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Abstract

This thesis presents the formal verification of a gate-level computer system. This
computer system consists of a microprocessor called VAMP and a generic device
model. The VAMP processor is a 32 bit RISC CPU featuring a DLX instruction
set, out-of-order execution, precise interrupts, and address translation. The generic
device model is a formal framework which can be instantiated with arbitrary devices.
We verify the gate-level computer system against a model as seen by an assembly
programmer.

As proof of concept, we instantiate the verified computer system with an auto-
motive bus controller. Thus, we built and verified an electronic control unit for a
distributed automotive system.

This work is a part of the Verisoft project which targets pervasive formal verifica-
tion of an entire computer system stack. Our results provide the base for the Verisoft
computer system stack and the justified abstraction of the hardware which is suitable
for system programming.

We employ the interactive theorem prover Isabelle/HOL as the verification envi-
ronment for hardware. To decrease the user’s involvement in the verification process,
we develop an environment for the hardware design and verification called IHaVeIt.
We integrate it into Isabelle/HOL. We show that the usage of IHaVeIt can save up to
40% of the user work.

Kurzzusammenfassung

In dieser Arbeit beschreiben wir die formale Verifikation eines Computersystems.
Das System ist definiert auf Gatterebene und besteht aus einem Prozessor (VAMP)
und einem generischen Gerätemodell. Der VAMP ist ein 32-Bit RISC Prozessor mit
DLX–Instruktionssatz, out-of-order Instruktionausführung, präzisen Interrupts und
Adressübersetzung. Das generische Gerätemodell ist eine formale Umgebung, die
mit beliebigen Geräte instanziiert werden kann. Wir beweisen einen Simulationssatz
zwischen dem Computersystem auf Gatterebene und einem Modell aus Sicht eines
Assembler-Programmierers.

Als Fallbeispiel instanziieren wir das verifizierte Computersystem mit einem
Bus-Controller, der in einem verteilten Automotive-System eingesetzt wird.

Diese Arbeit ist Teil des Verisoft-Projektes, welches eine durchgängige formale
Verifikation eines kompletten Computersystems, bestehend aus Hardware und Soft-
ware (z.B. Betriebssystem oder E-Mail Client) anstrebt. Unsere Ergebnisse stellen
die Hardware-Basis für dieses Computersystem bereit sowie eine Abstraktion dieser
Hardware, die zur Systemprogrammierung geeignet ist.

Für die Verifikation der Hardware benutzen wir den interaktiven Theorembewei-
ser Isabelle/HOL. Wir erweitern Isabelle/HOL mit dem Tool IHaVeIT, welches als
Umgebung zur Entwicklung und automatischen Verifikation von Hardware dient. Wir
zeigen, dass die Anzahl von Beweisschritten mittels IHaVeIt um bis zu 40% reduziert
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werden kann.
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Extended Abstract

Modern computer systems are used in many safety-critical applications. In order to
guarantee an error-free behavior of such a system one often employs formal methods,
e.g. model checking, and theorem proving. However, usually formal methods are only
applied to stand-alone components or to abstract models. Thus, pervasive correctness
of computer systems, with all their details, can not be guaranteed.

The goal of the Verisoft project [The03] is to show that it is possible to build and
to verify a computer system, which consists of a hardware platform with devices, a
compiler for a C-like language, a micro-kernel, an operating system, and user applica-
tions. The goal is to verify these components and to guarantee formally that they can
be combined into one computer system stack. In this paper, we present the verification
of a complex gate-level computer system. This hardware is formally verified against
an assembly-level model, i.e. a model as seen by an assembly programmer.

All models in the Verisoft project are defined/verified in Isabelle/HOL, which is
an interactive theorem prover for higher-order logic. To reduce the user work, we
developed an environment IHaVeIt [Tve05a, TA08]. It couples Isabelle/HOL with
external tools, such as model checkers (NuMSV [CCG+02] and SMV [McM99]) and
SAT solvers. It also provides several reduction and abstraction techniques which
increase the application efficiency of the external tools. In this thesis we develop and
verify the hardware in Isabelle/HOL and then automatically translate it into Verilog
(via IHaVeIt) and run it on an FPGA.

The verified computer system consists of a VAMP processor [DHP05] and a
generic device model for memory mapped devices.

The VAMP processor features the DLX instruction set, out-of-order execution,
precise interrupts, delayed branch, and support for virtual memory. We verified the
gate-level processor against a model as seen by an assembly programmer, i.e. a model
which executes a complete instruction with every step.

The device model on the gate level is modelled as an I/O automaton. It can
contain arbitrary devices which run in parallel and communicate with the external
environment, e.g. with a network. This model is verified against an interleaved device
model where the devices progress one after another.

The gate-level computer system is built by a parallel composition of the VAMP
and the gate-level device model, which communicate via a bus with a common clock.
This system is verified against an assembly-language model which executes with every
transition either a device step or the processor step, with or without device access. The
correctness criterion states that every run of the gate-level model can be simulated by a
run of the assembly-level model. The criterion is proved via a non-trivial combination
of the proofs for the processor and the generic device model. The proof is carried out
interactively in Isabelle/HOL with the help of IHaVeIt.

Finally, we instantiated the verified computer system, on the gate and assembly
levels, with an automotive bus controller. Thus, we built a verified electronic control
unit for a distributed automotive system [Kna08]. This unit has been synthesised and
run on a Xilink FPGA. The size of the unit is 5,180,002 gates.
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For the first time, we report on the formal verification of a gate-level computer
system, which consists of a non-trivial processor and devices. The closest related
work is the famous CLI stack [BHMY89], where the verification of a small computer
system stack is reported. Our work also closes the gap between verification of the
devices [Coh00, Rus02, BKS03, ALD06, RPS01] and the processors [MS06, Vel05,
ADJ04, SJ02, HGS03, BJK+05, DHP05] as stand-alone components.
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Chapter 1

Introduction

Nowadays modern computer systems are extensively used in safety and security
critical areas. These systems are taking control in cars, trains, airplanes, military
weapon and defence systems, space shuttles and sputniks, and medical devices. An
error in any of these systems can cause not only huge financial loss, but also loss of
human lives. The developers and testers of these systems spend tremendous efforts
trying to catch all errors in the final product. They use a number of methods such as
testing, simulating, introducing redundancy in the final product, and applying formal
methods. Unfortunately, it was not always possible to find and to exclude all errors.
These are some results if you “google” top hardware and software bugs:

• Mariner I space probe [Neu89] – A bug in the software caused the rocket to
divert its path and it was automatically destroyed. The reason was that a formula
written on paper was not correctly transferred to the code.

• Therac-25 medical accelerator [LT93] – A radiation therapy device delivered
lethal radiation dose. At least five patients died, others were seriously injured.
The major reasons were reuse of the software for the previously developed
hardware, race conditions in the software, and an overflow error which allows
to skip a safety check.

• Pentium FDIV bug [Hal95] – A flaw in the FPU caused mistakes when dividing
floating-point numbers which occur within a specific range. Intel started a
big call-back campaign; this led to huge financial losses (ca. 500 million US
dollars).

• Ariane 5 Flight 501 [Nus97] – The code for the Ariane 4 rocket was reused, but
the new faster engines together with the different flight path triggered a bug in
an arithmetic routine (data conversion from a 64-bit floating point to a 16-bit
signed integer) inside the rocket’s flight computer. This led to a cascade of
problems, culminating in the explosion of the rocket.

• BMW 5 series [Lef04] – Exceeding pressure on the break pedal disabled all
stability systems (ABS and DCS). These systems can only be turned on after

1
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App App App

Operating System

Micro Kernel

CVM

ISA Devices Host System,
External Env.

VAMP Devices Host System,
External Env.

C-Level

Assembly-Level

Gate-Level

Figure 1.1: The Verisoft computer system stack.

the ignition is switched off for five seconds. The error was tracked back to a
micro-controller.

These and others failures are often due to the incomprehensive testing of system
components; also combining tested/verified components into one system can result in
an unexpected behaviour of the combined system. Note that comprehensive testing
of big systems can not be achieved in practice, because there are too many possible
test cases. Nowadays, testing is extened with formal verification where the design is
formally proved, via a mathematical proof, to comply with its specification, i.e. the
design is 100% correct with respect to a given specification. There are industry reports
stating that verification costs are less than those of testing [BBM+07]. On the other
hand, considering a system constructed from verified components as a whole can help
to exclude global malfunctions. For example, one considers a computer system as a
whole, starting from the gate-level hardware up to the running software.

The Verisoft project [The03] worked out a methodology for developing and
pervasively verifying an entire computer system. This computer system can be
represented as a stack (Figure 1) which consists of a gate-level hardware, an assembly-
level machine, a micro kernel, an operating system, and user applications. The
hardware is developed and verified as part of this thesis and is based on the previous
correctness proofs of the VAMP processor in PVS [BJK+05, DHP05]. A micro
kernel [DDS08] provides a basic functionality for the low-level management of the
system resources (e.g. memory allocation). The CVM [IdRT08] part of the micro
kernel allows us to run many virtual machines on the same hardware, i.e. user
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processes with their own virtual memory. The micro kernel comes with a scheduler
which is proved to be fair [DDSW08]. The simple operating system (SOS) [Bog08]
is a multi-user operating system. SOS also provides the user visible interfaces to
the devices, e.g. a network socket, a file system. Finally, verified user applications,
such as an e-mail client [BB05] and an SMTP server [LNRS07], are executed. The
software part in this project is mainly implemented in a C-like language with portions
of assembly code. Therefore, a compiler for the VAMP instruction set architecture
was developed and verified [LPP05, LP08].

Most proofs in the Verisoft project are carried out in Isabelle/HOL, which is an
interactive theorem prover. This allows the Verisoft team to guarantee the pervasive-
ness of the verification results, because all computational models are defined in one
language. Thus, a theorem that is proved for one layer (or module) can be easily
reused in the upper layers (or connected modules).

As part of this thesis, we developed and verified a hardware platform which
consists of the VAMP processor [BJK+05, DHP05] and memory mapped devices.
This hardware platform is the base for the Verisoft computer system.

Originally, the task was to take the VAMP processor developed in PVS, which is
an interactive theorem prover, and to translate automatically the PVS constructions
and proofs into the Isabelle/HOL language. Here, we have to split the task into two
subgoals: (i) translation of the gate-level model of the VAMP and its specification, and
(ii) translations of the PVS proofs into Isabelle/HOL proofs. The main problem of the
first subgoal is that PVS natively supports subtypes (e.g. bit vectors of a given length)
and Isabelle/HOL does not. The second subgoal is more challenging, and this task is
hardly achievable, if feasible at all. The main reason is the different nature of the PVS
and Isabelle proof engines. Obviously, it is impossible to syntactically match a PVS
proof step to an Isabelle proof step. This syntactic match would only work out for the
very basic steps, such as conjunction elimination, introduction rules, etc. However,
the correctness proofs of the VAMP processor mostly rely on powerful PVS tactics,
e.g. grind [SORSC01], and the team of the VAMP project definitely made the proofs
as efficient as possible. Since the VAMP is verified in a closed-source system PVS1,
there is no way to understand how these tactics are working/implemented. Therefore,
it is not clear that a sequence of the Isabelle proof steps can repeat a step of a PVS
proof. For example, Skalberg et al. [OS06] implemented a tool for translating proofs
and theories of the HOL theorem prover into Isabelle ones. The authors estimate
their efforts to eight person months [TS07]. The implementation of this tool was only
possible thanks to the similar proof engines, because Isabelle is a successor of the
HOL theorem prover. Therefore, we decided to prove the correctness of the VAMP
processor directly in Isabelle and not to translate the PVS proofs into Isabelle. This
also allows us more flexible changing of the VAMP design.

To speed up the verification process in Isabelle, we decided to employ automatic
proof techniques, such as model checking and SAT solving. Thus, in the scope of
this thesis, we developed an environment for hardware design and verification in Is-

1Since December 2006 PVS is an open-source system.



4 CHAPTER 1. INTRODUCTION

abelle/HOL. We also verified the VAMP processor and decreased the user involvement
into the verification process with respect to the previous VAMP project. Moreover, the
usage of the VAMP processor in the computer system requires a complete hardware
platform including external devices, e.g. hard drive disk and serial interface. We
successfully extended the processor with a full support of the memory mapped devices
and created a formally verified generic device theory. Thus, we built a hardware
platform with external devices and verified it against a model with devices as seen by
an assembly programmer. Finally, we instantiated the device theory with a concrete
device.

1.1 Outline

In the rest of this chapter, we present the software tools which are used and are relevant
to this thesis. In Section 1.3, we discuss related work. Finally, we present the notation
which is used in this thesis.

In Chapter 2, we present IHaVeIt [TA08, Tve05a], the environment for hardware
design and verification in Isabelle/HOL. It supports our interactive proofs of the
developed hardware platform. We present the reduction and transformation algorithms
behind IHaVeIt and give their correctness proofs. At the end of this chapter, we
present several benchmarks and describe other applications of IHaVeIt.

In Chapter 3, we describe the VAMP processor [DHP05, BJK+05] on the gate
level and give its instruction set architecture (ISA). ISA is a specification model,
which processes one instruction with every step. We present modifications which are
needed in order to make the VAMP fit for the integration into a platform with external
devices. We also prove the correctness statement of the VAMP hardware against ISA.

In Chapter 4, we present a generic device theory. This theory defines two generic
models, one for the gate level and one for the assembly level. The gate-level model
supports the parallel execution of many devices and the assembly-level model is a
purely sequential one. We formulate a correctness statement and give the correctness
proofs.

In Chapter 5, we build a hardware platform. On the gate level, we combine the
VAMP with the generic device model. We verify this platform against a model where
the processor and the devices are progressing one after another. In this chapter, we
show how the VAMP proofs and the proofs of the device theory imply the overall
system correctness.

In Chapter 6, we instantiate the device theory with a concrete device. Thus, we
build a concrete hardware platform, which is formally verified.

Finally, in Chapter 7, we give a summary of this work and point out the direction
of future work.
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1.2 Tools

Modern formal verification is supported by mechanised systems. The landscape of
these systems is very wide and can be split into three groups: interactive, automated,
and hybrid systems. The interactive tools usually have a very expressive specification
language, but require a substantial user involvement in the verification process. The
automated systems come with a less expressive language (e.g. propositional or first
order logic) and require the user only to push the button. The hybrid systems are
various combinations of interactive and automatic tools. In the following subsections,
we shortly present the systems which are used and are relevant to this thesis.

1.2.1 Interactive Tool

PVS

The Prototype Verification Systems (PVS) [OSR92] is an interactive theorem prover
developed at SRI. The PVS specification language is typed higher oder logic (HOL).
The PVS system is based on a set of predefined libraries, e.g. for bit vectors. The
system supports the usage of subtypes (e.g. consider only bit vectors of a specific
length) and can automatically resolve many subtype violations (e.g. when the function
signature specifies the result as a bit vector of length n, but function definition com-
putes something else). PVS features powerful decision procedures and provides the
user with standard proof techniques, e.g. induction, case distinctions, skolemization,
application of lemmata, and quantifier instantiation.

We shortly present the PVS system, since the VAMP processor, which we consider
in Chapter 3, was originally developed and verified in this system.

Isabelle/HOL

Isabelle [Pau94] is a generic interactive theorem prover that is developed at the
Technical University of Munich and Cambridge University. Isabelle supports several
object logics and we use it with its instantiation of HOL, which is referred to as
Isabelle/HOL. Isabelle provides the user with an interactive mode that allows all
standard proof techniques. It also provides the user with several automatic decision
procedures, e.g. a term rewriting engine (called a simplifier) and a tableaux prover
(called a classical reasoner). Isabelle/HOL comes with a bunch of theories such as
lists, naturals, and integers.

In the academic part of the project Verisoft [The03] Isabelle/HOL is used as a
major tool for system design and verification. In this thesis we use Isabelle/HOL as a
design and verification environment for hardware.
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1.2.2 Automated Tools

SAT and SMT

SAT (SATisfiability) solvers check the satisfiability of a formula which is expressed in
propositional logic. Modern SAT solvers (e.g. zChaff [TYRM04], MiniSAT [EMS07])
are highly effective for checking huge formulae. One of the drawbacks is that propo-
sitional logic is not expressive enough for real-life applications. For example, in
software and hardware verification formulae are to be tested modulo some background
theories, e.g. linear arithmetic, uninterpreted symbols, and bit vectors. Therefore,
SAT solvers are often used as back ends for other tools, e.g. model checkers, theorem
provers, and SMT solvers.

Satisfiability Modulo Theories (SMT) solvers have additionally axioms about the
supported theory. They use these axioms and SAT solving technique to check given
formulae. The first versions of SMT solvers supported only one special theory, e.g.
uninterpreted functions. Modern SMT solvers (e.g. Z3 [dMB07], Yices [DdM06])
support several theories and can be very useful in the practice, e.g. software verifica-
tion [Sch07]. However, an efficient combination of many theories is still a non-trivial
task [Pfe07].

Model Checking

Model checking is an automatic technique for verifying finite state concurrent sys-
tems. The technique has a number of advantages over traditional techniques, such as
simulation, testing, and deductive reasoning. The main disadvantage is the infamous
state-explosion problem which arises when a system with numerous components has
to be modelled, e.g. modelling two registers 64-bit each will induce a state space of
the size 2128.

To apply model checking technique the user defines (or compiles) his/her design
in the language accepted by a model checker. The design specification is usually
formulated in temporal logic [CGP99], which can assert how the system progresses
over time. In the best case application of the model checker is fully automatic, but in
practice user interaction is required, e.g. for analysing the verification results. In the
case the model checker reports that the design does not comply with the specification,
it also generates an error trace. This trace can be used as a counter-example and can
help the designer to find an error which can be in the design or in the specification.
Due to the mentioned state explosion problem the model checker can fail to terminate,
e.g. the model size is too big to fit into the computer memory or to be explored in the
user life time. A possible solution to avoid this problem is to change the model, e.g.
by applying additional manual or automatic abstraction.

The progress in SAT solving opened a new branch in model checking: bounded
model checking. This approach requires an additional parameter which specifies the
length (or the bound) of the model runs to be checked. Such a model checker unrolls
the model for a given number of steps and then uses a SAT/SMT solver to check the
unfolded formula. Thus, if a bounded model checker confirms the validity of a model,
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the model is only valid for a given number of steps. Usually these model checkers are
fast and are very good for debugging.

In this thesis we consider two state-of-the-art model checkers NuSMV [CCG+02]
and Cadence SMV [McM99].

NuSMV

NuSMV [CCG+02] is a symbolic model checker, that is a re-implementation of CMU
SMV [JED+94], for CTL, LTL, and past-LTL properties. It can perform bounded
model checking using an external SAT solver. We use NuSMV to verify temporal
properties defined over Kripke structures and as an external BDD decision procedure.
The NuSMV input language only allows to define finite state machines. The only data
types provided by the language are booleans, bounded subset of integers, symbolic
enumerations, and bounded arrays of supported types. The description of a complex
system can be split into modules. The modules can be composed either synchronously
or asynchronously. NuSMV allows modelling deterministic and non-deterministic
systems. Last but not least NuSMV is an open source project and hence soundness of
the implemented algorithms can be checked by anyone.

Cadence SMV

Cadence SMV[McM99] is a symbolic model checker for LTL properties. It supports
a specification language similar to the one of NuSMV. It also provides some advanced
features, e.g. support for bit-vector arithmetic, and predicate abstraction. We use
SMV mainly as an external decision procedure for bit-vector arithmetic.

1.2.3 Hybrid Tools

The hybrid tools vary in many aspects. There are integrations of basic interactive proof
features in the automatic tools, e.g. in the KeY System [MLH07]. In this case the user
applies some top-level interactive steps and the system works further in an automatic
mode. There are many attempts to connect interactive theorem provers with automatic
tools. Such a combination helps the user to prove boring lemmata by applying
automatic tools. The proof is still interactive and the user has still to recognize when
and which automatic tool can be applied. For example, Shankar [RSS95] combined
PVS theorem prover with a model checker, and Paulson et al. [MQP06] combined
Isabelle/HOL with different first oder theorem provers.

In this thesis we present a further combination of a theorem prover with several
external tools. The combination targets at the first place verification of the temporal
properties of hardware systems by applying externals model checkers. In order to
overcome the state explosion problem in the model checkers, we proposed several
transformation algorithms. These algorithms are applied before calling a model
checker and they are:

• user guided functional abstraction (Section 2.4.2)
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• automatic data abstraction, which is based on the data independence of the
verified system and can reduce the domain of the system state (Section 2.2.2)

• a transformation technique which allows an efficient handling of uninterpreted
functions and memories (Section 2.3)

Our approach is implemented as the IHaVeIt environment which we present in Sec-
tion 2.4.

1.3 Related Work

The work in this thesis covers several topics.

• Automatic verification tools, their automatic applications, and their usage in the
hybrid verification systems.

• Efficient verification of microprocessors with out-of-order execution.

• Verification of a real-life gate-level computer systems.

Therefore, we split this section according to these topics.

1.3.1 Verification Tools

In this thesis we developed the environment IHaVeIt [TA08, Tve05a] which is based on
the theorem prover Isabelle/HOL. The main contribution of IHaVeIt is the introduction
of a preprocessor for Kripke structures that includes an automatic data abstraction and
an elimination of function applications.

Automatic Tools

The principle of our data abstraction algorithm is related to symmetry reduction [ID96],
abstraction of data insensitive models [LNR05, PMV98], and syntactic program
transformation [NK00]. In contrast to symmetry reduction our algorithm works
entirely on the symbolic level rather than on the explicit state transition graph.

Lazik et al. [LNR05] presented a semantic definition and a rigorous analysis
of domain independent systems. Their domain reduction algorithm targets safety
properties which can be expressed as reachability properties of concurrent programs.
In contrast, we can verify arbitrary temporal properties.

Paruthi et al. [PMV98] presented a domain reduction algorithm that distinguishes
three kinds of variables: control, data, and mixed ones. While their reduction can only
be applied to data variables, we extend it to arbitrary variables.

Manolios et al. [MSV06] proposed a memory abstraction algorithm that is imple-
mented in a bounded model checker. The algorithm basically consists of two parts:
(1) unrolling the given transition relation and the property for a given number of steps,
i.e. transforming it to a SAT problem (2) computing the number of required memory
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cells and reducing memory domains to preserve validity of the the unrolled formula.
This approach works for bounded model checking of properties of the form AG or AF.
Furthermore, it supports domain-specific operations on addresses. Compared to his
work, our approach is not restricted to bounded model checking and can be applied
on any CTL* properties.

Namjoshi [NK00] proposed a syntactic predicate abstraction to compute an ab-
stract version of a given program. Later the author presented a prototype implementa-
tion AUTOABC [Rob02] which could only handle fairly small examples.

Our function elimination is related to the classical “freeing” technique and is
widely used in hardware verification. For example, it is applied in [GGA05] where
the authors construct a verification model by eliminating memory arrays and retain
only the memory interface signals. Their approach is implemented in a bounded
model checker and supports only memory reads and writes (no memory comparison).
However, to our knowledge IHaVeIt is the first tool applying function elimination on
transition systems and temporal properties rather than on combinational ones.

Hybrid Tools

The coupling of heterogeneous systems is by no means a novel idea.
Müller [Mül98] connected external tools with Isabelle through input-output au-

tomata. In his approach the user defines a model and manually specifies its abstraction.
Then an LTL model checker is used to prove temporal properties of the abstracted
model and a µ-calculus model checker is used to check forward simulations between
these two models. A drawback is that defining a suitable abstraction can be a very hard
task. In contrast, our approach does not have this disadvantage because an abstracted
model is derived fully automatically.

A very interesting ongoing work of L. Paulson’s group [MQP06] is the integration
of automatic theorem provers (ATP) SPASS [WBH+02] and Vampire [RV01] into
Isabelle. A highlight of this approach is that the proof generated by an ATP can be
converted into an Isabelle proof and then rechecked by Isabelle. Thus, the user does
not have to trust an external tool, and soundness of the translation can be guaranteed.

The UCLID system [LSB02] is another interesting tool that can handle big prob-
lems with much automation. It also has a lot of built-in features, e.g. handling of
uninterpreted functions, efficient algorithms for term reduction. The UCLID system
can be used for verification of system invariants (AG safety properties) but not for the
verification of liveness properties [LSB02]. Our approach allows us verification of
both kinds of properties. Integration with Isabelle increases the domain of applications
of our tool but we have to pay for that with the user’s involvement in the proof process.

1.3.2 Processor Verification

There is much work concerning processor verification. This work can be split into
two general groups: processors which were verified by automatic or interactive tools.
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The work from the first group is characterised by the absence of user involvement
in the proof process. The main advantage of this approach is that the user solely
specifies a model, a correctness criterion, and an abstraction function and then pushes
the button. The application of this approach produces one of the following results: the
model is correct, the model is not correct and a counter-example might be generated,
or the tool ran out of memory or of the user’s patience. There are several drawbacks of
this approach. First of all the defining of an abstraction function can be a very hard task.
Another drawback is that the size and the complexity of the considered processors are
very restricted. A typical benchmark from this group is a pipelined processor with up to
5 stages in the pipeline and in-order execution of fetched instructions [Vel05, ADJ04,
MS06, ACHK04]. These papers use variations on the method of Burch and Dill
[BD94], where an abstraction function is constructed by flushing the implementation,
i.e. inserting null operations until all pending instructions are completed. Often, to
overcome the state explosion in the verification tool, one specifies the processor not
on the bit-level but on the term-level. For instance, term-level models of processors
only implement a subset of the instruction set architecture (ISA) and data paths,
memories, and processor elements, such as decoders and ALU’s are left uninterpreted.
Moreover, there is often no obvious connection between the implementations and
their abstractions [LSB02, VB99].

The interactive proof tools allow verification of very big and detailed proces-
sors, but they require user guidance [BHK94, SJ02, HGS03, Krö01, BJK+05, Dal06,
Jac02]. For instance, Sawada and Hunt [SJ02] verified an entire processor with out-of-
order execution, precise interrupts, and a store buffer for the memory operations. They
treated self-modifying code and used sync instructions to avoid read-after-write haz-
ards. McMillan [JM01] showed the correctness of an abstracted term-level processor
with a Tomasulo scheduler with a high degree of automation. Sometimes, the actual
processor implementations are extended with auxiliary constructs. These additional
constructs simplify the proofs but can not be implemented in the real hardware. For
example, Hosabettu [HGS03] used tags from an infinite set to distinguish instructions
in the processor.

To the best of our knowledge, the VAMP processor [Krö01, Jac02, BJK+03,
DHP05, BJK+05, Dal06] is the most complex verified processor presented in the open
literature. The VAMP processor was first verified in the interactive theorem prover
PVS. The correctness proofs of the VAMP employ only a negligible support of the
automatic tools. Jacobi [Jac02] used the PVS theorem prover, the PVS built-in model
checker, and SMV to verify complex models, such as floating point units. However, a
substantial human interaction is still required because the abstraction is built manually
and the conversion between PVS and SMV is done manually.

Our version of the VAMP processor has to fit in a computer system stack [The03].
The rest of the stack is developed in Isabelle/HOL and to guarantee the pervasive-
ness of the verification efforts we developed and verified the VAMP processor in
Isabelle/HOL as well. The original plan was to reuse the proof strategy which was
developed in the previous work in PVS. However, it is not always possible to reuse the
previous results due to the differences between Isabelle/HOL and PVS, for example:
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• Absence of the subtype mechanism in Isabelle/HOL.

• Isabelle/HOL does not support bit vectors, which makes the verification of the
hardware more difficult.

• Applications of the complex built-in decision procedures of Isabelle/HOL and
PVS on equivalent proof goals produce very different proof subgoals. Hence,
from such a point a PVS proof can not be reused any more.

• We experienced that the built-in decision procedures of Isabelle/HOL are less
powerful than those of PVS.

• PVS provides a better way to manage the proofs and the theories than Isabelle,
e.g. proof visualisation.

Additionally, to speed up the verification process in Isabelle/HOL, we increase the
usage of the automatic tools, i.e. we use the developed environment IHaVeIt. We
have to note that application of automatic tools is most efficient when models and
properties are tailored for the tool. In our case, it was not always possible to fine tune
the models, because the proof strategy heavily employs the higher oder logic, and the
automatic tools support at most first order logic. Nevertheless, we could decrease the
user interaction by 30% compared the pure interactive proofs in PVS.2

1.3.3 Computer System Verification

One of the major results of this thesis is a formally verified computer system, which
consists of a processor and external devices. The system implementation is a gate-level
model and the system specification is a model as seen by an assembly programmer.
These models are used as a base for a complete computer system stack (see Figure 1).

The closest related work on this topic is the famous CLI stack [BHMY89]. This
stack consists of a non-pipelined processor [BHK94], an assembler [Moo94], a com-
piler for a simple high-level language [You94], and an elementary operating system
kernel [Bev94]. The external devices were not considered in this work. In 2002
J. S. Moore [Moo02], the principal researcher for CLI stack, declared the formal
verification of a computer system as a grand challenge. To the best of our knowledge
up to 2002 there were no other attempts to take up this challenge.

In a Verisoft subproject Hillebrand et al. [HIdRP05] present the paper-and-pencil
formalisations of a system with a hard disk drive. They define the system on the gate
level and on the assembly level. They also sketch the correctness arguments which
justify these models.

Devices are often modelled and verified as stand alone systems [Coh00, BKS03,
ALD06, RPS01]. For instance, one models a device at one level and checks some
properties of this model. In oder to use the devices in a computer system stack

2We compared the number of proof steps of the VAMP proofs in PVS with the amount of steps we
used in Isabelle/HOL. For more details, we refer the reader to Section 3.4.
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they have to be modelled at different levels. For example, in the automotive sub-
project of the Verisoft project, one deals with the verification of a time triggered bus
interface, which is used in the distributed automotive systems. The verification of
such a system requires considering this interface at different levels, e.g. low-level
for clock synchronisation in serial interface [Sch06a], gate-level implementation, and
real-time properties of the software driver for this bus interface. These models and
proofs are finally combined into one pervasive correctness proof. A paper-and-pencil
style description for the latter work can be found in Knapp and Paul [KP07]. In this
thesis we show how a verified electronic control unit (ECU) for the distributed system
can be constructed. This ECU is an instantiation of the gate-level computer system
which is developed and verified in this thesis.

Alkassar et al. [AHK+07] present an assembly level model for a processor with
I/O memory mapped devices. They also present a simple software driver for an
UART device (serial interface) and proved its correctness on paper. They used an
assembly-level model, which is connected to the machine-code model developed in
this thesis, as an abstraction of a gate-level model.

1.4 Notation

In this section, we introduce some basic shorthands and notations used in this thesis.

1.4.1 Basics

For the whole thesis, we use two kinds of implication signs. We employ −→ to
denote the ordinary logical implication. The sign =⇒ is used to split the premises and
conclusions of lemmata and theorems.

Whenever we introduce a definition, we employ symbol ,. To keep definitions
short and readable, we can introduce aliases via symbol := .

We employ B to denote the set of boolean values: B , {True,False}. N denotes
the set of natural numbers including zero and N− , N \ {0}. The set of integers
{. . . ,−1, 0, 1, . . .}, we denote by Z. We often use hardware cycles as the time notion
on the gate level. The domain of hardware cycles is denoted by T, and it is a subset of
natural numbers T ⊂ N.

We use the following notation to denote the subranges of integers.

• [n : m] , {x ∈ Z : x ≤ m ∧ n ≤ x}

• ]n : m] , {x ∈ Z : x ≤ m ∧ n < x}

• [n : m[ , {x ∈ Z : x < m ∧ n ≤ x}

• ]n : m[ , {x ∈ Z : x < m ∧ n < x}

We use the same notation to denote subranges of natural numbers because N ⊂ Z.
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Bit-Vectors

We employ standard notation for bits a, b ∈ {0, 1} and bit vectors x, y ∈ {0, 1}n of
length n. For the sake of the simplicity, especially in the conditional expressions, we
identify bit values and boolean values. Thus, a = 0 ≡ a = False and a = 1 ≡ a = True.

We can construct a bit vector by enumeration of all its elements, e.g. [xn, . . . , x0].
We denote by xi the value of the ith bit of the bit vector x. Note that i must be less than
the length of x otherwise xi specifies an undefined result. We use notation x[a : b] to
access a subrange of bits from a to b, e.g. x[1 : 0] is a bit vector with two elements
[x1, x0].

We use the notation ||b to access byte (eight bits) with the index b of a bit vector.

| a |b , a[8 ∗ (b + 1) − 1 : 8 ∗ b]

A bit vector can be interpreted as a natural number, where the value of a bit is
treated as natural number 1 or 0.

〈x〉 ,
∑

i∈[0:n−1]

xi ∗ 2i

We use the notation a +n b to denote the sum of two bit vectors modulo 2n, i.e.
〈a +n b〉 , 〈a〉 + 〈b〉 mod 2n.

In this thesis we employ the usual comparison operators, such as <, ≤, to compare
the naturals encoded by bit vectors. For example:

x ≤ y , 〈x〉 ≤ 〈y〉

For details on bit vector arithmetic see also [MP00].

1.4.2 λ – Calculus

We use λ–notation [Bar84] to specify a function without giving this function a name.
For example, λx. x + 1 defines a function which increments a given argument. Such a
function is called a λ–term. An application of such a λ–term is defined in the usual
way (λx. x + 1)(y). The β–reduction can be used to unfold an application of such a
function application, e.g.

(λx. x + 1)(y)
β
≡ y + 1

We can update any function or λ–term with the help of the λ–notation. We use the
notation f (y := z) to denote updating of the function term f with the value z on the
position y. The update is defined as follows:

f (y := z) , λx.

z : x = y
f (x) : else
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1.4.3 Hilbert’s Choice Operator

The Hilbert choice operator Some specifies an element which satisfies a given predi-
cate.

Definition 1.1
Let z be specified by Some operator with a predicate P, i.e. z = Some x ∈ X. P(x) If in
the domain X there exists an element which satisfies P, the element z has the property
P. If there is no such element in X, we can not state anything about z:

∃y. P(y) =⇒ P(z)

There is a stricter version of the Hilbert Choice operator The which specifies the
element which satisfies a given predicate.

Definition 1.2
Let z be specified by The operator with a predicate P, i.e. z = The x ∈ X. P(x). If
there is a unique element in X which satisfies the predicate P, the element z has the
property P. Otherwise we can not state anything about z:

(∃y. P(y)) ∧ (∀x y. P(x) ∧ P(y) −→ x = y)
=⇒

P(z)

1.4.4 Sequences

A sequence is a pair σ = (l, seq), where

• l ∈ N defines the length of the sequence.

• seq : N → S is a mapping from natural numbers (position in the sequence)
n ∈ N to the corresponding element el ∈ S.

We employ the following operators to work with sequences:

• [] – an empty sequence

• [x] – a sequence with one element x

• len(σ) – it returns the length of the sequence σ, i.e. len(σ) , σ.l

• σ(i) – it returns an element on the position i, i.e. σ(i) , σ.seq(i). Note that if
len(σ) ≤ i then the result is undefined.

• x ∈ σ – if it holds, x is a sequence element:

x ∈ σ , ∃i < len(σ). σ(i) = x
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• σ1 ◦ σ2 – concatenation of two sequences:

σ = σ1 ◦ σ2

⇐⇒

len(σ) = len(σ1) + len(σ2) ∧
∀i < len(σ1). σ1(i) = σ(i) ∧
∀i < len(σ2). σ2(i) = σ(i + len(σ1))

• next(s, σ, P) – it returns the index of the next element above s satisfying predi-
cate P. If there is not any such elements satisfying P, next(s, σ, P) is undefined.

i = next(s, σ, P) ∧ ∃ j < len(σ). s < j ∧ P(σ( j))
=⇒

i < len(σ) ∧ s < i ∧ P(σ(i))∧
∀ j < i. s < j −→ ¬P(σ( j))

We employ the shorthand first(σ, P) to denote next(−1, σ, P).

• last(s, σ, P) – it returns the index of the last element below s satisfying predicate
P: If there is not any such elements satisfying P, last(s, σ, P) is undefined.

i = last(s, σ, P) ∧ ∃ j < len(σ). j < s ∧ P(σ( j))
=⇒

i < len(σ) ∧ i < s ∧ P(σ(i))∧
∀ j < s. i < j −→ ¬P(σ( j))

We employ the shorthand last(σ, P) to denote last(len(σ), σ, P).

• take(n, σ) – it takes first n elements from the sequence σ:

σ1 = take(σ, n) =⇒

len(σ1) = min(len(σ), n) ∧ ∀i < len(σ1). σ(i) = σ1(i)

where min(len(σ), n) returns the minimum between len(σ) and n.

• σ1 � σ2 – if it holds, σ1 is a prefix of σ2

σ1 � σ2

⇐⇒

∀i < len(σ1). σ1(i) = σ2(i)

An interesting observation is that hardware signals and register values can be
treated as infinite sequences.
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Definition 1.3
Let S be a hardware signal over domain D, i.e. S : T→ D. Let P be a predicate on D
and t ∈ T. The signal S can be considered as a sequence of its values. Thus, the value
of signal at cycle t, S t, denotes an element from D at the “position” t. We introduce
a shorthand notation Pt to denote P(S t). Therefore, we can treat P as a an infinite
sequence with boolean domain.

We define operator lasthw(t, P) , max{t′ < t | Pt′} which specifies the last cycle
prior t where P held. If there is no such a cycle the result of lasthw is undefined.
Similarly, we define operator nexthw(t, P) , min{t′ > t | Pt′} which specifies the next
cycle after t where P held.

Records

In this thesis we use record notation. Let R be a record type and r ∈ R be a record.
Let r have two fields x ∈ Bn and y ∈ Bn. We use the notation r.x to access field x.
Similarly we access other record fields. We employ operator JK to construct a record,
we introduce this notation by the following example:

r =

t
x = 1n

y = 0n

|

We often use records to describe the state of hardware. Such a hardware state
depends on hardware cycles. We model this dependency between state of hardware
and cycles via functions, e.g. f : T→ R where function f maps hardware cycles to
records. For a given hardware cycle t, f t represents the whole record at cycle t. We
access field x at cycle t as f t.x.

Sometimes we need values of a particular field for all hardware cycles. In this
case we employ the notation f .x : T → {0, 1}n, where f .x maps hardware cycles to
values of field x.



Chapter 2

IHaVeIt

Hardware design companies often work on models described at the Register Transfer
Level (RTL). An ideal formal verification technique for hardware should target these
models with a high-degree of automation. Due to the details and the complexity of
these models, this ideal is not yet reality.

On the one side, algorithmic techniques, such as model checking, SAT or SMT
solvers, verify combinational and temporal properties automatically but they suf-
fer from the infamous state explosion problem. To overcome that problem, many
automatic abstraction techniques have been developed [ID96, VB05]. Still, these
techniques apply to term-level models which are already abstractions of actual imple-
mentations. For instance, term-level models of processors only implement a subset of
the instruction set architecture (ISA) and data paths, memories, processor elements,
such as decoders and ALU are left uninterpreted. Moreover, there is often no obvious
connection between the implementations and their abstractions, e.g. [LSB02, VB99].

On the other side, deductive methods can handle very large and detailed designs but
require significant human efforts from expert users. For instance, the ACL2 [KMM00]
and PVS [OSR92] theorem provers have been successfully used to verify complex out-
of-order pipelined machines described at low-levels of abstraction [SH98, BJK+05].

In this chapter we present a fully automatic technique to verify large systems,
which are characterized by domain-independence. Domain-independence requires
that the correctness of the system does not rely on domain-specific properties, e.g.
ordering of bits in a bit vector. This often holds for correctness criteria of caches and
datapaths of processors.

We also present an abstraction technique which allows reduction of the transition
systems. It is based on the fact that very often the exact definition of a function is
irrelevant for the property to be verified, and in this case we replace such a function by
an uninterpreted one. This step is a classical trade-off. On the one hand we reduce the
system description by dropping some definitions. On the other hand we increase the
state space of the system since the uninterpreted functions are modelled as fixed tables
(or memories) which maps input arguments to some result data. To overcome the
drawbacks introduced by the last step, we present a transformation technique which

17
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allows handling of the models containing uninterpreted functions efficiently.
At the end of this chapter we present the IHaVeIt environment [Tve05a, TA08]

(Isabelle Hardware Verification Infrastructure), which is based on the Isabelle/HOL
theorem prover [Pau94], the model checkers NuSMV [CCG+02] and SMV [McM99],
as well as different SAT solvers. This environment implements the above outlined
techniques. It can also translate Isabelle/HOL code into Verilog descriptions which
are then synthesized on FPGA platforms.

2.1 Preliminaries

2.1.1 Logic of Equality with Function Symbols

Equality Logic (EL) is propositional logic, augmented with terms and equality over
terms. For clarity, we consider variables ranging over integer domains. This assump-
tion does not limit the expressiveness of the logic. A term t is an integer constant,
a variable, or an if-then-else construct (ITE). The formulae are Boolean variables,
negations of formulae, conjunctions of formulae, or equalities between two terms. Let
Var, BVar denote the sets of variables and Boolean variables respectively. Formally,
the set of valid terms and formulae is defined as follows:

tEL ::= c ∈ N | v ∈ Var | IT E(ψ, tEL
1 , tEL

2 )

ψ ::= b ∈ BVar | ψ1 ∧ ψ2 | ¬ψ | tEL
1 = tEL

2

The introduced logic is very often extended by function symbols: Equality Logic
with Function symbols (ELF). Additionally to variables, one introduces function
symbols and memories. Note that the latter both have similar semantics: both are
mappings, and function applications are equivalent to memory read operations. The
only difference is that memories can be updated.

Formally, let MVar, and Fun be the sets of memory and function names respec-
tively. Then a term in ELF is either an EL-term, a memory, a memory read or write
access, or a function application:

t ::= tEL | m ∈ MVar | IT E(ψ, t1, t2) |
read(t1, t2) | write(t1, t2, t3) |
f (t1, . . . , tn) with f ∈ Fun |

ψ ::= b ∈ BVar | ψ1 ∧ ψ2 | ¬ψ | t1 = t2

where the term read(t1, t2) denotes a read from the memory term t1 at location t2, and
the term write(t1, t2, t3) represents update of the memory term t1 at location t2 with
the data t3.

In this chapter, we employ the notation t1 v t2 to express that t1 is a sub-term/a
sub-formula of the term/the formula t2.
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eval(I, c) , c
eval(I, x) , Iv(x)
eval(I,m) , Iv(m)
eval(I, IT E(ψ, t1, t2)) , if eval(I, ψ) then eval(I, t1) else eval(I, t2)
eval(I, read(t1, t2)) , (eval(I, t1))(eval(I, t2))
eval(I,write(t1, t2, t3)) , (eval(I, t1))(eval(I, t2) := eval(I, t3))
eval(I, f (t1, . . . , tn)) , I f ( f )(eval(I, t1), . . . , eval(I, tn))

eval(I, b) , Iv(b)
eval(I, ψ1 ∧ ψ2) , eval(I, ψ1) ∧ eval(I, ψ2)
eval(I,¬ψ) , ¬ eval(I, ψ)
eval(I, t1 = t2) , eval(I, t1) = eval(I, t2)

Figure 2.1: Evaluation of terms and formulae.

An interpretation I is a pair I = (Iv, I f ). Iv is a mapping from variable or memory
names to booleans, integer values, or memories. I f is a mapping from function names
to functions.

We define function eval which for a given interpretation evaluates a given formu-
la/term. A recursive definition of eval is given in Figure 2.1.

An interpretation I satisfies a formula ψ, written I |= ψ, if ψ evaluates to true under
I, i.e. I |= ψ , eval(I, ψ) = True.

For a given function interpretation I f , a formula ψ can be treated as a predicate ψI f

over the domain of the formula’s variables. Formally, let x1, . . . , xn be all variables
occurring in ψ, then the corresponding predicate is defined as follows:

ψI f (v1, . . . , vn) ,
(Iv, I f ) |= ψ ∧ Iv(x1) = v1 ∧ · · · ∧ Iv(xn) = vn

Similarly, we use notation ψ(Iv) to denote the result of substitution of all variables in
ψ with values specified by Iv.

2.1.2 Kripke Structures

Transition systems are modelled as Kripke structures. A Kripke structure K over a set
of atomic propositions AP is defined as a quintuple K = (AP, S , S 0,R, L), where

• S is a finite set of states,

• S 0 ⊆ S denotes the set of initial states,

• R ⊆ S × S is a total transition relation: ∀s ∈ S .∃s′ ∈ S . (s, s′) ∈ R
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• L : S → 2AP is a labeling function, which maps each state to the set of
propositions that hold in that state.

Definition 2.1 (Simulation)
A relation B ⊆ S × S ′ is a simulation of two Kripke structures K and K′, if for all
elements (s, s′) ∈ B:

• K′.AP ⊆ K.AP

• (K.L(s) ∩ K′.AP) ⊆ K′.L(s′)

• ∀s1. (s, s1) ∈ K.R −→ ∃s′1. (s′, s′1) ∈ K′.R ∧ B(s1, s′1)

We say K′ simulates K, written as K′ � K, if there is a simulation relation B, such
that:

∀s ∈ K.S 0. ∃s′ ∈ K′.S 0. B(s, s′)

Definition 2.2 (Bisimulation)
A relation B ⊆ S × S ′ is a bisimulation of two Kripke structures K and K′ if for all
elements (s, s′) ∈ B:

• K.AP = K′.AP

• K.L(s) = K′.L(s′)

• ∀s1. (s, s1) ∈ K.R −→ ∃s′1. (s′, s′1) ∈ K′.R ∧ B(s1, s′1)

• ∀s′1. (s′, s′1) ∈ K′.R −→ ∃s1. (s, s1) ∈ K.R ∧ B(s1, s′1)

Two Kripke structures K and K′ are called bisimular, written K ≈ K′, if a
bisimulation B of K and K′ exists, such that:

• ∀s ∈ K.S 0. ∃s′ ∈ K′.S 0. B(s, s′)

• ∀s′ ∈ K′.S 0. ∃s ∈ K.S 0. B(s, s′)

Context of Kripke Structures

Kripke structures can be represented in ELF by specifying a context function. The
context of a Kripke structure K is a set of ELF formulae unambiguously describing
K. The initial states, the transition relation, and the labeling function are considered
as predicates over the state variable s and over the pairs (s, s′) of the state and the
next state variables. For a given function interpretation If , we can describe a Kripke
structure by the following predicates:

• ψ
I f
S 0

– holds for all initial states, i.e. ψS 0(s)⇔ s ∈ S 0
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• ψ
I f
R – holds for all pairs of states in the transition relation, i.e.

ψR(s, s1)⇔ (s, s1) ∈ R

• ψ
I f
ap – holds for those states which possess atomic proposition ap, i.e.

ψap(s)⇔ ap ∈ L(s)

Formally, a context of a Kripke structure K parametrized by a function interpreta-
tion I f , noted co(K I f ), is given by the following triple:

Definition 2.3 (Kripke structure context)

co(K I f ) , (ψI f
S 0
, ψ

I f
R , {ψ

I f
ap | ap ∈ K.AP})

A state s of a Kripke structure may consist of many components. We use the
notation s.x to denote component x in the state s. Then, the ELF formulae, which are
used to describe a Kripke structure, are defined over state variables s.x, s.y and so on.
When it is clear from the context, we drop the prefix s and directly use the names x, y.

Example 2.1
Consider a Kripke structure K. It consists of two states 1 and 2 which are marked
with labels a and b. State 1 is the initial state. There are two transitions: one from
state 1 to state 2, and another is a loop-transition in the state 2. co(K) presents the
context of the Kripke structure, where s denotes the current state and s′ the next state.

1
{a}

2
{a,b}

K :

S ≡ {1, 2}
S 0 ≡ {1}
R ≡ {(1, 2), (2, 2)}
AP ≡ {a, b}

L ≡ λx.

{a} : x = 1
{a, b} : x = 2

co(K) :

ψS 0(s) ≡ s = 1
ψR(s, s′) ≡ (s = 1 ∧ s′ = 2) ∨

(s = 2 ∧ s′ = 2)
ψa(s) ≡ s = 1 ∨ s = 2
ψb(s) ≡ s = 2

2.1.3 Temporal Logic

Properties of Kripke structures are described via temporal logic [CGP99]. Temporal
logic is a formalism for describing sequences of transitions between states in a system,
and it uses atomic propositions and boolean connectives to describe properties of
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ψ ::= ap ∈ AP | ψ1 ∧ ψ2 | ¬ψ |

E φ | A φ

φ := ψ | φ1 ∧ φ2 | ¬φ |

X φ | F φ | G φ | φ1 U φ2

Figure 2.2: Syntax of CTL∗.

states. There are many different temporal logics, and the most common ones are CTL∗,
ACTL∗, LTL, and CTL.

In CTL∗ formulae describe properties of computation trees. A computation tree
is computed by unwinding a Kripke structure into an infinite tree with a root from
the set of initial states. CTL∗ formulae consist of state formulae and path formulae
(Figure 2.2). A state formula ψ is either an atomic proposition, conjunction of two
state formulae, negation of a formula, or a quantified path formula. In the latter case, if
φ is a path formula, the state formula E φ specifies that φ holds along at least one path,
and A φ specifies that φ holds along all paths. The operators E and A are called path
quantifiers. A path formula φ is either a state formula, conjunction of path formulae,
negation of a path formula, or application of temporal operators X, F, G, and U. CTL∗

is the set of all state formulae. In the following, we formally define the semantics of
CTL∗ with respect to a Kripke structure K.

A path in K is a branch in a computation tree computed from K, i.e. it is an infinite
sequence of states π such that:

∀i ≥ 0. (πi, πi+1) ∈ K.R

We write πi to denote a sub-path of π starting at position i. We define an operator |=
which evaluates a given CTL∗ formula. We denote by (K, s) |= ψ that a state formula
ψ holds in the state s. Similarly, if φ is a path formula, (K, π) |= φ specifies that φ
holds along path π. Figure 2.3 shows the definition of the operator |=.

Example 2.2
Let us specify several CTL∗ properties for the Kripke structure from Example 2.1.

1. AF b – in all paths there is a state where b holds

2. AG(b −→ X a) – in all paths at every state if b holds, there is a successor state
where a holds, where (b −→ X a) is a shorthand for ¬(b ∧ ¬(X a)).

3. b – in the initial state b holds

The first two properties hold for the Kripke structure, and the last one, obviously, does
not hold.
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(K, s) |= ap , ap ∈ L(s)
(K, s) |= ψ1 ∧ ψ2 , ((K, s) |= ψ1) ∧ ((K, s) |= ψ2)
(K, s) |= ¬ψ , ¬((K, s) |= ψ)
(K, s) |= E φ , ∃π. π(0) = s ∧ (K, π) |= φ exists
(K, s) |= A φ , ∀π. π(0) = s ∧ (K, π) |= φ for all

(K, π) |= ψ , (K, π(0)) |= ψ

(K, π) |= φ1 ∧ φ2 , ((K, π) |= φ1) ∧ ((K, π) |= φ2)
(K, π) |= ¬φ , ¬((K, π) |= φ)
(K, π) |= X φ , (K, π1) |= φ next
(K, π) |= F φ , ∃i. (K, πi) |= φ finally or eventually
(K, π) |= G φ , ∀i. (K, πi) |= φ globally
(K, π) |= φ1 U φ2 , ∃i. (K, πi) |= φ2 ∧

∀ j ∈ [0 : i[. (K, π j) |= φ1 until

Figure 2.3: Evaluation of CTL∗ formulae.

ACTL∗ is a subset of CTL∗ without E path quantifier.
There are two widely used subsets of CTL∗: CTL (computation-tree logic) and

LTL (linear-time logic). In CTL, every temporal operator must be immediately
preceded by a path quantifier. LTL consists of formulae of the form A f , where f can
only contain temporal operators, atomic propositions, and boolean connectives.

It is well-known that simulation preserves ACTL∗ properties and that bisimulation
preserves CTL∗ properties [CGP99].

2.2 Data Abstraction

Suppose a model description is given by a transition system, where the transition
relation is defined by a predicate over the current and the next state. This predicate
is described by means of equations, and does not make use of any domain specific
operations, such as integer addition. Such a transition system will only input, output,
propagate and compare values of variables with each other and hence all computa-
tions are domain independent. For example consider the following transition system
ψR(s, s′) ≡ s′.x = IT E(s.a = s.b, s.x, s.y). In this case the value of the component
s.y changes arbitrary. Assume we want to verify the temporal property G(s.x = s.y),
which states that (s.x = s.y) holds in each step during a run.

For this particular example assigning a domain of size three to x and y and a
domain of size two to a and b is sufficient for proving or disproving the temporal
property. This is the basic idea of our data abstraction algorithm, which we prove to
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be sound and complete, i.e. a temporal property holds on the transition system with
reduced domains, if and only if it holds on the original one. Its correctness relies on
the following basic observations:
• during a run the value of x either stays the same or it takes the value of y
• the values of variables x, y are neither compared, nor assigned to the variables

a or b
• the flow of data does neither depend on particular values of x and y, nor on

those of a and b, only the values of occurring equalities are important
• to maintain the values of the equalities appearing in the transition predicate and

in the property during a run, it suffices only to consider some finite domains for the
occurring variables.

In this section we present several variations of so-called small model property,
which specify a data abstraction for EL-formulae. Then, we show how this can be
applied for Kripke structures which are described in EL. We also prove that abstracted
and original Kripke structures are in is a bisimulation relation.

2.2.1 Small Model Property

There is a well-known definition of the small model property [PRSS02].

Definition 2.4 (Small model property)
A formula in equality logic enjoys the small model property if the formula is satisfi-
able/valid if and only if it is satisfiable/valid over a finite domain.

In order to utilize the mentioned property we need an algorithm which computes
the finite domains of the variables, such that their sizes preserve the formula satisfiabil-
ity. In general, the goal is to find a domain allocation function which maps the variable
names to the finite domains, which preserve satisfiability. There is a well-known
folklore theorem that specifies such a domain allocation function.

Theorem 2.1 (Folklore)
To preserve satisfiability of a formula, it is enough to give every non-boolean variable
in the formula a domain of size n, where n is the number of non-boolean variables.

The proof of this theorem is quite trivial and can be found, e.g. in [PRSS02]. It
is obvious that an algorithm implementing this theorem results in the state space nn.
A simple optimization is to consider equalities of the variables in the formula. The
following definitions simplify the introduction of the optimized algorithm.

Definition 2.5 (Related nodes)
The function rnodes recursively computes a set of terms which are compared (or
related) with each other in a given term/formula. Note that in this definition we are
interested in related nodes of a given term/formula, all subterms/subformulas are
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considered in the next definition.

rnodes(t1 = t2) , rnodes(t1) ∪ rnodes(t2)
rnodes(IT E(ψ, t1, t2)) , rnodes(t1) ∪ rnodes(t2)

rnodes(v) , {v}
rnodes(c) , {c}

Definition 2.6 (Related relation)
For a given formula ψ we define a related relation on subformulas as:

Rψ , {(e1, e2) | ∃e v ψ. {e1, e2} ⊆ rnodes(e)}

The transitive closure of Rψ we denote by Eψ.

It is easy to show that Eψ is an equivalence relation.
We use the notation JeKEψ to represent the equivalence class containing node e.

We denote by e1 ∼Eψ e2 the fact that two nodes e1 and e2 are in the same equivalence
class.

Algorithm 2.1 (Folkore+)
A naive optimisation of the algorithm induced by the folkore theorem works as
follows:

1. Compute the equivalence relation Eψ of formula ψ.

2. Assign to each variable x a new abstract domain of the size which equals the
cardinality of the corresponding equivalence class: | JxKEψ |.

3. Replace every constant occurring in the formula by a value from the new
abstracted domain, according to the following rule: two originally different
constants are replaced by two different abstract values. For example, let c1 and
c2 be two constants, and let c′1 and c′2 be two new abstract values. c1 and c2 are
replaced as follows: c1 ∼Eψ c2 −→ (c1 = c2 ⇔ c′1 = c′2).

This algorithm for a given EL formula ψ computes its abstracted version ψabs. The
abstracted formula ψabs differs from ψ only in constants and in domains of variables.
The following example illustrates the algorithm.

Example 2.3
Consider formula ψ ≡ z = IT E(c = a, x, y). Initially, the domains of all variables
are infinite, e.g. c ∈ Z, a ∈ Z, x ∈ N, y ∈ N, and z ∈ N. We see that variable
a and constant c are not related to the variables {x, y, z}. The algorithm splits all
variables and constants into two equivalence classes {a, c} and {x, y, z}. It also assigns
to variables a a domain of size two, constant c receives a value from the new domain
of a, and other variables receive a domain of size three. Formally, a′ ∈ {1, 2}, c′ = 1,
x′ ∈ {3, 4, 5}, y′ ∈ {3, 4, 5}, and z′ ∈ {3, 4, 5}. The abstracted formula ψabs has the
form: ψabs ≡ z′ = IT E(c′ = a′, x′, y′).
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In the worst case, when all variables are compared with each other, the reduced
state space has still size of nn. There are other sophisticated reductions [Str02,
PRSS02, BV00]. However, these algorithms work only for formulae and cannot be
extended for the abstraction of Kripke structures due to the next-state computation.

Next, we note an interesting fact on how the values from the original and the
reduced domains can be related.
Definition 2.7
Given an EL formula ψ, its abstraction ψabs, an original and an abstracted interpretation
s and sabs respectively. We define a mapping between the values of the interpretations
as follows: whenever two variables are compared with each other in the formula, we
require their abstracted values to be the same if and only if their original values are.
The same must hold for comparisons between the variable values and the constants.

AEψ(s, sabs) ,
∀x y c.

s.x ∼Eψ s.y −→ (sabs.x = sabs.y⇔ s.x = s.y) ∧
s.x ∼Eψ c −→ (sabs.x = cabs ⇔ s.x = c)

Given such a relation, we can establish the following fact:

Lemma 2.2
For any EL formula ψ, formula abstraction ψabs and two interpretations s and sabs

the following holds:

AEψ(s, sabs) −→ ψ(s)⇔ ψabs(sabs)

Proof. Recall that formulae ψ and ψabs are equivalent except the domains of the
variable and the values of the constants. These differences can only affect values of
the equalities in the formulae. Thus, our goal (ψ(s)⇔ ψabs(sabs)) holds, if the values
of the equalities in ψ match the values of the corresponding equalities in ψabs and vise
versa. The definition of AEψ guarantees that if two variables are compared, either
directly or transitively, then their values match in the original formula if and only if
their values match in the abstracted formula. This is enough to preserve the values of
all equalities.

We define an extended version of relation A for formulae which depend on two
interpretations:
Definition 2.8

Aex
Eψ

((s, sabs), (s′, s′abs)) ,

AEψ(s, sabs) ∧ AEψ(s′, s′abs) ∧
∀x y. s.x ∼Eψ s′.y −→ (sabs.x = s′abs.y⇔ s.x = s′.y)
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The following lemma is a reinterpretation of Lemma 2.2:

Lemma 2.3
For any EL formula ψ, formula abstraction ψabs and four interpretations s, s′, sabs,
and s′abs the following holds:

Aex
Eψ((s, sabs), (s′, s′abs)) −→ (ψ(s, s′)⇔ ψabs(sabs, s′abs))

2.2.2 Data Abstraction for Kripke structures

We have just presented how the domains of the variables, which occur in a formula,
can be reduced. In this section we present an algorithm which, for a given Kripke
structure, reduces the domains of all state variables by exploiting the small model
property. At the moment we assume that a given Kripke structure K contains no
function symbols, i.e. it has neither memories nor uninterpreted functions.

The basic idea for the domain reduction of a Kripke structure is to analyze the
context of the Kripke structure and to exploit the small model property. For a given
Kripke structure K the algorithm can be straightforward described as follows:

Algorithm 2.2
1. Compute the context co(K) of K.

2. Add all pairs of state variables s.x and the corresponding next state variables
s′.x to the same equivalence class.

3. Compute the equivalence relation Eψ for each context formula ψ.

4. The equivalence classes of different formulas may intersect. We merge these
intersecting equivalence classes. The result is again an equivalence relation. We
denote it by EK .

5. Assign to each variable s.x a new abstract domain of the size of the cardinality
of the corresponding equivalence class: | JxKEK |.

6. Replace every constant, which occurs in the context, by a value from the new
abstracted domain. Two originally different constants are replaced by two
different abstract values: ∀c1. ∀c2. c1 ∼EK c2 −→ (c1 = c2 ⇔ c′1 = c′2).

7. Construct the abstracted Kripke structure Kabs from the updated context.

In the worst case this algorithm computes a Kripke structure with the state space
(2 ∗ n)2∗n, where 2 ∗ n is the number of state and the next state variables.

We want to show that a Kripke structure K and its abstracted version Kabs are
in a bisimulation. Basically, we have to show that the truth values of all equalities
in the description of K and Kabs have the same behavior. Thus, we need a suitable
bisimulation relation which utilizes this fact, e.g. it should guarantee that if two state
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variables are in the same equivalence class, their abstracted values during a run must
be equal if and only if their original values are.

We define such a relation on the base of the relation A (Definition 2.7). Note, the
formulae in the contexts of a Kripke structure range over state and next state variables.
Therefore, AEK would relate the original transitions with abstracted transitions, i.e.
AEK relates concrete pairs of states (s, s′) with abstracted ones (sabs, s′abs). We derive
definition of AEK from the definition of Aex

Eψ
:

Definition 2.9

AEK ((s, s′), (sabs, s′abs)) ,
∀x y c.

s.x ∼EK s.y −→ (sabs.x = sabs.y⇔ s.x = s.y) ∧
s.x ∼EK c −→ (sabs.x = cabs ⇔ s.x = c) ∧
s′.x ∼EK s′.y −→ (s′abs.x = s′abs.y⇔ s′.x = s′.y) ∧
s′.x ∼EK c −→ (s′abs.x = cabs ⇔ s′.x = c) ∧
s.x ∼EK s′.y −→ (sabs.x = s′abs.y⇔ s.x = s′.y)

For Kripke structures the relation AEK is, in some sort, symmetric in the structure.
It consists of three kinds of equalities:

1. equalities including only the current state variables

2. equalities including only the next state variables

3. equalities including the state variables and the next state variables

The first and the second groups contain identical equalities, but in the first group
the rules are stated about to the current state variables and the second group about the
next state variables. This is because the state and the next state variables are added
pair-wise to the same equivalence class (Algorithm 2.2).

We introduce two additional predicates which relate original and abstract states of
a Kripke structure:

Definition 2.10

BEK (s, sabs) ,
∀x y c.

s.x ∼EK s.y −→ (sabs.x = sabs.y⇔ s.x = s.y) ∧
s.x ∼EK c −→ (sabs.x = cabs ⇔ s.x = c)

Baux
EK

((s, s′), (sabs, s′abs)) ,
∀x y. s.x ∼EK s′.y −→ (sabs.x = s′abs.y⇔ s.x = s′.y)
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We can prove that AEk can be represented in terms of BEK and Baux
EK

:

Lemma 2.4

AEk ((s, s′), (sabs, s′abs)) =

BEK (s, sabs) ∧ Baux
EK

((s, s′), (sabs, s′abs)) ∧ BEK (s′, s′abs)

The following three lemmata define how A and B relations for Kripke structures
are related with A relation for formulae. Proofs for these lemamata are based on
definitions of relations A and B, Lemma 2.2, and Lemma 2.3.

Lemma 2.5
Let K be a Kripke structure. Let s and sabs be an original state and the corresponding
abstract state. If these states are in relation w.r.t. BEK , they are in relation w.r.t. A for
initial predicate ψS 0 .

BEK (s, sabs) −→ AEψS 0
(s, sabs)

Lemma 2.6
Let K be a Kripke structure. Let s and sabs be an original state and the corresponding
abstract state. If these states are in relation w.r.t. BEK , they are in relation w.r.t. A for
every atomic proposition formula ψap.

BEK (s, sabs) −→ ∀ap ∈ K.AP. AEψap
(s, sabs)

Lemma 2.7
Let K be a Kripke structure. Let s and sabs be be an original state and the correspond-
ing abstract state. Let s′ be a successor state of s and s′abs be a successor state of sabs.
If these states are in relation w.r.t. BEK , they are in relation w.r.t. Aex for transition
predicate ψR.

AEK ((s, s′), (sabs, s′abs)) −→ Aex
EψR

((s, sabs), (s′, s′abs))

Recall that a bisimulation relation for two Kripke structures requires a relation
between states (see Definition 2.2). Therefore, we select BEK as the simulation
relation.

Lemma 2.8
BEK is a bisimulation.



30 CHAPTER 2. IHAVEIT

s s′

sabs
s′abs

R(s, s′)

B(s, sabs)

Rabs(sabs, s′abs)

B(s′, s′abs)

Figure 2.4: A part of bisimulation relation.

Proof. We have to show three goals:

1. BEK (s, sabs) −→ ∀ap ∈ K.AP. ψap(s)⇔ ψabs
ap (sabs)

2. BEK (s, sabs) −→ (∀s′. ψR(s, s′) −→ ∃s′abs. ψ
abs
R (sabs, s′abs) ∧ BEK (s′, s′abs))

3. BEK (s, sabs) −→ (∀s′abs. ψ
abs
R (sabs, s′abs) −→ ∃s′. ψR(s, s′) ∧ BEK (s′, s′abs))

Case 1: This goal is proven by the usage of Lemma 2.6 and Lemma 2.2.

Case 2: To prove this goal we have to find a state s′abs such that there exists
a transition from sabs to s′abs and s′abs is in the bisimulation with s′. In other
words having BEK (s, sabs) and ψR(s, s′) we have to prove ∃s′abs. ψ

abs
R (sabs, s′abs) ∧

BEK (s′, s′abs) (Figure 2.4). To prove this existence it is enough to find a s′abs such that
AEK ((s, s′)(sabs, s′abs)) holds. This is because, AEK implies BEK (s′, s′abs) (Lemma 2.4)
and the existence of the transition in the abstracted model (Lemma 2.7 and Lemma 2.3).
Thus, our goal is

∃s′abs. AEK ((s, s′)(sabs, s′abs))

We rewrite it by the application of Lemma 2.4

∃s′abs. BEK (s, sabs) ∧ Baux
EK

((s, s′), (sabs, s′abs)) ∧ BEK (s′, s′abs)

In the assumptions we already have BEK (s, sabs) and hence the new goal is:

∃s′abs. Baux
EK

((s, s′), (sabs, s′abs)) ∧ BEK (s′, s′abs)

Thus, our goal is to find suitable values for variables from the next-state s′abs.
Baux

EK
and BEK are defined for the variables from the same equivalence class. Thus,

we can select values for the variable from the abstract next-state s′abs based on the
equivalence classes of these variables.

The set of all values for a variable from s′abs is defined by its abstract domain
Dabs. The size of this domain is defined as the size of the corresponding equivalence
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class (Algorithm 2.2, step 5). For example, let us consider some state variable s.x
and its equivalence class Js.xKEK . Let the size of the equivalence class be n. Since we
add every pair of current and next-state variables into the same equivalence class
(Algorithm 2.2, step 2), this class contains n−k

2 state variables and n−k
2 next-state

variables, where k is the number of constants in the class.
Now we define an algorithm which assigns suitable abstract values to variables

from Js.xKEK . Let P be the set of variable names from the considered equivalence
class. Recall that this set contains n−k

2 names. Let freeval be the set of non-used
abstract values, i.e. they are used neither in the current state sabs nor as values of the
abstracted constants:

freeval , {v | v ∈ Dabs ∧ ∀x. sabs.x , v ∧ ∀cabs. v , cabs}.

We define function evid which constructs the sought abstract state. Function evid is
defined by recursion on the number of elements in P and takes three arguments: (i) the
set of variable names to be processed, (ii) the set of non-used abstract values, and
(iii) sp – state placeholder; sp has the the type of Kripke structure state and initially
all variables of the placeholder have undefined values. With every recursion step one
variables is processed, i.e. it receives an abstract value.

We use the shorthand {x} ∪ P to denote that a non-empty set can be represented
as a union of a singleton set and the rest of the set. The recursion stops when there
are no more variable names left.

s′abs , evid(P, freeval, sp)

evid({}, freeval, sp) , sp
evid({x} ∪ P, freeval, sp) ,
Case 1: ∃y. s′.x = s.y ∧ s′.x ∼EK s.y

let sp.x := sabs.y
in evid(P, freeval, sp)

Case 2: ∃c. s′.x = c ∧ s′.x ∼EK c
let sp.x := cabs

in evid(P, freeval, sp)
Case 3: ∃z. s′.x = s′.z ∧ s′.x ∼EK s′.z ∧ z < ({x} ∪ P)

let sp.x := sp.z
in evid(P, freeval, sp)

Case 4: else
let val := Some val. val ∈ freeval

sp.x := val
freeval′ := freeval \ {val}

in evid(P, freeval′, sp)
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In every recursion step of evid we distinguish four cases, which are processed in
the given order. In the first case we test whether the transition in the original model
makes the next-state variable s′.x equivalent to some current-state variable s.y. If this
is the case, we assign to the variable in the abstract next-state s′abs.x the value of the
current one, i.e. the value of sabs.y. This is required by Baux

EK
.

In the second case we test whether s′.x equals some constant. If this is the case,
we assign the value of the corresponding abstract constant to s′abs.x. This is required
by BEK .

In the third case we know that variable s′.x has a distinct value from all variables
in the current state s. However, it can have an equivalent value with a variable in
the next state s′. If there exists such a variable and we have already processed it
(z < ({x} ∪ P)), assign the corresponding value.

In the last step variable s′.x has a distinct value from all variables in the current
state. Moreover, it has a distinct value from all variables, which are processed so far,
in the next state. Thus, we have to assign to s′abs.x a non-used value. These four cases
guarantee the conditions required by BEK .

Note that this algorithm assumes that it can always pick up a non-used value from
f reeval. This holds because the algorithm makes n−k

2 iterations and in every iteration
it can pick up one non-used values. Therefore, the domain of size n−k

2 satisfies this
requirement.

The values for variables from other equivalence classes are computed by the
iterative application of evid to every equivalence class.

Case 3: This proof is easier because the original domains, from which we have
to select values during construction of s′abs, are infinite. The proof argumentation is
similar to the proof for case (2). �

Theorem 2.9

Kabs ≈ K

Proof. We choose BEK as the bisimulation. Thus, we have to show:

• ∀s. ψS 0(s) −→ ∃sabs. ψ
abs
S 0

(sabs) ∧ BEK (s, sabs)

• ∀sabs. ψ
abs
S 0

(sabs) −→ ∃s. ψS 0(s) ∧ BEK (s, sabs)

Proofs for these two goals repeat the argumentation of proofs of the previous lemma
for cases two and three respectively. �

2.3 Function Symbols

In this section we present several techniques for rewriting of the operations over
memory terms, i.e. rewriting of ELF-terms. Then, we introduce an algorithm which
eliminates applications of function symbols and memories in Kripke structures.
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2.3.1 Rewriting Algorithms

The following definitions simplify the introduction of the rewriting algorithms. We
extend the function rnodes with memories and memory operations.

Definition 2.11 (Related nodes+)
Function rnodes computes set of terms (nodes) which are compared with each other.
For a read operation such a node is the read-term itself. For a write operation we add
into the result set the term which represents the updated memory (i.e. the write-term
itself) and the original memory.

rnodes(t1 = t2) , rnodes(t1) ∪ rnodes(t2)
rnodes(IT E(ψ, t1, t2)) , rnodes(t1) ∪ rnodes(t2)

rnodes(v) , {v}
rnodes(c) , {c}

rnodes(read(t1, t2)) , {read(t1, t2)}
rnodes(write(t1, t2, t3)) , rnodes(t1) ∪ {write(t1, t2, t3)}

rnodes(m) , {m}

We define the set of all address terms which are used in the read operations from
a given memory m in a given formula f .

Definition 2.12 (Used read addresses)

RAdd f (m) , {a | ∃mt. ∃at. read(mt, at) v f∧
JmKE f ∩ rnodes(mt) , ∅ ∧ a ∈ rnodes(at)}

Similarly, we define the set of all address terms which are used in the write
operations to a given memory m in a given formula f .

Definition 2.13 (Used write addresses)

WAdd f (m) , {a | ∃mt. ∃at. ∃dt. write(mt, at, dt) v f∧
JmKE f ∩ rnodes(mt) , ∅ ∧ a ∈ rnodes(at)}

We define the set of all used address terms as the union of the read and the write
addresses.
Definition 2.14 (Used addresses)

Add f (m) , RAdd f (m) ∪WAdd f (m)
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Memory equality in formulae

The semantics of memory equality is a test whether two memories have equal values
in all their cells. An interesting fact is that one can replace a memory equality by
a finite set of equalities of memory cells, such that the truth value of the original
equality is preserved. The selection of these “representative” memory addresses (or
cells) can be deduced from the formula. It includes all used addresses and one “fresh”
non-constrained address term per memory equality. This term represents an arbitrary
access to the rest of the memory. The need for the fresh terms can be illustrated
by the following example. Let us compare two memory terms: write(mt1, at, dt) =

write(mt2, at, dt). If we only test whether these memory terms have the equal values
in at, we will miss the initial values of mt1 and mt2. Therefore, we have to consider at
least one another address which differs from at. We rewrite the original formula with
the preservation of its truth value as follows:

write(mt1, at, dt) = write(mt2, at, dt) ≡

write(mt1, at, dt)(at) = write(mt2, at, dt)(at)∧
write(mt1, at, dt)(at1) = write(mt2, at, dt)(at1)

where at1 is a fresh variable (or address term), which is not used in the formula. In
the following we define the rewriting algorithm formally.

We introduce a set of fresh variables EqAdd f (m). The number of these variables
is defined via the size of the equivalence class JmKE f . This set has two properties:

• | EqAdd f (m) | = | JmKE f | −1

• ∀at ∈ EqAdd f (m). at @ f

We add the set of the fresh variables to the set of used addresses for a memory m
in a formula f :

AddSet f (m) , Add f (m) ∪ EqAdd f (m)

Lemma 2.10
The function AddSet computes the same set for all memories from the same equivalence
class:

∀m1.∀m2. m1 ∼E f m2 −→ AddSet f (m1) = AddSet f (m2)

Algorithm 2.3
The rewriting algorithm replaces every equality e of the form mt1 = mt2 in a given
formula f as follows:

• Compute the set of related nodes for the equality: rset = rnodes(e)

• Compute the set of used address terms. It is enough to consider any element m
from rset: adset = AddSet f (m)
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• Replace the memory equality by the conjunction of the memory read operations:∧
at∈adset

read(mt1, at) = read(mt2, at)

We denote the rewritten formula ψ by ψrw1 . The algorithm 2.3 preserves the
satisfiability.

Lemma 2.11
(∃J. |= ψ)⇔ (∃I. I |= ψrw1)

To prove this lemma we define an auxiliary lemma (Lemma 2.13) which is a
custom version of Lemma 2.11. First we introduce an additional notation: Let I and J
be two interpretations for two disjoint sets of variables S I and S J respectively. We
use the notation I ∪ J to denote the interpretation for variables from the union of the
disjoint sets. Formally, (I ∪ J)(v) , if v ∈ S I then I(v) else J(v).

We prove a lemma which states the fact that we can always find an interpretation
for fresh variables which preserves the values of memory equalities.

Lemma 2.12
Let {mt0, . . . ,mtn} represent all memories from an arbitrary equivalence class of a
formula ψ. Let J = (Jv, J f ) be an interpretation. Let ψrw1 be the rewritten formula.
Let {at0, . . . , atn−1} be the set of freshly introduced variables. We show that there exists
an interpretation Ia for fresh variables {at0, . . . , atn−1} such that memory equalities in
ψ and ψrw1 have the same values:

∃Ia. ∀i, j ≤ n.
eval(J,mti = mt j)⇔

∧
k<n eval((Jv ∪ Ia, J f ), read(mti, atk) = read(mt j, atk))

Proof. We prove Lemma 2.12 by induction on the number of memory equalities.
In the induction base we have one memory equality, and hence, two memory terms

mt0 and mt1 and one fresh variable at0 (see Algorithm 2.3, second step). If these
memory terms are equal we select such an Ia which maps at0 to an arbitrary value.
Otherwise, we select such an Ia which maps at0 to a value which addresses a cell with
different content, i.e. eval(mt0)(Ia(at0)) , eval(mt1)(Ia(at0)).

Now we make an induction step n 7→ n + 1. By the induction hypothesis we know
that there exists Ia such that for fresh variables {at0, . . . , atn−1} and memory terms
{mt0, . . . ,mtn} the goal holds, i.e.

∀i ≤ n, j ≤ n.
eval(J,mti = mt j)⇔

∧
k<n eval((Jv ∪ Ia, J f ), read(mti, atk) = read(mt j, atk))

In the induction step we add a fresh variable atn and a new memory term mtn+1. Let
I′a be interpretation for the fresh variable atn. Thus our goal is:

∃Ia, I′a. ∀i ≤ n + 1, j ≤ n + 1.
eval(J,mti = mt j)⇔

∧
k<n eval((Jv ∪ Ia ∪ I′a, J f ), read(mti, atk) = read(mt j, atk))
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If mtn+1 is equal to any of mti where i ≤ n, the proof is trivial because we can substitute
mtn+1 by an equal memory and select for atn any interpretation.

Now we consider the case mtn+1 is not equal to any of the mti. We instantiate
Ia from the induction hypothesis in the induction step, and thus, we have to find a
suitable interpretation for only atn:

∃I′a. ∀i ≤ n + 1, j ≤ n + 1.
eval(J,mti = mt j)⇔

∧
k≤n eval((Jv ∪ Ia ∪ I′a, J f ), read(mti, atk) = read(mt j, atk))

Now we apply the induction hypothesis, apply the fact that all memories are not equal,
and drop the case where i = j to rewrite the goal as follows:

∃I′a. ∀i ≤ n. ¬
∧

k≤n eval((Jv ∪ Ia ∪ I′a, J f ), read(mtn+1, atk) = read(mti, atk))

Case 1: Let us consider the case where for all atk (where k < n) mtn+1 on these
addresses is equal to some mti, i.e.

∃i ≤ n. ∀k < n. eval((Jv ∪ Ia ∪ I′a, J f ), read(mtn+1, atk) = read(mti, atk))

In this case memories mtn+1 and mti must differ in at least one another cell because
mtn+1 is not equal to any mi. Thus, we select such an interpretation I′a which maps
fresh variable atn to the address of this cell.

Case 2: Here we consider the negation of the previous case:

∀i ≤ n. ∃k < n. eval((Jv ∪ Ia ∪ I′a, J f ), read(mtn+1, atk) , read(mti, atk))

In this case for all i there exists at least one atk which makes mtn+1 different from all
other mti. Thus, our goal holds and we can select an arbitrary interpretation for I′a.�

Lemma 2.13
Given an interpretation I = (Iv, I f ) of a formula ψ. Let ψrw1 be the rewritten formula.
Let Ia be an interpretation for all freshly introduced variables which preserves the
value of all memory equalities (see previous lemma). Then, the following holds:

(Iv, I f ) |= ψ⇔ (Iv ∪ Ia, I f ) |= ψrw1

This rewriting algorithm does not depend on the formula structure but only on
the memory equalities. Thus, we can apply this rewriting on a set of formulae, where
all memory equalities are rewritten simultaneously. Lemma 2.13 holds for every
rewritten formula.
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Memory equality in Kripke structures

The rewriting of a Kripke structure K consists of several steps:

• Compute the context of K

• Apply the memory rewriting to the context

• Translate the rewritten context to the Kripke structure Krw1

To show that the rewritten Kripke structure Krw1 simulates the original K, we
have to find a simulation relation (Definition 2.1). A suitable simulation relation Brw1

consists of two parts: the relation over the original state variables and the fresh address
variables. We relate the original state variables via the identity mapping. The fresh
variables do not exist in the original Kripke structure K. They are only present in Krw1 .
Therefore, we can select their values according to interpretation Ia which preserves
values of all memory equalities (see the proof for Lemma 2.11 for details).

Definition 2.15
Let P be the set of fresh variable names in Krw1 .

Brw1(s, srw1) , ∀x < P. srw1 .x = s.x ∧ ∀x ∈ P. srw1 .x = Ia(x)

Lemma 2.14
Brw1 is a simulation relation.

To prove this lemma we have to show two goals (Definition 2.1):

1. ∀ap ∈ K.AP. Brw1(s, srw1) ∧ ψap(s) −→ ψrw1
ap (srw1)

2. Brw1(s, srw1) ∧ ψR(s, s′) −→ ∃s′rw1 . ψ
rw1
R (srw1 , s

′
rw1) ∧ Brw1(s1, s′rw1)

Proofs for both goals are based on Lemma 2.13, Lemma 2.12, and partially repeat
the formal argumentation of the proof for Lemma 2.12, therefore, we omit these
proofs.

The rewriting algorithm guarantees the simulation relation between an original
and the rewritten Kripke structures, with Brw1 as the simulation relation.

Theorem 2.15
K � Krw1

Memory update rewrites

This rewriting technique eliminates combined read-write operations. We rewrite all
terms of the form read(write(mt, at1, dt), at2) by propagating the read operation:

read(write(mt, at1, dt), at2) ≡ IT E(at1 = at2, dt, read(m, at2)).

Obviously, this rewriting technique preserves satisfiability of a formula. Applica-
tion of this technique to a Kripke structure guarantees the bisimulation.
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The combination of this techniques with the one presented above allows us
to eliminate all memory equalities and memory write operations. The rewritten
formula/Kripke structure can only contain memory read operations. We denote the
rewritten formula ψ by ψrw and rewritten Kripke structure K by Krw. The rewritten
Krw only simulates the original K because the first rewriting technique can only
guarantee simulation relation.

2.3.2 Elimination of Function Symbols

Often, the actual definition of a function is irrelevant for the truth value of a formula,
i.e. this formula is valid for all interpretations of the function. In such a case one
could drop the function interpretations, and, hence, the functions are represented by
uninterpreted function symbols. This allows to reduce the description size of the model
and to abstract part of the model behavior. However, this can increase the state space
of the model, because the function symbols are modelled as mappings. In this section,
we present an algorithm which transforms an ELF-formula, without memory writes
and memory equalities, into a more simple EL-formula without function symbols. We
describe how this transformation can be applied to Kripke structures. We also prove
the soundness of the former transformation, i.e. the transformed Kripke structure
simulates the original one.

Application to formulae

Ackermann [Ack54] proposed a methodology for elimination of the function symbols
in an ELF formula. His proposal is to replace each function application f (x) by a
fresh variable fx, which is not used in the formula. Furthermore, he added several
restrictions to impose functional consistency: if the arguments of the original function
applications are equal, the fresh variables are equal too. He also proved that this
transformation preserves formulae satisfiability (and validity).

Burch and Dill’s approach to function elimination relies on the usage of ITE con-
structs [BD94]. For each syntactically different occurrence of a function application a
new ITE is added. For example, the three function applications f (x), f (y), and f (z)
are replaced by fx, IT E(x = y, fx, fy), and IT E(y = z, IT E(x = y, fx, fy), fz).

As the base for our algorithm we will use the Burch and Dill approach. We
denote the above outlined ITE-transformation of a formula ψ, to one without function
symbols, by ψ∗.

Lemma 2.16
Given a formula ψ and an interpretation I = (Iv, I f ). Let I∗v be an interpretation
for the fresh variables, which maps the fresh variables to the value produced by
the corresponding function application, e.g. I∗v ( ft) = I f ( f )(eval(I, t)). For the ITE-
transformed formula the following holds:

Iv ∪ I∗v |= ψ∗ ⇔ (Iv, I f ) |= ψ
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Figure 2.5: The lack of temporal function consistency leads to more interleaving runs.

This lemma captures exactly those interpretations of the fresh variables which
correspond to the result of the corresponding function application.

It is important to note that, the IT E-transformation only changes and depends on
the function applications in a formula, not on its structure. Hence, we can also apply
it to a set of formulae {ψ1, . . . , ψn}, where function applications in all formulae are
substituted simultaneously. For each ψ∗i of the resulting set the property of Lemma
2.16 holds.

Application to Kripke Structures

We apply the function elimination to a Kripke structure K, by first translating it
to a context. Then, we rewrite memory equalities followed by application of ITE-
transformation to the context. Finally, we translate the transformed context back to a
Kripke structure. The resulting Kripke structure is denoted by K∗.

The good news is that K∗ contains neither uninterpreted function applications nor
memory applications. The trade off is that K∗ contains the fresh domain variables,
which represent the result of the corresponding function applications. Note, since
memories only occur in the read and the write operations, and because these operations
are also eliminated we do not longer need to model the memories in the state space.
The temporal behavior of these fresh domain variables is not specified. Thus, they
can change non-deterministically and functional consistency over time is lost. In
particular, the memory semantics is not preserved any more. The ITE-transformed
Kripke structure K∗ contains more transitions than a “union” of all Kripke structures
K I f for all possible interpretations I f (Figure 2.5). For example, let f3 be a fresh
variable which represents the function application f (3). Then, at some point in time t
in a run of K∗, it can have value f t

3 = 3 but at the next point something else f3 = 4.
Thus, the “interpretation” of f in K∗ has been changed during the model run, that is
not possible in the non-transformed Kripke structure K I f .

Nevertheless, we can prove that K∗ simulates K:

Theorem 2.17
K∗ � K

We can build a Kripke structure which preserves more behaviour of K than K∗
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Figure 2.6: The IHaVeIt structure.

by the introduction of Temporal Functional Constraints (TFC). These constraints
restrict the behavior of the fresh domain variables, e.g. if the arguments of a function
application are equivalent at t and t + 1, the result of the function application should
be the same. We define TFC formally as follows:

∀a ∈ AddK∗(m). ∀b ∈ AddK∗(m). a′ = b −→ f ′a = fb

with AddK∗(m) ,
⋃

f∈co(K∗) Add f (m).
These constraints are added to the transition predicate of the transformed Kripke

structure K∗.
To conclude this section we note that an application of the presented rewriting

techniques eliminates all memory/function operations. However, this has its price: the
transformed Kripke structures are only simulations of the original ones. Therefore,
false negatives are possible.

2.4 Summary: Who Has It?

The answer to this question is: IHaVeIt [Tve05a] (Isabelle Hardware Verification
Infrastructure). IHaVeIt is a design and a verification environment, which is based on
the interactive theorem prover Isabelle/HOL. It is implemented in the Standard ML
language and is built in Isabelle/HOL as an oracle. The tool is available at the project
homepage [Tve05b].

The IHaVeIt task is the efficient automatic verification of temporal and combina-
tional properties from Isabelle/HOL [NPW02]. The main contribution of the tool is
the introduction of a symbolic level pre-processor for Kripke structures. This prepro-
cessor implements the transformation algorithms, which have been described above.
Thus, IHaVeIt itself can not prove any lemmas, it transforms a given formula/Kripke
structure and passes it to an external tool. IHaVeIt employs automatic tools such as
model checkers (NuSMV [CCG+02], Cadence SMV [McM99]), and SAT solvers as
back ends.

IHaVeIt has a modular structure and has the following component (Figure 2.6):
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• parser for a subset of Isabelle/HOL language,

• elimination of function symbols (Section 2.3),

• data abstraction (Section 2.2.2),

• pretty-printers for NuMSV, SAT, Cadence SMV1, and Verilog2.

2.4.1 Hardware in Isabelle/HOL

The higher order logic (HOL) gives the user the freedom to define almost anything
she/he has in mind. However, the hardware designs in this thesis have to be synthesiz-
able into real hardware, e.g. designs have to be translatable into Verilog. Moreover,
these designs are inputs for the external automatic tools, which we use to reduce
the user’s work. In this section, we present a suitable subset of Isabelle/HOL for
description of the desired hardware designs.

Types

We employ a fragment of the Isabelle/HOL language which consists of expressions
involving the following types: booleans, bit vectors, naturals, integers, lists, functions,
finite enumerations, and records. We shrink the infinite types, e.g. naturals and
lists, by means of predicate sets. A predicate set defines the set of all elements
satisfying a given predicate. We defined in Isabelle/HOL a library of predicate sets
for the supported types3, e.g. bv n(n) and arr of (n, t) specify the set of bit vectors
of the length n and the set of arrays of the length n with the elements of subtype t
respectively.

Expressions

We model the combinational circuits in Isabelle/HOL via expressions. These ex-
pressions are built up as usual Isabelle/HOL expressions which are either standard
operators (e.g. plus, list head and tail) or user-defined functions. We support four kinds
of user-defined functions: non-recursive functions, sub-typed lambda expressions,
recursive functions, and uninterpreted functions. Non-recursive functions are built
up via combination of the Isabelle/HOL operators. Sub-typed lambda expression is
a wrapper for Isabelle’s lambda term which is only defined if the argument for the
lambda expression is of the correct sub-type. We use function AbsSubtyped to denote
such an expression, for example:

AbsSubtyped((λx. x + 1), nat range(0, 4)) , λx.

x + 1 : x ∈ nat range(0, 4)
arbitrary : else

1This is joint work with Hristo Tzigarov.
2This is joint work with Andrey Shadrin.
3See Appendix A for the full description.
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The expression AbsSubtyped((λx. x + 1), nat range(0, 4))(y) is only defined if y is in
a natural number between 0 and 4.

The user can define recursive functions either by recursion on natural numbers
or the length of a list. During the translations to the external tools or Verilog, all
applications of recursive functions are unrolled into the set of non-recursive function
calls. Based on the early experience in hardware design and verification, these two
types of recursion are enough to build and verify huge and complex designs, e.g. the
VAMP processor [Krö01, Dal06, Bey05] and the work in this thesis.

Uninterpreted functions are introduced by defining the function name and its
signature. The signature consists of a set of the subtypes for the inputs and a subtype
for the output of the function. These functions are mostly used for the verification
purposes, and they allow abstraction of the model without changing it. We demonstrate
their usage in Section 2.4.2. These functions are translated to Verilog as modules
without bodies, e.g. the user can insert in there the hardware designs which are not
modelled in Isabelle/HOL.

Theorems

IHaVeIt targets two kinds of theorems: combinational and temporal ones. A combina-
tional theorem is an expression of boolean type where all free variables have to be
quantified over their subtypes, e.g.

∀ a ∈ arr of (4, bv n(8)). P(a),

where arr of (4, bv n(8)) specifies an array with four elements and each element is a
bit vector of length eight.

A temporal theorem is an LTL or a CTL formula4 stated over a Kripke structure,
e.g.

K |=ltl ltl formula.

Kripke structure K is a triple (S , I,T ), where S is a predicate set, I is an initial
predicate, and T is a transition predicate defined in terms of the current and the next
state.

2.4.2 Functional Abstraction

A pure application of data abstraction to a given model and a given property may
only slightly reduce the model state. This is because the functions, which actually
are not relevant for the property, may violate the data independency of the model.
If we drop definitions of all defined functions (as we did in Section 2.3), we may
abstract too much behavior of the original model. Hence, it could lead to many false
negatives. Our approach is to drop the definitions of only those functions which are
indeed irrelevant to the property. IHaVeIt allows the user to mark these functions. The

4Appendix B.1 and Appendix B.2 describe the syntax and semantics of LTL and CTL supported by
IHaVeIt.
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user should only add the name of the function and its subtype to the assumptions of
the theorem, and IHaVeIt will treat this function as an uninterpreted one. Thus, the
user abstracts the model without actually doing any changes on it. Note, in most of the
related work this step is done informally. In this thesis, we verify huge and detailed
systems in Isabelle/HOL, where sub-systems are verified (semi-)automatically. This
requires a strong formalization of every proof step, also including the introduction of
the uninterpreted functions. For example, let us consider the following theorem:

∀a ∈ bv n(5). Q(a) ∈ bv n(32)
=⇒

(S , I,T ) |=ltl ltl f ormula

In this case, IHaVeIt treats the function Q as an uninterpreted one, which takes a bit
vector of length five and produces a bit vector of length 32. Thus, the theorem will
be proven for all interpretations of Q. Now, if we want to have this theorem for a
concrete definition of Q, we have to check whether this definition indeed satisfies the
specified signature, i.e. ∀a ∈ bv n(5). Q(a) ∈ bv n(32). IHaVeIt can also be used to
prove such theorems automatically.

2.4.3 Benchmarks

We demonstrate the efficiency of our environment via an automatic verification of two
different bit-level hardware designs: liveness of a pipelined machine and correctness
of a memory management unit. We run all experiments on a Dual AMD Opteron 2.4
GHz with 4 Gb RAM.

Processor

The processor is a 5-stage pipelined DLX-like machine which implements 36 32-bit
instructions (e.g. shifts, store, jumps, branch instructions). The data path width can
be set to any integer value and the verification time of our proofs is independent of
this value. The processor comprises 32 general purpose registers (GPR), 31 internal
registers (such as PC, DPC, instruction register), and the memory has type 230 → 232.
The model includes a delayed PC (DPC), as well as a three-stage forwarding and
stalling mechanism [MP00, Krö01]. The model description is 2778 line of code and
contains bit-level description of all parts, e.g. ALU, shifters. Our DLX machine is
similar to the most complex benchmark used in the recent related work (e.g. Manolios
et al.[MSV06]). We verified the processor liveness property which requires that an
instruction is eventually fetched and it eventually leaves the processor. We verify
this property by proving the liveness of the stalling logic of the processor.5 For the
five-stage processor, we have five stall signals. They control when the stage should be
stalled, i.e. no instructions in upper stages can proceed. We directly formulate this

5Here, we assume that the instruction memory and the data memory (memory busy signals) are
alive.
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theorem [Krö01] using LTL:

(S MA, IMA, δMA) |=LT L

GF(¬IMbusy) ∧ GF(¬DMbusy) −→ ∀1 ≤ i ≤ 5. GF(¬stalli)

This theorem states that if IMbusy and DMbusy signals are finitely often true, the
stall signal of every stage is finitely often true (i.e. every stage will be stalled for a
finite number of consecutive cycles). We also checked a version of the DLX processor
with a bug in the stalling engine. Table 2.1 shows the verification time of the correct
machine (dlx5) and the buggy machine (dlx5b). The results are obtained by applying
NuSMV with and without preprocessing by IHaVeIt. The preprocessing makes the
application of this model checker feasible. Similarly, we compare IHaVeIt and SMV.
We run SMV with counterexample-based abstraction turned on. Here, we achieve
several time speed-up over plain usage of SMV.

Memory Management Unit

Memory Management Unit (MMU) is the hardware support for a virtual memory. The
virtual memory mechanism relies on a main memory (e.g. RAM) and a swap memory
(e.g. hard drive disk). An MMU is usually placed in the processor just before the
memory interface and it translates virtual addresses into physical ones. A processor
with an MMU runs in either the user mode or the system mode. In the system mode,
the MMU is not used. In this mode processor directly accesses the main memory. In
the user mode, the address translation has to be done, i.e. a virtual address is translated
to a physical one. Then, the physical address is used to access the main memory.
There are several cases when the translation is impossible, e.g. the accessed data are
not in the main memory, violation of access rights. In these cases MMU rises an
exception, the processor enters the system mode and executes a page fault handler.
For more details on virtual memory and MMU we refer the reader to [DHP05].

In this section we consider an MMU model, which is an optimization of the MMU
presented in [DHP05], and it has been implemented by Dalinger. The optimized
MMU has a translation look-aside buffer (TLB), which caches the recently used
translations to speed-up the following translations. The MMU design is not really big.
However, to verify it the interfaces to/from the TLB, the processor, and the memory
have to be modelled. These interfaces increase the model state space drastically, e.g.
the memory has type 229 → 264.

The MMU correctness can be split according to the access type: read/write
translated/untranslated with/without exception. The correctness includes the following
assumptions: (i) proc i f correct – the processor interface to the MMU has a correct
behavior (e.g. it doesn’t start a new request while a previous one is still running),
and (ii) mem i f correct – the main memory interface to the MMU is correct (e.g.
the memory is alive and its content is stable). We describe the correctness of the
untranslated read access [Dal06] without exception directly in LTL as follows:
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NuSMV NuSMV + IHaVeIt SMV SMV + IHaVeIt

dlx5 >2days 23 h 2.63 s 0.35s
dlx5b >2days 1 h 09 m 0.46 s 0.27s

mmu(read, weak) 1 m 24.27 s 0.43 s n.a n.a.
mmu(write, weak) 1 m 24.27 s 0.43 s n.a n.a.

mmu(read, strong) >2days 1.61 s n.a n.a.
mmu(write, strong) >2days 2.14 s n.a n.a.

Table 2.1: Comparison of verification time with and without preprocessing by IHaVeIt;
n.a. – not applicable because of LTL past operators in the formula.

(S MMU , IMMU , δMMU) |=LT L proc i f correct ∧ mem i f correct −→
G (uread req start ∧ (X¬mmu out excp) −→
¬end req U (end req ∧ mmu out data correct))

This lemma states that if there is a read request from the processor and the MMU
doesn’t generate an exception then (i) eventually the end of the request is signalled
by the MMU and the output data is the content of the memory cell on the translated
address, and (ii) in between there was no request end, i.e. no requests are lost by
MMU. Table 2.1 shows verification time for the untranslated read and write accesses.
We tried two different property formulations: a weak formalization requires some
additional user work to reuse it in the processor verification; a strong one is the
formalization given in [Dal06]. In comparison to the plain application of NuSMV we
get several order magnitude speed-up. We could not apply the SMV because our LTL
formulae contain past temporal operators, which are not supported by SMV.

Cache System

A cache system is a part of a processor, which is responsible for the management of
the data transfer from/to the memory and its intermediate storage. The main purpose
of the cache system is to speed up most memory accesses without changing their
semantics. Thus, the task of a correct cache system is to simulate the behavior of a
memory and be transparent for the processor. Therefore, for each memory access
to some address the cache system should always return the last written data to this
address. If there was no write accesses to this address, some initial memory content
has to be returned. This property is often called data consistency.

Müller [Mül07] implemented and verified a simple cache system in Isabelle/HOL
with the help of IHaVeIt. This cache system consists of interconnected instruction
and data caches. Thus, it allows fetching a new instruction and reading/writing data
simultaneously. Müller automatically verified liveness of the whole cache system,
and control and data automata. He also noticed that the application of the algorithm
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for elimination of uninterpreted functions makes automatic verification of the data
consistency impossible. It is expected because the latter algorithm does not preserve
memory semantics (see Figure 2.5). This part of the proof he interactively carried out
in Isabelle/HOL.

Bus Controller

In a Verisoft subproject an automotive system was developed and verified. The
basic element of this system is an electronic control unit (ECU), which consists of a
processor and a bus interface. Several ECUs, which are connected via a bus, represent
the automotive system at the gate level. The implementation of this bus interface is
called automotive bus controller (ABC). The goal of the ABC is to provide

• a data exchange with the processor

• a mechanism for the message transmission

• a scheduling mechanism initiating the message transmission and providing a
common time base.

IHaVeIt has been heavily used in the verification of the ABC [ABK08], e.g. for
verification of the purely digital (non-real time) parts of the design.

Computer System

In the following section we present and verify a computer system, which consists of a
pipelined processor with out-of-order execution and external devices. Unfortunately,
the state-of-the-art automatic methods cannot automatically verify systems of such
complexity. Our strategy is to verify the system interactively in Isabelle/HOL and to
support our proofs by usage of IHaVeIt. In Section 3.4 we give a comparison of our
approach with a fully interactive one.
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Chapter 3

VAMPXT

The work in this chapter is a further development of the VAMP processor. The base for
the VAMP processor was designed and verified by Kröning [Krö01]. Jacobi [Jac02]
developed and verified the VAMP’s floating point units. The VAMP memory unit
and caches were designed and verified by Beyer [Bey05]. He also instantiated the
base model developed by Kröning with the floating point untis and the memory unit.
Dalinger [Dal06] extended the memory system with a memory management unit
(MMU), which is a hardware support for the virtual memory mechanism. In this
chapter, we consider the VAMP processor as the base of a computer system. The
latter requires several modifications in the design to allow the communication with
other parts of the system, i.e. with the external devices. This, of course, requires
re-considering the correctness proofs. The main contribution of this chapter is the new
version of the verified VAMP processor, which is designed to be used in a computer
system.

This chapter is organized as follows. In the following section we present a
specification of the VAMP processor and extend it with the interfaces for the external
devices. We introduce the VAMP on the gate level in Section 3.2. Section 3.3 presents
the VAMP correctness criterion, which was formally proved in the Isabelle/HOL
system.

3.1 The VAMP Specification

A processor specification is usually modelled as an automaton as seen by the pro-
grammer. A configuration of this automaton represents a processor state. It has the
regular components such as a memory, a register file, and a program counter. Every
automaton step corresponds to the execution of one instruction pointed by the program
counter. This automaton is usually called Instruction Set Architecture (ISA). We also
call it the processor specification.

The VAMP specification state consists of two program counters, three register files
and a memory. The two program counters realize a so-called delaed-PC mechanism
with one delay slot. In this mechanism the current PC update will not affect the next
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instruction but the instruction after the next one. These two program counters are
PC ∈ B32 and DPC ∈ B32. A complete formal description of the mechanism is given
by Müller and Paul [MP00].

The VAMP provides three sorts of register files: (i) general purpose registers GPR;
it consists of 32 registers of 32-bit width each; register 0 always contains zero, i.e. 032.
(ii) floating point registers FPR; it can be accessed as a register file with 32 32-bit
registers or as a register file with 16 64-bit registers. (iii) special purpose registers
SPR; it consists of 17 32-bit registers. These registers are used for various processor
management purposes, e.g. storing the interrupt causes and a number of exception
data, holding data for the virtual memory mechanism. The description of every SPR
register is given by Dalinger [Dal06, Chapter 3].

The VAMP specification memory M : B29 → B64 is a partial mapping. from
29-bit addresses to 64-bit data. We denote by MA the set of all addresses where the
memory M is defined.

Formally, an ISA configuration cP is a 6-tuple:

cP , (PC,DPC,GPR,FPR, SPR,M)

We use the notation cP.F to denote the state of one of the six configuration
components. We also introduce type CP to denote the type of the ISA configuration.

The ISA communicates with the external devices in two ways. First, ISA may
access the devices by reading or writing words over the so-called device input and out-
put interfaces, which are named difi and difos respectively.1 The naming conventions
difi and difos are from the device point of view. Second, the devices may interrupt the
processor by signaling the external events on the eev ∈ B19 channel.

We model difi ∈ Difi as the following tuple:

difi , (req,w, a, din)

where the active value of the boolean flag difi.req ∈ B signals the presence of a
request; the active value of the boolean flag difi.w ∈ B corresponds to a write access
and the inactive value to a read access; difi.a ∈ B30 specifies the accessed device and
its port; difi.din ∈ B32 provides the data for a write access. The device address difi.a
has the following format (Appendix C.2). The bits difi.a[29 : 13] have to be set to
ones and they specify that the devices are mapped above physical memory. The bits
difi.a[12 : 10] specify the accessed device and difi.a[9 : 0] specify the accessed device
port. Thus, we support up to eight devices with up to 1024 ports of width 32 bits.

The processor accesses a device when it executes a regular load/store access
to/from a device address difi.a, which is associated with the accessed device. This
access will be placed on the difi channel and the device answer will be read from the
difos ∈ B

32 channel. We denote by DA the set of all device addresses. Note that the
accesses to the device address space do not affect the processor memory.

1The s in difos stands for specification. We use s in order to distinguish the specification data from
the difo which is used in the implementation (Section 3.2.2) and has a slightly different type.
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In previous work the memory was treated as a total mapping. The introduction
of the memory mapped I/O devices takes away a part of the memory address space.
Thus, DA and MA represent the set of defined addresses. The processors can be used
with many or no devices. Therefore, we consider every instruction which accesses a
memory outside MA as an instruction with a legal device access. Thus, the absence
of accesses to the undefined addresses has to be guaranteed by the programmer. We
introduce a suitable software condition at the end of this chapter.

Now we introduce the next-state function ∆P of the processor specification. This
function is a revision of the function presented by Dalinger [Dal06]. The revision is
due to the introduction of the external devices. Whenever we use Dalinger’s definitions
we up-scribe them with the tag old, e.g. we denote by f old Dalinger’s definition of the
function f .

The ∆P function computes the next processor state c′P ∈ CP based on a given
previous state cP ∈ CP, an external interrupt vector eev ∈ B19, and data provided by
the devices difos ∈ B

32:
c′P , ∆P(cP, eev, difos)

In the following we develop the definition of ∆P.

The processor operates in one of two modes: user or system mode. These two
modes are distinguished by the value of the SPR register number 16 (the MODE
register). If bit zero has value 1, the processor operates in the user mode; otherwise
the processor is in system mode. We denote the value of this bit by vmode(cP) ,
cP.SPR[MODE][0]. In the user mode the processor uses address translations. In
this mode the addresses of all memory accesses (load, store, and instruction fetch)
are treated as virtual ones. They have to be first translated into the corresponding
physical addresses. The physical addresses are then used to execute the memory/device
accesses.

The main data structure for address translation is the page table. Every entry
in this table contains the address of a memory page and the flags which specify the
allowed access mode. This page table is saved in the processor memory. It can be
located via the page table origin (PTO) and the page table length (PTL). Both are
saved in the register bank SPR, PTO is the register number and 9 and PTL is number
10. We access these registers as cP.SPR[PTO] and cP.SPR[PTL].

The address translation of a virtual address va ∈ B32 is done in two steps. In
the first step one computes the page table entry address ptea ∈ B30. Function
compute ptea computes ptea based on a given processor configuration cP, and a
virtual address va.

ptea , compute ptea(cP, va)

In the second step one reads the page table entry, computes the physical address, and
checks the access mode.

The whole translation is computed by the function decodeitr [Dal06, Chapter 2].
This function, for a given processor configuration cP, a flag mw signaling the type of
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the access, and a virtual address va, computes the corresponding physical address. It
raises an exception, if the translation cannot be done.

(pa, excp) , decodeitr(cP,mw, va)

The semantics of the outputs is as follows: if the boolean flag excp has value 0,
pa ∈ B32 is the target physical address. If flag excp has value 1, the translation can
not be done (e.g. due to the page fault). In this case the pa output is a bit vector filled
with zeros and is considered to be invalid. We employ the function ipa(cP) to denote
the physical address for fetch access.

Definition 3.1

ipa(cP) , decodeitr(cP, 0, cP.DPC).pa

Note that function ipa is only used in the user mode. In the system mode the
processor does not use the virtual memory mechanism. All memory addresses are
directly interpreted as physical ones.

The fetch of an instruction can cause exceptions. Whenever the fetch address is
not word-aligned, we raise the instruction misalignment interrupt (imal).

Definition 3.2

imal(cP) , cP.DPC mod 4 , 0

We raise the instruction page fault exception ipf whenever the translation of the
fetch address can not be done or the fetch address points outside the processor memory
(i.e. instructions can only reside in MA). We also raise this interrupt if the page table
entry address ptea is not in the physical memory.

Definition 3.3

ipf (cP) , vmode(cP) ∧ (decodeitr(cP, 0, cP.DPC).excp ∨
ipa(cP)[31 : 3] < MA ∨
compute ptea(cP, cP.DPC)[29 : 1] < MA) ∨

¬vmode(cP) ∧ cP.DPC[31 : 3] < MA

The function IR computes (or fetches) an instruction which has to be executed in
the current configuration cP:

Definition 3.4
Let PCdata be the double word in the memory pointed to by the current program
counter, i.e.

PCdata ,


cP.M[cP.DPC[31 : 3]] : ¬ vmode(cP) ∧ ¬ imal(cP) ∧ ¬ ipf (cP)
cP.M[ipa(cP)[31 : 3]] : vmode(cP) ∧ ¬ imal(cP) ∧ ¬ ipf (cP)
064 : otherwise
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According to the second bit we select which part of the read double word we use as
the fetch result:

IR(cP) ,

 PCdata[63 : 32] : cP.DPC[2]
PCdata[31 : 0] : otherwise

The result of the application of IR is a bit vector which encodes the instruction.
There are many functions which decode the instruction characteristics (Appendix C).
For example, RS 1(cP) computes the address of the first operand in the register file,
RD(cP) computes the address of the destination register in the register file etc. We in-
troduce the predicate mem?(cP) which holds for all memory instructions, the predicate
word?(cP) which holds for the memory instructions with a word access (i.e., reading
or storing a 32-bit word), and the predicate mw?(cP) which holds for all memory
instructions with a write access.

The data memory accesses (loads and stores from/to memory or devices) are based
on the computation of the effective address.

Definition 3.5

ea(cP) , cP.GPR[RS 1(cP)] +32 sext(imm(cP))

where imm(cP) is the immediate constant of the instruction IR(cP) and sext computes
32-bit sign-extension version of imm(cP).

If the processor operates in the system mode and a memory instruction has to
be executed, ea(cP) computes a physical address. If the processor operates in the
user mode, ea(cP) defines a virtual address for the memory access. We employ the
shorthand dpa(cP) to denote the result of the address translation for the data access:

dpa(cP) , decodeitr(cP,mw?(cP), ea(cP)).pa

Note that function dpa is only used in the user mode.
There are two exceptions which can take place during a memory access. The data

misalignment exception (dmal) occurs whenever the access address is not aligned
with the access type, e.g. if we have a word access but the address is not word aligned
(for the formal definition see [Dal06, p. 42]).

The data page fault exception (dpf ) is raised if the address translation can not be
done, the page table entry is outside the processor memory, or physical address is
outside the processor memory.

Definition 3.6

dpf (cP) , mem?(cP) ∧ vmode(cP) ∧
(decodeitr(cP,mw?(cP), ea(cP)).excp ∨
compute ptea(cP, ea(cP))[29 : 1] < MA) ∨

mem?(cP) ∧ vmode(cP) ∧ dpa(cP)[31 : 3] < MA ∧ ¬word?(cP) ∨
mem?(cP) ∧ ¬ vmode(cP) ∧ ea(cP)[31 : 3] < MA ∧ ¬word?(cP)
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Note that dpf is also raised if the device access is not word-aligned. We use dpf ,
instead of dmal, to signal a misaligned device access because (i) this test may require
address translation, and (ii) this translation can already generate dpf exception.

Now we can define the step function for the memory.

Definition 3.7
We define an auxiliary function byteupd(bw, a, b) ∈ B8∗n, with n ∈ N. It takes a set of
bytes indices, which is encoded as a bit vector, bw ∈ Bn, and two bit vectors a ∈ B8∗n,
and b ∈ B8∗n. The result is a bit vector composed from bytes of a and b as follows:

| byteupd(bw, a, b) |i ,

| b |i : bw[i]
| a |i : otherwise

where 0 ≤ i < n.

Definition 3.8
Let bw ∈ Bn be the set of indices of bytes which have to be written.2 Let dest ∈ B64

be the data to be written to the memory.
The updated memory is computed as follows:

c′P.M ,



cP.M(ea(cP)[31 : 3] := byteupd(bw, cP.M(ea(cP)[31 : 3]), dest))
: mw?(cP) ∧ ¬ vmode(cP)∧
¬ dmal(cP) ∧ ea(cP)[31 : 3] ∈ MA

cP.M(dpa(cP)[31 : 3] := byteupd(bw, cP.M(dpa(cP)[31 : 3]), dest))
: mw?(cP) ∧ vmode(cP) ∧ ¬ dmal(cP) ∧
¬ dpf (cP) ∧ dpa(cP)[31 : 3] ∈ MA

cP.M : otherwise

In previous work the GPR and the FPR register files can only be updated by the
data which are already stored in the processor configuration: either in the register files
or the specification memory. Our model can additionally accept data from the external
devices, which are only used for load word operation. This corresponds to the load
operations on addresses from DA, or more exactly not from MA:

2See Appendix C, Table C.1, and Table C.4 for details.
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Definition 3.9

c′P.GPR[RD(cP)] ,



difos : lw?(cP) ∧ ¬ dmal(cP) ∧ ¬ dpf (cP) ∧
(¬ vmode(cP) −→ ea(cP)[31 : 3] < MA)∧
(vmode(cP) −→ dpa(cP)[31 : 3] < MA)

cP.M[ea(cP)[31 : 3]][31 : 0]
: lw?(cP) ∧ ¬ vmode(cP) ∧
¬ dmal(cP) ∧ ¬ dpf (cP) ∧
ea(cP)[31 : 3] ∈ MA ∧ ¬ea(cP)[2]

...
...

cP.GPR[RS 1] +32 cP.GPR[RS 2] : add?(cP)
...

...

cP.GPR[RD(cP)] : otherwise

where

• the predicate lw? signals the execution of a load-word instruction

• the predicate add? signals the execution of the fixed-point addition of two
registers.

Let the function FPRupdateold(cP) computes the new state of the FPR register file
as specified by Jacobi [Jac02]. We extend the update of FPR register file for the case
of loading one word from the devices.

Definition 3.10
Let data be the old value of the destination register, i.e. data = FPR[RD(cP)]. Let
data′ be the data which to be written into the destination register in case of a load
instruction, i.e.

data′[31 : 0] =

difos : ¬RD(cP)[0]
data[31 : 0] : otherwise

data′[63 : 32] =

difos : RD(cP)[0]
data[63 : 32] : otherwise

Note that fdouble(cP) holds if the instruction IR(cP) executes a double word access
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and f load?(cP) holds for a load operation to a FPR register.

c′P.FPR[RD(cP)[4 : 1]] ,



data′ : f load?(cP) ∧ ¬ dmal(cP) ∧ ¬ dpf (cP) ∧
(¬ vmode(cP) −→ ea(cP)[31 : 3] < MA)∧
(vmode(cP) −→ dpa(cP)[31 : 3] < MA)

FPRupdateold(cP)[RD(cP)[4 : 1]] : otherwise

The program counters are updated with respect to the delayed PC mechanism. For
example, for all instructions except branches, jumps, return from exception (rfe), and
in case of an interrupt, the DPC receives the value of the PC. The PC is incremented
by 4. Thus, it points to the next instruction.

c′P.DPC = cP.PC
c′P.PC = cP.PC +32 4

The update of the program counters for other instructions is formally specified
in [Dal06, Section 3.1].

The step functions for other components are modelled in exactly the same way
as in the previous work. The updates of the SPR and the interrupt semantics are
described in detail by Dalinger [Dal06]. This concludes the formal definition of the
specification step function ∆P.

Now we define the ISA output function ΩP. This function, for a given processor
state cP, computes the processor request to the devices difi. The request consists of
two flags req and w specifying the type of the request, the access address a, and the
data din to be written in case of a write access.

Definition 3.11
Let dest ∈ B32 be the data to be written to the device; it can be the content of a
register from the GPR register file or a non-double register from the FPR register
file. Let predicates lw? and sw? signal a load-word instruction or a store-word
instruction respectively. Let load dev?(cP) hold if processor reads from a device, i.e.
load dev?(cP) , lw?(cP) ∨ ( f load?(cP) ∧ ¬fdouble(cP)). Similarly, let write dev?(cP)
hold if processor writes to a device, i.e. write dev?(cP) , sw?(cP) ∨ ( f store?(cP) ∧
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¬fdouble(cP)).

ΩP(cP).difi ,

u

wwwwwwwwwwwwww
v

req = (load dev?(cP) ∨ write dev?(cP)) ∧
¬ dmal(cP) ∧ ¬ dpf (cP) ∧
(¬vmode(cP) −→ ea(cP)[31 : 3] < MA) ∧
(vmode(cP) −→ dpa(cP)[31 : 3] < MA)

w = sw?(cP)

a =

dpa(cP)[31 : 2] : vmode(cP)
ea(cP)[31 : 2] : otherwise

din = dest

}

��������������
~

We can prove that a step without any device accesses ignores the given difos:

Lemma 3.1

∀cP, eev, difo1s, difo2s.

¬ΩP(cP).req −→
∆P(cP, eev, difo1s) = ∆P(cP, eev, difo2s)

The VAMP Specification Run

While running, the ISA executes instructions and communicates with external devices.
We model this communication via the input and the output sequences. An input
sequence is a mapping from a step number to the processor input. This input consists
of an external event (eev) and the data requested by the processor (difos). We denote
by ISAn.eev the external event vector for the processor step n. Similarly, we denote by
ISAn.difos the data from the device to the processor for step n 7→ n + 1.

We model a run of the ISA as a mapping from a step number to the processor state.
This run is defined recursively by the application of the step function ∆P for a given
number of steps (or instructions). Running ISA from initial configuration cinit

P for n
steps results in the configuration ISAn.cP.

Definition 3.12

ISAn.cP ,

cinit
P : n = 0

∆P(ISAn−1.cP, ISAn−1.eev, ISAn−1.difos) : otherwise

The output sequence, which is a mapping from a step number to the processor
output, is computed by the application of the output function to the corresponding
processor configuration:
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Definition 3.13

ISAn.difi ,

difiε : n = 0
ΩP(ISAn−1.cP) : otherwise

where difiε is defined as follows:

difiε ,

u

wwww
v

req = 0
w = 0
a = 030

din = 032

}

����
~

The following lemma specifies that the ISA model only considers the input from
devices at the steps with device accesses. It is a generalization of Lemma 3.1.

Lemma 3.2
Let ISAv and ISAs be two ISA models. Let them have equal initial states. Let them
receive the same eev inputs during a run, i.e. ∀i. ISAv

i.eev = ISAs
i.eev. Let ISAv and

ISAs models receive the same difo inputs for all instructions with device accesses, i.e.
∀i < I. ISAv

i+1.difi.req −→ ISAv
i.difos = ISAs

i.difos. Then, these two models have
equal runs, i.e. they produce the same states and outputs.

ISAv
0.cP = ISAs

0.cP ∧

∀i < I. ISAv
i.eev = ISAs

i.eev ∧
∀i < I. ISAv

i+1.difi.req −→ ISAv
i.difos = ISAs

i.difos

=⇒

∀i ≤ I. ISAv
i.cP = ISAs

i.cP∧

∀i ≤ I + 1. ISAv
i.difi = ISAs

i.difi

Proof. First we assume that ∀i ≤ I. ISAv
i.cP = ISAs

i.cP holds. Having this we can
prove ∀i ≤ I + 1. ISAv

i.difi = ISAs
i.difi because difi outputs depend only on previous

processor state.
Now, we prove the assumed statement by induction on the run length and using

Lemma 3.1. �

3.2 The VAMP Implementation

Pipelined microprocessors allow the overlapping execution of different instructions.
These processors are kind of assembly lines. Every pipeline stage computes a part
of the instruction result and passes it on the next stages in the pipeline. A typical
pipeline consists of five stages: (i) fetch, (ii) decode, (iii) execution, (iv) memory,
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and (v) write back. In the first stage the instruction is loaded from the memory. In
the second stage the instruction is decoded, and all its operands are read from the
processor’s registers. In the third stage the instruction is executed, i.e. the result of the
instruction is computed. In the fourth stage memory accesses, if needed, are executed.
Finally, the computed result is written back to the register file.

The execution of several instructions can overlap because the different pipeline
stages can process different instructions. The pipelined processors can be classified
according to the kind of the instruction execution: in-order execution and out-of-order
execution (OOO). An in-order processor executes one instruction after the other in
the order they are fetched from the memory. The pipeline of such a processor can
simultaneously process several instructions. However, if one stage has to be stalled,
some or all upper stages have to be stalled as well. For example, the execution stage
can be stalled if a memory access requires several cycles, and, hence, the stage fetch
and decode are stalled as well. The processors with OOO execution can have a better
performance. They can have several data paths in their pipelines, e.g. several function
units. Therefore, these processors can execute instructions in a different order than
the order they are fetched. For example, if the results of the instructions Ii and Ii+1 do
not depend on each other, the processor may execute instruction Ii+1 before the earlier
fetched Ii.

The VAMP processor is a pipelined processor with OOO execution. In the
following subsections we present the VAMP architecture and the description of
the VAMP design, and highlight the VAMP main features. We also present the
modifications which are needed for the communication between the VAMP and the
external devices.

3.2.1 The VAMP Architecture

Figure 3.1 gives an overview of the data path of the VAMP processor [Bey05]. The
core of the VAMP is the Tomasulo algorithm [Tom67], which implements out-of-order
execution. The VAMP supports a mechanism for precise interrupts. This mechanism
requires that if an instruction is interrupted, the results of all previous instructions are
written back, but all later instructions are flushed. This mechanism is implemented
via a reorder buffer (ROB), which is tailed to the implementation of the Tomasulo
algorithm. The goal of this buffer is to guarantee that the instructions are written back
in the same order they are fetched.

The main data structure in the Tomasulo implementation is the so-called producer
table. This table extends every register in the register file with two additional fields:
valid and tag fields. The active value of the valid field signals that there is no instruction
in the pipeline which updates the register. Therefore, the content of the register is
valid. The inactive value of the valid field signals that there is an instruction in the
pipeline which updates this register. In this case, the tag field points to the last such
instruction. The tag filed is updated during the instruction issue. The value of this
field stays unique until the corresponding instruction leaves the processor.

The instruction fetch does not belong to the Tomasulo algorithm and takes place
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Figure 3.1: Data path of the VAMP processor.

in order. The Tomasulo algorithm starts with the instruction decode, which is directly
followed by the instruction issue. During the instruction issue all available operands
are read, for all non-available ones the tags from the register file are inserted. These
tags are used to find and insert the missing operands. The issue phase is completed by
storing the decoded instruction with its operands/tags in a reservation station (RS).
Simultaneously with the end of the issue phase, a non-used tag is assigned to the
instruction, the valid field of the destination registers of the instruction are set to the
inactive value, the tag field receives the instruction’s tag, and a new entry in the ROB
is allocated for the instruction.

Every instruction stays in the RS until all operands are available, and the target
functional unit can accept a new instruction. The missing operands are found by
observing (snooping) the common data bus (CDB). The snooping is a simple compar-
ison of the required tag with the tags appearing on the bus. When all operands are
available, the instruction can be dispatched out of order to a functional unit. Note that
every instruction is always traveling through the pipeline with its tag. Therefore, it
can be identified in any pipeline stage.

After an instruction is executed by a functional unit, the instruction and the
execution result are moved to the functional unit’s output register. These registers
are called producers (P) of functional units. Note that the function units can execute
instructions out of order but the tags allow the unique identification of instructions.
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All producers are connected to the CDB. The CDB has an arbiter which decides which
instruction can be completed, i.e. can be moved into the reserved entry in the ROB.
When an instruction is moved in the ROB, the result field of the corresponding entry
is marked as valid. During the instruction movement in the ROB, the execution result
can be forwarded in the reservation stations via the snooping mechanism.

As soon as the oldest instruction result in the ROB becomes valid, it can be written
back to the register file. The write back is the last step of the instruction execution. It
also signals that the instruction is leaving the processor. A more detailed and formal
description of the VAMP implementation of the Tomasulo algorithm can be found in
Kröning’s PhD thesis [Krö01].

3.2.2 The VAMP Configuration

The VAMP design comprises five functional units: a fixed point arithmetic unit
(XPU), three floating point arithmetic units (FPU1– addition/subtraction, FPU2–
multiplication/division, FPU3–conversion/testing), and a memory unit (MU). The
design and the verification of the FPU’s and the XPU are omitted and can be found in
[Jac02] and [Krö01] respectively. The memory unit was developed and verified by
Dalinger [Dal06]. In Section 3.2.5, we briefly describe the structure of the MU and
present the changes due to the support of the external devices.

The VAMP implementation of the Tomasulo algorithm has eight entries in reserva-
tion station. Every entry in a RS is constantly assigned to the corresponding functional
unit. Four entries are fixed for the XPU, one entry for every FPU, and one entry for
the MU. There are several instructions which do not compute anything, e.g. a jump
or a data movement inside the register file. They can be directly issued in the ROB
bypassing the functional units. However, these instructions have to be stalled in the
decode stage until all their operands are available, because they can not snoop on the
CDB.

The instructions in the VAMP have up to six operands, e.g. the double precision
floating point operations and the memory operations. The result of the instruction
execution consists of up to four 32-bit words: two words due to the double precision
FPU result, one word for the exception causes (CA), and one word for the exception
data (EData). The latter two words are ignored as long as no interrupts occur. In case
of an interrupt they are used in the computation of the next state of the SPR [Bey05,
Section 4.1].

The VAMP register file consists of three register banks which are extended by
the producer tables. These banks are the general purpose registers (GPR), the special
purpose registers (SPR), and the floating point registers (FPR). The FPR can be
accessed as 16 64-bit registers or as 32 32-bit registers.

The fetch mechanism implements the delayed-PC architecture [MP00] where all
PC computations are delayed by one cycle. This implies that the instruction, which is
followed directly after a branch instruction, is executed before the branch destination.
The fetch result, i.e. the new instruction, is stored in the register S 1.IR. There can
be two exceptions during the fetch: the instruction misalignment and the instruction
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page fault. They are stored in S 1.imal and S 1.ipf respectively.
The interrupts are split into two groups: the internal interrupts (e.g. imal, overflow)

and the external ones (e.g. reset, external devices). The internal interrupts are part
of the instruction result, namely CA. The external interrupts are an additional input
bus of the VAMP. In previous work this bus is always sampled at the instruction write
back [Bey05]. In the next section we show that sampling at the write back leads to
an unclear semantics of the processor-device communication. We present an elegant
solution for this problem. If during the instruction execution an interrupt (exception)
occurs, the processor does not handle it at once but at the interrupt handling point. The
VAMP considers the interrupts at the write back of an instruction. If an interrupt has
to be served, the VAMP raises the signal JISR (jump to the interrupt service routine).
If JISR is raised, the VAMP cancels any computations by resetting all implementation
registers (the RS, the ROB, the functional units, and the producers). The processor also
marks all registers in the register file as valid. Additionally, the program counters are
reset to the initial values. These values are pointing to the beginning of the interrupt
service routine.

To summarize, the processor implementation configuration hP ∈ HP is 16-tuple

hP , (PC,DPC,GPR,FPR, SPR, S 1,RS , P,ROB,
ROBhead,ROBtail,ROBcount,MU, FPU1, FPU2, FPU3)

The ROBhead and the ROBtail are used to point at the head and the tail of the
reorder buffer respectively [SP88]. The ROBcount contains a current number of the
reserved entries in the ROB. This counter is used to distinguish between the empty
and the full ROB since in these cases hP.ROBhead = hP.ROBtail. We do not have
any component for the XPU since it is combinational.

Note that we do not have any component for the memory. The memory is not a
part of the processor implementation but it is rather an external component. However,
we can define the content of the memory by considering the memory interfaces of
the processor and the memory initial state [Bey05, Section 1.5]. Before we give this
definition we define the VAMP communication interfaces.

3.2.3 The VAMP Communication Interfaces

The VAMP can communicate with two “off-the-chip” components: the external
devices and the memory. The processor employs the following communication buses
(Figure 3.2):

mifi – memory interface input; the processor puts the memory requests on this bus;
this is a processor output

mifo – memory interface output; the processor receives the memory answers on this
bus; this is a processor input

difi – device interface input; the processor puts the device requests on this bus; this
is a processor output
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difo – device interface output; the processor receives the device answers on this bus;
this is a processor input

eev – external event vector; the devices signal their interrupts on this bis; this is a
processor input

Note that the naming convention is from the memory/devices point of view.
We model inputs to the VAMP as mappings from hardware cycles to the cor-

responding data. We use the notation VAMPt.mifo, VAMPt.difo, and VAMPt.eev to
denote the states of the memory, the device buses, and the external event bus at cycle t
respectively. Similarly, we employ the notation VAMPt.mifi, and VAMPt.difi to denote
the state of the VAMP outputs at cycle t. In Section 3.2.4 we formally define these
outputs.

The processor-memory communication obeys a bus protocol [MP00, Bey05]. The
processor places its request on mifi ∈ Mifi, which is modelled as the following tuple:

mifi , (req,w, a, din, bwb, burst)

The processor accesses the memory by setting mifi.req. The accessed address is
set on mifi.a ∈ B29. The component mifi.bwb ∈ B8 specifies the type of the access. It
defines which bytes of the memory cell should be written. If all bits of mifi.bwb have
inactive values, the processor makes a read access. The component mifi.din ∈ B64

provides the data for the write access. The boolean flag mifi.burst ∈ B signals that
during this request several words will be read/written. The memory answers are placed
on mifo ∈ Mifo:

mifo , (reqp, brdy, dout)

The memory signals by setting mifo.reqp ∈ B that it is processing a request and
can not accept a new one. The active value of mifo.brdy ∈ B signals that in the
next cycle the request is finished and the data on mifo.dout ∈ B64 will be valid. We
say that the memory interface is busy if and only if reqp holds or brdy holds, i.e.
busy(mifo) , mifo.reqp ∨ mifo.brdy.

The mifi-bus logically and physically splits the processor and the memory chip
into two independent parts. It also introduces one cycle delay in the communication
between the VAMP and the memory: the VAMP places the request data and in
the next cycle, in the best case, receives an answer from the memory. The above
described bus-protocol guarantees that these parts can correctly communicate with
each other [MP00, Bey05].

The communication with devices is done in a similar fashion. The processor
places a request on difi and expects the result on difo. We model difi in the same
manner as for the specification (Section 3.1). The channel difo ∈ Difo is modelled
similarly to mifo, i.e.

difo , (reqp, brdy, dout)



62 CHAPTER 3. VAMPXT

VAMP

mifi.ad
mifi.din
mifi.req

mifi.bwb
mifi.burst

mifo.dout
mifo.reqp
mifo.brdy

difi.ad
difi.din
difi.req
difi.w

difo.dout
difo.reqp
difo.brdy

eev

MDevices

Figure 3.2: The external interfaces of the VAMP.

with difi.dout ∈ B32. We define difoε ∈ Difo as the idle value with ¬difoε .reqp,
¬difoε .brdy, and difoε .dout = 032.

We introduce an extra notion to denote the busy state of the device interface buses
(difi and difo), i.e. difi and difo are busy if and only if reqp holds or brdy holds:

Definition 3.14

busy(difo) , difo.reqp ∨ difo.brdy

We slightly extend the bus protocol to support devices which produce results already
at the next cycle after the request. Thus, these devices set neither reqp nor brdy signals.
An example of such a device is an automotive bus controller [KP07]. Therefore, if at
reqt holds and busyt+1 is inactive, the request is finished and the data doutt+1 must be
valid. We introduce a signal da end which holds at the cycle when a device access is
finished:

Definition 3.15

da end(VAMP, t) , (busy(VAMPt−1.difo) ∧ ¬busy(VAMPt.difo.))∨
(VAMPt−1.difi.req ∧ ¬busy(VAMPt.difo))

The Figure 3.3 and Figure 3.4 show typical processor-device communications.

There are special states of the VAMP processor which we call initial configurations.
In these states all internal registers (the RS and ROB registers, the functional units,
and the producers) are reset. All registers in the register file are marked as valid and
the program counters have some initial values. Note that these states are similar to the
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Figure 3.3: Timing of the device interface: read and fast read accesses.

one after a jump to the interrupt service routine is done, i.e. one cycle after the JISR
signal is raised.

3.2.4 The VAMP Implementation Run

Now we define the VAMP processor as a Moore automaton. The next step function δP
computes the next state h′P = δP(hP,mifo, difo, eev, reset) for a given processor state
hP and the states of the input buses. The output function ωP, for a given processor
state hP, computes the state of the interface input buses: (mifi, difi) = ωP(hP).

A run of such an automaton, for a given number of cycles t, is defined by the
recursive application of the step function:
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Figure 3.4: Timing of the device interface: write and fast write accesses.

Definition 3.16

VAMPt.hP ,


hinit

P : t = 0
δP(VAMPt−1.hP,VAMPt−1.mifo,

VAMPt−1.difo,VAMPt−1.eev,VAMPt−1.reset) : otherwise

For the rest of the thesis we assume that the reset signal is never set: ∀t.¬VAMPt.reset.
The outputs of the VAMP are computed by the application of the output function:

Definition 3.17

(VAMPt.mifi,VAMPt.difi) ,

(mifiε , difiε) : t = 0
ωP(VAMPt.hP) : otherwise

where mifiε and difiε are some idle values.



3.2. THE VAMP IMPLEMENTATION 65

We define the state of every cell of the external memory solely by observing the
memory interfaces [Bey05, Chapter 4]. However, we have to assume that the physical
memory3 (i) can only be changed by the processor (no DMA requests by the devices)
and (ii) is correct (e.g. it keeps the saved data).

Definition 3.18
Let init mem be the initial memory content. We introduce a function bw(t, dold) ∈ B64

which for a given cycle t ∈ N and a given old content of the memory cell dold ∈ B64

computes the value to be written in the memory, i.e.

bw(t, dold) , byteupd(VAMPt.mifi.bwb, dold,VAMPt.mifi.din)

The memory content M(VAMP, t) at cycle t is recursively defined as follows:

M(VAMP, t)(a) ,



init mem(a) : t = 0
bw(t,M(VAMP, t − 1)(a))

: VAMPt−1.mifi.a = a ∧
¬busy(VAMPt−1.mifo)

M(VAMP, t − 1)(a)
: otherwise

We use this definition as the specification for the implementation of the memory
system.

3.2.5 The VAMP Memory Unit

The memory unit (MU) executes all memory and device accesses. It also manages
the external interfaces. The MU implements two independent functionalities: the
instruction fetch and the memory/device accesses.

The instruction fetch is based on the given hP.DPC. After the possible address
translation (via MMU), the fetch request is forwarded to the cache system of the VAMP.
Note that the cache system provides the fetch and the data interfaces; it consists of two
interconnected caches and communicates with the external memory [Bey05, Mül07].
When a fetch request is finished4, the result and the possible exceptions are saved
in the VAMP fetch stage (the IF stage in Figure 3.1). A memory access is executed
similarly. The difference is that the access result is saved in the MU’s producer.

A new feature of the MU is the support of the accesses to the external devices.
The external devices are mapped into the memory address space, i.e. they can be
accessed via the regular load and store instructions. Recall that we place the device
address space above the address space of the physical memory. Every address which
starts with 17 ones belongs to the device addresses.

IsDevAddr(ad) , ad[31 : 15] = 117

3The chip which implements memory.
4The request can last one cycle, if the fetch result has been previously cached.
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The rest of a device address (15 bits) is used to specify a particular device and its
registers (Figure C.2). If a device access has to be executed, MU places the request
on the above introduced difi interface, and the access result is expected on the difo
interface. Note that all device accesses bypass the cache system, because the devices
can progress independently of the processor, and hence, the cached data may become
out-dated.

The support of the precise interrupts requires: if an instruction is interrupted, the
effect of all later fetched instructions has to be rolled back. However, if instruction i
is interrupted, instruction i + n could already modify the memory. This modification
cannot be rolled back. This situation can be avoided [BJK+05]. One starts a write
access if and only if the corresponding instruction is the oldest one in the pipeline.
The same problem arises for all device accesses because both read and write accesses
can change states of accessed devices. Therefore, every device access has to be stalled
until the corresponding instruction becomes the oldest one in the pipeline.

External Interrupt Sampling

Recall that the VAMP handles the internal interrupts at the instruction write back
stage. The old VAMP samples the external interrupt bus (the state of the eev bus) at
the write back as well [BJK+05]. However, the sampling at the write back may be
a problem for the processor-device communication. Let us consider the following
scenario.

An instruction accesses a device, and its goal is to deactivate the device interrupt.
Let us assume that at cycle t the device signals the end of the request, i.e. the interrupt
is deactivated. At cycle t the instruction is still in the MU. The instruction path to
the write back stage takes several cycles. Meanwhile the device can progress and
may activate the interrupt. Thus, at the instruction write back the VAMP samples this
re-activated interrupt. However, from the assembly programmer point of view this
interrupt belongs to, or should affect, the next instruction.

Thus, the sampling of eev at the write back does not allow a precise ordering of
external interrupts with instructions.

Let us consider all possible device accesses of the VAMP. The processor allows
three sorts of device accesses:

• an active read access – a load instruction with a device address

• an active write access – a store instruction with a device address

• a passive read access – the sampling of the external interrupts

This interpretation reveals the fact that every instruction, with external interrupts
enabled, executes at least one device access. The instructions without active device
accesses passively access devices at the write back stage. The instructions with a
device access do it twice: the first time in the MU and the second time in the WB
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(c) The interrupt selection in the WB stage

Figure 3.5: The extensions of the MU and the WB stage due to the support of the
precise interrupts.

stage. Moreover, these accesses are spread over time. Every instruction must access
the external devices only once to avoid any “shadow” scenarios.

Obviously, the instructions without any active device access already satisfy this
requirement. We change the sampling of the external interrupts for all instructions
with an active device access: we sample them exactly at the time when the device
places the result on the bus.5 This guarantees that the result of a device access and the
external interrupts are read at the same cycle. We also add a test in the WB stage. If an
instruction without any active device access leaves the processor, we use the current
state of the eev bus. Otherwise, we use the interrupts which have been sampled in the
MU stage. This solution requires several small modifications of the memory unit and
the write back stage.

Memory unit and write back stage extensions

We introduce three auxiliary notations:

• da endt – signals the end of a device access at cycle t, if any access is pending
(Definition 3.15)

• wbt – signals the write back of an instruction at cycle t

• eevt – represents the state of the external event bus at cycle t

• resett – signals reset at cycle t
5 Smith and Pleszkun [SP88] proposed to sample external interrupts before instruction issue. MIPS-

R3000 Family [Brü91] samples the interrupt before the memory stage. These solutions still allow
instructions accessing the external devices twice.
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We add to the MU stage a 1-bit register dar pend (device-access result pending)
and a 19-bit register eev da (external event vector for device access). The register
dar pend contains the value 1 if:

• the accessed device produced the result for a processor request, i.e. the device
access is finished

• this result is not yet written back, i.e. the corresponding instruction is not yet in
WB stage

Recall that an instruction can only start a device access if it is the oldest instruction
in the pipeline. Thus, the next write back signals that such an instruction is leaving
the processor. This allows an easy determination of the cycles when dar pend should
be set up. We set dar pend between the request end and the write back of the result of
the device request (wb): The necessary hardware is presented in Figure 3.5:

dar pendt+1 , ((¬wbt ∧ dar pendt) ∨ da endt) ∧ ¬resett

Additionally, we save the state of the eev bus at the request end in eev da. The value
of this register is kept stable at least as long as the instruction is not written back,
i.e. as long as dar pend is set. Thus, we only update the register at the end of device
accesses:

eev dat+1 ,

eevt : da endt

eev dat : otherwise

The last modification is in the WB stage. We insert a multiplexer which selects
either the current state of the eev bus or the interrupts which have been saved in eev da.
The control signal of this multiplexer is dar pend, which is provided by the memory
unit. After reset we initialise the register dar pend with zero and the initial value of
eev da does not matter.

Correctness of the new hardware

The signal dar pend can only be activated between the request end and the next write
back:

Lemma 3.3
∀t. dar pendt −→ ∃t1 < t. da endt1 ∧ ∀t2 ∈ [t1 : t[. ¬wbt2

If the signal dar pend is set, the state of the register eev da equals the state of the
eev bus at the end of the last device access. If the signal dar pend is not set, the state
of the register eev da does not matter.

Lemma 3.4
∀t. dar pendt −→ eev dat = eevlasthw(t,da end)

where lasthw(t, da end) denotes the last cycle below t when da end hold.
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We have proven both lemmata automatically, by the tool chain which we have
presented in Section 2.4.

Beyer has proven that the signal JISR and running memory write access cannot be
active at the same cycle (See [Bey05, p.156, Lemma 4.5.4]). Since all device accesses
are implemented in the same way as memory writes, we can derive that the signal
JISR and the end of a device access cannot be active simultaneously. Moreover, since
JISR implies wb we formulate this property as follows:

Lemma 3.5
∀t. ¬(wbt ∧ da endt)

3.3 The VAMP Correctness Criterion

A typical correctness criterion for pipelined machines is a simulation relation. The
criterion states that every run of the implementation can be simulated by a run of
a specification with respect to the selected simulation relation. Thus, a simulation
relation relates the time and the configurations between the implementation and the
specification models. We use the scheduling function concept [SH98, MP00] to relate
the time notion of both models. The comparison of the configurations is based on the
concept of the programmer visible registers.

In the following subsections we develop the VAMP correctness criterion with
respect to its sequential specification, the ISA model. We define the simulation relation.
Since the VAMP and the ISA communicate with external devices, we define a relation
which synchronizes these inputs.

3.3.1 State Relation

The VAMP implementation has more registers than the ISA specification. The reg-
isters, which are present in both models, are called the visible registers. This name
is given from the programmer’s point of view. Examples of these registers are the
program counters (PC and DPC), and the general purpose registers (GPR). All other
implementation registers are called the invisible registers. They are used to save the
partial results of the instruction execution, e.g. the internal registers of the functional
units. We define a predicate Rconf which relates the visible registers of the VAMP
processor and the corresponding components of the ISA model.

Definition 3.19

Rconf (hP, cP) ,
cP.PC = hP.PC
cP.DPC = hP.DPC
cP.GPR = λx. hP.GPR[x].data
cP.FPR = λx. hP.FPR[x].data
cP.SPR = λx. hP.SPR[x].data
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Note that we consider memory as part of the correctness theorem which we present
later in this chapter.

3.3.2 Scheduling Function

A scheduling function maps a given hardware cycle to the number of instructions,
which have been processed by the processor so far. Thus, one can consider a schedul-
ing function as an instruction counter. The definition of a scheduling function is based
on some special hardware events. These events signal the progress of the instruction
execution. For example, the event write back signals that an instruction has been
completely executed and leaves the processor. Thus, the write back of an instruction
causes irreversible changes on the processor state, e.g. update of the GPR.

We use the scheduling function sI which is based on two processor events: the
write back (wb) and the jump to interrupt service routine (JISR). Both events signal
that an instruction leaves the processor. Signal JISR implies wb and has an additional
effect: it forces the processor to drain (or to flush) the pipeline since an interrupt has
occurred. Hence, the processor has to abort any computations and execute an interrupt
service routine. The scheduling function is defined recursively on the hardware cycles:

Definition 3.20

sI(t) ,


0 : t = 0
sI(t − 1) + 1 : wbt−1 ∨ JISRt−1

sI(t − 1) : otherwise

An interesting property of sI is that its result can be interpreted in two different
ways: (i) sI(t) is the index of the next instruction to be written back, where the first
instruction has index 0, or (ii) sI(t) is the number of instructions which are completely
processed by the processor, i.e. left the processor.

It is easy to prove that sI is a monotonic function.

Lemma 3.6

t < t′ =⇒ sI(t) ≤ sI(t′)

The definition of sI guarantees that if there were no write backs during some
interval, this interval does not affect the result of sI.
Lemma 3.7

∀t′′ ∈ [t : t′[. ¬wbt′′ =⇒ sI(t) = sI(t′)
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We can also prove that for every counted instruction there is a hardware cycle
when it has been written back.

Lemma 3.8

∀i < sI(T ). ∃t < T. wbt ∧ i = sI(t)

This scheduling function is suitable for a correctness criterion of GPR, SPR, and
FPR register files at any hardware cycle and for a correctness criterion of PC, DPC,
and memory for drained pipeline. However, if one wants to state anything about the
invisible registers, one needs several scheduling functions: one scheduling function
per pipeline stage ([MP00, Section 4.5.2]; [Krö01, Section 6.5]). For example, if we
run the ISA model for i = sI(t) steps, the program counter ISAi.DPC will point at the
instruction i. However, the program counter in the implementation may point to some
instruction i+n (with n ≥ 0) due to the pipelined execution. Examples of a correctness
criterion with all implementation registers can be found in [MP00, Krö01, Bey05].

3.3.3 Inputs/Outputs from/to External Environment

The ISA model and the VAMP implementation communicate with the external en-
vironment. The runs of these models can only be compared if the models receive
equivalent inputs. Now, we define two predicates which relate input sequences for the
VAMP and the ISA models.

The relation Reev relates the input sequences of the external interrupts. In the
implementation we consider the external interrupts at the write back of an instruction.
These interrupts are either the data saved in MU register eev da or the current state of
the external interrupt bus.

Definition 3.21

Reev(T,VAMP.eev, ISA.eev) ,
∀i. ∀t < T. t = (The x. i = sI(x) ∧ (wbx ∨ JISRx)) −→

ISAi.eev =

VAMPt.hP.eev da : VAMPt.hP.dar pend
VAMPt.eev : otherwise

where (The x. sI(x) = i ∧ (wbx∨ JISRx) specifies the hardware cycle when instruction
i leaves the processor.

We define the predicate Rdifo which relates the answers from the external devices.
These data have to be only related at the end of the processor-device interaction.
Recall that a device access can only be started if this instruction is the oldest in the
pipeline, i.e. it is the next instruction to be written back. We also know that sI(t)
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specifies the index of the next instruction to be written back. Thus, if we started a
device access at some cycle t, sI(t) specifies the index of the instruction in MU. This
fact has been proven by Beyer [Bey05]6 for the instructions with memory write access,
and we can reuse this fact because all device accesses are implemented in the same
way.

Definition 3.22

Rdifo(T,VAMP.difo, ISA.difos) ,
∀i. ∀t < T. t = (The x. i = sI(x) ∧ da end(VAMP, x) −→
ISAi.difos = VAMPt.difo.data

This definition relates the data which appear on the difo-bus at cycle t with the
data designated for the instruction i.

The ISA and the VAMP models produce outputs for the external devices. We
define predicate Rdifi to relate these outputs. We derive the definition for this predicate
from the correctness criterion of the outputs of the memory unit [Bey05, Dal06]. We
can reuse this correctness criterion, because the external devices are mapped in to the
memory address space.

The predicate Rdifi consists of three conjuncts:

• if there is a request in VAMP, the output data difi of VAMP must match the
output data difi of ISA,

• if a written back instruction accesses a device in the ISA model, there must be a
hardware cycle when VAMP started the corresponding device access,

• if we write back an instruction with a device access, there must be a prior
hardware cycle when VAMP started device access with correct data.

Definition 3.23

Rdifi(T,VAMP.difi, ISA.difi) ,
(∀t ≤ T. VAMPt.difi.req −→ VAMPt.difi = ISAsI(t)+1.difi) ∧
(∀i < sI(T ). ISAi+1.difi.req −→
∃t ≤ T. i = sI(t) ∧ VAMPt.difi = ISAi+1.difi) ∧

(wbT ∧ ISAsI(T )+1.difi.req −→
∃t ≤ T. VAMPt.difi = ISAsI(T )+1.difi ∧ sI(T ) = sI(t))

6See [Bey05, p. 155] first case of the proof for Lemma 4.5.3.
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Note that the VAMP keeps the data on the bus stable during the whole request
(see [Bey05, p. 145]).

Lemma 3.9

VAMPt.difi.req ∧ t′ = nexthw(t, da end)
=⇒

∀t′′ ∈ [t : t′]. VAMPt.difi.{w, a, din} = VAMPt′′ .difi.{w, a, din}

where nexthw(t, da end) denotes the next cycle after t when da end holds.

3.3.4 Software Conditions

Sometimes it is impossible or too expensive to implement the handling of some
exceptions in the hardware. These special cases restrict the software which can
be executed on the developed hardware. We call these restrictions software con-
ditions [BJK+05, DHP05]. We present three software conditions for the VAMP
processor:

• software guarantees for the self-modifying code, which can generate the read-
after-write (RAW) hazards

• software guarantees for the address translation

• software guarantees for accesses to the defined memory address space

Beyer et al. [BJK+05] proposes a software condition which excludes the RAW
hazards for the self-modifying assembly code. Dalinger [Dal06] extends this condition
with the support of the virtual memory. This software condition is based on the so-
called sync-instruction. The execution of the sync-instruction should require the write
back of all instructions in the pipeline, i.e. draining the pipeline. Thus, the sync-
instruction should stall the fetch of the new instructions as long as the pipeline is not
empty. Moreover, such an instruction should not modify the semantics of the program.
Hence, the execution effect of the sync-instruction has to be equivalent to the one
of a nop instruction. In the VAMP there are two instructions with a sync-semantics:
movs2i IEEEf R0, rfe, and any interrupted instruction (an instruction which causes
JISR).7 The first software condition requires that between any two instructions which
produce a RAW hazard there is at least one sync instruction. Dalinger presents a
formal definition of the software condition [Dal06, p. 76]. We describe it informally
here:

Definition 3.24 (synced code i?)
The assembly code is synced if:

7Hillebrand [Hil05, Section 5.1.4] observed that rfe and interrupted instructions can be used as a
sync-instruction.
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1. whenever the processor operates in the system mode (i.e. ¬vmode(cP)) there
is a sync instruction between any fetch from and the last modification of a
physical address a ∈ MA,

2. whenever the processor operates in the user mode (i.e. vmode(cP)) there is a
sync instruction between any fetch of a translated address a ∈ MA with the
corresponding page table entry address ptea ∈ MA and the latest modification
among ad and ptea.

Usually, modern processors contain translation look-side buffers (TLB). A TLB
caches the recently used translations to speed-up the following translations. If the
processor allows that the cached data in the TLB may become inconsistent with the
data in the memory, then we need an additional software condition. The software
condition stable PT? eliminates this inconsistency by prohibiting the assembly pro-
grams, which are executed in the user mode, from modifying the page table entries.
We introduce this condition because the next version of the MU of the VAMP contains
TLBs.8

Definition 3.25 (stable PT?)
Let PT be the set of addresses which belong to the page table, i.e. the PTL + 1 number
of addresses starting from the page table origin (PTO):

PT (cP) , {x | cP.SPR[PTO]∗4096 ≤ x∧ x ≤ cP.SPR[PTO]∗4096+32 cP.SPR[PTL]}

Then

∀i. vmode(ISAi.cP) ∧ mw?(ISAi.cP) −→
decodeitr(ISAi.cP,mw?(ISAi.cP), ea(ISAi.cP)).pa < PT (ISAi.cP)

In the presence of external devices, we need an additional software condition
which guarantees the absence of accesses to the undefined address space. The main
issue is the liveness because neither memory nor devices respond to an access to the
undefined address space, and hence, such an access never terminates.

Definition 3.26 (def addr?)
For a defined device address space DA, all address of memory instructions have to be
either in MA or in DA.

∀i. ¬ dmal(cP) ∧ ¬ dpf (cP) ∧ (lw?(ISAi.cP) ∨ sw?(ISAi.cP)) ∧
(¬ vmode(cP) −→ ea(cP)[31 : 3] ∈ MA ∨ ea(cP)[31 : 2] ∈ DA) ∧
(vmode(cP) −→ dpa(cP)[31 : 3] ∈ MA ∨ dpa(cP)[31 : 2] ∈ DA)

8We experienced that the new MU is roughly three times faster than the previous version [Dal06].
This new version is currently being verified by Dalinger and Alekhin [Ale08].
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3.3.5 The VAMP Correctness Theorem

The correctness criterion of the VAMP can be split into two parts: a criterion for
non-interrupted runs and a criterion for interrupted runs [Bey05, Dal06, Krö01]. The
former criterion is very strong and it states the correctness of every implementation
register, e.g. [Krö01, Section 6.7], [Bey05, Section 4.3.2]. However, since the run of
any real processor contains interrupts, this criterion can not be used as the correctness
criterion. The reason is that some processor components, e.g. program counters, may
have values which never occur in the specification with interrupts. Therefore, the
correctness criterion of the VAMP is stated after every interrupt [Bey05, Dal06]. This
criterion covers all visible registers, and it also allows us to use only one scheduling
function.

Even though we verified the criterion for non-interrupted runs in Isabelle/HOL,
we do not present it in this thesis. This is because, this criterion is only used as
an auxiliary lemma in the verification of the criterion for the interrupted runs. The
proof of the criterion for non-interrupted runs is based on the PVS proofs which are
described in [Krö01, Bey05, Dal06].

Theorem 3.10
Let the assembly code fulfill the software conditions. Let the inputs of the specification
and the implementation models be synchronized with respect to Reev and Rdifo. Let
also the initial states of the implementation and the specification be in the simulation
relation.

We show that the state of the VAMP processor is in the simulation relation with
the ISA state after every interrupt.

synced code i? ∧ stable PT? ∧ def addr? ∧
Reev(T,VAMP.eev, ISA.eev) ∧ Rdifo(T,VAMP.difo, ISA.difos)∧
Rconf (T,VAMP0.hP, ISA0.cP) ∧M(VAMP, 0) = ISA0.cP.M
=⇒

(JISRT−1 −→ Rconf (VAMPT .hP, ISAsI(T ).cP) ∧M(VAMP,T ) = ISAsI(T ).cP.M) ∧
Rdifi(T,VAMP.difi, ISA.difi)

The proof for this theorem assembles the proofs presented by Kröning [Krö01],
Beyer [BJK+05], and Dalinger [Dal06]. The proof strategy consists of several steps.
First, we show the correctness of the implementation of the Tomasulo algorithm. Then,
we introduce an intermediate correctness for the VAMP processor without interrupts
and prove that if there are no interrupts, the VAMP fulfills the correctness criterion. As
the next step, we show that a non-interrupted run followed by an interrupt implies the
VAMP correctness criterion. Finally, we prove that every run of the VAMP processor
can be composed of sub-runs, which consist of a non-interrupted run followed by a
step with an interrupt. We have applied induction over the number of such sub-runs.

For the detailed description of the proof, we refer the reader to the following
sources:
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VAMP(no FPUs, MU) Person years Theorems Proof steps

in Isabelle 1.5 1206 20455
in PVS 3 966 37666

Table 3.1: Verification efforts: PVS vs. Isabelle/HOL+IHaVeIt.

• the proof of the implementation of the Tomasulo algorithm was described by
Kröning [Krö01]

• Beyer [Bey05] instantiated the Tomasulo implementation and added user visible
memory

• Dalinger [Dal06] proved correctness of the VAMP processor with address
translation

3.4 Summary

In this chapter, we presented a new more advanced version of the VAMP processor.
The previous version of the VAMP was extended with a full support of the external
devices. The new version was considered as a part of a computer system, in contrast to
previous works where the VAMP was considered as a stand-alone system. This point
of view, together with the formal verification of the combined system (Chapter 5),
allowed us to establish a clean semantics of the external interrupts.

Recall that the original VAMP project is carried out in the interactive theorem
prover PVS. Now, we compare the verification efforts in PVS and in Isabelle/HOL
(Table 3.1 9, 10). This comparison can not be 100% “fair”, because (i) the nature of
the systems is too different, and, in our opinion, the PVS proof commands are more
powerful than those of Isabelle, (ii) our work in Isabelle/HOL is based on the proof
strategy developed in PVS. The second argument explains why we could finish the
proofs in less time.

We believe that the most fair comparison would be the comparison of the size
of the proofs, i.e. the number of interactive commands applied by the user. Recall
that the proofs in PVS are purely interactive ones, and the proofs in Isabelle/HOL are
partially automated. Therefore, such a comparison gives an idea how much user work

9We developed and verified the VAMP model which has a full support for floating point instructions
including IEEE flags [IEE85]. However, we did not implement and verify any floating point functional
units (FPUs) in Isabelle/HOL, because in the Verisoft project there is no software exploiting these units.
If they are needed, one could instantiate FPUs (e.g. units developed and verified by Jacobi [Jac02]) in
our VAMP model.

10The MU used in the presented VAMP model has been developed and verified by Dalinger [Dal06].
Currently, Dalinger and Alekhin [Ale08] are verifying an optimized version of the MU in Isabelle/HOL,
and they expect to complete the verification in the near future.
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can be saved thanks to IHaVeIt. Table 3.1 illustrates that IHaVeIt allowed us to save
about 30%–40% of the work.

The greater amount of theorems in Isabelle/HOL is also due to the automation of
the proofs. This is because for every “boring” subgoal of a theorem (i) we introduce
a separate lemma, (ii) then, we prove it automatically, (iii) and finally, we used the
proven lemma in the original proof. While in PVS, proofs for these subgoals are part
of the theorem proofs.

We conclude this chapter by listing typical examples where the application of
IHaVeIt reduced the user work (with respect to the previous work in PVS):

• verification of all basic hardware constructs, e.g. shifters, decoders, arithmetic
logic unit,

• verification of different automata, e.g. Lemma 3.3, Lemma 3.4, control and data
automaton of caches [Mül07] and MMU (Section 2.4.3),

• verification of huge combinational formulae which were parts of the induction
step of the VAMP correctness theorem.





Chapter 4

Generic Device Theory

Computer systems have many built-in devices, such as hard disk drives, and network
adapters. These devices are the only way a computer system, its processor(s) and
programs, can communicate with the external environment. For example, a network
adapter allows an operating system the communication with the network. Obviously
the devices are placed between the processor(s) and the external environment.

In this chapter, we develop a generic device theory where generic refers to the
independence from the number of devices and any device specific features. We need
the latter property to instantiate this theory with different devices and to build different
computer systems using the same device theory.

The device theory consists of two parts. First, it provides a device model on
two levels of abstraction: devices as seen in hardware and devices as seen by an
assembly programmer. Second, a correctness criterion guaranteeing a simulation
relation between these two models is specified.

We call the device model, as seen in hardware, device implementation (DI). This
model allows the parallel running of many devices. The device model at the assembly
level is called device specification (DS). DS is defined in an interleaved way, and,
hence, at most one device can progress with every step.

The device independence is achieved by defining DI and DS on the base of several
assumptions. Thus, all concrete devices which satisfy these assumptions can be
instantiated in the developed theory.

This chapter is organised as follows. In the following section, we describe the
device implementation. Section 4.2 presents the device specification. In Section 4.3
we present a set of requirements which specify a set of admissible concrete devices. In
this section, we also show how any run of the implementation model can be simulated
by a run of the specification model. Finally, we state a simulation theorem and present
a correctness proof for this theorem.

79
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Figure 4.1: Device model: Implementation.

4.1 Device Implementation

We consider the device implementation (DI) as an automaton communicating with a
processor on one side and with the external environment on another side. Figure 4.1
shows an overview of the DI model.

The DI model can contain many devices. Every device has a unique identifier idx
from the set of device identifiers DevN. A device with identifier idx is characterized
via:

• Hidx
D – configuration type,

• Eifiidx – type of the input data from the external environment of the device,

• Eifoidx – type of the output data to the external environment of the device.

The device configuration includes all devices in the model. It is modelled as a
mapping hD ∈ DevN →

⋃
idx∈DevN Hidx

D which maps device identifier idx ∈ DevN
to the device configuration hD(idx) ∈ Hidx

D . We use the notation HD to denote the
configuration type of the DI model, i.e. HD , DevN →

⋃
idx∈DevN Hidx

D .
The devices have three communication channels: two with a processor and one

with the external environment. The channels to the processor serve two functions:

• bidirectional data exchange between processor and devices

• unidirectional signaling of device events (interrupts) to the processor

The third channel allows communication with the external environment.

The bidirectional communication channel with the processor can pass data in both
directions and is modelled as:

• difi ∈ Difi (device interface input) – data from the processor to the device (input
for devices). These data consists of request and write flags, accessed address,
and data for the write access.
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• difo ∈ Difo (device interface output) – data to the processor from the device
(output from devices). These data are the bus protocol control flags and the data
for the read access.

These interfaces have been fully described in Section 3.2.2. Figures 3.3 and 3.4 show
typical processor-device communications.

The communication channel with the external environment is modelled via input
and output interfaces:

• Eifis , DevN →
⋃

idx∈DevN Eifiidx – type of the input data from the external
environment to all devices. eifis ∈ Eifis maps a device identifier idx ∈ DevN to
the device input eifis(idx) ∈ Eifiidx.

• Eifos , DevN →
⋃

idx∈DevN Eifoidx – type of the output data from all devices to
the external environment. eifos ∈ Eifos maps a device identifier idx ∈ DevN to
the device output eifos(idx) ∈ Eifoidx.

The step function δD updates the device configurations and manages the presented
communication channels. This function takes an input from the external environment
eifis ∈ Eifis, an input from the processor difi ∈ Difi, a device configuration hD ∈ HD,
and a reset signal reset ∈ B. It produces a new device configuration h′D ∈ HD, an
output difo ∈ Difo to the processor, an output eifos ∈ Eifos to the environment, and a
vector of external events for the processor eev ∈ B19.

δD : Eifis × Difi × HD × B→ HD × Difo × Eifos × B19

We don’t put any restrictions on the DI model, except for the handshakes with the
processor (Section 3.2.2).

Device Implementation Run

A run of the DI model is defined recursively by the application of the step function
for a given number of hardware cycles. During a run the devices communicate with
the processor and external environment via input sequences. The data flow from
the processor to the devices is a mapping from the hardware cycles to the data, i.e.
DIt.difi represents the input from the processor at cycle t. In a similar style, we model
the data flow from the external environment: DIt.eifis is the input from the external
environment at cycle t. Recall that in this thesis we assume that the reset signal is
never set ∀t ≥ 0. ¬DIt.reset.

A run for t cycles starting from an initial state DIinit results in a new configuration
DIt.hD, outputs to the processor DIt.difo and DIt.eev, and outputs to the external
environment DIt.eifos.
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Figure 4.2: Device model: Specification.

Definition 4.1

DIt ,

DIinit : t = 0
δD(DIt−1.eifis,DIt−1.difi,DIt−1.hD,DIt−1.reset) : otherwise

At the beginning (cycle zero) the system is in an initial state. At all other cycles
we recursively apply the step function δD.

4.2 Device Specification

The implementation model can run all devices in parallel, i.e. all devices can progress
at every hardware cycle. In contrast, the device specification (DS) is a purely se-
quential model, i.e. at every specification step one device at most can progress. This
sequentialisation imposes some modelling differences with respect to the implemen-
tation model. For example, for the external environment the implementation model
receives inputs for all devices, but the specification needs only one, for the device
that progresses. The same holds for the outputs to the environment. The differences
discussed above are considered in details in the next subsections.

The Specification Model

A specification device with index idx ∈ DevN is characterized via its configuration
type Cidx

D and types Eifiidx and Eifoidx which are introduced in the previous section.
Configuration of the DS model includes all devices in the model. It is modelled
as a mapping cD ∈ DevN →

⋃
idx∈DevN Cidx

D which maps device identifier idx ∈
DevN to the device configuration cD(idx) ∈ Cidx

D . We use notation CD to denote the
configuration type of the DS model, i.e. CD , DevN →

⋃
idx∈DevN Cidx

D . A device in
the DS model can progress either due to a processor access or due to an input from
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the external environment. In order to distinguish between a processor access and a
routine device step we extend the set of device identifiers by the processor identifier P.
We denote this extended set by PD.

Definition 4.2
PD , {P} ∪ DevN

The main feature of the DS model is that the communication with the processor
and the environment is executed with zero delay. This requires slight changes of the
channel modelling. We model the unidirectional channel for passing external event
signals in the same fashion as for the implementation. The processor requests to the
devices are modelled with the help of the interface difi ∈ Difi introduced above. The
device responses consist solely of the data provided to the processor difos ∈ B

32. The
reader can notice that we drop all auxiliary protocol flags since they are no longer
necessary here (see Section 3.1).

While in the implementation all devices can communicate with the external
environment simultaneously, in the specification only one device can communicate
with its environment. Thus, this communication channel contains input/output data
depending on the progressing device.

The input from the external environment Eifi consists of the data for the devices:
Eifi ,

⋃
idx∈DevN Eifiidx. Similarly we define the output to the external environment:

Eifo ,
⋃

idx∈DevN Eifoidx.
Now, we introduce the DS model transition function ∆D, which specifies the

interaction of the devices with the processor and the external environment. It takes a
processor-device identifier idx ∈ PD, an input from the external environment eifi ∈ Eifi,
an input from the processor difi ∈ Difi, as well as a device configuration cD ∈ CD. It
returns a new device configuration cD

′ ∈ CD, an output to the processor difos ∈ B
32,

an external output eifo ∈ Eifo, and a vector of external events eev ∈ B19. Thus, the
transition function ∆D has the following signature:

∆D : PD × Eifi × Difi ×CD → CD × B
32 × Eifo × B19

We assume the following semantics of ∆D(idx, eifi, difi, cD):

• If idx , P, a step of a device with the identifier idx is triggered by the external
input eifi. In this case ∆D ignores the given difi.

• If idx = P∧ difi.req, a device step is triggered by a processor request (load/store
instruction). In this case ∆D ignores the given eifi. The device being accessed
as well as the access-type are specified by the given difi.

• Otherwise, no device is selected and the processor does not access any device.
In this case, ∆D does nothing.

These conditions guarantee that one device at most can progress. These and other
assumptions axiomatically specify the next-state function of the DS model. We also
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introduce a set of assumptions relating the transition functions of the DI and DS
models. The concrete instantiations of the transition functions must satisfy these
assumptions.

Device Specification Run

Runs of the DS model are defined via computational sequences. A computational
sequence σ is a finite sequence of processor-device identifiers. It defines which device
can progress in every specification step.

The specification model receives data from the processor and environment via
difi and eifi channels, respectively. The data flow from the processor is described by
a difi-sequence DS.difi, e.g. DS j.difi is the processor input for the specification step
j with the identifier σ( j). Similarly, the data flow from the external environment is
represented as an eifi-sequence, i.e. DS j.eifi is the input from the external environment
for the specification step j with the identifier σ( j).

A run with a given computational sequence σ for j ≤ len(σ) steps starting from
some initial state DSinit results in a new configuration DS( j,σ).cD, an output to the
processor DS( j,σ).difos, an output sequence to the external environment DS( j,σ).eifo,
and a vector of external events DS( j,σ).eev. The output sequence to the external
environment DS( j,σ).eifo accumulates eifo–outputs for all specification steps before j.

Definition 4.3

DS( j,σ) ,

let
(cD, difos, eifo, eev) := ∆D(σ( j − 1),DS j−1.eifi,DS j−1.difi,DS( j−1,σ).cD)

in DSinit : j = 0
(cD, difos,DS( j−1,σ).eifo ◦ eifo, eev) : otherwise

We write DSσ to denote DS(len(σ),σ). Thus, DSσ.cD, DSσ.eifo, DSσ.difos, DSσ.eev
denote the configuration, the outputs to external environment, and the outputs to the
processor after processing the complete sequence respectively.

Now we define several assumptions which guarantee the sequential behavior of
the step function of the specification ∆D. For readability’s sake, we define them in
terms of one step of DS model.

Assumption 4.1
Let DSv and DSs be two instances of the device specification model. A step with a
device identifier ignores the input from processor and provides an idle output to the
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processor:

σ( j) , P ∧ DSs
( j,σ).cD = DSv

( j,σ).cD∧

DSs
( j,σ).eifi = DSv

( j,σ).eifi ∧ DSs
( j,σ).eifo = DSv

( j,σ).eifo −→
DSs

( j+1,σ).cD = DSv
( j+1,σ).cD ∧

DSs
( j+1,σ).difos = DSv

( j+1,σ).difos = difos
ε ∧

DSs
( j+1,σ).eifo = DSv

( j+1,σ).eifo ∧
DSs

( j+1,σ).eev = DSv
( j+1,σ).eev

where difos
ε is some idle value.

Assumption 4.2
Let DSv and DSs be two instances of the device specification model. A step with the
processor identifier and with a processor request ignores the input from the external
environment:

σ( j) = P ∧ DSs
j.difi.req ∧ DSs

( j,σ).cD = DSv
( j,σ).cD∧

DSs
( j,σ).difi = DSv

( j,σ).difi ∧ DSs
( j,σ).eifo = DSv

( j,σ).eifo −→
DSs

( j+1,σ).cD = DSv
( j+1,σ).cD ∧

DSs
( j+1,σ).difos = DSv

( j+1,σ).difos ∧

DSs
( j+1,σ).eifo = DSv

( j+1,σ).eifo∧
DSs

( j+1,σ).eev = DSv
( j+1,σ).eev

Assumption 4.3
A step with the processor identifier without a request does not have any effect on the
devices:

σ( j) = P ∧ ¬DS j.difi.req −→
DS( j+1,σ).cD = DS( j,σ).cD ∧

DS( j+1,σ).difos = difos
ε ∧

DS( j+1,σ).eifo = DS( j,σ).eifo ◦ eifoε ∧
DS( j+1,σ).eev = DS( j,σ).eev

where eifoε is some idle value.

Lemma 4.4
Let DSv and DSs be two instances of the device specification model. Let us assume
they have the same initial state. Let them receive the same input sequences from the
external environment. If for every processor request they receive equivalent inputs difi,
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under Assumptions 4.1, 4.2, and 4.3, their runs are equivalent.

DSv
(0,σ) = DSs

(0,σ) ∧

∀ j < len(σ). DSv
j.eifi = DSs

j.eifi ∧
∀ j < len(σ). σ( j) = P −→

(DSv
j.difi.req = DSs

j.difi.req) ∧
(DSv

j.difi.req −→ DSv
j.difi = DSs

j.difi)
=⇒

∀ j ≤ len(σ). DSv
( j,σ).cD = DSs

( j,σ).cD ∧

DSv
( j,σ).eev = DSs

( j,σ).eev ∧
DSv

( j,σ).difos = DSs
( j,σ).difos ∧

DSv
( j,σ).eifos = DSs

( j,σ).eifos

Proof. We prove this lemma by induction on the sequence length. The base case is
trivial. In the induction step, σ ◦ [idx], we basically have to show the following:

∆D(idx,DSv
σ.cD,DSv

len(σ).difi,DSv
len(σ).eifi) =

∆D(idx,DSs
σ.cD,DSs

len(σ).difi,DSs
len(σ).eifi)

The equality of the inputs from the environment (i.e. DSv
len(σ).eifi = DSs

len(σ).eifi) is
guaranteed by the lemma premises. The equality of the states is guaranteed by the
induction hypothesis, i.e. DSv

σ.cD = DSs
σ.cD. Thus, we have only to consider the

inputs from the processor (i.e. the difi–inputs). Let us make the case distinction on
idx.

Case 1: idx , P, we know that in this case the next-state function ∆D ignores the
given input from the processor (Assumption 4.1).

Case 2: idx = P and there is no request, i.e. ¬DSs.difi.req. The lemma premises
guarantee that the request bit is equivalent for both models. Assumption 4.3 guaran-
tees that a given processor input is ignored, and hence, the subgoal holds.

Case 3: idx = P and there is a request, i.e. DSs.difi.req. The premises of the lemma
guarantee the equality of the inputs from processor, i.e. DSv

len(σ).difi = DSs
len(σ).difi.

The induction hypothesis guarantees the equality of the states. Finally, Assumption 4.2
guarantees the equality of the outputs. �

4.3 Correctness Criterion

Recall that our implementation model is a parallel one and the specification model is
a sequential one. It implies that one step in the implementation may correspond to
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several consecutive specification steps or no steps at all. For example an implemen-
tation step t 7→ t + 1 may correspond to the specification sequence j 7→ . . . 7→ j + k,
where k ∈ {0 . . . | DevN |} is the number of progressing devices:

• k = 0 – no device makes a step and hence ht
D = ht+1

D

• k =| DevN | – all devices make a step, and some of them may be accessed by
the processor

We employ the scheduling function concept which we have used in Chapter 3 to
relate the time notion of these models.

4.3.1 Scheduling Function

In Section 3.3.2, we introduced a scheduling function which abstracts hardware cycles
and stages to instruction numbers. The definition of a scheduling function is based
on some special hardware events. We have used write back event signalling that
an instruction is processed, and hence, this scheduling function basically counts the
number of processed instructions. Thus, we can relate the hardware state at a given
cycle t with the specification state after the execution of the processed instructions.

The scheduling function presented in this section is used in the correctness crite-
rion for the device model and for the combined processor-devices model, which is
presented in the next chapter. Therefore, we split the trigger events into two groups:
(i) processor-sided and (ii) external-environment-sided events.

Processor-sided events

Consider an instruction which neither writes to the memory nor accesses a device.
The result of such an instruction is finally computed at the write back stage, i.e. at
the cycle when the instruction is leaving the processor. Thus, the execution effect of
such an instruction can be rolled back by the processor at any hardware cycle before
it is written back.1 We use the notation wbt to denote the value of the hardware signal
write-back at cycle t.

An instruction writing to the memory or accessing a device forces irreversible
changes of the memory/device at the access cycle. The access cycle precedes the
write back cycle of the instruction. Thus, the memory/device is altered before the
instruction leaves the processor. Therefore, the memory and devices correctnesses
have to be treated specially. Beyer [Bey05] introduced a correctness criterion for a
user visible memory. His criterion captures the implementation memory state just
after the memory instruction has left the memory unit of the processor (i.e. after the
memory access is finished). He compares this memory state against the specification
memory after the processor specification has completely finished the execution of
that memory instruction. However, this approach is not sufficient for a model with a

1This rollback is possible, if for every instruction the processor can restore the program counters
which have been used to fetch it. The VAMP supports such a rollback.
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processor and devices, because the devices can act on their own and the memory can
not.

In order to built a precise refinement mapping, we consider four events for instruc-
tions with device accesses. We list these events in the chronological order:

1. the start of a device access as visible on the processor side,

2. the end of the device access as visible on the device side,

3. the end of the device access as visible on the processor side, and

4. the write back of the instruction.

The first event is the first cycle when the processor places request on the bus, i.e.
the first cycle when difi.req is activated (see Figure 3.3). The second event is the
cycle when the accessed device puts the result on the bus. We introduce a predicate
da : HD × Difi × Eifis → B which for a given device state hD ∈ HD, input from
processor difi ∈ Difi, and external environment eifis ∈ Eifis signal this event. For
clarity’s sake we denote this event at cycle t by dat.

From the processor and accessed device points of view da has almost the same
semantics as wb, because once a device access is done its effect can not be rolled back.
The third event takes places when the processor samples the device access result. For
our processor model it is the signal da end, which is presented in Definition 3.15. Note
that between da and da end events there is one cycle delay due to the communication
bus. Finally, the write back event we have already discussed above.

For the purpose of this chapter a formal definition of da is not important. However,
we need two properties of da for the correctness proof of a combined processor-
device model, which is presented in the next chapter. We specify these properties
axiomatically. Note that these axioms have to be proved for every concrete device
model (for example see Chapter 6).

Assumption 4.5
If dat holds there must be a preceding cycle t′ when the request is started.

∀t. dat −→ ∃t′ < t. DIt′ .difi.req ∧
∀t′′ ∈]t′ : t[. ¬DIt′′ .difi.req ∧ ¬dat′′

We also require the device model to have liveness property, i.e. all requests are
finally processed.

Assumption 4.6
∀t. DIt.difi.req −→ ∃t′ > t. dat′
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External-environment-sided events

Device steps can be triggered by the external environment. We introduce a function
DevIds which, for a given device state hD ∈ HD and the external inputs eifis ∈ Eifis,
computes a computational sequence σ consisting of only device identifiers.

σ = DevIds(hD, eifis)

This sequence σ corresponds to the devices making progress due to that input in one
step of the implementation.

The definition of this function depends on the concrete device model and how the
gate-level device model has to be abstracted. Here we present possible examples of
the DevIds semantics:

• In a very simple case we can model every implementation step in the speci-
fication. In this case DevIds always returns a computational sequence which
contains all device identifiers without duplications.

• With the help of this function we can purge the steps of a gate-level device
which have no effect. If the state of the device has not been changed due to the
external environment, its identifier is not in the result of DevIds.

• We can also ignore some steps of the gate level model, i.e. we will not model
these steps in the specification. Let us consider a device which has a n-bit
counter. Every time the counter reaches 2n − 1, the device generates an interrupt
and places it on eev. In the specification we could abstract it as a device which
from time to time generates an interrupt.

We put one restriction on DevIds: it should not return a sequence with duplicated
device identifiers.

Assumption 4.7

∀hD, eifis, σ. σ = DevIds(hD, eifis) −→
∀i < len(σ), j < len(σ). i , j −→ σ(i) , σ( j)

Now we can define the scheduling function sIPD. It builds a computational
sequence σ for a given number of hardware cycles. Figure 4.3 depicts a part of the
gate-level run of a system with processor and three devices. It also presents how this
subrun can be abstracted into a computational sequence. We define function sIPD by
recursion on hardware cycles:
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Gate-level run . . . . . .
P

D1 . . .
D1

D3

P

. . . D2 . . .
P

D1

Specification run . . . . . .P D1 P D3 D1 D2 P D1

Figure 4.3: Abstraction of hardware cycles to a computational sequence via sIPD.

Definition 4.4

sIPD(0) , []
sIPD(t + 1) ,

let
σt := sIPD(t)
was da := ∃t′ < t. dat′ ∧ ∀t′′ ∈]t′ : t[. ¬wbt′′

devids := DevIds(DIt.hD,DIt.eifis)

in σt ◦


devids ◦ [P] : dat

[P] ◦ devids : wbt ∧ ¬was da ∧ ¬dat

devids : otherwise

At the beginning, sIPD returns an empty sequence. With every step the previous se-
quence is extended by the identifiers of the changed system parts. Here we distinguish
three cases:

1. dat – The device access is finished. The sequence is extended by the identifiers
of the progressed devices followed by the processor identifier. The processor
identifier is added because:

• da signals that the access is finished on the device side

• the processor can not roll back the access effect

Therefore, the specification must make a step any way. The processor identifier
is added at the tail of the sequence, because at the end of cycle t the valid data
are put on the difo-bus. The eev-bus is also updated at the end of cycle t by
all devices. The implementation processor reads these data in the next cycle.
Therefore, the processor in the specification makes its step after the devices.
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2. wbt ∧ ¬was da ∧ ¬dat – There is the write back of an instruction without a
device access. In this case the processor and the devices progress independently.
We add the processor identifier and all identifiers of the changed devices to
the sequence. The processor identifier is added at the head of the subsequence
since:

• wbt signals the instruction completion on the processor side

• the processor reads the eev bus, and these data are computed in the previ-
ous cycle; we have one cycle delay due to the bus communication.

Therefore, the processor in the specification also reads the data which are
provided by the previous device configuration.

3. Default case – In this case only the devices, specified by DevIds, are progressing.
We don’t add the processor identifier to the sequence because either

• there is no processor-device communication, or

• if wbt is set, an instruction with a device access leaves the processor;
the processor identifier, which corresponds to this instruction, was added
earlier (see first case), or

• if wbt is not set, there is no write back of any instruction.

We use the notation σt to denote the computational sequence up to cycle t, i.e.

σt , sIPD(t)

We will denote the computational subsequence between cycles ts and te by σte
ts, i.e.

σte = σts ◦ σte
ts

It is easy to prove that sIPD is a monotonic function with respect to the length of
the output sequence.

Lemma 4.8

t < T
=⇒

len(σt) ≤ len(σT ) ∧ σt � σT

The next function for a given index of a sequence element computes the hardware
cycle at which the element has been added into the sequence.

Definition 4.5

AddedAt( j) , max{t | j ≥ len(σt)}
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The algorithm for the construction of the computational sequence guarantees that
for every element in the sequence there is a unique hardware cycle when it has been
added.

Lemma 4.9

∀ j < len(σT ). ∃t < T. t = AddedAt( j) ∧ ∀t′. t′ , t −→ t′ , AddedAt( j)

We can also prove that if two indices point to equal elements in the computational
sequence and these elements have been added at the same cycle, these indices are
equal.

Lemma 4.10

∀i < len(σT ). ∀ j < len(σT ).
σT (i) = σT ( j) ∧ AddedAt(i) = AddedAt( j) −→ i = j

4.3.2 Input and Output Relations

We can only state and prove the relations between the DI and the DS models if they
receive the same inputs. Therefore, we need a way to relate or to synchronise input
sequences for these two models.

We define a predicate sync eifis which tests whether inputs from the external
environments are synchronised. The predicate sync eifis works as follows. If a device
with the identifier σte( j) makes a step at t 7→ t + 1, this device makes this step with
the input eifist(idx). We compute this hardware cycle t as t = AddedAt( j). Then, we
compare implementation input for the device eifist(idx) with the specification input
for step j, i.e. with seq eifi j. Thus, predicate sync eifis guarantees that devices in the
implementation and the specification receive the same inputs.

Definition 4.6
Let seq eifis be a sequence of the implementation inputs from the external environment.
Let seq eifi be a sequence of the specification inputs from the external environment.

sync eifis(ts, te, seq eifis, seq eifi) ,
∀ j < len(σte).
if σte( j) , P ∧ (∃t ∈ [ts : te[. t = AddedAt( j))
then seq eifisAddedAt( j)(σte( j)) = seq eifi j

else seq eifi j = eifiε
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We apply a similar strategy to synchronise the inputs from the processor. The
function sync difi implements the synchronization.

Definition 4.7
Let R be a predicate which tests whether a given step number j was added in the
computational sequence at the transition t 7→ t + 1 due to a device access: R( j, t) =

dat ∧ t = AddedAt( j). Let seq difiI be a sequence of the implementation inputs
from the processor. Let seq difiS be a sequence of the specification inputs from the
processor.

sync difi(ts, te, seq difiI , seq difiS) ,
∀ j < len(σte).
if σte( j) = P ∧ (∃t ∈ [ts : te[. R( j, t))
then (seq difiI

(The x. R( j,x)).{w, a, din} = seq difiS
j.{w, a, din}) ∧ seq difiS

j.req
else ¬seq difiS

j.req

This definition is based on the end of a processor-device interaction. If there was
the end of a device access, we compare the implementation data to the specification
ones at the end of the request. Since at the end of a request the processor deactivates
the request flag, according to the bus protocol (see Figure 3.3), we require the active
value of seq difiS

i.difi.req. If the specification step j does not have processor-device
interaction, we only require that the boolean flag req of the specification must be
inactive and other fields do not matter.

Recall that the processor keeps the request data stable until the end of request
(Lemma 3.9), and, hence, we can map them to the specification ones. From the device
point of view this property has the form:

Corollary 4.11

∀t. dat −→

∃t′ < t. DIt′ .difi.req∧
∀t′′ ∈ [t′ : t]. DIt′′ .difi.{w, a, din} = DIt′ .difi.{w, a, din} ∧
∀t′′ ∈]t′ : t]. ¬DIt′′ .difi.req

Similarly to the synchronisation of inputs we define a predicate sync eifos. It tests
for synchronising of a sequence of implementation outputs to the external environment
and a sequence of specification outputs to the external environment.

Definition 4.8
Let K be a predicate which tests whether (i) a given step number j was added in the
computational sequence at the transition t 7→ t+1, and (ii) this is a step of a device with
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a given identifier idx ∈ DevN. Formally, K( j, t, idx) , (t = AddedAt( j)) ∧ σt( j) =

idx. Let seq eifos be a sequence of the implementation inputs from the external
environment. Let seq eifo be a sequence of the specification inputs from the external
environment.

sync eifos(ts, te, seq eifos, seq eifo) ,
∀t ∈]ts : te]. ∀idx ∈ DevN. (∃ j < len(σte). K( j, t, idx)) −→

seq eifost+1(idx) = seq eifo(The x. K(x,t,idx))+1

This definition states that whenever an implementation device makes some tran-
sition t 7→ t + 1 and there is a corresponding transition in the specification, then the
outputs eifo of these transitions must match. We relate seq eifost+1 and seq eifo j+1

because we need the outputs of the transition t 7→ t + 1 and after step j, respectively.

4.3.3 Admissible Step Functions

In the previous sections we introduced two device models DI and DS. They are
based on the generic step functions δD (for the implementation) and ∆D (for the
specification). In order to state any simulation relation between runs of DI and DS
models, we have to specify how the results of these generic step functions are related
with each other.

First, for every device with identifier idx we introduce a predicate simidx : Hidx
D ×

Cidx
D → B which tests whether the implementation state of the device is in a relation

with its specification state. We introduce a predicate simD which holds if the states of
all devices are in relations with their specification states.

Definition 4.9

simD(hD, cD) , ∀idx ∈ DevN. simidx(hD(idx), cD(idx))

We introduce a “one-step” assumption. This assumption specifies a relationship
between one step in the implementation and a sequence of steps in the specification.
In other words, one step of the DI model (single application of δD) must correspond
to a sequential execution of specification steps computed by sIPD. We define this
assumption for any initial state and any input sequences.
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Assumption 4.12

simD(DI0.hD,DSσ
0
.cD) ∧

sync eifis(0, 1,DI.eifis,DS.eifi) ∧ sync difi(0, 1,DI.difi,DS.difi) −→
simD(DI1.hD,DSσ

1
.cD) ∧

sync eifos(0, 1,DI.eifos,DSσ
1
.eifo) ∧

DI1.difo.dout = DSσ
1
.difos ∧

DI1.eev = DSσ
1
.eev

Note that we can use the DSσ
1
.difos output as the correct value for DI1.difo.dout

because:

• If da0, the implementation produces an output to the processor. The cor-
responding specification step is the last in the computational sequence σ1

(Definition 4.4).

• If ¬da0 and σ1 contains no processor identifier, then Assumption 4.1 guarantees
that the DS model produces the idle output. Hence, the difo output of δD must
also be the idle output.

• If ¬da0 and σ1 contains the processor identifier, then the processor identifier is
the first element inσ1 (Definition 4.4). In this case sync difi(0, 1,DI.difi,DS.difi)
guarantees that ¬DS.difi.req. Assumption 4.3 guarantees that the DS model
produces the idle output. Hence, the difo output of δD must also be the idle
output.

Now, we derive from Assumption 4.12 a generic lemma for a step t → t + 1:

Lemma 4.13

simD(DIt.hD,DSσ
t
.cD) ∧

sync eifis(t, t + 1,DI.eifis,DS.eifi) ∧ sync difi(t, t + 1,DI.difi,DS.difi)
=⇒

simD((DIt)1.hD, (DSσ
t
)σ

t+1
t .cD) ∧

sync eifos(t, t + 1,DI.eifos, (DSσ
t
)σ

t+1
t .eifo) ∧

(DIt)1.difo.dout = (DSσ
t
)σ

t+1
t .difos ∧

(DIt)1.eev = (DSσ
t
)σ

t+1
t .eev

The proof of Lemma 4.13 requires several auxiliary lemmata stating the decom-
position property of runs, scheduling function, and synchronization predicates. We
present these lemmata in the following subsection.
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Decomposition lemmata

Lemma 4.14
To run the DI model for t1 + t2 cycles is the same as to run it first for t1 cycles and
then for t2 cycles:

DIt1+t2 = (DIt1)t2

Lemma 4.15
To run the DS model with the computational sequence σ1 ◦ σ2 is the same as to run
it first with sequence σ1 and then with sequence σ2:

DSσ1◦σ2 = (DSσ1)σ2

The scheduling function sIPD has to preserve the decomposition property as well.

Lemma 4.16
The computational sequence for t1 + t2 cycles can be decomposed into two subse-
quences. One starting from 0 and going to t1 and the other from t1 up to t2:

σt1+t2 = σt1
0 ◦ σ

t2
t1

The proofs for Lemma 4.14, Lemma 4.15, and Lemma 4.16 were carried out by
induction over hardware cycles, or the length of computational sequences.

We also need the decomposition property for inputs and outputs. Hence, the
functions sync eifis, sync difi, and sync eifos have to preserve it.

Lemma 4.17

∀t. ∀st
sync eifis(0, st + t, seq eifis, seq eifi) −→
sync eifis(st, st + t, seq eifis, seq eifi)

Lemma 4.18

∀t. ∀st.
sync difi(0, st + t, seq difiI , seq difiS) −→
sync difi(st, st + t, seq difiI , seq difiS)

Lemma 4.19

∀t. ∀te
sync eifos(0, t, seq eifos, seq eifo)∧
sync eifos(t + 1, t + te, seq eifos, (λx. seq eifo(x + len(σt))) −→

sync eifos(0, t + te, seq eifos, seq eifo)
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These lemmata are proven by using the definitions of sync eifis, sync difi, and
sync eifos as well as Lemma 4.9 and Lemma 4.10.

4.3.4 The Simulation Theorem

As the correctness criterion we have selected a simulation relation. We want to show
that every run of the implementation model DI can be simulated by a run of the
specification model DS with respect to sIPD.

Theorem 4.20
Let σT be the computation sequence up to cycle T and let all inputs be synchronised.
Let the initial configurations be in the simulation relation.

We show that the state of the DI model after T cycles and the state of the DS model
after executing sequence σT are equivalent. Moreover, these two models produce
equal outputs.

simD(DI0.hD,DS0.cD)∧
sync eifis(0,T,DI.eifis,DS.eifi)∧
sync difi(0,T,DI.difi,DS.difi)
=⇒

simD(DIT .hD,DSσ
T
.cD) ∧

sync eifos(0,T,DIT .eifos,DSσ
T
.eifo) ∧

DIT .difo.dout = DSσ
T
.difos ∧

DIT .eev = DSσ
T
.eev

Theorem 4.20 states the correctness criterion after a given number of hardware
cycles T . This theorem also covers the correctness for all input sequences and initial
states since we have not restricted them. The assumptions of Theorem 4.20 filter out
the specification runs which can not exist in the implementation model.

Proof. The proof is carried out by induction on hardware cycles. The induction base
is trivial: we know that the initial configurations are the same and the output buses
are initialised with the same idle values.

In the induction step we have to show the following:

IH: sync eifis(0, t + 1,DI.eifis,DS.eifi) ∧
sync difi(0, t + 1,DI.difi,DS.difi) ∧
simD(DIt.hD,DSσ

t
.cD)∧

sync eifos(0, t,DI.eifos,DSσ
t
.eifo)

=⇒

IS: simD(DIt+1.hD,DSσ
t+1
.cD) ∧

sync eifos(0, t + 1,DI.eifos,DSσ
t+1
.eifo) ∧

DIt+1.difo.dout = DSσ
t+1
.difos ∧

DIt+1.eev = DSσ
t+1
.eev
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We start the proof by decomposing the application of the scheduling function
sIPD(t + 1) into two regions: (i) from 0 to t and (ii) from t to t + 1 . Lemma 4.16
provides us with the necessary decomposition rule: σt+1 = σt ◦ σt+1

t .
By applying Lemma 4.15 we split the specification run into two subruns: (i) one

run with σt and (ii) the second run with σt+1
t . Together with Lemma 4.14 and

Lemma 4.19 we rewrite the induction step as follows:

simD(((DIt)1).hD, ((DSσ
t
)σ

t+1
t ).cD) ∧

sync eifos(t, t + 1,DI.eifos, (DSσ
t
)σ

t+1
t .eifo) ∧

(DIt)1).difo.dout = ((DSσ
t
)σ

t+1
t ).difos ∧

((DIt)1).eev = ((DSσ
t
)σ

t+1
t ).eev

Now to finish the proof we have to apply Lemma 4.13. This lemma has three assump-
tions: (i) The equivalence of the states, i.e. simD(DIt.hD,DSσ

t
.cD), this is provided

by the induction hypothesis. (ii) The input sequences from the processor must be
synchronised for the step t 7→ t + 1. From the induction hypothesis we know that they
are synchronized from 0 until t + 1. From the latter and Lemma 4.18 we can derive
the needed synchronization for the step t 7→ t + 1. (iii) The input sequences from the
external environment must be synchronised for the step t 7→ t + 1. We employ the
argumentation as in the previous case together with Lemma 4.17. . �

4.4 Summary

In this chapter we presented a generic device theory. The theory contains one parallel
model and one sequential model. The parallel model is meant to be the implementation
of the devices at the gate level, where at every hardware cycle each device can progress.
The sequential model is used as the specification of the devices at the assembly level,
where the devices progress one after another. We consider both models not as stand-
alone systems but as parts of computer systems, which consist of processors and
external environments.

We stated and proved the simulation theorem stating that every run of the imple-
mentation can be simulated by a run of the specification.

This theory can also be easily instantiated with concrete devices. This possible
thanks to the generic types for configuration of devices and the interface types to the
external environment.

The generality of the device theory is based on seven assumptions and the protocol
specifying communication between processor and devices (Section 3.2.2). Thus, any
concrete implementation and specification models, which agree on these assumptions,
are automatically correct.



Chapter 5

VAMPXT & Devices: The
Computer System

In this chapter, we develop a computer system which consists of two parts: a processor
and integrated memory-mapped devices. Similarly to the previous chapters, we
present this system on the gate level and the assembly-language level. Our strategy is
quite simple: we put together all models presented earlier. Thus, the gate-level model
is a combination of the VAMP processor and the DI model and the specification is
a combination of the ISA and DS models. We also present and prove a correctness
criterion stating a simulation relation between these two combined models.

5.1 VD-System Implementation

The implementation of the combined VAMP-Devices system (VDI) integrates the
VAMP and the generic device model on the gate level. The processor and devices
communicate via the device interface buses difi and difo, which are internal in this
model. These buses introduce one cycle delay in the communication (Section 3.2.2),
i.e. the processor places the request on the difi and at the next cycle the device model
reads these data. Therefore, we introduce the state of the communication bus hB ∈ HB

which holds the data from the processor hB.difi ∈ Difi and the data to the processor
hB.difo ∈ Difo and external event vector hB.eev ∈ B19:

HB , Difi × Difo × B19

Formally, the configuration of the VDI, hPD ∈ HPD, has the following type:

HPD , HP × HD × HB

where hPD.hP denotes the VAMP configuration, hPD.hD denotes the configuration of
the devices, and hPD.hB denotes the state of the bus.

The next-state function of VDI updates the processor and the devices by the
application of their next-state functions. It also defines the communication between

99
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VDI

VAMP

RAM

mifi

mifo difi/difo

D1 . . . Dn

eifis(1) eifos(1) eifis(n) eifos(n)

eev

Figure 5.1: Architecture of the implementation of the combined model.

the system components and the external world. For the VDI model the external world
consists of the memory chips and the external environment of the devices. Formally,
the step function of VDI computes the next state h′PD ∈ HPD based on a given system
state hPD ∈ HPD, inputs from the device environment eifis ∈ Eifis and the memory
mifo ∈ Mifo. It also computes the outputs of the system to the external environment
eifos ∈ Eifos of the devices and to the memory mifi ∈ Mifi.

Definition 5.1

δPD(hPD, eifis,mifo, reset) ,
let

h′P := δP(hPD.hP,mifo, hPD.hB.difo, hPD.hB.eev, reset)
(h′D, difo′, eifos, eev′) := δD(eifis, hPD.hB.difi, hPD.hD, reset)
(mifi, difi′) := ωP(hPD.hP)
hB
′ := (difi′, difo′, eev′)

h′PD := (h′P, h
′
D, hB

′)
in (h′PD, eifos,mifi)

A run of the VDI model is defined recursively by the application of the next-state
function for a given number of hardware cycles. The communication with the external
environment is modelled in a similar fashion as for the device model (Section 4.1):
we employ VDIt.eifis to denote the device inputs from the external environment at
cycle t. We denote the input from the external memory1 at cycle t as VDIt.mifo. A run

1This external memory is only specified but not implemented on gate-level.
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for t cycles starting from a configuration hinit
PD results in a new configuration VDIt.hPD,

outputs to the external environment VDIt.eifos, and outputs to the external memory
VDIt.mifi. Formally:

Definition 5.2

VDIt.(hPD, eifos,mifi) ,


(hinit

PD , eifosε ,mifiε) : t = 0
δPD(VDIt−1.hPD,VDIt−1.eifis,

VDIt−1.mifo,VDIt−1.reset) : otherwise

where eifosε and mifiε are the idle values.

For clarity’s sake, we use the shorthand VDIt.hP to denote the configuration of the
VAMP at cycle t, i.e. VDIt.hP , VDIt.hPD.hP. Similarly, use the shorthand VDIt.hD,
VDIt.eev, VDIt.difi, and VDIt.difo to access configuration of devices, external event
vector, input for devices, and output for devices respectively.

Recall that in Chapter 3 we have assumed the VAMP input signal reset to be
inactive for all hardware cycles t ≥ 0. We make the same assumption for the signal
reset of the VDI model.

The Memory of the VDI Model

Similarly to the processor VAMP, the VDI model does not have any detailed imple-
mentation component for the memory. We define the state of the VDI memory by
observing the memory interfaces as we have done it for VAMP (see Definition 3.18).

Definition 5.3
Let init mem be the initial memory content. We introduce a function bw(t, dold) ∈ B64

which for a given cycle t ∈ N and a given old content of the memory cell dold ∈ B64

computes the value to be written in the memory, i.e.

bw(t, dold) , byteupd(VDIt.mifi.bwb, dold,VDIt.mifi.din)

The memory content M(VDI, t) at cycle t is recursively defined as follows:

M(VDI, t)(a) ,



init mem(a) : t = 0
bw(t,M(VDI, t − 1)(a))

: VDIt−1.mifi.a = a ∧
¬busy(VAMPt−1.mifo)

M(VDI, t − 1)(a)
: otherwise
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Decomposition of the VDI Model

The combined model VDI can be easily decomposed into VAMP and DI. We introduce
an additional notation which allows us to compactly describe the decomposition
lemmata.

Definition 5.4
We define relations on states, inputs, and outputs of the device model DI and its
counterpart in VDI.

VDc(T) , ∀t ≤ T. DIt.hD = VDIt.hD

VDdifi(T) , ∀t ≤ T. DIt.difi = VDIt.difi
VDeifis(T) , ∀t ≤ T. DIt.eifis = VDIt.eifis
VDdifo(T) , ∀t ≤ T. DIt.difo = VDIt.difo
VDeifos(T) , ∀t ≤ T. DIt.eifos = VDIt.eifos
VDeev(T) , ∀t ≤ T. DIt.eev = VDIt.eev

Lemma 5.1
The stand-alone device model DI and the device part of VDI have the same behaviour,
if they have started from equal states and have received the same inputs.

VDc(0) ∧ VDdifi(T − 1) ∧ VDeifis(T − 1) =⇒

VDc(T ) ∧ VDdifo(T ) ∧ VDeifos(T ) ∧ VDeev(T )

Proof. The proof is carried out by induction on hardware cycles. The induction base
is trivial. To finish the proof, we use (i) the fact that the same step function δD is used
in both models (Definition 4.1, Definition 5.1) and (ii) the induction hypothesis which
guarantees that both step functions receive the same inputs. �

We similarly extract the VAMP from the combined model.

Definition 5.5
We define relations on states, inputs, and outputs of the VAMP and its counterpart in
VDI.

VVc(T) , ∀t ≤ T. VAMPt.hP = VDIt.hP

VVdifo(T) , ∀t ≤ T. VAMPt.difo = VDIt.difo
VVeev(T) , ∀t ≤ T. VAMPt.eev = VDIt.eev
VVdifi(T) , ∀t ≤ T. VAMPt.difi = VDIt.difi
VVmifo(T) , ∀t ≤ T. VAMPt.mifo = VDIt.mifo
VVmifi(T) , ∀t ≤ T. VAMPt.mifi = VDIt.mifi
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Lemma 5.2
The VAMP and the processor of VDI have the same behaviour, if they have started
from equal states and have received the same inputs.

VVc(0) ∧ VVdifo(T − 1) ∧ VVeev(T − 1) ∧ VVmifo(T − 1) =⇒

VVc(T ) ∧ VVdifi(T ) ∧ VVmifi(T ) ∧ M(VDI, t) = M(VAMP, t)

5.2 VD-System Specification

The specification of the VAMP-Devices system (VDS) consists of the ISA model
of the processor and the sequential device model DS (Figure 5.2). In contrast to
the implementation, we do not model the bus between the processor and the device
models. This is because the processor-device communication is completed with zero
delay, i.e. the processor accesses a device and the device immediately produces the
answer to the processor. The configuration of VDS, cPD ∈ CPD, has the following
type:

CPD , CP ×CD

The components of the VDS system can progress in an interleaved way, e.g. a
network adapter can communicate with the network without interacting with the
processor. A step of the VDS model can either be a processor step with device
interaction, a processor step without any device interaction, or a device step. We
employ processor-device identifiers (see Section 4.2) to determine which component
makes a step. Now we define the next-state function ∆PD which takes an identifier
idx ∈ PD of the updated component, an input from the environment eifi ∈ Eifi, and a
system state cPD ∈ CPD. It returns a new configuration c′PD ∈ CPD.

Definition 5.6

∆PD(idx, eifi, cPD) ,
let

difi := ΩP(cPD.cP)
(cD
′, difos, eifo, eev) := ∆D(idx, cPD.cD, eifi, difi)

c′P :=

∆P(cPD.cP, eev, difos) : idx = P
cPD.cP : otherwise

in (c′P, cD
′)

Recall, ∆P ignores the given difos in case there is no device access (Lemma 3.1).
Remember also that ∆D allows at most one device make progress (Section 4.2). Thus,
the next-state function ∆PD has the following semantics:
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Figure 5.2: Architecture of the specification of the combined model.

• If idx , P, the device with the identifier idx makes a step. This device only
considers the given eifi and its previous state. The processor state is not changed.

• If idx = P ∧ difi.req, the processor communicates with a device (load/store
instruction). The accessed device is encoded in difi.a. The processor state is
updated correspondingly to the executed device access, e.g. storing difos. In
this case, ∆D ignores the given eifi and produces some idle eifoε .

• Otherwise, only the processor makes a step. It executes an instruction without
device access.

The output function ΩPD produces the output to the external environment eifo ∈
Eifo.

Definition 5.7

ΩPD(idx, cPD, eifi) ,
let

difi := ΩP(cPD.cP)
(cD
′,mifo, eifo, eev) := ∆D(idx, cPD.cD, eifi, difi)

in eifo

Note that if the input identifier is the one of the processor (i.e., idx = P), ∆D (and,
hence, ΩPD) produces an idle value eifoε .

We define runs of the VDS model over computational sequences (Section 4.2).
Running VDS from an initial state cinit

PD with computational sequence σ for j ≤ len(σ)
steps results in a new state VDS( j,σ).cPD. During a run the VDS model communicates
with external environment. We denote input data from the external environment for
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the specification step j as VDS j−1.eifi.

VDS( j,σ).cPD ,

cinit
PD : j = 0

∆PD(σ( j − 1),VDS j−1.eifi,VDS( j−1,σ).cPD) : otherwise

The output sequence is produced by the application of the output function:

VDS( j,σ).eifo ,


[] : j = 0
VDS( j−1,σ).eifo ◦

ΩPD(σ( j − 1),VDS( j−1,σ).cPD,VDS j−1.eifi) : otherwise

Since the internal interfaces difi, eev, and difos are not visible anymore, we
introduce extra notions to access their values.

Definition 5.8

VDS( j,σ).difi ,

difiε : j = 0 ∨ σ( j − 1) , P
ΩP(VDS( j−1,σ).cPD.cP) : otherwise

VDS( j,σ).eev ,


eevε : j = 0
(∆D(σ( j − 1),VDS( j−1,σ).cPD.cD,

VDS j−1.eifi,VDS( j,σ).difi)).eev : otherwise

VDS( j,σ).difos ,


difos

ε : j = 0
(∆D(σ( j − 1),VDS( j−1,σ).cPD.cD,

VDS j−1.eifi,VDS( j,σ).difi)).difos : otherwise

We employ the shorthand VDSσ to denote VDS(len(σ),σ). For example, VDSσ.cPD.cP
denotes the state of the processor after processing the complete computational se-
quence σ.

The following lemma obviously holds.

Lemma 5.3

∀σ1 � σ. VDS(len(σ1),σ) = VDSσ1
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5.3 The Correctness Criterion

Our goal is to state and to prove that every run of the implementation (VDI model)
can be simulated by a run of the specification (VDS model). We use the scheduling
function sIPD, introduced in the previous chapter, to relate the time notion of these
two models.

The models VDI and VDS communicate with the external environment, hence,
the correctness criterion can only be stated if both models receive equivalent inputs.
Fortunately, this communication in the VDI and VDS models is literally the same
as in the DI and DS models respectively. Therefore, we can reuse the results from
the previous chapter, i.e. we employ the predicates sync eifis and sync eifos to test
whether the inputs and outputs of both models are synchronized. In general, our
correctness criterion combines the correctness of the VAMP processor and the device
model.

We use the following notation to keep the formulation of the correctness criterion
and its proof compact and readable.

Definition 5.9
Let σt be a computational sequence up to a given cycle t, i.e. σt = sIPD(t).

CCcp(T ) , ∀t ≤ T. (t = 0 ∨ JISRt−1) −→
Rconf (VDIt.hP,VDSσ

t
.cPD.cP) ∧ M(VDI, t) = VDSσ

t
.cPD.cP.M

CCcd(T ) , ∀t ≤ T. simD(VDIt.hD,VDSσ
t
.cPD.cD)

CCeifi(T ) , sync eifis(0,T,VDI.eifis,VDS.eifi)
CCeifo(T ) , sync eifos(0,T,VDI.eifos,VDSσ

T
.eifo)

In Section 3.3.4 we introduced several software conditions. They restrict the
assembly programs which can be executed on the VAMP processor. These conditions
are defined for the ISA model and we need equivalent conditions for the VDS model.
We omit the formal definitions of these conditions for VDS model because they are
straightforward reformulations of the ones presented in Section 3.3.4.

Theorem 5.4 (The simulation theorem)
Let the inputs for the VDS model and the VDI model be synchronised and let the
initial states be equivalent. Let the assembly code satisfy the software conditions
(Section 3.3.4). Let σT = sIPD(T ). Let the reset signal be inactive for all hardware
cycles.

We show that the state of the VDI model after T cycles and the state of the VDS
after executing σT are equivalent. Moreover, the VDI and the VDS models produce
equal outputs.

CCcp(0) ∧ CCcd(0) ∧ CCeifi(T ) =⇒

CCcp(T ) ∧ CCcd(T ) ∧ CCeifo(T )
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Figure 5.3: The correctness criterion for the combined system.

We graphically represent this theorem in Figure 5.3. On the left-hand side, we
schematically depict the VAMP processor combined with the devices, i.e. the VDI
model.2 On the right-hand side, we depict the specification model VDS.

The assumption of the theorem, which is the relation between inputs from the
external environment, is shown in rounded-corner boxes. In the same style we depict
relations between the states of the systems and their outputs. In the following sections,
we extend this picture to illustrate the proof of Theorem 5.4.

5.4 Overview of Models

In this section we present an overview of all introduced models and relations between
them. We have defined six different models with three different notions of time:

• Gate-level implementations (time notion: hardware cycles)

– the VAMP processor

– the external devices

– the combined VAMP-Devices model

• Instruction-oriented processor specification ISA (time notion: instructions)

• Sequential specification of the device model (time notion: steps of computa-
tional sequences)

• Sequential specification of the combined system (time notion: steps of compu-
tational sequences)

2We don’t depict memory interfaces mifi and mifo to avoid clutter in the figure.
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The models and the relations between them can be best depicted graphically (see
Figure 5.4). In this figure we show models and relations that we have introduced so far
and several new relations. We also blend in Figure 5.4 the relations of Theorem 5.4.

• The VAMP processor is related to the instruction-oriented ISA model via the
scheduling function sI. The corresponding relations specify how the states,
inputs, and outputs of these two models are related with each other in the scope
of the combined models. We depict these relations via diamonds and name
them Pc, Peev, Pdifo, and Pdifi. We formally define these relations in the next
section.

• The device implementation DI is related to the device specification DS via Dc,
Deev, Ddifo, Ddifi, Deifi, and Deifo. These are depicted via hexagons. Again, we
formally define these relations in the next section.

In the proof of Theorem 5.4 we will use results of the previous two chapters. This
proof requires several additional relations. These are depicted on the right half of
Figure 5.4:

• A run of the processor of the VDS has to be simulated by a run of the ISA. We
denote the needed relations via circles, and we name them CPc, CPeev, CPdifo,
and CPdifi.

• A run of the devices of the VDS has to be simulated by a run of the DS. We
denote the needed relations via ellipses, and we name them CDc, CDeev, CDdifo,
CDdifi, CDeifi, and CDeifo.

In Section 5.5 we develop these new relations.

5.5 Model Relations

In Section 3.3 we established the correctness of the VAMP processor against its
instruction-oriented specification, the ISA. We briefly summarise it here with respect
to the combined system, and we define the shorthands for the relations of the processor
models:
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– relates cycle-based model with sequence-based model
– relates cycle-based model with instruction-based model
– relates instruction-based model with sequence-based model
– relates sequence-based models

Figure 5.4: The overview of the models and the relations.

Definition 5.10

Pc(T ) , ∀t ≤ T. (t = 0 ∨ JISRt−1) −→
Rconf (VDIt.hP, ISAsI(t).cP) ∧ M(VDI, t) = ISAsI(t).cP.M

Peev(T ) , Reev(T,VDI.eev, ISA.eev)

Pdifo(T ) , Rdifo(T,VDI.difo, ISA.difos)

Pdifi(T ) , Rdifi(T,VDI.difi, ISA.difi)
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The rewriting rule which expresses the VAMP processor in terms of the VDI
model (Lemma 5.2) and the VAMP correctness theorem (Theorem 3.10) imply the
following corollary.

Corollary 5.5

Pc(0) ∧ Peev(T ) ∧ Pdifo(T ) =⇒ Pc(T ) ∧ Pdifi(T )

In Section 4.3 we introduced the relations between the implementation of the
device model DI and its specification DS. Now we introduce the corresponding
shorthands:

Definition 5.11

Dc(T ) , ∀t ≤ T. simD(VDIt.hD,DSσ
t
.cD)

Deev(T ) , ∀t ≤ T. VDIt.eev = DSσ
t
.eev

Ddifo(T ) , ∀t ≤ T.VDIt.difo.dout = DSσ
t
.difos

Ddifi(T ) , sync difi(0,T,VDI.difi,DS.difi)

Deifi(T ) , sync eifis(0,T,VDI.eifis,DS.eifi)

Deifo(T ) , sync eifos(0,T,VDI.eifos,DSσ
T
.eifo)

We derive the following corollary from the correctness of the device model
(Theorem 4.20) and the rewriting rule for the devices in the scope of the VDI model
(Lemma 5.1).

Corollary 5.6

Dc(0) ∧ Ddifi(T ) ∧ Deifi(T ) =⇒ Dc(T ) ∧ Deev(T ) ∧ Ddifo(T ) ∧ Deifo(T )

We introduce two additional functions, Seq2I and Seq2P, to relate the ISA model
and the processor of the VDS model.

The function Seq2I counts the number of the processor steps in a given computa-
tional sequence up to a given step j. It is defined recursively as follows:
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Definition 5.12

Seq2I( j, σ) ,


0 : j = 0 ∨ σ = []
Seq2I( j − 1, σ) + 1 : σ( j − 1) = P
Seq2I( j − 1, σ) : otherwise

We use the shorthand Seq2I(σ) to denote Seq2I(len(σ), σ).
For the rest of this thesis we say that instruction i is in the computation sequence

if there exists at least i + 1 numbers of processor identifiers in the sequence. Recall
that the first instruction has index 0. Formally,

instruction i is in σ⇐⇒ Seq2I(len(σ)) > i

The function Seq2I establishes a connection between the scheduling functions
sIPD and sI.

Lemma 5.7
Let σt = sIPD(t). If there is an instruction in the processor pipeline with a finished
device access, then the number of processor steps counted by Seq2I is greater by
one than the number of processor steps counted by sI(t); otherwise the numbers of
processor steps counted by Seq2I and sI match.

Seq2I(σt) =

sI(t) + 1 : ∃t′ < t. dat ∧ ∀t′′ ∈]t : t′[. ¬wbt′′

sI(t) : otherwise

The function Seq2I is monotonic with respect to a run of the gate-level model:

Lemma 5.8

t < t′ =⇒ Seq2I(σt) ≤ Seq2I(σt′)

The function Seq2P returns, for a given instruction index i, the length of the
minimal prefix of a computational sequence such that instruction i is in it. For
example, for the instruction with index 0, Seq2P returns the length of the prefix of a
computational–sequence where the last element is the first processor identifier in the
sequence.

Definition 5.13
Let j be a given number of specification steps. Let σ be a computational sequence
and let i be an instruction index.

Seq2P( j, σ, i) ,


0 : j = 0 ∨ σ = []
j : σ( j − 1) = P ∧ i = Seq2I( j − 1, σ)
Seq2P( j − 1, σ, i) : otherwise
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We use the shorthand Seq2P(σ, i) to denote Seq2P(len(σ), σ, i). The following
lemmata describe the main properties of Seq2P.

Lemma 5.9
Let instruction i be in the sequence σ. Function Seq2P returns the length of the
minimal prefix of a computational sequence with instruction i.

Seq2I(len(σ)) > i =⇒

Seq2P(σ, i) = min{k | k < len(σ) ∧ σ(k − 1) = P ∧ Seq2I(k, σ) > i}

Lemma 5.10
If instruction i is not in the sequence, the result of Seq2P(σ, i) is zero.

Seq2P(σ, i) = 0⇐⇒ Seq2I(len(σ)) ≤ i

Lemma 5.11
Seq2P(σ, i) − 1 points only to processor identifiers.

∀i < Seq2I(σ). σ(Seq2P(σ, i) − 1) = P

We can express the position of the last processor identifier in the sequence before
j via the Seq2I and Seq2P functions. We first introduce an auxiliary function lastP. It
returns the index of the last processor identifier in a given computational sequence:

Definition 5.14
lastP( j, σ) , last( j, σ, (λx. x = P))

We use the the shorthand lastP(σ) to denote lastP(len(σ), σ).

Lemma 5.12
Let j be the number of specification steps and let σ be a computational sequence.

j ≤ len(σ) ∧ ∃k < j. σ(k) = P
=⇒

Seq2P(σ, Seq2I( j, σ) − 1) = lastP( j, σ) + 1

Lemma 5.13
Let σ be a computational sequence. The prefix with the length Seq2P(σ, i−1) contains
i processor identifiers.

∀i ≤ Seq2I(σ). Seq2I(Seq2P(σ, i − 1), σ) = i
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We use the function Seq2P to locate processor steps in runs of the VDS model.
For example, VDS(Seq2P(σ,i),σ).cPD.cP is the processor configuration after execution
of the instruction with index i. Similarly, VDS(Seq2P(σ,i),σ).{eev, difo} are inputs for
instruction i and VDS(Seq2P(σ,i),σ).difi is the output of execution of instruction i.

Now we define relations between the ISA and the processor of the VDS system.

Definition 5.15

CPc(σ) , ∀i ≤ Seq2I(σ). ISAi.cP = VDS(Seq2P(σ,i−1),σ).cPD.cP

CPeev(σ) , ∀i < Seq2I(σ). ISAi.eev = VDS(Seq2P(σ,i),σ).eev

CPdifo(σ) , ∀i < Seq2I(σ). ISAi.difos = VDS(Seq2P(σ,i),σ).difos

CPdifi(σ) , ∀i < Seq2I(σ). ISAi+1.difi = VDS(Seq2P(σ,i),σ).difi

We state that every run of the processor of the VDS model can be simulated by a
run of the ISA model.

Theorem 5.14

CPc([]) ∧ CPeev(σ) ∧ CPdifo(σ) =⇒ CPc(σ) ∧ CPdifi(σ)

Proof. We prove this statement by induction on the length of σ. The base case is
trivial because we assume the initial states to be equal, and the outputs have the same
idle value. In the induction step the sequence is extended by some element x:

CPc(σ) ∧ CPdifi(σ) ∧ CPeev(σ ◦ [x]) ∧ CPdifo(σ ◦ [x])
=⇒

CPc(σ ◦ [x]) ∧ CPdifi(σ ◦ [x])

We test whether the element x is the processor identifier.

Case 1: If x , P, we know that

• Seq2I(σ ◦ [x]) = Seq2I(σ),

• ∀i. Seq2P(σ ◦ [x], i) = Seq2P(σ, i), and

• the processor part of the VDS does not make a step (Definition 5.6)
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Therefore, we can use the induction hypothesis to finish the proof of this case.

Case 2: If x = P, the processors in both models make a step by applying the
same step function ∆P and produce outputs by applying the same output function ΩP.
The induction hypothesis guarantees that the step is done from the same state and
the assumptions (CPeev and CPdifo) guarantee the equivalence of the inputs for these
steps. Thus, the updated processor states and the produced outputs are the same in
both models. �

Lemma 5.15
Let J ≤ len(σ). Let I ∈ N be less or equal J, i.e. I ≤ J. Steps of the VDS model with
device identifiers don’t affect the processor configuration:

∀ j ∈ [I : J[. σ( j) , P =⇒ VDS(I,σ).cPD.cP = VDS(J,σ).cPD.cP

We can express this lemma in terms of the function lastP.

Corollary 5.16
At any given step, the processor configuration of the VDS model equals the one after
processing the last step with a processor identifier.

j ≤ len(σ) ∧ ∃k < j. σ(k) = P
=⇒

VDS( j,σ).cPD.cP = VDS(lastP( j,σ)+1,σ).cPD.cP

The difi-outputs of the VDS model depend only on processor configuration. There-
fore, difi-outputs are not affected by device steps.

Lemma 5.17
The difi-output VDS(Seq2P(σ,i),σ).difi is the output of the instruction with index i.
VDS(Seq2P(σ,i−1),σ).cPD.cP is the processor configuration after execution of the instruc-
tion with index i− 1. Recall that ΩP is the processor’s output-function. The difi-output
equals the result of ΩP applied on the processor configuration after execution of the
instruction with index i − 1.

∀i < Seq2I(σ). VDS(Seq2P(σ,i),σ).difi = ΩP(VDS(Seq2P(σ,i−1),σ).cPD.cP)

Proof of this lemma is based on the Definition 5.8 and Corollary 5.16.

Since the device specification DS and the devices of the VDS are defined over
computational sequences, we can easily specify the relations between them.
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Definition 5.16

CDc(σ) , ∀ j ≤ len(σ). DS( j,σ).cD = VDS( j,σ).cPD.cD

CDeev(σ) , ∀ j ≤ len(σ). DS( j,σ).eev = VDS( j,σ).eev

CDdifo(σ) , ∀ j ≤ len(σ). DS( j,σ).difos = VDS( j,σ).difos

CDdifi(σ) , ∀ j < len(σ). DS j.difi = VDS( j+1,σ).difi

CDeifi(σ) , ∀ j < len(σ). DS j.eifi = VDS j.eifi

CDeifo(σ) , ∀ j ≤ len(σ). DS( j,σ).eifo = VDS( j,σ).eifo

We can prove that these two models have the same behavior, if the inputs from
the processor and the external environment are the same.

Theorem 5.18

CDc([]) ∧ CDdifi(σ) ∧ CDeifi(σ) =⇒

CDc(σ) ∧ CDeev(σ) ∧ CDeifo(σ) ∧ CDeifo(σ)

The proof is carried out by induction on the length of the computational sequence,
and we omit it here due to its simplicity.

5.6 The Proof

We make Theorem 5.4 inductive by extending it with relations on the internal inter-
faces.

Definition 5.17 (Internal Interface Relations)

IIReev(T ) , ∀t ≤ T. VDIt.eev = VDSσ
t
.eev

IIRdifo(T ) , ∀t ≤ T. VDIt.difo.dout = VDSσ
t
.difos

IIRdifi(T ) , sync difi(0,T,VDI.difi, (λx. VDS(x+1,σT ).difi)) ∧
Rdifi(T,VDI.difi, (λx. ΩP(VDS(Seq2P(σT ,x−2),σT ).cPD.cP)))
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We define the relations on the outputs from the devices, the relations on external
events (IIReev) and the answers to the processor (IIRdifo), as it is provided by the device
theory (Section 4.3.4). The relation on the processor requests (IIRdifi) is defined by
the conjunction of the relation on inputs for the devices (sync difi, Section 4.3.2) and
the outputs of the VAMP (Rdifi, Section 3.3.3). Note that x − 2 in the definition of
IIRdifi has exactly two reasons: (i) due to Lemma 5.17, and (ii) the definition of Rdifi
(Definition 3.23).

Now, we extend the main theorem (Theorem 5.4) as follows:

Theorem 5.19

CCcp(0) ∧ CCcd(0) ∧ CCeifi(T )
=⇒

CCcp(T ) ∧ CCcd(T ) ∧ CCeifo(T ) ∧
IIReev(T ) ∧ IIRdifo(T ) ∧ IIRdifi(T )

We prove this theorem by induction on hardware cycles. The induction base,
T = 0, trivially holds, because we assume the initial states to be the same, and the
internal buses are initialised with the idle values.

In the induction step, we assume that for all cycles below T the theorem holds,
and we prove that it also holds for cycle T + 1. We split the induction step into two
lemmata: the correctness of the device part and the processor part of the combined
system.

Lemma 5.20 (Devices)

IIRdifi(T ) ∧ CCeifi(T + 1) ∧ CCcd(0)
=⇒

CCcd(T + 1) ∧ CCeifo(T + 1) ∧ IIReev(T + 1) ∧ IIRdifo(T + 1)

The reader should not be confused by the presence of CCeifi(T + 1) in the assump-
tions, because it specifies that the inputs for the gate-level transitions before cycle
T + 1 match the ones for the specification, e.g. the inputs for the transition T 7→ T + 1
match the ones for the specification run with σT+1

T .

Lemma 5.21 (Processor)

IIReev(T ) ∧ IIRdifo(T ) ∧ CCcp(0)
=⇒

CCcp(T + 1) ∧ IIRdifi(T + 1)
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Obviously, these two lemmata imply the induction step. In the following sections,
we prove these two lemmata.

5.6.1 Proof for the Device Part: Step 1

In this section, we prove the correctness of the device part of the combined system
(Lemma 5.20).

Let DSv be a device specification model (see Section 4.2) with the following
properties:

• initial state of DSv and initial state of the device part of the VDI model are in
the relation, i.e. the predicate Dc(0) holds,

• inputs for DSv and inputs for the device part of the VDI model are in relation,
i.e. the predicates Ddifi(T + 1) and Deifi(T + 1) hold.

Corollary 5.6 guarantees that states and outputs of DSv and the device part of the
VDI model are in relation, i.e. predicates Dc(T + 1), Deev(T + 1), Ddifo(T + 1), and
Deifo(T + 1) hold.

Thus, DSv is the device specification model as it seen from the VDI point of view
(see Figure 5.4).

Let σT+1 be computational sequence up to cycle T + 1. Let DSs be a device
specification model with the following properties:

• initial state of DSs and initial state of the device part of the VDS model are in
relation, i.e. the predicate CDc([]) holds,

• inputs for DSs and inputs for the device part of the VDS model are in relation,
i.e. the predicates CDdifi(σT+1) and CDeifi(σT+1) hold.

Theorem 5.18 guarantees that states and outputs of DSv and the device part of the
VDS model are in relation, i.e. the predicates CDc(σT+1), CDeev(σT+1), CDdifo(σT+1),
and CDeifo(σT+1) hold.

Thus, DSs is the device specification model as it seen from the VDS point of view
(see Figure 5.4).

Let us for only this section assume the following lemma. The premises of this
lemma are properties of inputs and initial states of DSv and DSs models as well
premises of Lemma 5.20. The conclusions of the lemma states that models DSv and
DSs have equal initial states and their inputs match.
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Lemma 5.22

Ddifi(T + 1) ∧ Deifi(T + 1) ∧ Dc(0) ∧
CDdifi(σT+1) ∧ CDeifi(σT+1) ∧ CDc([]) ∧
IIRdifi(T ) ∧ CCeifi(T + 1) ∧ CCcd(0)
=⇒

DSv
[].cD = DSs

[].cD ∧

∀ j < len(σT+1). DSv
j.eifi = DSs

j.eifi ∧
∀ j < len(σT+1). σT+1( j) = P −→

(DSv
j.difi.req = DSs

j.difi.req) ∧
(DSv

j.difi.req −→ DSv
j.difi = DSs

j.difi)

Having conclusions of Lemma 5.22, we apply Lemma 4.4 to derive that DSv and
DSs produce the same outputs and their states match.

Now to prove our goal Lemma 5.20, it is enough to prove the the following lemma.
In the premises we collect all known information about states and outputs of DSv and
DSs models: (i) states and outputs of DSv and DSs match, (ii) states and outputs of
DSv and device part of VDI are in relation (see above), and (iii) states and outputs
of DSs and device part of VDS are in relation (see above). The conclusions are the
conclusions of Lemma 5.20.
Lemma 5.23

∀ j ≤ len(σT+1). DSv
( j,σT+1).cD = DSs

( j,σT+1).cD ∧

∀ j ≤ σT+1. DSv
( j,σT+1).eev = DSs

( j,σT+1).eev ∧
∀ j ≤ σT+1. DSv

( j,σT+1).difos = DSs
( j,σT+1).difos ∧

∀ j ≤ σT+1. DSv
( j,σT+1).eifo = DSs

( j,σT+1).eifo ∧
Dc(T + 1) ∧ Deev(T + 1) ∧ Ddifo(T + 1) ∧ Deifo(T + 1) ∧
CDc(σT+1) ∧ CDeev(σT+1) ∧ CDdifo(σT+1) ∧ CDeifo(σT+1) ∧
=⇒

CCcd(T + 1) ∧ CCeifo(T + 1) ∧ IIReev(T + 1) ∧ IIRdifo(T + 1)

Thus, the proof of Lemma 5.20 requires two auxiliary lemmata: Lemma 5.22 and
Lemma 5.23. We prove these lemmata in the following section.

5.6.2 Proof for the Device Part: Step 2

In this section we prove Lemma 5.22 and Lemma 5.23. We split up these lemmata into
a number of smaller lemmata according to the input, output, and state components of
the device model.
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We split up Lemma 5.22 into a lemma for initial states, a lemma for the input
channel eifis, and a lemma for the input channel difi.

Lemma 5.24 (Initial states)

Dc(0) ∧ CDc(σ0) ∧ CCcd(0) =⇒ DSv
[].cD = DSs

[].cD

We omit the proof for this lemma because it is carried out by straightforward unfolding
of definitions.

Lemma 5.25 (Input channel eifis)

CCeifi(T + 1) ∧ Deifi(T + 1) ∧ CDeifi(σT+1) =⇒

∀ j < len(σT+1). DSv
j.eifi = DSs

j.eifi

Proof. Let us first unfold all shorthands and consider some step j < len(σT+1). We
also apply the definition of CDeifi (Definition 5.16) to rewrite DSs

j.eifi to VDS j.eifi.

sync eifis(0,T + 1,VDI.eifis,VDS.eifi) ∧
sync eifis(0,T + 1,VDI.eifis,DSv.eifi) ∧
j < len(σT+1)
=⇒

DSv
j.eifi = VDS j.eifi

According to the definition of sync eifis (Definition 4.6) we make a case distinction
on the following condition: j points to a device identifier and there exists a hardware
cycle when it was added into σT+1. Because Lemma 4.9 guarantees the existence of
such a hardware cycle, it suffices to do a case split on σT+1( j) = P.

Case 1: σT+1( j) , P holds. Applying the definition of sync eifis we rewrite the
assumptions as follows:

VDIAddedAt( j).eifis(σT+1( j)) = VDS j.eifi ∧
VDIAddedAt( j).eifis(σT+1( j)) = DSv

j.eifi ∧
j < len(σT+1)
=⇒

DSv
j.eifi = VDS j.eifi

Obviously this holds.

Case 2: If σT+1( j) = P holds, sync eifis(0,T + 1,VDI.eifis,VDS.eifi) guarantees
that VDS j.eifi = eifiε . Similarly, sync eifis(0,T + 1,VDI.eifis,DSv.eifi) guarantees
that DSv

j.eifi = eifiε . Thus, the goal holds. �
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Lemma 5.26 (Input channel difi)

IIRdifi(T ) ∧ Ddifi(T + 1) ∧ CDdifi(σT+1) =⇒

∀ j < len(σT+1). σT+1( j) = P −→
(DSv

j.difi.req = DSs
j.difi.req) ∧

(DSv
j.difi.req −→ DSv

j.difi = DSs
j.difi)

Proof. We unfold the shorthands and consider some step j < len(σT+1) such that
σT+1( j) = P. We also apply the definition of the predicate CDdifi to rewrite DSs

j.difi
to VDS( j+1,σT+1).difi.

sync difi(0,T,VDI.difi, (λx. VDS(x+1,σT ).difi)) ∧
Rdifi(T,VDI.difi, (λx. ΩP(VDS(Seq2P(σT ,x−2),σT ).cPD.cP))) ∧
sync difi(0,T + 1,VDI.difi,DSv.difi) ∧
j < len(σT+1) ∧ σT+1( j) = P
=⇒

(DSv
j.difi.req = VDS( j+1,σT+1).difi.req) ∧

(DSv
j.difi.req −→ DSv

j.difi = VDS( j+1,σT+1).difi)

Case 1: Let j < len(σT ). In this case we use the definition of sync difi (Defini-
tion 4.7) to finish the proof.

Case 2: Now we know that j < len(σT+1) and j ≥ len(σT ), thus, j is added during
the transition T 7→ T + 1. Since the position j in the computational sequence σT+1

corresponds to a processor step, we consider two cases: the step is with and without a
device access. The case splitting is carried out according to the definition of sync difi
(Definition 4.7).

Case 2.1: Here we consider j as a processor step with a device access, i.e. ∃t ∈ [0 :
T + 1[. dat ∧t = AddedAt( j). We know that j is added during the transition T 7→ T +1,
and hence, we have daT . In this case sync difi(0,T + 1,VDI.difi,DSv.difi) guarantees
that the specification receives the same data as the gate-level implementation, and
the request flag is turned on. Let us unfold the definition of sync difi for this case (we
also drop first premise):

Rdifi(T,VDI.difi, (λx. ΩP(VDS(Seq2P(σT ,x−2),σT ).cPD.cP))) ∧
VDIT .difi.{w, a, din} = DSv

j.difi.{w, a, din} ∧ DSv
j.difi.req ∧

j < len(σT+1) ∧ σT+1( j) = P ∧ j ≥ len(σT ) ∧ daT

=⇒

(DSv
j.difi.req = VDS( j+1,σT+1).difi.req) ∧

(DSv
j.difi.req −→ DSv

j.difi = VDS( j+1,σT+1).difi)
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The semantics of da guarantees that there is a hardware cycle tst < T when the
considered device access starts (Assumption 4.5). Now we apply definition of Rdifi
(Definition 3.23, first conjunct) to derive the fact that VDItst .difi is correct. We also
simplify the goal by applying premises.

VDItst .difi.req ∧ VDItst .difi = ΩP(VDS(Seq2P(σT ,sI(tst)−1),σT ).cPD.cP) ∧
VDIT .difi.{w, a, din} = DSv

j.difi.{w, a, din} ∧ DSv
j.difi.req ∧

j < len(σT+1) ∧ σT+1( j) = P ∧ j ≥ len(σT ) ∧ daT

=⇒

DSv
j.difi = VDS( j+1,σT+1).difi

The stability of the processor outputs (Corollary 4.11) guarantees that difi-outputs
at cycles tst and T match, i.e. VDItst .difi.{w, a, din} = VDIT .difi.{w, a, din}. Moreover,
we know that any instruction with a device access must be the oldest in the VAMP
pipeline, and hence, there can not be any write backs during the execution of the
device access. Therefore, sI(tst) = sI(T ) (Lemma 3.5). We apply this knowledge to
our goal and unfold one step of the VDS recursive definition:

VDItst .difi.req ∧ VDItst .difi = ΩP(VDS(Seq2P(σT ,sI(T )−1),σT ).cPD.cP) ∧
VDIT .difi.{w, a, din} = DSv

j.difi.{w, a, din} ∧ DSv
j.difi.req ∧

j < len(σT+1) ∧ σT+1( j) = P ∧ j ≥ len(σT ) ∧ daT

=⇒

ΩP(VDS(Seq2P(σT ,sI(T )−1),σT ).cPD.cP) = ΩP(VDS( j,σT+1).cPD.cP)

Thus, to prove current goal it is enough to show equivalence of processor states, i.e.
VDS(Seq2P(σT ,sI(T )−1),σT ).cPD.cP = VDS( j,σT+1).cPD.cP.

Now, we do case splitting on existence of the processor identifier in σT , i.e. is
there any written back instruction before T . We do this because we are going to use
the function lastP and its result is undefined if there is no processor identifier in σT .

Case 2.1.1: In this case we assume that in σT there are no processor identifiers,
i.e. σT consists of only device identifiers. By Lemma 5.15 we know that device steps
don’t affect processor state. Thus, VDS(Seq2P(σT ,sI(T )−1),σT ).cPD.cP equals the initial
state and VDS( j,σT+1).cPD.cP is initial state as well. Hence, the proof of this subgoal is
finished.

Case 2.1.2: In this case we assume that there exists a processor identifier in σT .
Lemma 5.7 guarantees sI(T ) = Seq2I(σT ). This is because (i) device access can

only be started if the instruction is the oldest in the pipeline, (ii) we have daT , and
hence, there cannot be another instruction in the VAMP pipeline with a finished device
access, i.e. ¬(∃t′ < T. dat ∧ ∀t′′ ∈]t : t′[. ¬wbt′′).

Lemma 5.11 provides us with Seq2P(σT , Seq2I(σT ) − 1) = lastP(σT ) + 1. Thus,
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to prove our goal is the same as to prove the following equality in the conclusions:

VDItst .difi.req ∧ VDItst .difi = ΩP(VDS(Seq2P(σT ,sI(T )−1),σT ).cPD.cP) ∧
VDIT .difi.{w, a, din} = DSv

j.difi.{w, a, din} ∧ DSv
j.difi.req ∧

j < len(σT+1) ∧ σT+1( j) = P ∧ j ≥ len(σT ) ∧ daT

=⇒

VDS(lastP(σT )+1,σT ).cPD.cP = VDS( j,σT+1).cPD.cP

To finish the proof we have to show the equivalence of the processor configurations.
By Definition 5.14 (lastP) we have: ∀k ∈ [lastP(σT ) + 1, len(σT )[. σT (k) , P. Since
σT+1( j) = P, Definition 4.4 provides us with ∀l ∈ [len(σT ) : j[. σT+1(l) , P. Thus,
we have ∀k ∈ [lastP(σT ) + 1, j[. σT+1(k) , P.

In other words, every index k from the region [lastP(σT ) + 1, j[ points to a device
identifier. Lemma 5.16 states that processor configuration is not affected by the
device steps. We apply this lemma to prove our goal: VDS(lastP(σT ),σT ).cPD.cP =

VDS( j,σT+1).cPD.cP.

Case 2.2: Let j point to a processor step without a device access, i.e. ¬(∃t ∈ [0 :
T +1[. t = AddedAt( j) ∧dat). We know that j is added during the transition T 7→ T +1,
and hence, we have ¬daT . Since j points to processor identifier, we must have write
back at T, i.e. wbT (Definition 4.4). In this case sync difi(0,T + 1,VDI.difi,DSv.difi)
only guarantees that the request bit is turned off: ¬DSv

j.difi.req. Thus, to prove this
goal we have to show that ¬VDS( j+1,σT+1).difi.req.

We prove this by contradiction: let us assume VDS( j+1,σT+1).difi.req. Now we apply
definition of Rdifi (Definition 3.23, third conjunct) to derive the fact that there must
be a hardware cycle below T, when the VAMP started device access. Let us note
this cycle as tst. Recall that we have wbT , therefore, there must be a hardware cycle
tda ∈]tst : T [, when devices provide answer to the processor, i.e. datda . By Lemma 4.9
we know that j is added at the unique hardware cycle, hence, tda = T. Now we have
the contradiction in the premises ¬daT and datda . �

Similarly to the proof of Lemma 5.22, we split up Lemma 5.23 into a lemma for
states, a lemma for output channel to the processor difo, and a lemma for the output
channel to external environment eifos.

Lemma 5.27 (States cD)

Dc(T + 1) ∧ CDc(σT+1) ∧
∀ j ≤ len(σT+1). DSv

( j,σT+1).cD = DSs
( j,σT+1).cD

=⇒

CCcd(T + 1)
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Proof. We start the proof by unfolding the shorthands:

∀t ≤ T + 1. simD(VDIt.hD,DSv
σt
.cD) ∧

∀ j ≤ len(σT+1). VDSσ
( j,σT+1)

.cPD.cD = DSs
( j,σT+1).cD∧

∀ j ≤ len(σT+1). DSv
( j,σT+1).cD = DSs

( j,σT+1).cD

=⇒

∀t ≤ T + 1. simD(VDIt.hD,VDSσ
t
.cPD.cD)

Let us consider an arbitrary cycle t ≤ T + 1. We instantiate the for all quantifier
of second and third premises with the length of the computational sequence up to
t, i.e. with len(σt). This is possible because t ≤ T + 1 −→ len(σt) ≤ len(σT+1) by
Lemma 4.8. Thus, we rewrite the goal as follows:

simD(VDIt.hD,DSv
σt
.cD) ∧

VDS(len(σt),σT+1).cPD.cD = DSs
(len(σt),σT+1).cD∧

DSv
(len(σt),σT+1).cD = DSs

(len(σt),σT+1).cD ∧

t ≤ T + 1
=⇒

simD(VDIt.hD,VDSσ
t
.cPD.cD)

Since DSv
(len(σt),σT+1) is equivalent to DSv

take(len(σt),σT+1) and take(len(σt), σT+1) = σt,
we can conclude DSv

(len(σt),σT+1) = DSv
σt

. Similarly we conclude VDS(len(σt),σT+1) =

VDSσ
t
. Hence, the conclusion holds. �

The proofs of lemmata for the eev and difo output channels are employed the
same argumentations as in the previous proof. Therefore, we omit these proofs.

Lemma 5.28 (Output channel eev)

Deev(T + 1) ∧ CDeev(σT+1) ∧
∀ j ≤ σT+1. DSv

( j,σT ).eev = DSs
( j,σT ).eev

=⇒

IIReev(T + 1)

Lemma 5.29 (Output channel difo)

Ddifo(T + 1) ∧ CDdifo(σT+1) ∧
∀ j ≤ σT+1. DSv

( j,σT+1).difos = DSs
( j,σT+1).difos

=⇒

IIRdifo(T + 1)
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Now, we are left with the a lemma for the outputs to the external environment.

Lemma 5.30 (Output channel eifos)

Deifo(T + 1) ∧ CDeifo(σT+1) ∧
∀ j ≤ σT+1. DSv

( j,σT+1).eifo = DSs
( j,σT+1).eifo

=⇒

CCeifo(T + 1)

This proof is only slightly different from the previous ones, therefore, we omit it.

5.6.3 Proof for the Processor Part: Step 1

In this section, we prove the correctness of the processor part of the combined system
(Lemma 5.21). We apply the same strategy which we have used in Section 5.6.1.

Let ISAv be an ISA model (see Section 3.1) with the following properties:

• initial state of ISAv and initial state of the processor of the VDI model are in the
relation, i.e. the predicate Pc(0) holds.

• inputs for ISAv and inputs for the processor of the VDI model are in relation,
i.e. the predicates Peev(T + 1) and Pdifo(T + 1) hold.

Corollary 5.5 guarantees that states and outputs of ISAv and the processor of the VDI
model are in relation, i.e. predicates Pdifi(T + 1) and Pc(T + 1) hold.

Thus, ISAv is the processor specification as it seen from the VDI point of view
(see Figure 5.4).

Let σT+1 be computational sequence up to cycle T + 1. Let ISAs be an ISA model
with the following properties:

• initial state of ISAs and initial state of the processor of the VDS model are in
relation, i.e. the predicate CPc([]) holds.

• inputs for ISAs and inputs for the processor of the VDS model are in relation,
i.e. the predicates CPeev(σT+1) and CPdifo(σT ) hold.

Theorem 5.14 guarantees that states and outputs of ISAs and the processor of the VDS
model are in relation, i.e. the predicates CPdifi(σT+1) and CPc(σT+1) hold.

Thus, ISAs is the processor specification as it seen from the VDS point of view
(see Figure 5.4).

Let us for only this section assume the following lemma. The premises of this
lemma are properties of inputs and initial states of ISAv and ISAs models as well
premises of Lemma 5.21. The conclusions of the lemma states that models ISAv and
ISAs have equal initial states and their inputs match.
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Lemma 5.31

Peev(T + 1) ∧ Pdifo(T + 1) ∧ Pc(0) ∧
CPeev(σT+1) ∧ CPdifo(σT+1) ∧ CPc([]) ∧
IIReev(T ) ∧ IIRdifo(T ) ∧ CCcp(0)
=⇒

ISAv
0.cP = ISAs

0.cP ∧ ∀i < sI(T + 1). ISAv
i.eev = ISAs

i.eev
∀i < sI(T + 1). ISAv

i.difi.req −→ ISAv
i.difos = ISAs

i.difos

Having conclusions of Lemma 5.31, we apply Lemma 3.2 to derive that ISAv and
ISAs produce the same outputs and their states match.

Now to prove our goal Lemma 5.21, it is enough to prove the the following lemma.
In the premises we collect all known information about states and outputs of ISAv and
ISAs models: (i) states and outputs of ISAv and ISAs match, (ii) states and outputs of
ISAv and the processor of VDI are in relation (see above), and (iii) states and outputs
of ISAs and the processor of VDS are in relation (see above). The conclusions are the
conclusions of Lemma 5.21.

Lemma 5.32

∀i ≤ sI(T + 1). ISAv
i.cP = ISAs

i.cP ∧

∀i ≤ sI(T + 1) + 1. ISAv
i.difi = ISAs

i.difi ∧
Pc(T + 1) ∧ Pdifi(T + 1) ∧
CPc(σT+1) ∧ CPdifi(σT+1)
=⇒

CCcp(T + 1) ∧ IIRdifi(T + 1)

Thus, the proof of Lemma 5.21 requires two auxiliary lemmata: Lemma 5.31 and
Lemma 5.32. We prove these lemmata in the following section.

5.6.4 Proof for the Processor Part: Step 2

In this section we prove Lemma 5.31 and Lemma 5.32. We split up these lemmata into
a number of smaller lemmata according to the input, output, and state components of
the processor model.

We split up Lemma 5.31 into a lemma for initial states, a lemma for the input
channel eev, and a lemma for the input channel difos.
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Lemma 5.33 (Initial states)

Pc(0) ∧ CPc(σ0) ∧ CCcp(0) =⇒ ISAv
0.cP = ISAs

0.cP

We omit the proof for this lemma because it is carried out by straightforward unfolding
of definitions.

Lemma 5.34 (Input channel eev)

IIReev(T ) ∧ Peev(T + 1) ∧ CPeev(σT+1)
=⇒

∀i < sI(T + 1). ISAv
i.eev = ISAs

i.eev

Proof. First we unfold shorthands and consider some instruction i < sI(T + 1):

(∀t ≤ T. VDIt.eev = VDSσ
t
.eev)∧

(Reev(T + 1,VDI.eev, ISAv.eev)) ∧
(∀i < Seq2I(σT+1). ISAs

i.eev = VDS(Seq2P(σT+1,i),σT+1).eev) ∧
i < sI(T + 1)
=⇒

ISAv
i.eev = ISAs

i.eev

Lemma 3.8 guarantees that there is a hardware cycle t < T +1 at which instruction
i is written back, i.e. sI(t) = i ∧ wbt. Lemma 5.7 guarantees sI(T + 1) ≤ Seq2I(σT+1).
The latter implies that i < Seq2I(σT+1), and hence, we can instantiate the for all
quantifier of the third premise with i.

Case 1: Let us consider the case where instruction i does not access any device.
For such an instruction Reev(T + 1,VDI.eev, ISAv.eev) (Definition 3.21) guarantees
that the interrupts sampled on the bus at cycle t match the ones for the ISAv, i.e.
VDIt.eev = ISAv

i.eev. We instantiate the for all quantifier of the first premise with t:

VDIt.eev = VDSσ
t
.eev ∧

VDIt.eev = ISAv
i.eev ∧

ISAs
i.eev = VDS(Seq2P(σT+1,i),σT+1).eev ∧

i < sI(T + 1) ∧ i = sI(t) ∧ wbt

=⇒

ISAv
i.eev = ISAs

i.eev
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After a sequence of simple rewrites we have the goal as follows (we drop unnecessary
premises):

VDSσ
t
.eev = VDS(Seq2P(σT+1,i),σT+1).eev

We know that Seq2P(σT+1, i) points right behind the position in the sequence where
the processor executes an instruction with the index i = sI(t). Let us find out where
it exactly points to. Since we have the write back at t, sI(t + 1) − 1 = sI(t) holds
(Definition 3.20). The active value of wbt also implies Seq2I(σt+1) = sI(t + 1)
(Lemma 5.7). Thus, Seq2P(σT+1, i) = Seq2P(σT+1, Seq2I(σt+1) − 1). By Lemma 5.12
Seq2P(σT+1, Seq2I(σt+1) − 1) = lastP(σt+1).

Since at cycle t we write back an instruction without a device access, sIPD adds
the processor identifier in σt+1

t . Moreover, it adds this processor identifier at the
beginning of this subsequence (Definition 4.4), i.e. the first element right after σt. We
conclude that Seq2P(σT+1, i) points right behind the end of the sequence σt ◦ [P], i.e.
Seq2P(σT+1, sI(t)) = len(σt ◦ [P]). Thus, we rewrite the goal as follows:

VDSσ
t
.eev = VDS(len(σt◦[P]),σT+1).eev

by Lemma 5.3 and (σt ◦ [P]) � σT+1

= VDS(σt◦[P]).eev

Recall that we are proving the case where the considered instruction does not access
devices. Remember also that a step of the device specification with the processor
identifier and without a processor request does not have any effect (Assumption 4.3).
Therefore, VDSσ

t
.eev = VDS(σt◦[P]).eev, and it concludes the proof of this case.

Case 2: Now we consider the case where the processor writes back an instruction
with a device access. For such an instruction, the VAMP uses the external interrupts
which have been sampled on the eev-bus at the end of the device access and have been
saved in the eev da register. The bus between VAMP and gate-level devices introduces
one cycle delay (Definition 5.1). Therefore, this sampled value is computed by the
gate-level devices in one cycle before the VAMP registers the end of the device access.
Moreover, at this previous cycle the predicate da holds, because the device access
is finished. Let us summarize: the gate-level devices place the interrupts at cycle
lasthw(t, da) and VAMP samples them at cycle lasthw(t, da) + 1.

Recall that the register eev da keeps the sampled value until the instruction with
the device access is written back (Lemma 3.4). Reev(T + 1,VDI.eev, ISAv.eev) guaran-
tees that the sampled interrupts match the ones for the ISAv, i.e. VDIlasthw(t,da)+1.eev =

ISAv
i.eev.

VDIlasthw(t,da)+1.eev = VDS(σlasthw(t,da)+1).eev ∧
VDIlasthw(t,da)+1.eev = ISAv

i.eev ∧
ISAs

i.eev = VDS(Seq2P(σT+1,i),σT+1).eev ∧
i < sI(T + 1) ∧ sI(t) = i ∧ wbt

=⇒

ISAv
i.eev = ISAs

i.eev
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After several rewrites we have (we drop unnecessary premises):

i < Seq2I(σT+1) ∧ i = sI(t) ∧ wbt−1

=⇒

VDS(σlasthw(t,da)+1).eev = VDS(Seq2P(σT ,i),σT+1).eev

We know that Seq2P(σT+1, i) points to the position in the sequence where the processor
executes an instruction i. Since this instruction is written back at cycle t and this is an
instruction with a device access, by Lemma 5.7 we have sI(t) = Seq2I(σt) − 1. Since
σt � σT+1, Lemma 5.12 guarantees Seq2P(σT+1, Seq2I(σt) − 1) = lastP(σt) + 1.

Thus, the considered processor step must be somewhere in σt. We know that a
device access can only be started if the corresponding instruction is the oldest one in
the pipeline. Thus, between cycles lasthw(t, da)+1 and t−1 there can not be active value
of the predicate da (Definition 5.14) nor write back signals (Lemma 3.3). Therefore,
the last processor identifier in σt is added during the transition lasthw(t, da) 7→
lasthw(t, da) + 1. During this transition, the computational sequence is extended with
the processor identifier at the end ofσlasthw(t,da)+1 (Definition 4.4). Thus, lastP(σt)+1 =

len(σlasthw(t,da)+1). Now we apply this knowledge to our goal:

i < Seq2I(σT+1) ∧ i = sI(t) ∧ wbt

=⇒

VDSσ
lasthw(t,da)+1

.eev = VDS(len(σlasthw(t,da)+1),σT+1).eev

Finally, we apply Lemma 5.3 to finish the proof. �

This proof illustrates the problem of sampling external interrupts which we dis-
cussed in Chapter 3. If we sampled external interrupts at the write back for all instruc-
tions, we would have to prove the following case: VDSσ

t
.eev = VDS(Seq2P(σT ,i),σT+1).eev.

This can be rewritten as follows: VDSσ
t
.eev = VDS(σlasthw(t,da))t−lasthw(t,da)

.eev. The differ-
ence t − lasthw(t, da) specifies the number of hardware cycles between the end of the
device access and the sampling of the eev-bus in the write back stage. During these
hardware cycles devices, and especially the accessed device, can change their states.
Thus, we will sample the interrupts which are produced by the new device states. As
a result, these interrupts would not match the ones we have in the specification.

Lemma 5.35 (Input channel difo)

IIRdifo(T ) ∧ Pdifo(T + 1) ∧ CPdifo(σT+1)
=⇒

∀i < sI(T + 1).ISAv
i.difi.req −→ ISAv

i.difos = ISAs
i.difos
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The proof of this lemma is similar to the second case of the previous proof.

Similarly to the proof of Lemma 5.31, we split up Lemma 5.32 into a lemma for
states and a lemma for output channel to devices difi.

Lemma 5.36 (States cP)

Pc(T + 1) ∧ CPc(σT+1) ∧
∀i ≤ sI(T + 1). ISAv

i.cP = ISAs
i.cP

=⇒

CCcp(T + 1)

Proof. As usual, we unfold the shorthands:

(∀t ≤ T + 1. JISRt−1 −→ Rconf (VDIt.hP, ISAv
sI(t).cP) ∧

M(VDI, t) = ISAv
sI(t).cP.M) ∧

(∀i ≤ Seq2I(σT+1). ISAs
i.cP = VDS(Seq2P(σ,i−1),σ).cPD.cP) ∧

(∀i ≤ sI(T + 1). ISAv
i.cP = ISAs

i.cP)
=⇒

∀t ≤ T + 1.JISRt−1 −→ Rconf (VDIt.hP,VDSσ
t
.cPD.cP) ∧

M(VDI, t) = VDSσ
t
.cPD.cP.M

Let us consider an arbitrary cycle t ≤ T + 1. A closer look at the first assumption and
the goal reveals the fact that this lemma holds if ISAv

sI(t).cP = VDSσ
t
.cPD.cP.

t ≤ T + 1 ∧ JISRt−1∧

(∀i ≤ Seq2I(σT+1). ISAs
i.cP = VDS(Seq2P(σT+1,i−1),σT+1).cPD.cP) ∧

(∀i ≤ sI(T + 1). ISAv
i.cP = ISAs

i.cP)
=⇒

ISAv
sI(t).cP = VDSσ

t
.cPD.cP

We instantiate the for all quantifier of the second premise with sI(t). We can do this
because sI(T + 1) ≤ Seq2I(σT+1) by Lemma 5.7, and hence, sI(t) ≤ Seq2I(σT+1). By
Lemma 3.6 sI(t) ≤ sI(T + 1), and hence, we can instantiate the for all quantifier of
the third premise with sI(t) as well.

t ≤ T + 1 ∧ JISRt−1∧

ISAs
sI(t).cP = VDS(Seq2P(σT+1,sI(t)−1),σT+1).cPD.cP) ∧

ISAv
sI(t).cP = ISAs

sI(t).cP

=⇒

ISAv
sI(t).cP = VDSσ

t
.cPD.cP
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Since we have JISRt−1 (which implies wbt−1) there is no pending write-back of an
instruction with a device access at cycle t. Thus, Lemma 5.7 guarantees that sI(t) =

Seq2I(len(σt), σT+1). Together with an application of Lemma 5.12 we rewrite the
goal as follows (we drop the premises):

VDS(lastP(len(σt),σT+1)+1,σT+1).cPD.cP = VDSσ
t
.cPD.cP

Since σt is a subsequence of σT+1, lastP(len(σt), σT+1) = lastP(σt):

VDS(lastP(σt)+1,σT+1).cPD.cP = VDSσ
t
.cPD.cP

By Definition 5.14 (lastP) we have: ∀ j ∈ [lastP(σt) + 1, len(σt)[. σt( j) , P. Thus,
all these indices point to device identifiers. Lemma 5.16 states that processor con-
figuration is not affected by the device steps. We apply this lemma to finish the
proof. �

Lemma 5.37 (Output channel difi)

Pdifi(T + 1) ∧ CPdifi(σT+1) ∧
∀i ≤ sI(T + 1) + 1. ISAv

i.difi = ISAs
i.difi

=⇒

IIRdifi(T + 1)

Proof. We first unfold the shorthands:

Rdifi(T + 1,VDI.difi, ISAv.difi) ∧
(∀i < Seq2I(σT+1). ISAs

i+1.difi = VDS(Seq2P(σT+1,i),σT+1).difi) ∧
(∀i ≤ sI(T + 1) + 1. ISAv

i.difi = ISAs
i.difi)

=⇒

Rdifi(T + 1,VDI.difi, (λx. ΩP(VDS(Seq2P(σT+1,x−2),σT+1).cPD.cP)) ∧
sync difi(0,T + 1,VDI.difi, (λx. VDS(x+1,σT+1).difi))

We split the conclusion into two subgoals.

Case 1: In this case we prove that Rdifi predicate holds. This predicate consists
of three conjuncts (Definition 3.23). We prove every conjunct as a separate subgoal.

Case 1.1: In this case we consider the first conjunct from Rdifi:

Rdifi(T + 1,VDI.difi, ISAv.difi) ∧
(∀i < Seq2I(σT+1). ISAs

i+1.difi = VDS(Seq2P(σT+1,i),σT+1).difi) ∧
(∀i ≤ sI(T + 1) + 1. ISAv

i.difi = ISAs
i.difi)

=⇒

(∀t ≤ T + 1. VDIt.difi.req −→ VDIt.difi = ΩP(VDS(Seq2P(σT+1,sI(t)−1),σT+1).cPD.cP))
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Let us consider an arbitrary cycle t ≤ T +1 with a request, i.e. VDIt.difi.req. Applying
this information we can rewrite the goal, using Rdifi(T + 1,VDI.difi, ISAv.difi) and
Lemma 5.2, to:

ISAv
sI(t)+1.difi = ΩP(VDS(Seq2P(σT+1,sI(t)−1),σT+1).cPD.cP)

Lemma 5.7 and Lemma 3.6 guarantee sI(t) − 1 < Seq2I(σT+1). Therefore, we can
instantiate the for all quantifier of the second premise with sI(t) − 1. By Lemma 3.6
sI(t) ≤ sI(T + 1), and thus, we rewrite the goal as follows:

VDS(Seq2P(σT+1,sI(t)),σT+1).difi = ΩP(VDS(Seq2P(σT+1,sI(t)−1),σT+1).cPD.cP)

We know that the difi output of an instruction sI(t) depends only on the processor
configuration after execution instruction sI(t)− 1. Therefore, we apply Lemma 5.17 to
finish the proof of this case.

Case 1.2: In this case we consider the second conjunct from the conclusions:

Rdifi(T + 1,VDI.difi, ISAv.difi) ∧
(∀i < Seq2I(σT+1). ISAs

i+1.difi = VDS(Seq2P(σT+1,i),σT+1).difi) ∧
(∀i ≤ sI(T + 1) + 1. ISAv

i.difi = ISAs
i.difi)

=⇒

(∀i < sI(T + 1). ΩP(VDS(Seq2P(σT+1,i−1),σT+1).cPD.cP).req −→
∃t ≤ T + 1. i = sI(t) ∧ VDIt.difi = ΩP(VDS(Seq2P(σT+1,i−1),σT+1).cPD.cP))

Let us consider some instruction i such that ΩP(VDS(Seq2P(σT+1,i−1),σT+1).cPD.cP).req
and i < sI(T + 1) hold. From the premises and Lemma 5.17 we can derive that
ISAv

i+1.difi = ΩP(VDS(Seq2P(σT+1,i−1),σT+1).cPD.cP). This is because i−1 < Seq2I(σT+1)
(Lemma 5.7). Thus, we can rewrite the goal as follows:

∃t ≤ T + 1. i = sI(t) ∧ VDIt.difi = ISAv
i+1.difi

Now we unfold the definition of Rdifi in the premises to finish the proof.

Case 1.3: In this case we consider third conjunct from the conclusions.

Rdifi(T + 1,VDI.difi, ISAv.difi) ∧
(∀i < Seq2I(σT+1). ISAs

i+1.difi = VDS(Seq2P(σT+1,i),σT+1).difi) ∧
(∀i ≤ sI(T + 1) + 1. ISAv

i.difi = ISAs
i.difi)

=⇒

wbT+1 ∧ΩP(VDS(Seq2P(σT+1,sI(T+1)−1),σT+1).cPD.cP).req −→
∃t ≤ T + 1. VDIt.difi = ΩP(VDS(Seq2P(σT+1,sI(T+1)−1),σT+1).cPD.cP) ∧

sI(T + 1) = sI(t)

The proof for this case is similar to the previous proof with i replaced by sI(T + 1).
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Case 2: In this case we prove the second conjunct of IIRdifi(T + 1):

Rdifi(T + 1,VDI.difi, ISAv.difi) ∧
(∀i < Seq2I(σT+1). ISAs

i+1.difi = VDS(Seq2P(σT+1,i),σT+1).difi) ∧
(∀i ≤ sI(T + 1) + 1. ISAv

i.difi = ISAs
i.difi)

=⇒

sync difi(0,T + 1,VDI.difi, (λx. VDS(x+1,σT+1).difi))

The proof for this case is similar to the proof of Lemma 5.26 and we omit it. �

5.7 Summary

In this section we constructed and proved a computer system which consists of the
VAMP processor and the generic device model. This system inherits the genericity of
the device model, and hence, it can be instantiated with arbitrary concrete devices. In
the next chapter we demonstrate how this can be done, and we build a control unit for
a distributed automotive system.



Chapter 6

An Electronic Control Unit

In Verisoft subproject [The03] an automotive system is built. The system consists of
typical components which are placed and run on a vehicle. The system components are
a time-triggered bus system (inspired by FlexRay [Con06]) and a time-triggered oper-
ating system (inspired by OSEKTime [Con93]). On top of these system components,
an emergency-call application is realized.

FlexRay is a standard for a high-end real-time bus for automotive applications.
It is developed and propagated by the FlexRay Consortium consisting of leading
automotive manufacturers and suppliers. The FlexRay standard specifies a time-
triggered communication bus, and its main part is a communication protocol. This
protocol serves two purposes: (i) deterministic, periodic message exchanges and (ii) a
clock synchronization for all nodes connected to the bus. Thus, the FlexRay bus
connects a fixed number of nodes, where every node is an electronic control unit
(ECU). A typical ECU consists of a processor and a hardware which implements the
FlexRay protocol.

The goal of TP6 subproject is the development and the verification of an automo-
tive system, which consists of several ECUs connected via FlexRay-like bus. The
applications in this system run with a fixed scheduler under OSEKTime-like operating
system [DDS08]. A paper&pencil correctness proof of the whole system is presented
in [Kna08, KP07]. In this chapter, we concentrate on the correctness of a single ECU.
The latter is used to prove the correctness of the complete automotive system.

We build an ECU which consists of the VAMP processor and a bus interface. The
bus interface is called the automotive bus controller or the ABC device.

In this chapter, we instantiate the VAMP-Device model with the ABC device. We
describe this device and build on its base a device model. We also justify that the built
device model fits to the developed generic device theory. Finally, we present a model
of the ECU and its verified correctness criterion.
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6.1 Bus Controller

The hardware for the ABC device is developed and verified as a part of the TP6
subproject [BBG+05]. The device is placed between a processor and a time-triggered
bus, and it can be architecturally split into two parts. One part is only visible from the
bus side and another from the processor side. The main components of every part are
a send buffer and a receive buffer. Since the buffers on the bus and the processor side
are independent, the device can service both sides simultaneously.

The buffers on the bus side are used to hold the outgoing messages to the bus (the
send buffer) and to store the incoming messages from the bus (the receive buffer). The
buffers on the processor side are memory mapped into the VAMP address space (see
Section 3.1). The programmer can send data to other ECUs by writing the data into
the send buffer. She/he can also receive data by reading them from the receive buffer.
Note that the hardware on the bus side takes care about the sending and the receiving
data to/from the bus.

There are special hardware cycles when the roles of the buffers of the processor
and the bus sides are swapped, i.e. the buffers of the processor side become the buffers
of the bus side and vise versa. This implements the data transfer between the processor
and the bus sides of the ABC device.

The communication between the ABC device and the processor is based on
interrupts. If the ABC device is ready for communication, it raises an interrupt (a
bit on eev–bus). The processor executes an interrupt service routine. This routine
may read the receive buffer and store the read data in the processor GPR file or main
memory, set up the device operation mode, and write data into the send buffer.

The implementation of the ABC device is defined on the gate level. It is designed
in such a way that it serves processor requests with no delay [ABK08]. The function
δABC implements the transition function of the gate level model. Let HABC denote the
type of the ABC device configuration, EifiABC and EifoABC denote the input and the
output from/to the bus. Then, δABC has the following signature:

δABC : Difi × EifiABC × HABC 7→ HABC × EifoABC × Difo

We employ the function ωABC : HABC 7→ {0, 1}which tests whether in a given state the
interrupt is set. We can determine the swapping of the buffers based on the current state
of the ABC device. This test is implemented by the function SwapBuf : HABC 7→ B.

Correctness of a single ECU can not be treated fully decoupled from the rest of
the automotive system. During a run of the automotive system, the ECUs exchange
data via a time-triggered bus. Such a run is split into so called time slots. One of the
main slot characteristics is the absence of buffer swappings. The buffers are swapped
at the border of two slots. For example, the processor of an ECU can only read/write
data during a slot. Therefore, the correctness of an ECU is split into two parts: a
local and a distributed one. The local correctness captures the communication of the
processor and the ABC device during one slot. The distributed correctness states that
during a run the exchange of the data between ECUs is correct, and that this run can
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be decomposed into slots. Obviously the distributed correctness requires the local one.
In this thesis, we are only interested in local correctness. Our result is reused for the
distributed correctness which is presented in [Pau08, KP07].

The correctness of the ABC device is stated against its specification, which is a
model as seen by an assembly programmer. With in a slot, this model solely consists of
a read buffer and a write buffer. The read buffer holds the last received message and the
write buffer is used to store a message to be sent. This model completely abstracts the
communication bus, and hence, it abstracts the buffers for the communication with the
bus. The transfer of messages at this level is managed by an abstract distributed system,
which consists of several ECUs. For more details on this system, we recommend the
reader [Pau08, Kna08].

Let CABC be the state of the specification of the ABC device. We use the function
∆ABC as the step function of specification of the ABC device:

∆ABC : Difi × CABC 7→ CABC × B
32

Since the communication bus is abstracted, ∆ABC has neither eifi nor eifo. We use
function ΩABC : CABC 7→ B which tests whether in a given specification state the
interrupt is set up.

We say that a specification state and an implementation state are equivalent, if the
send and receive buffers contain the same data. This fact is captured by the predicate
Rabc(hABC, cABC).

The local correctness criterion requires that ∆ABC and δABC have an equivalent
behavior during a slot. The main invariant during a slot states (i) the send and the
receive buffers are equivalent, (ii) the data for the processor match, and (iii) the
interrupts for the processor match. Thus, the correctness has the following form:

Proposition 6.1

let
(cABC

′, difos) := ∆ABC(difi, cABC)
(hABC

′, eifoABC, difo) := δABC(difi, eifiABC, hABC)
in
¬SwapBuf (hABC) ∧ Rabc(hABC, cABC) −→

Rabc(hABC
′, cABC

′) ∧ difo.data = difos ∧ ωABC(hABC) = ΩABC(cABC)

This proposition has to be proved by the designers of the ABC device.

6.2 Instantiation Plan

In oder to construct a verified ECU we have to instantiate the VDI and the VDS models
with the ABC device. The whole instantiation consists of several simple steps:



136 CHAPTER 6. AN ELECTRONIC CONTROL UNIT

1. Instantiate the step function of the implementation of the device model, i.e.
define δD from Section 4.1

2. Instantiate the step function of the specification of the device model, i.e. define
∆D from Section 4.2

3. Instantiate the trigger functions da and DevIds (Section 4.3)

4. Instantiate the simulation relation simD (Section 4.3.3)

5. Prove that the definition of da and DevIds satisfies their intended semantics
(Section 4.3)

6. Prove the assumptions which guarantee that the implementation can be simu-
lated by the specification of the device model (Section 4.3.4)

The first four steps instantiate the generic device theory. The last two steps
guarantee that the instantiated theory preserves its properties.

6.3 The Device Model

We construct a device model consisting of a single ABC device. Recall that we
consider the memory mapped devices, where each device has an associated range of
memory addresses. Let DAABC denote the address range of the bus controller, and
let idABC be an identifier for the ABC device. Thus, the processor-device identifier
(Section 4.2) is a set with two elements: PD = {P, idABC}.

Implementation

First we instantiate the generic implementation types HD, Eifis, and Eifos as follows:

HD , {idABC} 7→ HABC

Eifis , {idABC} 7→ EifiABC

Eifos , {idABC} 7→ EifoABC

We use δABC as the base for the implementation of the device model.

Definition 6.1

δD(eifis, difi, hD, reset) ,
let

(h′D, eifo, difo) := δABC(eifis, difi, hD, reset)
eev := ωABC(h′D) ◦ 018

in (h′D, difo, eifos, eev)
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Specification

We instantiate the generic specification types CD, Eifi, and Eifo as follows:

CD , {idABC} 7→ CABC

Eifi , {eifoε}
Eifo , {eifiε}

Since the specification of the ABC device does not consider the external environment,
types Eifi and Eifo contain only idle values eifoε and eifiε respectively.

The specification of the device model is based on ∆ABC.

Definition 6.2

∆D(idx, eifi, difi, cD) ,
let

(cD
′, difo) :=


∆ABC(difiε , cD) : idx = idABC

∆ABC(difi, cD) : idx = P ∧ difi.req ∧ difi.a ∈ DAABC

(cD, difoε) : else
eev := ΩABC(cD

′) ◦ 018

in (cD
′, difo, eifoε , eev)

Now we instantiate the trigger functions: da signals the end of a device request
and DevIds which signals which devices make a step due to the eifi.

The ABC device answers the processor requests at once, i.e. for a given request it
directly produces an output. Thus, the da only depends on a given difi:

Definition 6.3

da(hD, difi, eifis) , difi.req

The constructed ECU is used in the scope of a distributed framework, and the
progress of the device due to the external environment is modelled in this framework.
Therefore, at our level, the ECU ignores the input from the bus.

Definition 6.4

DevIds(hD, eifis) , []

Finally, we use as Rabc as the simulation relation simDidABC .
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6.4 Justification of the Device Model

To finish the instantiation of the generic device model, we have to show that the device
model consisting of the ABC device fits to the generic device theory developed in
Section 4.2. Thus, we have to justify the seven assumptions of the device theory.

There are three assumptions which guarantee a sequential semantics of ∆D. Two
of them (Assumption 4.1 and Assumption 4.2) hold automatically, because there
exists only one device in the constructed device model. Definition 6.2 guarantees that
if the processor does not access a device, the device won’t be changed, and, hence,
Assumption 4.3 holds.

Assumption 4.5 requires that da can only be activated if there was a request from
the processor. It trivially holds, because da only depends on the request bit of a given
difi. This definition also guarantees the liveness property of the device model. Thus,
Assumption 4.6 holds.

Assumption 4.7 requires that DevIds does not produce sequences with duplicated
elements. It holds because our instance of DevIds always produces empty sequence.

Finally, we have the assumption which requires that a step of the implementation
can be represented by a subsequence of the specification steps (Assumption 4.12).
This holds, because there is only one device, and the developers of the ABC device
guarantee its correctness.

6.5 Summary: Correctness of the ECU

By instantiating the generic device theory, we created two models of the ECU. One
is the ECU model on the gate level, this is the VDI model with the ABC device. Let
us call this model ECUI . Another is the ECU model at the assembly level, this is
VDS model with the specification of the ABC device. We call this model ECUS. The
correctness criterion of the gate-level ECUI is formulated according to Theorem 5.4:

Theorem 6.2
Let the initial state of the ECUS model and the ECUI model be equivalent. Let us
assume that up to cycle T there are no buffer swappings, i.e. we consider one slot.
Let the executed assembly code satisfy the software conditions. The ECUI model is
correct after T cycles, if after running ECUS with σT = sIPD(T ), both models are in
equivalent states:

(∀t < T. ¬SwapBuf (ECUI
t.hPD.hD(idABC))) ∧

Rconf (ECUI
0.hPD.hP,ECUS

σ0
.cPD.cP) ∧M(ECUI , 0) = ECUS

σ0
.cPD.cP.M

Rabc(ECUI
0.hPD.hD(idABC), ECUS

σ0
.cPD.cD(idABC))

=⇒

ECUI .JISRT−1 −→ (Rconf (ECUI
T .hPD.hP,ECUS

σT
.cPD.cP) ∧

M(ECUI ,T ) = ECUS
σT
.cPD.cP.M)

Rabc(ECUI
T .hPD.hD(idABC), ECUS

σT
.cPD.cD(idABC))
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Proof. The proof of this theorem is a single application of Theorem 5.4. �

As the reader can see the instantiation and the justification are quite simple.





Chapter 7

Summary and Future Work

In this thesis, we presented a formally verified gate-level computer system, which
consists of a processor and external devices. To the best of our knowledge, we are the
first to present a formally verified computer system with devices at the gate level.

The base of the computer system is a pipelined processor, called VAMP. The
VAMP is a 32-bit RISC processor featuring out-of-order execution with five functional
units1, precise interrupts, and address translation. External devices can be easily
integrated in the computer system. As an example, we integrated a device which
implements an interface for a time-triggered bus. Thus, we built an electronic control
unit (ECU) for a distributed automotive system which consist of the VAMP processor
and the device. This unit is used as a basic element for building and verifying a
distributed automotive system in the Verisoft subproject TP6. These results are
formalized and mechanically proved in the interactive theorem prover Isabelle/HOL.
Moreover, we synthesised and ran the verified ECU on an FPGA.2

As part of this thesis, we developed an environment called IHaVeIt for design
and verification of hardware in Isabelle/HOL. The main components of IHaVeIt
are two reduction algorithms for Kripke structures. These algorithms combine and
extend earlier techniques, which were applicable solely to combinational properties,
to temporal properties of Kripke structures. IHaVeIt allows the automatic verification
of hardware in Isabelle/HOL and can synthesize the verified hardware. The IHaVeIt
environment has also been successfully used in other projects, for example:

• Müller [Mül07] reported on the semi–automated verification of cache systems

• Schmaltz [Sch06b] and Bueker [Bue05] applied IHaVeIt for the verification of
an automotive bus controller

• Böhm [Böh07] verified the implementation of a scheduling algorithm of an
automotive bus controller

1For details on the verification of functional units see Section 3.4.
2This is joint work with Andrey Shadrin.
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Part Person years Theorems Proof steps

VAMP (no FPU, MU) in Isabelle 1.5 1206 20455
Devices 0.5 52 967
Combining Systems 0.7 118 2714
Total 2.7 1376 24316

Table 7.1: Verification efforts in Isabelle/HOL.

The work in this thesis is partially based on the previous work of the VAMP
project [Krö01, BJK+05, DHP05], which is carried out in the interactive theorem
prover PVS. In contrast to the previous work, we target the verification of the VAMP
in the context of pervasive system verification, i.e. the consideration of the VAMP
with external devices. This point of view allowed us to establish clean semantics of
the external interrupts, which was not considered in the previous work. Moreover, we
decreased the user’s involvement in the proving process by usage of the IHaVeIt. This
reduction is ca. 30% with respect to the size of the PVS proofs (Section 3.4). Table 7
presents our verification efforts in Isabelle/HOL.

In the rest of this chapter, we discuss the possible direction for further work.

Hardware Optimisations and Extensions

A typical industrial processor with memory management units has table look-aside
buffers (TLB). A TLB is used to cache page table entries and, hence, to speed-up the
following address translations. Dalinger is currently working on the verification of the
memory unit of the VAMP extended by a TLB. This new memory unit also contains
faster circuits for computation of effective addresses for memory accesses.

Another possible extension is a multi-level address translation, e.g. one could use
the model proposed by Hillebrand [Hil05].

The memory unit of the VAMP can only process one instruction at a time. We
can imagine adding a pipeline to this unit, e.g. the address translation is executed in
two steps, and, thus, at least two instructions can be processed in the pipeline. One
could use the construction proposed by Preiß [Pre05], where the memory unit without
address translations is a three-stage pipeline.

Pervasive Verification

Some of the most interesting further work is the usage of the verified computer
system in the scope of pervasive verification. Alkassar et al. [AHK+07] instantiated
an assembly-level model with a formal model of the serial interface controller UART
16550A. Thus, they constructed an assembler-level programming model for a serial
interface, and showed how it can be used for the verification of an assembly-level
driver for the controller. They also noticed that the computational sequences provide
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Gate-level run . . . . . .
P

SI . . .
P

HDD

SI

. . . Kbd . . .
P

SI

Assembly-level run . . . . . .P SI P HDD SI Kbd P SI

Reordered sequence . . . . . .HDD Kbd P SI P SI P SI

OS Programmer’s view. . . . . .HDD Kbd A Driver Step

where SI is the index of the serial interface controller,
Kbd is a keyboard, and HDD is a hard disk drive.

Figure 7.1: Reordering and abstracting of computational sequences.

a comfortable way to represent the complete driver execution as an atomic step, i.e.
the driver execution as seen by an operating-system programmer. For example, let us
consider a subsequence of computational sequence describing a run of an operating
system (Figure 7) on a computer system with a processor P, a serial interface SI, a
hard disk drive HDD, and a keyboard Kbd. At the gate level, this run can last over
thousands of cycles, and system components can progress in parallel. Of course, we
do not want to prove any properties at this level. The result of this thesis provides us
with an assembly-level abstraction of the run. However, if we want to prove and to
export properties of a software driver, we do not want to consider the processor- and
device steps which are not relevant to the driver execution. Therefore, we can select
all processor- and device steps which correspond to a single execution of the driver.
Then, we can reorder the processor and the device steps in such a way that the steps
belonging to the driver execution are grouped into one continuous subsequence. Now,
we can treat this subsequence as an atomic driver step. Therefore, we can provide the
OS programmer with the correctness/properties of the whole driver execution.

Alkassar, Starostin, and Schirmer [ASS08] presented how this approach can be
applied for a paging mechanism, which is implemented in a page fault handler.

There are a number of interesting opportunities in this area, such as the verifica-
tion of a driver for a hard disk drive [ASS08, AH08] (or network adapter) and the
verification of a file system (a network socket) on top of this driver.
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IHaVeIT: Library of Predicate
Sets

There is no built-in subtyping mechanism in Isabelle/HOL. Therefore, we restrict
infinite types by means of predicate sets. A predicate set defines the set of all elements
satisfying a given predicate. We defined in Isabelle/HOL a library of the predicate
sets for the supported types, which can be described as follows:

sub type ::= boolT | bitT | bv n(N) | nat range(N,N)|
int range(Z, Z) | arr of (N, sub type) |
PAIR(sub type, sub type) | RAM(N, N) |
ROM([sub type1 . . . sub typen], sub type) |
G MEM([sub type1 . . . sub typen], sub type)

where

• boolT – {True, False}

• bitT – {1, 0}

• bv n(n) – Defines a set of all bit vectors of length n. n must be a natural constant.

• arr of (n, pset) – Defines a set of all lists of the length n with elements from
pset. n must be a natural constant.

• nat range(n,m) – Defines a set of natural numbers. n and m must be natural
constants. If m < n, this set is empty.

• int range(n,m) – Defines a set of integers. n and m must be integer constants.
If m < n, this set is empty.

• PAIR(pset, qset) – Defines a set of all pairs where the first element is from pset,
and the second element is from qset.
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• RAM(n,m) – Defines a set of functions with domain bv nn and range bv nm. n
and m must be natural constants. The terms of this subtype can be updated.

• ROM([dset1 . . . dsetn], rset) – Defines a set of functions with range rset and
domain [dset1 . . . dsetn]. The terms of this subtype can not be updated.

• G MEM([dset1 . . . dsetn], rset) – Defines a set of functions with range rset and
domain [dset1 . . . dsetn]. The terms of this subtype can be updated.

Records are user-defined types, and, therefore, the user has to define the appro-
priate subtypes for the used records. A subtype for a record is a predicate set those
definition captures the subtype information for every record field. Note that the
subtyping information for fields of bool, bit, and enumerations types is not required,
because it is deduced automatically.

Thus, defining a record which is suitable for the automatic verification and synthe-
sis consists of two steps:

1. define a regular Isabelle/HOL record

2. define a constant representing the required subset of the record type.

We illustrate the defining of such a record by an example. Let us define record
test record:

record test record =

field 1 :: int
field 2 :: “bit list”
field 3 :: bool
field 4 :: some record

A subset of record type test SubT , and so the subtype, is to be defined as follows:

constdefs test SubT :: “test record set”
“test t ≡ {z.

field 1(z) ∈ int range(5, 32) ∧
field 2(z) ∈ bv n(32) ∧
field 4(z) ∈ some SubT}”

The predicate sets for records can be nested, but they can not be parametrized.
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IHaVeIT: Temporal Logic

In this section we employ Isabelle/HOL notation which is introduced in [NPW02].

B.1 LTL formulae specification

In this section we present the syntax for LTL which is supported by IHaVeIt.

The following abstract datatype defines the syntax of LTL.

datatype ’a LTL_formula =

APl "’a ⇒ bool"

| APl’ "’a ⇒ ’a ⇒ bool"

| Negl "’a LTL_formula" ("¬L _" [40] 40)

| Andl "’a LTL_formula" "’a LTL_formula" (infixr "∧L" 35)

| Orl "’a LTL_formula" "’a LTL_formula" (infixr "∨L" 30)

| Impl "’a LTL_formula" "’a LTL_formula" (infixr "−→L" 30)

| X "’a LTL_formula"

| G "’a LTL_formula"

| F "’a LTL_formula"

| U "’a LTL_formula" "’a LTL_formula" (infixr "U" 35)

| R "’a LTL_formula" "’a LTL_formula" (infixr "R" 35)

| Y "’a LTL_formula"

| Z "’a LTL_formula"

| H "’a LTL_formula"

| Once "’a LTL_formula"

| S "’a LTL_formula" "’a LTL_formula" (infixr "S" 35)
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| Trg "’a LTL_formula" "’a LTL_formula" (infixr "Trg" 35)

| ExVar "’a" "’a ⇒ ’a ⇒ bool" "’a LTL_formula"

| AllVar "’a" "’a ⇒ ’a ⇒ bool" "’a LTL_formula"

We define the semantics of the LTL formulae via evaluation function valid1.This
function evaluates a given LTL formula for a given path and a given position in the
path.

consts valid1 :: "nat ⇒ (nat ⇒ ’a) ⇒ ’a LTL_formula ⇒ bool"

("(_ _ |=l _)" [80,80] 80)

primrec

"s pt |=l (APl a) = (a (pt s))"

"s pt |=l (APl’ a) = a (pt s) (pt (Suc s))"

"s pt |=l (¬L f) = (¬(s pt |=l f))"

"s pt |=l (f ∧L g) = ((s pt |=l f) ∧ (s pt |=l g))"

"s pt |=l (f ∨L g) = ((s pt |=l f) ∨ (s pt |=l g))"

"s pt |=l (f −→L g) = ((s pt |=l f) −→ (s pt |=l g))"

"s pt |=l (X f) = ((Suc s) pt |=l f)"

"s pt |=l (G f) = (∀ ns. s ≤ ns −→ ns pt |=l f)"

"s pt |=l (F f) = (∃ ns. s ≤ ns ∧ ns pt |=l f)"

"s pt |=l (f U g) = (∃ tg. s ≤ tg ∧ (∀ tf < tg. s ≤ tf −→

tf pt |=l f) ∧ (tg pt |=l g))"

"s pt |=l (f R g) = (∀ tg. s ≤ tg −→ (∀ tf < tg. s ≤ tf −→

¬(tf pt |=l f)) −→ (tg pt |=l g))"

"s pt |=l (Y f) = (s ˜= 0 ∧ (s - 1) pt |=l f)"

"s pt |=l (Z f) = (s = 0 ∨ (s - 1) pt |=l f)"

"s pt |=l (H f) = (∀ tf ≤ s. tf pt |=l f)"

"s pt |=l (Once f) = (∃ tf ≤ s. tf pt |=l f)"

"s pt |=l (f S g) = (∃ tg ≤ s. tg pt |=l g ∧

(∀ tf ≤ s. tg < tf −→ tf pt |=l f))"

"s pt |=l (f Trg g) = (∀ tg ≤ s. tg pt |=l g ∨

(∃ tf ≤ s. tg < tf ∧ tf pt |=l f))"

"s pt |=l AllVar x P f = (∀ x’. x=x’ ∧

P x’ (pt s) −→ s pt |=l f)"

"s pt |=l ExVar x P f = (∃ x’. x=x’ ∧

P x’ (pt s) ∧ s pt |=l f)"
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Function Paths for a given initial state and a state relation computes the set of all
paths from the initial state.

constdefs Paths :: "’a ⇒ (’a × ’a) set ⇒ (nat ⇒ ’a) set"

"Paths s M ≡ {p. s = p 0 ∧ (∀ i. (p i, p (i+1)) ∈ M)}"

constdefs is_Path :: "’a ⇒ (’a × ’a) set ⇒ (nat ⇒ ’a) ⇒ bool"

"is_Path s M p ≡ s = p 0 ∧ (∀ i. (p i, p (i+1)) ∈ M)"

We define functions LTL_valid which check whether a given Kripke structure
satisfies a given LTL formula.

constdefs LTL_valid :: "[’a ⇒ bool] ⇒ [’a ⇒ ’a] ⇒ ’a set ⇒

’ a LTL_formula ⇒ bool"

("(_ _ _ |=L _)" [80,80,80,80] 80)

"LTL_valid Init Trans SubT LTLf ≡

(let M = {(s1, s2). Trans s1 = s2 ∧ s1 ∈ SubT ∧ s2 ∈ SubT};

traces = {trc. (trc 0) ∈ ({st. Init st} ∩ SubT) ∧

is_Path (trc 0) M trc}

in ∀ trc ∈ traces. 0 trc |=l LTLf)"

constdefs LTL_validG :: "[’a ⇒ bool] ⇒ [’a ⇒ ’a ⇒ bool] ⇒

’a set ⇒ ’a LTL_formula ⇒ bool"

"LTL_validG Init Trans SubT LTLf ≡

(let M = {(s1, s2). Trans s1 s2 ∧ s1 ∈ SubT ∧ s2 ∈ SubT};

traces = {trc. (trc 0) ∈ ({st. Init st} ∩ SubT) ∧

is_Path (trc 0) M trc}

in ∀ trc ∈ traces. 0 trc |=l LTLf)"

consts NX :: "nat ⇒ ’a LTL_formula ⇒ ’a LTL_formula"

primrec

"NX 0 f = f"

"NX (Suc n) f = X (NX n f)"
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B.2 CTL formulae specification

In this section we present the syntax for CTL which is supported by IHaVeIt. This
section is based on the case study “Verified Model Checking” presented in [NPW02].

The following abstract datatype defines the syntax of CTL.

datatype ’a CTL_formula =

Atom "’a ⇒ bool"

| Neg "’a CTL_formula" ("¬c _" [40] 40)

| And "’a CTL_formula" "’a CTL_formula" (infixr "∧c" 35)

| Or "’a CTL_formula" "’a CTL_formula" (infixr "∨c" 35)

| Imp "’a CTL_formula" "’a CTL_formula" (infixr "−→c" 35)

| ITE bool "’a CTL_formula" "’a CTL_formula"

| EN "’a CTL_formula"

| EF "’a CTL_formula"

| EG "’a CTL_formula"

| EU "’a CTL_formula" "’a CTL_formula"

| AX "’a CTL_formula"

| AF "’a CTL_formula"

| AG "’a CTL_formula"

| AU "’a CTL_formula" "’a CTL_formula"

Function Paths computes all paths starting from a given initial
states.

constdefs Paths :: "’a ⇒ (’a × ’a) set ⇒ (nat ⇒ ’a) set"

"Paths s M ≡ {p. s = (p 0) ∧ (∀ i. (p i, p(i+1)) ∈ M)}"

We define an auxiliary predicate until which checks whether there is a path con-
sisting of states from A and ending in a state from B.

consts until :: "(’a × ’a) set ⇒ ’a set ⇒ ’a set ⇒ ’a ⇒

’a list ⇒ bool"

primrec

until_Nil: "until M A B s [] = (s ∈ B)"

until_Cons: "until M A B s (t#p) = (s ∈ A ∧ (s, t) ∈ M ∧

until M A B t p)"

Function valid1 defines the semantics of the CTL.
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consts valid1 :: "’a ⇒ (’a × ’a) set ⇒ ’a CTL_formula ⇒ bool"

("(_ |=1 _ _)" [80,80,80] 80)

primrec

"s |=1 M (Atom a) = a s"

"s |=1 M (Neg f) = (¬(s |=1 M f))"

"s |=1 M (And f g) = ((s |=1 M f) ∧ (s |=1 M g))"

"s |=1 M (Or f g) = ((s |=1 M f) ∨ (s |=1 M g))"

"s |=1 M (Imp f g) = ((s |=1 M f) −→ (s |=1 M g))"

"s |=1 M (ITE a f g) = (if a then (s |=1 M f) else (s |=1 M g))"

"s |=1 M (EN f) = (∃ t. (s, t) ∈ M ∧ t |=1 M f)"

"s |=1 M (EF f) = (∃ t. (s, t) ∈ M∗ ∧ t |=1 M f)"

"s |=1 M (EG f) = (∃ p ∈ Paths s M. (∀ i. p i |=1 M f))"

"s |=1 M (EU f g) = (∃ p. until M {t. t |=1 M f} {t. t |=1 M g} s p)"

"s |=1 M (AX f) = (∀ t. (s, t) ∈ M −→ t |=1 M f)"

"s |=1 M (AF f) = (∀ p ∈ Paths s M. ∃ i. p i |=1 M f)"

"s |=1 M (AG f) = (∀ t. (s, t) ∈ M∗ −→ t |=1 M f)"

"s |=1 M (AU f g) = (∀ p. until M {t. t |=1 M f} {t. t |=1 M g} s p)"

Finally, function ctl_valid checks whether a given Kripke structure satisfies a
given CTL formula.

constdefs ctl_valid :: "[’a ⇒ bool] ⇒ [’a ⇒ ’a] ⇒ ’a set ⇒

’a CTL_formula ⇒ bool"

("(_ _ _ |= _)" [80,80,80,80] 80)

"Init M SubTyp |= F ≡

∀ s ∈ ({t. Init t} ∩ SubTyp).

s |=1 {(s1,s2). M s1 = s2 ∧ s1∈ SubTyp ∧ s2 ∈ SubTyp} F"

constdefs ctl_validG :: "[’a ⇒ bool] ⇒ [’a ⇒ ’a ⇒ bool] ⇒

’a set ⇒ ’a CTL_formula ⇒ bool"

"ctl_validG Init M SubTyp F ≡

∀ s ∈ ({t. Init t} ∩ SubTyp).

s |=1 {(s1,s2). M s1 s2 ∧ s1∈ SubTyp ∧ s2 ∈ SubTyp} F"





Appendix C

VAMP: Instruction Set

The VAMP instruction set is taken from [Dal06] with minimal modifications.
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Figure C.1: Instruction formats of the VAMP.
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17 3 10

117 DID DPort

Figure C.2: Format of memory address for device access.

DID specifies the device index and hence we can have up to eight devices in the computer
system. DPort defines the accesses register (it is also called device port).
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IR[31 : 26] Mnem. d Effect

Memory operations, pa is a 29-bit effective address or a translated effective address

100000 lb 1 RD = sext(M(pa)[29] ? M(pa)[39 : 32] : M(pa)[7 : 0])
100001 lh 2 RD = sext(M(pa)[29] ? M(pa)[47 : 32] : M(pa)[15 : 0])
100011 lw 4 RD = sext(M(pa)[29] ? M(pa)[63 : 32] : M(pa)[31 : 0])

100100 lbu 1 RD = 024(M(pa)[29] ? M(pa)[39 : 32] : M(pa)[7 : 0])
100101 lhu 2 RD = 016(M(pa)[29] ? M(pa)[47 : 32] : M(pa)[15 : 0])

101000 sb 1 M(pa)[7 : 0] = RD[7 : 0] if ¬M(pa)[29]
101001 sh 2 M(pa)[15 : 0] = RD[15 : 0] if ¬M(pa)[29]
101011 sw 4 M(pa)[31 : 0] = RD if ¬M(pa)[29]
101000 sb 1 M(pa)[39 : 32] = RD[7 : 0] if M(pa)[29]
101001 sh 2 M(pa)[47 : 32] = RD[15 : 0] if M(pa)[29]
101011 sw 4 M(pa)[63 : 32] = RD if M(pa)[29]

Arithmetic, logical operation

001000 addi RD = RS1 + imm
001001 addiu RD = RS1 + imm (no overflow)
001010 subi RD = RS1 − imm
001011 subiu RD = RS1 − imm (no overflow)

001100 andi RD = RS1 ∧ imm
001101 ori RD = RS1 ∨ imm
001110 xori RD = RS1 ⊕ imm
001111 lhgi RD = imm ◦ 016

Test and set operations

011000 clri RD = 032

011001 sgri RD = 031(RS1 > imm)
011010 seqi RD = 031(RS1 = imm)
011011 sgei RD = 031(RS1 ≥ imm)
011100 slsi RD = 031(RS1 < imm)
011101 snei RD = 031(RS1 , imm)
011110 slei RD = 031(RS1 ≤ imm)
011111 seti RD = 0311

Control operation

000100 beqz PCp = PCp + 4 + (RS1 = 0?imm : 0)
000101 bnez PCp = PCp + 4 + (RS1 , 0?imm : 0)
000110 jr PCp = RS1
000111 jalr R31 = PCp + 4; PCp = RS1

Table C.1: I-type instruction layout.
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IR[5 : 0] Mnem. Effect

Shift operations

000000 slli RD = RS1 � SA
000001 slai RD = RS1 � SA (arith.)
000010 srli RD = RS1 � SA
000011 srai RD = RS1 � SA (arith.)

000100 sll RD = RS1 � RS2[4 : 0]
000101 sla RD = RS1 � RS2[4 : 0] (arith.)
000110 srl RD = RS1 � RS2[4 : 0]
000111 sra RD = RS1 � RS2[4 : 0] (arith.)

Data transfer

010000 movs2i GPR[RD] = SPR[SA]
010001 movi2s SPR[SA] = GPR[RS1]

Arithmetic and logical operations

100000 add RD = RS1 + RS2
100001 addu RD = RS1 + RS2 (no overflow)
100010 sub RD = RS1 − RS2
100011 subu RD = RS1 − RS2 (no overflow)

100100 and RD = RS1 ∧ RS2
100101 or RD = RS1 ∨ RS2
100110 xor RD = RS1 ⊕ RS2
100111 lhg RD = RS2[15 : 0] ◦ 016

Test and set operations

101000 clr RD = 032

101001 sgr RD = 031(RS1 > RS2)
101010 seq RD = 031(RS1 = RS2)
101011 sge RD = 031(RS1 ≥ RS2)
101100 sls RD = 031(RS1 < RS2)
101101 sne RD = 031(RS1 , RS2)
101110 sle RD = 031(RS1 ≤ RS2)
101111 set RD = 0311

Table C.2: R-type instruction layout.

Note that IR[31 : 26] = 06 holds for all instructions in this table and that we identify a
boolean value of true with 1 and f alse with 0.
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IR[31 : 26] Mnem. Effect

000010 j PCp = PCp + 4 + imm

000011 jal GPR[31] = PCp + 4; PCp = PCp + 4 + imm

111110 trap trap = 1; EData = imm

111111 rfe SR = ESR; PCp = EPC; DPC = EDPC

Table C.3: J-type instruction layout.

IR[31 : 26] Mnem. d Effect

Memory operations, pa is a 29-bit effective address or a translated effective address

110001 load.s 4 FD[31 : 0] = M(pa)[31 : 0]
110101 load.d 8 FD[63 : 0] = M(pa)[63 : 0]

111001 store.s 4 M(pa)[31 : 0] = FD[31 : 0]
111101 store.d 8 M(pa)[63 : 0] = FD[63 : 0]

Control operations

000110 fbeqz PCp = PCp + 4 + (FCC = 0?imm : 0)
000111 fbnez PCp = PCp + 4 + (FCC , 0?imm : 0)

Table C.4: FI-type instruction layout.
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IR[5 : 0] IR[8 : 6] Mnem. Effect

Arithmetic and compare operations

000000 fadd FD = FS1 + FS2
000001 fsub FD = FS1 − FS2
000010 fmul FD = FS1 ∗ FS2
000011 fdiv FD = FS1 ÷ FS2

000100 fneg FD = −FS1
000101 fabs FD = abs(FS1)
000110 fsqt FD = sqrt(FS1)
000111 frem FD = rem(FS1,FS2)

11c[3 : 0] fc.cond FCC = (FS1 c FS2)

Data transfer

001000 000 fmov.s FD[31 : 0] = FS1[31 : 0]
001000 001 fmov.d FD[63 : 0] = FS1[63 : 0]

001001 mf2i GPR[FD] = FPR[FS1][31 : 0]
001010 mi2f FPR[FD][31 : 0] = GPR[FS2]

Conversion

100000 001 cvt.s.d FD = cvt(FS1, s, d)
100000 100 cvt.s.i FD = cvt(FS1, s, i)

100001 000 cvt.d.s FD = cvt(FS1, d, s)
100001 100 cvt.d.i FD = cvt(FS1, d, i)

100100 000 cvt.i.s FD = cvt(FS1, i, s)
100100 001 cvt.i.d FD = cvt(FS1, i, d)

Table C.5: FR-type instruction layout.

Note that IR[31 : 26] = 010001 holds for all instructions in this table.
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Condition Relations Invalid
Code Mnemonic Greater Less Equal Unordered if

c True False > < = ? unordered

0000 F T 0 0 0 0
0001 UN OR 0 0 0 1
0010 EQ NEQ 0 0 1 0
0011 UEQ OGL 0 0 1 1
0100 OLT UGE 0 1 0 0 No
0101 ULT OGE 0 1 0 1
0110 OLE UGT 0 1 1 0
0111 ULE OGT 0 1 1 1

1000 SF ST 0 0 0 0
1001 NGLE GLE 0 0 0 1
1010 SEQ SNE 0 0 1 0
1011 NGL GL 0 0 1 1
1100 LT NLT 0 1 0 0 Yes
1101 NGE GE 0 1 0 1
1110 LE NLE 0 1 1 0
1111 NGT GT 0 1 1 1

Table C.6: Floating-point relational operators for the fc instruction.





Appendix D

Mapping to Lemmata in
Isabelle/HOL

In this section we give a mapping from lemmata, corollaries, and theorems in this
thesis to the corresponding places in the Isabelle/HOL theories.

Name Page Name in Isabelle

Lemma 3.1 55 step_no_DA_mifo_ignored_spec

Lemma 3.2 56 no_DA_mifo_ignored_spec

Lemma 3.3 68 da_pend_impl_was_da_and_no_wb

Lemma 3.4 68 EevDaR_Correct

Lemma 3.6 70 in_order_sI_writeback2

Lemma 3.7 70 sI_writeback_free_interval

Lemma 3.8 71 all_instr_are_added

Theorem 3.10 75 vamp_correct

Lemma 4.4 86 DS_DT_ignores_upG

Lemma 4.8 91 sIPD_mono

Lemma 4.9 92 IsAddedAt_UniqueT

Lemma 4.10 92 IsAddedAt_UniqueIdx

Lemma 4.14 96 DI_decompose

Lemma 4.15 96 DS_decompose

Lemma 4.16 96 sIPD_decompose

Lemma 4.17 96 sync_eifis_decompose

Lemma 4.18 96 sync_difis_decompose

Lemma 4.19 96 sync_eifos_decompose

Theorem 4.20 97 devs_correct

Lemma 5.1 102 VDI_DI_decompose

161
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Name Page Name in Isabelle

Lemma 5.2 103 VDI_VAMP_decompose

Lemma 5.3 105 VDS_PDT_ignores_up

Theorem 5.4 106 part of VDI_vs_VDS_correct
Corollary 5.5 110 VDIP_vs_ISA_correct

Corollary 5.6 110 VDID_vs_DS_correct

Lemma 5.7 111 sIPD_vs_sIwb_rw

Lemma 5.8 111 Seq2I_mono

Lemma 5.10 112 Seq2P_noP_step_rw

Lemma 5.11 112 Seq2P_correct

Lemma 5.12 112 Seq2P_Seq2I_last

Lemma 5.13 112 Seq2I_Seq2P_inv

Theorem 5.14 113 VDSP_vs_ISA_correct

Lemma 5.15 114 VDS_DLX_ignores_devices

Theorem 5.18 115 VDS_DS_decompose

Theorem 5.19 116 VDI_vs_VDS_correct

Lemma 5.24 119 Inst_VDI_vs_DS_SucT

Lemma 5.25 119 Inst_VDI_vs_DS_SucT

Lemma 5.26 120 Inst_VDI_vs_DS_SucT

Lemma 5.27 122 part of VDI_vs_VDS_correct
Lemma 5.28 123 part of VDI_vs_VDS_correct
Lemma 5.29 123 part of VDI_vs_VDS_correct
Lemma 5.30 124 part of VDI_vs_VDS_correct
Lemma 5.33 126 Inst_VDI_vs_ISA_SucT

Lemma 5.34 126 Inst_VDI_vs_ISA_SucT

Lemma 5.35 128 Inst_VDI_vs_ISA_SucT

Lemma 5.36 129 part of VDI_vs_VDS_correct
Lemma 5.37 130 part of VDI_vs_VDS_correct
Theorem 6.2 138 ECU_correct
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