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Abstract

This thesis presents the formal verification of a framework for microkernel programmers
called CVM (communicating virtual machines) [41].

CVM is a computational model for concurrent user processes interacting with a
generic microkernel and devices. It is implemented in C0A, a restricted C-dialect with
support of inline assembly, as a framework featuring virtual memory, demand paging,
memory management, and low-level inter-process and devices communications. The
framework can be linked on the source code level with an abstract kernel, an interface
to users, in order to obtain a concrete kernel, a program that can be translated and
run on a target machine. We use a formally verified microprocessor VAMP [20] as a
platform to run the concrete kernel.

The main result of this work is a mechanically checked formal proof that concurrent
executions of user processes interacting with a kernel are simulated by executions of the
VAMP instruction set architecture model interleaved with devices. In order to obtain
this result a number of attendant formal theories have been developed, most notably, a
theory of inline assembly verification.

This work is a part of the Verisoft project [111], a large scale effort bringing together
industrial and academic partners to push the state-of-the-art in formal verification for
realistic computer systems comprising hard- and software.

Kurzzusammenfassung

Diese Arbeit präsentiert die formale Verifikation einer Umgebung für µ-Kernel Program-
mierer namens CVM (communicating virtual machines) [41].

CVM ist ein Berechnungsmodell für gleichlaufende Softwareprozesse, die mit einem
generischen µ-Kernel und Geräten interagieren. Das Modell ist in einem beschränkten C-
Dialekt mit Unterstützung von Inline-Assembly C0A implementiert und stellt die grund-
legenden Funktionalitäten eines Betriebssystemkerns zur Verfügung: virtueller Speicher,
Speicherverwaltung und rudimentäre Kommunikation zwischen Prozessen und Geräten.
CVM wird auf der Quellcode-Ebene mit einem abstrakten Kernel verbunden, der eine
Benutzerschnittstelle darstellt. Das Ergebnis ist ein konkreter Kernel, der kompiliert und
auf der Hardware ausgeführt wird. Wir verwenden einen formal verifizierten µ-Prozessor
VAMP [20] als Zielarchitektur.

Das wichtigste Ergebnis dieser Arbeit ist ein mechanisch geprüfter formaler Beweis.
Dieser besagt, dass das Prozessormodell mit Geräten gleichlaufender Softwareprozesse,
die mit einem Kernel interagieren, simuliert. Um dieses Ergebnis zu bekommen, wur-
de eine formale Theorie entwickelt, die insbesondere die Inline-Assembly Verifikation
umfasst.

Diese Arbeit ist Teil des langfristig angelegten Forschungsprojektes Verisoft [111].
Das Projekt bringt die industriellen und akademischen Partner zusammen, um die Tech-
nologie der formalen Verifikation für realistische Computersysteme weiter zu entwickeln.
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1

Contents
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . 13

1.2 Microkernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Foundations and Contributions . . . . . . . . . . . . . . . . . . . . 19

1.7 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Motivation and Background

As long as requirements to computer designs are formulated in an ambiguous human
language and as long as these designs are implemented by humans not insured against
possible carelessness computer systems will contain errors. For the time being, the only
way to guarantee absence of errors in a computer system is to exploit rigorous formal
methods of mathematics for specifying system’s intended behavior and ensuring that
the actual system’s implementation meets the desired behavior. The latter is known
as formal verification. There are two main approaches to formal verification: model
checking, a systematical exhaustive exploration of the problem’s mathematical model,
and theorem proving, a formal mathematical reasoning about a system. While the
first method is fully automated, the second approach requires user’s investigations for
conducting a proof. The proof is then examined automatically by hopefully sound
proof checkers. However, a technology of today allows us to apply model checking to a
significantly smaller set of problems compared to theorem proving.

A program proven correct in a high-level programming language may not execute
as expected on a particular computer. Such correctness proof ignores irregular patterns
of control flow which take place due to multitasking and interrupts on the computer.
High-level data types and operations used to implement the program and formulate its
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correctness criteria differ from flip-flops and signals that occur in the hardware. The gap
between what has been proven about the program in the high-level language semantics
and what is actually executed on the underlying hardware may be a source of errors.

The solution to the problem is to verify the execution environment of the program:
the operating system to ensure correct assignment of hardware resources to the program
and non-interference with other programs, the compiler and assembler to guarantee cor-
rect translation from high-level data types and operations to the machine instruction
level, the actual hardware implementation to make certain that it meets the instruc-
tion set architecture. The approach is called systems or pervasive verification and was
introduced in 1989 by Bevier, Hunt, Moore, and Young in [17].

In order to ensure that interfaces of all components of the program’s execution en-
vironment fit together a common formal framework has to be used. By choosing the
implementation model of each layer to be the specification of the next lower layer it is
possible to combine the components into a verified stack. With the program on top of
the stack one achieves the highest degree of assurance in program correctness.

1.2 Microkernels

It is fair to put an operating system at the heart of a hardware-software stack. Managing
computer physical resources, like CPU time and memory, and providing users with in-
terfaces to these resource, operating system are the actual bridge between the hardware
and applications. The core part of an operating system that is executed in processor’s
supervisor mode and has full access to hardware resources is called a kernel. It provides
basic means for operating systems functionality: memory management, interrupt han-
dling, inter-process communication, device drivers, etc. A microkernel is a kernel based
on the principle of minimality of code and concepts.

The history of microkernels goes back to the 1970’s. Conceptually the first microker-
nel system was the Nucleus [44] designed by Hansen. It featured primitives for process
control and inter-process communication moving all operating system policies outside
into a special user process. The idea evolved in the Hydra system [68] — though,
the term microkernel itself has been introduced in the eighties to describe the Mach
system [96]. Late eighties gave birth to lots of microkernels: most notable were the
QNX [48] and Chorus [100] systems. In fact, all eighties designs fell short to meet the
minimality requirements of microkernels. For instance, the Mach system featured over
150K lines of code implementing over 200 of system calls.

In the early nineties microkernels received severe criticism [23] for their poor per-
formance caused by frequent user-kernel mode and address-space switches. Later on,
Liedtke managed to re-analyze the performance of Unix on Mach compared to native
monolithic Unix and showed that the efficiency of the system based on the Mach kernel
was limited by cache misses [70] — the kernel was too big in size.

With second generation of microkernels Liedtke showed [70, 71, 72] that the perfor-
mance issues could be resolved if the microkernel minimality principle is taken earnestly.
By strongly simplifying microkernel concepts, taking very careful approach to design
and implementation, and extensively optimizing underlying algorithms and data struc-
tures [69] he developed the first L4 kernel. Primarily designed with high performance in
mind, L4 was written in assembly language. The L4Ka project [95] organized by Liedtke
in 1999 showed that high-performance microkernels could be implemented in a high-level
programming language. As a proof of concept the group developed L4Ka::Hazelnut, a
C++ version of the kernel that ran on IA32- and ARM-based machines. The developed
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kernel was an oder of magnitude smaller than first-generation microkernels: it featured
only about 10K lines of code. The L4 microkernel motivated creation of a number of
clones as well as ports to different hardware platforms. The framework for microkernel
programmers considered in this thesis is also inspired by L4.

1.3 Related Work

The related work of the thesis is summarized in two categories: (i) operating-system
microkernel verification, and (ii) pervasive systems verification. For an in-depth retro-
spective of the first topic we recommend the reader to consult Klein’s article [63] which
provides an outstanding overview of the subject.

1.3.1 Operating-System Microkernel Verification

First attempts to use theorem provers for formal specification and correctness proofs of
operating systems date back to the mid seventies in PSOS and UCLA DSU projects.

Provably Secure Operating System (PSOS) was designed at SRI International [58]
in 1973-1980 as a general-purpose operating system with provable security properties.
Neumann and Feiertag provide a retrospective view of the system in [80] — earlier re-
ports include [38] and [81]. Founded on capability-based security, the design of PSOS
provided an early example of hierarchically layered abstraction. The hardware-software
architecture was type-safty. SPECIfication and Assertion Language (SPECIAL) [99] was
used to precisely specify each module at each layer as well as interlayer abstraction map-
pings. A number of application layers were also formally specified. As for verification,
formally provable trustworthiness of the system and its applications was a far-reaching
goal at that time. Only simple illustrative proofs were carried out to demonstrate how
properties could be formally proven — in the sense that the specification could be for-
mally consistent with the requirements, the source code could be formally consistent
with the specifications, and the compiler could be proven correct as well — to cite the
authors themselves.

UCLA Data Security Unix (DSU), a kernel-structured operating system, was devel-
oped at the University of California at Los Angeles (UCLA) [86] in the late seventies in
order to demonstrate that program verification methods could be applied to prove an
operating system secure. Walker, Kemmerer, and Popek report in [117] on the specifica-
tion and verification experience of DSU. Data Security Unix was implemented in Pascal
as a multiprogramming uni-processor operating system running on a DEC PDP-11/45
computer, with application interface similar to standard Unix. The kernel supported
processes, capabilities, pages and non-modeled devices via kernel calls. The verification
objective was a data security proof: direct access to data must be granted only if the
recorded protection policy permits it. For the proof that the kernel is secure four levels
of specification ranging from Pascal code to the top-level security property were con-
ducted in XIVUS [42], a verification system based on the first-order predicate calculus.
A proof that specifications on that different levels of abstraction are consistent with
each other was undertaken but not completed for all portions of the kernel. The work
assumed that the Pascal compiler and the hardware operate correctly.

From today’s perspective, both projects achieved superficial verification results to a
large extent due to underdeveloped verification environments as well as specification and
proof techniques. A substantial progress in microkernel verification has been achieved
in the late eighties with the KIT project.
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Kernel for Isolated Tasks (KIT) was a small operating-system kernel written at the
University of Texas at Austin [88] for a simple von Neumann computer architecture.
KIT verification is described in the doctoral thesis of Bevier [15] — a short summary
is [16]. The kernel implemented in a machine language services for process scheduling,
error handling, single-word message passing, and character I/O to non-modeled devices.
KIT lacked dynamic creation of processes as well as shared memory and demand paging.
A top-level correctness property was process isolation: execution of one process must not
interfere with the other in unintended ways. In order to establish the property a number
of abstraction layers as well as simulation theorems connecting them were developed in
the Boyer-Moore theorem prover [22]. The KIT project was the first example of an
accomplished mechanically checked proof of the correct implementation of a complete,
though suitable only for special-purpose systems, operating-system kernel.

The VFiasco project held at the Technical University of Dresden [87] aims at the for-
mal verification of a small L4-compatible operating-system microkernel Fiasco. Hohmuth
and Tews summarize the project details in [54]. The Fiasco kernel is implemented with
less than 15K lines of source code. As an experiment the SPIN model-checker [55] was
applied to certify a rudimentary version of Fiasco’s IPC [35]. Unsatisfactory results were
achieved due to the size of problem’s state space. A a solution a theorem proving ap-
proach was undertaken: a subset of C++ was formalized in PVS [89] in order to reason
about the implementation of Fiacso. The authors considered various jump statements
like break and goto together with type casts that can turn integers into pointers as two
major features of C++ necessary to implement kernels. The denotational semantics for
both cases [53, 109] was developed and applied to a case study [109]. The current status
of Fiasco formal verification is vague.

The Coyotos team [26] has defined a new low-level programming language BitC with
precise formal semantics in order to carry out verification of a general-purpose operat-
ing system Coyotos. Shapiro et al. elaborate on the Coyotos architecture and verifica-
tion approach in [59]. The project is the successor to EROS [103], a high-performance
capability-based operating system running on Pentium processors. Though the EROS
team considered verification of kernel security properties [104] only in Coyotos project
kernel correctness is the major issue. The Coyotos kernel is implemented in BitC, a lan-
guage for system programmers developed in the scope of the project. Originated from
Scheme [62], BitC is best viewed as ML [92] with machine-level representation types
and C-style structures. The proposed verification objectives cover correctness proofs
of address translation and memory safety over the kernel implementation. As yet, the
status of formal verification is unclear.

The L4.verified project is carried out at the National ICT Australia (NICTA) [9].
In 2004-2006 the project focused on understanding and formalizing an L4 microkernel
implementation L4Ka::Pistachio [73] for the ARM architecture [60]. An abstract model
of address spaces, one of the three main abstractions of L4 together with threads and
inter-process communication, has been built and refined against its C implementation.
Correctness proofs we developed in Schirmer’s verification environment for sequential im-
perative programs [101] embedded in Isabelle/HOL theorem prover [85]. Tuch and Klein
report on the verification experience in [113]. The current research at NICTA is aimed
at construction and verification of seL4 (secure embedded L4), an L4 kernel extended
with a model of capabilities. Heiser et al. summarize their research on seL4 in [46].
From seL4 prototype designed in Haskel both formal model and high-performance C
implementation are generated. The verification goal is to show in Isabelle/HOL that
the produced implementation conforms with an abstract model. The project lacks a
verified C compiler, however a detailed memory model for low-level pointer programs
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in C which provides convenient separation logic abstraction [114] has been developed.
For kernel verification it is supposed to show a refinement between three levels of ab-
straction: from C implementation — through executable specification — to the abstract
kernel model. As of July 2009, the project has completed the formal correspondence
proof between abstract and executable specifications and 95% of a simulation proof
between the specification and C implementation is done.

The Singularity project has started in 2003 at the Microsoft Research [98] with
the goal of examining shortcomings of existing systems and designing from the scratch
a software platform with the primary goal of dependability. Hunt et al. summarize
the project in [36] — as yet, the most recent project’s state is described in [56]. The
Singularity operating system is developed with three key architectural features in mind:
software-isolated processes, contract-based channels, and manifest-based programs. 90%
of the system is written in Sing# [37], a new type-safe, garbage-collecting programming
language based on Spec# [11]. The remaining part is implemented in unsafe C++
and assembly languages. Spec# is an extension to Microsoft’s C# [120] programming
language that provides means (pre- and postcondition as well as object invariants) for
specifying program behavior. Specification are either statically proved by the Boogie
verifier [10] or checked by compiler-inserted run-time tests.

The FLINT group at the Yale University [116] focuses on studying separate problems
in operating-system verification rather than proving a complete OS correct. Ni, Yu, and
Shao report in [83] on their successful experience of applying XCAP [82] — a theoretical
verification framework — to certify a realistic x86 assembly implementation of machine-
context management procedures. XCAP follows Hoare logic [52] and is implemented in
the Coq proof assistant [12]. In June 2008 Feng et al. presented in [39] a Hoare-logic-like
framework for certifying low-level programs with hardware interrupts and preemptive
threads. The work provides a solid foundation for reasoning about preemptive kernels
and hypervisors.

The Robin project [94] has started in 2006 as a collaborating between Technical
University of Dresden [87], Radboud University Nijmegen [84], and industrial partners.
The project is supposed to develop a minimal trusted computing base — the Nova
microhypervisor — for virtualizing multiple instances of conventional operating systems
in a secure way. Tews reviews the project in [110]. Nova exploits the Intel Virtualization
Technology [25] to virtualize legacy operating systems. The project exploits and further
develops the Nizza [45] architecture. The hypervisor is implemented in a subset of C++.
For verification a simplified x86 hardware model as well as semantics of a C++ subset
are specified in PVS [89], where the refinement proofs are also planned to be conducted.
So far, there were no reports on the status of formal proofs.

The goal of the Verisoft XT project [112] is to specify and verify industrial soft-
ware, including the Microsoft hypervisor Hyper-V, a component of the Windows Server
2008 [74, 76], and the PikeOS [13], a microkernel-based real-time operating system
made by SYSGO AG [108]. The core specification and verification tool of the project
is the verifying C compiler (VCC) [75], a verifier for concurrent C being developed
at Microsoft research, Redmond, USA, and the European Microsoft Innovation Center
(EMIC), Aachen, Germany. VCC takes a program (annotated with function contracts,
state assertions, and type invariants) and attempts to prove the correctness of these
annotations. As of July 2009 the project has succeeded with adding of 13500 lines
of annotations to the Microsoft hypervisor codebase. About 350 functions have been
successfully verified [75].
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1.3.2 Pervasive Systems Verification

An innovative approach for pervasive systems verification was undertaken with the CLI
stack [17, 18] in the late eighties. The stack was built and mechanically verified by
Computational Logic, Inc. [24]. The 1989 version of the stack comprised the following 6
layers: (i) a gate-level design for the FM8502 (a 32-bit version of the 16-bit FM8501 [118])
microprocessor, (ii) an operational semantics for the corresponding instruction set ar-
chitecture (ISA), (iii) an operational semantics for the stack-based assembly language
Piton [77], (iv) a simple assembly-implemented operating-system: the Kernel for Iso-
lated Tasks (KIT) [15, 16], (v) operational semantics for two toy high-level languages:
micro-Gypsy [121] (a derivative of Pascal) and a subset of Lisp [40], (vi) a user appli-
cation: the game NIM [119]. The layers were connected by various functions, including
an assembler, linker, and compilers. The stack was developed and verified using the
Boyer-Moore theorem prover [22].

In 2003 Moore, the head of the CLI project, reviewed the stack and argued why it
became impractical [78]. The reasons boil down to oversimplifications of the 1989 design.
In particular, the processor had no pipeline and caches, the kernel lacked demand paging
and the high-level languages were too simple to be of practical use. Devices were not
consider through the whole stack. In the same paper Moore proposed a grand challenge
for formal methods: a verification of a realistic stack.

In a response to the grand challenge the Verisoft project [111] has started in 2003.
The project is a partnership between several German universities and industrial com-
panies. The mission of the project is to develop the technology [90] which permits
pervasive formal verification of realistic entire computer systems and to demonstrate
this technology with several prototypes. One of the prototypes — the academic sys-
tem — comprises the following layers, which are connected by respective simulation
theorems: (i) a gate-level design of the VAMP [20], a RISC processor with out-of-order
execution, caches [19], and memory-management units [50, 28, 27], (ii) an operational se-
mantics for the DLX instruction set architecture [79], a derivative of the MIPS ISA [61],
(iii) an operational semantics for the DLX assembly language, (iv) an operational se-
mantics for the C0 programming language [67, 65, 66, 93], a slightly restricted dialect
of C, (v) a framework for microkernel programmers, called Communication Virtual Ma-
chines (CVM) [41, 57], which implements low-level microkernel functionality including
a page-fault handler [8, 105], context switch [107], communication [106] and memory-
management primitives, (vi) an L4-inspired microkernel VAMOS [33, 29], which provides
support for priority-based scheduling [31], user-mode device drivers, and interprocess
communication (IPC) (vii) a user-level Simple Operating System (SOS) [21] featuring
TCP/IP communication protocol and a file system, (viii) a number of useful user ap-
plications like remote procedure calls (RPC) [102], SMTP and signature servers, and
an email client [14]. A decisive novelty of the project is integration of concurrent de-
vices [3, 51, 64, 5], including a hard disk, through the whole stack. All work is conducted
in Isabelle/HOL [85] theorem prover. In order to support management of formal theories
a repository of verification environments [49] is built. As yet, all individual components
of the stack, except for SOS, are verified, the simulation theorems between all layers are
stated and formally proven between the four bottom layers.

1.4 Objective

This work is a part of the Verisoft project and has a goal to develop a feasible approach
to pervasive formal verification of microkernel low-level functionality and to demon-
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strate the feasibility by applying it to CVM, a framework for microkernel programmers.
Communicating Virtual Machines is a computational model for concurrent user pro-
cesses interacting with a generic microkernel and devices. CVM is implemented in C0
with inline assembly as a framework featuring virtual memory support, demand paging,
memory management, and low-level inter-process, process-kernel, and devices communi-
cations. The framework can be linked on the source code level with an abstract kernel,
an interface to users, in order to obtain a concrete kernel, a program that can run on
a target machine, like the VAMOS kernel of Verisoft. Note that the abstract kernel is
a parameter of CVM — thus, a range of concrete kernels can be built by instantiating
the parameter with different interfaces.

The international industrial standard for computer security and correctness is called
the Common Criteria (CC) [2] and is in effect since 1999. It provides a numerical
grade of 7 Evaluation Assurance Levels (EAL1 – EAL7). As the level is higher, the
higher confidence that the system’s principle security features are reliably implemented
is provided. Even the highest software certification level EAL7 currently requires ma-
chine checked formal proofs only for high-level designs of systems, e.g., their top-level
specifications. As it follows from the related work (Section 1.3), the formal methods
community believes that meeting EAL7 is not enough for the software to be trustwor-
thy. Commonly, operating-systems verification projects go beyond these requirements
and aim at machine checked proofs that actual implementations correspond to abstract
specifications.

With this work we go even beyond simulation proofs between an implementation,
commonly done in a high-level programming language, and specification. We aim at
the pervasive formal verification of the framework for microkernel programmers. That
means that we do not stop at providing formal evidences that the C0 with inline assembly
implementation of the framework meets its abstract specification, rather we aim at the
correctness theorem of the framework in terms of the underlying hardware model. As a
result, our verification objective is a mechanically checked formal proof that concurrent
executions of user processes interacting with a kernel implemented in C0 with inline
assembly are simulated by executions of the VAMP instruction set architecture model
interleaved with devices.

1.5 Tools

As pervasive formal verification involves lots of higher-order logic (HOL) abstractions
and inductive simulation proofs between them we need an effective theorem proving
environment for HOL. The theorem prover common in Verisoft is Isabelle/HOL [85].

Isabelle is an interactive theorem proving framework. It follows the LCF system [43]
approach: it has a small logical core written in standard ML guaranteeing logical sound-
ness. Isabelle is generic: it provides a meta-logic of the weak type theory to declare de-
ductive systems. So far, the best developed logic is HOL, including a large mathematical
library and various theories for definitional concepts like inductive sets, lists, primitive
and well-founded recursions, etc. The main proof method of Isabelle is a higher-order
version of resolution, based on higher-order unification. Though interactive, Isabelle
also features efficient automatic decision procedures, such as a term rewriting engine,
called the simplifier, and a tableaux prover, called the classical reasoner.
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1.6 Foundations and Contributions

This work is based on a number of formal results achieved within Verisoft. We im-
port the following formal theories: (i) the model of VAMP instruction set architecture
formerly specified in PVS by Beyer [19] and translated to Isabelle/HOL by Tverdy-
shev [115], (ii) the theory of generic devices developed by Alkassar [5], and Knapp [64],
(iii) the C0 small-step semantics and the C0 compiler correctness theorem developed
by Leinenbach [66], and (iv) the page-fault handler correctness theorem developed by
Starostin [105].

In the scope of this thesis the following formal theories are developed: (i) the VAMP
assembly semantics together with the correctness theorem towards VAMP ISA, (ii) the
ministack between C0 and VAMP ISA through the VAMP assembly, (iii) the VAMP
inline assembly semantics for C0, which allows to switch computations from the C0 to
assembly level, (iv) the formal specification of a linker for C0 programs in collaboration
with In der Rieden, (v) correctness proof of the linker, (vi) the formal specification of
CVM in collaboration with Gargano, Hillebrand, Leinenbach, Paul, Alkassar, Daum,
In der Rieden, and Knapp, (vii) all correctness criteria of CVM except for the relation
between the abstract and the concrete kernel, (viii) the correctness theorem of CVM
together with its proof.

1.7 Document Organization

The remainder of this thesis is organized in nine chapters.

• In Chapter 2 we define the mathematical notation used in the thesis.

• Chapter 3 presents the computational models involved in the work, namely: VAMP
ISA and assembly, theory of generic devices, combination of devices with proces-
sors, and C0 small-step semantics.

• In Chapter 4 we introduce a number of simulation theorems justifying correct-
ness of execution C0 programs on ISA and assembly machines. We start with
a simulation theorem between VAMP ISA and assembly, introduce C0 compiler
correctness theorem, and show how to combine these theorems into a monolithic
ministack from C0 down to ISA.

• In Chapter 5 we define the model of Communicating Virtual Machines.

• Chapter 6 elaborates on the implementation of CVM in C0 with inline assembly.
We define a formal linking operator which allows to build concrete kernels from
the CVM implementation and an abstract kernel. We prove correctness of linking
as well.

• In Chapter 7 we discuss correctness criteria of Communicating Virtual Machines
and state the CVM correctness theorem.

• In Chapter 8 we elaborate on the inline assembly semantics for C0, a formal
approach to reason about the code of the CVM framework which is a mixture of
C0 and VAMP assembly.

• Chapter 9 deals with verification of the CVM source code. We present formal
proofs for separate CVM components like dispatcher, primitives, and process-
context switch.
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• In Chapter 10 we present the correctness proof of user-processes computations.

• We conclude in Chapter 11 and discuss the future work.

Certainly, all lemmas and theorems presented in this thesis are formally proven in
Isabelle/HOL. However, we omit some paper-and-pencil proofs in this thesis in two
cases: if the proof is not conducted in the frame of this thesis, but rather done by some
colleague, or if the proof is simple and lacks interesting peculiarities. Almost for every
single definition, lemma, or theorem developed in the framework of this thesis we provide
a link to a formal theory in Isabelle in the Verisoft repository [97], i.e.,
Isabelle: ModuleName/TheoryName.DefinitionName.
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Notation

Chapter

2

We denote the set of natural numbers including zero by N, the set of integers by Z, the
set of boolean values {T,F} by B, and the set of identifiers, e.g., variable names, by S.
We write 2t for the power set of t. We denote the maximum of two numbers m and n
by max(m,n) and the minimum by min(m,n). Let dnek be n divided by k and rounded
up:

dnek
def= (n+ k − 1)/k.

We denote the type of an abstract list with elements of type t as t∗. We write []
for an empty list, and by [x, y, . . .] we construct a list of particular elements. To obtain
a list of given length n where each element is equal to x we use the notation xn. For
concatenation of two lists xs and ys we write xs◦ys. The function |xs| returns the length
(number of elements) of the list xs. We extend the belongs to set notation ∈ for lists:
for an element x and a list xs we write x ∈ xs instead of ∃i : xs[i] = x. To filter a list xs
we use the notation [xxs : P (x)]. By such expression we obtain a new list which consists
only of those elements from the given list xs for which the predicate P holds.

We represent bits with the type Bit = {1, 0}. A list of several bits is a bit vector,
an instance of the type Bv = Bit∗. The leftmost bit is the most significant bit and the
rightmost bit is the least significant bit.

For a bit vector w we denote by 〈w〉 the conversion to the natural number with binary
representation w. For a natural number n we denote by bin(n) the conversion to the
binary representation of n. Similarly for the integers, [w] converts a bit vector w to an
integer with two’s complement representation w. Conversion to the two’s complement
representation of integer i is denoted by two(i).

Besides specific abstract data types we will define further in this thesis, we introduce
a general option type. It is used to extend the existing type with some error value ⊥.
For a particular type t we write t⊥ = t ∪ {⊥} to define such extended type. All
non-error values x ∈ t will be written as bxc ∈ t⊥.

We introduce the constant A to denote an undefined value.
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Basic Concepts

Chapter

3
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In this chapter we introduce the stack of computational models needed to define CVM
and its correctness criteria. Our starting point is a hardware model: in Section 3.1
we specify the model of VAMP ISA at the bottom of the stack and then abstract
it in Section 3.2 to the model of VAMP assembly. Section 3.3 defines the theory of
generic devices while in Section 3.4 we show how to combine devices systems with
processors. In the end, Section 3.5 describes the C0 programming language and its
small-step semantics. We do not present every single detail of VAMP ISA, devices, and
C0 models since they were not developed in the scope of this thesis. The reader should
consult theses of Beyer [19], Dalinger [27], and Tverdyshev [115] for the VAMP ISA
model, of Knapp [64] and Alkassar [5] for the devices model, and of Leinenbach [66]
and Petrova [93] for C0. Note that in this chapter we do not introduce simulation
relations connecting all presented computational layers. The appropriate relations as
well as simulation theorems are introduced in Chapter 4.

3.1 VAMP Instruction Set Architecture

In this section we introduce the computation model of the VAMP instruction set architec-
ture (ISA). VAMP ISA is based on DLX ISA, a RISC processor architecture designed by
Hennessy and Patterson [47]. Essentially, DLX is a cleaned and simplified 32-bit MIPS
architecture [61]. The hardware platform of Verisoft, the VAMP processor [20], imple-
ments the DLX instruction set. However, the VAMP ISA model is significantly more
complex than classical DLX. For instance, it features mechanisms for operating-system
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support: user and system mode, and address translation in user mode for virtual mem-
ory support. The formal specification of VAMP ISA has been originally conducted in
PVS by Beyer [19] and Dalinger [27]. It was consecutively translated into Isabelle/HOL
by Tverdyshev [115] who also applied several automated proof techniques in order to
optimize size of proof scripts.

3.1.1 Preliminaries

The predicate Bvn

√
(w) indicates that the bit vector w is of length n:

Bvn

√
(w) def= |w| = n.

For a bit vector w the function

fill0(w) def= 032−|w| ◦ w

extends w to the length of 32 with leading zeros. The sign extension of w up to the
length of 32 with (copies of) the most significant bit is defined as follows:

sxt(w) def=

{
032 if w = []
b32−|w′| ◦ w′ if w = b ◦ w′

.

The addition of bit vectors a and b modulo 2n is defined as:

a+n b
def= fill0(bin(〈a〉+ 〈b〉 mod 2n)).

Register Files

Registers are modeled as bit vectors. 32 registers form a register file. We model register
files as mappings from bit vectors to bit vectors:

RegfISA

def= Bv 7→ Bv.

For a register file r :: RegfISA the predicate

RegfISA

√
(r) def= ∀ i : Bv5

√
(i) −→ Bv32

√
(r(i))

indicates whether r has the appropriate size.

Memories

Due to potential extensions to double-word floating-point instructions memories are
modeled as mappings from bit vectors to pairs of bit vectors:

MemISA
def= Bv 7→ (Bv× Bv).

For a double-word (a pair of bit vectors) ww we denote the higher bit vector as ww.high
and the lower one as ww.low. For a memory m :: MemISA the predicate

MemISA

√
(m) def= ∀ a : Bv29

√
(a) −→ Bv32

√
(m(a).high) ∧ Bv32

√
(m(a).low)

indicates whether m has the appropriate size. For a 32 bit-vector address a we retrieve
a single word from the double-word addressable memory using the following notation:

mword(a) def=

{
m(a[31 : 3]).high if a[2] = 1
m(a[31 : 3]).low otherwise

.
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Table 3.1: Indices of ISA special purpose registers.

Bin. index Dec. index Alias Name
00000 0 sr Status register
00001 1 esr Exceptional status register
00010 2 eca Exceptional cause
00011 3 epc Exceptional program counter
00100 4 edpc Exceptional delayed program counter
00101 5 edata Exceptional data
01001 9 pto Page table origin
01010 10 ptl Page table length
01011 11 emode Exceptional mode
10000 16 mode Mode

3.1.2 Configurations

Configurations of the VAMP ISA model are defined as the record type CISA. An instance
cISA has the following components:

• the normal cISA.pc :: Bv and delayed cISA.dpc :: Bv program counters used to
specify the delayed branch mechanism (cf. Chapter 4 of [79]),

• the general purpose register file cISA.gpr :: RegfISA and the special purpose register
file cISA.spr :: RegfISA, and

• the memory cISA.m :: MemISA.

We will also call VAMP ISA configurations VAMP ISA machines.
According to the DLX computational model the general purpose register zero always

contains the zero value. In order to maintain this property we define the read and write
functions over the GPR file.

Definition 3.1 (ISA GPR read) Reading from an ISA general purpose register file
r :: RegfISA at an index i :: Bv is done with the function

gpr-readISA(r, i) def=

{
032 if i = 032

r(i) otherwise
.

Isabelle: VAMPasm2isaSystem/equivalence.GPRs read

The special purpose register file contains registers needed to process interrupts and
registers used for virtual memory support. In the specification of ISA considered in this
thesis not all of the 32 special purpose registers are used. Some of the special registers
are just reserved for further possible extensions, e.g., an integration of a floating point
unit. Table 3.1 defines the set sprsISA :: 2Bv of special purpose register binary indices
which we use.

Definition 3.2 (ISA SPR read) Reading from an ISA special purpose register file
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r :: RegfISA at an index i :: Bv is done with the function

spr-readISA(r, i) def=

{
r(i) if i ∈ sprsISA

032 otherwise
.

Isabelle: VAMPasm2isaSystem/equivalence.SPRs read

In order to express the well-formedness of ISA configurations we introduce the fol-
lowing predicate.

Definition 3.3 (Valid ISA configuration) Let cISA be an instruction set architecture
model configuration. The predicate

isa
√

(cISA) def= Bv32

√
(cISA.pc)

∧ Bv32

√
(cISA.dpc)

∧ RegfISA

√
(cISA.gpr)

∧ RegfISA

√
(cISA.gpr)

∧ MemISA

√
(cISA.m)

states the validity requirements on cISA.
Isabelle: VAMPasm2isaSystem/config correct.is dlx conft

3.1.3 Instructions

VAMP supports a variety of instructions for (i) memory, data transfer and control oper-
ations, (ii) arithmetic, logical, test, set and shift operations, and (iii) special operations
for systems calls and return from exception. Table 3.2 depicts supported VAMP instruc-
tions.

Next, we sketch the predicates defined for specification of the instruction encoding.
For complete definitions cf. [79] [91]. The instruction executed in configuration cISA,
denoted by iw(cISA), is the memory word addressed by the delayed program counter.
The six higher-order bits of the instruction word define the operation code (opcode):

opc(cISA) def= iw(cISA)[31 : 26].

VAMP instructions are grouped in three types.The instruction type defines how
the instruction part outside the opcode is interpreted (cf. Figure 3.1). The predi-
cates is-rtype(cISA), is-itype(cISA), and is-jtype(cISA) denote the type of the instruction
iw(cISA).

We define the functions for extraction of individual instruction fields, e.g., the im-
mediate constant is retrieved as

imm(cISA) def=


sxt(iw(cISA)[15 : 0]) if is-itype(cISA)
fill0(iw(cISA)[10 : 6]) if is-rtype(cISA)
sxt(iw(cISA)[25 : 0]) if is-jtype(cISA)
032 otherwise

.

Depending on the instruction type, instruction word fields for destination (rd) and source
registers (rs1 and rs2) have different positions. The functions for retrieving these com-
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Table 3.2: Supported VAMP assembly instructions.

Data transfer Arithmetic Logical Shift
lb (rd, rs, imm) addio(rd, rs, imm) andi(rd, rs, imm) slli(rd, rs, sa)
lh (rd, rs, imm) addi (rd, rs, imm) ori (rd, rs, imm) srli(rd, rs, sa)
lw (rd, rs, imm) subio(rd, rs, imm) xori(rd, rs, imm) srai(rd, rs, sa)
lbu(rd, rs, imm) subi (rd, rs, imm) lhgi(rd, imm) sll (rd, rs1, rs2)
lhu(rd, rs, imm) addo (rd, rs1, rs2) and (rd, rs1, rs2) srl (rd, rs1, rs2)
sb (rd, rs, imm) add (rd, rs1, rs2) or (rd, rs1, rs2) sra (rd, rs1, rs2)
sh (rd, rs, imm) subo (rd, rs1, rs2) xor (rd, rs1, rs2)
sw (rd, rs, imm) sub (rd, rs1, rs2) lhg (rd, rs)
Test Control Special move
clri(rd) clr(rd) beqz(rs, imm) movs2i(rd, sa)
sgri(rd, rs, imm) sgr(rd, rs1, rs2) bnez(rs, imm) movi2s(sa, rs)
seqi(rd, rs, imm) seq(rd, rs1, rs2) jr (rs)
sgei(rd, rs, imm) sge(rd, rs1, rs2) jalr(rs)
slsi(rd, rs, imm) sls(rd, rs1, rs2) j (imm)
snei(rd, rs, imm) sne(rd, rs1, rs2) jal (imm)
slei(rd, rs, imm) sle(rd, rs1, rs2) trap(imm)
seti(rd) set(rd) rfe

J-type

R-type

I-type

31 026 25

31 026 25

31 026 25

21 20 15 16

21 20 15 16

11 10 6 5

opcode

opcode

opcode

rs1

rs1 rd imm16

rs2 rd sa function

imm26

Figure 3.1: Instruction formats of the DLX computational model.

ponents define also case distinctions, for instance the destination operand is

rd(cISA) def=


iw(cISA)[20 : 16] if is-itype(cISA)
iw(cISA)[15 : 11] if is-rtype(cISA)
05 otherwise

.

Instruction decoding is formalized by predicates on iw(cISA). For instance, we state
that the current instruction is trap by means of the predicate

is-iw-trap(cISA) def= opc(cISA) = 111110.

In the same fashion predicates for all other instructions are defined. Moreover, we define
group predicates, e.g., is-iw-alu which holds for all arithmetic and logical instructions, or
is-iw-mem which holds if the current instruction is some kind of load or store operation.
In the same manner only write access is denoted by is-iw-write. The predicates is-iw-byte
and is-iw-word group memory instructions according to the access width.

29



3.1.4 Semantics

The semantics of execution without interrupt is given by the transition function δwoi
ISA ::

CISA 7→ CISA which yields for a configuration cISA the next state c′ISA = δwoi
ISA(cISA).

The definition of δwoi
ISA splits cases depending on the instruction to be executed. We will

specify the case for executing the load word instruction. For the remaining cases cf. [91].
The effective address ea(cISA) of load/store instructions is computed as the sum of the

content of the general purpose register with index rs1 and the immediate field imm(cISA).
The addition is done modulo 232 with two’s complement arithmetic:

ea(cISA) def= gpr-readISA(cISA.gpr, rs1(cISA)) +32 imm(cISA).

The decisive effect of the load word instruction is that the general purpose register
addressed by rd(cISA) is updated with the memory word read at the effective address
ea(cISA)1:

c′ISA.gpr(rd(cISA)) = cISA.mword(ea(cISA)).

The semantics distinguishes two execution modes: system, which is defined as

is-sys-modeISA(cISA) def= cISA.spr(mode) = 032,

and user, defined as

is-user-modeISA(cISA) def= cISA.spr(mode) = 031 ◦ 1.

An execution mode defines visibility rules for special purpose registers: in user mode
it is forbidden to read and write them. Therefore the semantics of the movi2s and
movs2i instructions is defined only in system mode. Further, the return from exception
instruction is not allowed in user mode. Moreover, a memory access is subject to address
translation in user mode. Hence, the semantics of load/store instructions uses a trans-
lated effective address and all instructions are fetched at translated delayed program
counter.

3.1.5 Address Translation

In user mode all addresses for instruction fetch as well as for load/store operations are
translated with the help of two special purpose registers pto and ptl.

The virtual address space is divided into pages of size PAGE SIZE
def= 212 bytes. Each

virtual address va is split into a virtual page index va[31 : 12] and a byte index va[11 : 0]
which is an offset within the page. The main data structure for address translation is
the page table which resides in the processor memory. The page table origin register
and the virtual page index specify one page table entry. Formally, the page table entry
in configuration cISA for a virtual address va is:

pteISA(cISA, va) def= cISA.mword(cISA.spr(pto)[19 : 0] ◦ 012 +32 va[31 : 12] ◦ 02)

Each page table entry pte contains the physical page index pte[31 : 12]. It also contains
the following information: (i) the valid bit pte[11] which denotes whether the page resides
in the physical memory, (ii) the protection bit pte[10] which denotes whether the page is

1The real semantics is more involved but for the load word instruction it boils down to a simple
formula.
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allowed to be written, and (iii) the execution bit pte[9] which denotes whether the page
contains executable code.

A physical page index combined with a byte index yields the complete physical
address. Formally, the translated address is:

paISA(cISA, va) def= pteISA(cISA, va)[31 : 12] ◦ va[11 : 0]

The page table length register is used to specify the amount of allocated virtual
memory. In case the virtual address does not belong to the user memory address trans-
lation results in a page table length exception. Formally, in configuration cISA the page
table length exception for a virtual address va is:

ptl-excpISA(cISA, va) def= 〈va[31 : 12]〉 > 〈cISA.spr(ptl)[19 : 0]〉

There are some situations when the translated address should not be used, either
because invalid data was used for the translation, or processor must forbid the attempted
operation at this address. This happens if the memory which stores an instruction is
not tagged as executable, or protected memory is accessed for writing, or even the
page containing this address is not present in the physical memory. The next predicate
tests whether a problem occurs during address translation of a virtual address va in the
configuration cISA. Note that the flag is-mw indicates memory write access and the flag
is-fetch indicates instruction fetch:

transl-excpISA(cISA, va, is-mw, is-fetch) def= ptl-excpISA(cISA, va)
∨ is-fetch ∧ pteISA(cISA, va)[9] = 0
∨ is-mw ∧ pteISA(cISA, va)[10] = 1
∨ pteISA(cISA, va)[11] = 0.

3.1.6 Interrupts

Computations of the VAMP ISA semantics could be broken by interrupt signals which
might be internal or external. An example of an internal interrupt is an illegal instruc-
tion. The external interrupts are reset and those that are generated by external devices.
The interrupts are numbered with indices from 0 to 31. The interrupts are classified ac-
cording to the following criteria: (i) maskable or not maskabale, (ii) internal or external,
and (iii) of repeat, continue, or abort type. Maskable interrupts can be ignored under
software control. If an interrupts signal arrives during execution of some instruction i
and it is of repeat type then the instruction i is repeated when the program execution
is resumed. If the interrupt is a continue interrupt then the instruction that follows i in
the program is executed after the interrupt handling. In the remaining case the program
execution is aborted.

Table 3.3 depicts interrupts supported by the VAMP ISA model. The illegal instruc-
tion interrupt is-ill(cISA) occurs if the bit pattern of the instruction word iw(cISA) does
not match any defined VAMP instruction, denoted by is-illegal(cISA), or if in user mode
one of the three forbidden instructions are attempted to be executed:

is-ill(cISA) def= is-illegal(cISA)
∨ is-user-modeISA(cISA) ∧

( is-iw-rfe(cISA)
∨ is-iw-movi2s(cISA)
∨ is-iw-movs2i(cISA))
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Table 3.3: Interrupts of the VAMP ISA model.

Index Name Meaning Maskable External Type
0 reset Reset No Yes Abort
1 ill Illegal instruction No No Abort
2 mal Misaligned access No No Abort
3 pff Page fault on fetch No No Repeat
4 pfls Page fault on load/store No No Repeat
5 trap Trap / System call No No Continue
6 ovf Overflow Yes No Continue
12..31 eev[j] Device interrupts Yes Yes Continue

The misaligned access exception is-mal(cISA) is raised if the memory-access width does
not match (i) the low-order bits of the effective address ea(cISA) (is-dmal(cISA)), or
(ii) the delayed program counter in case of instruction fetch (is-imal(cISA)):

is-mal(cISA) def= is-imal(cISA) ∨ is-dmal(cISA),

is-imal(cISA) def= cISA.dpc[1] = 1 ∨ cISA.dpc[0] = 1,

is-dmal(cISA) def= is-iw-mem(cISA) ∧ ( ¬is-iw-byte(cISA) ∧ ea(cISA)[0] = 1
∨ is-iw-word(cISA) ∧ ea(cISA)[1] = 1).

The page fault on fetch (equivalently, instruction page fault) interrupt is raised in the
user mode whenever the translation of the fetch address cannot be done:

is-pff(cISA) def= ¬is-imal(cISA)
∧ is-user-modeISA(cISA)
∧ transl-excpISA(cISA, cISA.dpc,F,T).

The page fault on load/store (equivalently, data page fault) is similar to the page fault
on fetch, but here the effective address of the load/store instruction is examined:

is-pfls(cISA) def= ¬is-dmal(cISA)
∧ is-user-modeISA(cISA)
∧ is-iw-mem(cISA)
∧ transl-excpISA(cISA, ea(cISA), is-iw-write(cISA),F).

The trap interrupt, denoted by is-trap(cISA), occurs if the special instruction trap is
executed: is-iw-trap(cISA). It provides means for the system call mechanism.
The overflow interrupt, denoted by the predicate is-ovf(cISA), is raised if (i) neither
instruction misalignment nor page fault on fetch occur, (ii) an arithmetic instruction
takes place, and (iii) the overflow bit of the ALU output is on:

is-ovf(cISA) def= ¬is-imal(cISA)
∧ ¬is-pff(cISA)
∧ is-iw-alu(cISA)
∧ ALU(cISA).ovf = 1.

32



Here ALU is the function specifying the arithmetic-logical unit, and its component
ovf :: Bit is set in case of an overflow during the instructions addio, subio, addo, and
subo.

It is defined only by the configuration cISA which of the internal interrupts occur in
the current configuration. Conversely, external interrupts are modeled as an external
input eev :: Bv of length 19. It is a parameter to the next-state function of VAMP ISA:

δISA :: CISA × Bv 7→ CISA,
c′ISA = δISA(cISA, eev).

Interrupt signals raised in the configuration cISA are collected in the cause register
ca(cISA, eev).

ca(cISA, eev) def= eev ◦ 06 ◦ [bool2bit(is-ovf(cISA)), bool2bit(is-trap(cISA)),
bool2bit(is-pfls(cISA)), bool2bit(is-pff(cISA)),
bool2bit(is-mal(cISA)), bool2bit(is-ill(cISA)), 0].

Here, bool2bit :: B 7→ Bit defines a trivial conversion from booleans to bits:

bool2bit(b) def=

{
1 if b = T

0 if b = F
.

The masked cause vector is computed as a bitwise conjunction of ca(cISA, eev) with
the mask stored in the status register cISA.spr(sr). If interrupt i is maskable and
cISA.spr(sr)[i] = 0 then bit i is masked out:

mca(cISA, eev)[i] =

{
0 if i is maskable ∧ cISA.spr(sr)[i] = 0
ca(cISA, eev)[i] otherwise

.

If at least one bit of mca(cISA, eev) is on the jump to interrupt service routine (JISR)
signal is activated:

jisr(cISA, eev) def= ∃ i : mca(cISA, eev)[i] = 1.

In case JISR is not activated we continue with uninterrupted transition:

c′ISA = δwoi
ISA(cISA).

Otherwise, if the lowest raised interrupt is of continue type then the instruction is
executed, which leads to state ĉISA:

ĉISA =

{
δwoi
ISA(cISA) if continue interrupt
cISA otherwise

.

Afterwards, the program counters are set to the start address of the interrupt service
routine. We assume it starts at address 0:

c′ISA.dpc = 032,

c′ISA.pc = 03010.
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The exceptional versions of program counters and the status and mode registers are
assigned their normal versions:

c′ISA.spr(edpc) = ĉISA.dpc,
c′ISA.spr(epc) = ĉISA.pc,
c′ISA.spr(esr) = ĉISA.spr(sr),
c′ISA.spr(emode) = cISA.spr(mode).

Register eca is set to the masked interrupt cause:

c′ISA.spr(eca) = mca(cISA, eev).

Register edata stores the data needed for interrupt handling:

c′ISA.spr(edata) = edata(cISA) =


cISA.dpc if is-imal(cISA) ∨ is-pff(cISA)
imm(cISA) if is-iw-trap(cISA)
ea(cISA) if is-iw-mem(cISA)
A otherwise

.

Finally, the mode and the status registers are set to zero:

c′ISA.spr(mode) = 032,

c′ISA.spr(sr) = 032,

which characterizes the system execution:

is-sys-execISA(cISA) def= cISA.spr(mode) = 032 ∧ cISA.spr(sr) = 032.

Execution of an interrupt service routine ends with the return from exception in-
struction rfe. According to its semantics the normal versions of registers pc, dpc, sr,
and mode are assigned their exceptional versions:

c′ISA.dpc = cISA.spr(edpc),
c′ISA.pc = cISA.spr(epc),
c′ISA.spr(sr) = cISA.spr(esr),
c′ISA.spr(mode) = cISA.spr(emode).

3.2 VAMP Assembly

Experience of Verisoft shows that reasoning about VAMP programs on the ISA level is
superfluously hard for a number of reasons. As a response to this problem we introduce
a convenient abstraction which we call the VAMP assembly. We start this section by
arguing why it is uncomfortable to work with VAMP programs on the ISA level. Next, we
introduce high-level types for representing registers and memories. Using these types we
define configurations and semantics of the VAMP assembly model. Finally, we introduce
a notion of VAMP assembly programs. Note, that correctness of the VAMP assembly
model is justified in Section 4.1 by the simulation theorem towards VAMP ISA.
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3.2.1 Motivation

There are four main peculiarities of the VAMP ISA model that make arguing about
programs unnecessarily hard:

• bit-vector encoding of instructions,

• bit-vector representation of operands and program counters,

• unwanted interrupts, and

• low-level specification of functional units close to their implementations.

As instructions are represented by bit vectors in the VAMP ISA model, a quite com-
plex instruction-decoding scheme is involved. This results in unwanted tedious proofs
for extracting and decoding instruction mnemonics, source and destination registers, as
well as an immediate constant. In the VAMP assembly model we represent instructions
with an abstract data type, such that each instruction is modeled by means of its own
inductive constructor. Source registers, destination registers, and immediate constants
are passed as numerical parameters to these constructors.

Since programs are usually intended to perform computations with numbers it is
quite inconvenient to deal with operands represented as bit vectors, as it is done in the
VAMP ISA model. A convenient user-friendly specification of a computation claims its
result in a numerical form. Hence, reasoning about such computation involves endless
conversions — therefore, lots of undesirable proof steps — from bit vectors to natural and
integer numbers and vice versa. In the VAMP assembly model we represent operands,
registers and program counters with natural and integer numbers.

During verification of most of the programs it has to be shown that their executions
do not produce interrupts. At the VAMP ISA level we have to prove many conditions
in order to show that the program does not cause unwanted interrupts. The VAMP
assembly model is designed without interrupts and thus we get for free the absence of
interrupts in programs we verify.

Last but not least, the formal specification of the VAMP instruction set architec-
ture was conducted in Isabelle/HOL with an idea in mind to ease verification of the
VAMP processor, i.e., to simplify the proof that VAMP implements the VAMP ISA.
As a consequence specifications of functional units like shifters on the ISA level almost
coincide with their low-level, nearly imperative-style implementations. It turns out that
the simplicity of processor verification and the feasibly of reasoning about instruction
effects are quite orthogonal issues. Effective program verification requires clear high-
level declarative instruction semantics — therefore, definitions of functional units. We
resolve this question in the VAMP assembly model.

3.2.2 Data Representation

We represent register contents on the assembly level with 32-bit natural and integer
numbers. The following predicates introduce notions of VAMP assembly natural and
integer number, i.e., those that fit into 32 bits.
Definition 3.4 (VAMP assembly natural number) Let x be a natural number.
The predicate

N32
√

(x) def= x < 232

indicates whether x is representable with 32 bits.
Isabelle: VAMPasm/Types.asm nat
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Definition 3.5 (VAMP assembly integer number) Let x be an integer number.
The predicate

Z32
√

(x) def= −231 ≤ x < 231

indicates whether x is representable with 32 bits.
Isabelle: VAMPasm/Types.asm int

In a similar to the VAMP ISA model manner we define addition modulo n. For
natural numbers a and b we overload the notation +n as follows:

a+n b
def= a+ b mod 2n.

In order to stay consistent with the binary arithmetic of the underlying ISA model
we define conversion functions between integers and naturals. These functions simulate
numerically the conversion from integers to bit vectors and then to naturals and vice
versa.

Definition 3.6 (Conversion from integers to naturals) A 32-bit integer number i
is converted into a natural number by means of the function

i2n(i) def=

{
i+ 232 if i < 0
i otherwise

.

Isabelle: libisa/arith range.intwd as nat

Definition 3.7 (Conversion from naturals to integers) A 32-bit natural number
n is converted into an integer number by means of the function

n2i(n) def=

{
n− 232 if 231 ≤ n < 232

n otherwise
.

Isabelle: libisa/arith range.natwd as int

Register Files

Our observation shows that in Verisoft programs use integers more frequently. Therefore,
we decided to represent all registers except the program counters with integers. Register
files are represented therefore as lists of integers:

RegfASM

def= Z∗.

For a register file r :: RegfASM we define the well-formedness predicate that demands the
file length to be 32 and for each its item to be a VAMP assembly integer:

RegfASM

√
(r) def= |r| = 32 ∧ ∀ i < 32 : Z32

√
(r[i]).

Memories

On the assembly level we represent memories as mappings from naturals to integers:

MemASM
def= N 7→ Z.
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We suppose the memory to be word-addressable and thus each memory cell must repre-
sented with a VAMP assembly integer. In order to support this we define the following
read and write functions.

Definition 3.8 (Assembly memory read) Reading from an assembly memory m ::
MemASM at an address a :: Z is done with the function

mword(a) def= m(a/4).

Isabelle: VAMPasm/Memory.data mem read

Definition 3.9 (Assembly memory write) Writing to assembly memorym :: MemASM

at an address a :: Z is done with the function

mem-updateASM(m, a, data) = m′,

such that

m′(i) =

{
data if i = a/4
m(i) otherwise

.

Isabelle: VAMPasm/Memory.data mem write

Additionally we define a well-formedness predicate over an assembly memory m ::
MemASM:

MemASM

√
(m) def= ∀ a : N32

√
(a) −→ Z32

√
(mword(a)).

3.2.3 Configurations

Configurations cASM of an assembly machine are modeled with the record CASM which
has the following fields:

• the program counter pc :: N and the delayed program counter dpc :: N,

• the general purpose register file gpr :: RegfASM and the special purpose register file
spr :: RegfASM, and

• the memory m :: MemASM.

VAMP assembly configurations are also called VAMP assembly machines.
We define functions for reading both general and special purpose register files of

the VAMP assembly model in much the same way we define them for VAMP ISA (cf.
Definitions 3.1 and 3.2).

Definition 3.10 (Assembly GPR read) Reading from an assembly general purpose
register file r :: RegfASM at an index i :: N is done with the function

gpr-readASM(r, i) def=

{
0 if i = 0
r[i] otherwise

.

Isabelle: VAMPasm/Config.reg

Table 3.1 defines the set sprsASM :: 2N of special purpose register decimal indices
which we use in VAMP assembly model.
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Definition 3.11 (Assembly SPR read) Reading from an assembly special purpose
register file r :: RegfASM at an index i :: N is done with the function

spr-readASM(r, i) def=

{
r[i] if i ∈ sprsASM

0 otherwise
.

Isabelle: VAMPasm/Config.sreg

The well-formedness requirements over VAMP assembly configurations are stated by
means of the following predicate.

Definition 3.12 (Valid assembly configuration) Let cASM be an assembly model
configuration. The predicate

asm
√

(cASM) def= N32
√

(cASM.pc)
∧ N32

√
(cASM.dpc)

∧ RegfASM

√
(cASM.gpr)

∧ RegfASM

√
(cASM.spr)

∧ MemASM

√
(cASM.m)

states the validity requirements on cASM.
Isabelle: VAMPasm/Config.is ASMcore

3.2.4 Execution modes

In contrast to ISA in assembly model we do not have a mechanism to switch between
the modes (since interrupts are not visible). We use the mode to allow/forbid the special
move instructions. The system mode definition follows the one from the ISA model.

is-sys-modeASM(cASM) def= cASM.spr[mode] = 0.

A further distinctive feature of system-mode executions is that all interrupts are masked
out, denoted by an empty status register:

is-sys-execASM(cASM) def= cASM.spr[mode] = 0 ∧ cASM.spr[sr] = 0.

3.2.5 Instructions

We model VAMP instructions on the assembly level with the inductive data type Instr.
Its constructors have names of instruction mnemonics from Table 3.2 Since register and
immediate fields of an instruction instr are formally modeled by unbounded numbers,
we introduce the instruction validity predicate

instr
√

:: Instr 7→ B

which bounds the fields to the appropriate lengths. We omit the formal definition here
because is straightforward and rather voluminous — the reader can consult the definition
VAMPasm/Instr.is instr in Isabelle/HOL.
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Parameters to the constructor of an instruction instr like source and destination
registers or an immediate constant are obtained like rs1(instr), rd(instr), imm(instr),
etc.

Since memory cells are modeled as integers we need a way to convert integers to
instructions. This is done by the function

int-to-instr :: Z 7→ Instr.

First, this function decomposes its argument into the opcode, register, and immediate
fields. Then it makes a case split on the opcode, determines the appropriate constructor
of the data type Instr, and supplements it with register and immediate parts. However,
this simple idea is implemented with tens of lines in Isabelle/HOL in the definition
VAMPasm/Instr convert.int to instr.

Since it is not possible to convert every integer to an instruction we use the predicate

decodable :: Z 7→ B,
which tests whether an integer could be converted to an instruction.

Additionally, we define the function

instr-to-int :: Instr 7→ Z

to perform the conversion in other direction.
The current instruction to be executed in an assembly configuration cASM is obtained

through the function

instr(cASM) def= int-to-instr(cASM.mword(cASM.dpc)).

As in ISA, we introduce the predicates over instructions to determine what instruc-
tion or group of instructions it corresponds to. It is done for each instruction constructor,
e.g., is-instr-trap, or for a group, like is-ls for all memory access instructions, or is-store
only for memory write access. We distinguish also between memory accesses of different
width: is-ls-w for the whole word, or is-ls-hw only for the half.

3.2.6 Semantics

The effect of a single instruction execution on the assembly configuration is defined by
the function

execinstr :: CASM × Instr 7→ CASM.

The function execinstr(cASM, instr) is defined in Isabelle/HOL under VAMPasm/Exec.exec instr

by structural induction on the constructor type of instr and yields an updated assembly
configuration c′ASM. Definitions of each induction case use a number of common auxiliary
functions. Next, we define these auxiliary functions for (i) arithmetic, logical, shift, and
constant load operations — we call this group arithmetic instructions, (ii) test and set
operation — this group is named comparison instructions, (iii) instructions for load, and
(iv) store instructions. All functions from these group increment the program counter
by 4 and hence their effect comprises:

c′ASM.dpc = cASM.pc,
c′ASM.pc = cASM.pc +32 4.

Arithmetic, comparison and load instruction change the general purpose register file
of the assembly configuration while store instructions change its memory. All other
components of c′ASM stay equal to those of cASM.
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Arithmetic Instructions

Execution of arithmetic instructions is modeled by the function

execarith :: CASM × (Z× Z 7→ Z)× Z× Z× N 7→ CASM,

execarith(cASM, f, op1, op2, dst) = c′ASM,

which writes the result of the application of the arithmetic function f to operands op1

and op2 into the general purpose register with index dst:

c′ASM.gpr[i] =

{
f(op1, op2) if i = dst
cASM.gpr[i] otherwise

.

In the induction cases of the definition of execinstr where we use execarith we substitute
an appropriate arithmetic operation for f , e.g., the case of the definition for the addition
instruction add is as follows:

execinstr(cASM, add(rd, rs1, rs2)) def= execarith(cASM,

int-plus,
gpr-readASM(cASM.gpr, rs1),
gpr-readASM(cASM.gpr, rs2),
rd),

with int-plus(x, y) = n2i(i2n(x) +32 i2n(y)).

Comparison Instructions

Execution of comparison instructions is defined by the function

execcomp :: CASM × (Z× Z 7→ B)× Z× Z× N 7→ CASM,

execcomp(cASM,
?◦, op1, op2, dst) = c′ASM,

which writes one to the destination general purpose register in case op1

?◦ op2 evaluates
to true and zero otherwise:

c′ASM.gpr[i] =


1 if op1

?◦ op2 ∧ i = dst

0 if ¬(op1

?◦ op2) ∧ i = dst
cASM.gpr[i] otherwise

.

An appropriate comparison predicate is substituted for p? in the induction cases of
the execinstr definition where we use execcomp. For instance the induction case for the
equality test performed by the instruction seq is defined as:

execinstr(cASM, seq(rd, rs1, rs2)) def= execcomp(cASM,

=,
gpr-readASM(cASM.gpr, rs1),
gpr-readASM(cASM.gpr, rs2),
rd).
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example a

offset: a mod 4 = 1
width: w = 2

res

28·(a mod 4) = 28

28·w = 216

example b

offset: a mod 4 = 0
width: w = 1

res

28·(a mod 4) = 20

28·w = 28

memory word mword (a)
splitted in bytes

Figure 3.2: Examples of conversions for data load.

Load Instructions

In order to model load instruction we define the following function:

execload :: CASM × (Bv 7→ Bv)× N× N× N 7→ CASM,

execload(cASM, xtf, a, w, dst) = c′ASM.

It writes the content of the memory at the address a into the general purpose register
indexed by dst. The function is parametrized by (i) the width of memory access w
which can be either 1, 2, or 4 corresponding to byte, half-word, and word access, and
(ii) the sign-extension function xtf which is subject to instantiation either by sxt or fill0
representing signed and unsigned memory operations. We formalize all kinds of load
operations to assembly memory with the following function.

Definition 3.13 (Assembly load) Reading of w bytes from an assembly memory m
at an address a with respect to a sign-extension function xtf is done by means of the
function

loadASM :: MemASM × N× N× (Bv 7→ Bv) 7→ Z.

First, we extract the needed data from the memory word (cf. Figure 3.2)

res =
i2n(mword(a))

28·(a mod 4)
mod 28·w.

Further, we extend it with the given function, preliminary adding the leading zeros up
to the length 8 · w:

loadASM(m, a,w, xtf) def= [xtf(08·w−|bin(res)| ◦ bin(res))]

Isabelle: VAMPasm/Exec.load from mem

Our motivation to do the extension of the result twice (first with zeros and then with
the given extension function) is that the binary representation bin(res) is a bit vector of
minimal length which is enough to encode the number. The length of bin(res) is possibly
less than 8 · w and the most significant bit is always 1. Hence, the sign extension of
the binary representation might lead to a result which differs from the one obtained by
performing analogous manipulations on bit vectors.
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example a

offset: a mod 4 = 0
width: w = 4

mid

28·w = 232

high low

28·((a mod 4)+w) = 232 28·(a mod 4) = 20

example b

offset: a mod 4 = 1
width: w = 1

mid

28·w = 28

high low

28·(a mod 4) = 28
28·((a mod 4)+w) = 216

memory word mword (a)
splitted in bytes

new data word v
splitted in bytes

Figure 3.3: Examples conversions for data store.

In the formal definition of execload we proceed with memory read, and write result
into the register file:

c′ASM.gpr[i] =

{
loadASM(cASM.m, a, w, xtf) if i = dst
cASM.gpr[i] otherwise

.

Having this definition we can specify, for instance, the induction case of execinstr for
loading a word from the memory by means of the instruction lw:

execinstr(cASM, lw(rd, rs, imm)) def= execload(cASM, sxt, ls-target(cASM), 4, rd).

In general, the case of “4” is computed by the function ls-width(cASM) for all load
and store instructions. The function ls-target computes effective address for memory
operations (load and store) under the condition that the current instruction is a memory
access instruction with the source register rs and immediate constant imm:

ls-target(cASM) def=
i2n(gpr-readASM(cASM.gpr, rs(instr(cASM)))) +32 i2n(imm(instr(cASM))).

Store Instructions

Semantics of store instructions is defined by the function

execstore :: CASM × N× N× N 7→ CASM,

execstore(cASM, a, w, src) = c′ASM,

which stores w bytes of the data from a general purpose register src in the memory of
the assembly machine at the address a. Likewise load operations, we formalize store
operations with the following definition.

Definition 3.14 (Assembly store) Writing of w lowest bytes from a value v into an
assembly memory m at an address a is done by means of the function

storeASM :: MemASM × N× N× Z 7→ MemASM.
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In the formal definition we first compute the part of the number to be written

mid = (i2n(v) mod 28·w) · 28·(a mod 4).

Then, we read the value from the memory at the address we are writing to and cut the
lower and higher parts that should be ignored (cf. Figure 3.3):

high =
i2n(mword(a))

28·((a mod 4)+w)
· 28·((a mod 4)+w),

low = i2n(mword(a)) mod 28·(a mod 4).

At the end we combine all three parts and write the result into the memory:

storeASM(m, a,w, v) def= mem-updateASM(m, a,n2i(high +32 mid +32 low)).

Isabelle: VAMPasm/Exec.store to mem

The updated assembly configuration c′ASM returned by the function execstore com-
prises the memory defined as follows:

c′ASM.m = storeASM(cASM.m, a, w, gpr-readASM(cASM.gpr, src)).

After all, induction cases for store instruction in the definition of execinstr make use
of execstore. For instance, effect of the store byte instruction sb is given as

execinstr(cASM, sb(rd, rs, imm)) def= execstore(cASM, ls-target(cASM), 1, rd).

Special and Control Instructions

Semantics of the remaining VAMP instructions — special and control instructions — is
defined directly in execinstr.

Instruction for exchanging values of special and general purpose registers movi2s and
movs2i are allowed only in the system mode. Then, the semantics of these instructions
is defined as follows2:

execinstr(cISA, movs2i(rd, sa)) def=

{
cISA if ¬is-sys-modeASM(cISA)
c′ISA otherwise

,

where program counters are incremented in the same way as described for all previous
instructions and

c′ASM.gpr[i] =

{
spr-readASM(cASM.spr[sa]) if i = rd
cASM.gpr[i] otherwise

.

As movi2s transfers values in opposite direction, i.e., from general to special purpose
registers, its definition simply swaps gpr and spr.

The trap instruction only increments the program counter by four and stores its old
value in the delayed program counter. The rfe instruction does not affect the VAMP
assembly configuration.

2In Isabelle/HOL theories indices of special purpose registers for integration of a floating point unit
are defined: the rounding mode register RM, the IEEE flags register IEEEf:, and the floating point
condition code FCC. It is allowed to access these registers in user mode.
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The jump instruction j saves the program counter into the delayed one and adds an
immediate to pc:

execinstr(cASM, j(imm)) def= c′ASM,

c′ASM.dpc = cASM.pc,
c′ASM.pc = cASM.pc +32 i2n(imm).

The jump-and-link instruction jal additionally saves the program counter value in-
creased by four in the general purpose register 32: the formal definition of

execinstr(cASM, jal(imm)) def= c′ASM

includes

c′ASM.gpr[i] =

{
n2i(cASM.pc +32 4) if i = 31
cASM.gpr[i] otherwise

.

Semantics of jump register jr and jump-and-link register instructions jar coincide
with those of j and jal, respectively, with the only difference that the program counter
is assigned the value of general purpose register at index rs, a parameter to jr and jar:

c′ASM.pc = i2n(gpr-readASM(cASM.gpr, rs)).

The branch-on-zero instruction beqz takes a look in the source general purpose reg-
ister and adds an immediate constant to the program counter in case the former stores
a zero value, or simply 4 otherwise:

execinstr(cASM, beqz(rs, imm)) def= c′ASM,

c′ASM.dpc = cASM.pc,

c′ASM.pc =

{
cASM.pc +32 i2n(imm) if gpr-readASM(cASM.gpr, rs)
cASM.pc +32 4 otherwise

.

The definition of the branch-on-non-zero instruction bnez only swaps cases in the case
distinction.

The formal definition of execinstr in Isabelle/HOL is VAMPasm/Exec.exec instr.

Transition Function

Executions of the assembly model are modeled by the transition function δASM :: CASM 7→
CASM. The function δASM(cASM) executes the current instruction with the function
execinstr:

δASM(cASM) def= execinstr(cASM, instr(cASM)).

Several steps of the assembly machine are done by the function δnASM, which is defined
by induction on n:

δ0
ASM(cASM) = cASM,

δn+1
ASM(cASM) = δnASM(δASM(cASM)).
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3.2.7 Assembly Programs

Assembly semantics models computations of assembly programs. We represent them as
lists of assembly instructions: an assembly program is an instance of the type

ΠASM
def= Instr∗.

An assembly memory region can be interpreted as an assembly program. Let us
denote the list of n integers which resides in an assembly memory m starting at an
address a by

get-data(m, a, len) def= [m(a/4),m(a/4 + 1), . . . ,m(a/4 + n− 1)].

Having this notation, we define the function that retrieves an assembly program from
the memory.

Definition 3.15 (Retrieving an assembly program) The program of the length
len :: N is retrieved from an assembly memory m :: MemASM starting from an address
a :: N by means of the function

get-π(m, a, len) def= π

with
π[i] = int-to-instr(get-data(m, a, len)[i]).

Isabelle: VAMPasm/Memory.get instr list

We call a region of the memory decodable if values of its each memory cell could be
converted to instructions:

decodable-π(data) def= ∀ i < |data| : decodable(data[i]).

Lemma 3.16 (Validity of assembly programs) Instructions obtained in a decodable
region from a valid memory are valid:

MemASM

√
(m) ∧ decodable-π(get-data(m, a, len))

−→ ∀ i < len : instr
√

(get-π(m, a, len)[i]).

Isabelle: VAMPasm/Instr convert.decodable imp is instr

3.3 Devices

This section introduces the devices model used in the thesis. We start by sketching a
generic device model and later illustrate by the hard disk example how this model can
be instantiated with concrete devices. We show how several devices are organized in a
devices system. The reader should consult [64] for additional information on the devices
model in general, and [51] for a hard disk.

In Isabelle devices have outputs to the external environment. However, they are
irrelevant to the current work. Therefore, we omit these outputs throughout the thesis.
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3.3.1 Device Model

A device of type x is modeled as a finite transition system with configurations cx :: Cx
and a transition function δx. The step function takes the current state of the device
cx :: Cx, an input mifit :: Mifit from the memory interface of the processor, and an
input eifix :: Eifix from the external interface of a non-modeled external environment.
It returns a devices’ updated state c′x :: Cx and an output mifot :: Mifot to the memory
interface of the processor. Thus, the transition function has the following signature:

δx :: Cx ×Mifit × Eifix 7→ Cx ×Mifot.

The sets of inputs Eifix from the external environment are device-specific, while the
memory interfaces Mifit and Mifot depend only on the type t they are represented with.
Devices are accessed via (at most) 1024 word-sized ports.

Memory Interface

A memory interface between a processor and devices is specified by the memory interface
inputs mifit and the outputs mifot. The inputs are given by a processor to a device, and
the outputs are produced by a device for a processor.

The memory interface inputs mifit are represented by a record of type Mifit with
fields representation depending on the type t of the memory interface. The individual
fields of the record are:

• the read flag mifit.rd, which indicates a read operation on a device,

• the write flag mifit.wr, which indicates a write operation on a device,

• the access address mifit.a, and

• the word-sized data input mifit.din used for write accesses to a device.

We deal with two representations of the memory interface inputs. The natural repre-
sentation mifiN :: MifiN uses boolean values to represent the flags mifiN.rd,mifiN.wr :: B,
and naturals for the addresses and data input components mifiN.a,mifiN.din :: N. In
the bit-vector representation mifiBv :: MifiBv the flags are bits mifiBv.rd,mifiBv.wr :: Bit,
and the addresses and data inputs are bit vectors mifiBv.a,mifiBv.din :: Bv.

The following constants denote the idle memory interface input:

ε-mifiN
def= (F,F,A,A) :: MifiN,

ε-mifiBv
def= (0, 0,A,A) :: MifiBv.

The conversion from the bit-vector to the natural representation of memory interface
inputs is done by the function

mifi-bv-to-nat :: MifiBv 7→ MifiN

which yields the natural memory interface inputs mifiN = mifi-bv-to-nat(mifiBv):

mifiN.rd = (mifiBv.rd = 1),
mifiN.wr = (mifiBv.wr = 0),
mifiN.a = 〈mifiBv.a〉,
mifiN.din = 〈mifiBv.din〉.
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Table 3.4: Concrete devices and their aliases

Device name Alias
ATA/ATAPI hard disk HD
Timer TIMER
Automotive bus controller ABC
Network interface card (NE2000) NIC
Serial interface (UART16550A) UART

The memory interface output is a singleton, represented either as a natural mifoN ::
MifoN or a bit vector mifoBv :: MifoBv. We declare the constants ε-mifoN :: MifoN and
ε-mifoBv :: MifoBv to denote the idle memory interface output.

3.3.2 Concrete Devices

A device model can be instantiated with particular devices. In CVM we use five explicit
formal models of concrete devices. Table 3.4 depicts their names and aliases. Aliases
are written as subscript after an entity to denote that the entity is related to a par-
ticular device. For example, cTIMER :: CTIMER is a configuration of the timer, δTIMER

is its transition function, and eifiTIMER :: EifiTIMER is timer’s inputs from the external
environment, respectively. Since all devices are treated in exactly the same fashion we
will use only the model of a hard disk within this thesis. The details of the automotive
bus controller model are described in [6]. For the serial interface cf. [3]. The detailed
description of the hard-disk model can be found in [51].

Hard Disk

Next, we sketch details of the hard-disk model relevant for the thesis. We use the model
of the disk based on the ATA/ATAPI protocol. The hard disk is parameterized over the
number of sectors it has. Each sector has a size of WORDS PER SECTOR = 128 words. The
processor can issue read or write commands to a range of sectors, by writing the start
address and the count of sectors to a special port. Each sector is then read/written word
by word from/to a sector buffer. After a complete sector is read/written from/to the
sector buffer, the hard disk needs some time to transfer data to the sector memory. This
amount of time is modeled as non-determinism by an oracle input from the external
environment EifiHD

def= {1, 0}. The value eifihd = 1 indicates the end of the transfer.
Hard disk configurations cHD are represented by a record of type CHD. The record

comprises fields for modeling hard-disk internal functionality as well as contents stored
on the hard disk. For this thesis we are interested only in the three following fields of
the hard-disk record:

• the number of sectors cHD.s :: N which has to be less than or equal to MAX SECTORS =
228,

• the swap memory cHD.sm :: N∗ which represents the hard-disk content as a list of
natural numbers, and

• the control state cHD.cs :: {HD IDLE, HD BRD, HD BWR, HD PRD, HD PWR, HD ERR}.
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In the state HD IDLE the disk is ready to process new commands. Reading from
the disk starts in the state HD BRD by filling the disk buffer which is then read by the
processor when the disk is in the state HD PRD. Similarly, write commands visit the states
HD PWR and HD BWR. In case an invalid command is issued, the disk transits to the error
state HD ERR.

The well-formedness predicate over the hard disk state hd
√

(cHD) requires, among
others, that the length of the swap memory is defined by the number of sectors:

|cHD.sm| = cHD.s · WORDS PER SECTOR,

and that each cell of the swap memory is a valid VAMP assembly natural number:

∀ i < |cHD.sm| : N32
√

(cHD.sm[i]).

3.3.3 Generalized Devices

The concept of generalized devices allows us to deal with devices in a generic fashion,
i.e., without having knowledge about particular kinds of devices. Generalized devices
are represented by inductive data types, where each inductive constructor corresponds
to a certain device. As mentioned before we consider only the hard disk in the thesis,
however the concept is easily expendable to all devices from Table 3.4. To stress that
we will also refer to the timer in the definitions below.

Generalized Configurations

The generalized device configuration cGD is defined by the following inductive data type:

cGD :: CGD
def= dev-hd(CHD)
| dev-timer(CTIMER)
| · · ·
| idle-dev.

The constructor idle-dev is used to model an idle device which is used among others to
model an illegal device access.

In order to determine whether a generalized device configuration cGD corresponds to
a particular device configuration we use the following predicates:

is-dev-hd(cGD) = ∃ cHD : cGD = dev-hd(cHD),
is-dev-timer(cGD) = ∃ cTIMER : cGD = dev-timer(cTIMER),

· · ·
is-idle-dev(cGD) = cGD = idle-dev.

To extract a particular device configuration from a generalized device configuration
we use a function of the same name as the device extended with a prefix the-, e.g., for
the hard disk:

the-hd(dev-hd(cHD)) def= cHD.
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Generalized External Inputs

In the same fashion we define the generalized inputs from the external environment:

eifiGD :: EifiGD

def= eifi-hd(EifiHD)
| eifi-timer(EifiTIMER)
| · · ·
| idle-eifi.

The constructor idle-eifi is supposed to use at places where we speak about idle device
idle-dev.

The following predicates test whether a generalized input eifiGD correspond to a
particular device input:

is-eifi-hd(eifiGD) def= ∃ eifiHD : eifiGD = eifi-hd(eifiHD),

is-eifi-timer(eifiGD) def= ∃ eifiTIMER : eifiGD = eifi-timer(eifiTIMER),
· · ·

is-idle-eifi(eifiGD) def= eifiGD = idle-eifi.

Having a generalized device configuration cGD and a generalized input eifiGD from the
external environment we need to test whether the input is compatible with the device.
The following predicate is used for that:

is-eifi-match-dev(cGD, eifiGD) def= is-dev-hd(cGD) ∧ is-eifi-hd(eifiGD)
∨ is-dev-timer(cGD) ∧ is-eifi-timer(eifiGD)
∨ · · ·
∨ is-idle-dev(cGD) ∧ is-idle-eifi(eifiGD).

Next, we define generalized idle external inputs. Let ε-eifiHD be idle external inputs
for a hard disk, let ε-eifiTIMER be idle external inputs for a timer, and so on. The
function

ε-eifi :: CGD 7→ EifiGD

generates the generalized idle external inputs from a generalized device configuration
cGD:

ε-eifi(dev-hd(cHD)) def= eifi-hd(ε-eifiHD),

ε-eifi(dev-timer(cTIMER)) def= eifi-timer(ε-eifiTIMER),
· · ·

ε-eifi(idle-dev) def= idle-eifi.

Generalized Transitions

The transition function δGD of a generalized device takes a generalized device configu-
ration cGD :: CGD, a natural representation of the memory interface input mifiN :: MifiN,
and a generalized external input eifiDEV :: EifiDEV as arguments. It returns an updated
generalized device configuration c′GD :: CGD and a natural representation of the memory
interface output mifoN :: MifoN. Thus the signature of the transition function is:
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δGD :: CGD ×MifiN × EifiDEV 7→ CGD ×MifoN.

We define the generalized transition inductively on the generalized external inputs
and the generalized device configuration. In case the input is compatible with the device,
we apply the step function for that device. Otherwise, the idle device is returned:

δGD(cGD,mifi, eifiGD) def=


(dev-x(c′x),mifo) if cGD = dev-x(cx)

∧ eifiGD = eifi-x(eifix)
∧ δx(cx,mifi, eifix) = (c′x,mifo)

(idle-dev, ε-mifoN) otherwise

.

We will use notation .dev to refer to the first component of the result and .mifo to the
second.

Interrupts

As devices may produce interrupts we define the predicate

is-intr-dev :: CGD 7→ B

which indicates if there is a pending interrupt for a generalized device configuration:

is-intr-dev(dev-hd(cHD)) def= is-intr-hd(cHD),

is-intr-dev(dev-timer(cTIMER)) def= is-intr-timer(cTIMER),
· · ·

is-intr-dev(idle-dev) def= F.

3.3.4 Devices Systems

Several devices can be organized in a devices system. Without loss of generality, in this
thesis we consider models with 8 devices at most. Let Devnum = {1, . . . , 8} be the set
of possible device identifiers. For all device address addr we use notation 〈addr〉Devnum

to extract device identifiers. The definition depends on a particular coupling of devices
with the processor. See the next section for details.

Devices systems are modeled as mappings from device identifiers to generalized device
configurations:

cDS :: CDS
def= Devnum 7→ CGD.

We distinguish two possible kinds of transitions a device may take in a system:
internal, which are taken as a reaction to memory-interface input from the processor,
and external, which process the inputs from the external environment.

In an internal step it is defined by the memory-interface port address which of the
devices in the system makes a transition. As we consider two representations, natural
and bit vector, of the memory interface, next, we define two functions for internal steps
of a device in the system.

The internal step of a device in a system with the bit-vector representation of memory
interface inputs

δINT.Bv
DS :: CDS ×MifiBv 7→ CDS ×MifoBv
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is defined as follows. Let cDS be a devices system, let mifi be an input from memory
interface, and let did = 〈mifi.a〉Devnum be a device number specified by access address
mifi.a. The device did performs a step:

δGD(cDS(did),mifi-bv-to-nat(mifi), ε-eifi(cDS(did))) = (cGD,mifo),

and the resulting devices system is:

δINT.Bv
DS (cDS,mifi) def= (c′DS, bin(mifo))

with

c′DS(i) =

{
cGD if i = did
cDS(i) otherwise

.

Completely analogously we define the internal step of a device in a system with respect
to the natural memory interface:

δINT.N
DS :: CDS ×MifiN 7→ CDS ×MifoN.

For the external step an explicit input of an identifier did of the device which is
supposed to make a step is necessary:

δEXT
DS :: CDS ×Devnum× EifiGD 7→ CDS,

δEXT
DS (cDS, did, eifi) def= c′DS,

where

c′DS(i) =

{
δGD(cDS(did), ε-mifiN, eifi).dev if i = did
cDS(i) otherwise

.

Interrupts. For the whole devices system we define a function that computes the
interrupt level for all devices in a generalized device configuration. The function

intr-dev-bv :: CDS 7→ Bv

returns a bit vector in which the n-th bit indicates the interrupt level of the device with
identifier n:

intr-dev-bv(cDS) def= [bool2bit(is-intr-dev(cDS(8))), . . . , bool2bit(is-intr-dev(cDS(1)))].

Keeping in mind that we have 8 devices and the vector of external interrupts to the
processor is of length 19, we extend the vector of devices interrupts with a vector of 11
zeros:

intr-dev-bv′(cDS) def= 011 ◦ intr-dev-bv(cDS).

3.4 Combined Systems

In this section we show how one can combine concurrent computational sources: pro-
cessors and devices. We introduce a notion of a combined system, a processor model
coupled with a devices system. Computations of such systems are guided by an external
oracle, called an execution sequence, which defines for each point of time which of the
computational sources, either the processor or some device, makes a step. Whenever a
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device makes a step the external oracle additionally provides a device input. We define
two particular kinds of combined systems: (i) VAMP ISA with devices, and (ii) VAMP
assembly with devices. The reader should consults theses of Knapp [64] and Tverdy-
shev [115] for details on the first model, and of Alkassar [5] for the second. As we
consider memory-mapped devices in both models, interaction of the processor with de-
vices requires adjustment of load and store instructions semantics: we reserve a portion
of processor’s memory accessing which, we actually access devices.

3.4.1 Coupling Processors with Devices

Devices system introduced in the end of Section 3.3 can be coupled with a processor
model. We refer to a resulting system as a combined system.

Execution Sequences and External Inputs

Independently of a processor model used, e.g., VAMP ISA or VAMP assembly, the rea-
soning about combined systems involves a notion of execution sequences. An execution
sequence is an external oracle which parametrizes runs of a combined systems. At each
step of the run the execution sequence defines whether the processor or a particular
device performs a transition. As mentioned in Section 3.3, a device needs an input from
the external environment in order to make a step. So, the execution sequence delivers
an appropriate external input.

A sequence element denotes whether a processor or a device with a particular number
and particular input makes a step. Formally, a sequence element s is an instance of the
inductive data type SeqEl:

SeqEl def= Proc

| Dev(N× EifiDEV).

Then, a sequence seq is defined as a mapping from combined system’s step numbers to
sequence elements:

Seq def= N 7→ SeqEl.

Not all execution sequence generated by an external oracle are suitable for our needs.
Sequences that we are interested in must guarantee liveness of a processor and all devices.
The processor or device liveness means that for any position in an execution sequence
the processor or device eventually makes a step. Next, at any position where a device
makes a step, an external input exactly for this device type must be delivered. Formally,
an execution sequence seq is called valid, if (i) it is live with respect to the processor
and all devices, i.e., for any position in the sequence there are positions further in the
sequence at which the processor and devices make a step, and (ii) the devices inputs
are well-typed, i.e., for any position n in the sequence where a device makes a step, an
external input which matches that device type is delivered:

seq
√

(seq, cDS) def= ∀ n : ∃ i : n < i ∧ seq(i) = Proc

∧ ∀ dn, n : ∃ i, eifiGD : n < i ∧ seq(i) = Dev(dn, eifiGD)
∧ ∀ n : seq(n) = Dev(dn, eifiGD)

−→ is-eifi-match-dev(cDS(dn), eifiGD).

Next, we introduce two functions in order to separate computations of the processor
and the devices system.
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Definition 3.17 (Processor step numbers) Let seq be an execution sequence and
let T be a number of steps of a combined system. The function

proc-steps :: Seq× N 7→ N

examines an execution sequence prefix of length T and returns the number of processor
steps in it:

proc-steps(seq, T ) def=


0 if T = 0
proc-steps(seq, T − 1) + 1 if seq(T − 1) = Proc

proc-steps(seq, T − 1) otherwise
.

Isabelle: VAMPisaDevices/dlxifspec dev hd.proc step number

Definition 3.18 (Devices inputs filter) Let seq be an execution sequence, let did be
a device number, and let T be a number of steps of a combined system. The function

dev-input :: Seq×Devnum× N 7→ EifiDEV
∗

examines an execution sequence prefix of length T and returns a list of inputs corre-
sponding to the device with number did:

dev-input(seq, did, T ) def=
[] if T = 0
dev-input(seq, did, T − 1) ◦ [eifiGD] if seq(T − 1) = Dev(did, eifiGD)
dev-input(seq, did, T − 1) otherwise

.

Isabelle: VAMPisaDevices/dlxifspec dev hd.dev step times

Note that, the length of this list gives us the number of steps for particular device.

Non-Interference of Devices

As defined in the end of Section 3.3 devices may take transitions triggered by the pro-
cessor they interact with or by the external environment. As long as devices take steps
triggered only by the external environment it is possible to split a computation of the
combined system into two independent execution sequences of the processor and of the
devices system. This allows us to reason about the processor computation separately
and then exploit the result of such reasoning in order to describe the computation of
the whole combined system.

In order to formalize this idea we define a predicate that compares two configurations
of devices systems cDS and c′DS and determines whether c′DS is obtained from cDS by
taking only external steps. The execution is guided by an execution sequence which
contains also processor steps.

Definition 3.19 (Non-interference of devices) Let cDS and c′DS be configurations
of a devices system, let seq be an execution sequence, and let T be a number of steps.
The predicate

non-interf-dev :: CDS × CDS × Seq× N 7→ B
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checks whether the configuration of the devices system c′DS is obtained from the config-
uration cDS by executing independently all devices steps contained in the prefix of the
sequence seq of length T :

non-interf-dev(cDS, c
′
DS, seq, T ) def= ∀ did : c′DS(did) = δ∗GD(cDS(did),

ε-mifiN
|dev-input(seq,did,T )|,

dev-input(seq, did, T )).dev

Isabelle: VAMPisaDevices/dlxifspec dev hd

Memory Mapping for Devices.

To access devices we map devices ports to some memory region. We define the constant

DEVICES BORDER
def= 〈117015〉

which partitions the VAMP assembly memory into two parts: normal memory with the
addresses below this constant and devices region with the addresses above this constant.
The next two predicates help us to find out to which part an address a belongs:

is-mem-addr(a) def= a < DEVICES BORDER,

is-dev-addr(a) def= a ≥ DEVICES BORDER.

Semantics of combined systems distinguishes whether the processor accesses some device
by executing a load or store instruction with an effective address which belongs to devices
ports. Let a be a device address represented by a bit vector, i.e., a[31 : 15] = 117. The
corresponding device identifier is encoded by the bits from 14 to 12

〈a〉Devnum
def= 〈a[14 : 12]〉.

The following bits (from 11 to 2) denote the port number 〈a[11 : 2]〉. To couple a
processor with a devices system we also need to slightly adjust the semantics of memory
access instructions.

3.4.2 VAMP ISA with Devices

Combined systems which use the VAMP ISA model as the processor are referred to as
VAMP ISA with devices or VAMP ISA combined systems.

Configurations

Configurations cISA+DS of VAMP ISA with devices are represented with the record
CISA+DS which has two fields:

• the processor cISA+DS.cpu :: CISA, and

• the devices system cISA+DS.devs :: CDS.
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Semantics

First of all, we need to adapt the interrupts definitions. Since we have two memory parts,
it has to be guaranteed that page tables and the fetched instruction do not lie behind
DEVICES BORDER. We extend the instruction page fault predicate with a condition that
an interrupt occurs if the fetch address or, in case of user mode, the corresponding page
table entry address, belongs to the devices range. For load/store we allow the accessed
address to point to a device port only if the memory operation has the width of a word.

To distinguish between devices access and normal instruction computations we in-
troduce the predicate is-dev-accISA(cISA) which holds in case a load word or a store word
instruction takes place with the effective address corresponding to a device port, denoted
by is-dev-addr(〈ea(cISA)〉). In case a device access takes place appropriate memory in-
terface inputs have to be generated by the processor. This is done by means of the
function

make-mifiISA :: CISA 7→ MifiBv,

which distinguishes cases for read and write instructions. The reader can consult
VAMPisa/dlxifspec.make mifi for the definition in Isabelle.

Semantics of load and store instructions is slightly adjusted in case a device access
takes place. Load instructions save the memory interface output in the destination
general purpose register. Store instructions simply increase program counters in this
case — data which has to be written to a devices is stored in the memory interface
input. Thus, we extend the signature of the VAMP ISA transition function with a
memory interface output:

δISA :: CISA × Bv×MifoBv 7→ CISA.

Transition Function

The transition function of the VAMP ISA with devices model

δISA+DS :: N× CISA+DS × Seq 7→ CISA+DS

takes as arguments a number of steps T to be executed, an ISA combined system con-
figuration cISA+DS, and an execution sequence seq together with external inputs. The
step function is defined by induction on the step numbers T . For T = 0 we have:

δ0
ISA+DS(cISA+DS, seq) def= cISA+DS.

In the definition for the step T + 1, first we perform T steps of system:

(cTISA, c
T
DS) = δTISA+DS(cISA+DS, seq),

then, depending on the current sequence element s = seq(T ) the definition for the step
T + 1 distinguishes three cases:

• the processor makes a device access: the new states cT+1
ISA and cT+1

DS of both the
processor and the devices system (internal step) are computed,

• the processor makes a step without a device access: only the processor new state
cT+1
ISA is generated, and

• the devices system makes a step triggered by the external environment (external
step): only the new state cT+1

DS of the devices system is generated.
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Formally:

δT+1
ISA+DS(cISA+DS, seq) def=

(cT+1
ISA , cT+1

DS ) if s = Proc
∧ is-dev-accISA(cTISA)
∧ (cT+1

DS ,mifo) = δINT.Bv
DS (cTDS,make-mifiISA(cTISA))

∧ cT+1
ISA = δISA(cTISA, intr-dev-bv(cTDS),mifo)

(cT+1
ISA , cTDS) if s = Proc

∧ ¬is-dev-accISA(cTISA)
∧ cT+1

ISA = δISA(cTISA, intr-dev-bv(cTDS), ε-mifoBv)
(cTISA, c

T+1
DS ) if s = Dev(did, eifi)

∧ cT+1
DS = δEXT

DS (cTDS, did, eifi)

.

3.4.3 VAMP Assembly with Devices

We call combined systems that have the processor component instantiated with the
VAMP assembly model VAMP assembly with devices or VAMP assembly combined
systems.

Configurations

Configurations cASM+DS of VAMP assembly with devices are represented with records
CASM+DS. The record has two fields:

• the processor cASM+DS.cpu :: CASM, and

• the devices system cASM+DS.devs :: CDS.

Semantics

Semantics of the VAMP assembly with devices model distinguishes whether a processor
access devices or not in the same fashion as VAMP ISA combined systems do. The
predicate is-dev-accASM(cASM) evaluates to true in case the address of memory access
belongs to the devices range. In order to handle processor-devices interaction a memory
interface input to devices is generated by means of the function

make-mifiASM :: CASM 7→ MifiN

formally defined in Isabelle under VAMPasmDevices/VAMPasmDevices.make mifi.
Modifications in the semantics of load and store instructions are done in the same

fashion as for VAMP ISA. However, we do not adapt the existing VAMP assembly
model, but create another one with the transition function:

δASM-dev :: CASM ×MifoN 7→ CASM.

Transition Function

The transition function for several steps of the model VAMP assembly with devices

δASM+DS :: N× CASM+DS × Seq 7→ CASM+DS
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performs n steps guided by an execution sequence seq starting from a given configuration
cASM+DS and yields an updated configuration of the VAMP assembly with devices. It is
defined inductively over the step number. For n = 0 we have:

δ0
ASM+DS(cASM+DS, seq) def= cASM+DS.

In the definition for the step n+ 1, first we perform n steps of the system:

(cnASM, c
n
DS) = δnASM+DS(cASM+DS, seq).

Then, depending on s = seq(n + 1) as well as whether a device access, denoted by
is-dev-accASM(cASM+DS.cpu), takes place the function distinguishes the three following
cases:

• the processor attempts a device access, and hence new configurations cn+1
ASM and

cn+1
DS of the processor and the devices systems, respectively, are computed,

• the process makes a step which does not access any device: only the new configu-
ration cn+1

ASM of the processor is computed, and

• some device performs a transition, therefore only the updated configuration cn+1
DS

is obtained.

Formally:

δn+1
ASM+DS(cASM+DS, seq) def=

(cn+1
ASM, c

n+1
DS ) if s = Proc

∧ is-dev-accASM(cnASM)
∧ (cn+1

DS ,mifo) = δINT.N
DS (cDS,make-mifiASM(cnASM))

∧ cn+1
ASM = δASM-dev(cASM,mifo)

(cn+1
ASM, c

n
DS) if s = Proc

∧ ¬is-dev-accASM(cnASM)
∧ cn+1

ASM = δASM-dev(cASM, ε-mifoN)
(cnASM, c

n+1
DS ) if s = Dev(did, eifi)

∧ cn+1
DS = δEXT

DS (cnDS, did, eifi)

.

3.5 C0 Programming Language

In this section we present an overview of C0, a type-safe garbage-collected dialect of C
without pointer arithmetic. C0 was designed within Verisoft as a compromise between
two orthogonal issues: the language has to be powerful enough to allow implementation
of systems software while having clean formal semantics making verification of this soft-
ware feasible. As systems software, and microkernels in particular, may access hardware
resources beyond visibility of the C0 language, e.g., processor’s registers, we extend C0
with an inline assembly statement referring to the resulting language as C0A. We start
the section by introducing main features of C0 as well as its limitations compared to
standard C. We present formalization of C0 programs and show how their computations
are model by the C0 small-step semantics. The most complete reference to the C0 lan-
guage and its small-step semantics is the thesis of Leinenbach [66]. In this section we
introduce a relatively detailed formalism for C0 programs and configurations because
it is necessary for correctness theorems of CVM. The semantics is, however, described
without many peculiarities.
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3.5.1 Overview

The C0 programming language is a restricted version of ANSI C [1]. The C0 concrete
syntax and visibility rules for variables are very similar to standard C. Operational
semantics, though, is similar to Pascal. The major restrictions are:

• no initialization during declarations, except for a constant declaration,

• no side-effects inside expressions,

• no function calls inside expressions,

• the size of arrays is fixed at the compile time,

• no variable declarations in functions after the first statement,

• only one return statement which is the last control command in each function,

• no pointer arithmetic,

• no pointers to local variables,

• no pointers to functions,

• no void pointers, i.e. all pointers are typed.

The built-in type system of C0 is limited to four basic types, namely:

• 32-bit signed integers: int = {−231, . . . , 231 − 1},

• 32-bit unsigned integers: unsigned int = {0, . . . , 232 − 1},

• booleans: bool = {true, false}, and

• 8-bit signed integers: char = {−128, . . . , 127}.

Based on these simple types one can construct complex types:

• typed pointers: ty *x;,

• arrays: ty a[size]; and

• structures: struct ty 1 ty 2 data;.

The statements allowed in C0 language are:

• Assignment: l = expr;
Besides elementary types and structures C0 allows assignment of array values,
which is not possible in standard C.

• Loop: while (cond) { stmts }

• Conditional: if (cond) { stmts 1 } else { stmts 2 }

• Function call: l = foo(expr 1, ..., expr n);
Recursion is supported.

• Return: return expr;
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• Allocation of dynamic memory: l = new(typ);
There is no statement for deallocation of memory. Instead a garbage collector is
supposed to used. However, in a microkernel we do not use it because memory
deallocation is not needed.

• Inline assembly statement: asm (instr 1, ..., instr n);

3.5.2 C0 Programs

A C0 program is identified by three entities:

• the type environment, a table which stores information about types used in the
program,

• the function table which stores information about functions of the program, namely
their parameters, types of return values, and statements constituting their bodies,
and

• the global symbol table which stores names of program’s global variables together
with their types.

We formalize these concepts in the following order. We start with type environments.
As function bodies constitute C0 statements which themselves use C0 expressions we
need to formalize these two notions first in order to define a formal notion of a function.
We define symbol tables which are lists of variables, like function parameter lists or
global variables list. Having this we define function tables and conclude by defining the
overall type for C0 programs.

Type Environments

C0 types are formalized by the following inductive data type

Ty def= boolT

| intT

| charT

| unsgndT

| ptrT(S)
| nullT

| arrT(N× Ty)
| strT((S× Ty)∗).

A structural type is constructed from a list of pairs representing names of its components
cni together with their types tyi: strT([(cn0, ty0), . . . , (cnn, tyn)]). For each structure
element we will use the notation .sfn to access the field’s name and .ty for its type. An
array type is defined by the array size n and types of its elements ty′: arrT(n, ty′). The
parameter of a pointer type is the name of type tn it points to: ptrT(tn).

We call a type ty elementary, denoted by is-elemt(ty), if ty is not a structural or
an array type. The size of a type is computed by the following function([66, Definition
4.1]):

sizet :: Ty 7→ N,
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sizet(ty) def=


1 if is-elemt(ty)
n · sizet(ty′) if ty = arrT(n, ty′)∑|sn|−1
j=0 sizet(sn[j].ty) if ty = strT(sn)

.

A type environment (also called a type table) te is a list of pairs (tn, td) consisting
of type names and types. Formally, type environments are instances of the type

Tenv def= (S× Ty)∗.

Expressions

The most basic unit of C0 expressions are literals, i.e., symbols like “1”, “A”, or “true”.
Literals are modeled by the inductive data type Lit which has one constructor for each
of the four C0 basic types and an additional constructor for null pointer literals. All
constructors for the basic types have a single parameter of the corresponding type which
denotes their value. Formally:

Lit def= bool(B) | int(Z) | unsgnd(N) | char(Z) | null .

The abstract data type Expr formalizes C0 expressions:

Expr def= lit(Lit)
| var(S)
| arr(Expr× Expr)
| str(Expr× S)
| bin-op(BinOp× Expr× Expr)
| lazy-bin-op(LazyOp× Expr× Expr)
| un-op(UnOp× Expr)
| addr-of (Expr)
| deref (Expr).

The first two cases construct a literal expression lit(l) and a variable access expres-
sion var(vn) from a literal l and a variable name vn, respectively. The constructor
arr(e, i) is used to access an array expression e at an index i which is an expression
itself. A structural expression e is accessed at the component with a name vn by means
of the expression str(e, vn). Two expressions e1 and e2 connected together with a bi-
nary operator bop :: BinOp or a lazy binary operator lop :: LazyOp form expressions
bin-op(bop, e1, e2) and lazy-bin-op(lop, e1, e2), respectively. The expression for a unary
operator uop :: UnOp applied to an expression e is un-op(uop, e). Binary, lazy binary,
and unary operators supported by C0 are listed in tables 4.2–4.4 of Leinenbach’s the-
sis [66]. The last two constructors are used for the address-of operation and dereference.

Statements

Statements in the C0 small-step semantics are annotated with unique statement identi-
fiers represented by natural numbers. This information is used to determine the place of
each statement in C0 programs. Statement identifiers will be denoted by sid, possibly
with subscript indices.

We model statements with the following abstract data type:
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Stmt def= skip

| comp(Stmt× Stmt)
| ass(Expr× Expr× N)
| pAlloc(Expr× S× N)
| ifte(Expr× Stmt× Stmt× N)
| loop(Expr× Stmt× N)
| sCall(S× S× Expr∗ × N)
| esCall(S× S× Expr∗ × N)
| xCall(S× Expr∗ × Expr∗ × N)
| return(Expr× N).

C0A programs additionally have an assembly statement with the constructor:

asm(Instr∗ × N).

The empty statement is denoted skip and the sequential composition of two state-
ments s and s′ is comp(s, s′). These two statements are called structural and are not
tagged with statement identifiers. For a compositional statement we define functions

left-stmt(comp(s1, s2)) def= s1 right-stmt(comp(s1, s2)) def= s2

to get the left and the right parts of the statement, respectively.
The assignment statement ass(e, e′, sid) assigns the expression e the value of the

expression e′. Dynamic memory allocation for a type ty is done by the statement
pAlloc(ty, e, sid) which assigns the expression e the pointer to the newly allocated mem-
ory.

The conditional statement ifte(e, s, s′, sid) executes either the statement s or s′ de-
pending on the value of the expression e. While loops are modeled by the statement
loop(e, s, sid) which executes the loop body s while the boolean expression e holds.

Functions calls come in three flavors in the C0 small-step semantics. A normal call
to a function with a name fn and parameters e1 to en are represented by the statement
sCall(vn, fn, [e1, . . . , en], sid). On termination of the function its return value is stored
in the variable of name vn. An external call to an only declared function fn is modeled
by the statement esCall(vn, fn, [e1, . . . , en], sid). An extended call, or an x-call, to the
function of name fn is represented by the statement xCall(fn, [e1, . . . , en], [e′1, . . . , e

′
m], sid)

where ei are expressions denoting the parts of the C0 state that can be changed by the
x-call, and e′i are expressions that are used as its input parameters. For a normal call
s = sCall(vn, fn, el, sid) and an external call s = esCall(vn, fn, el, sid) we define several
functions

called-func(s) def= fn param-list(s) def= el l-var(s) def= vn,

which extract parts of the callee’s signature: (i) the name of the called function, (ii) the
list of callee’s parameters, and (iii) the name of the left-hand side variable.

Return statements with a return expression e are modeled by return(e, sid).
Finally, assembly statements asm(il, sid) receive as a parameter a list il of VAMP

assembly instructions which has to be executed.
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For each statement constructor we define a predicate which tests whether a statement
s is constructed by this particular constructor. For instance this definition for the case
of the return statement is:

is-return(s) def= ∃e, sid : s = return(e, sid).

Next, we define several functions over C0 statements. Observe that compositional
statements define a binary tree of the statements they compose. Sometimes it is not
convenient to work with such trees — therefore, we define a more suitable representation
of statement composition. The function s2l :: Stmt 7→ Stmt∗ takes a statement s as an
argument and, in case s is a compositional statement comp(s1, s2), flattens it into a list
of statements by means of a left-side tree traversal:

s2l(comp(s1, s2)) def= s2l(s1) ◦ s2l(s2).

For all other statements we define the list construction s2l(s) def= [s]. A version of
the function that additionally ignores empty statements is s2lns :: Stmt 7→ Stmt∗: the
definition differs only in case of the skip statement:

s2lns(skip) def= [].

The number of top-level return statements in a list of statements is computed by the
function #rettop :: Stmt∗ 7→ N:

#rettop(sl) def=


0 if sl = []
#rettop(t) + 1 if sl = [h] ◦ t ∧ is-return(h)
#rettop(t) otherwise

.

Note, that this function is not recursive for loop and conditional statements.

Function Tables

We call a list of variable names together with their types a symbol table. Symbol tables
are modeled with the type

Symtable def= (S× Ty)∗.

For each element of a symbol table we will use the notation .vn to access the variable
name and .ty for its type.

Information about a single C0 function is stored in a record of the type Func. In-
stances f of this type have four components:

• f.body :: Stmt: the body of the function,

• f.params :: Symtable: the list of function parameters,

• f.rtype :: Ty: the return type of the function, and

• f.lvars :: Symtable: the list of local variables of the function.

The symbol table for a particular function is constructed as a concatenation of its
parameters and local variables:

stfun :: Func 7→ Symtable,
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stfun(f) def= f.params ◦ f.lvars.

A function table is a list of pairs (fn, fd) constituting a function name and a function
definition modeled by the record Func. Formally, we represent function tables with the
type

Functable def= (S× Func)∗.

Programs

C0 programs are defined by their type environments, function tables, and symbol tables
of global variables. Thus, we represent C0 programs with the type ΠC0, whose elements
π are records with three components:

• π.te :: Tenv: the type environment containing all new types defined in the program,

• π.ft :: Functable: the function table containing function names and definitions, and

• π.gst :: Symtable: the table of global variables.

3.5.3 Translatable C0 Programs

C0 programs are subject to compilation into VAMP assembly. The code generation
algorithm designed in Verisoft does not work with arbitrary C0 programs. For instance
if a program contains an expression which uses to many registers the code generation will
not work. Therefore, a number of restrictions are imposed on expressions, statements,
and programs such that:

• the generated code respects the necessary requirements to the size of immediate
operands, and

• there are sufficiently many free VAMP assembly registers to evaluate the expres-
sions.

C0 programs that fulfill these properties are called translatable.
Leinenbach formalizes this notion in Section 7.6 of his thesis [66] by defining the set

xltblprog of C0 programs which obey the above condition. We omit formalization here —
for details the reader should examine Definition 7.41 of [66]. Formally we will denote
that a program π is translatable by:

π ∈ xltblprog.

3.5.4 C0 Small-Step Semantics Configurations

Run-time information about execution of C0 programs is stored in C0 small-step seman-
tics configurations. These configurations have two components:

• the memory configuration which stores information about C0 variables and their
values, and

• the program rest which contains statements which still have to be executed.

C0 small-step semantics configurations are also called C0 machines.
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Memory Configuration

C0 memory configuration has three parts for storing global, heap, and local variables
together with return destinations. Each part is defined by the corresponding memory
frames. Local variables correspond to a list of memory frames where each item defines
variables together with their values of the function call stack. Before introducing memory
frames and memory configurations formally we consider a notion of generalized variables.

Generalized variables. The pointers in the C0 small-step semantics are represented
with the help of generalized variables or shortly g-variables. G-variables are modeled
with the following inductive data type:

Gvar def= gvargm(S)
| gvar lm(N× S)
| gvarhm(N)
| gvararr(Gvar,N)
| gvar str(Gvar,S).

Three base cases of g-variables represent a global variable with the name vn: gvargm(vn),
a local variable of name vn in the i-th local memory frame: gvar lm(i, vn), and a nameless
heap variable identified by its number i: gvarhm(i). The inductive cases comprise con-
structors for array and structural g-variables. If g is a g-variable of an array type then
the i-th array element gvararr(g, i) is a g-variable as well. If g is a structural g-variable
then a component gvar str(g, cn) with the name cn is also a g-variable.

Memory cells. An explicit, flat memory model which stores memory contents as a
mapping from addresses represented by natural numbers to memory cells is used in the
C0 small-step semantics. A single memory cell stores the values of a variable of an
elementary type. Values of aggregate types are stored consecutively as sequences of
memory cells. We model memory cells by the following data type with one constructor
per elementary type:

Mcell def= int(Z) | nat(N) | char(Z) | bool(B) | ptr(Gvar⊥).

Pointers are represented by generalized variable type extended with a ⊥-state denoting
null pointers.

In order to get the value from a memory cell we use the following conversion functions:

m2b(bool(b)) def= b,

m2u(nat(n)) def= n,

m2i(int(i)) def= i,

m2ch(char(ch)) def= ch,

m2p(ptr(p)) def= p.

Memory frames. A memory frame m :: Mframe is a record with three components:

• the content of the memory frame: m.ct :: N 7→ Mcell,
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• the symbol table m.st :: Symtable, a list of all variables of the memory frame
together with their types, and

• the set of variables which are already initialized: m.init :: 2S.

Memory configuration. A memory configuration mc :: Memconf is a record with
three components:

• the global memory frame mc.gm :: Mframe,

• the list of memory frames and g-variables representing a stack of local memories
mc.lm :: (Mframe×Gvar)∗ — each memory frame mc.lm[i].mfr stores the values
of local variables and each g-variable mc.lm[i].res stores the return destination of
a stack frame, and

• the heap memory frame mc.hm :: Mframe.

Note, that the symbol table of a heap memory frame has empty identifiers because heap
variables are nameless. Moreover, the set of initialized variables is empty, but all heap
variables are initialized during their allocation.

The local memory frames list grows as a new frame is inserted at its beginning.
Hence, the i-th allocated frame is counted starting from the end. We introduce the
following notation for local memory frame access:

lm[[i]] def= lm[|lm| − 1− i].

We define the top local memory frame of a memory configuration mc and the top
result variable as

lmtop(mc) def= mc.lm[[|mc.lm| − 1]].mfr = mc.lm[0].mfr,

restop(mc) def= mc.lm[[|mc.lm| − 1]].res = mc.lm[0].res.

Top local, global, and heap symbol tables are extracted by means of the following
functions:

lsttop(mc) def= lmtop(mc).st,

gst(mc) def= mc.gm.st,

hst(mc) def= mc.hm.st.

Symbol configuration. Sometimes in this thesis we are not interested in the memory
content and thus do not need the complete memory configuration. For some special
needs it suffices to have only symbol tables of all memory frames. For this we introduce
a concept of symbol configurations which are records sc :: Symconf which are records
with three components:

• sc.gst :: Symtable: the symbol table of the global memory frame,

• sc.lst :: Symtable∗: the list of symbol tables for the stack of local memories, and

• sc.hst :: Symtable: the symbol table of the heap memory frame.

Extraction of the symbol configuration from a memory configuration mc is done with
the function sc(mc).

65



Program Rest

The program rest remembers statements which still have to be executed. Initialized
with the body of the main function it grows or shrinks depending on the execution of
the program. Formally, the program rest is an instance of the type Stmt.

Configuration

Having formal definitions of the C0 memory configuration and the program rest we can
define the C0 small-step configurations. Configurations cC0 are modeled with the record
CC0 which has two components:

• the memory configuration cC0.mem :: Memconf, and

• the program rest cC0.prog :: Stmt.

Occasionally, we will need a version of C0 configuration which additionally encapsulates
a respective C0 program. We extend the type for C0 configuration as follows:

cC0 :: Cmono
C0

def= (te, ft,mem, prog)

and call the result monolithic C0 configurations. Note that while a type table and a
function table are explicitly inserted in the record, the global symbol table is already
included in the global memory frame.

The current statement of a C0 configuration. For a C0 small-step semantics con-
figuration cC0 let the following function extracts the statement that has to be currently
executed:

stmt(cC0) def= s2l(cC0.prog)[0]

3.5.5 Initial Configuration

C0 initial configuration defines the default values of all its component. In this work
we do not need a complete formal definition of C0 initial configuration. We restrict
ourselves to definitions of initial global and heap memory frames.

The function initval :: Ty 7→ Mcell∗ defines initial values for all C0 types by structural
induction. Numeric types have zero as the initial value, the boolean type is initialized
with the false constant F, and pointers with a null pointer. Array elements and structure
components are initialized with default values of the corresponding types. For formulas
consult Definition 4.28 of [66].

The function initst :: Symtable 7→ Mcell∗ computes the initialized content for a given
symbol table by concatenating default values of all its variables:

initst(st) def=

{
[] if st = []
initval(ty) ◦ initst(st′) if st = (vn, ty) ◦ st′

.

The function initct :: Symtable 7→ (N 7→ Mcell) converts such list into memory content:

initct(st)(i) = initst(st)[i]

Finally, the function initvars :: Mframe 7→ Mframe initializes all variables of a given
memory frame. The obtained memory frame m′ = initvars(m) has the initialized content,
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and all variables of the memory frame are added to the set of initialized variables:

m′.ct = initct(m.st),
m′.init = vns(m.st),

where the function vns :: Symtable 7→ 2S collects names of the variables from the symbol
table into a set:

vns(st) def= {x : ∃ i : st[i].vn = x}.

Initial memory frame for a symbol table st is computed with the function initmem ::
Symtable 7→ Mframe, such that initmem(st) = m where

m.st = st,
m.init = ∅.

The content component is undefined.
Having this, the initial value of a global memory frame is computed by the function

initgm(gst) def= initvars(initmem(gst)).

The initial value of a heap memory frame is a constant

inithm
def= initmem([]).

3.5.6 Valid C0 Small-Step Semantics Configurations

The definitions presented in this section so far allow us to encode even absurd programs
containing statements like 5=true;. In order to distinguish rational programs from
ridiculous ones a validity predicate over C0 configurations has to be introduced. Leinen-
bach defines such a predicate formally in Chapter 5 of his thesis [66]. Since description
of this formal definition consumes about 30 pages we will not copy any details here, but
rather present a bird’s-eye view of the predicate.

A C0 small-step semantics configuration cC0 is valid with respect to a type name
environment te and a function table ft if the following holds:

1. the function table ft is valid with respect to the global symbol table, denoted by
ft ∈ validft(te, gst(cC0.mem)),

2. the program rest of cC0 is valid,

3. the number of return statements in the program rest is less than the recursion
depth of cC0,

4. the stack of cC0 is valid,

5. the type name environment of cC0 is valid, denoted by te ∈ validtenv,

6. the global symbol table of cC0 is valid, denoted by gst(cC0.mem) ∈ validst(te),

7. all local symbol tables of cC0 belong to some function in ft,

8. all types of all heap variables are valid types,

9. all memory frames of cC0 are type correct, and

67



10. the return destinations of cC0 are valid.

These criteria define the set C0
√

(te, ft) of valid C0 small-step semantics configurations.
Formally this set is introduced in Definition 5.38 of Leinenbach’s thesis [66]. We denote
that a configuration cC0 is valid by

cC0 ∈ C0
√

(te, ft).

In spite of point 3, during verification we always need the fact that the number of
return statements in the program rest is equal to the recursion depth minus one. So we
extend the validity predicate C0

√
with this condition, defining the predicate C0′

√
:

cC0 ∈ C0
√

(te, ft)
∧ #rettop(s2l(cC0.prog)) + 1 = |cC0.mem.lm|
−→ cC0 ∈ C0′

√
(te, ft).

Another important validity definition concerns g-variables. We say that a g-variable
g is in the set of valid g-variables if it has a well-formed structure for a given symbol
configuration sc([66, Definition 5.19]):

g ∈ gvars
√

(sc).

The set reachableg(mc) contains all reachable valid g-variables of memory configuration
mc:

g ∈ reachableg(mc).

3.5.7 Semantics

The transition function

δC0 :: Tenv× Functable× CC0 7→ CC0⊥

of the C0 small-step semantics maps, with respect to a type environment te and a
function table ft, a configuration cC0 to its successor configuration c′C0, such that bc′C0c =
δC0(te, ft, cC0) or, in case of an error to ⊥. The transition function is defined by induction
on the program rest — thus, it distinguishes cases for each C0 statement.

Each case formalizes the statement’s functionality described in this section before.
We omit the formal definition of transition function — the reader should consult pages
61–67 of Leinenbach’s thesis [66].

Leinenbach does not consider semantics of an external call statement esCall . External
calls are introduced into C0 semantics in order model programs separated into several
modules. These modules are C0 programs themselves where module M1 invokes an
external call esCall(vn, fn, [e1, . . . , en], sid) to a function of name fn which is only declared
in M1 and is implemented in a module M2. These two modules can be linked together
on the source code level — see Section 6.2 for formal details on linking — in a single
C0 programs which has no longer external calls. However, C0 small-step semantics does
not forbid execution of modules, i.e., C0 programs with external call statements. The
transition function δC0 treats external call as a statement skip, however, the statement
itself should be valid as a normal function call.

A multiple-step transition function

δC0 :: N× Tenv× Functable× CC0 7→ CC0⊥
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written δnC0(te, ft, cC0) is defined by induction on n:

δ0
C0(te, ft, cC0) def= bcC0c,

δnC0(te, ft, cC0) def=

{
δC0(te ft, c′C0) if δn−1

C0 (te, ft, cC0) = bc′C0c
⊥ if δn−1(te, ft, cC0) =⊥

.

For a monolithic configuration cC0 :: Cmono
C0 we define a transition function with the

help of a normal one:
δmono
C0 :: Cmono

C0 7→ Cmono
C0⊥ ,

δmono
C0 (cC0) def= δC0(cC0.te, cC0.ft, (cC0.mem, cC0.prog)).

3.5.8 Evaluation

Additionally to the defined semantics we also need a number of functions that give us
such data as the type information and the addresses of variables, and the values of
variables and expressions. Below we copy some definitions for that from Leinenbach’s
thesis[66].

Variables. We define ([66, Definition 4.14]) the type of a variable vn in a given symbol
table st as:

typev(st, vn) def=


ty if st = [(vn, ty)] ◦ st′

typev(st′, vn) if st = [(vn′, ty)] ◦ st′ ∧ vn′ 6= vn
A otherwise

.

We define ([66, Definition 4.13]) the base address of a variable vn in a given symbol
table st as:

bav(st, vn) def=


0 if st = [(vn, ty)] ◦ st′

sizet(ty) + bav(st′, vn) if st = [(vn′, ty)] ◦ st′ ∧ vn′ 6= vn
A otherwise

.

We define ([66, Definition 4.15]) the type of a g-variable as:

tyg(sc, g) def=



typev(sc.gst, vn) if g = gvargm(vn)
typev(sc.lst[[i]], vn) if g = gvar lm(i, vn)
sc.hst[i].ty if g = gvarhm(i)
ty if g = gvararr(G, i) ∧ tyg(sc, G) = arrT(ty, n)
typev(c, sn) if g = gvar str(G, sn) ∧ tyg(sc, G) = strT(c)

.

We define ([66, Definition 4.18]) the base address of a g-variable as:

bag(sc, g) def=



bav(sc.gst, vn) if g = gvargm(vn)
bav(sc.lst[[i]], vn) if g = gvar lm(i, vn)∑i−1
j=0 sizet(hst[j].ty) if g = gvarhm(i)

bag(sc, G) + i · sizet(ty) if g = gvararr(G, i) ∧ tyg(sc, G) = arrT(ty, n)
bag(sc, G) + bav(c, sn) if g = gvar str(G, sn) ∧ tyg(sc, G) = strT(c)

.
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For a memory configuration mc and an elementary g-variable g we define ([66, Defi-
nition 4.22]) its value as:

valueg(mc, g) def= ct(bag(sc(mc), g)),

where ct is mc.gm.ct if g is a global variable, or mc.lm[[i]].mfr.ct if g is a local variable
from the i-th frame, or mc.hm.ct if g is a heap variable.

Expressions. The expression evaluation function reval(te,mc, e) is defined inductively
over an expression tree ([66, Section 4.3.4]). In case e is a variable the function valueg

is used. Otherwise, equivalent abstract operations are applied.
The function type(te, gst, lsttop, e) computes the type of an expression.
The function is-initialized(te,mc, e) tests whether an expression is initialized; it boils

down to the test that all variables used in the expression are initialized.
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Compiling C0 to VAMP

Chapter

4

In the previous chapter we have defined three models for reasoning about programs:
VAMP ISA, VAMP assembly, and C0 small-step semantics. Most of the software in
Verisoft has been implemented and verified at the C0 level. However some key theorems
of Verisoft, like the CVM correctness theorem, have to describe, among others, how a
C0 program is executed on the target machine. In order to define this, C0 programs
need to be translated — via assembly code — to the object code which is executable
on the hardware. For this a simple non-optimizing compiler [66, 93] has been developed
and verified in Verisoft.

The correctness theorem of the compiler specification [66] is a simulation theorem
between a C0 program executed by the C0 small-step semantics and the generated
assembly code executed by the VAMP assembly model. The goal of this chapter is to
extend this theorem such that VAMP ISA becomes its target model.

Since only VAMP ISA has a mechanism to switch between the execution modes
we can argue only about uninterrupted execution of a program in the system mode
while discussing compilation of C0 to VAMP ISA. Correctness of user programs will be
presented in the context of the running kernel (Chapter 10).

In Section 4.1 we introduce a theorem that the VAMP assembly model is simulated
by the VAMP ISA model. Section 4.2 reviews the correctness theorem of the C0 com-
piler specification whose detailed description is presented in Leinenbach’s thesis [66]. In
Section 4.3 we combine these two statements into a single theorem: a C0 program exe-
cuted by the C0 small-step semantics is simulated by the generated object code executed
by the VAMP ISA model.

4.1 Simulation of VAMP Assembly by VAMP ISA

The simulation theorems between VAMP assembly and VAMP ISA come in two flavors
— without and with devices access. The idea behind the theorems is as follows. We
start with assembly and ISA configurations (with and without devices) between which
an abstraction relation holds. We execute a given assembly program by the assembly
model and find the corresponding number of steps of the ISA model (combined system),
such that the abstraction relation is preserved.
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In this section we define the abstraction relation mentioned above, state the necessary
preconditions to the simulation, and present the respective simulation theorems.

4.1.1 Abstraction Relation

The major difference between the VAMP ISA and assembly models is data represen-
tation. ISA registers are defined as bit vectors while assembly registers are natural
numbers. ISA memory is defined as a mapping from bit vectors of length 29 to pairs of
bit vectors of length 32 while assembly memory is a mapping of 30-bit natural numbers
to 32-bit integers. The abstraction relation between VAMP ISA and assembly basi-
cally defines how components of an ISA configuration are converted to their assembly
equivalents.

Definition 4.1 (Assembly-ISA control equivalence) Let cASM and cISA be assembly
and ISA machine configurations. The control equivalence c-equiv holds between the
machines if values of respective program counters match:

c-equiv(cASM, cISA) def= cASM.pc = 〈cISA.pc〉
∧ cASM.dpc = 〈cISA.dpc〉.

Isabelle: VAMPasm2isaSystem/equivalence.c equiv

Definition 4.2 (Assembly-ISA GPR equivalence) Let a and b be assembly and ISA
general purpose register files. The files are equivalent, which is stated by the predicate

gpr-equiv :: RegfASM × RegfISA 7→ B,

gpr-equiv(a, b) def= ∀ i ∈ Bv5 : gpr-readASM(a, 〈i〉) = [gpr-readISA(b, i)]

if the values of their 32 items accessed by the VAMP ISA respectively assembly GPR
read functions match.
Isabelle: VAMPasm2isaSystem/equivalence.gprs equiv

Definition 4.3 (Assembly-ISA SPR equivalence) Let a and b be assembly and ISA
special purpose register files. The files are equivalent, which is stated by the predicate

spr-equiv :: RegfASM × RegfISA 7→ B,

spr-equiv(a, b) def= ∀ i ∈ Bv5 : spr-readASM(a, 〈i〉) = [spr-readISA(b, i)]

if the values of their 32 items accessed by the VAMP ISA respectively assembly SPR
read functions match.
Isabelle: VAMPasm2isaSystem/equivanece.sprs equiv

Definition 4.4 (Assembly-ISA registers equivalence) Let cASM and cISA be assem-
bly and ISA machine configurations. The registers equivalence r-equiv holds between
the machines if the respective GPR and SPR files are equivalent:

r-equiv(cASM, cISA) def= gpr-equiv(cASM.gpr, cISA.gpr)
∧ spr-equiv(cASM.spr, cISA.spr).

Isabelle: VAMPasm2isaSystem/equivalence.r equiv
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Definition 4.5 (Assembly-ISA memory equivalence) Let cASM and cISA be assem-
bly and ISA machine configurations. The memory equivalence m-equiv holds between the
machines if the memories of the machines are equal wordwise taking into consideration
data representation:

m-equiv(cASM, cISA) def= ∀ a < 232 : cASM.MemASMword(a) = [cISA.MemISAword(a)].

Isabelle: VAMPasm2isaSystem/equivalence.m equiv

Altogether, we combine the predicates defined above into a single equivalence relation
between VAMP assembly and ISA.

Definition 4.6 (Assembly-ISA equivalence) We call an assembly machine configu-
rations cASM equivalent to an ISA machine configuration cISA if the control, the registers,
and the memory equivalences hold between them:

isa-sim-asm(cASM, cISA) def= c-equiv(cASM, cISA)
∧ r-equiv(cASM, cISA)
∧ m-equiv(cASM, cISA).

Isabelle: VAMPasm2isaSystem/equivalence.equiv asm isa

Adding a conjunct about devices equality we extend the relation to equivalence of
combined systems on VAMP assembly and ISA levels.

Definition 4.7 (Assembly-ISA equivalence of combined systems) We call a
combined assembly system configuration cASM+DS equivalent to a combined ISA system
configuration cISA+DS if the processor components of the systems are equivalent and the
devices components are equal:

isa-sim-asmDS(cASM+DS,cISA+DS) def=
isa-sim-asm(cASM+DS.cpu, cISA+DS.cpu)

∧ cASM+DS.devs = cISA+DS.devs.

Isabelle: VAMPasm2isaSystem/equivalence dev.equiv asm isa with instr dev

4.1.2 Preconditions to Simulation

In order to succeed with assembly executions that could be simulated by ISA compu-
tations, a number of preconditions have to be satisfied by assembly programs. These
preconditions are defined as predicates over an assembly configuration cASM and a pro-
gram given by its start address addr in the assembly memory and length len. The
preconditions are divided into static and dynamic properties.

Static properties. Static properties could be verified in the initial state without any
execution of the assembly model. It is necessary that the assembly program fits in
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memory of the assembly machine and that the program specified by addr and len is
decodable:

stat-prop(cASM, addr, len) def= addr mod 4 = 0
∧ is-mem-addr(addr + 4 · len− 4)
∧ decodable-π(get-data(cASM.m, addr, len)).

Step properties. First, we require that conditions about absence of self-modification
code and interrupts hold at every step of the assembly program execution:

no-self-mod(cASM,addr, len) def= is-store(instr(cASM)) −→
¬(addr ≤ ls-target(cASM) ∧ ls-target(cASM) < addr + 4 · len),

no-imal(cASM) def= cASM.dpc mod 4 = 0,

no-dmal(cASM) def= is-ls-w(instr(cASM)) −→ ls-target(cASM) mod 4 = 0
∧ is-ls-hw(instr(cASM)) −→ ls-target(cASM) mod 2 = 0.

Next, it must be guaranteed that we always execute an instruction from the program.
This is claimed by the predicate

dpc-in-π(cASM, addr, len) def= addr ≤ cASM.dpc < addr + 4 · len.

Finally, we do not have assembly instructions forbidden by the semantics:

no-trap-rfe(cASM) def= instr(cASM) 6= rfe ∧ instr(cASM) 6= trap(imm).

Altogether, step properties are:

step-prop(cASM, addr, len) def= is-sys-execASM(cASM)
∧ no-self-mod(cASM, addr, len)
∧ no-imal(cASM)
∧ no-dmal(cASM)
∧ dpc-in-π(cASM, addr, len)
∧ no-trap-rfe(cASM).

4.1.3 Simulation without Devices Access

The theorem about simulation of an assembly machine without devices by an ISA ma-
chine with devices is used to reason about assembly programs not accessing devices.

The assembly dynamic properties for this theorem are:

dyn-prop(cASM, addr, len, n) def= ∀ i < n : step-prop(δiASM(cASM), addr, len)

∧ no-dev-touch-step(δiASM(cASM)),

where the predicate

no-dev-touch-step(cASM) def= is-ls(instr(cASM)) −→ is-mem-addr(ls-target(cASM))
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requires the target address of a load/store instruction to lie within the normal processor
memory whenever such instruction is executed.

Ultimately, the assembly initial conditions are defined as follows:

asm-init-cond(cASM, addr, len, n) def= stat-prop(cASM, addr, len)
∧ dyn-prop(cASM, addr, len, n).

Having the initial conditions defined, we can state and prove the correctness theorem
for this case.

Theorem 4.8 (Assembly-ISA simulation without devices access) Let cASM be a
configuration of an assembly machine which executes in n steps a program that occupies
len words of memory starting at the address addr. Let cISA+DS be a configuration of an
ISA combined system, and let seq be its execution sequence. Provided that (i) both ISA
and assembly configurations are valid, (ii) the execution sequence is live and welltyped,
(iii) the initial conditions for assembly execution are fulfilled, and (iv) the assembly-ISA
equivalence holds, there exists the resulting configuration of the combined ISA system
c′ISA+DS achieved in T steps, such that the assembly-ISA equivalence is preserved and
the devices non-interference holds:

isa
√

(cISA+DS.cpu)
∧ asm

√
(cASM)

∧ seq
√

(seq)
∧ asm-init-cond(cASM, addr, len, n)
∧ isa-sim-asm(cASM, cISA+DS.cpu)
−→ ∃ T, c′ISA+DS, c

′
ASM :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ δnASM(cASM) = c′ASM

∧ isa
√

(c′ISA+DS.cpu)
∧ asm

√
(c′ASM)

∧ isa-sim-asm(c′ASM, c
′
ISA+DS.cpu)

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T ).

Isabelle: VAMPasm2isaSystem/correctness isa dev.asm wo dev simulates isa plus dev

Proof. For the proof we choose such number of VAMP ISA with devices steps that the
execution sequence of that length contains as many processor steps as the assembly
machine has made:

proc-steps(seq, T ) = n.

This is because one VAMP ISA step is equivalent one VAMP assembly step.
For induction step we consider three cases of the δISA+DS function (cf. Section 3.4.2).

In case that the current sequence element is of form s = Dev(did, eifi) the devices system
makes an independent external step for the device did. We accumulate such steps to
show that devices do not interfere with the processor or other devices (expressed by
non-interf-dev). If it is the processor’s turn to make a step, s = Proc, we need to show
that device access does not take place. We use for that the no-dev-touch-step property

75



and project it to the ISA level. Thus, the combined system transition function δISA+DS

boils down to the normal VAMP ISA transition function δISA.
For the processor step we first check for possible interrupts. The absence of in-

terrupts on the ISA level is proven using step properties step-prop and the equivalence
between VAMP ISA and VAMP assembly. At the end, we show the instruction semantics
equivalence for one step:

isa-sim-asm(cASM, cISA) −→ isa-sim-asm(δASM(cASM), δwoi
ISA(cISA)).

This is done for each instruction independently. The most complicated cases here are
load and store instructions. The difficulty here is that the memory in VAMP ISA is
modeled in the form that we can read or write always two bit vectors of length 32
simultaneously. The decision which data should be read or written is taken separately
for each of 8 bytes that constitute these two words. The memory model in the assembly
machine is more friendly and features word addressing.

4.1.4 Simulation with Devices Access

The theorem about simulation of an assembly combined system by an ISA combined sys-
tem is shown by reasoning about correctness of assembly programs which communicate
with devices. It is intended to used for verification of devices interacting primitives.

The assembly combined systems dynamic properties for this theorem are:

dyn-propDS(cASM+DS, addr, len, seq, n) def=

∀ i < n : step-prop(δiASM+DS(cASM+DS, seq).cpu, addr, len)

∧ dev-touch-step(δiASM+DS(cASM+DS, seq).cpu),

where the predicate

dev-touch-step(cASM) def=
is-ls(instr(cASM)) ∧ is-dev-addr(ls-target(cASM)) −→ is-ls-w(instr(cASM))

demands that devices are accessed wordwisely.
Thus, the assembly combined system initial conditions are:

asm-init-condDS(cASM+DS, addr, len, seq, n) def= stat-prop(cASM+DS.cpu, addr, len)
∧ dyn-propDS(cASM+DS, addr, len, seq, n).

We continue with the simulation theorem for this case.

Theorem 4.9 (Assembly-ISA simulation with devices access) Let cASM+DS be a
configuration of an assembly combined system which executes in n steps a program that
occupies len words of memory starting at the address addr. Let cISA+DS be a configura-
tion of an ISA combined system, and let seq be their execution sequence. Provided that
(i) both ISA and assembly configurations are valid, (ii) the execution sequence is live and
welltyped, (iii) the initial conditions for assembly combined execution are fulfilled, and
(iv) the assembly-ISA equivalence of combined system holds, there exists the resulting
configuration of the combined ISA system c′ISA+DS achieved in n steps, such that the
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assembly-ISA equivalence of combined system is preserved:

isa
√

(cISA+DS.cpu)
∧ asm

√
(cASM+DS.cpu)

∧ seq
√

(seq, cISA+DS.devs)
∧ asm-init-condDS(cASM+DS, addr, len, seq, n)
∧ isa-sim-asmDS(cASM+DS, cISA+DS)
−→ ∃ c′ISA+DS, c

′
ASM+DS :

δnISA+DS(cISA+DS, seq) = c′ISA+DS

∧ δnASM+DS(cASM+DS, seq) = c′ASM+DS

∧ isa
√

(c′ISA+DS.cpu)
∧ asm

√
(c′ASM+DS.cpu)

∧ isa-sim-asmDS(c′ASM+DS, c
′
ISA+DS).

Isabelle: VAMPasm2isaSystem/correctness dev.asm simulates isa dev

Proof. This theorem is easier than the previous one since we have the same devices
systems on both levels and, therefore we deal with a one-to-one simulation. The essential
subgoals to be proven here is the equivalence of the memory interfaces in bit vector and
natural number representations.

4.2 Simulation of C0 by VAMP Assembly

This section is copied to a large extend from Leinenbach’s thesis.

4.2.1 Memory Layout

A sketch of the memory layout of the C0 compiler in the memory of a VAMP assembly
machine in depicted in Figure 4.1. The memory map of the C0 machine starts with the
assembly code of the compiled program ([66, Definition 7.36]):

codeprog(te, ft, gst(cC0.mem)).

The compiler inserts the initial code at the beginning of the compiled code (cf. [66,
Section 7.5.1]). It is necessary for user programs. However, we will use the compiler for
the kernel code and define the initialization code ourselves. Hence, in this version of the
compiler code init(te, gst, ft) = [].

The code starts at the address PROGBASE, which is a parameter to the C0 compiler
and should be aligned by 4, and occupies

csizeprog(te, gst(cC0.mem), ft) def= |codeprog(te, ft, gst(cC0.mem))|

words ([66, Definition 7.5]). Behind the unused area of size BUBBLEcode follows the global
memory frame starting at address ([66, Definition 7.15]):

ABASEgm
def= abasegm(te, ft, gst(cC0.mem))
def= PROGBASE + 4 · csizeprog(te, gst(cC0.mem), ft) + BUBBLEcode.
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code

global memory frame

frame header
stack frame 0

...

frame header
stack frame |mem.lm| − 1

free stack area

used heap

free heap

PROGBASE
csizeprog(te, gst(cC0.mem), ft)
BUBBLEcode

ABASEgm

asizest(gst(cC0.mem))
BUBBLEgm

ABASElm

ABASEhm

ASIZEmax
hm

asizeheap(hst(cC0.mem))

PROGEND

Figure 4.1: Memory layout of the C0 compiler.

The global memory is followed by an unused area of size BUBBLEgm. The stack of local
memories starts at address ([66, Definition 7.16]):

ABASElm
def= abaselm(te, ft, gst(cC0.mem))
def= abasegm(te, ft, gst(cC0.mem)) + asizest(gst(cC0.mem)) + BUBBLEgm

and grows to the top. The last part of the memory is the heap. The heap starts at address
ABASEhm, which is also a constant parameter to the compiler, and grows to the top as
well. The size of the heap memory is computed by the function asizeheap(hst(cC0.mem))
([66, Definition 7.12]) and is bounded by the constant ASIZEmax

hm . The first free address
behind the program is

PROGEND = ABASEhm + ASIZEmax
hm .

4.2.2 Simulation Relation

The simulation relation for C0 is parameterized with an allocation function of type

Alloc def= Gvar 7→ (N× N).

The allocation function maps g-variables g to pairs alloc(g) = (b, s) of the allocated base
address b for g and the allocated size s of g’s type.

The simulation relation consis :: Tenv×Functable×CC0×Alloc×CASM 7→ B defines
whether a C0 configuration and an assembly configuration are equivalent with respect
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to a given allocation function. It is defined as a conjunction of different individual
consistency properties stated below.

Code consistency. Let te be a type environment, ft a function table, cC0 a C0 config-
uration, and cASM a configuration of the VAMP assembly machine. The code consistency
([66, Definition 8.12]):

consiscode(te, ft, cC0, cASM)

requires that the compiled code of the program codeprog(te, ft, gst(cC0.mem)) is stored at
address PROGBASE in the assembly configuration.

Control consistency. Let te be a type environment, ft be a function table, cC0 a C0
configuration, and cASM a configuration of the VAMP assembly machine. The control
consistency ([66, Definitions 8.13, 8.14]):

consisc(te, ft, cC0, cASM)

requires that the program counters of the assembly machine point to the start address
of the code which has been generated for the head of the current program rest, in case
it is not empty, and that return addresses of all stack frames point directly behind the
code of the function call statements which generated these stack frames.

Allocation consistency. Let te be a type environment, ft a function table, cC0 a
C0 configuration, and alloc an allocation function. The allocation consistency ([66,
Definitions 8.15, 8.16, 8.17]):

consisalloc(te, ft, cC0, alloc)

requires that the allocation function returns for all valid g-variables g meaningful values:
the first component returns the same values as abaseg(te, ft, sc(cC0.mem), g) (cf. [66,
Definition 7.17]) for these variables, and the second component returns their allocated
sizes.

Value consistency. Let cC0 be a C0 configuration, alloc an allocation function, and
cASM a configuration of the VAMP assembly machine. The value consistency ([66, Defi-
nitions 8.18, 8.19]):

consisv(cC0, alloc, cASM)

requires that for all reachable non-pointer g-variables g of elementary type their values
are properly represented in the assembly configuration. This is done by means of the
function vmatch, which compares values in the C0 configuration valueg(cC0.mem, g) and
in the VAMP assembly machine cASM.mword(alloc(g).b).

Pointer consistency. Let cC0 be a C0 configuration, alloc an allocation function, and
cASM a configuration of the VAMP assembly machine. The pointer consistency ([66,
Definitions 8.20, 8.21]):

consisp(cC0, alloc, cASM)

is similar to value consistency but a different notion of equality is used: vmatchptr.
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Register consistency. Let te be a type environment, ft a function table, cC0 a C0 con-
figuration, alloc an allocation function, and cASM a configuration of the VAMP assembly
machine. The register consistency ([66, Definition 8.22]):

consisr(te, ft, cC0, alloc, cASM)

argues about the content of some special registers: register rsbase stores the base ad-
dress of the global memory frame abasegm(te, ft, gst(cC0.mem)), register rhtop stores the
first unused address on the heap ABASEhm + asizeheap(hst(cC0.mem)), and register rlframe

stores the base address of the current (top) stack frame abaselm(te, ft, sc(cC0.mem),
|cC0.mem.lm| − 1).

Frame header consistency. Let te be a type environment, ft a function table, cC0 a
C0 configuration, alloc an allocation function, and cASM a configuration of the VAMP
assembly machine. The frame header consistency ([66, Definition 8.23]):

consisfh(te, ft, cC0, alloc, cASM)

requires that for all i the previous stack pointer in the frame header of the i-th lo-
cal stack frame contains the allocated base address of the frame i − 1: abaselm(te,
ft, sc(cC0.mem), i−1) and that the return destination contains the allocated base address
of the i-th return destination alloc(cC0.mem.lm[[i]].res).b.

Altogether. The data consistency is defined as follows ([66, Definition 8.24]):

consisd(te, ft, cC0, alloc, cASM) def= consisalloc(te, ft, cC0, alloc)
∧ consisv(cC0, alloc, cASM)
∧ consisp(cC0, alloc, cASM)
∧ consisr(te, ft, cC0, alloc, cASM)
∧ consisfh(te, ft, alloc, cASM)

Ultimately, the C0 consistency is ([66, Definition 8.11]):

consis(te, ft, cC0, alloc, cASM) def= consiscode(te, ft, cC0, cASM)
∧ consisc(te, ft, cC0, cASM)
∧ consisd(te, ft, cC0, alloc, cASM).

4.2.3 Resources Restriction

Besides the requirement that the compiled code fits into memory an important proof goal
of the compiler correctness proof will be that during execution the compiled program
does not use more memory than it is available on the target machine. The following
predicates check this.

Enough stack available. Let te be a type environment, ft a function table, and cC0

a C0 configuration. The predicate ([66, Definition 8.25])

availstack(te, ft, cC0)

tests whether the topmost stack frame ends below the heap base:

abaselm(te, ft, sc(cC0.mem), |cC0.mem.lm|) ≤ ABASEhm.
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Enough heap available. Let cC0 be a C0 configuration and let addrmax denote the
maximum address in the program’s address space. The predicate ([66, Definition 8.26])

availheap(cC0)

tests whether the allocated heap size is appropriately bounded:

asizeheap(hst(cC0.mem)) ≤ ASIZEmax
hm .

Sufficient memory. Both predicates are combined into the sufficient memory avail-
able predicate ([66, Definition 8.26]):

availmem(te, ft, cC0) def= availstack(te, ft, cC0)
∧ availheap(cC0).

4.2.4 Dynamic Properties

The necessary dynamic properties are the absence of assembly statements and the suf-
ficient memory requirement:

dyn-C0-props(te, ft, cC0, n) def=

∀ i < n : δiC0(te, ft, cC0) = bciC0c −→ ¬is-asm(stmt(ciC0))

∧ ∀ i ≤ n : δiC0(te, ft, cC0) = bciC0c −→ availmem(te, ft, ciC0).

4.2.5 Assembly Execution Properties

Leinenbach uses at this place slightly different definitions. Essentially, they are similar
to those that are used in the section 4.1 for assembly correctness. Due to simplicity
we omit equivalence proofs between them. Only one definition has to be additionally
introduced. It guarantees that all changes are done in some given memory range:

accessed-range :: CASM × N× N 7→ B,

accessed-range(cASM, startdata, enddata) def=
is-ls(instr(cASM))

−→ startdata ≤ ls-target(cASM)
∧ ls-target(cASM) + ls-width(cASM) ≤ enddata.

Ultimately, the predicate

asm-exec-props :: CASM × N× N× N× N× N 7→ B

holds if n VAMP assembly steps starting from configuration cASM would not generate
interrupts on the ISA level. Here the code range of an assembly program is given by
the start address basecode and its size lencode. The range of addresses which the program
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accesses are given by its start address startdata and end address enddata:

asm-exec-props(cASM, basecode, lencode, startdata, enddata, n) def=

∀ i < n : no-self-mod(δiASM(cASM), basecode, lencode)

∧ no-imal(δiASM(cASM))

∧ no-dmal(δiASM(cASM))

∧ dpc-in-π(δiASM(cASM), basecode, lencode)

∧ no-trap-rfe(δiASM(cASM))

∧ δi+1
ASM(cASM).spr = cASM.spr

∧ accessed-range(δiASM(cASM), startdata, enddata).

4.2.6 Simulation Theorem

Now we present the top-level correctness theorem of the C0 compiler.

Theorem 4.10 (C0-assembly simulation) Assume that (i) the initial C0 program
is translatable, (ii) the current valid C0 configuration cC0 and some valid assembly
machine cASM are consistent with respect to an allocation function alloc, (iii) the C0
computation starting from this configuration, does not produce a None configuration
till the step n, and (iv) during these n steps we execute only non-assembly statements
having enough stack and heap memory, then there exists a number of VAMP assembly
model steps T , such that by executing this number of steps starting from the given
assembly configuration we transit into a new valid configuration c′ASM. Moreover, there
exists a new allocation function alloc′, such that (i) the C0 machine after n steps c′C0 is
valid, (ii) the consistency relation holds, and (iii) the execution of the compiled code of
the executed statements will not produce any interrupts. Formally:

(te, ft, gst(cC0.mem)) ∈ xltblprog

∧ consis(te, ft, cC0, alloc, cASM)
∧ asm

√
(cASM)

∧ cC0 ∈ C0′
√

(te, ft)
∧ δnC0(te, ft, cC0) = bc′C0c
∧ dyn-C0-props(te, ft, cC0, n)
−→ ∃ T, alloc′, c′ASM :

δTASM(cASM) = c′ASM

∧ asm
√

(c′ASM)
∧ c′C0 ∈ C0′

√
(te, ft)

∧ consis(te, ft, c′C0, alloc′, c′ASM)
∧ asm-exec-props(cASM, PROGBASE,

csizeprog(te, gst(cC0.mem), ft),
abasegm(te, ft, gst(cC0.mem)), PROGEND, T ).

Isabelle: C0SS2VAMPisaSystem/C0SS2VAMPasm.c0 compiler correct

The theorem is proven by induction on n using the theorem for correctness of the
compiler’s induction step and many other lemmas from [66].
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4.3 Simulation of C0 by VAMP ISA

In this section we combine the compiler correctness theorem with the equivalence the-
orem between VAMP assembly and ISA. As a result we obtain an overall correctness
theorem of a ministack — the system comprising three semantical layers. By this we get
a number of benefits: in many places we will apply only one theorem instead of two as
well as save effort on proving one theorem’s assumptions which follow from conclusions
of the other.

4.3.1 Simulation Relation

The new simulation relation represents transitivity of the VAMPs equivalence and the
compiler consistency. We hide the compiler allocation function inside the ministack
relation since the range of its values could be computed from the C0 configuration by
the function abaseg (cf. allocation consistency):

C0-sim-isa :: Tenv× Functable× CC0 × CISA 7→ B,

C0-sim-isa(te, ft, cC0, cISA) def= ∃ cASM, alloc : asm
√

(cASM)
∧ consis(te, ft, cC0, alloc, cASM)
∧ isa-sim-asm(cASM, cISA).

4.3.2 Additional Conclusions

In order to effectively apply the simulation theorem between C0 and VAMP ISA in the
context of systems verification we extend the theorem’s conclusion with a number of
additional properties. Basically, they state that certain components of the system stay
unchanged during the C0 execution. For this we have to define two additional predicates.

First of all we introduce a predicate which claims that no special registers are mod-
ified:

no-mod-spr :: RegfISA × RegfISA 7→ B,

no-mod-spr(spr, spr′) def= ∀ r ∈ sprsISA : spr′(r) = spr(r).

Second, the following predicate states that only the part of the memory between the
addresses abegin and aend is modified:

only-mod-mem :: MemISA ×MemISA × N× N 7→ B,

only-mod-mem(m,m′, abegin, aend) def=
∀ a : a < abegin ∨ aend ≤ a −→ m′word(a) = mword(a).

4.3.3 Simulation Theorem

The theorem about simulation between the C0 and VAMP ISA levels contains all as-
sumptions from the C0-assembly simulation as well as restriction on the execution se-
quence for the external environment. We do not have devices on the C0 level. Hence, we
combine compiler correctness with the assembly-ISA simulation without devices access
(Theorem 4.8).

Theorem 4.11 (C0-ISA simulation) Assume that (i) the initial C0 program is trans-
latable, (ii) the C0-ISA relation holds for the current valid C0 configuration cC0 and some
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valid VAMP ISA machine cISA+DS.cpu being in the system mode, (iii) the C0 compu-
tation starting from this configuration, does not produce a None configuration up to
the step n, (iv) during these n steps we execute only non-assembly statements having
enough stack and heap memory, (v) the last C0 address PROGEND does not lie in the
devices range, and (vi) the execution sequence is live and welltyped, then there exists
a number of ISA with devices steps T during which the ISA combined system transits
to a valid resulting state c′ISA+DS. Moreover, for it and a corresponding valid C0 con-
figuration c′C0 the following holds: (i) the C0-ISA relation is preserved, (ii) the special
purpose registers are unchanged, (iii) only the memory, which belongs to the C0 program
is possibly changed, and (iv) the devices non-interference holds. Formally:

(te, ft, gst(cC0.mem)) ∈ xltblprog

∧ C0-sim-isa(te, ft, cC0, cISA+DS.cpu)
∧ isa

√
(cISA+DS.cpu)

∧ cC0 ∈ C0′
√

(te, ft)
∧ is-sys-execISA(cISA+DS.cpu)
∧ δnC0(te, ft, cC0) = bc′C0c
∧ is-mem-addr(PROGEND)
∧ dyn-C0-props(te, ft, cC0, n)
∧ seq

√
(seq, cISA+DS.devs)

−→ ∃ T, c′ISA+DS :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ isa
√

(c′ISA+DS.cpu)
∧ c′C0 ∈ C0′

√
(te, ft)

∧ C0-sim-isa(te, ft, c′C0, c
′
ISA+DS.cpu)

∧ no-mod-spr(cISA+DS.cpu.spr, c′ISA+DS.cpu.spr)
∧ only-mod-mem(cISA+DS.cpu.m, c′ISA+DS.cpu.m,

abasegm(te, ft, gst(cC0.mem)), PROGEND)
∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T ).

Isabelle: C0SS2VAMPisaSystem/mini stack wo dev.C0 mini stack isa

Proof. By unfolding the predicate C0-sim-isa we obtain some assembly configuration
cASM with the following properties:

asm
√

(cASM)
∧ consis(te, ft, cC0, alloc, cASM)
∧ isa-sim-asm(cASM, cISA+DS.cpu).

Now we have all necessary assumptions to apply the C0-correctness theorem (Theo-
rem 4.10). After this we have the following: a new assembly configuration c′ASM, an
allocation function alloc′, and a number of assembly steps TASM with the following prop-
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erties:

δ
TASM
ASM (cASM) = c′ASM

∧ asm
√

(c′ASM)
∧ consis(te, ft, c′C0, alloc′, c′ASM)
∧ asm-exec-props(cASM, PROGBASE,

csizeprog(te, gst(cC0.mem), ft),
abasegm(te, ft, gst(cC0.mem)), PROGEND, TASM).

In order to apply the assembly-ISA simulation theorem without device access (Theo-
rem 4.8) we instantiate the number of steps n with TASM, the code start address addr
with PROGBASE, and the code length len with csizeprog(te, gst(cC0.mem), ft). The only
condition we have to show is:

asm-init-cond(cASM, PROGBASE, csizeprog(te, gst(cC0.mem), ft), TASM).

First, we prove its static properties conjunct:

stat-prop(cASM, PROGBASE, csizeprog(te, gst(cC0.mem), ft)).

Subgoal 1. PROGBASE mod 4: follows from definition of the constant.

Subgoal 2. is-mem-addr(PROGBASE+4·csizeprog(te, gst(cC0.mem), ft)−4): from the trans-
latable program predicate we conclude that

PROGBASE + 4 · csizeprog(te, gst(cC0.mem), ft)− 4 < 225 − 4
< 〈117015〉
= DEVICES BORDER

−→ is-mem-addr.

Subgoal 3. decodable-π(get-data(cASM.m, PROGBASE, csizeprog(te, gst(cC0.mem), ft))): fol-
lows from the code consistency consiscode.

Second, we prove the dynamic properties:

dyn-prop(cASM, PROGBASE, csizeprog(te, gst(cC0.mem), ft), TASM),

where for every intermediate assembly configuration ciASM = δiASM(cASM) with i < TASM

we have to show the following:

Subgoal 4. is-sys-execASM(ciASM): for i = 0 we can show that

isa-sim-asm(cASM, cISA+DS.cpu)
−→ is-sys-execASM(cASM) = is-sys-execISA(cISA+DS.cpu),

for 0 < i using asm-exec-props we have

ciASM.spr = cASM.spr.

Thus, the contents of the mode register and the status register stay the same.
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Subgoal 5. dpc-in-π(ciASM, PROGBASE, csizeprog(te, gst(cC0.mem), ft)), no-dmal(ciASM),
no-imal(ciASM), no-self-mod(ciASM, PROGBASE, csizeprog(te, gst(cC0.mem), ft)), and
no-trap-rfe(ciASM): follow from the predicate asm-exec-props.

Subgoal 6. no-dev-touch-step(ciASM): from the predicate asm-exec-props we have that

accessed-range(ciASM, abasegm(te, ft, gst(cC0.mem)), PROGEND).

Unfolding this definition and using the theorem’s assumption PROGEND ≤
DEVICES BORDER we have in case of a memory access instruction is-ls(instr(ciASM))
the following:

ls-target(ciASM) ≤ PROGEND− ls-width(ciASM)
≤ PROGEND

< DEVICES BORDER

−→ is-mem-addr.

Now we have a new ISA combined system configuration c′ISA+DS and a number of
ISA steps TISA with the following properties:

δ
TISA
ISA+DS(cISA+DS, seq) = c′ISA+DS

∧ isa
√

(c′ISA+DS.cpu)
∧ isa-sim-asm(c′ASM, c

′
ISA+DS.cpu)

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, TISA).

To show the conclusion of the theorem we instantiate T with TISA, alloc′ with alloc′,
and c′ISA+DS with c′ISA+DS. We already have an ISA combined system execution, ISA
validity, devices non-interference, and C0-ISA simulation via c′ASM. The equality of
special purpose registers is shown as follows:

spr-equiv(cASM.spr, cISA+DS.cpu.spr)
∧ spr-equiv(c′ASM.spr, c′ISA+DS.cpu.spr)
∧ c′ASM.spr = cASM.spr
−→ ∀ r ∈ sprsISA : c′ISA+DS.cpu.spr(r) = cISA+DS.cpu.spr(r).

Finally, the arguments for the conclusion about the memory are as follows:

m-equiv(cASM, cISA+DS.cpu)
∧ m-equiv(c′ASM, c

′
ISA+DS.cpu)

∧ ∀ i < TASM : accessed-range(δiASM(cASM),
abasegm(te, ft, gst(cC0.mem)), PROGEND)

−→ only-mod-mem(c′ISA+DS.cpu.m, cISA+DS.cpu.m,
abasegm(te, ft, gst(cC0.mem)), PROGEND).
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In this chapter we discuss how one can formally define an operating system mi-
crokernel. We follow the paper-and-pencil model of communicating virtual machines
(CVM) introduced in [41]. CVM is a computational model for concurrent user processes
interacting with a generic microkernel and devices. CVM is implemented in C0A as a
framework [57] featuring virtual memory [50], demand paging [8], memory management,
and low-level inter-process and devices communications [5]. Most of these features are
implemented in the form of so called microkernel primitives [106]. Primitives are func-
tions with inline assembly parts realizing basic operations which constitute the kernel’s
functionality. The framework can be linked on the source code level with an abstract
kernel, an interface to users, in order to obtain a concrete kernel, a program that can be
translated and run on a target machine, e.g., a VAMP processor. In this chapter we elab-
orate on details how the CVM framework is formally defined. As CVM is parametrized
with an abstract kernel its computations do not depend on particular shapes of abstract
kernels. We therefore present only general requirements to it. Two different abstract
kernels are used in Verisoft: a general purpose microkernel VAMOS which is inspired by
but is not very close to L4, and an OSEKtime-like microkernel OLOS which is used in
a distributed automotive real-time system establishing eCall functionality. For details
on VAMOS consult the theses of Daum [30] and Dörenbächer [34]. OLOS is described
in the thesis of Knapp [64].

We start this chapter by an overview of the CVM model: Section 5.1 presents layers
of CVM and describes how the target machine, user processes, and the kernel can be
formally defined by the models introduced in Chapter 3. We continue by defining CVM
formally. In Section 5.2 we elaborate on the CVM configurations and in Section 5.3
on the formal CVM semantics. The semantics of CVM distinguishes cases of a kernel
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and user-processes execution. The case of a kernel execution comprises, among others,
a primitive execution. Section 5.4 is devoted to a formal description of the primitives’
effects.

5.1 Overview

In this section we give a brief overview of the computational model CVM, its computa-
tions and the target architecture.

Layering is a classical approach in computer science to handle complexity of systems
design. A monolithic computer system is organized in a number of layers, such that each
upper layer is an abstraction of the the one below. Chapter 3 provides a good example:
VAMP assembly is an abstraction of VAMP ISA, though, it can be abstracted itself
to C0 small-step semantics. Correctness of such abstractions is justified by simulation
theorems between adjacent layers — we state such theorems in Chapter 4.

In Verisoft the same layering approach has been taken to formulate and prove a
correctness theorem for an operating-system microkernel. Gargano et al. introduce
in [41] an abstract parallel model of computation called communicating virtual machines
(CVM). This model formalizes concurrent user processes interacting with a kernel and
devices. Interleaved executions of user processes and the kernel proceed on an underlying
hardware modeled by a VAMP ISA combined system. We refer to this hardware model
as the CVM target layer. Next, we elaborate on the CVM target layer and on the layers
comprised by CVM itself.

5.1.1 The Target Layer of CVM

The main purpose of a microkernel is to provide multiple users access to shared com-
putational resources like physical memory and devices. Therefore, a particular target
hardware model has to be taken into consideration when designing a microkernel or a
microkernel framework. The target hardware architecture of a microkernel considered in
this thesis is the VAMP ISA with devices. Below, we briefly highlight how this hardware
platform allows us to implement some fundamental features of a microkernel.

Physical memory sharing is realized in CVM by memory virtualization: a kernel
ensures that each user process has a notion of its own large address space. User processes
access memory by virtual addresses which are translated to physical ones by a memory
management unit on the hardware side, or by the kernel on the software. We allow
address spaces of user processes to exceed real memory of the physical machine. This
feature is supported by means of demand paging: we partition available physical memory
into small consecutive portions of data, called pages, which are stored either in fast but
strongly limited in size physical memory, or in large but slower auxiliary memory, called
swap memory. We store the swap memory on a hard disk. The address translation
algorithm of VAMP can determine where a certain page lies. In case the desired pages
resides in the physical memory the kernel can provide an immediate access. Otherwise,
the page is on the hard disk. The processor signals it by raising a page-fault interrupt.
The kernel reacts to this interrupt by transferring the page from the hard disk to the
main memory.

Communication of user processes with devices is supported by memory-mapped de-
vices of the VAMP combined system. When a user wants to talk to a device it signals it
to the kernel by invoking a special system call. The user specifies an address correspond-
ing to the port of a needed device. The kernel translates this address into a physical one
and writes into the part of the physical memory corresponding to the device port. The
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transition function of the VAMP ISA with devices model takes care that the written
data is transferred to the device.

As the VAMP ISA with devices model represents real physical computational re-
sources we will refer to it further in the thesis as the physical combined system. A
processor component of this system will be called a physical machine.

5.1.2 User Processes

[41] describes virtual machines as a model for user processes. In this paper virtual ma-
chines are VAMP ISA processors with uniform virtual memories, no address translation,
and undefined interrupt mechanism. Conceptually this abstraction corresponds to the
model of VAMP assembly defined in Section 3.2 with the only difference in data repre-
sentation. However, it is very unlikely that someone prefers to program a user processes
on the bit-vector level rather than on an assembly level where data is represented as
integer numbers. Thus, we model user processes with the VAMP assembly semantics.

5.1.3 Layers of CVM

CVM provides a microkernel architecture consisting of two layers. The general idea
behind this layering is to separate a kernel into two parts: the one that can be purely
implemented in a high-level programming language, say C0, and the other that in-
evitably contains inline assembly code because it provides operations which access hard-
ware registers, devices, and physical memory parts which are not accessibly through C0
variables.

The upper layer, called an abstract kernel, is a C0 program. Its computations are
modeled by the C0 small-step semantics. Besides ordinary C0 functions the abstract
kernel can call a number of special functions, called CVM primitives. These functions
have no implementation within the abstract kernel, and are therefore called externally,
e.g., by means of the esCall statement. CVM primitives can alter states of user processes
as well as target-hardware registers and devices. They implement basic means needed
for a microkernel programmer: copy data between processes, manage size of virtual
memory given to processes, send data to devices, etc. As memories of user processes
and hardware registers lay beyond the visibility of kernel’s C0 variables the primitives
necessarily contain inline assembly code.

The kernel layer which contains the implementation of the primitives is a C0A pro-
gram called the CVM framework. Besides primitives, the CVM framework contains
implementation of process-context switch procedures [107], an elementary dispatcher,
handlers for page faults [8, 105] as well as elementary hard-disk drivers [7, 5]. The
framework takes care of an abstract kernel invocation. For this the CVM framework
contains a declaration of an external call of an abstract-kernel dispatcher.

Because of external calls neither an abstract kernel nor the CVM framework can run
standalone on a target hardware. In order to obtain an executable program they have
to be linked together. The result of this linking is called a concrete kernel.

5.1.4 CVM Primitives

Primitives are basic means that CVM provides to implementors of operating-system
services. Table 5.1 briefly describes 14 primitives comprised by CVM1.

1The last two primitives — cvm get vm word and cvm set vm word — were implemented in an in-
termediate release of the CVM code. They have been verified in the scope of this thesis, but, however,
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Table 5.1: CVM primitives

Name Description
cvm reset() initializes the memory and the registers of a process
cvm clone() clones a process
cvm alloc() gives additional memory to a process
cvm free() releases a given amount of the memory of a process
cvm copy() copies data between processes
cvm get vm gpr() reads a register of a process
cvm set vm gpr() writes a register of a process
cvm virt io() copies data between a device and a process
cvm in word() reads a word from a device
cvm out word() writes a word to a device
cvm setmask() masks external interrupts
cvm load os() load a process image from the boot region
cvm get vm word() reads a word from the virtual memory of a process
cvm set vm word() writes a word to the virtual memory of a process

5.1.5 Computations

The state space of the CVM which is formally defined further in Section 5.2 comprises
components for user processes, the abstract kernel, and devices. The transition function
of the CVM model formally defined in Section 5.3 distinguishes, therefore, three top-level
cases of an execution corresponding to the mentioned CVM components.

The case distinction is guided by two variables: an execution-sequence element and
a current-process identifier. The execution-sequence element is a parameter of the CVM
transition function. It defines the first branch of the transition function: whether the
devices make a step or not. If the devices do not make a step we analyze the current-
process identifier and determine whether the kernel or one of users makes progress. The
current-process identifier is comprised by the CVM state. We will call these three cases
of an execution, a devices step, a kernel step, and a user step, respectively.

The transition function of CVM has two parameters: a CVM state and an execution-
sequence element. In case the execution-sequence element corresponds to some device,
it comprises inputs from the external environment for this device. The step function
returns an updated CVM state2.

Devices step. A devices step boils down to an external step of the device specified by
the execution-sequence element. Recall from Section 3.3 that an external step means a
step taken as a response to an input generated by the external environment. The effect
of a device step is to update the devices component of the CVM model.

Kernel step. If the current-process identifier component of the CVM model has a
special value corresponding to the kernel process then a kernel step is taken. Kernel
steps come in three flavors: (i) the kernel stays in the idle state, (ii) the kernel finishes

excluded from the CVM’s latest version.
2In the formal theories the CVM step function additionally returns outputs to the external envi-

ronment. We do not treat them in this document.

90



kernel
init

abs
kernel
stmts

primitives
execution

switch to
interrupts

enable

waiting
for

interrupts

switch
to user

user step

not primitive,
not kernel end

primitive

kernel end,
no users

kernel end,
next user

no interrupts

interrupt

no interrupts

interrupt

reset

Figure 5.1: States and transitions of CVM.

its execution by switching to the idle state or to a user process, and (iii) the kernel
performs a step of the abstract kernel component. The last step distinguishes between
an ordinary C0 step of the abstract kernel and a primitive execution. The primitive
execution occurs when the abstract kernel wants to invoke one of the CVM primitives.
However, primitives are only declared in the code of the abstract kernel and called
externally. Recall from Section 3.5 that the transition function of the C0 small-step
semantics does not define effects of the external-call statement. Therefore a special
treatment of such calls is required. For the case of a primitive invocation the CVM
transition function defines which effect the primitive has on the user processes and/or
the kernel.

User step. In case the current-process identifier has some value different from the one
that corresponds to the kernel, the user process specified by the identifier makes a step.
A user step distinguishes three cases: (i) an uninterrupted step, (ii) an interrupted step
with an abort of user execution, and (iii) a step with interrupt which nevertheless allows
us to perform a step of the user machine before interrupt handling. In the first case the
step boils down to an update of the user process configuration by the VAMP assembly
transition function. In case an interrupt occurs during the user step, the user has to be
suspended and the kernel has to be invoked. The kernel invocation is required in order
to handle the interrupt. The actions taken in the third case are simply a composition
of the first and the second case.

The states and transitions of the CVM configuration excluding the devices are re-
flected in Figure 5.1.

5.2 Configurations

In this section we introduce a formal definition of the CVM model configurations and
the initial configuration of CVM.

We denote the number of processes including the kernel that are allowed to run in
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our system by the constant PID MAX. We set

PID MAX
def= 128.

For identifiers of user processes we introduce the following data type

Procnum def= {1..PID MAX− 1}.

Altogether user processes of the system are modeled as a mapping from process
identifiers to VAMP assembly configurations. We use the following data type for that:

Userprocs def= Procnum 7→ CASM.

Configurations cCVM of the Communication Virtual Machines model are represented
by the the record CCVM which has the following components:

• ak :: Cmono
C0 : the configuration of the abstract kernel (including a type environment

and a function table),

• ups :: Userprocs: the mapping of user processes,

• ds :: CDS: the configuration of the devices system,

• cup :: Procnum⊥: the current-process identifier, and

• sr :: N, the status-register content used as a mask for interrupts.

The abstract kernel is modeled by the monolithic C0 small-step semantics configu-
ration. Each user process is modeled by the VAMP assembly semantics. Configurations
of the CVM model are by no means restricted to any particular instantiation of the
devices system component. However, we will instantiate the devices-system component
with the devices system of the underlying physical combined system from which the
swap hard disk is removed. The identifier of a current process is modeled by option type
Procnum⊥: the value ⊥ corresponds to the kernel while any value pid which belongs
to the set Procnum corresponds to the process with number pid. The status register
component represent the status register shared between the user processes. This design
decision was taken due to the following reason.

The status register in VAMP ISA and assembly models is used to store interrupt
masks. In particular, it is used to mask out interrupts from devices. Consider a scenario
in which some user pid1 masks out all devices but one. Let did be the identifier of this
unmasked device. By this, the user pid1 claims that it waits for an interrupt from the
device did. The user processes are scheduled according to some policy, and eventually
user pid1 will be suspended while some other user pid2 is resumed. During the execution
of the process pid2 the device did may produce an interrupt. However, it might be that
the process pid2 masks this interrupt out. If all other process do so as well, the process
pid1 will never see an interrupt from the desired device. By making the status register
shared between the user processes we avoid such scenarios.

5.2.1 Abstract Kernel Program

Execution of the CVM semantics is parametrized with an abstract kernel code. It will be
passed as an argument to many CVM-related definitions further in the thesis, e.g., the
definition of the initial CVM configuration. We denote the abstract kernel C0 program
as πAK.
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5.2.2 Initial Configuration

We start discussing the initial configuration of the CVM model by defining initial values
of its components.

Initial Abstract Kernel

The standard approach of C0 semantics to create an initial local stack and a program
rest is as follows. The local stack consists of one frame corresponding to the frame of
the main function, the program rest is the body of the main function (except for the
last return statement). If we choose the abstract-kernel dispatcher as the main function
this does not fit our needs because we lose the last statement in the abstract kernel
and cannot get the result of the abstract kernel execution. That is why, we artificially
create a frame with only one variable of name that is not used neither in abstract kernel
nor in CVM implementation (abs kernel res). We define the program rest as a call to
dispatcher kernel() with abs kernel res as a return variable.

The abstract-kernel dispatcher function has two formal parameters corresponding to
the values of exceptional cause and exceptional data registers. The abstract kernel uses
these values to proceed with interrupts and system calls. Below we define a function for
the program rest of the abstract kernel. We will use it every time we need to obtain a
kernel configuration after an interrupt signal. It is used in the definition of the initial
CVM configuration as well.

Definition 5.1 (Initial program rest of the abstract kernel) Let eca and edata
be natural numbers. The initial program rest of the abstract kernel is defined with the
function

akprog :: N× N 7→ Stmt,

akprog(eca, edata) def= sCall(abs kernel res,

dispatcher kernel,

[lit(unsgnd(eca)), lit(unsgnd(edata))],
0).

Isabelle: cvm/kernel step.abs kernel call stmt

The initial local-memory stack of the abstract kernel contains only a single frame
with the variable abs kernel res. We do not care about the value of this variable as
well as about the return g-variable of the frame.

Definition 5.2 (Initial local-memory stack of the abstract kernel) The initial
value of the single frame in the local-memory stack of the abstract kernel is defined by
the constant akframe :: Mframe:

akframe.ct = A,

akframe.st = [(abs kernel res, unsgndT)],
akframe.init = ∅.

The initial local-memory stack of the abstract kernel is defined by the constant akstack ::
Mframe×Gvar∗:

akstack
def= [(akframe,A)].

Isabelle: cvm/kernel step.abs kernel stack
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With the help of Definitions 5.1 and 5.2 we introduce the function which takes some
C0 small-step semantics configuration of the abstract kernel and transforms its local-
memory stack and program rest to their initial states. We call this process start of the
abstract kernel.

Definition 5.3 (Start of the abstract kernel) Let ak be a C0 small-step semantics
configuration of the abstract kernel and let eca and edata be natural numbers. The
function

start-ak :: Cmono
C0 × N× N 7→ Cmono

C0 ,

start-ak(ak, eca, edata) def= ak′

yields the updated configuration ak′ by coping all components of the C0 small-step
semantics configuration from ak except for the local-memory stack and program rest
which are set to their initial values:

ak′.mem.lm = akstack,

ak′.prog = akprog(eca, edata).

Isabelle: cvm/kernel step.start abs kernel

Finally, we can define the initial configuration of the abstract kernel. For this we
construct a C0 small-step semantics configuration with an arbitrary program rest and
local-memory stack. The global- and heap-memory frames of this configuration are set
to their initial values by means of the function defined in Section 3.5.5. We start the
abstract kernel from this configuration and by this obtain the initial configuration of the
abstract kernel.

Definition 5.4 (Initial configuration of the abstract kernel) Let ĉ be a monolithic
C0 small-step semantics configuration, such that:

ĉ.te = πAK.te,
ĉ.ft = πAK.ft,
ĉ.mem.gm = initgm(πAK.gst),
ĉ.mem.lm = A,

ĉ.mem.hm = inithm,

ĉ.prog = A.

The initial configuration of the abstract kernel is constructed by means of the following
function:

akinit :: ΠC0 7→ Cmono
C0 ,

akinit(πAK) def= start-ak(ĉ, 1, 0).

Isabelle: cvm/cvm correct/cvm init.init cvm

Note, that the values of eca and edata parameters of the function start-ak correspond
to the reset interrupt.
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Initial User Processes

In the initial state a user process has its program counters as well as all general-purpose
registers set to zero values. The memory is arbitrary. Initialization of the special-purpose
registers is more involved.

• The register sr is set to 8254 = 〈01810000000111110〉 which masks out all interrupts
except for the illegal, misalignment, page faults, trap, and timer. All of these
interrupts except for the timer are unmaskable; we do not allow to mask the timer
interrupt in order to guarantee liveness of the system.

• The register pto is set to 1024 + (pid − 1) · 9 where pid is a process-identifier —
this distributes page-table origins across the page table space with equal segments
between the origins of each two consecutive processes. To implement 4GB of
virtual memory the page tables of user processes altogether should contain 220

entries or 210 pages of entries. Initially this provides 8 pages for each process. To
align page tables of each process to page borders we add additionally one page to
each process, i.e., 9.

• The register ptl is set to −1 which denotes that no process has allocated virtual
memory.

• The register mode is set to 1 which correspond to the user mode.

• All other special-purpose registers are set to zero.

The initial configuration of a user processes is introduced formally in the following
definition.

Definition 5.5 (Initial configuration of the user processes) The initial configu-
ration of the user processes

upsinit :: Userprocs

is obtained by initializing all processes following the text above:

upsinit(pid).dpc = 0,
upsinit(pid).pc = 0,

upsinit(pid).gpr = 032,

upsinit(pid).spr[r] =



8254 if r = sr
1024 + (pid− 1) · 9 if r = pto
−1 if r = ptl
1 if r = mode
0 otherwise

,

upsinit(pid).m = A.

Isabelle: cvm/cvm correct/cvm init.init process

Initial Devices

Naturally, after a computer power up we know nothing about states of the devices. The
only requirement imposed by the CVM model is that there must be no swap hard disk
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because the swapping is invisible in the model. Thus, we define the initial state of the
devices system by means of the function which takes some configuration of the devices
system and removes the swap hard disk from it. We denote the position (index) of the
hard disk by the constant SWAP DID which could be instantiated later according to a
particular CVM implementation.

Definition 5.6 (Initial configuration of the devices system) Let ds be a devices
system. The initial configuration of the devices system in the CVM model is obtained
by making the swap hard disk an illegal device:

dsinit :: CDS 7→ CDS,

dsinit(ds) def= ds′,

such that

ds′(did) =

{
idle-dev if did = SWAP DID

ds(did) otherwise
.

Isabelle: cvm/cvm correct/cvm init.init dev

Altogether

Exploiting the definitions of initial configurations of the individual CVM components
we are able to define the initial configuration of the whole CVM. Initial configurations
of the abstract kernel, user processes, and devices system are stated with the help of
Definitions 5.4, 5.5, and 5.6, respectively. The current-process identifier is set to ⊥ while
the value of the status register component is set to 8254 due to the same reasons as in
Definition 5.5.

Definition 5.7 (Initial CVM configuration) Let ds be a devices system. The initial
configuration c0CVM is obtained by means of the function

cvminit :: ΠC0 × CDS 7→ CCVM,

cvminit(πAK, ds) def= c0CVM,

such that
c0CVM.ak = akinit(πAK),

c0CVM.ups = upsinit,

c0CVM.ds = dsinit(ds),

c0CVM.cup = ⊥,
c0CVM.sr = 8254.

Isabelle: cvm/cvm correct/cvm init.init cvm sys

5.3 Semantics

This section formally defines the transition function of the CVM model. We start the
section by introducing interrupts to the VAMP assembly model which we use to define
user processes. The transition function of the CVM model distinguishes three cases: a
user step, a kernel step, and a devices step. We proceed by formalizing each of the cases.
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5.3.1 Dealing with Interrupts

Recall from Section 3.2 that the VAMP assembly model lacks interrupts. The decision
not to integrate an interrupt mechanism into this model is made because all assembly-
written system-software we treat in the project do not produce unwanted interrupts.
However we decided to model user processes by means of the VAMP assembly semantics
as well. In general, we do not know what code a user wants to execute — a user program
easily may produce an interrupt. Because of that we introduce interrupts into the VAMP
assembly model.

Interrupt Signals

In the following we define predicates over VAMP assembly configurations cASM which
denote that a particular interrupt takes place. The definitions are stated in the same way
as in the formal specification of the VAMP ISA model and the respective equivalence
theorems are proven. A general idea behind the definitions is that interrupt signals are
ordered according to their indexes (cf. Table 3.3): an interrupt with index j is defined
as an absence of all interrupts with indices i < j plus an essential condition for the
interrupt j.

Instruction misalignment. In Section 3.2 we have already defined the predicate
no-imal(cASM) which denotes that no instruction misalignment occurs in the configura-
tion cASM. Negating this predicate gives us the definition for an instruction misalignment
interrupt:

is-imalASM(cASM) def= ¬no-imal(cASM).

Page-table length exception on fetch. In case there is an attempt to fetch an
instruction from a memory address beyond the amount of available virtual memory a
page-table length exception on fetch (PTL exception on fetch, shortly) occurs. The
memory address at which an instruction is supposed to be fetched is specified by the
delayed program counter cASM.dpc. The ptl register denotes the number of the last
virtual memory page a user process has, e.g., 0 denotes that one user-memory page is
allocated, 1 denotes two pages, etc. The value −1 denotes that a use has no virtual
memory. Then, a page-table length exception on fetch is formally defined as follows:

is-ptlexcp-fASM(cASM) def= ¬is-imalASM(cASM)
∧ cASM.dpc ≥ i2n((cASM.spr[ptl] + 1) · PAGE SIZE).

Illegal instruction. An illegal-instruction interrupt occurs in a configuration cASM in
three cases: (i) the current instruction instr = instr(cASM) cannot be decoded, or (ii) the
return from exception is attempted in user mode, or (iii) special move instructions are
executed in user mode. Formally, for a user machine:

is-illASM(cASM) def= ¬is-imalASM(cASM)
∧ ¬is-ptlexcp-fASM(cASM)
∧ ( ¬decodable(cASM.mword(cASM.dpc))

∨ is-instr-rfe(instr)
∨ is-instr-movi2s(instr)
∨ is-instr-movs2i(instr)).
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Data misalignment. In Section 3.2 we have already defined the predicate
no-dmal(cASM) denoting absence of data misalignments in the assembly configuration
cASM. We use the negation of this predicate and the absence of higher priority inter-
rupts in order to define a data-misalignment signal:

is-dmalASM(cASM) def= ¬is-imalASM(cASM)
∧ ¬is-ptlexcp-fASM(cASM)
∧ ¬is-illASM(cASM)
∧ ¬no-dmal(cASM).

Page-table length exception on load/store. This exception is close in meaning
to a PTL exception on fetch. Suppose a load or store operation takes place, which is
expressed as is-ls(instr(cASM)). In case a memory address of the operation, denoted
as ls-target(cASM), has a value beyond the amount of available virtual memory a PTL
exception on load/store occurs. Formally:

is-ptlexcp-lsASM(cASM) def= ¬is-imalASM(cASM)
∧ ¬is-ptlexcp-fASM(cASM)
∧ ¬is-illASM(cASM)
∧ ¬is-dmalASM(cASM)
∧ is-ls(instr(cASM))
∧ ls-target(cASM) ≥ i2n((cASM.spr[ptl] + 1) · PAGE SIZE).

Trap. A trap interrupt happens whenever the trap instruction is executed. Section
3.2 defines the predicate is-instr-trap(instr) over instruction instr which we exploit here:

is-trapASM(cASM) def= ¬is-imalASM(cASM)
∧ ¬is-ptlexcp-fASM(cASM)
∧ ¬is-illASM(cASM)
∧ is-instr-trap(instr(cASM)).

Overflow. In order to define an overflow interrupt signal let us first define the pred-
icate is-arith-ovf(cASM, instr) which holds in case the results of particular arithmetic
operations cannot be represented as VAMP assembly integer numbers. The predicate is
defined by induction on the instruction.

is-arith-ovf(cASM, addio(rd, rs, imm)) def= ¬Z32
√

(gpr-readASM(cASM.gpr, rs) + imm)

is-arith-ovf(cASM, subio(rd, rs, imm)) def= ¬Z32
√

(gpr-readASM(cASM.gpr, rs)− imm)

is-arith-ovf(cASM, addo(rd, rs1, rs2)) def= ¬Z32
√

(gpr-readASM(cASM.gpr, rs1)
+ gpr-readASM(cASM.gpr, rs2))

is-arith-ovf(cASM, subo(rd, rs1, rs2)) def= ¬Z32
√

(gpr-readASM(cASM.gpr, rs1)
− gpr-readASM(cASM.gpr, rs2))

For all remaining instructions the predicate returns false.
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Having this, the overflow interrupt is defined as follows:

is-ovfASM(cASM) def= ¬is-imalASM(cASM)
∧ ¬is-ptlexcp-fASM(cASM)
∧ ¬is-illASM(cASM)
∧ is-arith-ovf(cASM, instr(cASM)).

Interrupt Mechanism

So far we have defined individual predicates for particular internal interrupts that may
occur in an assembly configuration cASM. Our next goal is to define a JISR (jump to
interrupt-service routine) signal at the assembly level.

We collect all internal interrupts into a bit vector of internal-interrupt signals. The
next definition introduces the function int-intr-bv which is used for that. The resulting
vector of internal interrupts is constructed according to interrupt indices from Table 3.3
and is represented in little-endian encoding.

Definition 5.8 (Bit vector of internal interrupts) A bit vector collecting all internal
interrupt signals in a VAMP assembly configuration cASM is computed by means of the
function

int-intr-bv(cASM) def= [bool2bit(is-ovfASM(cASM)),
bool2bit(is-trapASM(cASM)),
bool2bit(is-ptlexcp-lsASM(cASM)),
bool2bit(is-ptlexcp-fASM(cASM)),
bool2bit(is-imalASM(cASM) ∨ is-dmalASM(cASM)),
bool2bit(is-illASM(cASM))].

Isabelle: cvm/cvminterrupts.int interrupts bv

Among all the considered internal interrupts only an overflow interrupt is maskable.
All external interrupts besides the reset are maskable. In the following we assume msk
to be a mask pattern for both internal and external interrupts. We represent msk as a
natural number. The next definition formally introduces the internal part of the masked
cause bit vector.

Definition 5.9 (Bit vector of an internal masked cause) Let cASM be a VAMP
assembly configuration, and let msk be an interrupt-mask pattern. A bit vector of an
internal masked cause is computed by means of the function

mcaintBv :: CASM × N 7→ Bv,

mcaintBv (cASM,msk)[i] def=

{
0 if i = 5 ∧ bin(msk)[6] = 0
int-intr-bv(cASM)[i] otherwise

.

Isabelle: cvm/cvminterrupts.int mca bv

In a similar fashion we define a function which computes a bit vector of an external
masked cause. In Section 3.4 we have defined the function intr-dev-bv which collects
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external interrupt signals from a devices system in a single bit vector. By applying a
bitwise conjunction with an appropriate part of the mask we obtain a bit vector of an
external masked cause.

Definition 5.10 (Bit vector of an external masked cause) Let cDS be a devices
system and let msk be an interrupt-mask pattern. A bit vector of an external masked
cause is computed by means of the function

mcaextBv :: CDS × N 7→ Bv,

mcaextBv (cDS,msk)[i] def= bool2bit(bin(msk)[13 + i] = 1 ∧ intr-dev-bv(cDS)[i] = 1).

Isabelle: cvm/cvminterrupts.ext mca bv

We have to deal with the JISR signal in two cases: (i) when an interrupt occurs
during a user execution, and (ii) when the function cvm wait() is being executed. In
the former case we consider both internal and external interrupts while in the later case
we are interested only in external interrupt signals. In order to use the same formal
definitions in both cases we introduce the following trick. The remaining definitions in
this subsection will have an argument p of the option type CASM⊥. Whenever the value
of p is bcASMc we know that p corresponds to some user process modeled by an assembly
configuration cASM. Here we deal with the former case and internal interrupts will be
computed in the configuration cASM. Otherwise, p has value of ⊥ which corresponds to
an execution of the cvm wait() function within the kernel.

Altogether, a masked-cause bit vector is defined as follows. We simply concatenate
(i) a bit vector of external interrupts which stores external interrupt signals with indices
from 20 down to 13, (ii) a list of seven zeros representing interrupts with indices from
12 down to 7 which we do not use in this thesis, and (iii) internal interrupts vector
concatenated with a zero value of the reset interrupt in case we are computing inter-
rupts of some user process, or a list of seven zeros in case we are computing interrupts
for the cvm wait() function. Actually, 11 zeros should precede this vector (to get the
corresponding bit vector of length 32), but since we will convert it to the natural number
we can omit them. Formally this is expressed in the following definition.

Definition 5.11 (Bit vector of a masked cause) Let p be of type CASM⊥, let cDS be
devices-system configuration, and let msk be an interrupt-mask pattern. A bit vector of
a masked cause if computed by means of the function

mcaBv :: CASM⊥ × CDS × N 7→ Bv,

mcaBv(p,cDS,msk) def={
mcaextBv (cDS,msk) ◦ 013 if p =⊥
mcaextBv (cDS,msk) ◦ 06 ◦mcaintBv (cASM,msk) ◦ 0 if p = bcASMc

.

Isabelle: cvm/cvminterrupts.mca bv

Additionally, we define a function which represents a bit vector of a masked cause
as a natural number:

mcaN(p, cDS,msk) def= 〈mcaBv(p, cDS,msk)〉).
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Altogether, we can introduce a definition of the JISR signal which we will use for
formal specification of the CVM semantics.

Definition 5.12 (JISR for CVM) Let p be of type CASM⊥, let cDS be devices-system
configuration, and let msk be an interrupt-mask pattern. The JISR signal is on if at list
one bit of the masked-cause bit vector is on. Formally this is defined by means of the
following predicate:

is-jisrCVM :: CASM⊥ × CDS × N 7→ B,

is-jisrCVM(p, cDS,msk) def= ∃ i : mcaBv(p, cDS,msk)[i] = 1.

Isabelle: cvm/cvminterrupts.jisr

In case of cvm wait() we do not have any parameters for the interrupt handling. In
case of user internal interrupts we use edataN to calculate this parameter.

Definition 5.13 (Exceptional data) The exceptional data for cASM

edataN :: CASM 7→ N

is defined as

• the delayed program counter in case of a page fault interrupt on fetch,

• the load/store target address in case of an interrupt on load/store, and

• the immediate constant in case of a trap instruction.

In all other cases the yielded value is 0:

edataN(cASM) def=
cASM.dpc if is-imalASM(cASM) ∨ is-ptlexcp-fASM(cASM)
ls-target(cASM) if ¬is-illASM(cASM) ∧ is-ls(instr(cASM))
i2n(imm(instr(cASM))) if is-trapASM(cASM)
0 otherwise

.

Isabelle: cvm/cvminterrupts.edata nat

5.3.2 Transitions

We continue by defining the transition function δCVM of the CVM model. The param-
eters of the transition function are (i) a CVM model configuration cCVM :: CCVM, and
(ii) an execution-sequence element s :: SeqEl. In case the sequence element corresponds
to a processor step either the kernel or some user makes progress. Otherwise, δCVM boils
down to a step of some device.

The CVM transition function yields either an error constant ⊥ or an updated con-
figuration of the CVM model. Thus the signature of the CVM transition function3 is

δCVM :: CCVM × SeqEl 7→ CCVM⊥.

3As mentioned before, in Isabelle the definition of the CVM step function also has device outputs
to the external environment together with respective device identifiers.
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Depending on the execution sequence element s and the current-process identifier
cCVM.cup the CVM transition function δCVM(cCVM, s) distinguishes three cases:

• the devices step: s corresponds to some device,

• the user step: s corresponds to the processor and cCVM.cup corresponds to some
user-process identifier, and

• the kernel step: s corresponds to the processor and cCVM.cup corresponds to the
kernel.

In the remaining part of this section we define the respective functions stepdevs, stepuser,
and stepkernel for each of these cases. The overall definition of the CVM transition
function is formally stated as follows:

δCVM(cCVM, s)
def=


bstepuser(cCVM)c if s = Proc ∧ cCVM.cup = bpidc
stepkernel(cCVM) if s = Proc ∧ cCVM.cup =⊥
bstepdevs(cCVM, did, eifi)c if s = Dev(did, eifi)

.

Before going into details of user, kernel and device steps let us formally introduce a
function which performs multiple steps of the CVM model. The multiple-step function
of the CVM δn

CVM is defined by induction on the step number n:

δn
CVM :: N× CCVM × Seq 7→ CCVM⊥,

δ0
CVM(cCVM, seq) def= bcCVMc

δn+1
CVM(cCVM, seq) def=

{
⊥ if δn

CVM(cCVM, seq) =⊥
δCVM(cnCVM, seq(n)) if δn

CVM(cCVM, seq) = bcnCVMc
.

5.3.3 Devices Step

We start defining individual cases of the CVM transition function by introducing device
steps as they turn out to be the easiest. A device step is taken as a response to an input
from the external environment. Therefore, the device step boils down to an application
of the external device step function δEXT

DS introduces in Section 3.3.

Definition 5.14 (Devices step) Let cCVM be a configuration of the CVM model, let did
be a device identifier, and let eifi be a generalized input from the external environment.
A device step is specified by the function

stepdevs :: CCVM ×Devnum× EifiGD 7→ CCVM

which produces an updated CVM configuration

stepdevs(cCVM, did, eifi) def= c′CVM,

such that
c′CVM.ds = δEXT

DS (cCVM.ds, did, eifi).

Isabelle: cvm/cvmstep.cvmstep
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5.3.4 User Step

User steps are modeled by the function stepuser which, in essence, distinguishes three
cases: (i) a user step without interrupts, (ii) a user step with an interrupt that aborts
the user execution (illegal, misalignment or PTL exception), and (iii) a user step with an
interrupt which allows us to take a step (external interrupts, trap, and overflow). User
steps without interrupts boil down to an application of the VAMP assembly transition
function to the user process which is making a step. Steps with interrupts results in set-
ting the current-process identifier to the kernel value and the abstract-kernel invocation.
Semantics of the user processes modification depends on the kind of interrupt. In case
(ii) the user is not changed, otherwise it makes a step as in case (i). Altogether, the func-
tion stepuser updates the CVM-state components for user processes, the current-process
identifier, and the abstract kernel.

Definition 5.15 (User step) Let cCVM be a configuration of the CVM model. A user
step is specified by the function stepuser :: CCVM 7→ CCVM which yields an updated CVM
configuration c′CVM = stepuser(cCVM), such that

c′CVM.ups
def= update-ups(cCVM),

c′CVM.cup
def= update-cup(cCVM),

c′CVM.ak
def= update-ak(cCVM).

Isabelle: cvm/user step.usercompute

Before we formally define the functions update-ups, update-cup, and update-ak, let
us introduce the predicate which tests whether interrupts allow a user process to make
progress.

Definition 5.16 (User-step progress) Let cCVM be a configuration of the CVM
model. We test whether it is possible to make progress in cASM by means of the predicate

is-progress(cASM) def= ¬is-illASM(cASM)
∧ ¬is-imalASM(cASM) ∧ ¬is-dmalASM(cASM)
∧ ¬is-ptlexcp-fASM(cASM) ∧ ¬is-ptlexcp-lsASM(cASM).

Isabelle: cvm/user step.user step progress

Update of User Processes

The current process modeled by an assembly configuration cASM can perform a step only
in case no interrupts occur in cASM or interrupts do not abort the user execution. In
case the current process is able to make a step its assembly configuration cASM has to be
updated with the assembly step function δASM. Configurations of all other user process
remain the same. Such update of the user processes mapping of the CVM model is
formally handled in the following definition.

Definition 5.17 (Single user step) Let ups be a mapping of user processes and let
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cup be a process identifier. A single transition of the process identified by cup is made
by means of the function

one-user-step :: Userprocs× Procnum 7→ Userprocs

which yields an updated user-processes mapping ups′ = one-user-step(ups, cup), such
that

ups′(pid) def=

{
δASM(ups(cup)) if pid = cup

ups(pid) otherwise
.

Isabelle: cvm/user step.one user step

With the help of Definitions 5.16 and 5.17 we are able to formally specify how the
user-processes mapping of the CVM model is updated in case of a user step.

Definition 5.18 (Update of user processes in a user step) Let cCVM be a config-
uration of the CVM model. Let bcupc = cCVM.cup be the current-process identifier of
cCVM. The function update-ups :: CCVM 7→ Userprocs performs a single user step of the
process identified by cup in case this process as able to make progress:

update-ups(cCVM) def=

{
one-user-step(cCVM.ups, cup) if is-progress(cCVM.ups(cup))
cCVM.ups otherwise

.

Isabelle: cvm/user step.userprocesses step

Update of the Current-Process Identifier

We update the current-process identifier in a user step as follows. If there is an interrupt
raised in the user-process configuration associated with the current-process identifier,
then we assign to the current-process identifier the value ⊥. This will invoke the kernel
in the next CVM step. Otherwise, we just keep the value of the current-process identifier
the same. Formally this is stated in the next definition.

Definition 5.19 (Update of the current-process identifier in a user step) Let
cCVM be a configuration of the CVM model. Let bcupc = cCVM.cup be the current-
process identifier of cCVM. The CVM-state component for the current-process identifier
is updated in a user step by means of the function

update-cup :: cCVM 7→ Procnum⊥,

update-cup(cCVM) def=

{
⊥ if is-jisrCVM(bcCVM.ups(cup)c, cCVM.ds, cCVM.sr)
cup otherwise

.

Isabelle: cvm/user step.currentp step

Update of the Abstract Kernel

Likewise updating the current-process identifier we make a case distinction on the JISR
signal when updating the abstract-kernel component of CVM. In case an interrupt occurs
in the assembly configuration of the current user process we are supposed to invoke the
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abstract kernel. Therefore the abstract-kernel component of the CVM state is updated
by means of the function start-ak (cf. Definition 5.3). In case no interrupt signal is
raised we simply leave the abstract-kernel component unchanged. This is formalized in
the next definition.

Definition 5.20 (Update of the abstract kernel in a user step) Let cCVM be a
configuration of the CVM model, let bcupc = cCVM.cup be the current-process identifier,
let cASM = cCVM.ups(cup) be a VAMP assembly configuration of the current process of
cCVM, let cDS = cCVM.ds be a devices system of cCVM, and let msk = cCVM.sr be an
interrupt mask specified by the status register of cCVM. Additionally, let us agree that
mca = mcaN(bcASMc, cDS,msk) and edata = edataN(cASM). The function update-ak ::
CCVM 7→ CC0 yields an updated abstract-kernel component of the CVM state:

update-ak(cCVM) def=

{
start-ak(cCVM.ak,mca, edata) if is-jisrCVM(bcASMc, cDS,msk)
cCVM.ak otherwise

.

Isabelle: cvm/user step.kernel step user

5.3.5 Kernel Step

There are three top-level cases of a kernel step modeled by the function stepkernel:

• waiting for interrupts from devices,

• finishing the kernel execution, and

• a step of the abstract kernel.

The first case models a situation when there is not even a single user-process in the
system to be resumed. In this case, the kernel has no jobs to accomplish, and hence its
configuration remains the same. We say that the kernel is waiting for interrupts in this
situation. If an interrupt occurs, the kernel will be restarted.

The second case handles a switch from the kernel execution either to an execution
of the next scheduled user process, or to the idle state defined in the first case.

The last case models a step of the abstract kernel. This step boils down to two cases:
a simple C0 step of the abstract kernel or an execution of some CVM primitive.

In the following we formally define three functions wait-intr, end-kernel, and exec-ak
which correspond to the three possible cases of kernel step. With the help of these
functions we introduce the top-level function for kernel steps stepkernel. It simply makes
a case distinction between the three functions mentioned above. It is indicated by
the program rest of the abstract kernel which of the three cases happens. The kernel
computation boils down to wait-intr if the program rest contains a single assembly
statement. This situation is created artificially and is formally stated in Definition 5.26
further. An end of the kernel execution modeled by end-kernel occurs if the program
rest contains a single empty statement. This corresponds to the state when there is no
remaining statements of the kernel yet to be executed. If none of these criteria is met
the function stepkernel is nothing but the execution of the abstract kernel. Formally, the
kernel step is introduced in the next definition.

Definition 5.21 (Kernel step) Let cCVM be a configuration of the CVM model. The
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function stepkernel :: CCVM 7→ CCVM⊥ specifies a kernel step of CVM:

stepkernel(cCVM) def=


bwait-intr(cCVM)c if is-asm(cCVM.ak.prog)
end-kernel(cCVM) if is-skip(cCVM.ak.prog)
exec-ak(cCVM) otherwise

.

Isabelle: cvm/kernel step.kernelcompute

Waiting for Interrupts

In case the are no user processes which can be executed after a kernel computation
the kernel ends in the waiting for interrupts state. A step of the CVM model in this
situation is either a fixpoint in case there is no pending devices interrupts, or a start
of the abstract kernel, otherwise. The next definition formalizes the case. Note that,
we determine whether any device in the CVM state cCVM has raised an interrupt signal
by means of the function is-jisrCVM(⊥, cCVM.ds, cCVM.sr) (cf. Definition 5.12). Its first
parameter ⊥ reflects the fact that only external interrupts from the devices cCVM.ds are
to be considered.

Definition 5.22 (Waiting for interrupts) Let cCVM be a configuration of the CVM
model. The function wait-intr :: CCVM 7→ CCVM yields an updated CVM state c′CVM in
case the devices cCVM.ds produce an interrupt, or has no effect on cCVM, otherwise:

wait-intr(cCVM) def=

{
c′CVM if is-jisrCVM(⊥, cCVM.ds, cCVM.sr)
cCVM otherwise

.

The updated CVM configuration c′CVM differs from cCVM only in the abstract-kernel
component:

c′CVM.ak = start-ak(cCVM.ak,mcaN(⊥, cCVM.ds, cCVM.sr), 0).

Isabelle: cvm/kernel step.waiting for interrupts

Similarly, to the computation of the JISR signal the computation of the (natural
representation of the) masked-cause bit vector mcaN(⊥, cCVM.ds, cCVM.sr) has ⊥ as the
first argument, which takes into account only external interrupts.

Kernel End

As mentioned before, kernel executions end with resuming a computation of some user
process or waiting for external interrupts. A decision which of these two cases takes place
is made by examining the output of last abstract-kernel run. A scheduler implemented
in the abstract kernel computes the identifier of the next scheduled process and returns
this value to the CVM framework. It was stated in Definition 5.1 that the identifier of
the next scheduled process returned by the abstract kernel is stored in the local variable
abs kernel res of the first local memory frame. Next, we define a function which
retrieves this value.

Definition 5.23 (Current-process identifier returned by the abstract kernel)
Let cCVM be a configuration of the CVM model. The function ak-cup :: CCVM 7→ N
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returns the value of the current-process identifier computed by (the scheduler of) the
abstract kernel:

ak-cup(cCVM) def= m2u(valueg(cCVM.ak.mem, gvar lm(0, abs kernel res))).

Isabelle: cvm/kernel step.abs cup value

Having this, we can formally introduce the two possible outcomes of a kernel end. If
ak-cup computes some value between 0 and PID MAX, which corresponds to a user process
the kernel ends in switching to a user. This is formalized by the function switch-to-user
(cf. Definition 5.25 further). In case ak-cup returns some other value the kernel ends in
switching to wait with the help of the function swich-to-wait (cf. Definition 5.26 below).
The next definitions formalizes a kernel end function end-kernel.

Definition 5.24 (Kernel end) Let cCVM be a configuration of the CVM model and
let is-user = 0 < ak-cup(cCVM) < PID MAX. The function end-kernel :: CCVM 7→ CCVM⊥
specifies the kernel end case of a kernel step:

end-kernel(cCVM) def=

{
switch-to-user(cCVM, ak-cup(cCVM)) if is-user
bswich-to-wait(cCVM)c otherwise

.

Isabelle: cvm/kernel step.switch from kernel

We continue by defining switch-to-user and swich-to-wait formally. In CVM we use
the amount of virtual memory of a process to determine whether the process is created,
and therefore can be resumed. If no virtual memory is allocated to a process, then we
consider that this process is not created. We introduce the predicate has-memory ::
Userprocs×N 7→ B, such that has-memory(ups, pid) tests whether the process ups(pid)
has allocated memory:

has-memory(ups, pid) def= ups(pid).spr[ptl] ≥ 0.

The act of assigning the current-process identifier component of a CVM state cCVM

some new value pid in case the process cCVM.ups(pid) has memory is handled by the
function switch-to-user introduced in the next definition.

Definition 5.25 (Switch to user) Let cCVM be a configuration of the CVM model
and let pid be a process identifier. The function switch-to-user :: CCVM × N 7→ CCVM⊥
produces a CVM output comprising an updated CVM configuration c′CVM in case the
user process associated with pid has allocated virtual memory, and an error constant ⊥
if it does not:

switch-to-user(cCVM, pid) def=

{
bc′CVMc if has-memory(cCVM.ups, pid)
⊥ otherwise

.

The updated CVM state differs from the original configuration cCVM only in the updated
current-process identifier component:

c′CVM.cup = bpidc.

Isabelle: cvm/kernel step.switch to user
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Finally, we define switching to the state in which the kernel is waiting for external
interrupts. Recall from Definition 5.21 that the waiting for interrupts case is distin-
guished by a single assembly statement in the program rest of the abstract kernel. It
turns out that according to the C0 small-step semantics the abstract kernel itself cannot
come to a state with such program rest. By artificially assigning the program rest the
assembly statement, we introduce a way to distinguish the desired waiting for interrupts
case from the other cases.

Definition 5.26 (Switch to wait) Let cCVM be a configuration of the CVM model.
The function swich-to-wait :: CCVM 7→ CCVM yields the updated CVM state c′CVM =
swich-to-wait(cCVM) which differs from the original one only in the program rest of the
abstract-kernel component — it is assigned to an empty assembly statement:

c′CVM.ak.prog = asm([], 0).

Isabelle: cvm/kernel step.switch to wait

Abstract-Kernel Execution

Executions of the abstract kernel come in two flavors: normal C0 steps of the abstract
kernel and a primitive execution. In order to distinguish these two cases we need a
formal way to determine that the abstract kernel is going to execute one of the CVM
primitives.

Table 5.1 defines the set prims of CVM-primitives names as they appear in the
implementation of the CVM framework. We determine that a C0 configuration cC0 is
going to execute a CVM primitive by the following predicate:

is-prim(cC0) def= is-esCall(stmt(cC0))
∧ called-func(stmt(cC0)) ∈ prims.

It tests whether the current statement of cC0 is an external call to the function of some
name from the set prims.

The case of a CVM-primitive execution and a simple C0 step of the abstract kernel are
modeled by the functions exec-prim and ak-step which appear further in this section. A
case distinction between them is formally done by the function exec-ak formally specified
in the next definition.

Definition 5.27 (Abstract-kernel execution) Let cCVM be a configuration of the
CVM model. An abstract-kernel execution modeled by the function exec-ak :: CCVM 7→
CCVM⊥ boils down to a case distinction between a primitive execution and an ordinary
C0 step of the abstract kernel:

exec-ak(cCVM) def=

{
exec-prim(cCVM) if is-prim(cCVM.ak)
ak-step(cCVM) otherwise

.

Isabelle: cvm/kernel step.abstract kernel exec

An ordinary C0 step is handled by the function ak-step which applies the C0 small-
step transition function to the configuration of the abstract kernel. In case this C0
computational step ends in an error state, then so does the function ak-step itself.
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Definition 5.28 (Abstract-kernel step) A step of the abstract kernel is specified by
the function ak-step :: CCVM 7→ CCVM⊥ which produces an empty output in case the C0
computation of the abstract kernel results in error, or an output which comprises an
updated CVM configuration c′CVM:

ak-step(cCVM) def=

{
⊥ if δmono

C0 (cCVM.ak) =⊥
bc′CVMc if δmono

C0 (cCVM.ak) = bak′c
.

The updated CVM state c′CVM differs from the original configuration cCVM only in the
abstract-kernel component:

c′CVM.ak = ak′.

Isabelle: cvm/kernel step.abstract kernel step

Primitive Execution

An execution of a CVM primitive modeled by the function exec-prim which is to be
defined further proceeds according to the following scheme. First, the name of a primitive
is determined. Then, a number of common preconditions of technical nature are checked.
In case the preconditions hold the parameters are evaluated and exec-prim makes a case
distinction on the primitive name and boils down to the function which defines the
semantics of the primitive which has to be executed. Next we formally define common
preconditions to the CVM primitives, evaluation of parameters of the CVM primitives,
and the function exec-prim. However, the semantics of primitives we discuss separately
(cf. Section 5.4).

We start with the formulation of the common preconditions to primitives. As men-
tioned above they are of technical nature. Assume that the current statement of the
C0 configuration of the abstract kernel is an external call to some primitive. Then the
preconditions require the following:

• an entry for the left-hand variable of the current call statement must be present in
the top local memory frame (because primitive execution should not change the
global data structure of the abstract kernel),

• all parameter expression could be evaluated without errors, and

• all parameter expressions are initialized, i.e., the predicate is-initialized from Sec-
tion 3.5 hold for them.

We formalize these criteria in the next definition.

Definition 5.29 (Common preconditions to primitives) Let cC0 be a monolithic
C0 small-step semantics configuration.Common preconditions to primitives are specified
by the predicate

PREprim(cC0) def= l-var(stmt(cC0)) ∈ vns(lsttop(cC0.mem))
∧ ∀ e ∈ {param-list(stmt(cC0))} : reval(cC0.te, cC0.mem, e) = bctc

∧ is-initialized(cC0.te, cC0.mem, e).

Isabelle: cvm/primitive step.kernel primitives pre
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Recall from Section 3.5 that C0 expressions are evaluated by means of the function
reval which yields a content of the type N 7→ Mcell⊥. In case evaluation brings no
error the result is the mapping bctc. This mapping is needed to support complex C0
types. However, when we deal with parameters of the CVM primitive we encounter
only basic C0 types. Their evaluation always occupies one memory cell, namely ct(0).
Therefore, it is more convenient for us to have an evaluation function with the codomain
of Mcell⊥ type. The next definition introduces the function eval-param which respects
the described property and is used for parameter evaluation on the context of CVM.

Definition 5.30 (Parameter evaluation) Let cC0 be a monolithic C0 small-step
semantics configuration and let e be a C0 expression. The function eval-param ::
Cmono

C0 × Expr 7→ Mcell evaluates e with the C0 evaluation function and takes the very
first item of the obtained content in case the evaluation produced no error:

eval-param(cC0, e)
def=

{
A if reval(cC0.te, cC0.mem, e) =⊥
ct(0) if reval(cC0.te, cC0.mem, e) = bctc

.

Isabelle: cvm/primitive step.eval param

Now we can define a function which yields the value of the i-th parameter of the
current call statement. We exploit the definition of the function param-list which takes
a C0 statements and returns the list of its parameter expressions in case the statement is
a call or an external call. Applying the parameter-evaluation function defined above to
the i-th element of this parameter list we obtain the computed value of the corresponding
expression. The next definition formally introduces a function for that.

Definition 5.31 (Parameter of a primitive) Let cC0 be a monolithic C0 small-step
semantics configuration and let i be a natural number. We obtain the i-th parameter of
the current call statement of cC0 be means of the function prim-param :: CC0×N 7→ Mcell:

prim-param(cC0, i)
def= eval-param(cC0, (param-list(stmt(cC0))[i])).

Isabelle: cvm/primitive step.primitive parameter

Having defined the common preconditions to CVM primitives and the parameter
evaluation functions, we can introduce the function exec-prim which models a primitive
execution. This function checks for the common precondition, processes primitive pa-
rameters, and by performing a case distinction decides which of the primitives has to be
executed. Effects of the individual primitives are defined as functions of the form

execprim-name :: CCVM × . . . 7→ CCVM⊥,

where prim-name is a primitive name and dots are substituted with parameter types
depending on a particular primitive. We introduce the semantics of these functions in
Section 5.4.

Definition 5.32 (Primitive execution) Let cCVM be a configuration of the CVM
model, let pn = called-func(stmt(cCVM.ak)) be the name of the primitive which is sup-
posed to be executed, and let

ni = m2u(prim-param(cCVM.ak, i)),
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Table 5.2: Functions defining semantics of primitives.

Value of pn Primitive semantics function to obtain c′CVM

cvm reset execcvm reset(cCVM, n0)
cvm clone execcvm clone(cCVM, n0, n1)
cvm alloc execcvm alloc(cCVM, n0, n1)
cvm free execcvm free(cCVM, n0, n1)
cvm copy execcvm copy(cCVM, n0, n1, n2, n3, n4)
cvm get vm gpr execcvm get vm gpr(cCVM, n0, n1)
cvm set vm gpr execcvm set vm gpr(cCVM, n0, n1, n2)
cvm virt io execcvm virt io(cCVM, b0, n1, n2, n3, n4, n5)
cvm in word execcvm in word(cCVM, n0, n1)
cvm out word execcvm out word(cCVM, n0, n1, n2)
cvm setmask execcvm setmask(cCVM, n0)
cvm load os execcvm load os(cCVM, n0, n1)
cvm get vm word execcvm get vm word(cCVM, n0, n1)
cvm set vm word execcvm set vm word(cCVM, n0, n1, n2)

bi = m2b(prim-param(cCVM.ak, i))

be its parameters represented as natural numbers and booleans, respectively. We model
primitive execution by means of the function exec-prim :: CCVM 7→ CCVM⊥, which
produces a new CVM configuration in case the common preconditions to primitives are
satisfied, or an error constant ⊥, otherwise:

exec-prim(cCVM) def=

{
c′CVM if PREprim(cCVM.ak)
⊥ otherwise

The new CVM configuration is obtained as shown in table 5.2.
Isabelle: cvm/primitive step.execprim

5.4 Effects of Primitives

In this section we describe semantics of CVM primitives. Before that, let us introduce
several helpful definitions. Recall that the register ptl stores the amount of virtual
memory given to a process. Moreover, the possible values of this register start from −1
which denotes that the process has no memory. We abstract from this shift by one and
use the function

pages-used(cASM) def= i2n(cASM[ptl] + 1)

to obtain the number of pages used by the process. We test whether an address a belongs
to the virtual memory of a process pid by means of the predicate

is-addr-in-mem(ups, pid, a) def= a < (ups.spr[ptl] + 1) · PAGE SIZE.

Let m1 and m2 be assembly memories. We copy len words from the second starting at
address a2 to the first at address a1 by means of the function

mem-part-copy(m1, a1,m2, a2, len) def= m′,
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which yields an update memory m′ such that

get-data(m′, a1, len) = get-data(m2, a2, len).

At all other locations m′ equals to m1.
In the following, let ups and ups′ be configurations of CVM user processes before

and after an execution of a primitive, respectively.

Primitive cvm reset(). A process identified by pid is initialized by means of the
primitive cvm reset(pid), assuming, that pid is a number in the range (0, PID MAX).
The program counters of the process are set to the values ups′(pid).(dpc, pc) = (0, 4),
general- and special-purpose registers are cleared: ups′(pid).gpr[i] = 0 for 0 ≤ i < 32,
ups′(pid).spr[j] = 0 for 0 ≤ j < 32 ∧ j 6∈ {ptl,mode}. The initial value of the register
ups′(pid).spr[ptl] is set to −1. The mode is set to user: ups′(pid).spr[mode] = 1.

Primitive cvm clone(). We create a copy, or a clone, of a process identified by pidcloner

by executing the primitive cvm clone(pidcloner, pidclonee). The clone has the identifier
pidclonee. Preconditions to the primitive comprise: (i) both pidcloner and pidclonee are
numbers in the range (0, PID MAX), (ii) no physical memory is occupied by the process
pidclonee: pages-used(ups(pidclonee)) = 0, and (iii) there is enough virtual memory to
create a copy of pidcloner:∑

i

pages-used(ups(i)) + pages-used(ups(pidcloner)) ≤ TVM MAXPAGES.

Here TVM MAXPAGES denotes the maximum total virtual memory size measured in pages,
reserved for all processes. The semantics of the primitive defines programs counters and
register files of the clonee to be a copy of the cloner: ups′(pidclonee).(dpc, pc, gpr, spr) =
ups(pidcloner).(dpc, pc, gpr, spr). The memory of the clonee is obtained by copying
pages-used(ups(pidcloner)) first pages from the cloner:

ups′(pidclonee).m = mem-part-copy(ups(pidclonee).m, 0,
ups(pidcloner).m, 0,
pages-used(ups(pidcloner)) · PAGE SIZE).

Primitive cvm alloc(). Virtual memory of a process pid is extended by pgs pages
with the primitive cvm alloc(pid, pgs). The preconditions of the primitive ensure that:
(i) the process identifier is valid: 0 < pid < PID MAX, and (ii) we do not allocate too
much memory: ∑

i

pages-used(ups(i)) + pgs ≤ TVM MAXPAGES.

The main effect of the primitive is to copy pgs pages from the empty memory zeromem(a) =
0 at the end of virtual memory of the process:

ups′(pid).m = mem-part-copy(ups(pid).m, pages-used(ups(pid)) · PAGE SIZE,

zeromem, 0,
pgs · PAGE SIZE).

As the virtual-memory amount for a process is stored in the special register ptl we update
it as well:

ups′(pid).spr[ptl] = ups(pid).spr[ptl] + n2i(pgs)

.
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Primitive cvm free(). Release of pgs virtual-memory pages associated with a process
pid is done by means of the primitive cvm free(pid, pgs). The primitive requires pid to
be appropriately bounded: 0 < pid < PID MAX. Since newly allocated pages are anyway
initialized with zeros we do not clear the data of the released pages, but rather only
update the ptl register. In case a user invokes cvm free(pid, pgs) with pgs larger than
the size of the virtual memory of the process pid we set ups′(pid).spr[ptl] = −1, otherwise
we subtract:

ups′(pid).spr[ptl] = ups(pid).spr[ptl]− n2i(pgs).

Primitive cvm copy(). In order to copy n bytes from a process pidfrom starting at
address afrom to a process pidto at address ato we invoke the primitive
cvm copy(pidfrom, pidto, afrom, ato, n). The preconditions to the primitive in case the
amount to be copied is reasonable n > 0, are: (i) we copy between different pro-
cesses: pidfrom 6= pidto, (ii) we suppose to copy wordwise, therefore the addresses
and amount are divisible by 4: afrom mod 4 = 0, ato mod 4 = 0, and n mod 4 = 0,
(iii) both process identifiers pidfrom and pidto lie in the interval (0, PID MAX), and (iv) the
last address we copy from/to lies within the virtual memory of a respective process:
is-addr-in-mem(ups, pidfrom, afrom + n − 1) and is-addr-in-mem(ups, pidto, ato + n − 1).
Primitive’s effects are specified as:

ups′(pidto).m = mem-part-copy(ups(pidto).m, ato,

ups(pidfrom).m, afrom,

n).

Primitive cvm get vm gpr(). We retrieve the content of a general-purpose register r
from a process pid by means of the primitive cvm get vm gpr(pid, r). The preconditions
to the primitive require: (i) the process identifier validity: 0 < pid < PID MAX, as well as
(ii) the register index to address some register in the file: r < 32. The semantics of the
primitive is to obtain the value i2n(ups(pid).gpr[r]) which is then passed to the abstract
kernel as the return value of the primitive.

Primitive cvm set vm gpr(). Under the same preconditions as for the primitive
cvm get vm gpr we write some new value v into register r of a process pid by means of
the primitive cvm set vm gpr(pid, r, v). The semantics is specified as: ups′(pid).gpr[r] =
n2i(v).

Primitive cvm virt io(). Copy operations between devices and virtual memory are
realized via the primitive cvm virt io(req, did, prt, pid, a, n). It copies n bytes of data
starting at address a from/to port prt of a devices with number did. The direction of
the operation is given by the boolean parameter req: in case req = T we copy from the
device to the virtual memory, otherwise, in the opposite direction. The preconditions
to the primitive require validity of the process and devices identifiers as well as of the
port:

0 < pid < PID MAX 13 ≤ did < 13 + 8 prt < 210.

The semantics of the primitive performs a case distinction on req. In both cases the
device did makes series of internal step and produces an updated devices configuration
ds′ and list of outputs to the memory interface mifos. In case req = F, i.e., we write
to the device, the memory interface inputs for the devices steps are created by read-
ing the virtual memory of the process pid: ups(pid).m

word
(a + i) for i < n. In case
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req = T, the memory of the process pid is updated with the corresponding output:
mem-updateASM(ups(pid).m, a,mifos[i]) for i < n. Finally, in both cases the devices
component of CVM is updated with the configuration ds′.

Primitive cvm in word(). A word is read from a port prt of a device with number
did by means of the primitive cvm in word(did, prt). In case parameters of the primitive
are valid, an internal step of the device is attempted which delivers an updated devices
configuration ds′ and memory-interface output mifo.The desired memory word mifo is
passed to the abstract kernel. The devices component of CVM is updated with the
configuration ds′.

Primitive cvm out word(). A word v is written to a port prt of a device with num-
ber did by means of the primitive cvm out word(did, prt, v). The preconditions to the
primitive ensure that did and prt have appropriate sizes. A memory interface input for
the device created from v is passed to the device did which triggers a device’s internal
step. The step results in an updated devices configuration ds′ and a memory-interface
output mifo. The devices component of CVM is updated with the configuration ds′.

Primitive cvm setmask(). A mask for external interrupts msk is set by means of the
primitive cvm setmask(msk). The preconditions to the primitive ensure that: (i) msk
fits into 32 bits: |bin(msk)| < 32, and (ii) msk masks out only external interrupts:
msk mod 213 = 0. The semantics of the primitive simply updates the status register of
the CVM model with the value msk.

Primitive cvm load os(). An abstract kernel loads an OS image from the boot re-
gion located at the beginning of the swap hard disk to (the memory of) the pro-
cess pid by invoking the primitive cvm load os(pgs, pid). The size of the image in
pages is denoted by pgs. The preconditions are: (i) the process identifier is valid:
0 < pid < PID MAX, (ii) the last address we copy to lies within the virtual memory of the
process: is-addr-in-mem(ups, pid, pgs · PAGE SIZE− 1), and (iii) there is enough place on
the hard disk to store such image: pgs · PAGE SIZE ≤ |the-hd(ds(SWAP DID)).sm|. The
semantics of the primitive updates the memory of the user ups(pid).m with the values
read from the hard disk.

Primitive cvm get vm word(). We obtain a word from the virtual memory of a process
pid at address a by means of the primitive cvm get vm word(pid, a). The primitive’s
preconditions ensure that: (i) the address is divisible by 4: a mod 4 = 0, (ii) the process
identifier pid is in the range (0, PID MAX), and (iii) a addresses inside the virtual memory
of the process: is-addr-in-mem(ups, pid, a). The primitive obtains the desired memory
word i2n(ups(pid).m

word
(a)) and passes it then to the abstract kernel.

Primitive cvm set vm word() Under the same preconditions as for the primitive
cvm get vm word we write a word v into the virtual memory of a process pid at address a
by invoking the primitive cvm set vm word(pid, a, v). The semantics of the correspond-
ing memory update is:

ups′(pid).m = mem-updateASM(ups(pid).m, a,n2i(v)).

All primitives update the return variable of the abstract kernel’s external call with
the corresponding result of primitive execution if it exists, otherwise simply with zero.

114



The graphical sketch of the transition function δCVM(cCVM, s) could be found in
Figure 5.2.
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Figure 5.2: Scheme of the CVM transition function.
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As mentioned before a concrete kernel, i.e., a complete kernel program that can run
on a computer, is obtained by linking an abstract kernel with the CVM framework. In
this chapter we formally define such linking operator. With the help of it we formally
define the concrete kernel with which we will work in this thesis.

6.1 CVM Framework Implementation

Before discussing issues on linking let us consider the CVM framework implementation
which will be linked with an abstract kernel.

6.1.1 The CVM Framework Structure

The CVM framework is implemented as a C0A program with approximately 1600 lines of
code from which 17% constitute assembly code. The framework contains implementation
of:

• process-context switch procedures saving and restoring contexts of user processes,

• a page-fault handler with its initialization code as well as elementary device drivers,

• an elementary dispatcher which decides whether an invocation of a page-fault
handler is needed and calls the dispatcher of an abstract kernel, and

• 14 primitives for different operations for user processes.
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Context switch. The CVM framework features procedures init () and cvm start()
for saving and restoring contexts of user processes, respectively. The function init ()
distinguishes a reset and non-reset cases. The former occurs after the power was switched
on on the underlying processor. In this case no saving of any process contexts is required
— only the kernel memory structure is created. In a non-reset case the procedure
saves by means of inline assembly code the content of hardware registers into a special
kernel data structure and invokes the elementary dispatcher of the CVM framework.
The cvm start() procedure is basically an inverse of the context save in a non-reset
case. Context-switch procedures are almost fully implemented in inline assembly. The
implementation is presented Section 9.2.

Page-fault handler. The page-fault handler of CVM is implemented inside the proce-
dure pfh touch addr(). This procedure features all operations on handling page faults,
software address translation, and guaranteeing for a certain page to reside in the main
memory for a specified period. The page-fault handler introduces to the CVM frame-
work a number of data structures for supporting its page-replacement strategy. De-
fault values are written to these data structures in the page-fault handler initialization
code pfh init(). Both pfh touch addr() and pfh init() functions are implemented
in C0 without inline assembly. The needed assembly code for talking to a hard disk is
isolated in elementary hard-disk drivers write to disk() and read from disk(). For
details on the page-fault handler and device drivers implementation consult theses of
Starostin [105] and Alkassar [5], respectively. However, we give some more details on
the page-fault handler and its data structures model later in this Section.

Elementary dispatcher. The function dispatcher() is an elementary dispatcher of
the CVM framework. In case the elementary dispatcher is called for the first time
after the computer powers up the function pfh init() is invoked to set up the page-
fault handler data structures appropriately. Otherwise, it handles possible page faults by
invoking pfh touch addr() and calls a dispatcher of the abstract kernel. This dispatcher
returns to the CVM framework an identifier of the next-scheduled process or a special
value in case there is no active processes. In the former case the elementary dispatcher
starts the scheduled process by means of cvm start(). In the latter case a special
function cvm wait() is called which implements the kernel idle state. We give details on
the elementary dispatcher in Section 9.2.

Primitives. Microkernel primitives necessarily contain inline assembly code as they
access hardware registers and memory parts which are not visible through C variables.
Formal verification of mixed C and assembly code is involved because it requires rea-
soning in semantics of two different languages. It is, therefore, desirable to isolate inline
assembly code in the minimal number of primitives. The remaining primitives then
will operate only on the kernel C structures and possibly invoke those primitives that
are with inline assembly. Our primitives library (Table 5.1) follows this idea: only
6 out of 14 primitives contain assembly portions. These primitives are: cvm copy(),
cvm get vm word(), cvm set vm word(), cvm virt io(), cvm in word(), cvm out word().
The three latter access devices. The three former primitives are formally verified in the
scope of this thesis. We elaborate on them in Section 9.3.
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6.1.2 Program of the CVM Framework

Let the program of the CVM framework be

πCVM
def= (teCVM, ftCVM, gstCVM).

In the following, we describe which entries are contained in individual components of
πCVM.

Type environment. As type environments are intended to store user defined types
as well as types to which a pointer in a program is declared the type environment teCVM

contains the following entries:

• (int, intT) for the integer type,

• (ptspace t, arrT(1152, arrT(1024, unsgndT))) for the page-table space array; as we
already said we add one page per process to the page table to keap process page
tables aligned (1024 + 128 = 1152), and

• an entry for a page descriptor type used by the page-fault handler.

Function table. The function table ftCVM of the CVM framework implementation
contains entries for:

• the CVM dispatcher (dispatcher()), context save and restore (init (),
cvm start()), function for waiting of external interrupts (cvm wait()),

• 14 CVM primitives,

• the declaration of the abstract-kernel dispatcher (dispatcher kernel()), whose
body is not defined,

• the page-fault handler (pfh touch addr()), its initialization code (pfh init()),
hard-disk drivers (write to disk(), read from disk()) as well as other subrou-
tines,

• the doubly-linked list library used for the implementation of page-management
algorithms.

Global symbol table. The global symbol table gstCVM contains the following entries:

• the status-register variable (SR, unsgndT),

• the current process identifier (cup, unsgndT),

• the size of the kernel’s heap (kheap, intT),

• the array of process control blocks (pcb, arrT(128, pcb t)), where pcb t is the type
of an individual process control block; it is a structure which collects registers of
a particular process,

• the page-table space array (ptspace, ptrT(ptspace t)), and

• entries for variables used only in the page-fault handler.

119



Page-fault handler. As it was mentioned before, the page-fault handler is a signifi-
cant part of CVM. It consists of two functions: pfh init() for initialization of page-fault
handler data structures, and pfh touch addr() which is used in two situations: (i) it
is invoked on page-fault exceptions, and (ii) used by the kernel while executing CVM
primitives which access user memory. In the second case the function simulates address
translation for CVM which runs untranslated, and makes sure that the corresponding
memory page is swapped in.

The page-fault handler implementation maintains several global data structures to
manage the physical and the swap memories. The most important variables for us are:
(i) the pointer to the active list (activelist, ptrT(pd)), and (ii) the pointer to the
free list (freelist, ptrT(pd)). These lists are used to manage allocated and free user
memory pages, respectively. A single element of such a list is a page descriptor pd. A
page descriptor is a structure consisting of (i) two pointer fields (pfh next and pfh prev)
to build a doubly linked list, and (ii) three information fields: the process identifier pid
associated with a physical page, the index of the virtual page vpx corresponding to
the physical page, and the index of the user page ppx in the physical memory. Also
note, that being a part of the CVM implementation the page-fault handler accesses the
process control blocks.

On a page fault the handler behaves as follows. The free list is examined in order to
find out whether any unused page resides in the physical memory and could be given to
a page-faulting process. If not, a page from the active list is evicted. The selected page
is then filled with data loaded from the swap disk. The page table entry of the evicted
page is invalidated while the valid bit of the loaded page is set.

The page-fault handler features a copy-on-write mechanism. When a memory page
is allocated for a user process it must be filled with zeros. In order to avoid heavy
swapping and zero-copying at a particular page index, we optimize the allocation process
by making all freshly allocated pages point to the zero-filled page which resides at page
address ZFP. This page is always protected. Whenever one reads from such page a zero
content is provided. At a write attempt a zero-protection page-fault is signaled.

The functional correctness of the page-fault handler is shown by Starostin in [105].
However, additional peculiarities arise during an application of its correctness theorem.
Since a single user instruction can cause up to two page-faults or some primitives force
two pages to reside in the physical memory, we need to guarantee that the page swapped
in during the previous call to the handler will not be swapped out during the current
call. This liveness property could be shown only in the context of a double application
of the handler’s correctness theorem. Examples follow in Section 9.2.5, Section 9.3,
and Chapter 10. To refer to the page-fault handler data structures we use the abstract
configuration cPFH :: CPFH which is abstracted from the implementation variables. Con-
figurations of the page-fault handler are modeled by the record CPFH which, among
others, has the following two components:

• cPFH.active :: PD∗, the active lists, and

• cPFH.free :: PD∗, the free list.

The elements of both lists are page descriptors. A page descriptor pd :: PD is a record
describing a single memory page. It has three fields corresponding to the implementation
structure:

• pd.pid :: N, the process identifier,

• pd.vpx :: N, the virtual page index, and
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• pd.ppx :: N, the physical page index.

Besides that, page-fault handler configurations maintain an abstraction of particular
PCB fields, most notably the page table length of processes: cPFH.pcb[pid].ptl.

Heap symbol table. The heap symbol table is not a part of the initial program.
Nevertheless, we can define it as a constant, since from the code we know, that only
during the kernel initialization some elements are allocated on the heap. We use hstCVM

to denote the list of the elements allocated by the CVM code. Analyzing the code we
can see that hstCVM consists of the page table array and 1802 page descriptors needed for
the page-fault handler. The elements themselves are not of our interest. We only need
the information about their size: |hstCVM| = CVM HST LEN, and the memory allocated
for them: asizeheap(hstCVM).

Constants for the memory layout. For the ministack Theorem 4.11 application
we need to assign values to some constants which define our memory layout. We do it
as follows:

PROGBASE = 1 · 212,

ABASEgm = 384 · 212,

ABASElm = 448 · 212,

ABASEhm = 1024 · 212,

ASIZEmax
hm = 5365 · 212,

PROGEND = ABASEhm + ASIZEmax
hm = 6389 · 212.

6.2 Linker

We formally define a linking operator linkπ which works on the source code level. It
takes two C0A programs and produces the third one:

linkπ :: ΠC0 ×ΠC0 7→ ΠC0.

Certainly, the argument programs may be simple C0 programs without assembly state-
ments.

A C0A program is defined by its type name environment, function table, and global
symbol table. Therefore, next we define functions for linking each of these components.
These functions will help us to define linkπ formally.

6.2.1 Linking Type Environments

The desired result of linking two type environments is a type environment which contains
all types — precisely, speaking pairs containing a type name and a type — which
constitute both original type environments. As some entries of a type environment
might be duplicated in the environments subject to linking we have to consider such
entries only once, i.e., filter second occurrences of such entries out. Formally this is
stated in the next definition. Note that this definition assumes that different types in
both type environments have different names.

Definition 6.1 (Linking of type environments) Linking of two type environments
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Figure 6.1: Preparing a function table for linking.

te and te′ is done by means of the function

linkte :: Tenv× Tenv 7→ Tenv,

linkte(te, te′) def= te ◦ [xte ′ : x 6∈ te].

Isabelle: cvm/linker/linker.link tt

6.2.2 Linking Function Tables

In order to define a function linkft for linking two function tables we define first an
auxiliary operator pre-linkft. It takes two function tables ft and ft′ as parameters and
implements the following algorithm:

1. remove all external functions from ft′,

2. delete entries of external functions in ft which are defined in ft′,

3. replace all external function call statements in ft by ordinary calls in case a callee
is defined in ft′, and

4. return the modified ft.

We illustrate this algorithm with Figure 6.1 and proceed by defining pre-linkft formally.

Auxiliary Linking Operator

By convention all external functions, i.e., the functions which are only declared, have
their bodies as a single empty statement. For a function f :: Func we define the predicate

is-ext-func(f) def= is-skip(f.body)

which holds if the function is external. The function

rem-ext-func(ft) def= [xft : ¬is-ext-func(x.fd)],
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removes all external functions from a function table ft. This formalizes the first step of
the algorithm above.

For a function name fn and a function table ft the predicate

def-in-ft(fn, ft) def= ∃ i : ft[i].fn = fn

denotes that an entry for the function of name fn occurs in the function table ft. In
order to specify an operation which deletes from one function table all entries of the
external functions which are defined in another function table — therefore formalize the
second step of the algorithm for linkft — we introduce the following definition.

Definition 6.2 (Removing defined functions) Let ft and ft′ be function tables.
Entries of external functions in ft which are defined in ft′ are removed by means of the
function

rem-def-func :: Functable× Functable 7→ Functable,

rem-def-func(ft, ft′) def= [xft : ¬(is-ext-func(x.fd) ∧ def-in-ft(x.fn, ft′))].

Isabelle: cvm/linker/linker.delete defined proc

The third step of the algorithm, a replacement in one function table of external
call statements to functions which are defined in another function table is handled in
Definition 6.3.

Definition 6.3 (Update of external calls) Let ft be a function table and s be a
statement. The function

ext-updstmt :: Functable× Stmt 7→ Stmt

returns an updated statement s′ = ext-updstmt(ft, s), such that

• for s = sESCall(e, fn, param, sid) the updated statement is obtained by replacing
the external call statement by the corresponding normal call in case the function
of name fn is defined in the function table ft :

s′ =

{
sCall(e, fn, param, sid) if def-in-ft(fn, ft)
esCall(e, fn, param, sid) otherwise

,

• for s containing sub-statements, i.e., if s is a loop, conditional, or composition
statement, the updated statement s′ is obtained by applying ext-updstmt to all
sub-statements recursively, and

• for all other statements s′ = s.

Let f be a function. The operation

ext-updfun :: Functable× Func 7→ Func

yields an updated function f ′ = ext-updfun(ft, f) which is obtained by updating all
statements of functions’ f body with ext-updstmt:

f ′.body = ext-updstmt(ft, f.body).
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Let ft′ be a function table. A replacement of all external function call statements in
ft by ordinary calls in case a callee is defined in ft′ is done by means of the function

ext-updft :: Functable× Functable 7→ Functable,

ext-updft(ft, ft
′) def= ft′′,

ft′′[i] = (ft′[i].fn, ext-updfun(ft, ft′[i].fd)).

Isabelle: cvm/linker/linker.ESCalls update {stmt,proc,pt}

We define an alias for the functional composition of Definitions 6.2 and 6.3:

rem-and-upd(ft, ft′) def= ext-updft(rem-def-func(ft, ft′), ft′).

Having this, we are able to combine all algorithm steps in a single formal definition
of linkft.

Definition 6.4 (Auxiliary linking operator) Let ft and ft′ be function tables. We
define an auxiliary linking operator

pre-linkft :: Functable× Functable 7→ Functable,

pre-linkft(ft, ft
′) def= rem-and-upd(ft, rem-ext-func(ft′)).

Isabelle: cvm/linker/linker.link pt with

As all external functions that are declared in the CVM framework have their imple-
mentation in the abstract kernel and vice versa the algorithm of linking their function
tables looks as follows:

1. run pre-linkft with the CVM framework’s function table as the first argument and
the abstract kernel’s function table as the second,

2. run pre-linkft with the abstract kernel’s function table as the first argument and
the CVM framework’s function table as the second, and

3. concatenate results obtained in two above steps.

Renumbering

In the third step one peculiarity has to be considered. We assume that statements are
numbered consecutively starting from one in both function tables. The C0 small-step
semantics requires that each statement in a program is uniquely tagged with a statement
identifier. Note that the pre-linkft function preserves statement identifiers. Thus, if we
proceed with concatenation as described in the third step we obtain a function table
which violates uniqueness of statements identifiers property. As a solution we introduce
two renumbering functions renumeven

ft and renumodd
ft . Both function receive a function

table as an argument and yield a modified one. The first function doubles each statement
identifier in a function table while the second function multiples each statement identifier
by two and additionally adds one to it. By applying respective function to the left and
right sides of the concatenation in the third step of the algorithm we obtain a linked
function table with unique statement identifiers. Definition 6.5 below introduces the
function renumeven

ft formally.
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Definition 6.5 (Even renumbering) The function

renumeven
stmt :: Stmt 7→ Stmt

specifies the even renumbering of statements:

renumeven
stmt(skip) def= skip,

renumeven
stmt(comp(s, s′)) def= comp(renumeven

stmt(s), renumeven
stmt(s

′)),

renumeven
stmt(ass(e, e′, sid)) def= ass(e, e′, 2 · sid),

renumeven
stmt(pAlloc(e, t, sid)) def= pAlloc(e, t, 2 · sid),

renumeven
stmt(sCall(e, fn, es, sid)) def= sCall(e, fn, es, 2 · sid),

renumeven
stmt(return(e, sid)) def= return(e, 2 · sid),

renumeven
stmt(ifte(e, s, s′, sid)) def= ifte(e, renumeven

stmt(s), renumeven
stmt(s

′), 2 · sid),

renumeven
stmt(loop(e, s, sid)) def= loop(e, renumeven

stmt(s), 2 · sid),

renumeven
stmt(esCall(e, fn, es, sid)) def= esCall(e, fn, es, 2 · sid),

renumeven
stmt(asm(il, sid)) def= asm(il, 2 · sid),

renumeven
stmt(xCall(fn, es, es′, sid)) def= xCall(fn, es, es′, 2 · sid).

Let f be a function. The operation

renumeven
fun :: Func 7→ Func

yields an updated function f ′ = renumeven
fun (f) which is obtained by even renumbering of

all statements in functions’ f body:

f ′.body = renumeven
stmt(f.body).

Let ft be a function table. The function

renumeven
ft :: Functable 7→ Functable

performs even renumbering of all statements in all functions comprised by the function
table ft:

renumeven
ft (ft) def= ft′

ft′[i] = (ft[i].fn, renumeven
fun (ft[i].fd)).

Isabelle: cvm/linker/linker.renumber even {stmt,proc,pt}

The function renumodd
ft is defined completely analogously with the help of the func-

tions renumodd
fun and renumodd

stmt, where the last function doubles and increases by one each
statement identifier sid, i.e., 2 · sid + 1.

Altogether

Now we are able to define the function linkft which links two function tables.
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Definition 6.6 (Linking function tables) Linking of two function tables ft and ft′ is
done by means of the function

linkft :: Functable× Functable 7→ Functable,

linkft(ft, ft′) def= renumeven
ft (pre-linkft(ft, ft

′)) ◦ renumodd
ft (pre-linkft(ft′, ft)).

Isabelle: cvm/linker/linker.link pt

6.2.3 Linking Symbol Tables

An operator for linking symbol tables is very similar to the one for linking type environ-
ments. We concatenate the first symbol table with the part of the second symbol table
from which all entries that occur in the first symbol table are removed. Formally this is
expressed in the following definition.

Definition 6.7 (Linking of symbol tables) Linking of two symbol tables st and st′

is done by means of the function

linkst :: Symtable× Symtable 7→ Symtable,

linkst(st, st′) def= st ◦ [xst ′ : x 6∈ st]

Isabelle: cvm/linker/linker.link st

6.2.4 Linking Programs

We have formally introduced the functions for linking program’s individual components
in Definitions 6.1, 6.6, and 6.7. The following definition uses them for stating the linking
operator over programs.

Definition 6.8 (Linking C0 programs) Linking of two C0 programs π and π′ is done
by means of the function

linkπ(π, π′) def= π′′,

which uses the above defined functions to link the program components:

π′′.te = linkte(π.te, π′.te),
π′′.ft = linkft(π.ft, π′.ft),
π′′.gst = linkst(π.gst, π′.gst).

Isabelle: cvm/linker/linker.link prog

6.2.5 Correctness

There are two requirements to a correct linker: the produced C0 program must be

• valid, i.e., its type environment, global-symbol table, and function table belong to
the sets, validtenv [66, Definition 5.12], validst [66, Definition 5.13], and validft [66,
Definition 5.17], respectively, and
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• translatable, i.e., belong to the set xltblprog [66, Definition 7.41].

The formal linking operator linkπ was designed with an idea in mind to link arbitrarily
many programs. That is why linking of two programs does not deliver us a program
which respects the two mentioned statements simply by construction.

Validity

Let us analyze which preconditions two given programs must fulfill in order to respect
the correctness requirements to a linker. At first glance it seems that the two programs
subject to linking must be valid. However, that a program is supposed to be linked means
it has external functions with empty bodies. These functions at least do not satisfy a
property that their last statement is return, which is a part of the valid function-table
definition. As for type environments and global-symbol tables, we can assume their
validity before linking.

Besides the validity of type environments te1 and te2, we need that there are no two
different names in both environments that describe the same type and vice versa: if in
both tables the same name is used, then the types behind this name are the same:

dstncttenv(te1, te2) def= ∀ t1 ∈ te1 : ∀ t2 ∈ te2 : t1.tn = t2.tn ←→ t1.td = t2.td.

Altogether, the preconditions to linking of type environments are:

precond-linkte(te1, te2) def= te1 ∈ validtenv ∧ te2 ∈ validtenv ∧ dstncttenv(te1, te2).

The following lemma claims correctness of type environments linking.

Lemma 6.9 (Linking preserves validity of type environment) Assume that the
preconditions to linking of type environments hold for te1 and te2, then the linked type
environment is valid:

precond-linkte(te1, te2) −→ linkte(te1, te2) ∈ validtenv

Isabelle: cvm/linker/linker tt props.valid tenv link tt

In order to obtain a valid symbol table after linking it is sufficient to have a weaker
precondition compared to type environments: if two variables with the same name are
used in both original symbol table, then these variables have the same type:

dstnctst(st1, st2) def= ∀ s1 ∈ st1 : ∀ s2 ∈ st2 : s1.vn = s2.vn −→ s1.ty = s2.ty.

Combining this with the validity notion we obtain the preconditions to linking of symbol
tables:

precond-linkst(te1, st1, te2, st2) def=
st1 ∈ validst(te1) ∧ st2 ∈ validst(te2) ∧ dstnctst(st1, st2).

The next lemma is our correctness statement for linking of symbol tables.

Lemma 6.10 (Linking preserves symbol-table validity) Assume that the precon-
ditions to linking of symbol tables hold for st1 and st2 with respect to type environments
te1 and te2, then the linked symbol table is valid:

precond-linkst(te1, st1, te2, st2) −→ linkst(st1, st2) ∈ validst(linkte(te1, te2))
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Isabelle: cvm/linker/linker st props.valid symboltalbe link st

For a correct linking of function tables ft1 and ft3 we need to assume a more strict
notion of distinction. First of all, function names, i.e., the first components of each table’s
item, must be distinct. Moreover, all statements in both tables must be different, i.e.,
the predicate dstnctfts [66, Definition 5.16] holds for both function tables. Finally, as
each undefined function is merged during linking with a corresponding defined function
we need to assume that in the given function tables the names of all defined functions
are distinct:

distinct-def-func-names(ft1, ft2) def= {x : ∃ i : rem-ext-func(ft1)[i].fn = x}
∩ {x : ∃ i : rem-ext-func(ft2)[i].fn = x} = ∅.

Putting these conditions together we obtain the definition of distinct function tables:

dstnctft(ft1, ft2) def= ∀ i 6= j : ft1[i].fn 6= ft1[j].fn
∧ ∀ i 6= j : ft2[i].fn 6= ft2[j].fn
∧ dstnctfts (ft1) ∧ dstnctfts (ft2)
∧ distinct-def-func-names(ft1, ft2)

In order to ensure that in the linked function table no external, i.e., undefined,
functions occur we need to have that all undefined functions from one function table are
defined in the second:

all-ext-func-covered(ft1, ft2) def=
∀ f2 ∈ ft2 : is-ext-func(f2.fd)

−→ ∃ f1 ∈ ft1 : f1.fn = f2.fn ∧ ¬is-ext-func(f1.fd).

The predicate linked-calls-corrft(ft) ensures that each call statement in (each function
of) the function table ft is appropriately defined: calls are made to the functions with de-
fined bodies whereas external calls are used to invoke undefined functions. The predicate
checks every single statement s of ft with the auxiliary predicate linked-calls-corrstmt:

linked-calls-corrft(ft)
def= ft′,

ft′[i].fd.body = linked-calls-corrstmt(ft, ft[i].fd.body).

The predicate linked-calls-corrstmt(ft, s) is defined by induction over the statement struc-
ture. For those statements which have substatements s′, namely comp, ifte, and loop,
we apply linked-calls-corrft(ft, s′) recursively, i.e.,

linked-calls-corrstmt(ft, loop(e, s′, sid)) def= linked-calls-corrstmt(ft, s′).

For the call or external call statements to the function of name fn we find its body fd in
the function table ft. We check ¬is-ext-func(fd) for call statements and is-ext-func(fd)
for external calls, respectively.

linked-calls-corrstmt(ft, sCall(e, fn, es, sid)) def= ∃ fd : (fn, fd) ∈ ft ∧ ¬is-ext-func(fd),

linked-calls-corrstmt(ft, esCall(e, fn, es, sid)) def= ∃ fd : (fn, fd) ∈ ft ∧ is-ext-func(fd).
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For all remaining statements the predicate returns true.
We combine all-ext-func-covered and linked-calls-corrft with the C0 functions validity

requirement validfun [66, Definition 5.14] for all non-external functions in both function
tables in order to obtain the preconditions to correct linking of function tables:

precond-linkft(te1, st1, ft1, te2, st2, ft2) def=
all-ext-func-covered(ft1, ft2) ∧ all-ext-func-covered(ft2, ft1)

∧ linked-calls-corrft(ft1) ∧ linked-calls-corrft(ft2)
∧ ∀ f ∈ rem-ext-func(ft1) : f.fd ∈ validfun(te1, ft1, st1)
∧ ∀ f ∈ rem-ext-func(ft2) : f.fd ∈ validfun(te2, ft2, st2).

The following lemma justifies the correctness of function-tables linking. Besides the
described preconditions and distinction requirements it has an additional non-trivial
assumption. In order to guarantee that all call statements are valid in the linked table
we have to assume that the functions which occur in both original function tables have
the same signature:

same-signatures(ft1, ft2) def=
∀ f1 ∈ ft1 : ∀ f2 ∈ ft2 : f1.fn = f2.fn −→ f1.fd.params = f2.fd.params

∧ f2.fd.rtype = f2.fd.rtype.

Lemma 6.11 (Linking establishes function-table validity) Let te1 and te2 be type
environments, let ft1 and ft2 be function tables, and let st1 and st2 be symbol tables.
Assume that (1) the preconditions to linking of function tables hold, (2) the first function
table is not empty and the functions that occur in both tables have same signatures,
and (3) the type environments, function tables, and symbol tables are pairwise distinct,
then the linked function table is valid:

(1) precond-linkft(te1, st1, ft1, te2, st2, ft2)
(2) ∧ ft1 6= [] ∧ same-signatures(ft1, ft2)
(3) ∧ dstncttenv(te1, te2) ∧ dstnctst(st1, st2) ∧ dstnctft(ft1, ft2)
−→ linkft(ft1, ft2) ∈ validft(linkte(te1, te2), linkst(st1, st2))

Isabelle: cvm/linker/linker pt props.link pt in valid proctables

Proof. Let us abbreviate te = linkte(te1, te2), ft = linkft(ft1, ft2), and gst = linkst(st1, st2).
We unfold the function-table validity notion [66, Definition 5.17] and need to prove the
four following facts about the linked function table.

Subgoal 1. ∀ f ∈ ft : f.fd ∈ validfun(te, ft, gst): all functions constituting the function ta-
ble are valid. Assumption (1) comprises the statements all-ext-func-covered(ft1, ft2)
and all-ext-func-covered(ft2, ft1) which ensure that there is no external, i.e., unde-
fined, functions in the linked function table. The linking operator affects only call
statements. From same-signatures(ft1, ft2) we conclude that all call statements
stay valid.

Subgoal 2. ∀ i 6= j : ft[i].fn 6= ft[j].fn: all function names are distinct. From the last
term of (3) we have that all names in the original function tables are distinct as well
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as that all defined functions in both tables have different names. It is enough to
conclude the subgoal because the linking algorithm merges all undefined functions
into one entry.

Subgoal 3. dstnctfts (ft): all statements are distinct. From dstnctft(ft1, ft2) we have that
statements of original programs are distinct. The linking algorithm involves the
statement renumbering mechanism. This ensures that all statements besides calls
are distinct in the obtained function table. As for the call statements, the lemma’s
assumptions linked-calls-corrft(ft1) and linked-calls-corrft(ft2) forbid situations where
in one of the original function tables, say ft1, there are call and external call state-
ments with the same statement identifier and signature which are transformed
during linking into identical call statements by means of the function ext-updstmt

(Definition 6.3).

Subgoal 4. ft 6= []: the function table is not empty. Follows from ft1 6= [].

Translatability

In order to formulate a correctness statement that linked programs are translatable let us
recall some definitions from the C0 small-step semantics and code generation algorithm.
We denote that a function f is translatable by f ∈ xltblfunc(te, ft, gst) [66, Definition
7.40]. The allocated size of a symbol table st is computed by means of the function
asizest(st) [66, Definition 7.11]. The code size of a function table ft with respect to a
type environment te and global-symbol table gst is computed by means of the function
csizeprog(te, gst, ft) [66, Definition 7.5].

Lemma 6.12 (Linking produces translatable programs) Let te1 and te2 be type
environments, let ft1 and ft2 be function tables, and let st1 and st2 be symbol tables.
Let ft′1 = ext-updft(ft2, ft1) and ft′2 = ext-updft(ft1, ft2) be updated function tables where
all external calls are replaced. Assume that (1) preconditions to linking of type envi-
ronments, symbol tables, and function tables hold, (2) all functions in updated function
tables are translatable, (3) doubled size of symbol tables sum fits into 32 bits, and
(4) computed size of updated function tables fits into 26 bits with respect to the pro-
gram base, then the linked program is translatable:

(1) precond-linkte(te1, te2)
∧ precond-linkst(te1, st1, te2, st2)
∧ precond-linkft(te1, st1, ft1, te2, st2, ft2)

(2) ∧ ∀ f ∈ ft′1 : f.fd ∈ xltblfunc(te1, ft1, st1)
∧ ∀ f ∈ ft′2 : f.fd ∈ xltblfunc(te2, ft2, st2)

(3) ∧ 2 · (asizest(st1) + asizest(st2)) < 232

(4) ∧ PROGBASE + 4 · (csizeprog(te1, st1, ft′1) + csizeprog(te2, st2, ft′2)) < 225

−→ (linkte(te1, te2), linkft(ft1, ft2), linkst(st1, st2)) ∈ xltblprog.

Isabelle: cvm/linker/linker transl props.link in translatable programs
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Proof. Let us abbreviate te = linkte(te1, te2), ft = linkft(ft1, ft2), and gst = linkst(st1, st2).
We unfold the definition of translatable programs [66, Definition 7.41] and need to prove
the three following facts.

Subgoal 1. PROGBASE + 4 · csizeprog(te, gst, ft) < 225 : program base plus the code size
fits into 26 bits. Follows from assumption (4).

Subgoal 2. ∀ f ∈ ft : f.fd ∈ xltblfunc(te, ft, gst): all functions are translatable. In (2) we
assume for both function tables that all functions are translatable after replacing
all external calls. Since the linking algorithm replaces all external calls we conclude
the subgoal.

Subgoal 3. 2 · asizest(gst) < 232: global-symbol table is translatable. Follows from as-
sumption (3) and the fact that the size of the linked symbol table is always less
than the sum of sizes of given symbol tables.

Subgoal 4. abaselm(te, ft, gst) < 232: stack start address fits into 32 bits. Follows from
the definition of the constant ABASElm which is equal to the stack start address.

Subgoal 5. ABASEhm + ASIZEmax
hm < 232: heap end address fits into 32 bits. Follows from

definition of the constants.

6.3 Obtaining a Concrete Kernel

Having the linking mechanism formally defined we can formalize a concrete kernel as
a function of an abstract kernel. The concrete kernel is the CVM framework imple-
mentation linked with an abstract kernel. Let πAK be a C0 program of the abstract
kernel.

The C0 program of the concrete kernel is defined as:

πCK :: ΠC0 7→ ΠC0,

πCK(πAK) def= linkπ(πCVM, πAK).

Additionally we define three functions for accessing the type environment, function
table, and global symbol table of the concrete kernel. The type environment of the
concrete kernel is accessed with the following function:

teCK :: ΠC0 7→ Tenv,

teCK(πAK) def= πCK(πAK).te.

We define the function for extracting the function table of the concrete kernel:

ftCK :: ΠC0 7→ Functable,

ftCK(πAK) def= πCK(πAK).ft.

Finally, the global symbol table of the concrete kernel is obtained by means of the
following function:

gstCK :: ΠC0 7→ Symtable,

gstCK(πAK) def= πCK(πAK).gst.
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6.4 Validity and Translatability of the Concrete Kernel

For application of the linker correctness theorem some properties have to hold for each
program. These properties could be shown for the CVM implementation because we
have the completely defined CVM program. As for the abstract kernel, the properties
will be shown after the instantiation of πAK with particular code. Thus, these properties
will stay as assumptions to the top level theorem. We define predicate

abs-kernel-props :: ΠC0 7→ B.

where we collect all necessary properties for abstract kernel.

Validity of a linked type environment. Validity of the CVM type environment is
shown by construction.
Corollary 6.13 teCVM ∈ validtenv.
Isabelle: cvm/code/cvm tt props.valid tenv cvm tt

Other preconditions to correct linking of type environments could not be shown at the
moment. We add them to the properties of the abstract kernel:

abs-kernel-props(πAK) def= πAK.te ∈ validtenv

∧ dstncttenv(teCVM, πAK.te)
∧ · · ·

Having this, and using Lemma 6.9 we can show the validity of the linked type envi-
ronment.
Lemma 6.14 (Validity of the concrete kernel type environment) Assume that
the properties of the abstract kernel hold, then the type environment of the concrete
kernel is valid:

abs-kernel-props(πAK) −→ teCK(πAK) ∈ validtenv.

Isabelle: cvm/config/c0 config props.abs kernel properties impl valid tenv linked tt

Validity of a linked symbol table. Similarly to the type environment, the validity
of the CVM symbol table is shown by construction.
Corollary 6.15 gstCVM ∈ validst(teCVM).
Isabelle: cvm/code/cvm st props.valid symboltable cvm

From the source code of VAMOS and OLOS we know that the CVM code and the
abstract-kernel code do not have shared global variables. This allows us to strengthen
dstnctst:

abs-kernel-props(πAK) def= · · ·
∧ πAK.gst ∈ validst(πAK.te)
∧ vns(gstCVM) ∩ vns(πAK.gst) = ∅
∧ · · ·
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Since we can show the implication:

vns(gstCVM) ∩ vns(πAK.gst) = ∅ −→ dstnctst(gstCVM, πAK.gst),

the validity of the linked symbol table follows from Lemma 6.10.
Lemma 6.16 (Validity of the concrete kernel symbol table) Assume that the
properties of the abstract kernel hold, then the symbol table of the concrete kernel is
valid:

abs-kernel-props(πAK) −→ gstCK(πAK) ∈ validst(teCK(πAK)).

Isabelle: cvm/config/c0 config props.abs kernel properties impl valid symboltable linked st

Validity of a linked function table. For the CVM function table we have the
following properties true by construction:
Corollary 6.17 ∀ f ∈ rem-ext-func(ftCVM) :

f.fn ∈ validfun(teCVM, ftCVM, gstCVM).
Isabelle: cvm/code/cvm pt props.list all valid functions filter not is Skip cvm pt

Corollary 6.18 ftCVM 6= [].
Isabelle: cvm/code/cvm pt props.cvm pt not Nil

Corollary 6.19 ∀ i 6= j : ftCVM[i].fn 6= ftCVM[j].fn.
Isabelle: cvm/code/cvm pt props.distinct map fst cvm pt

Corollary 6.20 dstnctfts (ftCVM).
Isabelle: cvm/code/cvm pt props.stmts distinct pt cvm pt

Corollary 6.21 linked-calls-corrft(ftCVM).
Isabelle: cvm/code/cvm pt props.correct kind of Call cvm pt

For the abstract kernel function table (possibly together with the CVM function tables)
we reserve the following statements to be proven later:

abs-kernel-props(πAK) def= · · ·
∧ same-signatures(ftCVM, πAK.ft)
∧ ∀ i 6= j : πAK.ft[i].fn 6= πAK.ft[j].fn
∧ dstnctfts (πAK.ft)
∧ all-ext-func-covered(ftCVM, πAK.ft)
∧ all-ext-func-covered(πAK.ft, ftCVM)
∧ linked-calls-corrft(πAK.ft)
∧ distinct-def-func-names(ftCVM, πAK.ft)
∧ ∀ f ∈ rem-ext-func(πAK.ft) :

f.fd ∈ validfun(πAK.te, πAK.ft, πAK.gst)
∧ · · ·
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To prove the validity of the linked function table we show first:

abs-kernel-props(πAK) −→
precond-linkft(teCVM, gstCVM, ftCVM, πAK.te, πAK.gst, πAK.ft)

and
abs-kernel-props(πAK) −→ dstnctft(ftCVM, πAK.ft),

and with the help of Lemma 6.11 conclude with the following lemma.
Lemma 6.22 (Validity of the concrete kernel function table) Assume that the
properties of the abstract kernel hold, then the function table of the concrete kernel is
valid:

abs-kernel-props(πAK) −→ ftCK(πAK) ∈ validft(teCK(πAK), gstCK(πAK)).

Isabelle: cvm/config/c0 config props.abs kernel properties impl valid proctables

Translatability of a linked program. It is easy to show that the CVM functions
with external calls replaced are translatable.
Corollary 6.23 ∀ f ∈ ext-updft(πAK.ft, ftCVM) :

f.fd ∈ xltblfunc(teCVM, ftCVM, gstCVM)
Isabelle: cvm/code/cvm pt props.list all translatable functions ESCalls update pt 2 cvm pt

Besides the translatability of abstract kernel functions we need some restrictions on the
size of the compiled code and global symbol table:

abs-kernel-props(πAK) def=

· · ·
∧ ∀ f ∈ ext-updft(ftCVM, πAK.ft) :

f.fd ∈ xltblfunc(πAK.te, πAK.ft, πAK.gst)
∧ 4 · csizeprog(πAK.te, πAK.gst, ext-updft(ftCVM, πAK.ft))

+ BUBBLEcode = ABASEgm − PROGBASE

− 4 · csizeprog(teCVM, gstCVM, ext-updft(πAK.ft, ftCVM))
∧ asizest(πAK.gst) + BUBBLEgm =

ABASElm − ABASEgm − asizest(gstCVM)
∧ · · ·

Using Lemma 6.12 we can prove that the concrete kernel program is translatable.
Lemma 6.24 (Translatability of the concrete kernel program) Assume that
the properties of the abstract kernel hold, then the program of the concrete kernel is
translatable:

abs-kernel-props(πAK) −→ (teCK(πAK), ftCK(πAK), gstCK(πAK)) ∈ xltblprog.

Isabelle: cvm/config/c0 config props.abs kernel properties impl linked in translatable programs
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Correctness of a Microkernel

Chapter

7
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In this chapter we introduce correctness criteria and a theorem of the CVM model,
a framework for microkernel developers. The criteria are formulated as an abstraction
relation from a VAMP ISA with devices configurations towards the CVM model state.
The paper-and-pencil theory behind the CVM model correctness was originally intro-
duced by Gargano et al. [41]. Besides this thesis the mentioned theory inspired also In
der Rieden’s thesis [32] which we discuss in Section 11.

We start in Section 7.1 with a formal introduction of correctness criteria of the CVM
model. In Section 7.2 we state the correctness theorem of CVM. Finally, in Section 7.3
we outline a skeleton of this theorem’s proof. Complete details on each induction case
of the proof are presented in further chapters (cf. Chapter 9 and Chapter 10).

7.1 CVM Correctness Criteria

This section introduces an abstraction relation for CVM

cvm-sim :: ΠC0 × CCVM × CC0 × CISA+DS 7→ B,

cvm-sim(πAK, cCVM, cC0, cISA+DS),

which holds if the CVM configuration cCVM is encoded by both the states of VAMP
ISA with devices cISA+DS and the concrete kernel cC0 with respect to the abstract kernel
program πAK. The structure of the relation is depicted in Figure 7.1.

We distinguish three kinds of CVM states: (i) user executions, (ii) kernel execution
during waiting for interrupts, and (iii) other kernel executions. It its simple to distinguish
the first state: a CVM configuration cCVM encodes some user execution if the current
process component cCVM.cup has a value of some pid. As for the kernel executions we
introduce the predicate is-wait-state(cCVM) to denote a waiting for interrupt state. Recall
from Section 5.3 that when CVM waits for interrupts the program rest of its abstract
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cCVM = ( ak, ups, ds, cup, sr )

cISA+DS

concrete
kernel

va
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l cu
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kernel-rel(weak)

C0-sim-isa(weak)

Figure 7.1: CVM abstraction relation.

kernel component cCVM.ak is artificially set to an assembly statement. Therefore, we
define

is-wait-state(cCVM) def= is-asm(cCVM.ak.prog).

Depending on the kind of a CVM state the CVM abstraction relation is introduced
in two forms: cvm-simkernel and cvm-simweak. The former must hold for kernel configu-
rations except for the waiting for interrupt state while the latter is designed to specify
correctness criteria during user executions and when the kernel is waiting for interrupts.

cvm-sim(πAK, cCVM, cC0, cISA+DS) def=
cvm-simweak(πAK, cCVM, cC0, cISA+DS, 0) if cCVM.cup =⊥

∧ is-wait-state(cCVM)
cvm-simkernel(πAK, cCVM, cC0, cISA+DS) if cCVM.cup =⊥

∧ ¬is-wait-state(cCVM)
cvm-simweak(πAK, cCVM, cC0, cISA+DS, pid) if cCVM.cup = bpidc

Further in this section we formally define relations cvm-simkernel and cvm-simweak.
Before that, let us introduces a number of auxiliary definitions.

7.1.1 Obtaining Values of Variables

In order to relate configurations of the CVM model to states of VAMP ISA with devices
we must be able to express such high-level concepts as the kernel’s C0 variables in terms
of low-level hardware models. When a kernel and user processes run on a physical
combined system there are only two places to store their code and data: the main
physical memory and the hard disk. Further we define functions that read values of
CVM’s and user’s variables from these two storages.

We compute an offset in the memory of an assembly or ISA configurations for a
variable of name vn within a symbol table st by means of the following function [66,
Def. 7.10]:

displv(st, vn) def=


A if st = []
0 if st = (vn, ty) ◦ st′

asizet(ty) + displv(st′, vn) if st = (vn′, ty) ◦ st′ ∧ vn′ 6= vn

Having this and assuming that vn is a name of a global variable we define the variable’s
address as

advn
def= ABASEgm + displv(gstCVM, vn).
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We extend this definition for process’s registers. We know that registers of a process
p are stored consecutively in its process control block. Let reg be a serial number of a
register in the PCB we are interested in. Then the address of this register in the physical
memory is computed by the following formula:

adpreg
def= ABASEgm + displv(gstCVM, pcb) + p · 29 + reg · 4.

Above, 29 is a size of a single process control block. In fact, the data in a pcb consume
328 bytes. We align this size to a closest power of 2 from above — 29 — by adding a
respective amount of empty space at the end of each pcb.

We read a bit vector from an ISA memory m at an address a given as a natural
number by means of the function

read-isa(m, a) def= mword(bin(a)).

Now we have a possibility to interpret the resulting bit vector of such reading either
as a binary or a two’s complement number and convert it into a natural or an integer
number, respectively. For this we define two functions which read the memory of an
ISA configuration cISA and perform the desired conversions:

natvars(cISA, a) def= 〈read-isa(cISA.MemISA, a)〉,

intvars(cISA, a) def= [read-isa(cISA.MemISA, a)].

Combining these functions with our notation for a variable addresses we define aliases
for obtaining values of particular CVM implementation variables. The value of the
current process variable cup is extracted from the memory of a VAMP ISA with devices
configuration cISA+DS by means of the function

valcup(cISA+DS) def= natvars(cISA+DS.cpu, adcup),

while the value of the status register variable sr is obtained as

valsr(cISA+DS) def= natvars(cISA+DS.cpu, adsr).

With the help of these two definitions we easily will be able to formulate correctness
relations for the corresponding components of the CVM model: we will equate the values
retrieved from ISA to the respective values cCVM.cup and cCVM.sr.

Recall that the swap hard disk is a device with identifier SWAP DID in the devices
system configuration cISA+DS.devs. We read an integer value from the hard disk’s swap
memory at an address a given as a natural 32-bit number by means of the function:

intswap(cDS, a) def= n2i(the-hd(cDS(SWAP DID)).sm[150 · 1024 + a/4]).

Note that an offset of 150 pages appears in the swap memory address computation due
to the boot region located at the beginning of the hard disk.

7.1.2 Devices Relation

The first non-trivial, but nevertheless simple, correctness criterion of CVM is the devices
relation. Recall Definition 5.6: on the initialization CVM’s devices system is constructed
as a copy of VAMP ISA’s devices system from which the swap hard disk is excluded.

137



By design the remaining devices operate equally in CVM configurations and in the
underlying physical combined system configuration.

Definition 7.1 (Devices relation) The devices relation claims that the device states
in CVM and VAMP ISA configurations are equal except for the swap hard disk which
is an idle device in CVM:

dev-rel(cCVM,cISA+DS) def=
∀ did : did 6= SWAP DID −→ cCVM.ds(did) = cISA+DS.devs(did)

∧ is-idle-dev(cCVM.ds(SWAP DID)).

Isabelle: cvm/cvm correct/cvm sim.dev sim

7.1.3 Relation for User Processes

The correctness relation for user processes states whether the user processes configura-
tions cCVM.ups are represented in the configuration cISA+DS of a VAMP ISA machine
with devices. An active user process, i.e., the one that is currently running on the pro-
cessor, is represented by the contents of hardware registers. Suspended user processes
are implemented by the process control blocks. In order to distinguish these two cases
we will analyze the value of the current process identifier together with the system mode
predicate:

is-sys(cISA+DS) def= is-sys-modeISA(cISA+DS.cpu).

In both cases memories of user processes are stored in the physical memory and on the
hard disk.

We introduce the function vm(cISA+DS, p) which performs the mentioned case dis-
tinction and reconstructs a virtual assembly machine for a given process identifier p:

vm(cISA+DS, p)
def=

{
vmdirect(cISA+DS, p) if ¬is-sys(cISA+DS) ∧ valcup(cISA+DS) = p

vmvars(cISA+DS, p) otherwise
.

The first case corresponds to a situation when the process p is active and its virtual
machine is constructed directly from the hardware registers with the help of the func-
tion vmdirect. In the second case the process p is suspended an its virtual machine is
reconstructed from variables (PCBs) by means of the function vmvars. The definitions
of both functions follow. Note that for reconstruction of the memory they will use the
function mem(cISA+DS, p) which we define later.

Virtual Machine Reconstructed from Variables

Normal and delayed program counters of a process p are stored in the physical memory
at addresses adpPC and adpDPC , respectively. In order to retrieve their values we define
two following functions:

dpcvars(cISA+DS, p)
def= natvars(cISA+DS.cpu, adpDPC),

pc′vars(cISA+DS, p)
def= natvars(cISA+DS.cpu, adpPC).
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A (part of a) general purpose register file is obtained by reading 31 words from the
main memory starting at address adpGPRS1

. The function for reading yields a list of
integers and has the following definition:

get-gpr(cISA, p)
def= [intvars(cISA, adpGPRS1

), . . . , intvars(cISA, adpGPRSEF+n−1)].

All user process have their very first general purpose register always equal to zero.
Combining this we obtain all GPR values constructed from variables:

gprvars(cISA+DS, p)
def= 0 ◦ get-gpr(cISA+DS.cpu, p).

Analogous functions are defined for reading from the special purpose register file
stored in process control blocks. The indices of the SPRs we are interested in are SPRSpto

and SPRSptl , and the corresponding register addresses are adpSPRSpto
and adpSPRSptl

,
respectively. The formal definition of the function for reading these two special registers
from PCBs is as follows:

get-spr(cISA, p)
def= [intvars(cISA, adpSPRSpto

), intvars(cISA, adpSPRSptl
)].

Values of some special registers are not stored in the process control blocks. One example
is the status registers: within CVM it is shared between all processes and its value is
stored in the variable sr. Another example is the mode register. As user operate only
in user mode it makes no sense to store its value in PCBs. Considering these facts we
define the following function which delivers an assembly special purpose register file for
a given user process:

sprvars(cISA+DS, p)
def= n2i(valsr(cISA+DS)) ◦ 08 ◦ get-spr(cISA+DS.cpu, p) ◦ 05 ◦ 1 ◦ 015.

Altogether, we define the virtual machine reconstructed from variables as follows:

vmvars(cISA+DS, p)
def= (dpcvars(cISA+DS, p),

pc′vars(cISA+DS, p),
gprvars(cISA+DS, p),
sprvars(cISA+DS, p),
mem(cISA+DS, p)).

Virtual Machine Reconstructed Directly

When we reconstruct a virtual machine for a process p directly from the hardware
registers values we need much less effort. Basically, the virtual machine’s components are
obtained by interpreting corresponding hardware registers as binary or two’s complement
numbers. For program counters we can perform a conversion to binary numbers directly
and define:

dpcdirect(cISA+DS) def= 〈cISA+DS.cpu.dpc〉,

pc′direct(cISA+DS) def= 〈cISA+DS.cpu.pc〉.

For a VAMP ISA register file regs we define a function which converts the whole file to
a list of integers:

regs-convert(regs) def= [[regs(bin(0))], . . . , [regs(bin(31))]].
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Having this, we define the directly reconstructed general and special purpose register
files:

gprdirect(cISA+DS) def= regs-convert(cISA+DS.cpu.gpr),

sprdirect(cISA+DS) def= regs-convert(cISA+DS.cpu.spr).

Altogether, we define the virtual machine reconstructed directly as follows:

vmdirect(cISA+DS, p)
def= (dpcdirect(cISA+DS, p),

pc′direct(cISA+DS, p),
gprdirect(cISA+DS, p),
sprdirect(cISA+DS, p),
mem(cISA+DS, p)).

Reconstructing Virtual Memory

Independently of whether a process’s virtual machine is constructed from variables or
directly the process’s virtual memory is stored in the main physical memory and on the
hard disk. For each memory address, the decision where the data can be found is taken
according to the valid bit of the respective page table entry.

On the input we have a process identifier p and a virtual address va. Our goal is to
formally specify address translation mechanism following its implementation in CVM.
First, we define how a physical memory address is computed, then we introduce a swap
memory address computation.

Physical memory address. Since a single memory page in our system contains 212

bytes a page and byte indices of a virtual address va represented as a natural number
are defined as follows:

px(va) def= va/212,

bx(va) def= va mod 212.

The page table origin and length for a process p are obtained from the memory of ISA
by reading the registers pto or ptl, respectively, from the process control block:

get-pto(cISA, p)
def= natvars(cISA, adpSPRSpto

),

get-ptl(cISA, p)
def= intvars(cISA, adpSPRSptl

).

Note that in case of ptl we follow the CVM’s implementation and represent the result
as an integer. The reason is that we want the domain of origins to be extended with −1
which denotes that a process has no memory. The i-th page table entry of a process p is
delivered by reading the i-th word in the physical memory starting from the respective
page table origin:

get-pte(cISA, p, i)
def= natvars(cISA, get-pto(cISA, p) · 212 + i · 4).

The page index, i.e., twenty most significant bits, of a page table entry has a meaning
of a physical page index. Combining it with a byte index of the virtual address we get
the physical memory address. Formally:

pma(cISA, p, va) def= px(get-pte(cISA, p, px(va))) · 212 + bx(va).
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Swap memory address. We use big pages of size 222 bytes. Therefore, big-page and
big-byte indices of a virtual address va represented as a natural number are defined as
follows:

bpx(va) def= va/222,

bbx(va) def= va mod 222.

We obtain the big-page table origin for a process p by reading a natural number from
the memory of ISA with devices at address adpbpto:

get-bpto(cISA, p)
def= natvars(cISA, adpbpto).

Note, that big-page table origins do not store absolute values of addresses, but only
indices within the bptspace array. To obtain the absolute address we need to add the
start address of this array adbptspace. The i-th big-page table entry of a process p is
defined as the i-th word read from the physical memory starting from the corresponding
big-page table origin:

get-bpte(cISA, p, i)
def= natvars(cISA, adbptspace + get-bpto(cISA, p) · 4 + i · 4).

Big-page table entries store big-page indices. Therefore, the desired swap memory ad-
dress is defined as a combination of the respective big-page table entry and the big-byte
index:

sma(cISA, p, va) def= get-bpte(cISA, p, bpx(va)) · 222 + bbx(va).

Taking a decision. From a page table entry pte we extract the valid bit at bit position
11:

v(pte) def= pte/212 mod 2.

The value of this bit signals whether the page we are considering resides in the main or
swap memory. We define the function mem :: CISA+DS×N 7→ MemASM which makes this
decision and creates an assembly memory components which we use in the reconstruction
functions defined above in this chapter:

mem :: CISA+DS × N 7→ MemASM

mem(cISA+DS, p)(va) def=

{
intvars(cISA+DS.cpu, pma(cISA+DS.cpu, p, va · 4)) if v?
intswap(cISA+DS.devs, sma(cISA+DS.cpu, p, va · 4)) otherwise

,

where v? = v(get-pte(cISA+DS.cpu, p, px(va · 4))) = 1.

The B-relation

We have completed the definition of the function vm(cISA+DS, p) which reconstructs a
virtual machines for a process p from an ISA machine with devices. Now we are able to
define a correctness criterion for user processes which we call the B-relation.

The basic idea behind the B-relation is to reconstruct virtual machines for every user
process and check whether each of these machines match the one specified by the CVM
user process component ups. For this we define an equality check operator for assembly
machines. At first glance a definition of such operator should simply equate respective
components of two assembly configurations. Here come two peculiarities. First, we can
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check only those special purpose registers that are stored in process control blocks or
other kernel variables. With the following function which takes an assembly register file
regs as an argument we define the special registers concerned:

stored-spr(regs) def= [regs[sr], regs[pto], regs[ptl], regs[mode]].

The second peculiarity arises when we compare memories. Since we model assembly
memory as a mapping from address given as natural numbers to integer contents we
deal with 232 memory cells. However, not all of them are initialized and store sensible
values which could be compared. As a solution we introduce a parameter vm-size which
denotes the upper bound for memory addresses to be read and checked.

Definition 7.2 (Assembly configurations equality) Two assembly configurations
c1ASM and c2ASM are compared by means of the following predicate:

asm-equal(c1ASM, c
2
ASM, vm-size) def= c1ASM.dpc = c2ASM.dpc

∧ c1ASM.pc = c2ASM.pc
∧ tl(c1ASM.gpr) = tl(c2ASM.gpr)
∧ stored-spr(c1ASM.spr) = stored-spr(c2ASM.spr)
∧ ∀ a < vm-size : c1ASM.m(a/4) = c2ASM.m(a/4).

Isabelle: cvm/map/B relation.ASMcore equality

The only thing that remains before we can state the desired correctness relation for
user processes is the right choice of the parameter vm-size. For each process p we should
compare only those virtual memory parts that have been allocated. The size of the
allocated memory measured in pages is stored in the page table length register and is
expresses by the formula get-ptl(cISA, p) + 1. Note that one is added since due to the
fact that a process has no memory is signal by the ptl value −1.

Definition 7.3 (User processes relation) The B-relation, denoted by B(ups, cISA+DS),
is nothing but an equality of assembly machines for all user processes para-metrized with
the right amount of virtual memory:

B(ups, cISA+DS) def= ∀ 0 < p < PID MAX :

asm-equal(vm(cISA+DS, p), ups(p), (get-ptl(cISA+DS.cpu, p) + 1) · 212).

Isabelle: cvm/map/B relation.B relation

7.1.4 Relation for the Kernel

The correctness relation for the abstract kernel component ak of a CVM configuration
is the most involved one. Since only after linking the abstract kernel with the CVM
implementation it can run on the target architecture we relate it to the ISA machine
indirectly through a concrete kernel C0 machine cC0. Concrete and abstract kernels
are connected by the relation kernel-rel(πAK, ak, cC0) which has to hold during kernel
executions, or kernel-relweak(πAK, ak, cC0) which has to hold during user steps. Configu-
rations of the concrete kernel cC0 can be mapped to the hardware model by the C0-ISA
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Figure 7.2: Relating memories and program rests of abstract and concrete kernels.

simulation relation. Figure 7.2 sketches the idea behind the relation for the kernel. We
continue by introducing individual terms constituting both kernel relations.

Definition 7.4 (Relation for the program rest) The coupling relation for program
rests of the abstract and concrete kernels is a disjunction of two terms. The first disjunct
describes a special case — the abstract kernel invocation — and states that both C0
machines call the main function of the abstract kernel called dispatcher kernel() with
exactly the same values of parameters. The second disjunct covers all other cases of
the kernel execution. It states that statements of the concrete kernel were subject to
renumbering by the linker. Formally:

kernel-relprog(ak, cC0) def=

∃ eca, edata, params, sid :

ak.prog = akprog(eca, edata)
∧ left-stmt(cC0.prog) =

sCall(cup, dispatcher kernel, params, sid)
∧ reval(linkte(teCVM, ak.te), cC0.mem, params[0]) = bnat(eca)c
∧ reval(linkte(teCVM, ak.te), cC0.mem, params[1]) = bnat(edata)c.

∨ left-stmt(cC0.prog) = renumodd
stmt(ext-updstmt(ftCVM, ak.prog))

Isabelle: cvm/cvm correct/cvm sim.kernel relation prog

Recall that left-stmt yields the left statement of a composition statement. We elaborate
why we use this function in the above definition further in this chapter when we describe
implementation invariants.

While designing a correctness relation for variables of the abstract and concrete
kernels one must keep in mind that there is a number of additional local frames in the
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concrete kernel, in our case — one. Moreover, indices of heap variables are shifted by
a constant amount of CVM HST LEN. In order to formalize these facts we introduce the
following function.

Definition 7.5 (Conversion for kernel variables) For an abstract kernel g-variable
g the function abs2concgvar creates the corresponding variables of the concrete kernel:

abs2concgvar(g) def=



gvargm(vn) if g = gvargm(vn)
gvar lm(i+ 1, vn) if g = gvar lm(i, vn)
gvarhm(i+ CVM HST LEN) if g = gvarhm(i)
gvararr(abs2concgvar(v), n) if g = gvararr(v, n)
gvar str(abs2concgvar(v), sn) if g = gvar str(v, sn)

.

Isabelle: cvm/cvm correct/cvm sim.shift local heap gvar

As for the memory cell contents of the abstract and concrete kernels, the only place
where they could differ is the value of a pointer variable. The reason is that the pointer
targets are modeled as g-variables in the C0 small step semantics.

Definition 7.6 (Conversion for kernel memory cells) The function following
abs2conccont transforms a memory cell mc of the abstract kernel to the one of the con-
crete kernel:

abs2conccont(mc)
def=

{
ptr(abs2concgvar(g)) if mc = ptr(g)
mc otherwise

.

Isabelle: cvm/cvm correct/cvm sim.shift pointer

With the help of these two function we are able to introduce the desired relation for
kernel variables. Note that there is only one variable which is present in the abstract
kernel and has no (even an) equivalent in the concrete kernel: the artificial variable
abs kernel res for the result of abstract kernel computations (cf. Definition 5.2).

Definition 7.7 (Relation for kernel variables) The relation for kernel variables
kernel-relGvar compares memory configurations of the abstract and concrete kernels.
It states that all abstract kernel g-variables except gvar lm(0, abs kernel res) and the
correspondingly created via abs2concgvar concrete kernel variables have the same values
in case they are initialized:

kernel-relGvar(memabs,memconc)
def=

∀ g ∈ reachableg(memabs) \ {gvar lm(0, abs kernel res)} :

g ∈ reachableg(memconc)
∧ initializedg(memconc, abs2concgvar(g))

= initializedg(memabs, g)
∧ initializedg(memabs, g)
−→ ∀i : valueg(memconc, abs2concgvar(g))(i)

= abs2conccont(valueg(memabs, g)(i)).

Isabelle: cvm/cvm correct/cvm sim.shifted memory
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It is the case that local stacks of the abstract and concrete kernel have common
suffixes and differ only in their first elements. At the bottom of the abstract kernel’s local
stack we have an artificial memory frame (cf. Definition 5.2) while the first two elements
of the concrete kernel are frames for the function init () and the CVM dispatcher.
The remaining parts of these stacks coincide. The following definition describes this
structure formally.

Definition 7.8 (Relation for kernel local stacks) The relation for kernel local
stacks stated below consists of the conjuncts which have the following meaning. First,
the stack of the concrete kernel is one element longer than the one of the abstract
kernel. The result variable of the abstract kernel’s second frame is the artificial variable
abs kernel res. The local symbol table of the first frame contains only this variable.
The remaining two conjuncts claim that all other result and local variables coincide in
both local stacks. Formally:

kernel-relstack(lmabs, lmconc)
def=

2 ≤ |lmabs|+ 1 = |lmconc|
∧ 2 ≤ |lmabs| −→ lmabs[[1]].res = gvar lm(0, abs kernel res)
∧ lmabs[[0]].mfr.st = [(abs kernel res, unsgndT)]
∧ ∀ i < |lmabs| − 2 :

lmconc[[i+ 3]].res = abs2concgvar(lmabs[[i+ 2]].res)
∧ ∀ i < |lmabs| − 1 : lmabs[[i+ 1]].mfr.st = lmconc[[i+ 2]].mfr.st.

Isabelle: cvm/cvm correct/cvm sim.kernel relation mem

The result of an abstract kernel execution is supposed to be the process identifier of
the next scheduled process. In the abstract kernel this result is written into the artificial
result variable abs kernel res. In the concrete kernel the same value is written into
the variable for current process identifier. The relation below bridges the values of these
two variables.

Definition 7.9 (Relation for abstract kernel executions results) The relation
for abstract kernel execution results holds if the abstract kernel and the concrete kernel
results are equal:

kernel-relresult(ak, cC0) def= abs kernel res ∈ ak.mem.lm[[0]].mfr.init
∧ valueg(cC0.mem, gvargm(cup)) =

valueg(ak.mem, gvar lm(0, abs kernel res)).

Isabelle: cvm/cvm correct/cvm sim.kernel result relation

So far, we have defined individual correctness relations for such parts of the abstract
and concrete kernels as program rests, variables, local memory stacks, and execution
results. In the following we put them together into two predicates. One of them is our
correctness notion for the kernel during its runs. The other is the correctness statement
of the suspended kernel and is supposed to hold during user executions. Both relations
are defined between the monolithic C0 configuration ak of the abstract kernel and the
C0 configuration cC0 of the concrete kernel. As an additional parameter the relations
take the abstract kernel program πAK.

145



Definition 7.10 (Kernels relations) The simulation relation between the abstract
and concrete kernels during kernel executions states, first of all, that type environments,
function tables as well as global symbol tables of the abstract kernel configuration ak
coincide with the respective components of the abstract kernel program πAK. Next, the
relation defines the heap symbol table of the concrete kernel to be a concatenation of the
heap variables hstCVM from the CVM implementation and the heap symbol table of the
abstract kernel. Further, the relations for variables, local stacks, and program rest hold.
Finally, whenever the abstract kernel finishes its jobs, indicated by an empty statement
in the program rest, the relation for the executions results takes place. Formally:

kernel-rel(πAK, ak, cC0) def= ak.te = πAK.te
∧ ak.ft = πAK.ft
∧ gst(ak.mem) = πAK.st
∧ hst(cC0.mem) = hstCVM ◦ hst(ak.mem)
∧ kernel-relGvar(ak.mem, cC0.mem)
∧ kernel-relstack(ak.mem.lm, cC0.mem.lm)
∧ kernel-relprog(ak, cC0)
∧ is-skip(ak.prog) −→ kernel-relresult(ak, cC0).

The stack of local frames and the program rest are not maintained during user exe-
cutions. Therefore, the simulation relation between the abstract and concrete kernels
during user executions lacks three last conjuncts of the relation above:

kernel-relweak(πAK, ak, cC0) def= ak.te = πAK.te
∧ ak.ft = πAK.ft
∧ gst(ak.mem) = πAK.st
∧ hst(cC0.mem) = hstCVM ◦ hst(ak.mem)
∧ kernel-relGvar(ak.mem, cC0.mem).

Isabelle: cvm/cvm correct/cvm sim.kernel relation

cvm/cvm correct/cvm sim.weak kernel relation

7.1.5 Combining Relations for Components

Now we can formally define CVM correctness relations cvm-simkernel and cvm-simweak

which we have mentioned in the beginning of this section. The relation which has to
hold during kernel execution is a conjunction of the relation for the kernel, for devices,
for user processes, and the equality between the status register value retrieved from the
memory of VAMP ISA and the corresponding CVM component:

cvm-simkernel(πAK, cCVM, cC0, cISA+DS) def= kernel-rel(cCVM.ak, cC0, πAK)
∧ dev-rel(cCVM, cISA+DS)
∧ B(cCVM.ups, cISA+DS)
∧ valsr(cISA+DS) = cCVM.sr.
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As for the CVM correctness relation which has to hold during user executions, it is
the relation above extended with one term. The value of the variable for current process
identifier obtained from the memory of the physical combined system is equal to the
given value pid:

cvm-simweak(πAK, cCVM, cC0, cISA+DS, pid) def= kernel-relweak(cCVM.ak, cC0, πAK)
∧ dev-rel(cCVM, cISA+DS)
∧ B(cCVM.ups, cISA+DS)
∧ valsr(cISA+DS) = cCVM.sr

∧ valcup(cISA+DS) = pid.

7.1.6 Implementation Invariants

It turns out that in order to be able to prove that the previously defined CVM correct-
ness criteria hold throughout CVM executions a number of invariants over the concrete
kernel’s C0 machines as well as the underlying ISA machine with device has to hold. We
call such properties implementation invariants. In the following we define them formally.

All implementation invariants are collected in the predicate

impl-inv :: ΠC0 × CCVM × CC0 × CISA+DS 7→ B

which, essentially, speaks about the C0 machine cC0 of the concrete kernel and the
physical combined system configuration cISA+DS. Additionally, the predicate takes the
abstract kernel program πAK and the CVM state cCVM as arguments. Note that the CVM
configuration is passed to the predicate only to distinguish one of the three execution
cases: a waiting for an interrupt state, a kernel step, or a user step. Formally, these
cases are distinguished in completely the same way as in the definition of the CVM
correctness relation cvm-sim which has been introduced in the beginning of this section.
Ultimately, the formal definition of implementation invariants is as follows.

impl-inv(πAK, cCVM, cC0, cISA+DS) def=
impl-invwait(πAK, cC0, cISA+DS.cpu) if cCVM.cup =⊥

∧ is-wait-state(cCVM)
impl-invkernel(πAK, cC0, cISA+DS.cpu) if cCVM.cup =⊥

∧ ¬is-wait-state(cCVM)
impl-invuser(πAK, cC0, cISA+DS.cpu, pid) if cCVM.cup = bpidc

.

We continue with introduction of building blocks constituting definitions of each
case.

Page-Fault Handler Invariants

The page-fault handler related code constitutes a significant part of the CVM implemen-
tation. It was verified separately using a number of different techniques compared to
those used in this thesis, in particular a semantics stack [4, 107]. However, the handler
is heavily called from the remaining CVM implementation for treating page-faults and
address translation in primitives. Correctness of the page-fault handler is expressed by a
number of invariants which hold during its executions and must not be destroyed by the
CVM functions. In order to guarantee that we make the page-fault handler invariant a
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part of the CVM implementation invariants. For the definitions of the mentioned below
predicates the reader should consult the thesis of Starostin [105].

The first of the page-fault handler related invariants is defined between a page-fault
handler abstract state cPFH :: CPFH and a memory configuration mc of the concrete
kernel with respect to the kernel’s type environment te. It states that the memory
configuration encodes the abstract PFH state, and that the latter is valid. Formally this
invariant is defined by the predicate

pfh-inv(cPFH, te,mc).

The next invariant is called the zero filled page condition. Denoted by

zfp-cond(cISA),

it states that a page filled with zeros resides at the address ZFP in the memory of the
ISA machine cISA.

The page-fault handler was verified in the Hoare logic environment and its correctness
results were transferred to the C0 small step semantics level using Verisoft’s semantics
stack. The stack imposes additional validity criteria for C0 programs, denoted by the
predicate

hoare-C0-validity(te,mc).

We update our definition of C0 validity by adding this predicate as follows:

cC0 ∈ C0′
√

(te, ft)
∧ hoare-C0-validity(te, cC0.mem)
−→ cC0 ∈ C0′′

√
(te, ft).

ISA Invariants

This group of invariants states properties of the target VAMP ISA configuration which
has to be respected during CVM runs. The invariants mainly speak about the translated
kernel code residing in the ISA memory and about the values of some special registers.

We read a list of n integer values from the memory of a VAMP ISA machine cISA

starting at address a by means of the function

get-dataISA(cISA, a, n) def= [intvars(cISA, a), . . . , intvars(cISA, a+ 4 · (n− 1))].

We convert an assembly program given by a list of instructions πASM to a list of
integers by means of the function

asmπ-to-ints(πASM) def= il,

such that
il[i] = instr-to-int(πASM[i]).

Definition 7.11 (Concrete kernel code invariant) The following invariant ensure
that two facts take place. First, the instruction stored in the ISA memory at address
zero must be a jump instruction to the beginning of the kernel code (and the next
instruction is nop). Note, that the immidiate constant of the jump instruction must be
4 bytes less than the relative jump destination address, because the semantics of the
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jump instruction adds the constant to the program counter which is greater by 4 than
the delayed program counter, i.e., the address of the current instruction. Second, the
predicate below ensures that the concrete kernel code translated by the C0 compiler
resides in the ISA memory starting from the address PROGBASE:

code-inv(πAK, cISA) def=

get-dataISA(cISA, 0, 2) = asmπ-to-ints([j(PROGBASE− 4), nop])
∧ get-dataISA(cISA, PROGBASE, csizeprog(teCK(πAK), ftCK(πAK), gstCK(πAK)))

= asmπ-to-ints(codeprog(teCK(πAK), ftCK(πAK), gstCK(πAK))).

Isabelle: cvm/config/isa config.code invariant isa

The next invariant is used to describe the waiting for interrupts case. The case is
modeled by an infinite loop consisting of two instructions: j(−4) and nop.

Definition 7.12 (Program counters invariant for wait case) The predicate below
states that the infinite loop program is located in the memory of an ISA configuration
cISA starting from some address ad and that the program counters point inside this
program:

pc-invwait(cISA) def= ∃ ad : get-dataISA(cISA, ad, 2) = asmπ-to-ints([j(−4), nop])
∧ 〈cISA.dpc〉 = ad ∧ 〈cISA.pc〉 = ad + 4
∨ 〈cISA.dpc〉 = ad + 4 ∧ 〈cISA.pc〉 = ad.

Isabelle: cvm/cvm correct/cvm sim.pc invariant isa

The last ISA invariant is supposed to hold during user executions.

Definition 7.13 (User execution invariant) The following predicate guarantees that
no user process harms the system by one or several of the following facts: (i) rescheduling
processes by writing the current process identifier, (ii) masking interrupts by writing the
status register, or (iii) changing the pto or ptl registers. Formally, the predicate below
states that the process identifier variable, the status register as well as pto and ptl
registers remain unchanged during user executions:

user-inv(cISA, pid) def= pid = natvars(cISA, adcup)
∧ cISA.spr(sr) = read-isa(cISA.MemISA, adsr)

∧ cISA.spr(pto) = read-isa(cISA.MemISA, adpid
PTOEF

)

∧ cISA.spr(ptl) = read-isa(cISA.MemISA, adpid
PTLEF

).

Isabelle: cvm/additional/isa defs.user exec invariant

Weak Ministack for the Kernel

User and kernel computations interleave within CVM model executions. The correct-
ness of the kernel expressed by the C0-ISA simulation relation to which we also refer as
the ministack relation has to hold after an execution of every statement of the kernel.
However, a C0 small-step semantics configuration encoding the kernel and consistent to
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the underlying hardware cannot be simply constructed from an ISA machine configura-
tion after a user execution. There are two reasons for that: (i) there is no information
about C0 types in the memory model of an ISA machine, and (ii) there is no one-to-one
mapping between the heap of an ISA machine and the heap memory frame of a C0 con-
figuration. In order to be able to resume a C0 kernel computation after a user execution
users have to respect the constraint that they do not affect kernel code and kernel data,
including the mapping between heaps. We call this constraint weak C0 ministack and
define it formally below.

The parts of a C0 configuration encoding the kernel that is can be preserved un-
changed during user computations are the global memory frame and the heap memory
frame. As for the local memory and program rest, even if they are not empty before the
switch to the user execution, the kernel starts next time with new stack and program
rest. We call a C0 configuration in which only these two components are defined and
all other left empty a weak C0 configuration.

We define the set of C0 weakly valid configurations:

cC0 ∈ C0weak

√
(te, ft).

It differs from the ordinary set of valid C0 programs only in that it lacks all terms
concerning local stack and a program rest.

A weak C0 configuration is related to an ISA state by means of the weak C0 con-
sistency relation. This relation reuses sub-relations of the normal C0 consistency and a
one additional term which we define first.

Definition 7.14 (Kernel heap consistency) The kernel heap consistency relation
states that the kernel variable kheap stores the first unused address on the heap:

consiskheap(cC0, kheap) def= kheap = ABASEhm + asizeheap(hst(cC0.mem)).

Isabelle: cvm/config/weak conditions.kheap consistent

It might be seen as a part of the register consistency consisr.

Definition 7.15 (Weak C0 consistency) The weak C0 consistency is defined by the
predicate

consisweak :: Tenv× Functable× CC0 ×Alloc× CASM × N 7→ B,

which is a conjunction of the (i) code consistency, which guarantees that users do not
modify the kernel code, (ii) value and pointer consistency, which guarantees that users
do not modify the kernel data, (iii) the allocation consistency and the kernel heap consis-
tency, which defines the mapping between heaps of an ISA machine and C0 configuration.
Formally:

consisweak(te, ft, cC0, alloc, cASM, kheap) def= consiscode(te, ft, cC0, cASM)
∧ consisv(te, ft, cC0, cASM)
∧ consisp(te, ft, cC0, cASM)
∧ consisalloc(te, ft, cC0, alloc)
∧ consiskheap(cC0, kheap).

Isabelle: cvm/config/weak conditions.weak consistent
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The weak C0-ISA simulation relation, or the weak ministack, is a composition of
the weak C0 consistency relation together with the simulation relation between VAMP
assembly and ISA.

Definition 7.16 (Weak ministack) The weak ministack predicate has the following
signature:

C0-sim-isaweak :: Tenv× Functable× CC0 × CISA 7→ B,

and is formally defined as follows:

C0-sim-isaweak(te, ft, cC0, cISA) def= ∃ cASM, alloc :
asm
√

(cASM)
∧ consisweak(te, ft, cC0, alloc, cASM,

〈read-isa(cISA.MemISA, adkheap)〉)
∧ isa-sim-asm(cASM, cISA).

Isabelle: cvm/config/weak conditions.weak sim C0 isa

Kernel Structure Invariants

It follows from the CVM implementation that at the moment when the concrete kernel
calls the dispatcher of the abstract kernel there are some remaining statement in the
program rest of the concrete kernel that have to be executed afterwards. These state-
ment constitute the code in the CVM dispatcher located after the call to the abstract
kernel dispatcher: a case distinction on the identifier of the next scheduled process and
invocation either of cvm start() or cvm wait() depending on the result. Let this part
of the code be defined by the constant disp-end-code.

Definition 7.17 (Concrete kernel program rest invariant) The concrete kernel
program rest invariant states that the program rest is a composition of two parts: the
one described by kernel-relprog and the constant disp-end-code:

structureck
prog(cC0) def= is-comp(cC0.prog)

∧ right-stmt(cC0.prog) = disp-end-code.

Isabelle: cvm/cvm correct/cvm sim.concr kernel prog structure

As mentioned before the two topmost local memory frames of the concrete kernel
are not present in the local stack of the abstract kernel.

Definition 7.18 (Concrete kernel local stack invariant) The following predicate
formally states the presence of the memory frame of the CVM function init () and the
CVM dispatcher frame in the memory configuration of the concrete kernel:

structureck
LM(cC0) def= 2 ≤ |cC0.mem.lm|

∧ 2 < |cC0.mem.lm| −→
cC0.mem.lm[[2]].res = gvargm(cup)

∧ cC0.mem.lm[[0]].mfr.st = stfun(init-proc)
∧ cC0.mem.lm[[1]].mfr.st = stfun(dispatcher-proc).

Isabelle: cvm/cvm correct/cvm sim.concr kernel lmstack structure
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Definition 7.19 (Concrete kernel global memory invariant) First, the concrete
kernel global memory invariant requires the names of global variables in the concrete
kernel to be the same as in the abstract kernel program. Second, global variables of the
abstract kernel must be initialized.

structureck
GM(πAK, cC0) def= gst(cC0.mem) = gstCK(πAK)

∧ vns(gstCK(πAK)) ⊆ cC0.mem.gm.init.

Isabelle: cvm/config/software conditions.gm structure

Definition 7.20 (Concrete kernel heap memory invariant) As for the structure
of a concrete kernel’s heap, we demand the heap symbol table of the concrete kernel to
begin with the heap symbol table hstCVM of the CVM implementation:

structureck
HM(cC0) def= ∃ st : hst(cC0.mem) = hstCVM ◦ st.

Isabelle: cvm/config/software conditions.hm structure

Putting Implementation Invariants Together

Having individual implementation invariants defined we can use them as building blocks
for defining overall implementation invariants which are supposed to hold in each of the
three cases: kernel execution, user execution, and waiting for interrupts states.

The implementation invariants impl-invkernel(πAK, cC0, cISA) which hold during kernel
executions include (i) the validity of the ISA machine, ISA invariants, and the zero
filled page condition, (ii) a requirement to the ISA machine to operate in system mode,
(iii) the validity of the concrete kernel C0 configuration, (iv) all previously defined
structure invariants of the concrete kernel, (v) the page-fault handler invariants, and
(vi) the C0-ISA simulation relation between the concrete kernel C0 state and the ISA
machine. Formally:

impl-invkernel(πAK, cC0, cISA) def= isa
√

(cISA)
∧ code-inv(πAK, cISA)
∧ zfp-cond(cISA)
∧ is-sys-execISA(cISA)
∧ cC0 ∈ C0′′

√
(teCK(πAK), ftCK(πAK))

∧ structureck
GM(πAK, cC0)

∧ structureck
HM(cC0)

∧ structureck
LM(cC0)

∧ structureck
prog(cC0)

∧ ∃ cPFH : pfh-inv(cPFH, teCK(πAK), cC0.mem)
∧ C0-sim-isa(teCK(πAK), ftCK(πAK), cC0, cISA).

The implementation invariant impl-invuser(πAK, cC0, cISA, pid) which holds during user
executions consists of (i) the validity of the ISA machine, ISA invariants, and the zero
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filled page condition, (ii) a requirement to the ISA machine to operate in user mode,
(iii) the user ISA invariant, (iv) a statement that pid corresponds to some user process,
(v) weak validity of the C0 configuration, (vi) the concrete kernel invariants for global
and heap memory, (vii) the page-fault handler invariants, (viii) a requirement for the
process pid to have some virtual memory, and (ix) the weak C0-ISA simulation relation.
Formally:

impl-invuser(πAK, cC0, cISA, pid) def= isa
√

(cISA)
∧ code-inv(πAK, cISA)
∧ zfp-cond(cISA)
∧ is-user-modeISA(cISA)
∧ user-inv(cISA, pid)
∧ 0 < pid ∧ pid < PID MAX

∧ cC0 ∈ C0weak

√
(teCK(πAK), ftCK(πAK))

∧ structureck
GM(πAK, cC0)

∧ structureck
HM(cC0)

∧ ∃ cPFH :
pfh-inv(cPFH, teCK(πAK), cC0.mem)

∧ 0 ≤ cPFH.pcb[pid].ptl
∧ C0-sim-isaweak(teCK(πAK), ftCK(πAK), cC0, cISA).

The implementation invariants impl-invwait(πAK, cC0, cISA) which hold during the
waiting for interrupts state are (i) the validity of the ISA machine, ISA invariants,
and the zero filled page condition, (ii) a requirement to the ISA machine to operate in
system mode, (iii) a statement that the kernel variable sr stores the same value which
resides in the sr register, (iv) the invariant for program counters, (v) the weak validity
of the C0 configuration, (vi) the concrete kernel invariants for global and heap memory,
(vii) the page-fault handler invariants, and (viii) the weak C0-ISA simulation relation.
Formally:

impl-invwait(πAK, cC0, cISA) def= isa
√

(cISA)
∧ code-inv(πAK, cISA)
∧ zfp-cond(cISA)
∧ is-sys-modeISA(cISA)
∧ cISA.spr(sr) = read-isa(cISA.m, adsr)
∧ pc-invwait(cISA)
∧ cC0 ∈ C0weak

√
(teCK(πAK), ftCK(πAK))

∧ structureck
GM(πAK, cC0)

∧ structureck
HM(cC0)

∧ ∃ cPFH : pfh-inv(cPFH, teCK(πAK), cC0.mem)
∧ C0-sim-isaweak(teCK(πAK), ftCK(πAK), cC0, cISA).

153



7.2 CVM Correctness Theorem

CVM top-level correctness is stated as a simulation theorem between VAMP ISA with
devices and the CVM model. Before we can formulate it we have to discuss a number
of assumptions

Initial ISA configuration. We start from the initial ISA configuration which is the
first valid configuration after reset. We define this configuration by means of the predi-
cate is-init-isa(πAK, cISA). It claims initial values of program counters and special pur-
pose registers. The predicate imposes valid size requirements to the register files and
memory. Additionally, it claims through the conjunct code-inv(πAK, cISA) that the con-
crete kernel code is placed in the memory.

is-init-isa(πAK, cISA) def= cISA.dpc = bin(0)
∧ cISA.pc = bin(4)
∧ cISA.spr = SPRinit

∧ RegfISA

√
(cISA.gpr)

∧ MemISA

√
(cISA.m)

∧ code-inv(πAK, cISA).

Here the initial value of the special purpose register file is defined as follows:

〈SPRinit(r)〉
def=

{
1 if r = eca
0 otherwise

.

This formula expresses the fact that all special registers are initialized with zero value
except for the register eca. The value of the latter means that only the reset exception
is raised.

Validity of the swap hard disk. We connect the ISA machine in the initial configu-
ration to a valid hard disk to store swap data on it. We define the predicate is-HD

√
(cDS)

over a devices system which states the following facts: (i) the device in position SWAP DID
of the devices system is a hard disk, (ii) this hard disk is in idle state and does not pro-
duce a pending interrupt, (iii) the size of the hard disk is sufficient, (iv) the buffer size
is fixed, and (v) the buffer pointer is zero:

is-HD
√

(cDS) def= ∃ cHD : cDS(SWAP DID) = dev-hd(cHD)
∧ cHD.cs = HD IDLE

∧ ¬is-intr-hd(cHD)

∧ 8 · (150 + 1152 · 210) ≤ cHD.s < 228

∧ |cHD.sm| = cHD.s · WORDS PER SECTOR

∧ |cHD.buf| = WORDS PER SECTOR

∧ cHD.bp = 0.

Memory map. We introduce values for constants that bound sizes of abstract kernel
heap and stack. The heap frame is bounded by the constant

HEAP-SIZEAK
def= 224,
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while the local stack is bounded by the constant

STACK-SIZEAK
def= 221.

There is no reasonable way to bound the heap frame statically: we will state such
requirement in the inductive step of the theorem directly. As for the local stack, in
order to claim that executions of the abstract kernel respect its boundary we define the
inductive set SE. It estimates the size of the local stack needed to execute a particular
function. First, we define the function

fun-names :: Stmt 7→ 2S,

which traverses the statement tree and collects all function names which are called from
the given statement. This function is defined by induction on the statement’s structure.
For compositional, conditional and loop statement we go deeper to sub-statements:

fun-names(comp(s1, s2)) = fun-names(s1) ∪ fun-names(s2),
fun-names(ifte(e, s1, s2, sid)) = fun-names(s1) ∪ fun-names(s2),

fun-names(loop(e, s, sid)) = fun-names(s).

For the function call we extract the function’s name:

fun-names(sCall(vn, fn, params, sid)) = {fn}.

For all other statement fun-names returns the empty set. Note that for external calls
and extended calls the function also yields an empty set. This respects the C0 small-step
semantics: execution of these calls does not create additional frames.

Having this, we can define the desired set.

Definition 7.21 (Local stack boundary) Let ft be a function table, let fn be a
function’s name, and let sz be a natural number. The set

SE :: 2Functable×S×N

collects all triples which consist of a function table, a function’s name and a natural
number with the following property. For all elements (ft, fn, sz) ∈ SE it holds that
starting from a call of the function fn the execution with respect to the function table
ft consumes not more than sz bytes for the stack. Formally:

(fn, proc) ∈ {ft}
∧ ∀ FN ∈ fun-names(proc.body) : (ft,FN, sz′) ∈ SE
∧ sz′ + asizest(stfun(proc)) ≤ sz
−→ (ft, fn, sz) ∈ SE.

Isabelle: C0compilercodegen/MoreC0compiler.max stack size

This requirement is added to the predicate of the abstract kernel properties:

abs-kernel-props(πAK) def= · · ·
∧ (πAK.ft, dispatcher kernel, STACK-SIZEAK) ∈ SE.
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Figure 7.3: CVM simulation theorem.

Devices typing. The last definition we have to introduce before we can actually state
the CVM correctness theorem is of technical nature. Since our devices system is modeled
as a mapping from device identifiers to generalized device configurations we need to be
sure that devices do not change their types. For this purpose we will use the relation
type∼ which holds only for pairs of devices of the same type:

dev-hd(cHD)
type∼ dev-hd(c′HD)

dev-timer(cTIMER)
type∼ dev-timer(c′TIMER)
· · ·

idle-dev
type∼ idle-dev.

Finally we have all necessary definitions and can formulate the CVM correctness
theorem. In Figure 7.3 we sketch the idea behind the theorem graphically.

Theorem 7.22 (CVM correctness theorem) Assume that (i) the abstract kernel
properties hold for πAK, (ii) the processor component cISA+DS.cpu of ISA with devices
is in its initial state, (iii) the swap hard disk properties hold for the devices system
cISA+DS.devs, (iv) the ISA execution sequence seqISA is valid, then there exists a valid
CVM execution sequence seqCVM and for any finite number n of kernel steps bounded
by some N there exists a number of CVM model steps TCVM, such that by executing
this number of steps starting from initial CVM configuration the CVM model transits
to a non-error state c′CVM with no heap boundaries violation. Moreover, there exists
a number of ISA with devices steps TISA during which the ISA machine transits to a
resulting state c′ISA+DS and a corresponding configuration c′C0 of the concrete kernel,
such that (i) the devices typing and the swap hard disk properties hold for the updated
devices system, (ii) the implementation invariants hold, and (iii) the CVM simulation
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relation holds. Formally:

abs-kernel-props(πAK)
∧ is-init-isa(πAK, cISA+DS.cpu)
∧ is-HD

√
(cISA+DS.devs)

∧ seq
√

(seqISA, cISA+DS.devs)
−→ (∃ seqCVM : ∀ n ≤ N : ∃ TCVM :

proc-steps(seqCVM, TCVM) = n

∧ seq
√

(seqCVM, dsinit(cISA+DS.devs))
∧ (∀ c′CVM :

δ
TCVM
CVM (cvminit(πAK, cISA+DS.devs), seqCVM) = bc′CVMc

∧ asizeheap(hst(c′CVM.ak.mem)) ≤ HEAP-SIZEAK

−→ (∃ TISA, c
′
ISA+DS, c

′
C0 :

δ
TISA
ISA+DS(cISA+DS, seqISA) = c′ISA+DS

∧ ∀ did : c′ISA+DS.devs(did)
type∼ cISA+DS.devs(did)

∧ is-HD
√

(c′ISA+DS.devs)
∧ impl-inv(πAK, c

′
CVM, c

′
C0, c

′
ISA+DS)

∧ cvm-sim(πAK, c
′
CVM, c

′
C0, c

′
ISA+DS) ))).

Isabelle: cvm/cvm correct/cvm correct.cvm correct

7.3 CVM Correctness Theorem Proof

The proof of the CVM correctness theorem could be split according to various types of
steps that can be made in the CVM model. In this Section we present a skeleton of
the proof leaving proofs of individual cases to be the topic of further chapters. In the
frame of this work we consider the followng cases: context switch (Section 9.2), copy
primitive(Section 9.3) and user step (Chapter 10).

We prove Theorem 7.22 by induction on N . We start every proof case by finding a
right instance seqCVM of a CVM sequence and TCVM of a number of CVM steps. Dealing
with this, we use the number of the hardware steps which are needed to complete a
particular case. For the induction base we construct a CVM sequence from the ISA
sequence, keeping in mind that there is no swap hard disk on the CVM level (the idle
device instead), and the kernel does not make any steps. For this construction we use a
number of auxiliary functions defined below. Note, that the same function will be used
for proofs of individual cases of the induction step.

First of all, we introduce a function which converts ISA sequences to CVM sequences.
The desired CVM sequence is obtained by replacing all system hard disk inputs by idle
inputs since the hard disk is replaced by the idle device.

Definition 7.23 (Conversion of ISA sequences to CVM sequences) For a se-
quence seq used on the ISA level, the following function replaces all inputs for the system
hard disk by idle inputs making the sequence suitable for usage on the CVM level:

seqISA2seqCVM(seqISA) def= seqCVM,
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where

seqCVM(t) =

{
Dev(SWAP DID, idle-eifi) if seqISA(t) = Dev(SWAP DID, eifiHD)
seqISA(t) otherwise

.

Isabelle: cvm/cvm correct/cvm sequence.isa seq 2 cvm seq

This conversion function guarantees us validity — liveness and well-typedness — of
the resulting sequence by construction. We state this property formally in the following
lemma.

Lemma 7.24 (Conversion of sequences preserves validity) A CVM sequence
constructed from an ISA sequence seq is valid if seq is valid:

seq
√

(seq, devs) −→ seq
√

(seqISA2seqCVM(seq), dsinit(devs)).

Isabelle: cvm/cvm correct/cvm sequence.live seq cvm isa seq 2 cvm seq

We need an operation that filters out all processor and system hard disk steps from a
sequence. We define such an operation by means of three functions: the first converts a
sequence into a list, the second performs the filtering, and the third converts the filtered
list back to a sequence. Our motivation to this approach is that it is easier to filter a
list instead of a function.

We start with a function which takes elements which are used for computations on
the ISA level and packs them in a list.

Definition 7.25 (Conversion of a sequence to list) For a sequence seq, an initial
step number T , and a number of steps N the function

seq2list :: Seq× N× N 7→ SeqEl∗

constructs the list of N sequence elements starting from initial step T :

seq2list(seq, T,N) def= [seq(T ), seq(T + 1), · · · , seq(T +N − 1)].

Isabelle: cvm/cvm correct/cvm sequence.seq cut list

Further, we remove all elements which correspond to the swap hard disk. Surely,
they are out of our interest, since on the CVM level the swap hard disk is replaced by
the idle device. Steps of the idle device do not influence the whole computation. The
function defined below also removes processor steps from the sequence because such ISA
computation corresponds at most to the one kernel step on the CVM level.

Definition 7.26 (Remove processor and system hard disk steps) For a list of
sequence elements seqlist the function

dev-wo-hd :: SeqEl∗ 7→ SeqEl∗

removes all elements corresponding to the processor or the system hard disk:

dev-wo-hd(seqlist)
def= [xseqlist

: x 6= Proc ∧ x 6= Dev(SWAP DID, idle-eifi)].

Isabelle: cvm/cvm correct/cvm sequence.dev list wo hd
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Figure 7.4: Creating the CVM sequence from ISA sequence. Initial case.

Finally, we define a function which converts a list of elements to a sequence by
updating a prefix of a sequence with a given list of elements.

Definition 7.27 (Sequence prefix update) For a sequence seq and a list of sequence
elements seqlist the function

list2seq :: Seq× N× SeqEl∗ 7→ Seq

updates the first |seqlist| elements of the sequence by elements from the list starting from
the position T :

list2seq(seq, T, seqlist)
def= seq′,

where

seq′(t) =

{
seqlist[t− T ] if T ≤ t < T + |seqlist|
seq(t) otherwise

.

Isabelle: cvm/cvm correct/cvm sequence.live cvm seq

The following lemma justifies validity preservation under the three functions defined
above.

Lemma 7.28 (Filtering preserves validity) The validity of the sequence updated
by the list with removed processor and hard disk elements follows from the validity of
the initial sequence:

seq
√

(seq, devs) −→ seq
√

(list2seq(seq, T, dev-wo-hd(seq2list(seq, T,N))), devs).

Isabelle: cvm/cvm correct/cvm sequence.live seq cvm live cvm seq

Figure 7.4 reflects the construction process for the initial case. For the induction
base we instantiate the CVM sequence as follows:

seqCVM = list2seq(seqISA2seqCVM(seqISA), 0, dev-wo-hd(seq2list(seqISA, 0, TISA))).
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The CVM steps TCVM are equal to the length of the created list:

TCVM = |dev-wo-hd(seq2list(seqISA, 0, TISA))|.

It is not difficult to show that the number of processor steps equals to zero since we
have removed all such elements. Note that construction of the CVM sequence depends
on the number of ISA steps which we get for every case from the low level correctness
proof.

While dealing with the induction step, we already have a CVM sequence seqCVM from
the induction hypothesis. Moreover, this sequence is live and well-typed. The sequence
satisfies necessary criteria up to the N -th kernel step. For the (N + 1)-th step we,
though, need to update a corresponding part of the sequence. We also have a number
TCVM of CVM steps which contains N kernel steps, and a number TISA of corresponding
hardware steps. For the current, (N + 1)-th, step let there be additional T ′ISA steps of
the underlying ISA with devices. Our goal is to consider the last part of the hardware
sequence which corresponds to T ′ISA steps and to construct the necessary part seq′CVM of
the CVM sequence out of it. The devices steps in the hardware sequence are projected
to the CVM sequence by filtering out steps of the system hard disk. As for the processor
steps, two cases are possible.

For all other but user step cases, e.g., non-device primitive execution, or switch
between the kernel and some process all processor steps correspond to a single kernel
step. It does not matter at which point we insert this processor step in the obtained
sequence of devices step. Our choice is to add the processor step at the end of the list:

seq′CVM = list2seq(seqCVM, TCVM, dev-wo-hd(seq2list(seqISA, TISA, T
′
ISA)) ◦ [Proc]).

The situation is different for the user steps. We cannot arbitrarily reorder the devices
since their states might influence user executions: interrupts from devices must be con-
sidered at the point when a user process makes a step. Because of that we have divided
the proof of the user step into two lemmas: (i) handling of page faults that might occur
during the user run and execution of devices such that the next step will be done by the
user, and (ii) the possible kernel execution together with devices in case of interrupts.
So, we have two numbers of hardware steps corresponding to these cases: T 1

ISA and T 2
ISA.

Note, that T 1
ISA could, possibly, be zero, and T 2

ISA starts from a processor step. Then
the sequence is updated as follows:

seq′CVM = list2seq(seqCVM, TCVM,

dev-wo-hd(seq2list(seqISA, TISA, T
1
ISA))

◦ [Proc]

◦ dev-wo-hd(seq2list(seqISA, TISA + T 1
ISA, T

2
ISA))).

In both cases we can easily show that the number of the kernel steps is equal to one. So
if we have some previous CVM computation

δ
TCVM
CVM (cvminit(πAK, devs), seqCVM) = bcCVMc,

then the computation in the induction step

δ
TCVM+T ′CVM
CVM (cvminit(πAK, devs), seq′CVM) = bc′CVMc

differs in all elements except for the devices only in one kernel step, as

δ1
CVM(cCVM, seq) = bc′CVMc
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with seq(0) = Proc.
Most of the theorem’s conclusions follow directly from assumptions by simple rewrit-

ing. The kernel relation kernel-rel(c′CVM.ak, c
′
C0, πAK) which is a part of CVM simulation

relation cvm-sim(πAK, c
′
CVM, c

′
C0, c

′
ISA+DS) is proven basically from two facts. First, in all

cases except the abstract kernel step, the global and the heap memory might be changed
only in the part which belongs to the CVM program. Hence, the value of the global
and heap variables stay the same. Second, even the execution of the primitives do not
destroy the local stack, and the set of initialized variables as well as the heap table could
only grow. We proceed with formal definitions of these properties. First, we introduce
a predicate that compares two C0 memory configurations and asserts that they differ
only at given global and heap variable names (locations).

Definition 7.29 (Unchanged global and heap memories) Let mc and mc′ be C0
memory configurations, let varsgm be a set of names of global variables that might be
changed during a transition from mc to mc′, and let ind-setheap be a set of indices of
heap variables that might be changed. The following predicate claims that evaluation of
all variables except for those that are in the sets varsgm and ind-setheap has equal results
in memory configurations mc and mc′:

unchangedGM,HM(te,mc,mc′, varsgm, ind-setheap) def=

∀ vn ∈ (vns(gst(mc)) ∩mc.gm.init) \ varsgm :
reval(te,mc′, gvargm(vn)) = reval(te,mc, gvargm(vn))

∧ ∀ i ∈ {j : j < |hst(mc)| ∧ j /∈ ind-setheap} :
reval(te,mc′, gvarhm(i)) = reval(te,mc, gvarhm(i)).

Isabelle: C0SS/MoreC0.gm hm unchanged

With the help of the above predicate we can state that the concrete kernel changes
only global and heap variables from the CVM implementation part and does not touch
the abstract kernel variables.

Definition 7.30 (Unchanged abstract global and heap variables) Let cC0 and
c′C0 be two C0 configurations. The predicate abs-kern-unchGM,HM holds if only the CVM
global variables obtained as vns(gstCVM) and the heap variables occupied by heap indices
up to CVM HST LEN are changed. Formally, the predicate is as follows:

abs-kern-unchGM,HM(πAK, cC0, c
′
C0) def=

unchangedGM,HM(teCK(πAK), cC0.mem, c′C0.mem,

vns(gstCVM), {i : i < CVM HST LEN}).

Isabelle: cvm/config/kernel separate.abstract gm hm unchanged

Next, we define a predicate which is intended to specify C0 memory configurations
after execution of a call statement.

Definition 7.31 (C0 memory invariant) Let mc and mc′ be memory configurations
before and after execution of some call statement, let stheap be an additional part of the
heap symbol table which has been allocated during this call, and let ret-var and ret-val
be a name and a value of the return variable of the call, respectively. The predicate below
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which we call a C0 memory invariant is a conjunction of the following facts: (i) global
symbol tables of both memory configurations are equal while the set of initialized global
variables of mc is included in that of mc′, (ii) the lengths of local memory stacks are
equal and these stack differ only at the topmost element, (iii) top return destinations
and top local symbol tables of memory configurations mc and mc′ are equal while the
set of initialized top local variables of mc is a part of same kind of set of mc′, (iv) all
initialized top local variables have the same values in both memory configurations except
the return variable, (v) the value of the return variable ret-var is ret-val, and (vi) heap
symbol table of mc′ is combined out of the heap symbol table of mc and stheap. Formally:

is-C0mem-inv(te,mc,mc′, stheap, ret-var, ret-val) def=

gst(mc′) = gst(mc)
∧ mc.gm.init ⊆ mc′.gm.init
∧ |mc′.lm| = |mc.lm|
∧ ∀ i < |mc.lm| − 1 : mc′.lm[[i]] = mc.lm[[i]]
∧ restop(mc′) = restop(mc)
∧ lsttop(mc′) = lsttop(mc)
∧ lmtop(mc).init ∪ {ret-var} ⊆ lmtop(mc′).init
∧ ∀ vn ∈ (vns(lsttop(mc)) ∩ lmtop(mc).init) \ {ret-var} :

reval(te,mc′, gvar lm(|mc.lm| − 1, vn)) =
reval(te,mc, gvar lm(|mc.lm| − 1, vn))

∧ reval(te,mc′, gvar lm(|mc.lm| − 1, ret-var)) = ret-val
∧ hst(mc′) = hst(mc) ◦ stheap.

Isabelle: C0SS/MoreC0.structure preserved

There is one more definition which we will use during the verification of function
call statements. After an execution of a call statement the program rest is changed in a
way that the call statement is replaced by the empty statement. For this operation we
introduce the following function.

Definition 7.32 (C0 program rest invariant) The function

rem-1st-stmt :: Stmt 7→ Stmt

is defined inductively over the statements and modifies them in the following way. For
the call statement it returns skip:

rem-1st-stmt(sCall(vn, fn, param, sid)) = skip.

For the compositional statement it goes deeper through the statement tree:

rem-1st-stmt(comp(s1, s2)) = comp(rem-1st-stmt(s1), s2).

The function has no effect on all remaining statements.
Isabelle: C0SS/MoreC0.remove first non Skip
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In this chapter we introduce an approach to formal reasoning about inline-assembly
portions in C0 programs. There are several possibilities to argue about correctness of
programs with parts written in assembly. One might have an idea to compile such
programs and formulate correctness theorems about their object code in the machine-
language semantics. As long as such theorems are proven interactively the approach
falls short when dealing with non trivial programs, like our kernel, with the object
code of some thousands lines. Another possibility, actually chosen by a number of OS
verification projects [113, 46, 36, 56], is to rely on unsafe portions of assembly code.
This badly contradicts the principles of pervasive verification. In contrast, our approach
provides effective means to reason about C0 programs with inline-assembly parts not at
the cost of pervasiveness.

The chapter starts in Section 8.1 with an overview of our approach to verification
of inline-assembly statements. In Section 8.2 we list the necessary restrictions over
inline-assembly portions that make their formal verification possible in our context.
Section 8.3 introduces a function which projects the effects of assembly portions to the
C0 level and updates respective C0 variables. Further, in Section 8.4 we analyze the
ranges occupied in C0 and assembly memory by the variables updated during executions
of inline assembly parts. In Section 8.5 we prove correctness of our approach.

8.1 Overview

Section 4.2 introduces consis(te, ft, cC0, alloc, cASM), a C0 compiler simulation relation
towards VAMP assembly. The C0 compiler correctness theorem (Theorem 4.10) proves
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Table 8.1: Test predicates for g-variables.

g is-gm-gvar(g) is-lm-gvartop(mc, g) is-hm-gvar(g)
gvargm(vn) T F F
gvar lm(i, vn) F i+ 1 = |mc.lm| F
gvarhm(i) F F T
gvararr(g′, i) is-gm-gvar(g′) is-lm-gvartop(mc, g′) is-hm-gvar(g′)
gvar str(g′, cn) is-gm-gvar(g′) is-lm-gvartop(mc, g′) is-hm-gvar(g′)

this relation for all but inline-assembly statements. When verifying a C0A program as
long as no assembly statement asm(il) occurs the C0 semantics is applied. The original
approach to deal with verification of an assembly statement was to maintain the compiler
consistency relation with execution of every single instruction from il [41]. This method
turned out to be inconvenient due to excessive complexity of formal proofs, therefore a
new one was developed and used [106].

Briefly, our approach to deal with inline-assembly statements is as follows. On an
assembly statement the execution is switched to the consistent assembly configuration
and continues directly there. When the assembly instructions have been executed we
switch back to the C0 level. For this we have to update the C0 configuration possibly
affected by the assembly instructions. An allocation function alloc makes it possible
to determine which variables of the C0 configuration have changed. We retrieve their
values from the assembly and write back to the C0 memory configuration.

8.2 Preconditions

A number of restrictions are imposed on the inline-assembly computation, which guar-
antees that the C0 configuration is not destroyed by the assembly portion.

Before we list these restrictions let us recall several definitions from the C0 small-step
semantics. The code of the program specified by a type environment te, function table ft,
and global-symbol table gst is generated by means of the function codeprog(te, ft, gst)[66,
Definition 7.36]. We denote that a g-variable g of a memory configuration mc is reach-
able by g ∈ reachableg(mc)[66, Definition 8.3]. That g is a root g-variable is de-
noted by rootg(g)[66, Definition 4.11]. A g-variable g is called initialized, denoted by
initializedg(mc, g), if its root g-variable is in the set of initialized variables of the corre-
sponding memory frame mc [66, Definition 4.20]. The base address of the global memory
is computed by the function abasegm(te, ft, gst)[66, Definition 7.15]. The allocated size of
the heap for a symbol table st is computed by the function asizeheap(st)[66, Definition
7.12]. Three test predicates defined in Table 8.1 — is-gm-gvar(g), is-lm-gvartop(mc, g),
and is-hm-gvar(g) — are used to check whether g is a global, top local, or heap g-variable.

Definition 8.1 (Preconditions to inline-assembly statement) Let te be a type
environment, let ft be a function table, let cC0 be a C0 configuration with assembly
statement to be executed next stmt(cC0) = asm(il, sid). Let cASM and c′ASM be assembly
configurations before and after the execution of the instructions il, let alloc be a C0
allocation function. Let gl be a list of g-variables to be updated during the execution of
il. The predicate precond-C0-asm-upd(te, ft, cC0, cASM, c

′
ASM, alloc, gl) collects necessary

preconditions for the construction of an updated C0 configuration after an execution of
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the inline-assembly code il:

• general-purpose registers used by the C0 compiler, namely the stack pointer rsbase,
heap pointer rhtop, and top-local pointer rlframe, stay unchanged:

∀ r ∈ {rsbase, rhtop, rlframe} : c′ASM.gpr[r] = cASM.gpr[r],

• program counters point to the end of the assembly portion il:

c′ASM.dpc = cASM.dpc + 4 · |il| ∧ c′ASM.pc = c′ASM.dpc + 4,

• the memory region where the code lies stay unchanged, i.e., we forbid self-modifying
code — let us abbreviate the code length as len = csizeprog(te, gst(cC0.mem), ft):

get-data(cASM.m′, PROGBASE, len) = get-data(cASM.m, PROGBASE, len),

• all variable of gl are reachable in the memory configuration cC0.mem:

∀ g ∈ gl : g ∈ reachableg(cC0.mem),

• all variable of gl are of some elementary type — complex variables could be updated
through their elementary components:

∀ g ∈ gl : is-elemt(tyg(te, sc(cC0.mem), g)),

• only global, top local, and heap variables are allowed to be updated:

∀ g ∈ gl : is-gm-gvar(g) ∨ is-lm-gvartop(cC0.mem, g) ∨ is-hm-gvar(g),

• all variables of gl are either root or initialized g-variables — C0 semantics does
not allow to initialize subvariables of a not initialized variable

∀ g ∈ gl : initializedg(cC0.mem, g) ∨ rootg(g),

• only those variables that are given by the list gl are changed:

∀ a : abasegm(te, ft, gst(cC0.mem)) < a

∧ a < ABASEhm + asizeheap(hst(cC0.mem))
∧ ∀ g ∈ gl : a/4 6= alloc(g).b/4
−→ c′ASM.mword(a) = cASM.mword(a).

Isabelle: C0ASS/asm stmt step

8.3 Updating C0 Configurations

Definition 8.2 (Memory cell construction) For a given integer number z and a type
ty the function mcell-cons(ty, z) constructs a C0 memory cell of type ty. It yields some
memory cell bmcellc only if ty is an elementary type, i.e., ty ∈ {boolT, charT, unsgndT,
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ptrT(pn)}, and the value ⊥, otherwise. The memory cell mcell is obtained by type
casting z to the corresponding value of the type ty.

mcell-cons(ty, z) def=



bbool(F)c if ty = boolT ∧ z = 0
bbool(T)c if ty = boolT ∧ z = 1
bint(z)c if ty = intT

bnat(i2n(z))c if ty = unsgndT

bchar(z)c if ty = charT ∧ −27 ≤ z < 27

bptr(⊥)c if ty = ptrT(tn) ∧ z = 0
⊥ otherwise

Isabelle: C0ASS/asm stmt step.elem memcell construction

Recall, that the type of a g-variable g with respect to a symbol configuration sc
is computed by means of the function tyg(sc, g)[66, Definition 4.15]. A memory con-
figuration mc is updated at a g-variable g with a value v by means of the function
memupd(mc, g, v)[66, Section 4.4.2].

Definition 8.3 (G-variable update) Let te be a type environment, let mc be a C0
memory configuration, let c′ASM be an assembly configuration, let alloc be an allocation
function, and let g be a g-variable. The function C0-asm-updgvar(te,mc, c′ASM, alloc, g)
updates the memory configuration mc at the variable g as follows. Let z =
c′ASM.mword(alloc(g).b) be an integer value retrieved from the memory of the assembly
configuration c′ASM at the allocated address of g. We construct a memory cell of the
type of g storing the value z by mcell-cons(tyg(mc, g), z). If the construction ends up
in an error state ⊥, so the g-variable update function does. Otherwise the result of the
construction is some memory cell bmcellc. Then g-variable update function is defined
as:

C0-asm-updgvar(te,mc, c′ASM, alloc, g) def= bmemupd(mc, g,mcell)c.

Isabelle: C0ASS/asm stmt step.C0 mem asm update gvar

The C0-memory update function C0-asm-updmem(te,mc, c′ASM, alloc, gl) is defined
by induction over the list g-variables gl. For the base case gl = [] the function re-
turns bmcc. In the induction step gl = g ◦ gl′ the variable g is updated by means
C0-asm-updgvar(te,mc, c′ASM, alloc, g). If this update results in an error ⊥, so the induc-
tion step does. Otherwise, the g-variable update yields some new C0 memory configu-
ration mc′ and we define the induction step as C0-asm-updmem(te,mc′, c′ASM, alloc, gl′).

Definition 8.4 (C0-configuration update) Let te be a type environment, let ft be
a function table, let cC0 be a C0 small-step semantics configuration, let cASM and c′ASM

be assembly configurations, let alloc be an allocation function, and let gl be a list of
g-variables. In case the preconditions to inline assembly statement precond-C0-asm-upd
(te, ft, cC0, cASM, c

′
ASM, alloc, gl) are not satisfied or C0-memory update function

C0-asm-updmem(te, cC0.mem, c′ASM, alloc, gl) ends up in an error state ⊥, so the C0-
configuration update function does. Otherwise the result of the memory update yields
some new memory configuration bmcc which is used to update the given c0 configuration:

C0-asm-upd(te, ft, cC0, cASM, c
′
ASM, alloc, gl) def= bc′C0c,
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Table 8.2: Base address of a g-variable g and size of its type ty.

base address size of type definitions in [66]
in C0 bag(sc, g) sizet(ty) Definitions 4.18, 4.1
allocated in assembly abaseg(te, ft, sc, g) asizet(ty) Definitions 7.17, 7.10

where the memory component of the updated configuration c′C0 is defined as c′C0.mem =
mc and the first statement of the program rest c′C0.prog is replaced with skip.
Isabelle: C0ASS/asm stmt step.C0 conf asm update

8.4 Range Analysis for Elementary Variables

Having a function that projects effects of assembly portions to the C0 level we aim
at proving its correctness. The correctness notion is given by the simulation relation
consis(te, ft, cC0, alloc, cASM) between C0 and assembly. The data-consistency term of
this relation requires, among others, that all elementary variables (i.e., variables of
elementary types) occupy different C0 memory cells and different assembly memory
cells. In order to prove this we investigate the ranges that elementary variables occupy
in memories of C0 and assembly configurations.

Let g be a g-variable of type ty = tyg(sc, g). Table 8.2 collects functions which are
used to obtain the base addresses of g and sizes of type ty. There are two versions of
each definition: the first computes these notions in the C0 memory configuration while
the second computes their versions allocated in the assembly memory. The former is
measured in cells, the latter in bytes. Using these definitions we introduce the notion of
a variable range, a space which a g-variable occupies in memory. Formally, a variable
range is a pair constituting the variable’s base address and the size of its type. The
functions rangeASM

g and rangeC0
g define a variable range in the C0 and assembly memory

respectively:

rangeASM
g (te, ft, sc, g) def= (bag(sc, g), sizet(tyg(sc, g))),

rangeC0
g (te, ft, sc, g) def= (abaseg(te, ft, sc, g), asizet(tyg(sc, g))).

However, the analysis presented in this section is common to both C0 and assembly
variable ranges. Therefore, we will simply use the notation rangeg(te, ft, sc, g) — the
reader can substitute the appropriate definition for C0 or assembly instead.

For a g-variable g let level(g) be its level, a natural number measuring the recursion
depth of its constructors. The set of a g-variable’s sub variables is defined as subg(g)[66,
Definition 4.12].

Lemma 8.5 (Parent exists) Let a be a g-variable, let i and n be natural numbers. If
n is the level of a and i is less than n, then there exists a variable b with the level i such
that a is a sub-variables of b:

level(a) = n ∧ i < n −→ ∃ b : level(b) = i ∧ a ∈ subg(b).

Isabelle: C0Acompilersimulation/abase lemmata.parent exists
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Proof. By induction on n.

Base: n = 0. The assumptions are falsified due to i < 0.

Step: n→ n+ 1. We have to prove: level(a) = n + 1 ∧ i < n + 1 −→ ∃ b :
level(b) = i ∧ a ∈ subg(b). Since level(a) > 0 variable a could only be an array
element a = gvararr(g, j) or a structure component a = gvar str(g, cn). Obviously,
level(g) = n and a ∈ subg(g).

Case i = n. Instantiating the existentially quantified b with g we conclude level(g) =
n = i and a ∈ subg(g).

Case i 6= n. We use the induction hypothesis for g. The assumptions of the hy-
pothesis hold, the existential quantifier is eliminated by introducing a new
free variable b′, hence we have level(b′) = i ∧ g ∈ subg(b′). We instantiate
∃ in the conclusion with b′. From a ∈ subg(g) and g ∈ subg(b′) we conclude
a ∈ subg(b′).

For pairs of natural numbers a and b representing ranges we denote by b ⊆ a that
b is completely contained in a, by a � b that a and b are disjoint, and by a 6� b that a
and b overlap.

Lemma 8.6 (Transitivity of ⊆ ) For ranges p, q and r the transitivity property
holds:

p ⊆ q ∧ q ⊆ r −→ p ⊆ r.

Isabelle: C0Acompilersimulation/abase lemmata.range contains trans

In the remainder of this section we will show properties of pairs of global variables.
For the following lemmas (Lemma 8.7–8.10) let te be a type environment, let ft be a

function table, let mc be a C0 memory configuration, and let a and b be g-variables. All
mentioned lemmas use the set of common assumptions which we present only once below
and do not write in the statements of lemmas explicitly. Without loss of generality let
us assume that both g-variables are global:

is-gm-gvar(a) ∧ is-gm-gvar(b).

Further, let their validity hold:

a ∈ gvars
√

(sc(mc)) ∧ b ∈ gvars
√

(sc(mc))

as well as the validity of the global-symbol table of mc:

gst(mc) ∈ validst(te).

Lemma 8.7 (Range contains ranges of sub variables) Assume that a is a sub
variable of b, then the range of a is contained inside the range of b:

a ∈ subg(b) −→ rangeg(te, ft,mc, a) ⊆ rangeg(te, ft,mc, b).

Isabelle: C0Acompilersimulation/abase lemmata.sub gvars impl range contains abase gl (asm)

C0Acompilersimulation/abase lemmata.sub gvars impl range contains (C0)
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Proof. By induction on definition of subg(b).

Base: a = b. By the identity property of ⊆ .

Step: h ∈ subg(b) ∧ (a = gvararr(h, i) ∨ a = gvar str(h, cn)). From the induction hypoth-
esis we have rangeg(te, ft,mc, h) ⊆ rangeg(te, ft,mc, b). Since all components of
a complex variable have their range inside the range of this variable we have
rangeg(te, ft,mc, a) ⊆ rangeg(te, ft,mc, h). We conclude the goal by transitivity
(Lemma 8.6).

Lemma 8.8 (Variables at the same level have disjoint ranges) Assume that a
and b are different g-variable with the same level, then their ranges are disjoint:

a 6= b ∧ level(a) = level(b) −→ rangeg(te, ft,mc, a) � rangeg(te, ft,mc, b).

Isabelle: C0Acompilersimulation/abase lemmata.same level impl not range overlap abase gl (asm)

C0Acompilersimulation/abase lemmata.same level impl not range overlap (C0)

Proof. By induction on n = level(a) = level(b).

Base: n = 0. Both a and b are root g-variables and defined in the global-symbol table. It
is easy to show by induction on the symbol table that address of the next variable
is greater than address of the previous one plus the size of its type.

Step: n→ n+ 1. The variables could be an array element a = gvararr(a′, ia), b =
gvararr(b′, ib) or a structure component a = gvar str(a′, cna), b = gvar str(b′, cnb).
Clearly, level(a′) = level(b′) = n.

Case a′ = b′. Both a and b belong to the same complex structure, and the goal
follows by correctness of the algorithm which computes an offset inside the
complex variable.

Case a′ 6= b′. The variables belong to different complex variables. From the hy-
pothesis we have rangeg(te, ft,mc, a′) � rangeg(te, ft,mc, b′). By Lemma 8.7
we obtain rangeg(te, ft,mc, a) ⊆ rangeg(te, ft,mc, a′) as well as the same con-
dition for b′ and b. From that we conclude the goal.

Lemma 8.9 (Elementary variables are disjoint from variables at higher level)
Assume that a is of an elementary type and that a has a level below the level of b, then
rages of a and b are disjoint:

is-elemt(tyg(te, sc(mc), a)) ∧ level(a) < level(b)

−→ rangeg(te, ft,mc, a) � rangeg(te, ft,mc, b)

Isabelle: C0Acompilersimulation/abase lemmata.not range overlap with elementary diff level abase gl (asm)

C0Acompilersimulation/abase lemmata.not range overlap with elementary diff level (C0)
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Proof. Using Lemma 8.5 we obtain a variable h such that level(h) = level(a) and
b ∈ subg(h). Clearly, two facts hold: (i) a 6= b, otherwise we would have a contra-
diction with level(a) < level(b), and (ii) a 6= h, otherwise we would have a contradiction
with is-elemt(tyg(te, sc(mc), a)) because g-variables of elementary types cannot have sub
variables. From Lemma 8.8 we have rangeg(te, ft,mc, a) � rangeg(te, ft,mc, h). From
Lemma 8.7 we have rangeg(te, ft,mc, b) ⊆ rangeg(te, ft,mc, h). Ultimately, we conclude
rangeg(te, ft,mc, a) � rangeg(te, ft,mc, b).

Lemma 8.10 (Elementary variables are disjoint) Assume that a and b are different
g-variables of elementary types, then their ranges are disjoint:

a 6= b ∧ is-elemt(tyg(te, sc(mc), a)) ∧ is-elemt(tyg(te, sc(mc), b))

−→ rangeg(te, ft,mc, a) � rangeg(te, ft,mc, b)

Isabelle: C0Acompilersimulation/abase lemmata.elementary impl not overlap abase (asm)

C0Acompilersimulation/abase lemmata.elementary impl not overlap (C0)

Proof. By case distinction on relation between the levels of variables.

Case level(a) = level(b). By Lemma 8.8.

Case level(a) 6= level(b). By Lemma 8.9.

The same is done for top local variables and heap variables. The proof for two
variables from the different groups is as follows. In case of C0 machine there is nothing
to prove since the variables belong to different memory frames. In the assembly machine
we find a border address which separates these two memory frames and show that all
addresses of the first memory frame are smaller than the border address and all addresses
of the second memory frame are greater than the border address.

8.5 Correctness

Let c′C0 be a C0 configuration on which the effects of an assembly statement asm(il) are
projected, i.e., bc′C0c = C0-asm-upd(te, ft, cC0, cASM, c

′
ASM, alloc, gl). However, the com-

piler correctness relation does not necessarily hold between the C0 configuration c′C0 and
the assembly configuration c′ASM. The control consistency will be broken if the assembly
statement is either (i) the last statement of a loop body, or (ii) the last statement of
the then part of a conditional statement. The translation of these statements to the
target code results in a list of assembly instructions il′ which has to be executed by the
assembly configuration c′ASM in order to reach a consistent to c′C0 state. Note that il′

contains only control instructions, and, hence does not affect any C0 variable. Executing
il′ we transit from c′ASM to c′′ASM updating the program counters and regain consistency
consis(te, ft, c′C0, alloc, c′′ASM). This verification scenario is depicted in Figure 8.1. In the
following we state this idea as a formal theorem.

Theorem 8.11 (Inline assembly preserves C0 consistency) Let te be a type envi-
ronment and let ft be a function table. Let cASM and cC0 be assembly and C0 small-step
semantics configurations before the execution of an inline assembly statement, and let
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Figure 8.1: Switching C and assembly semantics.

c′ASM and c′C0 be respective configurations after its execution. Let alloc be an alloca-
tion function and let gl be a list of g-variables affected by the inline assembly portion.
Assume that (i) the assembly configuration c′ASM is valid, (ii) the C0 configuration cC0

is valid, moreover the corresponding C0 program is translatable, (iii) cC0 is simulated
by cASM, (iv) the next statement of cC0 is an inline-assembly statement, and (v) the
projection of the inline-assembly effects to the C0 configuration is successful, then the
assembly computation reaches in some number T of steps a configuration c′′ASM, such
that (i) it is valid and simulates C0 configuration c′C0, (ii) the memory, special-purpose
and important general-purpose registers are unchanged in c′′ASM compared to c′ASM, and
(iii) for the last T steps it is guaranteed that the execution produces no interrupts on
the ISA level:

(te, ft, gst(cC0.mem)) ∈ xltblprog

∧ consis(te, ft, cC0, alloc, cASM)
∧ cC0 ∈ C0

√
(te, ft)

∧ asm
√

(c′ASM)
∧ is-asm(stmt(cC0))
∧ C0-asm-upd(te, ft, cC0, cASM, c

′
ASM, gl) = bc′C0c

−→ ∃ T, c′′ASM :

c′′ASM = δTASM(c′ASM)
∧ consis(te, ft, c′C0, alloc, c′′ASM)
∧ asm

√
(c′′ASM)

∧ c′′ASM.m = c′ASM.m
∧ c′′ASM.spr = c′ASM.spr
∧ ∀ r ∈ {rsbase, rhtop, rlframe, rjal} : c′′ASM.gpr[r] = c′ASM.gpr[r]
∧ asm-exec-props(c′ASM, PROGBASE,

csizeprog(te, gst(cC0.mem), ft), 0, 0, T )

The instruction list il′ described above contains only control instructions which do not
affect the memory. Hence, in the predicate asm-exec-props we use two zeros at the place
for the data range accessed during its execution.
Isabelle: C0Acompilersimulation/asm stmt step consistency.consistent C0 conf asm update
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Proof. First, we prove all parts of the simulation relation between C0 configuration
c′C0 and assembly configuration c′ASM except for the control consistency (which, actually,
does not always hold for c′C0 and c′ASM). The code consistency consiscode(te, ft, c′C0, c

′
ASM),

clearly, holds because the program code range is unchanged. The arguments for the data
consistency consisd(te, ft, c′C0, alloc, c′ASM) are as follows: we know that the update of
the C0 configuration with the function C0-asm-upd(te, ft, cC0, cASM, c

′
ASM, gl) succeeded,

hence, the preconditions precond-C0-asm-upd(te, ft, cC0, cASM, c
′
ASM, alloc, gl) were satis-

fied. We use them in order to conclude:

Consistency of frame headers. The additional frame information is stored at the place
where no variables are stored.

Register consistency. Registers rsbase, rhtop, and rlframe are not changed as well as the
structure of local stack, global, and heap memories. The set of all heap reachable
variables could only be decreased.

Allocation consistency. The allocation function is not changed.

Value and pointer consistency. The most crucial point here is to show that all elemen-
tary variables occupy different C0 memory cells as well as different assembly-
memory cells. We use Lemma 8.10.

Now we apply the correctness theorem for the control code [66, Theorem 10.4], which
gives us all conclusions of our theorem, except for the code and data consistency terms of
consis(te, ft, c′C0, alloc, c′′ASM). Our remaining goal is to propagate consiscode(te, ft, c′C0, c

′
ASM)

and consisd(te, ft, c′C0, alloc, c′′ASM) to hold with the assembly configuration c′′ASM. As we
have just proven that the memory and important registers have the same value in c′ASM

and c′′ASM, the goal follows.
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Verifying CVM Source Code

Chapter

9
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In this chapter we elaborate on the verification of the CVM implementation. In the
frame of this work the following parts of the implementation have been formally veri-
fied: (i) context-switch routines [107], namely, process-context save and restore, (ii) the
CVM’s dispatcher, and (iii) three primitives [106], namely, cvm copy(), cvm get vm word(),
and cvm set vm word(). As for the primitives, we discuss only verification of cvm copy()
in this thesis because of two reasons. First, both remaining primitives are simple and
all verification details that appear in their proofs also appear in the proof of the primi-
tive for copying. Second, these primitives are excluded from the actual implementation
state, because they are not used by the latest versions of the Verisoft’s abstract kernels
VAMOS and OLOS.

After a brief introduction in Section 9.1 of a number of auxiliary definitions common
to all further sections devoted to verification of the source code we present in Section 9.2
an overall correctness proof of context switching and the CVM dispatcher. Section 9.3
discusses verification of CVM primitives on the example of the primitive cvm copy().

9.1 Overview

We use the C0 small-step semantics extended with the inline assembly semantics for
verification of the kernel’s source code. We obtain the code formalization in the small-
step semantics in Isabelle by means of a code translation tool developed in the frame
of the Verisoft project. The tool also uniquely tags each statement with a numerical
identifier. However, as we reason about the code of the concrete kernel obtained by
means of the linking the translated CVM code with the code of the abstract kernel the
statement identifiers are renumbered. Following the definition of the linking operator
(cf. Section 6.2) in the obtained concrete kernel the statements with even identifiers will
correspond to the CVM code.
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Listing 9.1: Implementation of the initial jump.

1 j (PROGBASE−4);
2 nop ();

9.2 Process-Context Switch and Dispatching

In this section we focus on the verification of the process-context switch implementation
in CVM. Context switching is closely related to some other portions of CVM like the
initialization code and the CVM dispatcher. We elaborate on their correctness in the
current section as well. Altogether, this section covers verification of the following
pieces of code: (i) the initial jump to the beginning of the CVM code, (ii) the process-
context save function init () which also contains the code for initialization after reset,
(iii) the process-context restore function cvm start(), and (iv) the CVM dispatcher
dispatcher(), a wrapper around the dispatcher of the abstract kernel, which is executed
between context save and restore.

We start this section by discussing details of the context-switch implementation
in CVM. Next we elaborate on its correctness. Further, in separate subsections we
discuss verification of the CVM initialization code which is executed after a power up,
correctness of process-context save, correctness of CVM’s dispatcher, and verification of
the process-context restore code.

9.2.1 Implementation

Initial Jump

Recall that VAMP JISR semantics set program counters to point to the zero address.
However, the kernel code resides in the memory starting from address PROGBASE. In
order to start execution of the kernel we need to reach the code of its first function
by a jump to that address. Therefore, at the address zero we place the corresponding
jump instruction (cf. Listing 9.1). An empty instruction is put after that because of the
delayed branch mechanism.

Function init ()

Every run of a CVM-based kernel starts with the function init () whose code is depicted
in Listing 9.2. There are two possible cases of a kernel invocation: (i) after a computer
power up or a reset signal, and (ii) on an interrupt occurring during execution of some
user process or while the kernel is in the waiting for interrupts state. Depending on
the case the function init () either initializes the kernel memory structure with zeros
or performs a process-context save. In the implementation this decision is taken by
examining along lines 9–12 the least significant bit of the register eca which corresponds
to the reset signal. In case this bit is on the reset part of the function (lines 13–27)
is executed, otherwise we jump to line 28 and proceed with the save part. Both cases,
however share saving of the general-purpose register one into the zero page in line 8.

Case reset (lines 13–27). Recall, that the C0 compiler reserves general-purpose
registers 28, 29, and 30 for pointers to start of the global memory, heap memory, and
the local stack, respectively. In lines 13–18 we initialize these registers with the constants
ABASElm, ABASEhm, and ABASEgm. This defines the memory map of the kernel. Note that,
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Listing 9.2: Kernel initialization and process-context save: function init ().

1 int init ()
2 {
3 int dummy;
4 unsigned int dispatcher eca;
5 unsigned int dispatcher edata;
6 unsigned int dispatcher edpc;
7 assembler(
8 sw (r1, r0, 8);
9 movs2i(r1, eca);

10 andi (r1, r1, 1);
11 beqz (r1, 64);
12 nop ();
13 addi (r30, r0, 448);
14 slli (r30, r30, 12);
15 addi (r29, r0, 1024 );
16 slli (r29, r29, 12);
17 addi (r28, r0, 384);
18 slli (r28, r28, 12);
19 addi (r2, r0, 64);
20 slli (r2, r2, 12);
21 add (r1, r0, r28);
22 sw (r0, r1, 0);
23 subi (r2, r2, 4);
24 bnez (r2, −12);
25 addi (r1, r1, 4);
26 beqz (r0, 204);
27 nop ();
28 sw (r2, r0, 12);
29 sw (r28, r0, 16);
30 addi (r28, r0, 384);
31 slli (r28, r28, 12);
32 addi (r1, r28, asm offset(cup));
33 lw (r1, r1, 0);
34 slli (r1, r1, 9);
35 addi (r2, r28, asm offset(pcb));
36 add (r2, r2, r1);
37 sw (r3, r2, 8);
38 sw (r4, r2, 12);
39 sw (r5, r2, 16);
40 sw (r6, r2, 20);
41 sw (r7, r2, 24);
42 sw (r8, r2, 28);
43 sw (r9, r2, 32);
44 sw (r10, r2, 36);
45 sw (r11, r2, 40);
46 sw (r12, r2, 44);
47 sw (r13, r2, 48);

48 sw (r14, r2, 52);
49 sw (r15, r2, 56);
50 sw (r16, r2, 60);
51 sw (r17, r2, 64);
52 sw (r18, r2, 68);
53 sw (r19, r2, 72);
54 sw (r20, r2, 76);
55 sw (r21, r2, 80);
56 sw (r22, r2, 84);
57 sw (r23, r2, 88);
58 sw (r24, r2, 92);
59 sw (r25, r2, 96);
60 sw (r26, r2, 100);
61 sw (r27, r2, 104);
62 sw (r29, r2, 112);
63 sw (r30, r2, 116);
64 sw (r31, r2, 120);
65 lw (r10, r0, 8);
66 sw (r10, r2, 0);
67 lw (r10, r0, 12);
68 sw (r10, r2, 4);
69 lw (r10, r0, 16);
70 sw (r10, r2, 108);
71 movs2i(r7, epc);
72 sw (r7, r2, 264);
73 movs2i(r7, edpc);
74 sw (r7, r2, 268);
75 addi (r30, r0, 448);
76 slli (r30, r30, 12);
77 lw (r29, r28, asm offset(kheap));
78 movs2i(r10, eca);
79 sw (r10, r30,
80 asm offset(dispatcher eca));
81 movs2i(r10, edpc);
82 sw (r10, r30,
83 asm offset(dispatcher edpc));
84 movs2i(r10, edata);
85 sw (r10, r30,
86 asm offset(dispatcher edata));
87 );
88 dummy = dispatcher(dispatcher eca,
89 dispatcher edata,
90 dispatcher edpc);
91 return 0;
92 }

these three constants are measured in pages — therefore, respective left shifts by 12 are
done in the lines 14, 16, and 18. The subsequent lines fill the kernel’s global memory
with zeros because the global memory must be initialized. Lines 19–20 load the size of
the global memory ABASElm−ABASEgm into a register while lines 21–25 implement a loop
for the memory fill. The case ends with a jump to the line 78 at which some code which
is shared between the reset and the save cases is placed.

Case save (lines 28–77). This part saves contents of visible hardware registers into
the process control block of the interrupted user process. First, we save general-purpose
register two into the zero page in line 28. This is done in order to have two registers
— together with the one already saved in line 8 — available for storing temporary
data during further computations. We save the content of register 28, a global memory
pointer, into the zero page as well. Next, register 28 is set to value ABASElm − ABASEgm

in lines 30-31. Along lines 28–36, we compute an offset in the array of process control
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Listing 9.3: CVM elementary dispatcher: function dispatcher().

1 int dispatcher
2 (unsigned int dispatcher eca,
3 unsigned int dispatcher edata,
4 unsigned int dispatcher edpc)
5 {
6 int dummy;
7 unsigned int pfh res;
8 if ((dispatcher eca & 1u) != 0u)
9 {

10 SR = 8254u;
11 dummy = pfh init();
12 }
13 else if ((dispatcher eca & 8u) != 0u)
14 {
15 pfh res = pfh touch addr
16 (cup, dispatcher edpc,
17 MM SWAP IN, 0u);
18 if (pfh res != MM INVALID ADDR)
19 {
20 dispatcher eca = 0u;
21 }
22 }
23 else if ((dispatcher eca & 16u) != 0u)
24 {
25 pfh res = pfh touch addr

26 (cup, dispatcher edata,
27 MM SWAP IN, 0u);
28 if (pfh res != MM INVALID ADDR)
29 {
30 dispatcher eca = 0u;
31 }
32 };
33 if (dispatcher eca != 0u)
34 {
35 cup = dispatcher kernel
36 (dispatcher eca,
37 dispatcher edata);
38 };
39 if (cup > 0u && cup < PID MAX)
40 {
41 dummy = cvm start(cup);
42 }
43 else
44 {
45 dummy = cvm wait();
46 };
47 return 0;
48 }

blocks corresponding to the interrupted process identified by cup. From line 37 to 64
we consecutively write the content of general-purpose registers 3 to 31, except for 28,
directly into the PCB of process cup. In lines 65–70 we obtain the values of registers 1,
2, and 28 from the zero page and save them into the process control blocks. Lines 71–74
take care about special-purpose registers. We save the exception versions of program
counters epc and edpc. Along lines 75–77 we assign the stack and heap pointers which
reside in general-purpose registers 30 and 29 the values which correspond to the kernel.
The stack pointer is set to ABASElm while the heap pointer is assigned the value of the
variable kheap. As our kernel support dynamic memory allocation this variable keeps
track of the heap memory consumed by the kernel.

Shared code. The remaining lines of the assembly portion save the values of special-
purpose registers eca, edpc, and edata — needed for interrupt handlers — into the local
variables dispatcher eca, dispatcher edpc, and dispatcher edata, respectively.

The function init () finishes by invoking the CVM’s dispatcher in line 88.

Function dispatcher()

The primary goal of the CVM dispatcher (cf. Listing 9.3) is to invoke the dispatcher of the
abstract kernel which returns to CVM the identifier of the next scheduled process. This
way, CVM knows the context of which process to restore next. Besides that the CVM
dispatcher invokes, if needed, the page-fault handler initialization code and possibly calls
the page-fault handler itself. The function dispatcher() has three arguments which are
the stored values of registers eca, edata, and edpc. The implementation starts by a
check along lines 8–12 of whether the kernel is invoked for the first time after a reset:
the least significant bit of the variable dispatcher eca is examined. If so, the status
register variable SR is assigned the value of 8254 (cf. Section 5.2 for argumentation
behind this number) and the initialization code of the page-fault handler is invoked. If
we do not deal with a reset case we check whether any page-faults take place and try
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Listing 9.4: Process-context restore: function cvm start().

1 int cvm start(unsigned int pid)
2 {
3 int∗ gpr1;
4 cup = pid;
5 gpr1 = &(pcb[pid].
6 exception frame[EF GPR 1]);
7 assembler(
8 sw (r29, r28, asm offset(kheap));
9 );

10 assembler(
11 lw (r2, r28, asm offset(SR));
12 movi2s (esr, r2);
13 lw (r5, r30, asm offset(gpr1));
14 add (r1, r5, r0);
15 lw (r2, r1, 0);
16 sw (r2,r0, 8);
17 lw (r2, r1, 4);
18 sw (r2,r0, 12);
19 lw (r3, r1, 8);
20 lw (r4, r1, 12);
21 lw (r5, r1, 16);
22 lw (r6, r1, 20);
23 lw (r7, r1, 24);
24 lw (r8, r1, 28);
25 lw (r9, r1, 32);
26 lw (r10, r1, 36);
27 lw (r11, r1, 40);
28 lw (r12, r1, 44);
29 lw (r13, r1, 48);
30 lw (r14, r1, 52);
31 lw (r15, r1, 56);
32 lw (r16, r1, 60);

33 lw (r17, r1, 64);
34 lw (r18, r1, 68);
35 lw (r19, r1, 72);
36 lw (r20, r1, 76);
37 lw (r21, r1, 80);
38 lw (r22, r1, 84);
39 lw (r23, r1, 88);
40 lw (r24, r1, 92);
41 lw (r25, r1, 96);
42 lw (r26, r1, 100);
43 lw (r27, r1, 104);
44 lw (r28, r1, 108);
45 lw (r29, r1, 112);
46 lw (r30, r1, 116);
47 lw (r31, r1, 120);
48 lw (r2, r1, 264);
49 movi2s (epc, r2);
50 lw (r2, r1, 268);
51 movi2s (edpc, r2);
52 lw (r2, r1, 288);
53 movi2s (pto, r2);
54 lw (r2, r1, 292);
55 movi2s (ptl, r2);
56 addi (r2, r0, 1);
57 movi2s (emode, r2);
58 lw (r1, r0, 8);
59 lw (r2, r0, 12);
60 rfe ();
61 );
62 return 0;
63 }

to handle them (lines 13–32). Note, that a page table length exception signaled by the
MM INVALID ADDR return code of the page-fault handler is not handled within CVM but
rather left in responsibility of the abstract kernel. If a page-fault was caused by other
than PTL exception reasons and hence could be resolved, we will clear the variable
dispatcher eca and thus ignore the remaining interrupts. We can do so because only
external interrupts may coexist with a page fault.This guarantees liveness for CVM. A
page fault is a repeat-interrupt, i.e., the current user process did not make any progress.
If the kernel would immediately be informed about the occurred external interrupts,
rapid interrupt occurrences could starve the current user process. First, we check and
handle a page fault on fetch. This is done at lines 13–22 by inspecting the fourth bit
of the variable dispatcher eca and a subsequent call to the handler. If there was no
page fault on fetch we check along lines 23-32 for a page fault on load or store. Here
the fifth bit is considered. If one of the page faults occurred and was handled we leave
the dispatcher by restoring the interrupted process via a call to cvm start() in line 41.
Otherwise, we invoke the dispatcher of the abstract kernel in order to schedule the next
user process (lines 33–38). In case some user process is scheduled we invoke it, otherwise
we put CVM into an endless loop by invoking cvm wait() (lines 39–46).

Function cvm start()

The function for process-context restore (cf. Listing 9.4) is quite symmetrical to the save
case of the function init (). In the C0 portion of the function (lines 1–6) we compute
an offset in the process control blocks array pcb corresponding to the next scheduled
process pid. After the C0 part two inline assembly portions follow: this partition of the
assembly code does not affect the generated object code but, however, eases verification.
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Figure 9.1: Verification diagram of the case reset.

The first assembly statement (lines 7–9) contains a single instruction which saves the
value of the variable kheap storing the amount of the kernel heap memory into the
general purpose register 29. In the second assembly statement we first save the value
of the interrupt mask variable SR into the special purpose register esr (lines 11-12).
Further, with lines 15–47 and 58–59 we load the values from the process control block
of the process pid into general purpose registers. In the end of the function we load the
values from PCB into such special registers as epc, edpc, pto, and ptl. Finally, we set the
register emode on. The last instruction of the function is rfe. By this we change the
hardware mode to user, leave the kernel, and start running the scheduled user process.

Further in this chapter, for each function name fn we will denote the formal definition
of this function, i.e., an instance of the type Func, as fn-proc and its components as:

fn-proc.body = fn-body,
fn-proc.params = fn-par,

fn-proc.lvars = fn-loc.

For the statements we will omit the statement identifiers because they are generated by
the code translation tool and depend on the complete code of the translated program
but at the same time are irrelevant to the verification process.

9.2.2 Correctness of the Case Reset

We start discussing verification of the CVM implementation with a correctness proof
of the case reset. Note that this will be the most detailed example covering typical
peculiarities of formal reasoning about the CVM implementation like partitioning the
code into logical portions depending on its semantical level or functionality, verifying
code parts on the semantical level as abstractly as possible, and transferring correctness
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results between the levels. For further cases and functions we will omit recurring details
and concentrate on case-specific features.

The final correctness theorem for the case reset (cf. Theorem 9.10) covers not only
the corresponding parts of the function init (), but also the relevant portions of the
CVM dispatcher. Altogether, we tie together in a single theorem correctness statements
of (i) the following parts of the function init (): pointers initialization, global memory
initialization, coping values to the local variables, call of the dispatcher(), and (ii) the
following parts of the function dispatcher(): initialization of the variable SR, call of the
function pfh init(), and the part of the CVM dispatcher until the call to the function
dispatcher kernel() passing by the page-fault handler calls.

Figure 9.1 sketches the verification process of the CVM-based kernel initialization.
Such figures will be typical for this chapter. The figure depicts three semantical layers
at which verification proceeds: C0, assembly, and ISA. At any point of time we try
to achieve the desired verification result at the highest possible level. Finally, these
results will be transfered to the ISA level by means of the C0-ISA ministack relation (cf.
Section 4.3).

In Figure 9.1 the last pair of configurations (c5ISA, c
5
C0) are the states corresponding to

the initial state of the CVM model. The whole correctness proof is divided into 5 parts.
The first two parts — initial jump and the assembly portions from the function init ()
— are verified on the assembly level. They are verified separately since the simulation
theorem between VAMP ISA and VAMP assembly (cf. Theorem 4.8) assumes that the
program code resides in a single continuous memory region, but in our case we use the
memory between the jump code and kernel code to store some data. The third and the
fifth parts (C0 statements between the assembly statement and the call to pfh init(),
and C0 statements between the pfh init() call and the dispatcher kernel() call) are
verified on the C0 level. The fourth part is the call of the pfh init() function. In this
case we apply the correctness theorem of the page-fault handler initialization code [105].

By CiISA we will denote the set of all configurations which share certain properties
as the configuration ciISA.

Initial Jump

We start by defining the set of ISA configurations C0
ISA before execution of the initial

jump. That a configuration cISA belongs to the set C0
ISA means that cISA satisfies the

preconditions to the initial jump code. Essential properties of a configuration cISA ∈ C0
ISA

are that (i) the program counters point to the zero address, (ii) only the reset bit is set
in the cause register, and (iii) the registers used for interrupt handling (edata and edpc)
are set to zero. Formally:

isa
√

(cISA)
∧ is-sys-execISA(cISA)
∧ code-inv(cISA)
∧ 〈cISA.dpc〉 = 0
∧ 〈cISA.pc〉 = 4
∧ 〈cISA.spr(eca)〉 = 1
∧ 〈cISA.spr(edata)〉 = 0
∧ 〈cISA.spr(edpc)〉 = 0
−→ cISA ∈ C0

ISA.
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The postcondition of the initial jump is defined as a set of ISA configurations C1
ISA.

In case of reset the values of registers except for eca, edata, and edpc are not relevant to
us. As for the memory we care only about the part where the code is stored. Ultimately,
the postcondition states that a jump to the address PROGBASE is successfully executed
and the program counters are updated correspondingly. Formally:

isa
√

(cISA)
∧ is-sys-execISA(cISA)
∧ code-inv(cISA)
∧ 〈cISA.dpc〉 = PROGBASE

∧ 〈cISA.pc〉 = PROGBASE + 4
∧ 〈cISA.spr(eca)〉 = 1
∧ 〈cISA.spr(edata)〉 = 0
∧ 〈cISA.spr(edpc)〉 = 0
−→ cISA ∈ C1

ISA.

As it follows from Figure 9.1 we verify the code of the initial jump in the assembly
semantics. Because of that we also define the pre- and postconditions on the assembly
level. We denote the sets of respective assembly configurations by C0

ASM and C1
ASM.

However, we omit formal definitions of these configuration because they differ from C0
ISA

and C1
ISA only in data representation.

Having specification of the initial jump formally defined we can formulate a correct-
ness lemma for this portion of code. Since we formulate this lemma on the ISA level and
will ease the proof by reasoning on the assembly level we need to introduce a conversion
function from ISA configurations to assembly configurations. We obtain an assembly
configuration from a given ISA configuration by means of the function

cISA2cASM(cISA) def= cASM,

where
cASM.dpc = 〈cISA.dpc〉,
cASM.pc = 〈cISA.pc〉,
cASM.gpr[i] = [cISA.gpr(bin(i))],
cASM.spr[i] = [cISA.spr(bin(i))],
cASM.m(ad) = [read-isa(cISA.m, 4 · ad)].

We justify correctness of this conversion function by the following two lemmas.

Lemma 9.1 (Correctness of conversion from ISA to assembly) The assembly
configuration obtained from a valid ISA configuration by means of the function cISA2cASM

is equivalent to this ISA configuration:

isa
√

(cISA) −→ isa-sim-asm(cISA, cISA2cASM(cISA)).

Isabelle: cvm/additional/isa2asm abs lemmas.equiv asm isa isa to asm
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Lemma 9.2 (Conversion from ISA to assembly preserves validity) The as-
sembly configuration obtained from a valid ISA configuration by means of the function
cISA2cASM is valid:

isa
√

(cISA) −→ asm
√

(cISA2cASM(cISA)).

Isabelle: cvm/additional/isa2asm abs lemmas.is dlx conft impl is ASMcore isa to asm

Now we prove correctness of the initial jump.

Lemma 9.3 (Correctness of initial jump) Assume that (i) the properties of the
abstract kernel hold for πAK, (ii) an execution sequence seq is well-formed, (iii) the
hard disk properties hold, and (iv) an ISA processor configuration cISA+DS.cpu satis-
fies the precondition of the initial jump, then there exists a number of steps T whose
execution brings ISA with devices into a configuration c′ISA+DS, such that (i) devices
non-interference holds, (ii) the hard disk properties are preserved, and (iii) the ISA
processor configuration c′ISA+DS.cpu satisfies the postcondition of the initial jump:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ cISA+DS.cpu ∈ C0

ISA

−→ ∃ T, c′ISA+DS :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ c′ISA+DS.cpu ∈ C1
ISA.

Isabelle: cvm/Reset/begin jump reset.begin asm code correct isa reset

Proof. In order to start verification on the assembly level we need an assembly configu-
ration which can simulate the given ISA configuration. We obtain it from the c0ISA using
the conversion function cISA2cASM. Lemma 9.2 allows us to apply assembly semantics.
Using the assembly semantics for the execution of the two instructions constituting the
code of the initial jump and applying simulation theorems we conclude the properties
of c1ISA.

Assembly Statement of the Function init ()

The assembly portion of the initialization/context save function which belongs to the
case reset implements the following changes: (i) the program counters are set to the
end address of the assembly portion, (ii) the global memory, local memory, and heap
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ABASElm + FHS + 12
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Figure 9.2: Memory structure during execution of the function init () in the case reset.

pointers are loaded, (iii) the memory region from ABASEgm to ABASElm is filled with zeros,
(iv) the values of the special purpose registers are written to the local variable. The
allocated addresses of these variables are ABASElm + FHS + 4, ABASElm + FHS + 8, and
ABASElm + FHS + 12 (cf. Figure 9.2). FHS bytes are reserved for some information of the
local frame; 4, 8, and 12 are displacements within the memory frame. We denote the
assembly code from the first statement of the function init () by πinit

ASM. The described
effect of this portion of code are formally stated in the following postcondition, defined
as a set of ISA configurations C2

ISA:

isa
√

(cISA)
∧ is-sys-execISA(cISA)
∧ code-inv(cISA)
∧ 〈cISA.dpc〉 = PROGBASE + |πinit

ASM|
∧ 〈cISA.pc〉 = PROGBASE + |πinit

ASM|+ 4
∧ 〈cISA.gpr(bin(28))〉 = ABASEgm

∧ 〈cISA.gpr(bin(29))〉 = ABASEhm

∧ 〈cISA.gpr(bin(30))〉 = ABASElm

∧ get-dataISA(cISA, ABASEgm, (ABASElm − ABASEgm)/4) = 0(ABASElm−ABASEgm)/4

∧ get-dataISA(cISA, ABASElm + FHS + 4, 3) = [1, 0, 0]
−→ cISA ∈ C2

ISA.

Correctness of the part is stated in the following lemma.

Lemma 9.4 (Correctness of assembly statement in init ()) Assume that (i) the
properties of the abstract kernel hold fo πAK, (ii) an execution sequence seq is well-
formed, (iii) the hard disk properties hold, and (iv) an ISA processor configuration
cISA+DS.cpu satisfies the postcondtion of the initial jump, then there exists a number
of steps T whose execution brings ISA with devices into a configuration c′ISA+DS, such
that (i) devices non-interference holds, (ii) the hard disk properties are preserved, and
(iii) the ISA processor configuration c′ISA+DS.cpu satisfies the postcondition of the as-
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sembly statement of the function init ():

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ cISA+DS.cpu ∈ C1

ISA

−→ ∃ T, c′ISA+DS :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ c′ISA+DS.cpu ∈ C2
ISA.

Isabelle: cvm/Reset/init asm reset.init code reset correct isa

Note that the code to be verified contains also a loop at lines 22–25. The loop is
executed 〈cISA.gpr(bin(2))〉/4 times.

C0 Statements of init () and dispatcher() before the pfh init() Call

We execute and verify this part on the C0 level. During this we do not care much about
the properties on the ISA level except for the following conditions of valid execution:
(i) the ISA configuration is valid, (ii) the system mode is on, and (iii) the code invariant
holds. In conjunction these three properties we define the postcondition to the currently
discussed portion of code on the ISA level as a set of configurations C3

ISA:

isa
√

(cISA)
∧ is-sys-execISA(cISA)
∧ code-inv(cISA)
−→ cISA ∈ C3

ISA.

Now we define the postcondition on the C0 level. Before that let us introduce the
following notation for a variable g, a memory configuration mc, and a memory cell value
v:

|� g �|mc = v

which combines two properties: the variable g is initialized with respect to the memory
configuration mem and has the value v:

initializedg(mc, g)
∧ valueg(mc, g) = v.

Further, at places where it is clear which memory configuration is used we will omit it.
The C0 postcondition is defined as a set of C0 configurations C3

C0. Essentially, it is a
conjunction of the following facts: (i) the C0 configuration is valid and the invariant on
the global memory structure holds, (ii) the very first global variable (SR) has the value of
8254 and all other global variables have predefined initial values, (iii) the heap memory
is empty, (iv) the local memory stack has two frames corresponding to the functions
init () and dispatcher(), (v) the variable storing values of registers eca, edata, and
edpc has the values 1, 0, and 0, respectively, and (vi) the program rest is equal the
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the predefined constant prog3, which encodes the body of the function dispatcher()
starting from line 11 in Listing 9.3. Formally:

cC0 ∈ C0′′
√

(teCK(πAK), ftCK(πAK))
∧ structureck

GM(πAK, cC0)

∧ cC0.mem.gm.ct(i) =

{
nat(8254) if i = 0
initct(gstCK(πAK))(i) otherwise

∧ cC0.mem.hm = initmem([])
∧ |cC0.mem.lm| = 2
∧ cC0.mem.lm[[0]].mfr.st = stfun(init-proc)
∧ cC0.mem.lm[[1]].mfr.st = stfun(dispatcher-proc)
∧ |� gvar lm(1, dispatcher eca) �| = nat(1)
∧ |� gvar lm(1, dispatcher edata) �| = nat(0)
∧ |� gvar lm(1, dispatcher edpc) �| = nat(0)
∧ cC0.prog = prog3

−→ cC0 ∈ C3
C0.

Next, we state and prove the correctness lemma for the current code portion.

Lemma 9.5 (Correctness of C0 parts of init () and dispatcher()) Assume that
(i) the properties of the abstract kernel hold for πAK, (ii) an execution sequence seq is
well-formed, (iii) the hard disk properties hold, and (iv) an ISA processor configuration
cISA+DS.cpu satisfies the postcondition of the assembly statement of the function init (),
then there exists a number of steps T whose execution brings ISA with devices into a
configuration c′ISA+DS and a C0 configuration c′C0, such that (i) devices non-interference
holds, (ii) the hard disk properties are preserved, (iii) the C0 configuration c′C0 is simu-
lated by the ISA configuration c′ISA+DS.cpu, and (iv) the postconditions on the ISA and
C0 levels hold:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ cISA+DS.cpu ∈ C2

ISA

−→ ∃ T, c′ISA+DS, c
′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ C0-sim-isa(teCK(πAK), ftCK(πAK), c′C0, c
′
ISA+DS.cpu)

∧ c′ISA+DS.cpu ∈ C3
ISA

∧ c′C0 ∈ C3
C0.

Isabelle: cvm/Reset/init dispatcher reset.init dispatcher reset isa correct

Proof. The lemma is proven by applying the C0 small-step semantics. In order to pro-
ceed with verification on the C0 level we first of all need to find an initial C0 configuration
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consistent to the ISA configuration c2ISA. We denote this configuration by cinitC0 and define
it as follows:

cinitC0 .prog = sCall(dummy, dispatcher,
[var(dispatcher eca, unsgndT),
var(dispatcher edata, unsgndT),
var(dispatcher edpc, unsgndT)]),

cinitC0 .mem.gm.st = gstCK(πAK.st),

cinitC0 .mem.gm.init = vns(gstCK(πAK.st)),

cinitC0 .mem.gm.ct = initct(gstCK(πAK)),

cinitC0 .mem.hm = initmem([]),

cinitC0 .mem.lm = [(lm-frameinit,A)],

lm-frameinit.st = stfun(init-proc),

lm-frameinit.ct = vns(stfun(init-proc)),

lm-frameinit.init = lm-contentinit,

lm-contentinit(i) =


nat(1) if i = 1
nat(0) if i = 2
nat(0) if i = 3
A otherwise

.

Note, that in the last equation the content of the local memory frame is defined according
to the symbol table of the function init ():

1 = bav(stfun(init-proc), dispatcher eca),
2 = bav(stfun(init-proc), dispatcher edata),
3 = bav(stfun(init-proc), dispatcher edpc).

We use Lemma 9.6 and Lemma 9.7 stated and proven below to justify that the C0
configuration cinitC0 satisfies the postcondition C2

ISA.

Lemma 9.6 (Construction correctness of cinitC0 ) Assume that the abstract kernel
properties hold for πAK and the ISA code invariants are satisfied for a valid configuration
cISA which encodes the postcondition C2

ISA, then cISA simulates the C0 configuration cinitC0 :

abs-kernel-props(πAK)
∧ isa

√
(cISA)

∧ code-inv(cISA)
∧ cISA ∈ C2

ISA

−→ C0-sim-isa(teCK(πAK), ftCK(πAK), cinitC0 , cISA).

Isabelle: cvm/Reset/init consis reset.init code reset isa post impl consistent init cvm c0 config isa to asm

Proof. We start the proof by unfolding the C0-ISA simulation relation C0-sim-isa. Ac-
cording to its definition we need to instantiate the intermediate assembly configura-
tion and the C0 allocation function. As an assembly machine we use configuration
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cASM = cISA2cASM(cISA). Using Lemma 9.2 and Lemma 9.1 we conclude the validity of
this assembly configuration asm

√
(cASM) as well as its equivalence to the original ISA

machine isa-sim-asmcISAcASM. As for the allocation function we instantiate it with the
value allocinit defined below using sc = sc(akinit(πAK).mem):

allocinit(g) def=



(ABASElm + FHS, 4) if g = gvar lm(0, dummy)
(ABASElm + FHS + 4, 4) if g = gvar lm(0, dispatcher eca)
(ABASElm + FHS + 8, 4) if g = gvar lm(0, dispatcher edata)
(ABASElm + FHS + 12, 4) if g = gvar lm(0, dispatcher edpc)
allocinitgm if is-gm-gvar(g)

∧ (teCK(πAK), sc, g) ∈ gvars
√

A otherwise

,

where

allocinitgm = (abaseg(teCK(πAK), ftCK(πAK), sc, g), asizet(tyg(sc, g))).

The values of the allocation function for the local variables are chosen according to the
memory structure depicted in Figure 9.2.

The remaining goal to be proven is

consis(teCK(πAK), ftCK(πAK), cinitC0 , allocinit, cISA2cASM(cISA)).

Subgoal 1. Code consistency consiscode. It follows directly from code-inv(cISA).

Subgoal 2. Control consistency consisc. Since the dispatcher call statement follows di-
rectly after the assembly statement, it is not difficult to show that the start address
of the call statement is the same as the end address of the assembly statement and
equals to PROGBASE + |πinit

ASM|. The recursion depth of the local stack is equal to
one. Since there are no frames created by the call nothing has to be proven about
return addresses of stack frames.

Subgoal 3. Register consistency consisr. We exploit the following facts:

〈cISA.gpr(bin(28))〉 = ABASEgm,

〈cISA.gpr(bin(29))〉 = ABASEhm,

〈cISA.gpr(bin(30))〉 = ABASElm.

All we need to show is:

abasegm(teCK(πAK), ftCK(πAK), gstCK(πAK)) = ABASEgm,

ABASEhm + asizeheap([]) = ABASEhm,

abaselm(te, ft, sc, 0) = ABASElm,

which follows from the abstract kernel properties abs-kernel-props(πAK).

Subgoal 4. Frame header consistency consisfh. It is trivial because the recursion depth
of the local stack is equal to one.
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We reason about the allocation, value, and pointer consistency statements having
the following fact in mind:

∀ g : (teCK(πAK), sc, g) ∈ gvars
√

−→ is-gm-gvar(g)
∨ g = gvar lm(0, dummy)
∨ g = gvar lm(0, dispatcher eca)
∨ g = gvar lm(0, dispatcher edata)
∨ g = gvar lm(0, dispatcher edpc),

as well as that there are not heap variables.

Subgoal 5. Allocation consistency consisalloc. For global and local variables it follows
directly from the definition of allocinit.

Subgoal 6. Value consistency consisv. Non-pointer global variables are initialized and
have one of the following values: bool(F), int(0), char(0), or nat(0). They all
correspond to the zero constant in the assembly machine which follows from
get-dataISA(cISA, ABASEgm, (ABASElm − ABASEgm)/4) = 0(ABASElm−ABASEgm)/4. Three
initialized local variables have values 1, 0, and 0. From get-dataISA(cISA, ABASElm +
FHS + 4, 3) = [1, 0, 0] and the definition of allocinit we conclude that the values
match.

Subgoal 7. Pointer consistency consisp. We need to show it only for global pointers
because there are no local pointer in the source code. Similarly to the value con-
sistency, the initialized value for a global pointer is ptr(⊥), which also corresponds
to the zero.

Lemma 9.7 (Validity of cinitC0 ) Assume that the abstract kernel properties hold, then
the configuration cinitC0 is valid:

abs-kernel-props(πAK) −→ cinitC0 ∈ C0′′
√

(teCK(πAK), ftCK(πAK)).

Isabelle: cvm/Reset/init valid conf reset.init cvm c0 config in valid confs

Proof. All properties about the type environment and the function table follow directly
from abs-kernel-props(πAK). Properties about the memory configuration and the pro-
gram rest are proven by unfolding respective definitions.

Correctness of the Call to pfh init()

Correctness of the initialization code of the page-fault handler was formally proven
by Starostin [105]. The distinctive feature of this code portion is that it establishes
some crucial CVM correctness criteria like the B relation for the first time during some
considered CVM run. Below, we briefly overview some parts of the specification and
state the correctness lemma for this case.

Preconditions on the C0 level state such natural things as (i) the validity of the C0
configuration, (ii) the C0 machine is calling the function pfh init() and writes its result
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back to the variable dummy which belongs to the lop-local memory frame, (iii) the global
variables of the C0 machine coincide with those of the concrete kernel and are initialized,
(iv) the heap memory is empty, (v) the local memory is appropriately bounded, and
(vi) the global variable SR is initialized with the number 8254:

pfh-init-PREC0(πAK, cC0) def= cC0 ∈ C0′′
√

(teCK(πAK), ftCK(πAK))
∧ stmt(cC0.prog) = sCall(dummy, pfh init, [], sid)
∧ dummy ∈ vns(lsttop(cC0.mem))
∧ gst(cC0.mem) = gstCK(πAK)
∧ vns(gstCK(πAK)) ⊆ cC0.mem.gm.init
∧ hst(cC0.mem) = []
∧ asizest∗(sc(cC0.mem).lst) + 52 ≤ ABASEhm − ABASElm

∧ |� gvargm(SR) �| = nat(8254).

Here we use the function asizest∗ to compute the size of the local memory stack. This
function is defined as the sum of symbol table sizes:

asizest∗(lsts) def=
i<|lsts|∑
i=0

asizest(lsts[i]).

The number 52 comes from the estimation of the local stack size for the pfh init()
execution:

(ftCK(πAK), pfh init, 52) ∈ SE.

Additionally, the predicate pfh-init-PREPFH(te,mc) is defined stating the precondi-
tion about the page-fault handler data structures, namely: the reverse lookup array
ppx2pd, the stack of free big pages bpfree stack, the big-page table space bptspace,
and the (relevant to the page-fault handler) process control blocks pcb. The precondition
states that all these data structures are initialized with zeros.

The C0 postcondition of a call to the page-fault handler initialization code, basically,
states that the call was successfully processed: the validity of the C0 configuration is
preserved, the call statement was removed from the program rest, and all variables except
those touched by the code remain unchanged. Moreover, the C0 memory invariant for
the function call execution holds:

pfh-init-POSTC0(πAK, cC0, c
′
C0) def= c′C0 ∈ C0′′

√
(teCK(πAK), ftCK(πAK))

∧ c′C0.prog = rem-1st-stmt(cC0.prog)
∧ unchangedGM,HM(teCK(πAK), cC0.mem, c′C0.mem,

pfh-gm-vars, pfh-hm-ind)
∧ is-C0mem-inv(teCK(πAK), cC0.mem, c′C0.mem,

hstCVM, dummy, int(0)).

The postcondition over the page-fault handler data structures are, essentially, the
simulation relation for user processes B, the page-fault handler invariant pfh-inv, and
the zero-filled page condition zfp-cond. All of them appear directly in the correctness
lemma of the page-fault handler initialization code.

Note, that page-fault handler execution may touch the hard disk. Therefore, we
can claim that the processor does not interfere with all devices except for the hard
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disk. We express this formally with the predicate non-interf-dev′ which differs from its
unprimed version (cf. Definition 3.19) in that it excludes the hard-disk from the universal
quantification of (non-interfered) devices.

Lemma 9.8 (Correctness of pfh init()) Let cISA+DS be a configuration of VAMP
ISA with devices, let seq be an ISA execution sequence, and let cC0 be a C0 configu-
ration of the concrete kernel. Assume that (i) the abstract kernel properties holds for
πAK, (ii) the execution sequence seq and the hard disk are valid, (iii) the ISA processor
configuration cISA+DS.cpu is valid and simulates the C0 configuration cC0, (iv) the ISA
code invariant is satisfied, (v) the ISA machine runs in the system mode, and (vi) both
C0 precondition and the preconditions for the page-fault handler data structures are
satisfied, then there exists a number of steps T during whose execution the ISA with
devices transits to a configuration c′ISA+DS, and a C0 configuration c′C0 such that the fol-
lowing holds: (i) the devices other than the hard disk do not interfere with the processor,
(ii) the hard disk remains valid, (iii) the ministack simulation relation holds between
c′ISA+DS.cpu and c′C0, (iv) the ISA code invariant is preserved and ISA remains in the
system mode, (v) the zero filled page condition is established, (vi) the C0 postcondition
holds, (vii) the page-fault handler invariant holds, and (viii) the simulation relation for
user processes is established:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ C0-sim-isa(teCK(πAK), ftCK(πAK), cC0, cISA+DS.cpu)
∧ isa

√
(cISA+DS.cpu)

∧ code-inv(πAK, cISA+DS.cpu)
∧ is-sys-execISA(cISA+DS.cpu)
∧ pfh-init-PREC0(πAK, cC0)
∧ pfh-init-PREPFH(teCK(πAK), cC0.mem)
−→ ∃ T, c′ISA+DS, c

′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ C0-sim-isa(teCK(πAK), ftCK(πAK), c′C0, c
′
ISA+DS.cpu)

∧ isa
√

(c′ISA+DS.cpu)
∧ code-inv(πAK, c

′
ISA+DS.cpu)

∧ is-sys-execISA(c′ISA+DS.cpu)
∧ zfp-cond(c′ISA+DS.cpu)
∧ pfh-init-POSTC0(πAK, cC0, c

′
C0)

∧ pfh-inv(cinit
PFH, teCK(πAK), c′C0.mem)

∧ B(upsinit, c
′
ISA+DS).

Isabelle: pfh/NoXCall/pfhInitTopLevel.pfh init correct
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C0 Statements of dispatcher() between the Calls to pfh init() and
dispatcher kernel()

The remaining portion of the code for the case reset is the easiest. Only a single control
statement is executed: the conditional statement at line 33 of Listing 9.3. The statement
is supposed to call the dispatcher of the abstract kernel in case the stored value of the
eca register differs from zero. Since we are dealing with the reset case the corresponding
bit is raised in the exceptional cause register and, hence, a call to the abstract kernel
dispatcher takes place.

The precondition to this code part on the C0 level, defined as a set of C0 configu-
rations C4

C0, comprises such facts about the C0 configuration as its validity, sufficiency
of the heap memory, invariants over the global and heap memory parts of the concrete
kernel, information about the local stack, as well as the state of the program rest:

cC0 ∈ C0′′
√

(teCK(πAK), ftCK(πAK))
∧ availheap(cC0)
∧ structureck

GM(πAK, cC0)
∧ structureck

HM(πAK, cC0)
∧ |cC0.mem.lm| = 2
∧ cC0.mem.lm[[0]].mfr.st = stfun(init-proc)
∧ cC0.mem.lm[[1]].mfr.st = stfun(dispatcher-proc)
∧ |� gvar lm(1, dispatcher eca) �| = nat(1)
∧ |� gvar lm(1, dispatcher edata) �| = nat(0)
∧ |� gvar lm(1, dispatcher edpc) �| = nat(0)
∧ cC0.prog = prog4

−→ cC0 ∈ C4
C0.

The constant prog4 above is a formally defined body of the function dispatcher()
starting from line 33 of Listing 9.3.

The C0 postcondition of the discussed code portion, defined as a set of C0 configu-
rations C5

C0, differs from its precondition only in the state of the program rest

cC0 ∈ C0′′
√

(teCK(πAK), ftCK(πAK))
∧ structureck

GM(πAK, cC0)
∧ structureck

HM(πAK, cC0)
∧ |cC0.mem.lm| = 2
∧ cC0.mem.lm[[0]].mfr.st = stfun(init-proc)
∧ cC0.mem.lm[[1]].mfr.st = stfun(dispatcher-proc)
∧ |� gvar lm(1, dispatcher eca) �| = nat(1)
∧ |� gvar lm(1, dispatcher edata) �| = nat(0)
∧ |� gvar lm(1, dispatcher edpc) �| = nat(0)
∧ cC0.prog = prog5

−→ cC0 ∈ C5
C0,

where the constant prog5 is a formally defined body of the function dispatcher() start-
ing from line 35 of Listing 9.3.
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As for the ISA level, the pre- and postconditions coincide. They are defined as sets
of ISA configurations C4

ISA and C5
ISA, respectively, and are conjunctions of the following

facts: (i) validity of the ISA configuration, (ii) requirement for the system mode to be
on, (iii) the ISA code invariants, and (iv) the zero-filled page condition:

isa
√

(cISA)
∧ is-sys-execISA(cISA)
∧ code-inv(cISA)
∧ zfp-cond(cISA)
−→ cISA ∈ C4

ISA ∧ cISA ∈ C5
ISA.

Correctness of this code portion is stated in the following lemma.

Lemma 9.9 (C0 statements of dispatcher()) Assume that (i) the properties of the
abstract kernel hold for πAK, (ii) an execution sequence seq is well-formed, (iii) the hard
disk properties hold, (iv) an ISA processor configuration cISA+DS.cpu simulates the C0
configuration of the concrete kernel cC0, (v) the B relation holds between cISA+DS.cpu
and a configuration of user processes ups, and (vi) C0 and ISA preconditions are satis-
fied, then there exists a number of steps T whose execution brings ISA with deices into a
configuration c′ISA+DS and a C0 configuration c′C0, such that (i) devices non-interference
holds, (ii) the hard disk properties are preserved, (iii) the C0 configuration c′C0 is sim-
ulated by the ISA configuration c′ISA+DS.cpu, (iv) the B relation is preserved, (v) value
of the variable SR remains unchanged, and (vi) the postconditions on the ISA and C0
levels hold:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ C0-sim-isa(teCK(πAK), ftCK(πAK), cC0, cISA+DS.cpu)
∧ B(ups, cISA+DS)
∧ cISA+DS.cpu ∈ C4

ISA

∧ cC0 ∈ C4
C0

−→ ∃ T, c′ISA+DS, c
′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ C0-sim-isa(teCK(πAK), ftCK(πAK), c′C0, c
′
ISA+DS.cpu)

∧ B(ups, c′ISA+DS)
∧ valsr(c′ISA+DS) = valsr(cISA+DS)

∧ c′ISA+DS.cpu ∈ C5
ISA

∧ c′C0 ∈ C5
C0.

Isabelle: cvm/Reset/dispatcher reset.dispatcher reset isa correct
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Overall Correctness of the Case Reset

Putting together correctness statements of five individual parts together we obtain an
overall correctness claim of the kernel initialization in case of reset. In the formulation
of the overall lemma we will use the implementation invariant of the concrete kernel
impl-invkernel (cf. Section 7.1.6) which contains all properties of the ISA postcondition
c5ISA and a part of the properties from the C0 postcondition c5C0. We define a final C0
postcondition resetPOST(cC0) for the case reset which comprises those properties which
are not covered by impl-invkernel:

resetPOST(cC0) def= left-stmt(cC0.prog) = sCall(cup, dispatcher kernel,

[var(dispatcher eca), var(dispatcher edata)])
∧ |� gvar lm(1, dispatcher eca) �| = nat(1)
∧ |� gvar lm(1, dispatcher edata) �| = nat(0)
∧ |cC0.mem.lm| = 2.

The overall correctness theorem of the case is stated below.

Theorem 9.10 (Correctness of the case reset) Assume that (i) the properties of
the abstract kernel hold for πAK, (ii) the execution sequence seq is well-formed, (iii) the
hard disk validity properties hold, and (iv) the processor configuration cISA+DS.cpu of the
ISA with device is in initial state, then there exists a number of steps T whose execution
brings ISA with deices into a configuration c′ISA+DS and a C0 configuration c′C0, such that
(i) the devices other than the hard disk do not interfere with the processor, (ii) the hard
disk properties are preserved, (iii) the implementation invariant of the concrete kernel
holds, (iv) the B relation holds, (v) the value of the variable SR is 8254, (vi) all global
variables of the abstract kernel store the corresponding initial values, and (vii) the C0
postcondition for the case reset hold:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ is-init-isa(πAK, cISA+DS.cpu)
−→ ∃ T, c′ISA+DS, c

′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invkernel(πAK, c
′
C0, c

′
ISA+DS.cpu)

∧ B(λpid : upsinit(pid), c′ISA+DS)
∧ valsr(c′ISA+DS) = 8254
∧ ∀s ∈ πAK.gst :

reval(teCK(πAK), c′C0.mem, gvargm(s.vn)) = initval(s.ty)

∧ resetPOST(c′C0).

.

Isabelle: cvm/Reset/reset correct.reset correct
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Figure 9.3: Verification diagram of the case save.

9.2.3 Correctness of the Case Save

The kernel start in the case save corresponds to a kernel invocation due to an interrupt
occurred during a user run. The context of the interrupted user process has to be saved in
kernel data structures. We can also start the kernel in case of a device interrupt during
the kernel waiting for interrupts case. In this case the register saving is superfluous,
but the kernel is not designed to distinguish these two cases. The following parts of
the function init () belong to the case save: initialization or restore of global, local,
and heap pointers, saving of register values into the process control blocks, copying
values of registers needed for interrupt handling into local variables, and the call of
the function dispatcher(). As for the latter, the following parts of dispatcher() are
covered by the case: a call of the page-fault handler function pfh touch addr() which
returns the constant MM INVALID ADDRESS as a result and the further code until the call
to dispatcher kernel(). As the result of the page-fault handler indicates, we consider
the case that no page faults occur due to an invalid or write-protected access, but rather
some other interrupts including a page table length exception. We consider the case
when page faults occur later in Section 9.2.5 after we discuss correctness of the case
restore.

Figure 9.3 sketches the verification process of process-context saving. The main
differences from the case reset are as follows:

• we do not explicitly create any assembly or C0 configurations, but rather recon-
struct them from the weak relations (C0-sim-isaweak, structureck

GM, and structureck
HM)

which hold before the interrupt occurs, and

• we do not get the relation B for free exploiting the correctness of the page-fault
handler initialization code, but rather prove it ourselves. Note that the B relation
does not hold for the ISA configuration c0ISA.
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Moreover, not only does the B relation not hold for the configuration c0ISA, but also
neither user implementation invariants impl-invuser nor kernel implementation invariants
impl-invkernel. This is because the ISA execution mode is already changed to system
mode, however, the program counters point outside the kernel code, global, local, and
heap pointers are not appropriately assigned, and the local stack and the program rest
are invalid. In order to resolve this complication we define below a mixed implementation
invariant which collects all properties that hold at this point. The properties are: (i) the
ISA code invariant, (ii) the zero-filled page condition, (iii) a requirement for the ISA
machine to run in system mode, (iv) the weak validity of the C0 configuration, (v) the
invariants over the concrete kernel global and heap memory structure, (vi) the page-fault
handler invariant, and (vii) the weak C0-ISA simulation relation:

is-impl-invmix(πAK, cC0, cISA) def= isa
√

(cISA)
∧ code-inv(πAK, cISA)
∧ zfp-cond(cISA)
∧ is-sys-execISA(cISA)
∧ cC0 ∈ C0weak

√
(teCK(πAK), ftCK(πAK))

∧ structureck
GM(πAK, cC0)

∧ structureck
HM(cC0)

∧ ∃ cPFH : pfh-inv(cPFH, teCK(πAK), cC0.mem)
∧ C0-sim-isaweak(teCK(πAK), ftCK(πAK), cC0, cISA).

As mentioned above, since the mode register of the ISA machine is set to system
mode, the B relation does not hold at this point (cf. the statement of Theorem 9.11).
In order to regain it we have to artificially undo the effect of the jump to the interrupt
service routine. For this we define the function

JISR−1 :: CISA+DS 7→ CISA+DS,

JISR−1(cISA+DS) def= c′ISA+DS,

which returns an updated configuration of the ISA combined system c′ISA+DS such that:

c′ISA+DS.devs = cISA+DS.devs,
c′ISA+DS.cpu.m = cISA+DS.cpu.m,
c′ISA+DS.cpu.gpr = cISA+DS.cpu.gpr,
c′ISA+DS.cpu.dpc = cISA+DS.cpu.spr(edpc),
c′ISA+DS.cpu.pc = cISA+DS.cpu.spr(epc),

c′ISA+DS.cpu.spr(r) =


cISA+DS.cpu.spr(emode) if r = mode
cISA+DS.cpu.spr(esr) if r = sr
cISA+DS.cpu.spr(r) otherwise

.

The precondition for the case save is defined on the ISA level. It is denoted as
a set of ISA configurations C0

ISA and is a conjunction of the following facts: (i) the
program counters point to the very first address, (ii) if ISA has run in system mode the
current process identifier variable corresponds to the kernel (we were in the wait state),
otherwise the current process identifier denotes some user and the user implementation
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invariant holds, (iii) some interrupt different from the reset signal has occurred and
the corresponding bit of the register eca is raised, (iv) whenever bits 3 or 4 of the
exceptional cause register are raised, which corresponds to a page fault on fetch or
load/store, respectively, these signals were caused by a page table length exception.
Formally:

〈cISA.dpc〉 = 0
∧ 〈cISA.pc〉 = 4
∧ 〈cISA.spr(emode)〉 = 0

−→ natvars(cISA, adcup) = 0
∧ 〈cISA.spr(emode)〉 6= 0

−→ 〈cISA.spr(emode)〉 = 1
∧ 0 < natvars(cISA, adcup) < 128

∧ user-inv(cISA,natvars(cISA, adcup))

∧ cISA.spr(eca)[0] = 0 ∧ ∃ 0 < i < 32 : cISA.spr(eca)[i] = 1
∧ cISA.spr(eca)[3] = 1 −→ ptl-excpISA(cISA, cISA.spr(edpc))
∧ cISA.spr(eca)[4] = 1 −→ ptl-excpISA(cISA, cISA.spr(edata))
−→ cISA ∈ C0

ISA

We do not discuss intermediate configurations depicted in Figure 9.3, but present
below a final postcondition of process-context saving. The postcondition is defined on
the C0 level as a set of C0 configurations C5

C0(cISA) which is parametrized by the ISA
state from the precondition. The terms which constitute the postcondition are (i) there
are two local memory frames, (ii) the values of the variables which are supposed to store
values of registers eca, edata, and edpc indeed store these values of the ISA machine cISA,
and (iii) the program rest of the C0 machine is appropriately defined:

|cC0.mem.lm| = 2
∧ |� gvar lm(1, dispatcher eca) �| = nat(〈cISA.spr(eca)〉)
∧ |� gvar lm(1, dispatcher edata) �| = nat(〈cISA.spr(edata)〉)
∧ |� gvar lm(1, dispatcher edpc) �| = nat(〈cISA.spr(edpc)〉)
∧ cC0.prog = prog5

−→ cC0 ∈ C5
C0(cISA),

where prog5 is a formally defined body of the function dispatcher() starting from line
35 of Listing 9.3.

Now, we state the correctness theorem for process-context saving.

Theorem 9.11 (Correctness of the case save) Assume that (i) the properties of the
abstract kernel hold for πAK, (ii) the execution sequence seq is well-formed (iii) the hard
disk validity properties hold, (iv) the mixed implementation invariant hold, (v) there is
sufficient amount of heap memory, (vi) the B relation hold between the user processes
configuration ups and and the ISA configuration cISA+DS on which the JISR effect is
undone, and (vii) the ISA configuration satisfies the preconditions to the case save,
then there exists a number of steps T whose execution brings ISA with deices into a
configuration c′ISA+DS and a C0 configuration c′C0, such that (i) the devices other than the
hard disk do not interfere with the processor, (ii) the hard disk properties are preserved,
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(iii) the implementation invariant of the concrete kernel holds, (iv) the B relation holds,
(v) the value of the variables SR and cup remain unchanged, (vi) all global and heap
variables of the abstract kernel remain unchanged, and (vii) the C0 postcondition for
the case save hold:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ is-impl-invmix(πAK, cC0, cISA+DS.cpu)
∧ availheap(cC0)
∧ B(ups, JISR−1(cISA+DS))
∧ cISA+DS.cpu ∈ C0

ISA

−→ ∃ T, c′ISA+DS, c
′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invkernel(πAK, c
′
C0, c

′
ISA+DS.cpu)

∧ B(ups, c′ISA+DS)
∧ valsr(c′ISA+DS) = valsr(cISA+DS)
∧ valcup(c′ISA+DS) = valcup(cISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0)

∧ c′C0 ∈ C5
C0(cISA+DS.cpu).

Isabelle: cvm/NonReset/nonreset correct.begin asm init dispatcher nonreset isa correct

9.2.4 Correctness of the Case Restore

Verification of restoring a process-context starts at the point where the abstract kernel
ends its execution – in the function dispatcher() right after the call to the dispatcher
of the abstract kernel. Figure 9.4 sketches the verification process.

The precondition to the case is stated on the C0 level as a set of C0 configurations
C0

C0 and is rather simple. We require the size of the local stack to be equal to 2 and the
program rest to be equal to the constant prog0, a formally defined body of the function
dispatcher() starting from line 38 of Listing 9.3:

|cC0.mem.lm| = 2
∧ cC0.prog = prog0

−→ cC0 ∈ C0
C0.

We do not define intermediate configuration depicted in Figure 9.3, but rather state
the overall correctness theorem for the case. Note, that we do not have special predicates
on the C0 level for the overall postcondition because the kernel execution ends.

Theorem 9.12 (Correctness of case restore) Assume that (i) the properties of the
abstract kernel hold for πAK, (ii) the execution sequence seq is well-formed (iii) the hard
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Figure 9.4: Verification diagram of the case restore.

disk validity properties hold, (iv) the concrete kernel implementation invariant hold,
(v) there is sufficient amount of heap memory, (vi) the B relation holds, and (vii) the C0
configuration satisfies the preconditions to the case restore, then there exists a number
of steps T whose execution brings ISA with devices into a configuration c′ISA+DS and
a C0 configuration c′C0, such that (i) devices non-interference holds, (ii) the hard disk
properties are preserved, (iii) the user implementation invariant holds, (iv) the B relation
holds, (v) the value of the variables SR and cup remain unchanged, and (vi) all global
and heap variables of the abstract kernel remain unchanged:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ impl-invkernel(πAK, cC0, cISA+DS.cpu)
∧ availheap(cC0)
∧ B(ups, cISA+DS)
∧ cC0 ∈ C0

C0

−→ ∃ T, c′ISA+DS, c
′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invuser(πAK, c
′
C0, c

′
ISA+DS.cpu, valsr(cISA+DS))

∧ B(ups, c′ISA+DS)
∧ valsr(c′ISA+DS) = valsr(cISA+DS)
∧ valcup(c′ISA+DS) = valcup(cISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0).

Isabelle: cvm/Restore/restore correct.Restore correct
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Figure 9.5: Verification diagram of page fault handling.

As follows from the verification diagram the last part on the restore case consisting
of a single rfe instruction is proven at the ISA level, because only at this level the
semantics of rfe is defined.

9.2.5 Correctness of Page-Fault Handling

The case considered below is a special case of a CVM-based kernel execution without
an invocation of the abstract kernel. Consider Figure 9.5 for a sketch of the verifi-
cation process for this case. For verification of the function init () and the function
cvm start() we re-use proofs of the previous cases defined in this chapter so far. Note
that, in the CVM dispatcher we clear the variable dispatcher eca just after each call
the the handler pfh touch addr(). By this we skip all further code and continue directly
with restoring the interrupted user process via a call to cvm start(). As we will see later
it is not enough to show that the configuration c7ISA is free of the page-fault interrupt
that has occurred in the state c0ISA. In order to guarantee liveness of the system it is
necessary to argue that during the next call to the page-fault handler the page that was
swapped in this time will be be not swapped out.

The page-fault handler implementation respects the mentioned property because of
its page-replacement strategy and the fact that there are more than two user physical
pages in the system. On the side of specification the handler algorithm is defined over its
configuration cPFH. Suppose we want to claim that the page corresponding to a process
pid and a virtual address va will still be in the physical memory after handling of the
next page fault. Let us have a look at the page-fault handler algorithm. If the page
fault has occurred because the needed page was not in the physical memory, the handler
has to load it from the swap memory. In case there is not a single vacant page in the
physical memory, which is indicated by an empty free list, some page has to be evicted.
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According to our page-replacement strategy a page at the beginning of the active list has
to be swapped out. The formula below claims that in the worst case the page associated
with the pair (pid, va) will not be evicted, i.e., it is not the first page in the active list.
Hence, it will not be swapped out during the next call to the handler:

cPFH.free = [] −→
(
cPFH.active[0].pid
cPFH.active[0].vpx

)
6=
(

pid
px(va)

)
.

Now, we need to give this property a meaning on the ISA level. We apply con-
secutively the simulation relation between the page-fault handler configuration and the
C0 configuration, the C0 configuration and the assembly configuration, and finally the
assembly configuration and the ISA configuration.

Definition 9.13 (Not a page for eviction) In terms of ISA semantics we define the
predicate

not-next-victim :: CISA × N× N 7→ B,

which holds if the page containing the address va for the process pid will not be swapped
out during the next call to the page-fault handler:

not-next-victim(cISA, pid, va) def=
natvars(cISA, adfreelist) = 0 −→(

natvars(cISA,natvars(cISA, adactivelist) + 0)
natvars(cISA,natvars(cISA, adactivelist) + 4)

)
6=
(

pid
px(va)

)
.

Isabelle: cvm/additional/pfh lemmas.not next victim

Now we can formulate the specification for the case of page-fault handling. Before
that, let us introduce one more predicate. It is a page-fault predicate defined on the
software level:

not-valid-or-protected(cISA, pid, va) def= p(get-pte(cISA, pid, px(va))) = 1
∨ v(get-pte(cISA, pid, px(va))) = 0.

It has the meaning that a page-fault takes place if a page corresponding to a process pid
and a virtual address va is either protected or does not reside in the main memory.

The precondition to the considered case is formulated on the ISA level as a set of ISA
configurations C0

ISA. The predicate below collect the following facts: (i) the program
counters point to the very first address, (ii) the exception mode is user, (iii) the current
process identifier corresponds to some user process, (iv) the user invariant holds, (v) a
page fault either on fetch or on load/store takes place, and (vi) for both kinds of page
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fault no page table length exception occurs. Formally:

〈cISA.dpc〉 = 0
∧ 〈cISA.pc〉 = 4
∧ 〈cISA.spr(emode)〉 = 1
∧ 0 < natvars(cISA, adcup) < 128
∧ user-inv(cISA,natvars(cISA, adcup))
∧ ∀ i ≤ 2 : cISA.spr(eca)[i] = 0 ∧ ∃ i ∈ {3, 4} : cISA.spr(eca)[i] = 1
∧ cISA.spr(eca)[3] = 1

−→ ¬ptl-excpISA(cISA, cISA.spr(edpc))
∧ not-valid-or-protected(cISA,natvars(cISA, adcup), 〈cISA.spr(edpc)〉)

∧ cISA.spr(eca)[4] = 1
−→ ¬ptl-excpISA(cISA, cISA.spr(edata))
∧ not-valid-or-protected(cISA,natvars(cISA, adcup), 〈cISA.spr(edata)〉)

−→ cISA ∈ C0
ISA.

As we deal with two calls of the page-fault handler we apply its correctness theorem
twice. Hence, we need to guarantee that the predicate not-next-victim holds not only for
the process identifier pid and the virtual address va at which the first page fault takes
place, but actually if that predicate holds for any other address of this process then the
corresponding page is not swapped out during the kernel execution. This is expressed
in the postcondition below.

The postcondition is formulated on the ISA level as a set of ISA configurations
C7

ISA(c0ISA). Besides the mentioned property, the postcondition it claims the following:
(i) if a page fault on fetch occurred then the page addressed by the counter edpc for the
current process will not be evicted during the next call to the page-fault handler and
this page is loaded to the main memory, and (ii) if a page fault on load/store occurred
then the page corresponding to the address stored in the register edata and the current
process will not be evicted during the next call to the page-fault handler and this page
is loaded to the main memory. Formally:

c0ISA.spr(eca)[3] = 1
−→ not-next-victim(cISA,natvars(cISA, adcup), 〈cISA.spr(edpc)〉)
∧ ¬not-valid-or-protected(cISA,natvars(cISA, adcup), 〈cISA.spr(edpc)〉)

∧ c0ISA.spr(eca)[4] = 1
−→ not-next-victim(cISA,natvars(cISA, adcup), 〈cISA.spr(edata)〉)
∧ ¬not-valid-or-protected(cISA,natvars(cISA, adcup), 〈cISA.spr(edata)〉)

∧ ∀addr :
px(addr) ≤ 〈c0ISA.spr(ptl)[19, 0]〉

∧ not-next-victim(c0ISA,natvars(cISA, adcup), addr)

−→ get-pte(cISA,natvars(cISA, adcup), px(addr))

= get-pte(c0ISA,natvars(cISA, adcup), px(addr))

−→ cISA ∈ C7
ISA(c0ISA).

Finally, we state the correctness theorem for the case of page-fault handling.
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Theorem 9.14 (Correctness of page-fault handling) Assume that (i) the prop-
erties of the abstract kernel hold for πAK, (ii) the execution sequence seq is well-formed
(iii) the hard disk validity properties hold, (iv) the mixed implementation invariants
hold, (v) there is sufficient amount of heap memory, (vi) the B relation holds between
the configuration of user processes ups and the ISA configuration cISA+DS on which the
effect of JISR is undone, and (vii) the ISA configuration satisfies the preconditions to
the case of page-fault handling, then there exists a number of steps T whose execu-
tion brings ISA with devices into a configuration c′ISA+DS and a C0 configuration c′C0,
such that (i) the devices other than the hard disk do not interfere with the processor,
(ii) the hard disk properties are preserved, (iii) the user implementation invariant holds,
(iv) the B relation holds, (v) the value of the variables SR and cup remain unchanged,
(vi) all global and heap variables of the abstract kernel remain unchanged, and (vii) the
postcondition for the case of page-fault handling holds:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ is-impl-invmix(πAK, cC0, cISA+DS.cpu)
∧ availheap(cC0)
∧ B(ups, JISR−1(cISA+DS))
∧ cISA+DS.cpu ∈ C0

ISA

−→ ∃ T, c′ISA+DS, c
′
C0, :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invuser(πAK, c
′
C0, c

′
ISA+DS.cpu, valsr(cISA+DS))

∧ B(ups, c′ISA+DS)
∧ valsr(c′ISA+DS) = valsr(cISA+DS)
∧ valcup(c′ISA+DS) = valcup(cISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0)

∧ c′ISA+DS.cpu ∈ C7
ISA(cISA+DS.cpu).

Isabelle: cvm/UserStep/user pfh correct.init dispatcher pfhta dispatcher start isa correct

9.3 Primitives

This section elaborates on the verification of the CVM primitives. In the frame of this
work three primitives were verified: cvm copy(), cvm get vm word(), and cvm set vm word().
However, the last two primitives were excluded during a recent redesign of the CVM
code from the current code release. Partially because of that, and also due to their
simplicity — there no are details in their proofs that do not appear in the proof of
cvm copy() — we do not discuss them in this thesis. In the remainder of this chapter we
first present the implementation of the CVM primitive for copying data between user
processes, and then prove its correctness.
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Listing 9.5: Primitive cvm copy().
1 int cvm copy(unsigned int pid1, unsigned int pid2, unsigned int sa1, unsigned int sa2,

unsigned int amount)
2 {
3 unsigned int pa1;
4 unsigned int pa2;
5 unsigned int chunk size;
6 while (amount > 0u)
7 {
8 if ((sa1 & (PAGE SIZE − 1)) < (sa2 & (PAGE SIZE − 1))) /∗ compute the next chunk to copy ∗/
9 { /∗ −− at max until the next page boundary ∗/

10 chunk size = PAGE SIZE − (sa2 & (PAGE SIZE − 1));
11 }
12 else
13 {
14 chunk size = PAGE SIZE − (sa1 & (PAGE SIZE − 1));
15 }
16 if (chunk size > amount) /∗ ... but not more than requested ∗/
17 {
18 chunk size = amount;
19 }
20 pa1 = pfh touch addr(pid1, sa1, MM READ, 1u); /∗ ensure that the source and ∗/
21 if (chunk size == PAGE SIZE) /∗ destination page are both in PM ∗/
22 {
23 pa2 = pfh touch addr(pid2, sa2, MM OVERWRITE, 0u);
24 }
25 else
26 {
27 pa2 = pfh touch addr(pid2, sa2, MM WRITE, 0u);
28 }
29 assembler(
30 loadlocal(r11, pa1);
31 loadlocal(r12, pa2);
32 loadlocal(r13, chunk size);
33 lw(r3, r11, 0);
34 sw(r3, r12, 0);
35 addi(r11, r11, 4);
36 subi(r13, r13, 4);
37 bnez(r13, −20);
38 addi(r12, r12, 4);
39 );
40 amount = amount − chunk size;
41 sa1 = sa1 + chunk size;
42 sa2 = sa2 + chunk size;
43 }
44 return 0;
45 }

9.3.1 Implementation of cvm copy()

The cvm copy() primitive whose source code is presented in Listing 9.5 is designed to
copy amount bytes from a process pid1 at address sa1 to a process pid2 at address sa2.

There are two basic observations which constitute the idea of the implemented algo-
rithm: (i) for each step of the algorithm both pages, from and to which we copy, must
be present in the physical memory, and (ii) copying must respect page borders. In order
to support these points we declare at lines 3–5 variables pa1 and pa2 which will store
translated physical addresses between which we will copy, and a variable chunk size
which is supposed to store the amount of data which could be copied in a single iteration
respecting the page borders.

In a loop (lines 6–43) until amount of bytes is processed we compute the size
chunk size of a portion to be copied in the current iteration (lines 8–19). Further,
at lines 20–28 we ensure that the source and destination pages reside in the physical
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Figure 9.6: Verification diagram of cvm copy() primitive.

memory. This is achieved by calling the page-fault handler. At line 20 we invoke it
to obtain the source physical address pa1 and to guarantee that the page storing pa1
resides in the main memory. Moreover, the last argument in the handler’s call is 1,
which indicates that this page will survive one additional call to the page-fault handler.
At lines 21-28 we obtain in a similar fashion the translated destination address pa2.
The case distinction on chunk size takes place to profit from an optimization feature
of the page-fault handler: in case the whole page will be rewritten we pass an indicator
MM OVERWRITE to the handler. The handler then will not swap in data at this page.

Having chunk size computed and both source and destination translated addresses
we proceed with the physical copying of data. For this an assembly statement is used
(lines 29–39). The assembly portion implements a simple loop of word-by-word copying.
Finally at lines 40–42 we decrease the remaining amount to be copied by chunk size
while increasing addresses sa1 and sa2 by the same number.

9.3.2 Correctness of cvm copy()

Figure 9.6 depicts the verification process of the primitive cvm copy(). Note that, the
function contains a nested loop, the inner loop of which is coded in assembly. We start
the correctness proof from the inner loop, then combine it with the remaining code of
the outer loop’s body and proceed with the outer loop. The assembly loop is trivial:
while verifying it we make induction on the value of register 13 divided by 4. The outer
loop copies portions of data of size chunk size. Here, we distinguish two situations:
chunk size is equal to the page size or less than it. In case chunk size < PAGE SIZE,
the page-fault handler correctness theorem guarantees that the B-relation is preserved.
In case chunk size = PAGE SIZE, the page-fault handler preserves the B-relation for all
processes and pages except the current page of the current process. After the execution
of the assembly code the desired user process is updated and the B-relation holds.

Let pidfrom, pidto, afrom, ato and n be the values of the variables pid1, pid2, sa1, sa2
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and chunk size, correspondingly, after the assembly loop execution:

natvars(c7ISA, adpid1) = pidfrom,

natvars(c7ISA, adpid2) = pidto,

natvars(c7ISA, adsa1) = afrom,

natvars(c7ISA, adsa2) = ato,

natvars(c7ISA, adchunk size) = n.

Then the updated process configuration is changed only in the memory component for
process pidto:

ups′(pidto).m = mem-part-copy(ups(pidto).m, ato, ups(pidfrom).m, afrom, n).

Note that the code contains two consecutive calls of the page-fault handler to obtain
two physical addresses pa1 and pa2 and to load the corresponding physical pages if
necessary. In order to show that the first physical page is not swapped out during the
second call we use the same approach as for handling the user page fault: we use the
predicate not-next-victim (cf. Definition 9.13).

Clearly, we need to show that the memory content of the process pidto is modified
in an intended way, and for all other processes nothing is changed. For this we prove
the fact that any two different pairs of process identifiers and virtual page indices are
mapped to different physical addresses in the ISA machine. Here we use Lemma 7.22
in Starostin’s thesis [105] which proves the same on the page-fault handler abstraction
level.

As for the outer loop, it is quite tricky to choose the right induction variable. The
loop ranking function f depends on the value amount of data to be copied as well as
the start addresses sa1 and sa2 (actually, not on the values of addresses but on their
alignments). While working with the physical memory in a single loop iteration we
can copy only addresses that fit in the same page for both processes. During the next
iteration we load the successor page for one or both processes. In general, for an amount
of bytes to be copied n and two numbers ma1 and ma2 that are start addresses modulo
PAGE SIZE:

ma1 = sa1 mod PAGE SIZE,

ma2 = sa2 mod PAGE SIZE,
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the following two situations are possible:

Case 1. The addresses are equal modulo the page size (cf. Figure 9.7): ma1 = ma2. In
this case the loop will be executed as many times as the number of different pages
that fit in the copied region:

f = dma1 + nePAGE SIZE

= dma2 + nePAGE SIZE.

Case 2. The addresses modulo page size are not equal (cf. Figure 9.8): ma1 6= ma2. As
depicted in the figure the number of loop iteration is equal to following:

f = dma1 + nePAGE SIZE + dma2 + nePAGE SIZE − 1.

We summarize our argument on the ranking function in the definition below.

Definition 9.15 (Ranking function of cvm copy()) For an amount of bytes to be
copied n and two start addresses sa1 and sa2 the function

measurecopy :: N× N× N 7→ N

computes the number of outer loop iterations to be executed in the function cvm copy():

measurecopy(n, sa1, sa2) def=
0 if n = 0
dma1 + nePAGE SIZE if ma1 = ma2

dma1 + nePAGE SIZE + dma2 + nePAGE SIZE − 1 otherwise
,

where ma1 = sa1 mod PAGE SIZE and ma2 = sa2 mod PAGE SIZE.
Isabelle: cvm/cvm copy/cvm copy c0 loop ind.cvm copy measure
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We use the defined ranking function in the following way. Let n, sa1, and sa2 store
the following values:

valueg(mc, gvar lm(|mc.lm| − 1, amount)) = nat(n),
valueg(mc, gvar lm(|mc.lm| − 1, sa1)) = nat(sa1),
valueg(mc, gvar lm(|mc.lm| − 1, sa2)) = nat(sa2).

Then the total number of the outer loop iterations is equal to

measurecopy(n, sa1, sa2).

Now, our goal is to justify correctness of our choice for the ranking function. We
will prove that the value of this function decreases with each loop iteration. Recall that
during a single iteration the amount to be copied is decremented by chunk size while
the start address for copying are incremented by the same value. Formally the size of
the chunk is computed as follows:

chunk size = min(PAGE SIZE− max(sa1 mod PAGE SIZE,

sa2 mod PAGE SIZE),
n).

The following lemma shows that the chosen ranking function strictly decreases.

Lemma 9.16 (Correctness of ranking function for cvm copy()) Let us denote
sa1 mod PAGE SIZE by ma1, and sa2 mod PAGE SIZE by ma2. Then

measurecopy(n− min(PAGE SIZE− max(ma1,ma2), n),
sa1 + min(PAGE SIZE− max(ma1,ma2), n),
sa2 + min(PAGE SIZE− max(ma1,ma2), n))

= measurecopy(n, sa1, sa2)− 1.

Isabelle: cvm/cvm copy/cvm copy c0 loop ind.cvm copy measure mono

Proof. We make a case distinction on the fact whether a page border is crossed.

Case 1. n+ max(ma1,ma2) ≤ PAGE SIZE.

measurecopy(n− min(PAGE SIZE− max(ma1,ma2), n),
sa1 + min(PAGE SIZE− max(ma1,ma2), n),
sa2 + min(PAGE SIZE− max(ma1,ma2), n))

= measurecopy(n− n, sa1 + n, sa2 + n)
= 0
= measurecopy(n, sa1, sa2)− 1.

Case 2. n+ max(ma1,ma2) > PAGE SIZE
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Case 2.1. ma1 = ma2

measurecopy(n− min(PAGE SIZE− max(ma1,ma2), n),
sa1 + min(PAGE SIZE− max(ma1,ma2), n),
sa2 + min(PAGE SIZE− max(ma1,ma2), n))

= measurecopy(n− (PAGE SIZE−ma1),
sa1 + (PAGE SIZE−ma1),
sa2 + (PAGE SIZE−ma1))

= d(sa1 + (PAGE SIZE−ma1)) mod PAGE SIZE

+n− (PAGE SIZE−ma1)ePAGE SIZE

= dn− (PAGE SIZE−ma1)ePAGE SIZE

= dma1 + nePAGE SIZE − 1
= measurecopy(n, sa1, sa2)− 1

Case 2.2. ma1 > ma2

measurecopy(n− min(PAGE SIZE− max(ma1,ma2), n),
sa1 + min(PAGE SIZE− max(ma1,ma2), n),
sa2 + min(PAGE SIZE− max(ma1,ma2), n))

= measurecopy(n− (PAGE SIZE−ma1),
sa1 + (PAGE SIZE−ma1),
sa2 + (PAGE SIZE−ma1))

= d(sa1 + (PAGE SIZE−ma1)) mod PAGE SIZE

+(n− (PAGE SIZE−ma1))ePAGE SIZE

+d(sa2 + (PAGE SIZE−ma1)) mod PAGE SIZE

+(n− (PAGE SIZE−ma1))ePAGE SIZE

−1
= d(n− (PAGE SIZE−ma1))ePAGE SIZE

+dma2 + (PAGE SIZE−ma1) + (n− (PAGE SIZE−ma1))ePAGE SIZE

−1
= dma1 + nePAGE SIZE + dma2 + nePAGE SIZE − 1− 1
= measurecopy(n, sa1, sa2)− 1

The lemma above is used to conclude that the primitive cvm copy() terminates. It
remains to show its functional correctness.

Let us agree on the following notation. For a C0 expression e and a value v we will
write

|� e �|te,mc = v

to denote that the expression is initialized with respect to a type environment te and a
memory configuration mc and has the value of v:

is-initialized(te,mc, e)
∧ reval(te,mc, e) = bvc.
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The precondition to the primitive cvm copy() is formulated as a set of C0 configura-
tions

C0
C0(pid0

1, pid0
2, sa0

1, sa0
2, amount0),

where parameters denote the initial values of the primitive’s parameters. The precon-
dition requires the following statements to be satisfied: (i) there is sufficient amount
of heap memory to execute the primitive, (ii) the local memory stack is appropriately
bounded, (iii) the statement in the program rest to be executed next is a call to the
primitive with a corresponding list of parameters, (iv) there is a variable on the local
stack where the result of the call will be stored, (v) the parameters passed to the prim-
itive are correctly typed, and (vi) whenever we call the primitive to copy some positive
amount of data the following must be satisfied: we intend to copy between different user
processes, the amount to be copied as well as start addresses are word-aligned, and both
processes have enough virtual memory to perform the copying. Formally:

availheap(cC0)
∧ asizest∗(sc(cC0.mem).lst) + 184 ≤ ABASEhm − ABASElm

∧ stmt(cC0) = sCall(vn, cvm copy, params)
∧ vn ∈ vns(lsttop(cC0.mem))
∧ ∀ i < 5 : |� params[i] �| = nat([pid0

1, pid0
2, sa0

1, sa0
2, amount0][i])

∧ amount0 6= 0
−→ pid0

1 6= pid0
2 ∧ 0 < pid0

1 < 128 ∧ 0 < pid0
2 < 128

∧ amount0 mod 4 = 0 ∧ sa0
1 mod 4 = 0 ∧ sa0

2 mod 4 = 0

∧ sa0
1 + amount0 − 1 < (ptl1 + 1) ∗ PAGE SIZE

∧ sa0
2 + amount0 − 1 < (ptl2 + 1) ∗ PAGE SIZE

−→ cC0 ∈ C0
C0(pid0

1, pid0
2, sa0

1, sa0
2, amount0).

Above ptl1 and ptl2 correspond to the page table lengths of respective processes.
They are define as follows. Let gvar-ptl(pid) be a C0 variable which stores the page
table length value of the process pid, i.e., pcb[pid].exception frame[PTLEF]:

gvar-ptl(pid) =
gvararr(gvar str(gvararr(gvargm(pcb), pid), exception frame),PTLEF).

Then ptl1 and ptl2 are the values of this variable for process identifiers pid1 and pid2:

valueg(cC0.mem, gvar-ptl(pid1)) = int(ptl1),
valueg(cC0.mem, gvar-ptl(pid2)) = int(ptl2).

Restrictions over the local stack follow from the fact that we need to have enough
space to call the primitive cvm copy() and its subcalls to pfh touch addr() as well as
subroutines of the page-fault handler. We estimate that for the worst execution scenario
the page-fault handler function needs 136 bytes:

(ftCK(πAK), pfh touch addr, 136) ∈ SE.

Hence, the estimation for the local memory stack size is as follows:

asizest(stfun(cvm-copy-proc)) + 136 = 184.
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According to the CVM model effects of primitives are specified within the CVM tran-
sition function. So, we have already defined the semantics of the primitive cvm copy()
as a function

execcvm copy(cCVM, pid1, pid2, sa1, sa2, amount)

in Section 5.4. Let us denote by

copy(ups, pid1, pid2, sa1, sa2, amount),

the part of this function, which takes and returns only the user processes configura-
tion. Thus, for the postcondition it remains only to claim the C0 call of the primitive
is correctly processes and the crucial memory invariants hold. The postcondition is
formulated as a set of C0 configurations C9

C0:

is-C0mem-inv(teCK(πAK), c0C0.mem, cC0.mem, [], vn, int(0))
∧ cC0.cProg = rem-1st-stmt(c0C0.cProg)
−→ cC0 ∈ C9

C0.

Finally, we state the correctness theorem of the primitive.

Theorem 9.17 (Correctness of cvm copy()) Assume that (i) the properties of the
abstract kernel hold for πAK, (ii) the execution sequence seq is well-formed (iii) the hard
disk validity properties hold, (iv) the kernel implementation invariants hold, (v) the B-
relation holds, and (vi) the C0 configuration satisfies the preconditions to the primitive
cvm copy(), then there exists a number of steps T whose execution brings ISA with deices
into a configuration c′ISA+DS and a C0 configuration c′C0, such that (i) the devices other
than the hard disk do not interfere with the processor, (ii) the hard disk properties are
preserved, (iii) the kernel implementation invariants are preserved, (iv) the B-relation
holds between the user process configuration on which the semantics of the primitive
is applied and the updated ISA configuration, (v) the value of the variable SR remain
unchanged, (vi) all global and heap variables of the abstract kernel remain unchanged,
and (vii) the postcondition of the primitive holds:

abs-kernel-props(πAK)
∧ seq

√
(seq, cISA+DS.devs)

∧ is-HD
√

(cISA+DS.devs)
∧ impl-invkernel(πAK, cC0, cISA+DS.cpu)
∧ B(ups, cISA+DS)
∧ cC0 ∈ C0

C0(pid0
1, pid0

2, sa0
1, sa0

2, amount0)
−→ ∃ T, c′ISA+DS, c

′
C0 :

δTISA+DS(cISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(cISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invkernel(πAK, c
′
C0, c

′
ISA+DS.cpu)

∧ B(copy(ups, pid0
1, pid0

2, sa0
1, sa0

2, amount0), c′ISA+DS)
∧ valsr(c′ISA+DS) = valsr(cISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0)

∧ c′C0 ∈ C9
C0.

Isabelle: cvm/cvm copy/cvm copy correct.cvm copy isa correct
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Verifying User Steps

Chapter

10

In this chapter we present the last part of the CVM correctness proof accomplished in
the frame of this thesis. In the previous chapter we discussed significant parts of the
kernel’s code verification. Besides correctness proofs of the abstract kernel step and
device-communicating primitives it remains to show correctness of user computations
for a complete correctness proof of the CVM model.

As described in Chapter 5 user processes are modeled as virtual assembly machines
in the CVM model. This means that user processes have an illusion of their own, large,
and isolated memory. Memory virtualization is transparent to user processes: within
the CVM model page faults that might occur during a user step are handled silently by
the low-level kernel functionality such that user can continue its run. During a single
user step up to two page faults might occur: a page fault on fetch (which we also call an
instruction page fault), and a page fault on load/store (to which we also refer as a data
page fault). The second page fault could take place if we execute a memory operation.
Our page fault is designed in a way that it guarantees that no more than two page faults
occur while processing a single instruction. The following five situations are possible
regarding page faults:

1. there are no page faults,

2. there is only an instruction page fault,

3. there is only a data page fault,

4. there is an instruction page fault followed by a data page fault, and

5. there is a data page fault followed by an instruction page fault.

Diagram 10.1 depicts all these cases.
Note, that on the hardware side a page fault is raised also in case of a page table

length exception. This exception is not handled silently by the page-fault handler of
CVM, but rather treated as a normal interrupt which triggers an execution of the ab-
stract kernel. We distinguish two kinds of PTL exceptions: instruction and data. An
instruction page table length exception takes place when the page index of the delayed
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Figure 10.1: Verification diagram of user page fault handling.

program counter dpc exceeds the amount of process’s virtual memory, i.e., the value
stored in the page table length register:

iptle(cISA) def= 〈cISA.dpc[31, 12]〉 > 〈cISA.spr(ptl)[19, 0]〉.

A data page table length exception occurs when the page index of the effective address
of a memory access points outside the virtual memory of the process, i.e., it is greater
than the value stored in the page table length register:

dptle(cISA) def= 〈ea(cISA)[31, 12]〉 > 〈cISA.spr(ptl)[19, 0]〉

In Figure 10.1 configurations c0ISA, c1ISA, c2ISA, and c3ISA are mapped to a single user
process state at which the user attempts to make a step. In state c1ISA it is guaranteed
that there is no instruction page fault (except for an instruction PTL exception iptle).
In state c2ISA it is guaranteed that there is no data page fault (except for a data PTL
exception dptle). In case there was an instruction page fault we also can state its absence
at this point. However, if there was no instruction page fault, then one could happen
during the handling of the data page fault, which will be signaled in the next step.
Hence, generally we could not claim anything about the instruction page fault. Only in
state c3ISA it is guaranteed that there are no instruction and data page faults.

Let us express this scenario as a formal lemma. One important fact has to be kept
in mind: at the end we reach an ISA configuration such that the next step will be
preformed by the processor. We need it in order to accumulate all the devices steps
before the user step and after, and then later on map them to the layer of the CVM
model.

Lemma 10.1 (Handling of user page faults) Assume that for an ISA configuration
c0ISA+DS (i) the properties of the abstract kernel hold for πAK, (ii) the execution sequence
seq is well-formed, (iii) the hard disk validity properties hold, (iv) the user implementa-
tion invariants hold, (v) the B-relation holds, and (vi) there is a sufficient amount of heap
memory, then there exists a number of steps T whose execution brings ISA with devices
into a configuration c3ISA+DS and a C0 configuration c′C0, such that (i) the devices other
than the hard disk do not interfere with the processor, (ii) the hard disk properties are
preserved, (iii) the user implementation invariants are preserved, (iv) the B-relation is
preserved, (v) the value of the variable SR remain unchanged, (vi) it is a processor’s turn
to make a step, and (vii) page fault predicates may hold for the configuration c3ISA+DS
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only because of a PTL exception:

abs-kernel-props(πAK)
∧ seq

√
(seq, c0ISA+DS.devs)

∧ is-HD
√

(c0ISA+DS.devs)
∧ impl-invuser(πAK, cC0, c

0
ISA+DS.cpu, pid)

∧ B(ups, c0ISA+DS)
∧ availheap(cC0)
−→ ∃ T, c3ISA+DS, c

′
C0 :

δTISA+DS(c0ISA+DS, seq) = c3ISA+DS

∧ non-interf-dev′(c0ISA+DS.devs, c3ISA+DS.devs, seq, T )

∧ is-HD
√

(c3ISA+DS.devs)

∧ impl-invuser(πAK, c
′
C0, c

3
ISA+DS.cpu, pid)

∧ B(ups, c3ISA+DS)

∧ valsr(c3ISA+DS) = valsr(c0ISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0)

∧ seq(T ) = Proc

∧ is-pff(c3ISA+DS.cpu) −→ iptle(c3ISA+DS.cpu)

∧ is-pfls(c3ISA+DS.cpu) −→ dptle(c3ISA+DS.cpu).

Isabelle: cvm/UserStep/ipf dpf correct.pf correct isa’

Proof. Essentially, the proof boils down to a triple application of Theorem 9.14 which
concludes crucial properties of page-fault handling like not evicting the most recently
swapped in page. If an instruction page fault takes place we apply the theorem and get
the corresponding page loaded (in the case that no page table length exception occurs):

is-pff(c1ISA) −→ iptle(c1ISA).

Note, that handling of a page fault does not change the program counter and page
table length values, so iptle(ciISA) will be the same for all configurations i ∈ {0..3}. The
property that the page addressed by the program counter survives the next page fault
handling, as well as the conjunct about not next victim addresses are ignored. For the
following data page fault the same theorem will be applied and we get:

is-pfls(c2ISA) −→ dptle(c2ISA).

As mentioned above, we lose information about the handled instruction page fault.
Thus, again ignore this conjunct, but keep in mind that

not-next-victim(cISA, pid, ea(c2ISA)).

After the third application of the theorem we regain the absence of the instruction
page fault and for the effective address we can conclude that the page is still in the
physical memory. After that we execute the combined VAMP ISA machine up to the
next sequence element which corresponds to the processor.

The configuration c3ISA+DS is free of page faults. Hence, we can execute the step
which corresponds to the user step in the CVM specification. The three following cases
are possible:
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Figure 10.2: Verification diagram of a user step under assumption of page faults absence.

• no interrupts occur during the user step and the processor remains in the user
mode,

• during the user step one of the devices generates an interrupt signal or the user
performs the trap instruction or an arithmetic instruction with an overflow; in this
case the user instruction is executed and is followed by a switch to the kernel in
order to handle the interrupt with the highest level of priority,

• during an attempt to perform a step the instruction could not be executed because
of a misalignment, page table length exception or an illegal interrupt; only the
switch to the kernel is taken.

These three cases are reflected at Figure 10.2.
Next, we formally define predicates for the mentioned two groups of interrupts. The

first group are the interrupts which abort the user execution:

is-abort-intrs(cISA) def= is-ill(cISA)
∨ is-mal(cISA)
∨ iptle(cISA)
∨ is-iw-mem(cISA) ∧ dptle(cISA).

The second group of interrupts allows to execute the interrupted instruction:

is-progress-intrs(cISA+DS) def= is-trap(cISA+DS.cpu)
∨ cISA+DS.cpu.spr(sr)[6] = 1
∧ is-ovf(cISA+DS.cpu)

∨ ∃ i < 8 :
cISA+DS.cpu.spr(sr)[11 + i] = 1

∧ intr-dev-bv(cISA+DS.devs)[i] = 1
.

Note that, overflows and external interrupts are maskable and, therefore, they are
checked together with the corresponding bit masks. Further, we introduce three separate
lemmas for each case.
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Lemma 10.2 (Correctness of a user step without interrupts) Assume that for an
ISA configuration c3ISA+DS (i) the properties of the abstract kernel hold for πAK, (ii) the
hard disk validity properties hold, (iii) the user implementation invariants hold, (iv) the
B-relation holds, (v) there is a sufficient amount of heap memory, (vi) according to the
execution sequence seq the next step is to be taken by the processor, (vii) there are no
interrupts, and (viii) page fault predicates may hold only because of a PTL exception,
then there exists a number of steps T whose execution brings ISA with devices into
a configuration c′ISA+DS, such that (i) devices non-interference holds, (ii) the hard disk
properties are preserved, (iii) the user implementation invariants are preserved, (iv) the
B-relation holds between the user process configuration where the user pid makes one
step and the updated ISA configuration, and (v) the value of the variable SR remains
unchanged:

abs-kernel-props(πAK)
∧ is-HD

√
(c3ISA+DS.devs)

∧ impl-invuser(πAK, cC0, c
3
ISA+DS.cpu, pid)

∧ B(ups, c3ISA+DS)
∧ availheap(cC0)
∧ seq(T ) = Proc

∧ ¬is-abort-intrs(c3ISA+DS.cpu) ∧ ¬is-progress-intrs(c3ISA+DS)
∧ ipf(c3ISA+DS.cpu) −→ iptle(c3ISA+DS.cpu)
∧ dpf(c3ISA+DS.cpu) −→ dptle(c3ISA+DS.cpu)
−→ ∃ T, c′ISA+DS :

δTISA+DS(c3ISA+DS, seq) = c′ISA+DS

∧ non-interf-dev(c3ISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invuser(πAK, cC0, c
′
ISA+DS.cpu, pid)

∧ B(one-user-step(ups, pid), c′ISA+DS)

∧ valsr(c′ISA+DS) = valsr(c3ISA+DS)

Isabelle: cvm/UserStep/user no intr step.user no intr isa correct

Proof. Assumptions about interrupts allow us to claim that the jump to the interrupt
service routine signal is off. Hence, we do only one step on the ISA level and instantiate
T with 1. The main effort of the proof is to show that all user processes have separate
memory spaces: an execution of one process does not change the state of the others.
Here we use again the property proved with the help of [105, Lemma 7.22]. The relation
for the process itself is similar to the simulation between ISA and assembly machines
(cf. Theorem 4.8) because users are modeled by assembly machine in CVM.

When considering a user step with an interrupt from the abort group we claim that
the execution of ISA machine will lead to a state where the relation B holds with the
original user process configuration from the lemma’s assumptions. However, we enter the
kernel at the point where the abstract kernel is called. Parameters of the call correspond
to the values of hardware registers. This is formalized in the following postcondition:
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intrPOST(cC0, eca, edpc, edata) def= cC0.prog = intr-prog

∧ |cC0.mem.lm| = 2
∧ |� gvar lm(1, dispatcher eca) �| = nat(〈eca〉)
∧ |� gvar lm(1, dispatcher edata) �| = nat(〈edata〉)
∧ |� gvar lm(1, dispatcher edpc) �| = nat(〈edpc〉)
∧ eca mod 2 = 0 ∧ 0 < eca/2,

where intr-prog is a formally defined body of the function dispatcher() starting from
line 35 of Listing 9.3.

Lemma 10.3 (Correctness of a user step with an abort interrupt) Assume
that for an ISA configuration c3ISA+DS (i) the properties of the abstract kernel hold for
πAK, (ii) the execution sequence seq is well-formed and the next step is to be taken by
the processor, (iii) the hard disk validity properties hold, (iv) the user implementation
invariants hold, (v) the B-relation holds, (vi) there is sufficient amount of the heap
memory, (vii) there is an interrupt from the abort group, (viii) page fault predicates
may hold only because of a PTL exception, then there exists a number of steps T whose
execution brings ISA with deices into a configuration c′ISA+DS and a C0 configuration c′C0,
such that (i) the devices other than the hard disk do not interfere with the processor,
(ii) the hard disk properties are preserved, (iii) the kernel implementation invariants
hold, (iv) the B-relation is preserved, (v) the value of the variable SR remains unchanged,
(vi) all global and heap variables of the abstract kernel remain unchanged, and (vii) the
postcondition of the case holds:

abs-kernel-props(πAK)
∧ seq

√
(seq, c3ISA+DS.devs) ∧ seq(T ) = Proc

∧ is-HD
√

(c3ISA+DS.devs)
∧ impl-invuser(πAK, cC0, c

3
ISA+DS.cpu, pid)

∧ B(ups, c3ISA+DS)
∧ availheap(cC0)
∧ is-abort-intrs(c3ISA+DS.cpu)
∧ is-pff(c3ISA+DS.cpu) −→ iptle(c3ISA+DS.cpu)
∧ is-pfls(c3ISA+DS.cpu) −→ dptle(c3ISA+DS.cpu)
−→ ∃ T, c′ISA+DS, c

′
C0 :

δTISA+DS(c3ISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(c3ISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invkernel(πAK, c
′
C0, c

′
ISA+DS.cpu)

∧ B(ups, c′ISA+DS)

∧ valsr(c′ISA+DS) = valsr(c3ISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0)

∧ intrPOST(c′C0,mca(c3ISA+DS.cpu, intr-dev-bv′(c3ISA+DS.devs)),

c3ISA+DS.cpu.dpc, edata(c3ISA+DS.cpu)).

Isabelle: cvm/UserStep/user intr no step.user abort isa correct

216



Proof. We use the theorem about context switch for the case when interrupts are not
handled by the page-fault handler (cf. Theorem 9.11). This theorem requires an ISA
state on which the JISR effect is undone. Justifying this assumption constitutes the
main effort of the proof.

For the remaining case we assume that only external interrupts, trap, or overflow
may occur. This allows the user to make a step. Nevertheless, the control is passed to
the kernel. Therefore, in the lemma’s conclusion the vector of user processes is updated
and the kernel is in the state ready to call the abstract kernel.

Lemma 10.4 (Correctness of a user step with a continue interrupt) Assume
that for an ISA configuration c3ISA+DS (i) the properties of the abstract kernel hold for
πAK, (ii) the execution sequence seq is well-formed and the next step is to be taken by
the processor, (iii) the hard disk validity properties hold, (iv) the user implementation
invariants hold, (v) the B-relation holds, (vi) there is sufficient amount of the heap
memory, (vii) there are no interrupt from the abort group, (viii) there is an external,
trap, or overflow interrupt, (ix) page fault predicates may hold only because of a PTL
exception, then there exists a number of steps T whose execution brings ISA with deices
into a configuration c′ISA+DS and a C0 configuration c′C0, such that (i) the devices other
than the hard disk do not interfere with the processor, (ii) the hard disk properties are
preserved, (iii) the kernel implementation invariants hold, (iv) the B-relation holds be-
tween the user process configuration where the user pid makes one step and the updated
ISA configuration, (v) the value of the variable SR remain unchanged, (vi) all global and
heap variables of the abstract kernel remain unchanged, and (vii) the postcondition of
the case hold (in this case we use pc instead of dpc):

abs-kernel-props(πAK)
∧ seq

√
(seq, c3ISA+DS.devs) ∧ seq(T ) = Proc

∧ is-HD
√

(c3ISA+DS.devs)
∧ impl-invuser(πAK, cC0, c

3
ISA+DS.cpu, pid)

∧ B(ups, c3ISA+DS)
∧ availheap(cC0)
∧ ¬is-abort-intrs(c3ISA+DS.cpu) ∧ is-progress-intrs(c3ISA+DS)
∧ is-pff(c3ISA+DS.cpu) −→ iptle(c3ISA+DS.cpu)
∧ is-pfls(c3ISA+DS.cpu) −→ dptle(c3ISA+DS.cpu)
−→ ∃ T, c′ISA+DS, c

′
C0 :

δTISA+DS(c3ISA+DS, seq) = c′ISA+DS

∧ non-interf-dev′(c3ISA+DS.devs, c′ISA+DS.devs, seq, T )
∧ is-HD

√
(c′ISA+DS.devs)

∧ impl-invkernel(πAK, c
′
C0, c

′
ISA+DS.cpu)

∧ B(one-user-step(ups, pid), c′ISA+DS)

∧ valsr(c′ISA+DS) = valsr(c3ISA+DS)
∧ abs-kern-unchGM,HM(πAK, cC0, c

′
C0)

∧ intrPOST(c′C0,mca(c3ISA+DS.cpu, intr-dev-bv′(c3ISA+DS.devs)),

c3ISA+DS.cpu.pc, edata(c3ISA+DS.cpu)).

Isabelle: cvm/UserStep/user intr step.user prog dev intr isa correct
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Proof. The case might be seen as a combination of two previous cases, therefore, we
reuse significant parts of the proofs of lemmas 10.2 and 10.3.
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Summary and Future Work

Chapter

11

In this thesis we have extended the Verisoft technology for verification of C programs
to handle realistic systems implementations featuring inline assembly portions and have
applied the developed methodology to prove CVM, a framework for microkernel pro-
grammers, correct. The distinctive feature of the work is pervasiveness: the thesis
presents to the best of our knowledge the first formal correctness proof of a microkernel
programmed in C with inline assembly running concurrently with user processes on ver-
ified hardware. The hardware constitutes a processor model on the level of instruction
set architecture and models of different devices.

In order to achieve the results of the thesis the following has been accomplished.

• CVM, a formal computation model for concurrent user processes interacting with
a generic microkernel and devices has been defined in Isabelle in collaboration
with many colleagues from the Verisoft project. Besides Isabelle, the model was
implemented in C0, a slightly restricted dialect of C, with inline assembly as a
framework featuring virtual memory support, demand paging, memory manage-
ment, and low-level inter-process and devices communications.

• The formal definition of CVM requires to import various computational models.
We have used C0 small-step semantics to model kernel computations. We have
instantiated a general framework of combined systems with an ISA model of the
verified processor VAMP and models of several devices including a hard disk. The
C0 semantics was formally connected with the ISA semantics by introducing an
intermediate level: the VAMP assembly model. Correctness of the latter towards
VAMP ISA has been proven in two flavors: with and without devices access.

• In collaboration with In der Rieden we have developed a formal theory of linking
C0 programs in order to support separate kernel modules: the low-level kernel
functionality implemented with inline assembly portions is verified separately from
the upper layers of the kernel. Correctness of the linker was shown completely in
the frame of this thesis.

• We have stated the overall correctness theorem of CVM which justifies concurrent
executions of user processes with a kernel and devices on a hardware model. We
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have proven this theorem for the cases of context switching, primitive cvm copy(),
and user steps.

• During verification of these cases we have to reason about source code contain-
ing inline assembly portions. For this we have developed formal inline assembly
semantics.

• We have imported a formal theory of a verified page-fault handler and have proven
liveness of a double call to the handler.

Based on the CVM framework two microkernels have been built, tested, and verified
to a large extent in Verisoft:

• VAMOS, an L4-inspired general purpose microkernel which provides a process
scheduler, an infrastructure for communication with hardware devices, and mes-
sage passing between processes, and

• OLOS, an OSEKtime-like operating system, used in a distributed automotive real-
time system establishing eCall functionality.

Pervasive correctness proofs for both microkernels, i.e., justification that their C0 im-
plementations have intended behavior on the ISA level, will require application of the
CVM top-level correctness theorem.

Formal theories in Isabelle developed in the scope of this work comprise at least 3100
definitions and 5500 lemmas proven in up to 86000 steps.

Finally, we point out possible directions of future work.

Verification of primitives. In this thesis we have developed and successfully applied
an approach to verification of CVM primitives. However, quite a few primitives
still have to be verified. The most interesting case constitute primitives accessing
devices. Their correctness proofs seem to be tricky because they will require
formulation of additional invariants about devices and adding restrictions over
execution sequences in the CVM top-level theorem in order to reorder multiple
device accesses. Note that a similar problem — verification of a hard disk driver
— is shown by Alkassar in [5].

Abstract kernel step correctness. As yet this case remains unproven in the CVM
top-level theorem. The thesis of In der Rieden [32] presents a C0-level simulation
proof between a linked program consisting of two modules and one of these mod-
ules. This proof assumes particular properties of a compiler, namely the ability of
the compiler to allocate specified functions and variables at addresses provided by
the user. However, the current version of the Verisoft’s C0 compiler [66] does not
respect this property. In spite of this, a larger part of the mentioned proof could
be used in the context of the abstract kernel step correctness.

Altogether, the following goals have to be shown in order to finish the abstract
kernel step correctness proof.

– The cases of an abstract kernel invocation and return have to be considered.
The letter includes a proof of the relation for abstract kernel executions results
(Definition 7.9).

– The correctness of the overall abstract kernel step, including the two afore-
mentioned cases, has to be transfered to the VAMP ISA level.
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– Provided that the two above points are accomplished, we obtain a proof that
the abstract kernel relation is preserved under abstract kernel steps. However,
this is just a part of a complete CVM abstraction relation (cf. Section 7.1.5).
Its remaining parts — the relations for user processes, status register, and
devices — as well as the CVM implementation invariants (Section 7.1.6) have
to be proven preserved under abstract kernel steps.

– Finally, the lemma of the abstract kernel step correctness must be applied
in the context of the CVM induction step proof. This includes appropriate
instantiation of the CVM sequence as well as the CVM steps number.

Waiting for interrupts correctness. This models the kernel idle state and is cur-
rently unproven. The desired proof includes a C0-invocation of the function
cvm wait and showing the correctness of its body, an endless assembly loop imple-
mented only with two instructions. Likewise the case of an abstract kernel step,
the proof has to be transfered to the VAMP ISA level. A proof that the CVM ab-
straction relation and implementation invariants are preserved under the function
is relatively easy since none of its assembly instructions writes the memory.

Proof automation. Although we used mostly interactive verification techniques there
is room for automation. One can gain from methods of automated verification
while proving functional correctness of the source code. We used the ML code
generation mechanism for the proof of the microkernel source code well-formedness
properties required by the C0 compiler correctness theorem. That saved several
thousands of proof commands. The next possible candidates for proof automa-
tion are assembly portions. Due to the relatively simple finite memory model it
might be possible to obtain the values of desired memory cells by means of model
checking. In order to ease the C0 part verification, one can think of a Hoare logic
environment for the C0 small step semantics which will automatically generate
verification conditions to be proven.
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[33] J. Dörenbächer. Vamos microkernel: Formal models
and verification. A talk given at Intl Workshop on Sys-
tem Verification,. www.cse.unsw.edu.au/formalmethods/
events/svws-06/VAMOS Microkernel.pdf, 2006.
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