::bits $pa)
call rcr = pread(sys, 16, addr + as_pa(@VMCB_CA.READ_CR), WB)
call wcr = pread(sys, 16, addr + as_pa(@VMCB_CA.WRITE_CR), WB)
call rdr = pread(sys, 16, addr + as_pa(@VMCB_CA.READ_DR), WB)
call wdr = pread(sys, 16, addr + as_pa(@VMCB_CA.WRITE_DR), WB)
call excp = pread(sys, 32, addr + as_pa(@VMCB_CA.EXCP), WB)
call icpt = pread(sys, 64, addr + as_pa(@VMCB_CA.intercept), WB)
call io = pread(sys, 64, addr + as_pa(@VMCB_CA.IOPM_BASE_PA), WB)
call msr = pread(sys, 64, addr + as_pa(@VMCB_CA.MSRPM_BASE_PA), WB)
call tsc = pread(sys, 64, addr + as_pa(@VMCB_CA.TSC_OFFSET), WB)
call asid = pread(sys, 64, addr + as_pa(@VMCB_CA.GUEST_ASID), WB)
call tlb = pread(sys, 8, addr + as_pa(@VMCB_CA.TLB_CONTROL), WB)
call vintr = pread(sys, 64, addr + as_pa(@VMCB_CA.V_INTR), WB)
call shw = pread(sys, 8, addr + as_pa(@VMCB_CA.INTERRUPT_SHADOW), WB)
call np = pread(sys, 64, addr + as_pa(@VMCB_CA.NESTED_PAGING), WB)
call inj = pread(sys, 64, addr + as_pa(@VMCB_CA.EVENTINJ), WB)
call ncr3 = pread(sys, 64, addr + as_pa(@VMCB_CA.N_CR3), WB)
call lbr = pread(sys, 64, addr + as_pa(@VMCB_CA.LBR_VE), WB)
let ssa = addr + zxt($pa, 400h)
call es_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.ES_sel), WB)
call es_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.ES_attr), WB)
call es_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.ES_limit), WB)
call es_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.ES_base), WB)
call cs_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.CS_sel), WB)
call cs_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.CS_attr), WB)
call cs_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.CS_limit), WB)
call cs_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.CS_base), WB)
call ss_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.SS_sel), WB)
call ss_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.SS_attr), WB)
call ss_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.SS_limit), WB)
call ss_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.SS_base), WB)
call ds_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.DS_sel), WB)
call ds_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.DS_attr), WB)
call ds_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.DS_limit), WB)
call ds_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.DS_base), WB)
call gdtr_lim = pread(sys, 16, ssa + as_pa(@VMCB_SSA.GDTR_limit), WB)
call gdtr_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.GDTR_base), WB)
call idtr_lim = pread(sys, 16, ssa + as_pa(@VMCB_SSA.IDTR_limit), WB)
call idtr_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.IDTR_base), WB)
call cpl = pread(sys, 8, ssa + as_pa(@VMCB_SSA.CPL), WB)
call efer = pread(sys, 64, ssa + as_pa(@VMCB_SSA.EFER), WB)
call cr4 = pread(sys, 64, ssa + as_pa(@VMCB_SSA.CR4), WB)
call cr3 = pread(sys, 64, ssa + as_pa(@VMCB_SSA.CR3), WB)
call cr0 = pread(sys, 64, ssa + as_pa(@VMCB_SSA.CR0), WB)
call dr7 = pread(sys, 64, ssa + as_pa(@VMCB_SSA.DR7), WB)

309

call dr6 = pread(sys, 64, ssa + as_pa(@VMCB_SSA.DR6), WB)
call flags = pread(sys, 64, ssa + as_pa(@VMCB_SSA.RFLAGS), WB)
call rip = pread(sys, 64, ssa + as_pa(@VMCB_SSA.RIP), WB)
call rsp = pread(sys, 64, ssa + as_pa(@VMCB_SSA.RSP), WB)
call rax = pread(sys, 64, ssa + as_pa(@VMCB_SSA.RAX), WB)
call pat = pread(sys, 64, ssa + as_pa(@VMCB_SSA.G_PAT), WB)
write rcr to _vmcb_ca.READ_CR
write wcr to _vmcb_ca.WRITE_CR
write rdr to _vmcb_ca.READ_DR
write wdr to _vmcb_ca.WRITE_DR
write excp to _vmcb_ca.EXCP
write icpt to _vmcb_ca.intercept
write io to _vmcb_ca.IOPM_BASE_PA
write msr to _vmcb_ca.MSRPM_BASE_PA
write tsc to _vmcb_ca.TSC_OFFSET
write asid[31:0] to _vmcb_ca.GUEST_ASID
write tlb to _vmcb_ca.TLB_CONTROL
write vintr to _vmcb_ca.V_INTR
write shw[0] to _vmcb_ca.INTERRUPT_SHADOW
write np to _vmcb_ca.NESTED_PAGING
write inj to _vmcb_ca.EVENTINJ
write ncr3 to _vmcb_ca.N_CR3
write lbr to _vmcb_ca.LBR_VE
write es_sel to ES.sel
write es_attr to ES.attr
write es_lim to ES.limit
write es_base to ES.base
write cs_sel to CS.sel
write cs_attr to CS.attr
write cs_lim to CS.limit
write cs_base to CS.base
write ss_sel to SS.sel
write ss_attr to SS.attr
write ss_lim to SS.limit
write ss_base to SS.base
write ds_sel to DS.sel
write ds_attr to DS.attr
write ds_lim to DS.limit
write ds_base to DS.base
write gdtr_lim to GDTR.limit
write gdtr_base to GDTR.base
write idtr_lim to IDTR.limit
write idtr_base to IDTR.base
write cpl[1:0] to CPL
write efer to EFER
write cr4 to CR4
write cr3 to CR3
write cr0 to CR0
write dr7 to DR7
write dr6 to DR6
write flags to RFLAGS
write rip to RIP
write rsp to RSP

310

write rax to RAX
write pat to PAT
write 1b to _guest

P.2 Exit Guest

Instruction VMMCALL

Provides a mechanism for a guest to explicitly communicate with the VMM by generat-
ing a #VMEXIT. A non-intercepted VMMCALL unconditionally raises a #UD exception.
VMMCALL is not restricted to either protected mode or CPL zero. [cited from AMD
volume 3]

opcode "0F01h /011b mod 11b rm 001b" : when $SVME and $GUEST : call VMMCALL
action VMMCALL
fail exception(xUD, 0000h) when not _vmcb_ca.intercept.VMMCALL
fail intercept(VMEXIT_VMMCALL)

action VMEXIT(i::Intercept)
call save_guest(_vmcb_addr[$pa-1:0], i)
call load_host(VM_HSAVE_PA[$pa-1:0])
write 0b to GIF
write 00b to CPL
write 0b to _guest
commit and chain check_host_state

The check_host_state action makes sure that a subset of the host registers have valid
values using the check_registers function defined in the previous section.

action check_host_state
fail exception(xGP, 0000h) when not check_registers

action save_guest(addr::bits $pa, i::Intercept)
call pwrite(sys, 64, _vmcb_ca.V_INTR, addr + as_pa(@VMCB_CA.V_INTR), WB)
call pwrite(sys, 64, i.exitcode, addr + as_pa(@VMCB_CA.EXITCODE), WB)
call pwrite(sys, 64, i.exitinfo1, addr + as_pa(@VMCB_CA.EXITINFO1), WB)
call pwrite(sys, 64, i.exitinfo2, addr + as_pa(@VMCB_CA.EXITINFO2), WB)
call pwrite(sys, 64, i.exitintinfo, addr + as_pa(@VMCB_CA.EXITINTINFO), WB)
let ssa = addr + zxt($pa, 400h)
call pwrite(sys, 16, ES.sel, ssa + as_pa(@VMCB_SSA.ES_sel), WB)
call pwrite(sys, 16, ES.attr, ssa + as_pa(@VMCB_SSA.ES_attr), WB)
call pwrite(sys, 32, ES.limit, ssa + as_pa(@VMCB_SSA.ES_limit), WB)
call pwrite(sys, 64, ES.base, ssa + as_pa(@VMCB_SSA.ES_base), WB)
call pwrite(sys, 16, CS.sel, ssa + as_pa(@VMCB_SSA.CS_sel), WB)
call pwrite(sys, 16, CS.attr, ssa + as_pa(@VMCB_SSA.CS_attr), WB)
call pwrite(sys, 32, CS.limit, ssa + as_pa(@VMCB_SSA.CS_limit), WB)
call pwrite(sys, 64, CS.base, ssa + as_pa(@VMCB_SSA.CS_base), WB)
call pwrite(sys, 16, SS.sel, ssa + as_pa(@VMCB_SSA.SS_sel), WB)
call pwrite(sys, 16, SS.attr, ssa + as_pa(@VMCB_SSA.SS_attr), WB)
call pwrite(sys, 32, SS.limit, ssa + as_pa(@VMCB_SSA.SS_limit), WB)
call pwrite(sys, 64, SS.base, ssa + as_pa(@VMCB_SSA.SS_base), WB)
call pwrite(sys, 16, DS.sel, ssa + as_pa(@VMCB_SSA.DS_sel), WB)
call pwrite(sys, 16, DS.attr, ssa + as_pa(@VMCB_SSA.DS_attr), WB)
call pwrite(sys, 32, DS.limit, ssa + as_pa(@VMCB_SSA.DS_limit), WB)
call pwrite(sys, 64, DS.base, ssa + as_pa(@VMCB_SSA.DS_base), WB)

311

call pwrite(sys, 16, GDTR.limit, ssa + as_pa(@VMCB_SSA.GDTR_limit), WB)
call pwrite(sys, 64, GDTR.base, ssa + as_pa(@VMCB_SSA.GDTR_base), WB)
call pwrite(sys, 16, IDTR.limit, ssa + as_pa(@VMCB_SSA.IDTR_limit), WB)
call pwrite(sys, 64, IDTR.base, ssa + as_pa(@VMCB_SSA.IDTR_base), WB)
call pwrite(sys, 8, zxt(8, CPL), ssa + as_pa(@VMCB_SSA.CPL), WB)
call pwrite(sys, 64, EFER, ssa + as_pa(@VMCB_SSA.EFER), WB)
call pwrite(sys, 64, CR0, ssa + as_pa(@VMCB_SSA.CR0), WB)
call pwrite(sys, 64, CR3, ssa + as_pa(@VMCB_SSA.CR3), WB)
call pwrite(sys, 64, CR4, ssa + as_pa(@VMCB_SSA.CR4), WB)
call pwrite(sys, 64, DR6, ssa + as_pa(@VMCB_SSA.DR6), WB)
call pwrite(sys, 64, DR7, ssa + as_pa(@VMCB_SSA.DR7), WB)
call pwrite(sys, 64, RFLAGS, ssa + as_pa(@VMCB_SSA.RFLAGS), WB)
call pwrite(sys, 64, RIP, ssa + as_pa(@VMCB_SSA.RIP), WB)
call pwrite(sys, 64, RSP, ssa + as_pa(@VMCB_SSA.RSP), WB)
call pwrite(sys, 64, RAX, ssa + as_pa(@VMCB_SSA.RAX), WB)
call pwrite(sys, 64, PAT, ssa + as_pa(@VMCB_SSA.G_PAT), WB)

action load_host(addr::bits $pa)
call es_sel = pread(sys, 16, addr + as_pa(@HOST_SSA.ES_sel), WB)
call es_attr = pread(sys, 16, ssa + as_pa(@HOST_SSA.ES_attr), WB)
call es_lim = pread(sys, 32, ssa + as_pa(@HOST_SSA.ES_limit), WB)
call es_base = pread(sys, 64, ssa + as_pa(@HOST_SSA.ES_base), WB)
call cs_sel = pread(sys, 16, addr + as_pa(@HOST_SSA.CS_sel), WB)
call cs_attr = pread(sys, 16, ssa + as_pa(@HOST_SSA.CS_attr), WB)
call cs_lim = pread(sys, 32, ssa + as_pa(@HOST_SSA.CS_limit), WB)
call cs_base = pread(sys, 64, ssa + as_pa(@HOST_SSA.CS_base), WB)
call ss_sel = pread(sys, 16, addr + as_pa(@HOST_SSA.SS_sel), WB)
call ss_attr = pread(sys, 16, ssa + as_pa(@HOST_SSA.SS_attr), WB)
call ss_lim = pread(sys, 32, ssa + as_pa(@HOST_SSA.SS_limit), WB)
call ss_base = pread(sys, 64, ssa + as_pa(@HOST_SSA.SS_base), WB)
call ds_sel = pread(sys, 16, addr + as_pa(@HOST_SSA.DS_sel), WB)
call ds_attr = pread(sys, 16, ssa + as_pa(@HOST_SSA.DS_attr), WB)
call ds_lim = pread(sys, 32, ssa + as_pa(@HOST_SSA.DS_limit), WB)
call ds_base = pread(sys, 64, ssa + as_pa(@HOST_SSA.DS_base), WB)
call gdtr_limit = pread(sys, 16, addr + as_pa(@HOST_SSA.GDTR_limit), WB)
call gdtr_base = pread(sys, 64, addr + as_pa(@HOST_SSA.GDTR_base), WB)
call idtr_limit = pread(sys, 16, addr + as_pa(@HOST_SSA.IDTR_limit), WB)
call idtr_base = pread(sys, 64, addr + as_pa(@HOST_SSA.IDTR_base), WB)
call efer = pread(sys, 64, addr + as_pa(@HOST_SSA.EFER), WB)
call cr4 = pread(sys, 64, addr + as_pa(@HOST_SSA.CR4), WB)
call cr3 = pread(sys, 64, addr + as_pa(@HOST_SSA.CR3), WB)
call cr0 = pread(sys, 64, addr + as_pa(@HOST_SSA.CR0), WB)
call flags = pread(sys, 64, addr + as_pa(@HOST_SSA.RFLAGS), WB)
call rip = pread(sys, 64, addr + as_pa(@HOST_SSA.RIP), WB)
call rsp = pread(sys, 64, addr + as_pa(@HOST_SSA.RSP), WB)
write es_sel to ES.sel
write es_attr to ES.attr
write es_lim to ES.limit
write es_base to ES.base
write cs_sel to CS.sel
write cs_attr to CS.attr
write cs_lim to CS.limit
write cs_base to CS.base

312

write ss_sel to SS.sel
write ss_attr to SS.attr
write ss_lim to SS.limit
write ss_base to SS.base
write ds_sel to DS.sel
write ds_attr to DS.attr
write ds_lim to DS.limit
write ds_base to DS.base
write gdtr_limit to GDTR.limit
write idtr_limit to IDTR.limit
write gdtr_base to GDTR.base
write idtr_base to IDTR.base
write efer to EFER
write cr4 to CR4
write cr3 to CR3
write (cr0::CR0) with [PE = 1b] to CR0
write (flags::Flags) with [VM = 0b] to RFLAGS
write rip to RIP
write rsp to RSP

P.3 Save and Restore Guest Extended State

Instruction VMLOAD

Loads a subset of processor state from the VMCB specified by the physical address
in the rAX register. The portion of RAX used to form the address is determined by
the effective address size. The VMSAVE and VMLOAD instructions complement the
state save/restore abilities of VMRUN and #VMEXIT, providing access to hidden state
that software is otherwise unable to access, plus some additional commonly-used state.
[cited from AMD volume 3]

opcode "0F01h /011b mod 11b rm 010b" rax $oa : when $SVME
: call VMLOAD(zxt(64, op1)[$pa-1:0])

action VMLOAD(addr::bits $pa)
let ssa = addr + zxt($pa, 400h)
call load_guest_ext(ssa)

action load_guest_ext(ssa::bits $pa)
call fs_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.FS_sel), WB)
call fs_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.FS_attr), WB)
call fs_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.FS_limit), WB)
call fs_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.FS_base), WB)
call gs_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.GS_sel), WB)
call gs_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.GS_attr), WB)
call gs_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.GS_limit), WB)
call gs_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.GS_base), WB)
call tr_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.TR_sel), WB)
call tr_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.TR_attr), WB)
call tr_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.TR_limit), WB)
call tr_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.TR_base), WB)
call ldtr_sel = pread(sys, 16, ssa + as_pa(@VMCB_SSA.LDTR_sel), WB)
call ldtr_attr = pread(sys, 16, ssa + as_pa(@VMCB_SSA.LDTR_attr), WB)
call ldtr_lim = pread(sys, 32, ssa + as_pa(@VMCB_SSA.LDTR_limit), WB)

313

call ldtr_base = pread(sys, 64, ssa + as_pa(@VMCB_SSA.LDTR_base), WB)
call kgsb = pread(sys, 64, ssa + as_pa(@VMCB_SSA.KernelGSBase), WB)
call star = pread(sys, 64, ssa + as_pa(@VMCB_SSA.STAR), WB)
call lstar = pread(sys, 64, ssa + as_pa(@VMCB_SSA.LSTAR), WB)
call cstar = pread(sys, 64, ssa + as_pa(@VMCB_SSA.CSTAR), WB)
call sfmask = pread(sys, 64, ssa + as_pa(@VMCB_SSA.SFMASK), WB)
call syscs = pread(sys, 64, ssa + as_pa(@VMCB_SSA.SYSENTER_CS), WB)
call sysesp = pread(sys, 64, ssa + as_pa(@VMCB_SSA.SYSENTER_ESP), WB)
call syseip = pread(sys, 64, ssa + as_pa(@VMCB_SSA.SYSENTER_EIP), WB)
write fs_sel to FS.sel
write fs_attr to FS.attr
write fs_lim to FS.limit
write fs_base to FS.base
write gs_sel to GS.sel
write gs_attr to GS.attr
write gs_lim to GS.limit
write gs_base to GS.base
write tr_sel to TR.sel
write tr_attr to TR.attr
write tr_lim to TR.limit
write tr_base to TR.base
write ldtr_sel to LDTR.sel
write ldtr_attr to LDTR.attr
write ldtr_lim to LDTR.limit
write ldtr_base to LDTR.base
write kgsb to KernelGSBase
write star to STAR
write lstar to LSTAR
write cstar to CSTAR
write sfmask to SFMASK
write syscs to SYSENTER_CS
write sysesp to SYSENTER_ESP
write syseip to SYSENTER_EIP

Instruction VMSAVE

Stores a subset of the processor state into the VMCB specified by the physical address
in the rAX register (the portion of RAX used to form the address is determined by
the effective address size). The VMSAVE and VMLOAD instructions complement the
state save/restore abilities of VMRUN and #VMEXIT, providing access to hidden state
that software is otherwise unable to access, plus some additional commonly-used state.
[cited from AMD volume 3]

opcode "0F01h /011b mod 11b rm 011b" rax $oa : when $SVME
: call VMSAVE(zxt(64, op1)[$pa-1:0])

action VMSAVE(addr::bits $pa)
let ssa = addr + zxt($pa, 400h)
call save_guest_ext(ssa)

action save_guest_ext(ssa::bits $pa)
call pwrite(sys, 16, FS.sel, ssa + as_pa(@VMCB_SSA.FS_sel), WB)
call pwrite(sys, 16, FS.attr, ssa + as_pa(@VMCB_SSA.FS_attr), WB)
call pwrite(sys, 32, FS.limit, ssa + as_pa(@VMCB_SSA.FS_limit), WB)
call pwrite(sys, 64, FS.base, ssa + as_pa(@VMCB_SSA.FS_base), WB)
call pwrite(sys, 16, GS.sel, ssa + as_pa(@VMCB_SSA.GS_sel), WB)

314

call pwrite(sys, 16, GS.attr, ssa + as_pa(@VMCB_SSA.GS_attr), WB)
call pwrite(sys, 32, GS.limit, ssa + as_pa(@VMCB_SSA.GS_limit), WB)
call pwrite(sys, 64, GS.base, ssa + as_pa(@VMCB_SSA.GS_base), WB)
call pwrite(sys, 16, TR.sel, ssa + as_pa(@VMCB_SSA.TR_sel), WB)
call pwrite(sys, 16, TR.attr, ssa + as_pa(@VMCB_SSA.TR_attr), WB)
call pwrite(sys, 32, TR.limit, ssa + as_pa(@VMCB_SSA.TR_limit), WB)
call pwrite(sys, 64, TR.base, ssa + as_pa(@VMCB_SSA.TR_base), WB)
call pwrite(sys, 16, LDTR.sel, ssa + as_pa(@VMCB_SSA.LDTR_sel), WB)
call pwrite(sys, 16, LDTR.attr, ssa + as_pa(@VMCB_SSA.LDTR_attr), WB)
call pwrite(sys, 32, LDTR.limit, ssa + as_pa(@VMCB_SSA.LDTR_limit), WB)
call pwrite(sys, 64, LDTR.base, ssa + as_pa(@VMCB_SSA.LDTR_base), WB)
call pwrite(sys, 64, KernelGSBase, ssa + as_pa(@VMCB_SSA.KernelGSBase), WB)
call pwrite(sys, 64, STAR, ssa + as_pa(@VMCB_SSA.STAR), WB)
call pwrite(sys, 64, LSTAR, ssa + as_pa(@VMCB_SSA.LSTAR), WB)
call pwrite(sys, 64, CSTAR, ssa + as_pa(@VMCB_SSA.CSTAR), WB)
call pwrite(sys, 64, SFMASK, ssa + as_pa(@VMCB_SSA.SFMASK), WB)
call pwrite(sys, 64, SYSENTER_CS, ssa + as_pa(@VMCB_SSA.SYSENTER_CS), WB)
call pwrite(sys, 64, SYSENTER_ESP, ssa + as_pa(@VMCB_SSA.SYSENTER_ESP), WB)
call pwrite(sys, 64, SYSENTER_EIP, ssa + as_pa(@VMCB_SSA.SYSENTER_EIP), WB)

Instruction CLGI (when $SVME)

Clears the global interrupt flag (GIF). While GIF is zero, all external interrupts are
disabled. [cited from AMD volume 3]

opcode "0F01h /011b mod 11b rm 101b" : call CLGI
action CLGI
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_CLGI) when $GUEST and _vmcb_ca.intercept.CLGI
write 0b to GIF

Instruction STGI (when $SVME)

Sets the global interrupt flag (GIF) to 1. While GIF is zero, all external interrupts are
disabled. [cited from AMD volume 3]

opcode "0F01h /011b mod 11b rm 100b" : call STGI
action STGI
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_STGI) when $GUEST and _vmcb_ca.intercept.STGI
write 1b to GIF

P.4 Exit Codes

As we mentioned in chapter 17, each intercept is associated with an exit code, which
is provided to the host via the EXITCODE field of the guest control area. There are the
following exit codes:

set ExitCode = {VMEXIT_READ_CR0 = 0000000000000000h,
VMEXIT_READ_CR1 = 0000000000000001h,
VMEXIT_READ_CR2 = 0000000000000002h,
VMEXIT_READ_CR3 = 0000000000000003h,
VMEXIT_READ_CR4 = 0000000000000004h,
VMEXIT_READ_CR5 = 0000000000000005h,

315

VMEXIT_READ_CR6 = 0000000000000006h,
VMEXIT_READ_CR7 = 0000000000000007h,
VMEXIT_READ_CR8 = 0000000000000008h,
VMEXIT_READ_CR9 = 0000000000000009h,
VMEXIT_READ_CR10 = 000000000000000Ah,
VMEXIT_READ_CR11 = 000000000000000Bh,
VMEXIT_READ_CR12 = 000000000000000Ch,
VMEXIT_READ_CR13 = 000000000000000Dh,
VMEXIT_READ_CR14 = 000000000000000Eh,
VMEXIT_READ_CR15 = 000000000000000Fh,
VMEXIT_WRITE_CR0 = 0000000000000010h,
VMEXIT_WRITE_CR1 = 0000000000000011h,
VMEXIT_WRITE_CR2 = 0000000000000012h,
VMEXIT_WRITE_CR3 = 0000000000000013h,
VMEXIT_WRITE_CR4 = 0000000000000014h,
VMEXIT_WRITE_CR5 = 0000000000000015h,
VMEXIT_WRITE_CR6 = 0000000000000016h,
VMEXIT_WRITE_CR7 = 0000000000000017h,
VMEXIT_WRITE_CR8 = 0000000000000018h,
VMEXIT_WRITE_CR9 = 0000000000000019h,
VMEXIT_WRITE_CR10 = 000000000000001Ah,
VMEXIT_WRITE_CR11 = 000000000000001Bh,
VMEXIT_WRITE_CR12 = 000000000000001Ch,
VMEXIT_WRITE_CR13 = 000000000000001Dh,
VMEXIT_WRITE_CR14 = 000000000000001Eh,
VMEXIT_WRITE_CR15 = 000000000000001Fh,
VMEXIT_READ_DR0 = 0000000000000020h,
VMEXIT_READ_DR1 = 0000000000000021h,
VMEXIT_READ_DR2 = 0000000000000022h,
VMEXIT_READ_DR3 = 0000000000000023h,
VMEXIT_READ_DR4 = 0000000000000024h,
VMEXIT_READ_DR5 = 0000000000000025h,
VMEXIT_READ_DR6 = 0000000000000026h,
VMEXIT_READ_DR7 = 0000000000000027h,
VMEXIT_READ_DR8 = 0000000000000028h,
VMEXIT_READ_DR9 = 0000000000000029h,
VMEXIT_READ_DR10 = 000000000000002Ah,
VMEXIT_READ_DR11 = 000000000000002Bh,
VMEXIT_READ_DR12 = 000000000000002Ch,
VMEXIT_READ_DR13 = 000000000000002Dh,
VMEXIT_READ_DR14 = 000000000000002Eh,
VMEXIT_READ_DR15 = 000000000000002Fh,
VMEXIT_WRITE_DR0 = 0000000000000030h,
VMEXIT_WRITE_DR1 = 0000000000000031h,
VMEXIT_WRITE_DR2 = 0000000000000032h,
VMEXIT_WRITE_DR3 = 0000000000000033h,
VMEXIT_WRITE_DR4 = 0000000000000034h,
VMEXIT_WRITE_DR5 = 0000000000000035h,
VMEXIT_WRITE_DR6 = 0000000000000036h,
VMEXIT_WRITE_DR7 = 0000000000000037h,
VMEXIT_WRITE_DR8 = 0000000000000038h,
VMEXIT_WRITE_DR9 = 0000000000000039h,
VMEXIT_WRITE_DR10 = 000000000000003Ah,

316

VMEXIT_WRITE_DR11 = 000000000000003Bh,
VMEXIT_WRITE_DR12 = 000000000000003Ch,
VMEXIT_WRITE_DR13 = 000000000000003Dh,
VMEXIT_WRITE_DR14 = 000000000000003Eh,
VMEXIT_WRITE_DR15 = 000000000000003Fh,
VMEXIT_EXCP0 = 0000000000000040h,
VMEXIT_EXCP1 = 0000000000000041h,
VMEXIT_EXCP2 = 0000000000000042h,
VMEXIT_EXCP3 = 0000000000000043h,
VMEXIT_EXCP4 = 0000000000000044h,
VMEXIT_EXCP5 = 0000000000000045h,
VMEXIT_EXCP6 = 0000000000000046h,
VMEXIT_EXCP7 = 0000000000000047h,
VMEXIT_EXCP8 = 0000000000000048h,
VMEXIT_EXCP9 = 0000000000000049h,
VMEXIT_EXCP10 = 000000000000004Ah,
VMEXIT_EXCP11 = 000000000000004Bh,
VMEXIT_EXCP12 = 000000000000004Ch,
VMEXIT_EXCP13 = 000000000000004Dh,
VMEXIT_EXCP14 = 000000000000004Eh,
VMEXIT_EXCP15 = 000000000000004Fh,
VMEXIT_EXCP16 = 0000000000000050h,
VMEXIT_EXCP17 = 0000000000000051h,
VMEXIT_EXCP18 = 0000000000000052h,
VMEXIT_EXCP19 = 0000000000000053h,
VMEXIT_EXCP20 = 0000000000000054h,
VMEXIT_EXCP21 = 0000000000000055h,
VMEXIT_EXCP22 = 0000000000000056h,
VMEXIT_EXCP23 = 0000000000000057h,
VMEXIT_EXCP24 = 0000000000000058h,
VMEXIT_EXCP25 = 0000000000000059h,
VMEXIT_EXCP26 = 000000000000005Ah,
VMEXIT_EXCP27 = 000000000000005Bh,
VMEXIT_EXCP28 = 000000000000005Ch,
VMEXIT_EXCP29 = 000000000000005Dh,
VMEXIT_EXCP30 = 000000000000005Eh,
VMEXIT_EXCP31 = 000000000000005Fh,
VMEXIT_INTR = 0000000000000060h,
VMEXIT_NMI = 0000000000000061h,
VMEXIT_SMI = 0000000000000062h,
VMEXIT_INIT = 0000000000000063h,
VMEXIT_VINTR = 0000000000000064h,
VMEXIT_CR0_SEL_WRITE = 0000000000000065h,
VMEXIT_IDTR_READ = 0000000000000066h,
VMEXIT_GDTR_READ = 0000000000000067h,
VMEXIT_LDTR_READ = 0000000000000068h,
VMEXIT_TR_READ = 0000000000000069h,
VMEXIT_IDTR_WRITE = 000000000000006Ah,
VMEXIT_GDTR_WRITE = 000000000000006Bh,
VMEXIT_LDTR_WRITE = 000000000000006Ch,
VMEXIT_TR_WRITE = 000000000000006Dh,
VMEXIT_RDTSC = 000000000000006Eh,
VMEXIT_RDPMC = 000000000000006Fh,

317

VMEXIT_PUSHF = 0000000000000070h,
VMEXIT_POPF = 0000000000000071h,
VMEXIT_CPUID = 0000000000000072h,
VMEXIT_RSM = 0000000000000073h,
VMEXIT_IRET = 0000000000000074h,
VMEXIT_SWINT = 0000000000000075h,
VMEXIT_INVD = 0000000000000076h,
VMEXIT_PAUSE = 0000000000000077h,
VMEXIT_HLT = 0000000000000078h,
VMEXIT_INVLPG = 0000000000000079h,
VMEXIT_INVLPGA = 000000000000007Ah,
VMEXIT_IOIO = 000000000000007Bh,
VMEXIT_MSR = 000000000000007Ch,
VMEXIT_TASK_SWITCH = 000000000000007Dh,
VMEXIT_FERR_FREEZE = 000000000000007Eh,
VMEXIT_SHUTDOWN = 000000000000007Fh,
VMEXIT_VMRUN = 0000000000000080h,
VMEXIT_VMMCALL = 0000000000000081h,
VMEXIT_VMLOAD = 0000000000000082h,
VMEXIT_VMSAVE = 0000000000000083h,
VMEXIT_STGI = 0000000000000084h,
VMEXIT_CLGI = 0000000000000085h,
VMEXIT_SKINIT = 0000000000000086h,
VMEXIT_RDTSCP = 0000000000000087h,
VMEXIT_WBINVD = 0000000000000089h,
VMEXIT_INVALID = FFFFFFFFFFFFFFFFh}

318

APPENDIX

Q

MISCELLANEOUS
INSTRUCTIONS

Instruction BOUND (when not $x64_mode)

Checks whether an array index (first operand) is within the bounds of an array (second
operand). The array index is a signed integer in the specified register. If the operand-
size attribute is 16, the array operand is a memory location containing a pair of signed
word-integers; if the operand-size attribute is 32, the array operand is a pair of signed
doubleword-integers. The first word or doubleword specifies the lower bound of the
array and the second word or doubleword specifies the upper bound. The array index
must be greater than or equal to the lower bound and less than or equal to the up-
per bound. If the index is not within the specified bounds, the processor generates a
BOUND range- exceeded exception (#BR). [cited from AMD volume 3]

opcode "64h" reg $v, mem_pair 2*$v : call BOUND(op1, op2)
action BOUND(idx::bits $v, bounds::bits (2*$v)) when not $x64_mode
let low = bounds[$v-1:0]
let upp = bounds[2*$v-1:$v]
fail exception(xBR, 0000h) when int(idx) < int(low) or int(idx) > int(upp)

Instruction LEA

Computes the effective address of a memory location (second operand) and stores it in
a general- purpose register (first operand). [cited from AMD volume 3]

opcode "8Dh" reg $v, mem 8 : let op1’ = zxt(64, ea)[$v-1:0]

The ea function returns the effective address of the first operand and is defined in
section 14.12.

Instruction HLT

Causes the microprocessor to halt instruction execution and enter the HALT state. En-
tering the HALT state puts the processor in low-power mode. Execution resumes when
an unmasked hardware interrupt (INTR), non-maskable interrupt (NMI), system man-
agement interrupt (SMI), RESET, or INIT occurs. If an INTR, NMI, or SMI is used to

319

resume execution after a HLT instruction, the saved instruction pointer points to the in-
struction following the HLT instruction. Before executing a HLT instruction, hardware
interrupts should be enabled. If rFLAGS.IF = 0, the system will remain in a HALT state
until an NMI, SMI, RESET, or INIT occurs. [cited from AMD volume 3]

opcode "F4h" : call HLT

On the level of our domain-specific language, the HLT instruction is a no-operation. It
gets processed later on in the instruction processing cycle as was described in chapter
9.

action HLT
fail exception(xGP, 0000h) when CPL <> 00b
fail intercept(VMEXIT_HLT) when _vmcb_ca.intercept.HLT
call NOP

action NOP
return

Instruction XLAT

Uses the unsigned integer in the AL register as an offset into a table and copies the
contents of the table entry at that location to the AL register. The instruction uses
seg:[rBX] as the base address of the table. The value of seg defaults to the DS segment,
but may be overridden by a segment prefix. This instruction writes AL without changing
RAX[63:8]. This instruction ignores operand size. The single-operand form of the XLAT
instruction uses the operand to document the segment and address size attribute, but
it uses the base address specified by the rBX register. [cited from AMD volume 3]

opcode "D7h" mem 8 : call XLAT
action XLAT
let s = segment(iDS)
let origin = segment_origin(s)
call x = lread(origin, 8, SR[s], $oa, RBX[$oa-1:0] + zxt($oa, RAX[7:0]))
write x to RAX[7:0]

Instruction PAUSE

Improves the performance of spin loops, by providing a hint to the processor that the
current code is in a spin loop. The processor may use this to optimize power consump-
tion while in the spin loop. Architecturally, this instruction behaves like a NOP instruc-
tion. Processors that do not support PAUSE treat this opcode as a NOP instruction.
[cited from AMD volume 3]

opcode "F390h" : call NOP

320

APPENDIX

R

OPERAND READ AND WRITE

This section defines the read_op and the write_op actions, which are described in section
14.13.

action read_op($w::{8, 16, 32, 48, 64, 128}, t::OpType)::bits $w
if t == reg or t == reg_mem and _modrm.mod == 11b then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call x = read_gpr($w, _prefix.rex.R++_modrm.reg)
return x

elif t == reg_rm then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call x = read_gpr($w, _prefix.rex.B++_modrm.rm)
return x

elif t == mem or t == mem_ptr then
fail exception(xUD, 0000h) when _modrm.mod == 11b
assume $w < 128
let s = segment(def_segment)
call x = lread(segment_origin(s), $w, SR[s], $oa, ea)
return x

elif t == mem_pair then
fail exception(xUD, 0000h) when _modrm.mod == 11b
assume $w == 64 or $w == 128
let s = segment(def_segment)
let addr0 = ea
let addr1 = addr0 + bits($oa, $w/16)
call x0 = lread(segment_origin(s), $w/2, SR[s], $oa, addr0)
call x1 = lread(segment_origin(s), $w/2, SR[s], $oa, addr1)
return x1++x0

elif _modrm.mod <> 11b and (t == reg_mem or t == mmx_mem or t == xmm_mem) then
assume $w <= 64
let s = segment(def_segment)
call x = lread(segment_origin(s), $w, SR[s], $oa, ea)
return x

elif t == imm or t == rel_off or t == imm_ptr then
assume $w <= 32

321

return _imm[$w-1:0]
elif t == imm2 then
assume $w <= 16
return _imm[$w+15:16]

elif t == moffset then
assume $w <= 64
let s = segment(iDS)
call x = lread(segment_origin(s), $w, SR[s], $oa, _imm[$oa-1:0])
return x

elif t == es_rdi then
assume $w <= 64
let s = segment(iES)
call x = lread(segment_origin(s), $w, SR[s], $oa, RDI[$oa-1:0])
return x

elif t == ds_rsi then
assume $w <= 64
let s = segment(iDS)
call x = lread(segment_origin(s), $w, SR[s], $oa, RSI[$oa-1:0])
return x

elif t == creg then
let idx = _prefix.rex.R++_modrm.reg
fail exception(xUD, 0000h) when idx == 0001b or (idx > 0100b and idx <> 1000b)
assume $w == 32 or $w == 64
call x = read_cr($w, idx)
return x

elif t == sreg then
let idx = _modrm.reg
fail exception(xUD, 0000h) when idx > iFS
assume $w == 16
call x = read_sr(_modrm.reg)
return x

elif t == dreg then
assume $w == 32 or $w == 64
call x = read_dr($w, _modrm.reg)
return x

elif t == mmx or t == mmx_mem and _modrm.mod == 11b then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call x = read_mmx($w, _modrm.reg)
return x

elif t == xmm or t == xmm_mem and _modrm.mod == 11b then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64 or $w == 128)
call x = read_xmm($w, _prefix.rex.R++_modrm.reg)
return x

elif t == rax or t == rcx or t == rdx or t == rbx
or t == rsp or t == rbp or t == rsi or t == rdi
or t == rax_r8 or t == rcx_r9 or t == rdx_r10
or t == rbx_r11 or t == rbx_r11 or t == rsp_r12
or t == rbp_r13 or t == rsi_r14 or t == rdi_r15 then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call x = read_gpr($w, encode_gpr(t))
return x

elif t == rflags then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)

322

return RFLAGS[$w-1:0]
elif t == es or t == cs or t == ss
or t == ds or t == fs or t == gs then
assume $w == 16
call x = read_sr(encode_sr(t))
return x
elif t == cr8 then
assume $w == 32 or $w == 64
call x = read_cr($w, 8h)
return x

elif t == const_0 then return (zero($w))
elif t == const_1 then return (one($w))
else fail bug

action write_op($w::{8, 16, 32, 48, 64, 128}, val::bits $w, t::OpType)
if t == reg or t == reg_mem and _modrm.mod == 11b then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call write_gpr($w, val, _prefix.rex.R++_modrm.reg)

elif t == reg_rm then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call write_gpr($w, val, _prefix.rex.B++_modrm.rm)

elif t == mem or t == mem_ptr then
assume $w <= 64
let s = segment(def_segment)
call lwrite(segment_origin(s), $w, val, SR[s], $oa, ea)

elif _modrm.mod <> 11b and (t == reg_mem or t == mmx_mem or t == xmm_mem) then
assume $w <= 64
let s = segment(def_segment)
call lwrite(segment_origin(s), $w, val, SR[s], $oa, ea)

elif t == mem_pair then
assume $w == 64 or $w == 128
let s = segment(def_segment)
let addr0 = ea
let addr1 = addr0 + bits($oa, $w/16)
call lwrite(segment_origin(s), $w/2, val[$w/2-1:0], SR[s], $oa, addr0)
call lwrite(segment_origin(s), $w/2, val[$w-1:$w/2], SR[s], $oa, addr1)

elif t == moffset then
assume $w <= 64
let s = segment(iDS)
call lwrite(segment_origin(s), $w, val, SR[s], $oa, _imm[$oa-1:0])

elif t == es_rdi then
assume $w <= 64
let s = segment(iES)
call lwrite(segment_origin(s), $w, val, SR[s], $oa, RDI[$oa-1:0])

elif t == ds_rsi then
assume $w <= 64
let s = segment(iDS)
call lwrite(segment_origin(s), $w, val, SR[s], $oa, RSI[$oa-1:0])

elif t == creg then
let idx = _prefix.rex.R++_modrm.reg
fail exception(xUD, 0000h) when idx == 0001b or (idx > 0100b and idx <> 1000b)
assume $w == 32 or $w == 64
call write_cr($w, val, idx)

elif t == sreg then

323

let idx = _modrm.reg
fail exception(xUD, 0000h) when idx == iCS
fail exception(xUD, 0000h) when idx > iFS
assume $w == 16
call write_sr(segment_origin(idx), val, idx)

elif t == dreg then
assume $w == 32 or $w == 64
call write_dr($w, val, _modrm.reg)

elif t == mmx or t == mmx_mem and _modrm.mod == 11b then
assume $w == 8 or $w == 16 or $w == 32 or $w == 64
call write_mmx($w, val, _modrm.reg)

elif t == xmm or t == xmm_mem and _modrm.mod == 11b then
assume $w == 8 or $w == 16 or $w == 32 or $w == 64 or $w == 128
call write_xmm($w, val, _prefix.rex.R++_modrm.reg)

elif t == rax or t == rcx or t == rdx or t == rbx
or t == rsp or t == rbp or t == rsi or t == rdi
or t == rax_r8 or t == rcx_r9 or t == rdx_r10
or t == rbx_r11 or t == rbx_r11 or t == rsp_r12
or t == rbp_r13 or t == rsi_r14 or t == rdi_r15 then
assume ($w == 8 or $w == 16 or $w == 32 or $w == 64)
call write_gpr($w, val, encode_gpr(t))

elif t == rflags then
assume $w == 9 or $w == 16 or $w == 32 or $w == 64
write val to RFLAGS[$w-1:0]

elif t == es or t == cs or t == ss
or t == ds or t == fs or t == gs then
assume $w == 16
let idx = encode_sr(t)
call write_sr(segment_origin(idx), val, idx)

elif t == cr8 then
assume $w == 32 or $w == 64
call write_cr($w, val, 8h)

else fail bug

324

APPENDIX

S

PAGE TABLE ENTRIES

layout PTELarge
field P::bit
field RW::bit
field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit
field PS::bit reserved and must be 1b
field G::bit
field AVL::bits 3 ignored
field PAT::bit
field rsv::bits 8 reserved and must be 00h
field PFN::bits 31
field AVL2::bits 11
field NX::bit

layout PTE2
field P::bit
field RW::bit
field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit ignored
field PS::bit
field G::bit ignored
field AVL::bits 3
field PFN::bits 40
field ign::bits 11 ignored
field NX::bit

layout PTE3
field P::bit
field RW::bit reserved and must be 0b when not $long_mode
field US::bit reserved and must be 0b when not $long_mode

325

field PWT::bit
field PCD::bit
field A::bit reserved and must be 0b when not $long_mode
field D::bit
reserved and must be 0b when not $long_mode
ignored when $long_mode

field PS::bit
field G::bit reserved and must be 0b
field AVL::bits 3
field PFN::bits 40
field ign::bits 11 ignored
field NX::bit reserved and must be 0b when not $long_mode

layout PTE4
field P::bit
field RW::bit
field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit ignored
field PS::bit reserved and must be 0b
field G::bit reserved and must be 0b
field AVL::bits 3
field PFN::bits 40
field ign::bits 11 ignored
field NX::bit

layout LegacyPTE1
field P::bit
field RW::bit
field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit
field PAT::bit
field G::bit
field AVL::bits 3
field PFN::bits 20

layout LegacyPTE2
field P::bit
field RW::bit
field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit ignored
field PS::bit
field G::bit ignored
field AVL::bits 3
field PFN::bits 20

layout LegacyPTELarge
field P::bit
field RW::bit

326

field US::bit
field PWT::bit
field PCD::bit
field A::bit
field D::bit
field PS::bit reserved and must be 1b
field G::bit
field AVL::bits 3
field PAT::bit
field PFN2::bits 8
field rsv::bit reserved and must be 0b
field PFN1::bits 10

function parse_pte1(x::PTE1)::AbsPTE when $PAE
= AbsPTE with [valid = isPTE1(x), p = x.P, a = x.A, d = x.D, g = x.G,

r = Rights with [write = x.RW, user = x.US, code=not x.NX],
large = 0b, ba = x.PFN ++ bits(12, 0),
pat_idx = x.PAT ++ x.PCD ++ x.PWT]

function parse_large_pte(x::PTELarge, is1Gb::bit)::AbsPTE when $PAE
= AbsPTE with [valid = isPTELarge(x) and not is1Gb or x.PFN[8:0],

p = x.P, a = x.A, d = x.D, g = x.G,
r = Rights with [write = x.RW, user = x.US, code=not x.NX],
large = 1b, ba = x.PFN ++ bits(21, 0),
pat_idx = x.PAT ++ x.PCD ++ x.PWT]

function parse_pte2(x::PTE2)::AbsPTE when $PAE
= if x.PS then parse_large_pte(x, 0b)
else AbsPTE with [valid = isPTE2(x), p = x.P, a = x.A, d = 0b, g = 0b,

r = Rights with [write = x.RW, user = x.US, code=not x.NX],
large = 0b, ba = x.PFN ++ bits(12, 0),
pat_idx = 0b ++ x.PCD ++ x.PWT]

function parse_pte3(x::PTE3)::AbsPTE when $PAE
= if x.PS then parse_large_pte(x, 1b)
else AbsPTE with [valid = isPTE3(x), p = x.P, a = x.A, d = 0b, g = 0b,

r = Rights with [write = x.RW, user = x.US, code=not x.NX],
large = 0b, ba = x.PFN ++ bits(12, 0),
pat_idx = 0b ++ x.PCD ++ x.PWT]

function parse_pte4(x::PTE4)::AbsPTE when $PAE
= AbsPTE with [valid = isPTE4(x), p = x.P, a = x.A, d = 0b, g = 0b,

r = Rights with [write = x.RW, user = x.US, code=not x.NX],
large = 0b, ba = x.PFN ++ bits(12, 0),
pat_idx = 0b ++ x.PCD ++ x.PWT]

function parse_pte1(x::LegacyPTE1)::AbsPTE when not $PAE
= AbsPTE with [valid = isLegacyPTE1(x), p = x.P, a = x.A, d = x.D, g = x.G,

r = Rights with [write = x.RW, user = x.US, code=1b],
large = 0b, ba = bits(32, 0) ++ x.PFN ++ bits(12, 0),
pat_idx = x.PAT ++ x.PCD ++ x.PWT]

function parse_large_pte(x::LegacyPTELarge)::AbsPTE when not $PAE
= AbsPTE with [valid = isLegacyPTELarge(x), p = x.P, a = x.A, d = x.D, g = x.G,

r = Rights with [write = x.RW, user = x.US, code=1b],
large = 1b, ba = bits(32, 0) ++ x.PFN2 ++ x.PFN1 ++ bits(22, 0),
pat_idx = x.PAT ++ x.PCD ++ x.PWT]

function parse_pte2(x::LegacyPTE2)::AbsPTE when not $PAE
= if x.PS then parse_large_pte(x)
else AbsPTE with [valid = isLegacyPTE2(x), p = x.P, a = x.A, d = 0b, g = 0b,

327

r = Rights with [write = x.RW, user = x.US, code=1b],
large = 0b, ba = bits(32, 0) ++ x.PFN ++ bits(12, 0),
pat_idx = x.PAT ++ x.PCD ++ x.PWT]

328

BIBLIOGRAPHY

[Adv07] Advanced Micro Devices (AMD), Inc. AMD64 Architecture Programmer’s Man-
ual: Volumes 1–3, September 2007.

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29:66–76, December 1996.

[ANB+95] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. Causal memory: Definitions, implementation, and programming. Dis-
tributed Computing, pages 37–49, 1995.

[Bau08] Christoph Baumann. Formal specification of the x87 floating-point instruction
set. Master’s thesis, Saarland University, Germany, 2008.

[Boc] Bochs ia-32 emulator project. urlhttp://bochs.sourceforge.net.

[Cor11a] International Data Corporation. Worldwide pc microprocessor unit ship-
ments. Press Release, May 2011. http://www.idc.com/getdoc.jsp?
containerId=prUS22814611.

[Cor11b] International Data Corporation. Worldwide server market revenue.
Press Release, May 2011. http://www.idc.com/getdoc.jsp?containerId=
prUS22841411.

[Deg07] Ulan Degenbaev. Formalization of parts of the x86-64 Instruction Set Archi-
tecture. Master’s thesis, Saarland University, Germany, 2007.

[DPS09] Ulan Degenbaev, Wolfgang J. Paul, and Norbert Schirmer. Pervasive Theory of
Memory, pages 74–98. Springer-Verlag, Berlin, Heidelberg, 2009.

[DSB98] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffer-
ing in multiprocessors. In 25 years of the international symposia on Computer
architecture (selected papers), ISCA ’98, pages 320–328, New York, NY, USA,
1998. ACM.

[FF01] Anthony C. J. Fox and Anthony Fox. A hol specification of the arm instruction
set architecture, 2001.

[FM10] Anthony C. J. Fox and Magnus O. Myreen. A trustworthy monadic formalization
of the armv7 instruction set architecture. pages 243–258, 2010.

329

http://www.idc.com/getdoc.jsp?containerId=prUS22814611
http://www.idc.com/getdoc.jsp?containerId=prUS22814611
http://www.idc.com/getdoc.jsp?containerId=prUS22841411
http://www.idc.com/getdoc.jsp?containerId=prUS22841411

[HHD97] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. Isdl: an instruc-
tion set description language for retargetability. In Proceedings of the 34th
annual Design Automation Conference, DAC ’97, pages 299–302, New York,
NY, USA, 1997. ACM.

[HKV98] Lisa Higham, Jalal Kawash, and Nathaly Verwaal. Weak memory consistency
models. part i: Definitions and comparisons. Technical report, Department of
Computer Science, The University of Calgary, 1998.

[Int09] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual: Volumes 1–3b. Intel Corporation, Santa Clara, CA, USA, March 2009.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28:690–691, September 1979.

[MP00] S.M. Mueller and W.J. Paul. Computer Architecture, Complexity and Correct-
ness. Springer, 2000.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-tso. In TPHOLs ’09: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, pages 391–407, Berlin, Heidelberg,
2009. Springer-Verlag.

[PPS+95] Woosang Park, Woosang Park, Alexandre Santoro, Alexandre Santoro,
Alexandre Santoro, David Luckham, David Luckham, and David Luckham.
Sparc-v9 architecture specification with rapide, 1995.

[QEM] Qemu processor emulator project. urlhttp://qemu.org.

[RF95] Norman Ramsey and Mary F. Fernandez. The new jersey machine-code
toolkit. In Proceedings of the USENIX 1995 Technical Conference Proceed-
ings, TCON’95, pages 24–24, Berkeley, CA, USA, 1995. USENIX Association.

[RF97] Norman Ramsey and Mary F. Fernández. Specifying representations of ma-
chine instructions. ACM Trans. Program. Lang. Syst., 19:492–524, May 1997.

[RM99] V. Rajesh and R. Moona. Processor modeling for hardware software codesign.
In Proceedings of the 12th International Conference on VLSI Design - ’VLSI
for the Information Appliance’, VLSID ’99, pages 132–, Washington, DC, USA,
1999. IEEE Computer Society.

[SPA92] SPARC International, Inc. The SPARC Architecture Manual, V. 8. SPARC. 1992.

[SS86] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols
and their support by the ieee futurebus. In ISCA ’86: Proceedings of the 13th
annual international symposium on Computer architecture, pages 414–423,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[SSN+09] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom
Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The seman-
tics of x86-cc multiprocessor machine code. In Symposium on Principles of
Programming Languages, pages 379–391, 2009.

[Vir] Virtualbox x86 virtualization project. urlhttp://www.virtualbox.org.

330

[Wad92] Philip Wadler. Comprehending monads. In Mathematical Structures in Com-
puter Science, pages 61–78, 1992.

[WAH10] Jr Warren A. Hunt. Verifying via nano microprocessor components. In Rod-
erick Bloem and Natasha Sharygina, editors, Proceedings of the 10th Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD
2010), pages 3–10, October 2010.

331

	Introduction
	Motivation
	The Problem
	Related Work
	Methodology
	Scope of the model
	Outline

	I Abstract Machine
	Notation
	Relations
	Functions
	Conventions for memory accesses

	Model Overview
	Instruction execution
	Abstract x86 machine

	Environment
	Cache
	MOESI protocol
	Memory types
	Cache model

	Store Buffer
	Forwarding and writing
	Transitions

	Load Buffers
	Loading code
	Loading data
	Flushing

	Translation-Lookaside Buffer
	Page Tables
	Creating and dropping walks
	Extending walks
	Loading translations into the Core
	Flushing

	Core
	Core configuration
	Overview of transitions
	Instruction border
	RESET, INIT, HALT
	Memory accesses
	Fetch and decode
	Execution
	VMEXIT
	Serializing
	Jump to interrupt service routine

	Local APIC
	Maskable interrupts
	INIT, NMI, SIPI
	Interprocessor interrupts
	Miscellaneous
	Register accesses
	IPI Delivery

	II Inside Processor Core
	DSL Syntax and Semantics
	Source Code Structure
	Types
	Registers
	Expressions
	Functions
	Actions
	Instructions

	Registers
	General-Purpose Registers
	Control Registers
	Segment Registers
	Descriptor Table Registers
	Task Register
	Virtualization Registers
	Instruction Registers
	Memory Type Registers
	Fast System Call
	APIC Base Address
	Time-Stamp Counters

	Architecture
	Operating Modes
	Exceptions
	Address spaces
	Memory System Interface
	Reading and Writing the Virtual Memory
	Page Tables
	Segment Descriptors
	Gate Descriptors
	Descriptor Tables
	Protection
	Privilege Level Change
	Segmentation Translation
	Segment Register Access
	Task State Segment

	Instruction Fetch and Decode
	Instruction Format
	Opcode
	Prefixes
	ModRM byte
	SIB byte
	Displacement
	Immediate Operand
	Opcode Table
	Instruction Fetch
	Operand Width
	Memory Operand Address Width
	Memory Operand Address
	Operand Decode

	Stack and Stack Operations
	Inner Stack

	Far Control Transfer
	Far Jump
	Far Procedure Call
	Control Transfer to an Interrupt Handler
	Far Return
	Task Switch

	Virtualization
	Guest State Save Area — VMCB SSA
	Guest Control Area — VMCB CA
	Injected Events and Virtual Interrupts
	Host State Save Area

	Instructions
	Conclusion
	Validating the model

	III Appendix
	Move Instructions
	Arithmetic Instructions
	Addition
	Subtraction
	Comparison
	Multiplication
	Division

	Logic Instructions
	Bit String Instructions
	Bit Test and Set
	Bit Search
	Bit String Conversions
	Shifts
	Rotations

	Instructions for Binary Coded Decimals
	Flag Instructions
	Stack Instructions
	Near Control Transfer Instructions
	Far Control Transfer Instructions
	Fast System Call Instructions
	Far JMP and CALL instructions
	Software Interrupt Instructions
	Return Instructions

	String Instructions
	Input/Output Instructions
	Segmentation Instructions
	Load SR and GPR from Memory
	SWAPGS
	Task Register Access
	Descriptor Table Register Access

	Protection Instructions
	CR and MSR Access Instructions
	Control Register Access
	Model Specific Register Access

	Memory Management Instructions
	TLB Invalidation
	Memory Fences
	Cache Invalidation

	Virtualization Instructions
	Run Guest
	Exit Guest
	Save and Restore Guest Extended State
	Exit Codes

	Miscellaneous Instructions
	Operand Read and Write
	Page Table Entries

