
Towards the Pervasive Formal Verification
of Multi-Core Operating Systems

and Hypervisors Implemented in C

Dissertation zur Erlangung des Grades des Doktors der Ingenieurswissenschaften (Dr.-Ing.) der
Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

vorgelegt von

Sabine Bettina Schmaltz

Saarbrücken, Dezember 2012

Institut für Rechnerarchitektur und Parallelrechner,
Universität des Saarlandes, 66041 Saarbrücken

Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen
oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Saarbrücken, im Dezember 2012

Tag des Kolloquiums 10. Mai 2013
Dekan Prof. Dr. Mark Groves

Prüfungsausschuss
Vorsitz Prof. Dr. Reinhard Wilhelm, Universität des Saarlandes

1. Gutachter Prof. Dr. Wolfgang J. Paul, Universität des Saarlandes
2. Gutachter Prof. Dr. Kurt Mehlhorn, Universität des Saarlandes

Akademischer Mitarbeiter Dr. Mikhail Kovalev, Universität des Saarlandes

Copyright © by Sabine Schmaltz 2012. All rights reserved. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including
photography, recording, or any information storage or retrieval system, without permission in
writing from the author. An explicit permission is given to Saarland University to reproduce
up to 100 copies of this work and to publish it online. The author confirms that the electronic
version is equal to the printed version. It is currently available at
http://www-wjp.cs.uni-saarland.de/publikationen/Schmaltz12.pdf.

Abstract

Short Abstract

This thesis deals with a semantic model stack for verification of functional correctness of multi-
core hypervisors or operating systems. In contrast to implementations based on single-core
architectures, there are additional features and resulting challenges for verifying correctness
properties in the multi-core case, e.g. weak memory models (store buffers), or an inter processor
interrupt mechanism.

The Verisoft XT project had the goal of verifying correctness of the Microsoft Hyper-V hyper-
visor and achieved great code verification results using the concurrent C verification tool VCC
developed by our project partners during the project. A sound mathematical theory to support
code verification was not established.

To remedy this shortcoming, we sketch a model stack for a simplified multi-core architecture
based on a simplified MIPS model for system programmers and illustrate on a high level of
abstraction how to obtain a simulation between neighboring models. A hardware model for this
architecture is formalized at a detailed level of abstraction of the model stack. In addition, this
thesis provides operational semantics for a quite simple intermediate language for C as well as
an extension of this semantics with specification (ghost) state and code which can serve as a
basis for arguing the soundness of VCC. Due to the powerful nature of specification code, a
simulation between annotated and original program is not trivial. Thus, we give a pencil and
paper proof.

Kurzzusammenfassung

Diese Arbeit befasst sich mit einem semantischen Modell-Stack für die Verifikation der Kor-
rektheit von Multi-Core Hypervisoren oder Betriebssystemen. Im Gegensatz zu auf Implemen-
tierungen auf Single-Core Architekturen stellen sich im Multi-Core Fall zusätzliche Heraus-
forderungen für die Verifikation von Korrektheitseigenschaften, z.B. durch schwache Speicher-
modelle oder die Existenz eines Inter-Prozessor-Interrupt Mechanismus.

Das Verisoft XT Projekt, welches zum Ziel hatte die Korrektheit des Microsoft Hyper-V Hy-
pervisors zu verifizieren, erreichte unter Benutzung des Verifikationstools VCC hervorragende
Resultate im Bereich der Codeverifikation. Die Erstellung einer fundierten mathematischen
Theorie um diese Resultate zu untermauern wurde vernachlässigt.

Um diesen Mangel zu beheben, skizzieren wir einen Modell-Stack für eine vereinfachte
Multi-Core Architektur basierend auf einem vereinfachten MIPS-Modell für Systemprogram-
mierer und illustrieren wie eine Simulation zwischen benachbarten Modellen erreicht wird.
Ein Hardwaremodell für die Architektur wird auf einer detaillierten Abstraktionsebene präsen-
tiert. Zusätzlich enthält diese Arbeit die operationale Semantik einer Zwischensprache für C
und deren Erweiterung um Spezifikationszustand und -code welche als Basis für einen Kor-
rektheitsbeweis des Tools VCC dienen kann. Da aufgrund der mächtigen Spezifikationssprache
eine Simulation zwischen annotiertem und originalem Programm nicht trivial ist, führen wir den
Beweis auf Papier.

Acknowledgements

I would like to thank all those people without whom it would have been impossible to write this
thesis. This includes all those involved in the Hyper-V verification group of the Verisoft XT
project and, in particular, those who remained and worked on our shared vision of a multi-core
model stack at the chair of Prof. Paul after the project ended. We had so many useful discussions
both during and after the project – the feedback on my semantic models and the collaboration
in our group were invaluable to developing the models to a point that it is quite certain that they
are at least adequate to the tasks we intend to use them and have used them in.

I would like to specifically thank Prof. Paul for advising this thesis, my husband for supporting
me during these years, and my baby son for first providing a firm – albeit not very predictable –
deadline and for being a calm and content baby which allowed me to complete this thesis during
maternity leave.

Saarbrücken, December 20th, 2012 Sabine Schmaltz

Contents

1 Introduction 1

2 Notation 5
2.1 Fundamental Notation . 5
2.2 Sequences . 7
2.3 Booleans and Logic Operators . 9
2.4 Representations of Numbers . 9

2.4.1 Binary Numbers and Bit-Strings . 10
2.4.2 Arithmetics on Binary Numbers . 11

2.5 Models of Computation . 12
2.5.1 Automata . 12
2.5.2 Reachability & Traces . 14
2.5.3 Simulation Theorems . 15

2.6 Semantics of Programming Languages . 16
2.6.1 Operational Semantics . 16
2.6.2 Formalizing Operational Semantics as an Automaton 17

2.7 Concurrency . 18

3 Theory of Multi-Core Hypervisor Verification 21
3.1 Introduction and Overview . 21

3.1.1 Correctness of Operating System Kernels and Hypervisors 22
3.1.2 Overview . 23

3.2 ISA Specification and Processor Correctness 26
3.2.1 Related Work . 26
3.2.2 Modeling an x86-64-like ISA-sp . 27
3.2.3 Gate Level Correctness for Multi-Core Processors 28
3.2.4 Future Work . 29

3.3 Abstracting ISA-sp to ISA-u . 29
3.3.1 Caches . 29
3.3.2 Store Buffers and Ownership Disciplines 30
3.3.3 Eliminating MMUs . 31
3.3.4 Mixed ISA-sp and ISA-u Computations 32
3.3.5 Future Work . 32

3.4 Serial Language Stack . 32
3.4.1 Using Consistency Relations to Switch Between Languages 32
3.4.2 Related Work . 33
3.4.3 A Serial Language Stack for Hypervisor Verification 34
3.4.4 Future Work . 34

3.5 Adding Devices . 34
3.5.1 Related Work . 35

v

Contents

3.5.2 Multi-Core Processors and Devices 36
3.5.3 Future Work . 36

3.6 Extending the Serial Language Stack to Multi-Core Computations 37
3.6.1 Related Work . 38
3.6.2 Extending the Language Stack . 38
3.6.3 Future Work . 38

3.7 Soundness of VCC and its Use . 39
3.7.1 Related Work . 39
3.7.2 Soundness of VCC . 39
3.7.3 Using VCC for Languages Other Than C 40
3.7.4 Verifying Device Drivers with VCC 40
3.7.5 Future Work . 41

3.8 Hypervisor Correctness . 41
3.8.1 Related Work . 42
3.8.2 Hypervisor Verification in VCC . 43
3.8.3 Future Work . 43

3.9 Conclusion . 44

4 MIPS-86 – a Formal Model of a Multi-Core MIPS Machine 45
4.1 Instruction-Set-Architecture Overview and Tables 46

4.1.1 Instruction Layout . 46
4.1.2 Coprocessor Instructions and Special-Purpose Registers 47
4.1.3 Interrupts . 47

4.2 Overview of the MIPS-86-Model . 51
4.2.1 Configurations . 51
4.2.2 Transitions . 53

4.3 Memory . 53
4.4 TLB . 54

4.4.1 Address Translation . 54
4.4.2 TLB Configuration . 56
4.4.3 TLB Definitions . 56

4.5 Processor Core . 60
4.5.1 Auxiliary Definitions for Instruction Execution 61
4.5.2 Definition of Instruction Execution 67
4.5.3 Auxiliary Definitions for Triggering of Interrupts 68
4.5.4 Definition of Interrupt Execution . 69

4.6 Store Buffer . 70
4.6.1 Instruction Pipelining May Introduce a Store-Buffer 70
4.6.2 Configuration . 72
4.6.3 Transitions . 72
4.6.4 Auxiliary Definitions . 72

4.7 Devices . 73
4.7.1 Introduction to Devices, Interrupts and the APIC Mechanism 73
4.7.2 Configuration . 74

vi

4.7.3 Transitions . 75
4.7.4 Device Outputs . 75
4.7.5 Device Initial State . 76
4.7.6 Specifying a Device . 76

4.8 Local APIC . 76
4.8.1 Configuration . 77
4.8.2 Transitions . 79

4.9 I/O APIC . 80
4.9.1 Configuration . 80
4.9.2 Transitions . 81

4.10 Multi-Core MIPS . 82
4.10.1 Inputs of the System . 83
4.10.2 Auxiliary Definitions . 84
4.10.3 Transitions of the Multi-Core MIPS 85
4.10.4 Multi-Core MIPS Computation . 93

4.11 Booting a MIPS-86 Machine . 93
4.11.1 Initial Configuration after Reset . 93
4.11.2 Booting . 94

5 C-IL Semantics 95
5.1 The C Programming Language . 95
5.2 Basic Features & Design Decisions . 96

5.2.1 Basic Sets . 98
5.3 Environment Parameters . 99
5.4 Types . 102

5.4.1 The Set of Types . 102
5.4.2 Type Qualifiers & Qualified Types . 103

5.5 Values . 105
5.5.1 Performing Type Cast on Values . 107
5.5.2 Operators . 109

5.6 Programs . 113
5.6.1 Expressions . 113
5.6.2 Statements . 114

5.7 Configurations . 116
5.7.1 Memory . 117

5.8 Operational Semantics . 121
5.8.1 Auxiliary Definitions . 121
5.8.2 Expression Evaluation . 123
5.8.3 Transition Function . 126
5.8.4 Concurrent C-IL . 129

vii

Contents

6 Specification (Ghost) State and Code 131
6.1 Ghost State . 132

6.1.1 Ghost Memory . 133
6.1.2 Ghost Types . 137
6.1.3 Ghost Values . 138

6.2 Ghost Code . 143
6.2.1 Expressions . 144
6.2.2 Statements . 145
6.2.3 Programs . 146

6.3 Operational Semantics . 149
6.3.1 Configurations . 149
6.3.2 Expression Evaluation . 154
6.3.3 Transition Function . 158

6.4 Simulation Between C-IL and C-IL+G . 162
6.4.1 Projecting C-IL+G to C-IL . 162
6.4.2 Software Conditions and Invariants for Simulation 165
6.4.3 Lemmas for Simulation . 168
6.4.4 Simulation Proof . 170

7 Future Work & Conclusion 181

Symbol Tables 189
Basic Notation . 189
MIPS-86 Symbol Table . 191
C-IL Symbol Table . 199
C-IL+G Symbol Table . 205

References 213

viii

1 Introduction

Every time a new big software failure is added to the list of most catastrophic software failures,
the public and experts alike require to learn what caused the failure, and, even more important,
how it could have been prevented. In the worst cases, people died as a direct consequence of
software failure (e.g. the incidents revolving around the radiation therapy machine Therac-25
[Lev93], or Multidata Systems International’s radiation therapy software [Age01]), while, in
other cases, companies or governments lost hundreds of millions of dollars (e.g. as the result of
the explosion of Ariane 5 flight 501 [Lan97] or Intel’s well-known pentium bug [Pra95]). De-
pending on the public impact, these failures may trigger political campaigns arguing for stricter
safety standards, and/or force managers or politicians who were in charge to resign. These ex-
amples, however, appear insignificant compared to what indeed could happen when faulty soft-
or hardware in highly critical systems like nuclear power plant control systems, or systems that
control weapons of mass destruction leads to failure.

Considering the diversity of both application scenarios and systems used for implementing
important systems, it is no surprise that the causes for failures are just as multifaceted as the
engineering projects themselves. Often, these failing systems have been thoroughly tested or
simulated. Even when performing tests under the right assumptions, the failure case might
never occur during the testing phase of the development process. Many interesting systems that
occur in practice are too complex to be tested exhaustively. Thus, often, when a system passes
all tests, this provides no guarantee that it is indeed correct.

A solution frequently proposed by the academic community is to apply tools based on formal
methods – formal verification tools. These tools can provide hard guarantees derived mathemat-
ically based on an abstract representation of the system. One necessary requirement on formal
verification tools is that they must be sound, that is, if a property about the system is established
by them, this property indeed holds for each execution of the system. The qualitative difference
to testing lies in coverage: with most testing approaches, it can only be established that all runs
that were considered during the testing phase are, in some sense, good runs. Using formal ver-
ification tools, it can be proven that all runs of a system obey the formal specification of the
system.

Formal methods are now finding their way into the development cycles of industry projects
[WLBF09]. However, very often, what is considered for formal verification does not comprise
the whole system, and thus, results gained are inherently limited by this choice. After all, formal
methods can merely establish correctness with respect to an underlying mathematical model. If
that model is not correct, verification results are flawed. Code-verification tools, for example,
generally assume the model of computation given by the programming language’s semantics.
This is not a bad choice, however: building a system that uses a faulty compiler to compile the

1

1 Introduction

verified code is likely to result in a faulty system.
To gain a correctness result over the whole system consisting of hard- and software, pervasive

theory has to be constructed in such a way that correctness of implementation can be established
with respect to some lowest-level underlying model of computation, e.g. the gate-level con-
struction of hardware (or an even lower level model). This is what can earn formal methods the
place they could rightfully take in certification. After all, just consider that testing of complete
systems – comprising both hard- and software –, by its very nature, is a pervasive approach. Add
to that that testing a system from a black-box perspective requires less knowledge about why the
system works than does verifying it formally.

However, even if pervasive formal verification is more involved than testing, there are two
main things that can be gained from the verification process: A formal specification of the sys-
tem and the absolute confidence that this specification is obeyed by the system if the lowest-level
underlying model of computation is correct and if the verification tool is sound. Essentially,
this means, with trusted formal verification tools, testing can be reduced to testing the correct-
ness of the gate-level hardware specification against the physical hardware. Performing those
hardware-tests however, is still necessary, since, in current state-of-the-art hardware, it often is
not even clear during development under what physical conditions the gate-model developed
by the hardware designer provides a valid abstraction of the physical hardware. With circuits
getting smaller and smaller, we enter the borderlands of particle physics where no applicable
mathematical model describing reality to a sufficient degree of accuracy has been found, yet.

Constructing sound pervasive formal verification tools requires a pervasive formal theory of
systems, including architecture, compilers, operating systems, and hypervisors. Considering
that the components used in today’s desktop computers are not even understood in all details by
a significant part of their implementors, defining such a theory appears to be a nearly impossible
task. Looking at the way how computer systems are built, it is obvious that we can think of
them as being comprised of several layers: A hardware layer executes machine code, high-level
languages provide more abstract programming models, and operating systems provide execution
contexts for user processes and system calls. The connection between layers is given naturally
by the way they are implemented: code of high-level languages is translated by compilers to
machine code, and operating systems are implemented by giving the code that realizes them.
With each layer, we associate a model of the system at a different degree of abstraction. A theory
that makes use of these models to completely describe the system can be called a pervasive
theory of systems. There have been several pervasive system verification efforts till today (e.g.
[Moo89, Ver07, App11]) which build on the principle to establish a pervasive formal theory of
the system in question.

Our work at the chair of computer architecture and parallel computing at Saarbrücken Uni-
versity over the last years has been driven by the goals of the Verisoft XT project [Ver10], which
aimed at extending the pervasive theory developed in the course of its predecessor, the Verisoft
project [Ver07], to the multi-core case. Verisoft XT is a three-year research project funded by the
German Federal Ministry of Education and Research (BMBF) that ran from 2007 till 2010. As
a case-study, we tried to verify formal correctness of the Microsoft Hyper-V hypervisor [LS09]
using the verification tool VCC – a tool for verification of concurrent C code that makes use
of specification state and code – developed by Microsoft Research [CDH+09, DMS+09] during
the Verisoft XT project. The assumption was that the extension of the sequential theory of sys-

2

tems to the multi-core case would be reasonably straight forward, and thus, most resources were
assigned to code verification. While code verification progressed, however, it became evident
that extending the theory was highly nontrivial. There were certain parts of the system where,
with existing theory, we could not argue that applying VCC in a certain way is actually sound:
We were lacking a pervasive theory of multi-core systems. In that regard, our project failed to
achieve all of its goals. On the other hand, we left this project with quite a few insights which –
had we had them right at the beginning – could have made the project an even more noteworthy
success.

Structure and content of this thesis The main goal of this thesis is to shed some light on
the models that eventually need to be defined, applied, arranged, and integrated in a certain way
such that a pervasive theory of modern multi-core architectures can be established by providing
a model-stack of the system. It aims at providing the theory that is needed in order to verify per-
vasive formal correctness of operating systems and hypervisors, which, due to their potentially
safety-critical nature, are interesting targets for formal methods. We provide semantic models to
be used at different levels of abstraction and sketch how they are to be used in a pervasive model
stack.

We start by defining the basic notation used in the remainder of this thesis in chapter 2.
Chapter 3 provides a high-level building plan of a model-stack for multi-core hypervisor ver-

ification – from detailed hardware models up to programming language semantics. Extending
sequential hardware verification results to the concurrent case faces a number of interesting
challenges. Multi-core architectures often offer features that are not meaningful in single core
architectures, e.g. distributed caches maintained using cache-coherence protocols (e.g. MOESI)
or advanced programmable interrupt controllers (APICs) for inter-processor-interrupt manage-
ment. Hardware features that are invisible in the single-core case can suddenly become visible in
the multi-core case: Consider the weak memory models that result from the use of store-buffers
and memory systems that reorder accesses. Some architectures, like the x64-architectures of-
fered by Intel and AMD considered in Verisoft XT, even provide built-in support for virtualiza-
tion: e.g. tagged TLBs, nested paging, and an intercept mechanism that facilitates running guest
operating systems natively on the machine.

In chapter 4, we provide a simple MIPS model extended with some features of the x64-
architecture. We we call the resulting model MIPS-86. It was developed based on existing
model fragments to better illustrate the nature of the reduction theorems presented in the previous
chapter and, more importantly, to serve as an overall specification of the reverse-engineered gate-
level hardware models of [Pau12]. Essentially, the MIPS-86 model is a single ”horizontal” slice
of the model stack presented in chapter 3. It is designed in such a way that extension to higher
or lower levels of the model stack can be achieved. Subsection 3.2.2 explains how the given
MIPS-86 model fits into the overall theory.

Chapter 5 contains the definition of an intermediate-language for C and its formal operational
semantics. Features of the language are a byte-addressable memory which allows pointer arith-
metics in combination with a frame-based stack abstraction that describes local variable content
and the control-flow state. We name the language C-IL, not to be confused with already existing
intermediate-languages. The place of C-IL in the model stack is described in subsection 3.4.3.

3

In chapter 6, we define a model of specification state and code extending the C-intermediate-
language introduced in chapter 5. Specification state – also called ghost state or auxiliary state
– is commonly used in concurrent verification tools and helps to guide first-order provers to
finding proofs. The VCC tool used in the Verisoft XT project makes use of ghost state and a
first-order prover to discharge the generated verification conditions. Formally specifying the rich
ghost state model offered by VCC and specifying formal operational semantics of it is a useful
step towards a soundness proof for the VCC. We elaborate on this in section 3.7.

We propose future work and provide a conclusion of the thesis in chapter 7, followed by a list
of reference work we cite.

Contributions The author can certainly claim both involvement in discussions concerning all
the topics covered in this thesis and a significant impact on the formal development of the model
stack presented in chapter 3 – which is, in fact, joint work over a period of five years with Prof.
Wolfgang Paul and Ernie Cohen as well as other project members of Verisoft XT. The overall
theory presented in this thesis cannot be attributed to the author alone: Some of the challenges
described in chapter 3 will be or are already solved by the author’s colleagues. Pointers to up-
coming or already completed dissertations and papers from the Verisoft XT project that provide
details on individual topics are given in chapter 3 and chapter 7. The main contributions of
the author in the effort of developing this model stack lie in i) providing cornerstone semantic
models which are both simple enough to use and detailed enough to argue about the multi-core
system and in ii) challenging others to use and confirm or dispute these models – with legitimate
disputes resulting in the necessary improvements being made. In fact, the understanding needed
to devise the intricate model stack described in chapter 3 of this thesis could only be gained after
we understood the nature of the semantic models we need in order to prove a multi-core hyper-
visor correct. This required defining formal semantics (as given by the models in the chapters 4,
5 and 6 which are provided by the author of this thesis) in the first place. Over the last years, the
desire of the author to formally understand the vague ideas regarding individual issues already
present during the VerisoftXT project has led to the creation of these models, which in turn led to
better insight into the structure and major theorems of the overall theory described in chapter 3.
The resulting models appear to provide a reasonable basis for formally establishing the missing
parts of the overall theory. In this sense, work on this thesis can be considered a driving force
behind the goal of achieving the pervasive model stack we need to justify code verification on a
modern multi-core hypervisor.

4

2 Notation

no·ta·tion noun

1. annotation, note
2. a : the act, process, method, or an instance of representing by a system or set

of marks, signs, figures, or characters
b : a system of characters, symbols, or abbreviated expressions used in an art
or science or in mathematics or logic to express technical facts or quantities

"notation." Merriam-Webster.com. Merriam-Webster, 2011. Web. 6 July 2011.

In the following, we introduce notation and fundamental definitions used in this thesis. This
chapter should serve as a reference whenever things appear not to make sense.

2.1 Fundamental Notation

Natural Numbers

We use N = {0, 1, 2, . . .} to denote the set of non-negative integers, also called the set of natural
numbers.

Integers

Z denotes the set of integers.

Sets

Definition 2.1 (Hilbert-Choice-Operator) Given a set A, the Hilbert-choice-operator E chooses
an element from A:

EA ∈ A

This is particularly useful when the set consists of a single element, i.e.

E{x} = x

or when a definition does not depend on the specific element chosen.

Definition 2.2 (Cardinality of a Finite Set) We use #A to denote the amount of elements of a
finite set A.

Definition 2.3 (Power Set) Given a set A, we use

2A de f
= {B | B ⊆ A}

to denote the power set of A, i.e. the set of all subsets of A.

5

Functions

Definition 2.4 (Partial Function) We use

f : X⇀ Y

to denote that f is a partial function from set X to set Y, i.e. a function f : X′ → Y for some
X′ ⊆ X.

Definition 2.5 (Function Update) In order to be able to specify functions where a single map-
ping is redefined, we introduce the notation

f (x:=y)
de f
= f ′

where

∀z : f ′(z) =

y z = x
f (z) otherwise

Definition 2.6 (Union of Functions) Given functions f : X → Y and g : A → BwithX∩A =

∅, we use
(f ∪ g) : X ∪A → Y ∪ B

to describe the function with the following property:

∀x ∈ X ∪A : (f ∪ g)(x) =

 f (x) x ∈ X
g(x) otherwise

Record Notation

Throughout this thesis, we will often use tuples to represent, among other things, states of pro-
grams or hardware. In order to have a short notation to refer to individual elements of a tuple,
we always name them in the same way:

Definition 2.7 (Record Notation for Tuples) Let A be a set which is the Cartesian product of
sets A1, A2, . . . , Ak and let n1, n2, . . . , nk be names for the individual tuple elements of A. Then,
given a tuple

c ∈ A
de f
≡ A1 × A2 × . . . × Ak

c = (a1, a2, . . . , ak)

we use c.ni to refer to ai – the i-th name refers to the i-th record field of the tuple. We use the
term record to refer to such a named tuple. We tend to introduce records c ∈ A by defining

c = (c.n1, c.n2, . . . , c.nk)

followed by a definition of the types of record fields of c.

6

Definition 2.8 (Record Update) Sometimes it is convenient to have a short notation to describe
that a single element of a record is updated. For this, given a record c = (a1, a2, . . . , ak) ∈ A with
field names n1, n2, . . . , nk, we define

c[ni:=a]
de f
= c′

where ∀ j , i : c′.n j = c.n j and c′.ni = a to denote the record where c.ni is replaced by a while
all other fields stay unchanged.

2.2 Sequences

Finite Sequences

Definition 2.9 (n-Tuples Over a Set X) Given a set X, we use

Xn = X × . . . × X︸ ︷︷ ︸
n times

= {(xn−1, xn−2, . . . , x0) | ∀i ∈ {0, . . . , n − 1} : xi ∈ X}

to denote the set of n-tuples over the set X.

In this thesis, we will often need to talk about strings or finite sequences of certain elements.
In a formal mathematical sense, these can all be represented with tuples over sets. However, in
order to both make our notation easier to read and to keep it as short and flexible as possible, we
introduce the following notation on tuples:

Definition 2.10 (Alternative Notation for Tuples) Given an n-tuple x = (xn−1, xn−2, . . . , x0),
we define

xn−1xn−2 . . . x0
de f
= x

x[n − 1 : 0]
de f
= x

x[i : j]
de f
= xixi−1 . . . x j = (xi, xi−1, . . . , x j), n > i ≥ j ≥ 0

x[i]
de f
= x[i : i]

Note that, in order to avoid confusion, we will always number the elements of a tuple from
right to left, starting from 0. Also note that we can only meaningfully write xn−1xn−2 . . . x0 when
the elements from the underlying set X can be clearly separated from each other.

Definition 2.11 (Finite Sequences Over a Set X) Given some set X, we define the set of finite
sequences X∗ over this set as follows:

X∗ = {ε} ∪

∞⋃
i=1

Xi

Here, ε denotes the empty sequence.
To denote the set of non-empty finite sequences, we use

X+ =

∞⋃
i=1

Xi

7

Definition 2.12 (Length of a Finite Sequence) The length of a finite sequence x ∈ X∗ is de-
fined as follows:

|x| =

n x = xn−1xn−2 . . . x0 ∈ X
n

0 x = ε

Definition 2.13 (Concatenation of Finite Sequences) Sometimes we want to form the con-
catenation of finite sequences to combine two finite sequences into a single one. Given two
finite sequences a, b ∈ X+ we obtain a new finite sequence

a ◦ b
de f
= ab

We further have
ε ◦ a = a ◦ ε

de f
= a

Note that for any finite sequence x ∈ Xn, we can now also write

xn−1 ◦ . . . ◦ x0 = x[n − 1 : 0]

since the xi can be considered 1-tuples.

Definition 2.14 (Repeating an Element) For an element x ∈ X and a natural number n ∈ N,
we define

xn de f
=

xn−1 ◦ x n > 0
ε n = 0

to denote the finite sequence which repeats x for n times.

Definition 2.15 (Head and Tail of a Finite Sequence) Often, when defining recursive functions,
it is useful to talk about the first element (head) and the remainder (tail) of a non-empty finite
sequence:

hd(x[n − 1 : 0]) = xn−1

and

tl(x[n − 1 : 0]) =

x[n − 2 : 0] n > 1
ε n = 1

It can easily be shown that, for all x ∈ X+,

x = hd(x) ◦ tl(x)

holds.

Definition 2.16 (Applying a Function to Every Element of a Finite Sequence) Sometimes it
is helpful to describe the application of a given function f : X → Y to every element of a finite
sequence x ∈ Xn, resulting in a finite sequence y ∈ Yn:

y = map(f ,x) ⇔ ∀i ∈ {0, . . . , n − 1} : y[i] = f (x[i])

Definition 2.17 (Reverting a Finite Sequence) In order to revert the order of elements in a fi-
nite sequence, we define the function rev : X∗ → X∗ as follows:

rev(x) =

rev(xs) ◦ x′ x = x′ ◦ xs
ε x = ε

8

2.3 Booleans and Logic Operators

Definition 2.18 (Set of Booleans) The set of Booleans B = {0, 1} ⊂ N consists of the numbers
0 and 1.

Definition 2.19 (Logic Operators on Booleans) The logic operators ∧,∨,⊕ : B × B → B

(AND, OR, XOR) and ¬ : B → B (NOT) are defined as usual and given by the following
tables:

x y x ∧ y x ∨ y x ⊕ y ¬y
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 -
1 1 1 1 0 -

Given an x ∈ B, we use x
de f
= /x

de f
= ¬x as equivalent notation to refer to the NOT operator.

Definition 2.20 (Logic Operators on Bit-Strings) Given bit-strings a, b ∈ Bn and a binary
logic operator ◦ ∈ {∧,∨,⊕}, we define

a ◦n b
de f
= ((an−1 ◦n bn−1), . . . , (a0 ◦n b0))

to describe applying the logic operator bit-wise to the elements of the bit-strings of length n.
When the length of bit-strings is clear from the context, we omit it and write a ◦ b instead.

Similarly, we define

/a
de f
= a

de f
= ¬a

de f
= (¬an−1, . . . ,¬a0)

Definition 2.21 (Ternary Operator) Given a Boolean value A ∈ B and values x, y ∈ X, the
value of the ternary operator is defined as follows:

(A?x : y) =

x A = 1
y A = 0

2.4 Representations of Numbers

Definition 2.22 (Number to Base B) Given a ∈ {0, . . . , B−1}+, we consider a a number to base
B.

Definition 2.23 (Interpreting a Number to Base B) Given a = a[n − 1 : 0] ∈ {0, . . . , B − 1}n,
the value represented by a to base B is given by

〈a[n − 1 : 0]〉B =

n−1∑
i=0

ai · Bi

9

2.4.1 Binary Numbers and Bit-Strings

Definition 2.24 (Bit-String) A bit-string is a finite sequence over the set B. Most of the time,
we are interested in bit-strings b ∈ Bn of a specific length n.

In the following, we consider 〈·〉 as a shorthand for 〈·〉2 which is the function that interprets a
bit-string as a number to base 2, i.e. as a binary number.

Definition 2.25 (Two’s-Complement Interpretation of a Bit-String) The two’s-complement value
of a bit-string b ∈ Bn is defined as follows:

[b] = −2n−1 · hd(b) + 〈tl(b)〉

Definition 2.26 (Range of Values) We define the sets

Bn = {〈a〉 | a ∈ Bn} = {0, . . . , 2n − 1}

and
Tn = {[a] | a ∈ Bn} = {−2n−1, . . . , 2n−1 − 1}

which describe the range of the interpretation functions 〈·〉 and [·], respectively.

Definition 2.27 (Binary Representations) We define for x ∈ Bn

binn(x)
de f
= ε{a | a ∈ Bn, 〈a〉 = x}

and for x ∈ Tn

twocn(x)
de f
= ε{a | a ∈ Bn, [a] = x}

to get the binary or, respectively, two’s-complement representation of a number. To get an

even shorter notation, we tend to use xn
de f
= binn(x) as a shorthand for binary representation and

xtn
de f
= twocn(x) as a shorthand for two’s-complement representation.

Definition 2.28 (Zero-Extension) We define for a ∈ Bn and n, k ∈ N, k > n

zxtk(a)
de f
= 0k−na

the zero-extended bit-string of length k for a.

Lemma 2.29 (Zero-Extension Preserves Binary Value) For a ∈ Bn and n, k ∈ N, k > n, we
have

〈zxtk(a)〉 = 〈a〉

Definition 2.30 (Sign-Extension) For a ∈ Bn and n, k ∈ N, k > n, we define

sxtk(a)
de f
= ak−n

n−1a

to mean the sign-extended bit-string of length k for a.

10

Lemma 2.31 (Sign-Extension Preserves Two’s-Complement Value) For a ∈ Bn and n, k ∈
N, k > n, we have

[sxtk(a)] = [a]

Definition 2.32 (i-th Byte of a Bit-String) For a bit-string a ∈ B8k, k ∈ N and 0 ≤ i < k, we
define

byte(i,a)
de f
= a[(i + 1) · 8 − 1 : i · 8]

to denote the i-th byte in a.

2.4.2 Arithmetics on Binary Numbers

Definition 2.33 (Congruence Modulo) We use the equivalence relation ≡ mod k defined as
follows for a, b ∈ Z, k ∈ N \ {0}:

a ≡ b mod k ⇔ ∃z ∈ Z : a − b = z · k

Definition 2.34 (Modulo Operator) The modulo-operator is then defined by

a mod k = ε{x | a ≡ x mod k ∧ x ∈ {0, . . . , k − 1}}

Definition 2.35 (Two’s-Complement Modulo Operator) For arithmetics on two’s-complement
numbers, we define an additional modulo operator for two’s-complement numbers:

a modt 2k = ε{x | a ≡ x mod 2k ∧ x ∈ Tk}

Definition 2.36 (Arithmetic Operations: Addition and Subtraction) We define arithmetic op-
erations on binary numbers:

Given a, b ∈ Bn, we define

• Binary addition: a+nb
de f
= binn(〈a〉 + 〈b〉mod 2n)

• Binary subtraction: a−nb
de f
= binn(〈a〉 − 〈b〉mod 2n)

Lemma 2.37 (Binary Addition and Subtraction Apply to Two’s-Complement Numbers) A
nice observation here is that +n and −n also work for two’s-complement numbers, i.e. it can be
proven easily by applying previous definitions that

binn(〈a〉 + 〈b〉mod 2n) = twocn([a] + [b] modt 2n)

and
binn(〈a〉 − 〈b〉mod 2n) = twocn([a] − [b] modt 2n)

hold.

Definition 2.38 (Arithmetic Operations: Multiplication) Given a, b ∈ Bn, we define

• a·nb
de f
= binn(〈a〉 · 〈b〉mod 2n)

11

• a·tnb
de f
= twocn([a] · [b] modt 2n)

Definition 2.39 (Arithmetic Operations: Division) Given a, b ∈ Bn, we define

• a÷nb
de f
= binn(〈a〉 ÷ 〈b〉mod 2n)

• a÷tnb
de f
= twocn([a] ÷ [b] modt 2n)

Where ÷ is the division operator that rounds towards zero: For x, y ∈ Z:

x ÷ y
de f
= sign(x) · sign(y) · b|x|/|y|c

where for z ∈ Z

sign(z)
de f
=

1 z ≥ 0
−1 z < 0

Note that for x, y ∈ N,
x = (x ÷ y) · y + (x mod y)

holds.

2.5 Models of Computation

The term computational model or model of computation is widely used for all kinds of math-
ematical models that can be computed. Such models are often used to represent phenomena
occurring in nature by computer simulation. Prominent examples include weather forecasting
models, molecular protein models, traffic models, climate models, or models of social behavior.

In this thesis, we are particularly interested in computational models of computation per-
formed by computers, e.g. gate-level hardware models, instruction set architecture models, or
models of programming language execution (semantics of programming languages). Indeed,
when we look at this from the generic perspective taken in the first paragraph, we can see these
computational models of computation performed by a computer as abstract models of the natural
phenomena that occur when we power on the computer’s hardware.

One of the most common ways to model computation in computer science is by defining an
appropriate automaton. Automata come in many different flavors – too many to discuss all of
them meaningfully in this thesis. Thus, we give an explicit definition of the notion of automaton
considered here in the following subsection. The formalism we chose is both generic and simple,
and extends easily to other notions of automata.

2.5.1 Automata

An automaton is a mathematical representation of what can intuitively be considered a transition
system. A transition system is characterized by states and by transitions that occur between these
states. Starting from some initial state, transitions can be applied to reach other states.

Definition 2.40 (Automaton) Given

12

• a set S of states,

• a set Σ of actions, also called alphabet,

• a non-empty set S 0 ⊆ S of initial states, and

• a transition relation δ ⊆ S × Σ × S ,

we consider the quadruple A = (S ,Σ, S 0, δ) an automaton.

Starting the automaton, an arbitrary state s0 ∈ S 0 is chosen as the current state. When an
action and a pair of states is in the transition relation, (s, a, s′) ∈ δ, this means that a transition
from state s ∈ S to state s′ ∈ S is possible under action a. Actions represent interaction of the
automaton with an external world which provides inputs to/reacts to outputs from the automaton.
A step of the automaton applies an arbitrarily chosen possible transition from the current state,
resulting in a new current state. The automaton repeatedly performs steps – this continues either
infinitely often, or until there is no possible transition from the current state.

Note that when there are no inputs or outputs of interest, it is possible to simplify the defi-
nitions, eliminating the need for an alphabet. Automata formalizations without an alphabet can
be easily embedded in this formalism by having an alphabet consisting of a single token that
denotes the absence of input/output.

Definition 2.41 (Notation: Possible Step) In order to denote that a step from state s ∈ S to
state s′ ∈ S under action a ∈ Σ is possible under a transition relation δ ⊆ S × Σ × S , we use the
notation

s
a
{
δ

s′
de f
⇔ (s, a, s′) ∈ δ

To say that there exists an action a ∈ Σ such that a step from state s to state s′ under a is
possible under δ, we define

s
∃
{
δ

s′
de f
⇔ ∃a ∈ Σ : s

a
{
δ

s′

Note that
∃
{
δ
⊆ S × S is a binary relation.

Definition 2.42 (Notation: No Possible Step) For a transition relation δ ⊆ S × Σ × S , a state
s ∈ S and an action a ∈ Σ, we use

s
a
6{
δ

de f
⇔ ¬∃s′ ∈ S : s

a
{
δ

s′

to express that under δ, there is no possible step under action a from state s. When there is no
possible step under any action a ∈ Σ, we state that there is no possible step from s under δ:

s
∀

6{
δ

de f
⇔ ∀a ∈ Σ : s

a
6{
δ

13

Definition 2.43 (Notation: Deterministic Step) We state that under a transition relation δ ⊆

S × Σ × S , a deterministic step from s ∈ S under action a ∈ Σ to state s′ ∈ S is possible by

s
a
→
δ

s′
de f
⇔ s

a
{
δ

s′ ∧ (∀s′′ : s
a
{
δ

s′′ ⇒ s′ = s′′)

A deterministic step is characterized by the resulting state s′ being determined by the previous
state s and action a. In general, given a state and an action, several resulting states may be
possible under a transition relation.

Definition 2.44 (Deterministic Transition Relation) A transition relation δ ⊆ S × Σ × S with

∀s ∈ S , a ∈ Σ : (∃s′ ∈ S : s
a
→
δ

s′) ∨ s
a
6{
δ

is called deterministic transition relation.

Definition 2.45 (Deterministic Automaton) An automaton A = (S ,Σ, S 0, δ) with deterministic
transition relation δ and a single initial state (#S 0 = 1) is called deterministic automaton.

Note that, when an automaton is deterministic, we can use a partial function

δ : S × Σ ⇀ S

to describe its transition relation. All automata occurring in this thesis are formalized in such a
way that their transition relation is made deterministic by resolving all non-deterministic choice
with corresponding input-symbols.

2.5.2 Reachability & Traces

Often, we are interested in whether (bad or good) states are reachable when the automaton per-
forms steps starting from a given state s. To express reachability, we use the reflexive transitive
closure of the binary transition relation.

Definition 2.46 (Reflexive Transitive Closure) The reflexive transitive closure R∗ of a binary
relation R ⊆ X × X can be defined as follows:

(a, b) ∈ R
de f
⇔ a = b ∨ ∃c : (a, c) ∈ R∗ ∧ (c, b) ∈ R

For an automaton A = (S ,Σ, S 0, δ), the relation
∃
{
δ

∗ describes reachability.

In theorems and lemmata, we sometimes need to argue about executions of an automaton.
Formally, we model executions of an automaton as follows:

Definition 2.47 (Finite Execution Trace) Given a transition relation δ ⊆ S × Σ × S , a finite
execution trace (s, a) of δ is a pair of a finite sequence of states s ∈ S n+1 and a finite sequence
of actions a ∈ Σn with

s0
a0
{
δ

s1
a1
{
δ

s2
a2
{
δ
. . .

an−1
{
δ

sn

More formally,
∀i ∈ {0, . . . , n − 1} : si

ai
{
δ

si+1

14

∼

s′B

s′A
a
{
δA

a
{
δB

sB

sA

∼

Figure 2.1: Simulation between automata.

2.5.3 Simulation Theorems

Sometimes it is necessary to prove that two automata essentially behave in the same way. This
can be done by proving a simulation between the two automata. When a simulation from au-
tomaton A to automaton B exists, it is proven that the structure of execution of automaton A
(given by its transition relation) is mimicked by automaton B. This can be formulated by stating
step-by-step simulation theorems like the following:

Definition 2.48 (Simulation) Given Automata A = (S A,Σ, S 0A, δA) and B = (S B,Σ, S 0B, δB), a
relation ∼ ⊆ S A × S B is a simulation from A to B iff

1. ∀sA ∈ S 0A : ∃sB ∈ S 0B : sA ∼ sB

2. ∀sA, s′A ∈ S A, sB ∈ S B, a ∈ Σ : sA ∼ sB ∧ sA
a
{
δA

s′A ⇒ ∃s′B : sB
a
{
δB

s′B ∧ s′A ∼ s′B

The above definition has a nice implication in terms of trace inclusion. However, it requires
both automata to be formalized in such a way that they have the same alphabet Σ – which is only
desirable when exactly the observable behavior of interest is represented by actions. Note that,
when the input alphabet is used to resolve non-deterministic choice occurring in an automaton,
there does not necessarily need to be a one-to-one correspondence between the input alphabets
of the two automata.

Refinement Simulation A refinement simulation of automaton B (abstraction) by automa-
ton A (refinement) is a special case of simulation where the simulation relation is given by an
abstraction function f : S A → S B (also known as refinement mapping in [AL88]), such that
a ∼ b⇔ b = f (a). In this case, the definition of simulation simplifies to the following:

1. ∀sA ∈ S 0A : f (sA) ∈ S 0B

2. ∀sA, s′A ∈ S A, a ∈ Σ : sA
a
{
δA

s′A ⇒ f (sA)
a
{
δB

f (s′A)

15

2.6 Semantics of Programming Languages

A program, in the context of most programming languages, can be considered a definition of a
sequence of computations. In practice, such a program is often subdivided into functions that
perform recurring tasks. As the study of semantics is a study of meaning, the study of semantics
of programming languages is nothing other than the study of meaning of program execution.
There are different established ways to mathematically define the meaning of a program: opera-
tional semantics, axiomatic semantics, and denotational semantics.

Denotational semantics formalizes the meaning of programs by providing mathematical ob-
jects that represent the behavior of the program, translating each program phrase to its denota-
tion in some other (mathematical) language. This is a formalism in which is well suited to argue
about program transformations. In this thesis, such a model does not occur.

Operational semantics are modeled in a way that focuses on the operational aspect of exe-
cuting the program to define its semantics. This is done by defining the effect of each program
phrase on the state of an abstract machine, e.g. an automaton. This is the kind of formalism we
use in this thesis to describe the computational models we consider.

Axiomatic semantics states the effect of program execution on assertions about the program
state. The most commonly cited example for axiomatic semantics is Hoare logic used in program
verification.

2.6.1 Operational Semantics

"The meaning of a program in the strict language is explained in terms of a hypo-
thetical computer which performs the set of actions which constitute the elaboration
of that program."

Algol68 [vW81], Section 2

Commonly, two styles of specifying operational semantics are distinguished, structural oper-
ational semantics and natural semantics. We briefly describe them in the following.

Structural Operational Semantics

Structural operational semantics of a programming language, also called small-step semantics,
describes for every individual program action the state resulting by its execution. Essentially,
we are specifying transitions on the states of the abstract machine which can be expressed by
defining an appropriate automaton. The resulting formalism depends greatly on what kind of
actions the programming language in question allows. For example, if there can be side-effects
in expression-evaluation, expression evaluation can be considered a program action, whereas for
languages without side-effects in expression we do not need to consider expression evaluation
as a program action.

Natural Semantics

The distinguishing feature of small-step semantics is that in the resulting automaton, we have
a transition for every program action. Natural semantics, also called big-step semantics, on the

16

other hand, is defined in such a way that the overall effect of execution of the program is given.
This can be done by applying small-step semantics until the program terminates, resulting in
an automaton in which the transitions describe the effect of executing (terminating) programs,
or functions. In a sequential setting, this notion of complete program execution tends to be
applicable.

2.6.2 Formalizing Operational Semantics as an Automaton

For many programming languages (including the ones we will discuss in this thesis), we can
consider the abstract machine to consist of two main parts:

• a static component s ∈ static which never changes, and

• a dynamic component d ∈ dynamic which is modified through execution of program
actions.

Usually, one assumes that there is no self-modifying code, i.e. that execution of a program will
never change the program being executed. Thus, the program that is executed is part of the static
component s.

The dynamic component describes the configuration of the abstract machine, i.e. it contains
memory state – which gives values for variables occurring in the program – and control state –
which describes how program execution has to progress.

Operational Semantics Automata

When formalizing operational semantics using automata, there is a certain amount of choice in
how exactly operational semantics can be formalized. We could have an automaton

A = (static × dynamic,Σ, S 0, δ)

where

((s, d), a, (s′, d′)) ∈ δ⇒ s = s′

while, on the other hand, we can achieve a very similar result by considering for each s ∈ static
an individual automaton

As = (dynamic,Σ, S 0, δs)

with a transition relation δs that describes the possible transitions on the dynamic component
under a given static component s:

((s, d), a, (s, d′)) ∈ δ ⇔ (d, a, d′) ∈ δs

In this thesis, we formalize operational semantics of programs in the latter way.

17

2.7 Concurrency

con·cur·rence noun

1. a : the simultaneous occurrence of events or circumstances
b : the meeting of concurrent lines in a point

2. a : agreement or union in action : cooperation
b (1) : agreement in opinion or design (2) : consent

3. a coincidence of equal powers in law

"concurrence." Merriam-Webster.com. Merriam-Webster, 2011. Web. 6 July 2011.

While the Merriam-Webster dictionary refers the reader to the definition of the word concur-
rence when looking for concurrency, the specific term concurrency is used widely in computer
science to describe all kinds of computational models in which certain computations are happen-
ing, in some sense, at the same time. Often, such a concurrent computational model can easily
be subdivided into disjoint parts which are considered to perform concurrent access to shared
resources of some kind.

Structurally, there appear to be two major kinds of concurrent models: One where the com-
ponents simultaneously perform steps (e.g. hardware which is clocked synchonously), and one
where the components "take turns" performing their steps.

A system consisting of n components can usually be described by an automaton with the
following state:

S ≡ S 1 × S 2 × . . . × S n

where S i is the set of states of component i, 1 ≤ i ≤ n, and where we assume for the sake of
simplicity that we have transition functions

δ1 : S → S 1, . . . , δn : S → S n

that model the steps performed by the components given the overall state of the system.

Definition 2.49 (Simultaneous/Parallel Concurrency) When all components perform a step
during a transition of the overall system, we say that such a model exhibits simultaneous con-
currency, or parallel concurrency, i.e.

δ : S → S , δ(s) = (δ1(s), δ2(s), . . . , δn(s))

Definition 2.50 (Interleaved Concurrency) When every transition of the overall system corre-
sponds to a single transition of some chosen subcomponent, we say that the model is based on
interleaved concurrency, i.e.

δ : S × {1, . . . , n}︸ ︷︷ ︸
=:Σ

→ S , δ(s, i) = (s1, . . . , δi(s), . . . , sn)

where Σ = {1, . . . , n} is called scheduling alphabet and describes which subcomponent performs
a step.

18

Note that, assuming the behavior of components is deterministic, a model with parallel concur-
rency stays deterministic, while a model with interleaved concurrency can be seen as turning
non-deterministic: A choice which subcomponent performs a step is introduced. Unless we
know the exact order in which steps of components are interleaved, or any other restriction
imposed on the scheduling of components, we have to consider all possible interleavings.

Scheduling alphabet In practice, defining a specific model that exhibits interleaved concur-
rency, instead of simply numbering subcomponents, we do give appropriate names to them. In
such a case, we use descriptive names for the scheduling actions of the scheduling alphabet that
refer to the corresponding components.

Definition 2.51 (Fairness) Given an infinite trace a of scheduling actions, we consider this trace
fair if and only if every component of the corresponding concurrent system is scheduled in-
finitely often in a.

In this thesis, we are interested in models where the interleaved concurrency is at least restricted
by this fairly weak fairness constraint.

19

3
Theory of Multi-Core

Hypervisor Verification

In the following we present a roadmap for pervasive formal verification of operating systems
and hypervisors on a multi-core architecture as it has evolved from the experiences made during
and after the Verisoft XT project. It becomes obvious, that this is much more difficult than in
the sequential case since, on the one hand, multi-core architectures often offer features that are
not meaningful in single-core architectures, like, for example, advanced programmable interrupt
controllers (APICs), or cache-protocols on distributed caches (e.g. the MOESI-protocol). On
the other hand, hardware features that could be abstracted to clean and simple models without
much effort in single-core architectures suddenly become visible for multi-core architectures,
e.g., consider store-buffers and the resulting weak memory models.

This chapter is a simple reproduction – where references to this thesis are adjusted to refer to
appropriate chapters of the thesis – of the SOFSEM2013 invited paper ”Theory of Multi Core
Hypervisor Verification” [CPS13] by Ernie Cohen, Wolfgang Paul and the author of this thesis.

3.1 Introduction and Overview

Low-level system software is an important target for formal verification; it represents a relatively
small codebase that is widely used, of critical importance, and hard to get right. There have been
a number of verification projects targetting such code, particularly operating system (OS) ker-
nels. However, they are typically designed as providing a proof of concept, rather than a viable
industrial process suitable for realistic code running on modern hardware. One of the goals of
the Verisoft XT project [Ver10] was to deal with these issues. Its verification target, the hyper-
visor Hyper-V [LS09] was highly optimized, concurrent, shipping C/assembler code running on
the most popular PC hardware platform (x64). The verification was done using VCC, a verifier
for concurrent C code based on a methodology designed to maximize programmer productivity
– instead of using a deep embedding of the language into a proof-checking tool where one can
talk directly about the execution of the particular program on the particular hardware.

We were aware that taking this high-level view meant that we were creating a nontrivial gap
between the abstractions we used in the software verification and the system on which the soft-
ware was to execute. For example,

• VCC has an extension allowing it to verify x64 assembly code; why is its approach sound?
For example, it would be unsound for the verifier to assume that hardware registers do not
change when executing non-assembly code, even though they are not directly modified by
the intervening C code.

21

• Concurrent C code (and to a lesser extent, the C compiler) tacitly assumes a strong mem-
ory model. What justifies executing it on a piece of hardware that provides only weak
memory?

• The hypervisor has to manage threads (which involves setting up stacks and implementing
thread switch) and memory (which includes managing its own page tables). But most
of this management is done with C code, and the C runtime already assumes that this
management is done correctly (to make memory behave like memory and threads behave
like threads). Is this reasoning circular?

When we started the project, we had ideas of how to justify all of these pretenses, but had not
worked out the details. Our purpose here is to i) outline the supporting theory, ii) review those
parts of the theory that have already been worked out over the last few years, and iii) identify
the parts of the theory that still have to be worked out.

3.1.1 Correctness of Operating System Kernels and Hypervisors

Hypervisors are, at their core, OS kernels, and every basic class about theoretical computer
science presents something extremely close to the correctness proof of a kernel, namely the
simulation of k one-tape Turing machines (TMs) by a single k-tape TM [HS65]. Turning that
construction into a simulation of k one-tape TMs by a single one-tape TM (virtualization of k
guest machines by one host machine) is a simple exercise. The standard solution is illustrated in
figure 3.1. The tape of the host machine is subdivided into tracks, each representing the tape of
one of the guest machines (address translation). Head position and state of the guest machines
are stored on a dedicated field of the track of that machine (a kind of process control block).
Steps of the guests are simulated by the host in a round robin way (a special way of scheduling).
If we add an extra track for the data structures of the host and add some basic mechanisms
for communications between guests (inter process communication) via system calls, we have
nothing less than a one-tape TM kernel. Generalizing from TMs to an arbitrary computation
model M (and adding I/O-devices), one can specify an M kernel as a program running on a
machine of type M that provides

• virtualization: the simulation of k guest machines of type M on a single host machine of
type M

• system calls: some basic communication mechanisms between guests, I/O devices, and
the kernel

At least as far as the virtualization part is concerned, a kernel correctness theorem is essentially
like the Turing machine simulation theorem, and can likewise be conveniently expressed as a
forward simulation. For more realistic kernels, instead of TMs we have processors, described
in dauntingly large manuals, like those for the MIPS32 [MIP05] (336 pages), PowerPC [Fre05]
(640 pages), x86 or x64 [nxb10, Int10] (approx. 1500, resp. 3000 pages). The TM tape is
replaced by RAM, and the tape head is replaced by a memory management unit (MMU), with
address translation driven by in-memory page tables. Observe that a mathematical model of
such machine is part of the definition of correctness for a ’real’ kernel.

22

...

k

s1

s2

s

tape(2,left)

tape(1,left)

tape(k,left)

tape(1,right)

tape(2,right)

tape(k,right)

Figure 3.1: Simulating k Turing machines with 1 k-band Turing machine.

Hypervisors are kernels whose guests are themselves operating systems or kernels, i.e. each
guest can run several user processes. In terms of the TM simulation, each guest track is sub-
divided into subtracks for each user, each subtrack having its own process control block; the
actual tape address for the next operation of a process can be calculated from its tape address,
the layout of the subtrack within the track, and the layout of the track itself. In a real kernel,
the address of a memory access is calculated from a virtual address using two levels of address
translation, the first level of traslation provided by the guest to users via the guest page tables
(GPTs), and the second provided by the hypervisor to the guest. On many recent processors, this
second level of address translation is provided in hardware by a separate set of host page tables.
On processors providing only a single level of translation, it is possible to take advantage of the
fact that the composition of two translations is again a translation, and so can be provided by a
single set of page tables. Because these shadow page tables (SPTs) correspond to neither the
guest nor the host page tables, they are constructed on the fly by the hypervisor from the GPTs,
and the hypervisor must hide from the guest that translation goes through these tables rather than
the GPTs. Thus, the combined efforts of the hypervisor and the MMU simulate a virtual MMU
for each guest.

3.1.2 Overview

We discuss the following seven theories in the remainder of the paper:

Multi-Core ISA-sp We define a nondeterministic concurrent instruction set architecture (ISA)
model, suitable for system programming. In addition to processor cores and main memory,
it includes low-level (but architecturally visible) features such as store buffers, caches, and
memory management units. Ideally, this would be given in (or at least derived from) the
system programmer’s manuals published by the chip manufacturers. In reality, many sub-
tle (but essential) details are omitted from these manuals. Indeed, hardware manufacturers
often deliberately avoid commiting themselves to architectural boundaries, to maximize
their flexibility in optimizing the implementation, and many details leveraged by real oper-
ating systems (such as details concerning the walking of page tables) are shared only with

23

their most important customers, under agreements of nondisclosure. Such fuzzy architec-
tural boundaries are acceptable when clients are writing operating systems; a progammer
can choose whether to program to a conservative model (e.g., by flushing translations af-
ter every change to the page tables) or program more aggressively to a model that takes
advantage of architectural details of the current processor generation. But such a fuzzy
model is fatal when trying to build an efficient hypervisor, because the architectural speci-
fication must both be strong enough for client operating systems to run correctly, yet weak
enough that it can be implemented efficiently on top of the available hardware.

We provide evidence for the particular model we use and for the particular ways in which
we resolved ambiguities of the manuals in the following way: i) we define a simplified
ISA-sp that we call MIPS-861, which is simply MIPS processor cores extended with x86-
64 like architecture features (in particular, memory system and interrupt controllers), ii)
we reverse engineer the machine in a plausibly efficient way at the gate level, and iii) we
prove that the construction meets the ISA-sp, and iv) we confirm with OS engineers that
the model is sufficiently strong to support the memory management algorithms used in
real operating systems. The correctness theorems in this theory deal with the correctness
of hardware for multi-core processors at the gate level.

ISA Abstraction Multi-core machines are primarily optimized to efficiently run ordinary user
code (as defined in the user programming manuals). In this simplified instruction set
(ISA-u), architectural details like caches, page tables, MMUs, and store buffers should
be transparent, and multithreaded programs should see sequentially consistent memory
(assuming that they follow a suitable synchronization discipline). A naive discipline com-
bines lock-protected data with shared variables, where writes to shared variables flush the
store buffer. A slightly more sophisticated and efficient discipline requires a flush only
when switching from writing to reading [CS10]. After proper configuration, a simula-
tion between ISA-sp and ISA-u has to be shown in this theory for programs obeying such
disciplines.

Serial Language Stack A realistic kernel is mostly written in a high-level language (typically
C2 or C++) with small parts written in macro assembler (which likewise provides the stack
abstraction) and even smaller parts written in plain assembler (where the implementation
of the stack using hardware registers is exposed, to allow operations like thread switch).
The main definition of this theory is the formal semantics of this computational model.
The main theorem is a combined correctness proof of optimizing compiler + macro as-
sembler for this mixed language. Note that compilers translate from a source language to
a clean assembly language, i.e. to ISA-u.

Adding Devices Formal models for at least two types of devices must be defined: regular de-
vices and interrupt controllers (the APIC in x86/64). A particularly useful example device
is a hard disk – which is needed for booting. Interrupt controllers are needed to handle
both external interrupts and interrupt-driven interprocess communication (and must be

1See chapter 4.
2See chapter 5.

24

virtualized by the hypervisor since they belong to the architecture). Note that interrupt
controllers are very particular kinds of devices in the sense that they are interconnected
among each other and with processor cores in a way regular devices are not: They inject
interrupts collected from regular devices and other interrupt controllers directly into the
processor core. Thus, interrupt controllers must be considered specifically as part of an
ISA-sp model with instantiable devices3. Crucial definitions in this theory are i) sequen-
tial models for the devices, ii) concurrent models for ISA-sp with devices, and iii) models
for single core processors semantics of C with devices (accessed through memory mapped
I/O (MMIO)). The crucial theorems of this theory show the correctness of drivers at the
code level.

Extending the Serial Language Stack with Devices to Multi-Core Machines The
crucial definition of this theory is the semantics of concurrent ’C + macro assembly +

ISA-sp + devices’. Besides ISA-sp, this is the crucial definition of the overall theory,
because it defines the language/computational model in which multi-core hypervisors are
coded. Without this semantics, complete code level verification of a hypervisor is not
meaningful. Essentially, the ownership discipline of the ISA abstraction theory is lifted
to the C level; in order to enable the implementation of the ownership discipline, one
has to extend serial C with volatile variables and a small number of compiler intrinsics
(fences and atomic instructions). In this theory there are two types of major theorems.
The first is compiler correctness: if the functions of a concurrent C program obeying the
ownership discipline are compiled separately, then the resulting ISA-u code obeys the
ownership discipline and the multi-core ISA-u code simulates the parallel C code. The
second is a reduction theorem that allows us to pretend that a concurrent C program has
scheduler boundaries only just before actions that race with other threads (I/O operations
and accesses to volatile variables).

Soundness of VCC and its Use Programs in the concurrent C are verified using VCC. In
order to argue that the formal proofs obtained in this way are meaningful, one has to
prove the soundness of VCC for reasoning about concurrent C programs, and one has to
show how to use VCC in a sound way to argue about programs in the richer models.

Obviously, for the first task, syntax and semantics of the annotation language of VCC
has to be defined. VCC annotations consist essentially of “ghost” (a.k.a. “auxilliary”
or “specification”) state, ghost code (used to facilitate reasoning about the program, but
not seen by the compiler) and annotations of the form “this is true here” (e.g. function
pre/post-conditions, loop invariants, and data invariants). Then three kinds of results have
to be proven. First, we must show that if a program (together with its ghost code) is
certified by VCC, then the “this is true here” assertions do in fact hold for all executions.
Second, we must show that the program with the ghost code simulates the program without
the ghost code (which depends on VCC checking that there is no flow from ghost state
to concrete state, and that all ghost code terminates4). Third, we must show that the

3MIPS-86 provides such an ISA-sp model with interrupt controllers and instantiable devices – albeit currently at a
level where caches are already invisible.

4Chapter 6 of this thesis provides such a proof for the C intermediate language introduced in chapter 5.

25

verification implies that the program conforms to the Cohen/Schirmer [CS10] ownership
discipline (to justify VCC’s assumption of a sequentially consistent model of concurrent
C).

To reason about richer programming models with VCC, we take advantage of the fact that
the needed extensions can be encoded using C. In particular, one can add additional ghost
data representing the states of processor registers, MMUs and devices to a C program;
this state must be stored in “hybrid” memory that exists outside of the usual C address
space but from which information can flow to C memory. We then represent assembly
instructions as function calls, and represent active entities like MMUs and devices by
concurrently running C threads.

Hypervisor Correctness The previous theories serve to provide a firm foundation for the real
verification work, and to extend classical verification technology for serial programs to
the rich computational models that are necessarily involved in (full) multi-core hypervisor
verification. Verification of the hypervisor code itself involves several major components,
including i) the implemention of a large numbers of ’C + macro assembly + assembly’
threads on a multi-core processor with a fixed small number of cores, ii) for host hard-
ware whose MMUs do not support two levels of translations, the correctness of a parallel
shadow page table algorithm, iii) a TM-type simulation theorem showing virtualization of
ISA-sp guests by the host, and iv) correct implementation of system calls.

3.2 ISA Specification and Processor Correctness

3.2.1 Related Work

For single core RISC (reduced instruction set computer) processors, it is well understood how
to specify an ISA and how to formally prove hardware correctness. In the academic world, the
papers [BJ01] and [BJK+03] report the specification and formal verification of a MIPS-like pro-
cessor with a pipelined core with forwarding and hardware interlock, internal interrupts, caches,
a fully IEEE compliant pipelined floating point unit, a Tomasulo scheduler for out of order ex-
ecution, and MMUs for single-level pages tables. In industry, the processor core of a high-end
controller has been formally verified [Ver07]. To our knowledge, there is no complete formal
model for any modern commercial CISC (complex instruction set computer); until recently, the
best approximations to such a model were C simulators for large portions of the instruction set
[Vir, Boc, QEM].

The classical memory model for multi-core processors is Lamport’s sequentially consistent
shared memory [Lam79]. However, most modern multi-core processors provide efficient imple-
mentations only of weaker memory models. The most accurate model of the memory system of
modern x86/64 architectures, “x86-tso”, is presented in [SSO+10]. This model abstracts away
caches and the memory modes specifying the cache coherence protocol to be used, and presents
the memory system as a sequentially consistent shared memory, with a separate FIFO store
buffer for each processor core. It is easy to show that the model collapses if one mixes in the
same computation able and non cacheable memory modes on the same address (accesses in non
cacheable memory modes bypass the cache; accesses in different non cacheable modes have

26

 System Bus

CPU i

I
n
t
e
r
r
u
p
t

B
u
s

System Memory Device

Cache

SB

Core

A
P
I
C

I/O APIC

LB TLB

IPI

Figure 3.2: x86-64 processor model consisting of components whose steps are interleaved non-
deterministically.

different side effects on the caches). That the view of a sequentially consistent shared memory
can be maintained even if of one mixes in the same computation accesses to the same address
with different “compatible” memory modes/coherence protocols is claimed in the classical paper
introducing the MOESI protocol [SS86], but we are not aware of any proof of this fact.

Another surprising observation concerns correctness proofs for cache coherence protocols.
The model checking literature abounds with papers showing that certain invariants of a cache
system are maintained in an interleaving model where the individual cache steps are atomic. The
most important of these invariants states that data for the same memory address present in two
caches are identical and thus guarantees a consistent view on the memory at all caches. For a
survey, see [CYGC10]. These results obviously provide an important step towards the provably
correct construction of a sequentially consistent shared memory. Apart from our own results in
[Pau12], we are not aware of a gate-level construction of hardware main memory, caches, cache
controllers, and the busses connecting them for which it has been proved that parallel execution
of hardware accesses to the caches simulates the high-level cache model.

3.2.2 Modeling an x86-64-like ISA-sp

A formal model of a very large subset of the x64 ISA-sp was constructed as part of the Hyper-V
verification project, and is presented in [Deg11]. This 300 page model specifies 140 general
purpose and system programming instructions. Due to time constraints, the model omits de-
bug facilities, the alignment check exception, virtual-8086 mode, virtual interrupts, hardware
task-switching, system management mode, and devices other than the local APICs. The MMX
extension of the instruction set is formalized in the complementary thesis [Bau08]. The in-
struction set architecture is modeled by a set of communicating nondeterministic components as
illustrated in figure 3.2. For each processor, there is a processor core, MMU, store buffer, caches
(which become visible when accesses of non cacheable and cacheable memory modes to the

27

same address are mixed in the same computation), and a local APIC for interrupt handling. The
remaining components (shared between the cores) are main memory and other devices. Sizes
of caches, buffers, and translation look aside buffers (TLBs) in the MMU are unbounded in the
model, but the model is sufficiently nondeterministic to be implemented by an implementation
using arbitrary specific sizes for each of these. In the same spirit, caches and MMUs nondeter-
ministically load data within wide limits, allowing the model to be implemented using a variety
of prefetch strategies. Nevertheless, the model is precise enough to permit proofs of program
correctness.

As mentioned in the introduction, an accurate ISA-specification is more complex than meets
the eye. Only if the executed code obeys a nontrivial set of software conditions, the hardware
interprets instructions in the way specified in the manuals. In RISC machines, the alignment of
accesses is a typical such condition. In pipelined machines, the effects of certain instructions
only become visible at the ISA level after a certain number of instructions have been executed,
or after an explicit pipeline flush. In the same spirit, a write to a page table becomes visible
at the ISA level when the instruction has left the memory stages of the pipe, the write has left
the store buffer, and previous translations effected by this write are flushed from the TLB by
an INVLPG instruction (which in turn does only become visible when it has left the pipe). In
a multi-core machine, things are even more complicated because a processor can change code
and page tables of other processors. In the end, one also needs some specification of what the
hardware does if the software violates the conditions, since the kernel generally cannot exclude
their violation in guest code. In turn, one needs to guarantee that guest code violating software
conditions does not violate the integrity of other user processes or the kernel itself. Each of these
conditions exposes to the ISA programmer details of the hardware, in particular of the pipeline,
in a limited way.

Obviously, if one wants to verify ISA programs, one has to check that they satisfy the software
conditions. This raises the problem of how to identify a complete set of these conditions. In
order to construct this set, we propose to reverse engineer the processor hardware, prove that it
interprets the instructions set, and collect the software conditions we use in the correctness proof
of the hardware. Reverse engineering a CISC machine as specified in [Deg11] is an extremely
large project, but if we replace the CISC core by a MIPS core and restrict memory modes to
’write back’ (WB) and ’uncacheable’ (UC) (for device accesses), reverse engineering becomes
feasible. A definition of the corresponding instruction set called ’MIPS-86’ can be found in
chapter 4 of this thesis.

3.2.3 Gate Level Correctness for Multi-Core Processors

A detailed correctness proof of a multi-core processor for an important subset of the MIPS-86
instruction set mentioned above can be found in the lecture notes [Pau12]. The processor cores
have classical 5 stage pipelines, the memory system supports memory accesses by bytes, half
words, and words, and the caches implement the MOESI protocol. Caches are connected to each
other by an open collector bus and to main memory (realized by dynamic RAM) by a tri-state
bus. There are no store buffers or MMUs, yet. Caches support only the ’write back’ mode. The
lecture notes contain a gate-level correctness proof for a sequentially consistent shared memory
on 60 pages. Integrating the pipelined processor cores into this memory system is not completely

28

trivial, and proving that this implements the MIPS-86 ISA takes another 50 pages. The present
proof assumes the absence of self-modifying code.

Dealing with tri-state busses, open collector busses, and dynamic RAM involves design rules,
which can be formulated but not motivated in a gate-level model. In analogy to data sheets
of hardware components, [Pau12] therefore uses a detailed hardware model with minimal and
maximal propagation delays, enable and disable times of drivers, and setup and hold times of
registers as its basic model. This allows derivation of the design rules mentioned above. The
usual digital hardware model is then derived as an abstraction of the detailed model.

3.2.4 Future Work

The correctness proof from [Pau12] has to be extended in the following ways to cover MIPS-86

• introducing a read-modify-write operation (easy),

• introducing memory fences (easy),

• extending memory modes to include an uncacheable mode UC (easy),

• extending the ISA-sp of MIPS-86 with more memory modes and providing an implemen-
tation with a coherence protocol that keeps the view of a single memory abstraction if
only cacheable modes are used (easy)

• implementing interrupt handling and devices (subtle),

• implementing an MMU to perform address translation (subtle),

• adding store buffers (easy), and

• including a Tomasulo scheduler for out-of-order execution (hard).

3.3 Abstracting ISA-sp to ISA-u

One abstracts ISA-sp to ISA-u in three steps: i) eliminating the caches, ii) eliminating the store
buffers, and iii) eliminating the MMUs. A complete reduction (for a naive store buffer elimina-
tion discipline and a simplified ownership discipline) is given in [Kov12].

3.3.1 Caches

To eliminate caches, an easy simulation shows that the system with caches S simulates a system
without caches S ′; the coupling invariant is that for every address, the S ′ value at that address
is defined as the value cached at that address if it is cached (the value is unique, since all cache
copies agree), and is the value stored in the S memory if the location is uncached. One gets the
processor view of figure 3.3 (b).

29

ISA−sp ISA−u

(a) (b) (c) (d)

memory

processor coreprocessor core

memorymemory

processor core

mmu

sb

processor core

mmu

caches

sb

disk APIC

mmu

virtual memory

Figure 3.3: Abstracting ISA-sp to ISA-u.

3.3.2 Store Buffers and Ownership Disciplines

In single-core architectures, an easy simulation shows that the system with FIFO store buffers S
simulates a system without store buffers S ′: the value stored at an address in S ′ is the value in the
store buffer farthest away from memory (i.e., the last value saved) if the address appears in the
store buffer, and is otherwise the value stored in the memory of S . For a single-core architecture,
no extra software conditions are needed; a more careful proof can be found in [DPS09]. One
gets the view of figure 3.3 (c). For the multi-core architecture, store buffers can only be made
invisible if the executed code follows additional restrictions.

A trivial (but highly impractical) discipline is to use only flushing writes (which includes
atomic read-modify-write operations); this has the effect of keeping the store buffers empty, thus
rendering them invisible. A slightly more sophisticated discipline is to classify each address as
either shared or owned by a single processor. Unshared locations can be accessed only by code
in the owning processor; writes to shared addresses must flush the store buffer. The proof that
this simulates a system without store buffers is almost the same as in the uniprocessor case: for
each owned address, its value in the S ′ memory is the value in its owning processor according
to the uniprocessor simulation, and for each shared address, the value is the value stored in
memory.

A still more sophisticated discipline to use the same rule, but to require a flush only between a
shared write and a subsequent share read on the same processor. In this case, a simple simulation
via a coupling invariant is not possible, because the system, while sequentially consistent, is not
linearizable. Instead, S ′ issues a write when the corresponding write in S actually emerges from
the store buffer and hits the memory. S ′ issues a shared read at the same time as S ; this is
consistent with the writes because shared reads happen only when there are no shared writes in
the store buffer. The unshared reads and writes are moved to fit with the shared writes5. It is

5Note that this means that in S ′, an unshared write from one processor might be reordered to happen before a
shared write from another processor, even though the shared write hits memory first, so while the execution is

30

straightforward to extend this reduction to include shared “read-only” memory.
A final, rather surprising improvement to the last reduction discipline is to allow locations to

change from one type to another programatically. For example, we would like to have a shared
location representing a lock, where an ordinary operation on that lock (acquiring it) gives the
thread performing that action ownership of some location protected by that lock. Moreover, we
might want to allow the set of locations protected by that lock to change, perhaps determined
by data values. [CS10] gives a very general reduction theorem for x86-TSO that allows these
things to be done in the most flexible way possible, by allowing the program to take ownership of
shared data, give up ownership of data, and change it between being read-only and read-write, in
ordinary ghost code. This theorem says that if you can prove, assuming sequential consistency,
that a concurrent program (which includes ghost code that might change memory types of loca-
tions) follows (a minor modification of) the flushing discipline above, then the program remains
sequentially consistent when executed under x86-TSO. The proof of this reduction theorem is
much more difficult than the previous ones, because reducing a single TSO history requires
reasoning from the absence of certain races in related sequentially consistent histories.

3.3.3 Eliminating MMUs

Modern processors use page tables to control the mapping of virtual to physical addresses. How-
ever, page tables provide this translation only indirectly; the hardware has to walk these page
tables, caching the walks (and even partial walks) in the hardware TLBs. x86/64 machines re-
quire the system programmer to manage the coherence of the TLBs in response to changes in the
page tables. The simplest way to make MMUs invisible is to set up a page table tree that repre-
sents an injective translation (and does not map the page tables themselves), before switching on
virtual memory. It is an easy folklore theorem that the resulting system simulates unvirtualized
memory; a proof can be found in [DPS09]. One gets the view of figure 3.3 (d). However, this
is not how real kernels manage memory; memory is constantly being mapped in and unmapped.
The easiest way to do this is to map the page tables in at their physical addresses (since page
table entries are based on physical, rather than virtual, page frame numbers). At the other ex-
treme, one can model the TLBs explicitly, and keep track of those addresses that are guaranteed
to be mapped to a particular address in all possible complete TLB walks (and to not have any
walks that result in a page fault), and to keep track of a subset of these addresses, the “valid”
addresses6, such that the induced map on these addresses is injective. Only those addresses sat-
isfying these criteria can be read or written. This flexibility is necessary for kernels that manage
memory agressively, trying to minimize the number of TLB flushes. Essentially, this amounts to
treating the TLB in the same way as a device, but with the additional proof obligation connect-
ing memory management to reading and writing, through address validity. This, however, we
currently consider future work.

sequentially consistent, it is not “memory sequential consistent” as defined in [Owe10], because it violates the
triangle race condition. Allowing sequentially consistent executions with triangle races is an absolute requirement
for practical reduction theorems for x86-TSO.

6Note that validity of an address is, in general, different for different processors in a given state, since they flush
their TLB entries independently.

31

3.3.4 Mixed ISA-sp and ISA-u Computations

In a typical kernel, there is a stark contrast between the kernel code and the user programs
running under the kernel. The kernel program needs a richer model that includes system in-
structions not accessible to user programs, but at the same time the kernel can be written using
a programming discipline that eliminates many irrelevant and mathematically inconvenient de-
tails. For example, if the kernel is being proved memory-safe, the programming model in the
kernel does not have to assign semantics to dereferencing of null pointers or overrunning array
bounds, whereas the kernel must provide to user code a more complex semantics that takes such
possibilities into account. Similarly, the kernel might obey a synchronization discipline that
guarantees sequential consistency, but since user code cannot be constrained to follow such a
discipline, the kernel must expose to user code the now architecturally-visible store buffers. In
the case of a hypervisor, the guests are themselves operating systems, so the MMU, which is
conveniently hidden from the hypervisor code (other than boot code and the memory manager),
is exposed to guests.

3.3.5 Future Work

Extension of the work in [Kov12] to a full a proof of the naive store buffer reduction theorem
should not be hard. In order to obtain the reduction theorem with dirty bits, it is clearly necessary
to extend the store buffer reduction theorem of [CS10] to machines with MMUs. This extension
is not completely trivial as MMUs directly access the caches without store buffers. Moreover
MMUs do not only perform read accesses; they write to the ’accessed’ and ’dirty’ bits of page
table entries. One way to treat MMUs and store buffers in a unified way is to treat the TLB as
shared data (in a separate address space) and the MMU as a separate thread (with an always-
empty store buffer). This does not quite work with the store buffer reduction theorem above;
because the TLB is shared data, reading the TLB to obtain an address translation for memory
access (which is done by the program thread) would have to flush the store buffer if it might
contain a shared write, which is not what we want. However, the reduction theorem of [CS10]
can be generalized so that a shared read does not require a flush as long as the same read can
succeed when the read “emerges” from the store buffer; this condition is easily satisfied by the
TLB, because a TLB of unbounded capacity can be assumed to grow monotonically between
store buffer flushes.

3.4 Serial Language Stack

3.4.1 Using Consistency Relations to Switch Between Languages

As explained in the introduction, realistic kernel code consists mostly of high-level language
code, with some assembler and possibly some macro assembler. Thus, complete verification
requires semantics for programs composed of several languages Lk with 0 ≤ k < n ∈ N. Since all
these languages are, at some point, compiled to some machine code language L, we establish for
each Lk that programs p ∈ Lk are translated to programs q ∈ L in such a way that computations
(di) – i.e. sequences of configurations di, i ∈ N – of program q simulate computations (ci) of

32

program p via a consistency relation consis(c, d) between high level configurations c and low
level configurations d. Translation is done by compilers and macro assemblers. Translators can
be optimizing or not. For non-optimizing translators, steps of language Lk are translated into one
or more steps of language L. One shows that, for each computation (ci) in the source language,
there is a step function s such that one has

∀i : consis(ci, ds(i))

If the translator is optimizing, consistency holds only at a subset of so called ’consistency
points’ of the source language. The translator does not optimize over these points. Let CP(i) be
a predicate indicating that configuration ci is a consistency point. Then an optimizing translator
satisfies

∀i : CP(i)→ consis(ci, ds(i))

Note that the consistency relation and the consistency points together specify the compiler. The
basic idea to formulate mixed language semantics is very simple. We explain it here only for
two language levels (which can be thought of as machine code and high level abstract semantics,
as in figure 3.4); extension to more levels is straightforward and occurs naturally when there is
a model stack of intermediate languages for compilation7. Imagine the computations (ci) of the
source program and (q j) of the target program as running in parallel from consistency point to
consistency point. We assume the translator does not optimize over changes of language levels,
so configurations ci where the language level changes are consistency points of the high level
language. Now there are two cases

• switching from Lk to L in configuration ci of the high level language: we know consis(ci, ds(i))
and continue from ds(i) using the semantics of language L.

• switching from L to Lk in configuration d j of the low level language: we try to find a
configuration c′ of the high level language such that consis(c′, d j) holds. If we find it we
continue from c′ using the semantics of the high level langue. If we do not find a consistent
high level language configuration, the low level portion of the program has messed up the
simulation and the semantics of the mixed program switches to an error state.

In many cases, switching between high-level languages Lk and Ll by going from Lk to shared
language L, and from the resulting configuration in L to Ll can be simplified to a direct transi-
tion from a configuration of Lk to a configuration of Ll by formalizing just the compiler calling
convention and then proving that the resulting step is equivalent to applying the two involved
consistency relations (e.g., see [SS12]). This explains why the specification of compilers neces-
sarily enters into the verification of modern kernels.

3.4.2 Related Work

The formal verification of a non-optimizing compiler for the language C0, a type safe PASCAL-
like subset of C, is reported in [Lei08]. The formal verification of an optimizing compiler for

7Note in particular, that, when two given high level language compilers have an intermediate language in common,
we only need to switch downwards to the highest level shared intermediate language.

33

the intermediate language C-minor is reported in [Ler09]. Mixed language semantics for C0 +

in line assembly is described in [GHLP05] as part of the Verisoft project [Ver07]. Semantics
for C0 + external assembly functions is described in [Alk09]. Both mixed language semantics
were used in sebsequent verification work of the Verisoft project. As the underlying C0 compiler
was not optimizing, there was only a trivial calling convention. Note that the nontrivial calling
conventions of optimizing compilers produce proof goals for external assembly functions: one
has to show that the calling conventions are obeyed by these functions. Only if these proof
goals are discharged, one can show that the combined C program with the external functions is
compiled correctly.

3.4.3 A Serial Language Stack for Hypervisor Verification

Similar to [Ler09], we use an intermediate language C-IL with address arithmetic and function
pointers. Chapter 5 of this thesis gives a formal definition of C-IL. The semantics of C-ILtogether
with a macro assembler obeying the same calling conventions is described in [SS12]. Calls from
C-IL to macro assembly and vice versa are allowed. To specify the combined semantics, one
has to describe the ABI (i.e. the layout of stack frames and the calling convention used). In
[Sha12], an optimizing compiler for C-IL is specified, a macro assembler is constructed and
proven correct, and it is shown how to combine C-IL compiler + macro assembler to a translator
for combined C-IL + macro assembly programs. As explained in the introduction, extension of
this language stack to C-IL + macro assembly + assembly is necessary to argue about saving
and restoring the base and stack pointers during a process switch or a task switch. This can be
done using the construction explained in subsection 3.4.1.

3.4.4 Future Work

We believe that, for the consistency relations normally used for specifying compilers and macro
assemblers, the mixed language semantics defined in subsection 3.4.1 is essentially deterministic
in the following sense: if consis(c, d) holds, then d is unique up to portions of c which will not
affect the future I/O behavior of the program (e.g. non reachable portions of the heap). A proof
of such a theorem should be written down.

3.5 Adding Devices

The obvious way to add devices is to represent them as concurrent threads, and to reason about
the combined program in the usual way. This approach is justified only if the operational se-
mantics of the language stack executing the program in parallel with the device models simulates
the behavior of the compiled code running on the hardware in parallel with the devices. This
is already nontrivial, but is further complicated by the addition of interrupts and interrupt han-
dlers. It is obviously undesirable to introduce interrupt handling as a separate linguistic concept,
so the natural way to model an interrupt handler is as a concurrent thread. However, the rela-
tionship between a program and an interrupting routine is somewhat closer than that between
independent threads; for example, data that might be considered "thread local" in the context
of a concurrent program might nevertheless be modified by an interrupt handler, which requires

34

careful management of when interrupts are enabled and disabled. Another complication that
arises with many kinds of devices is the need to capture and model real-time constraints.

3.5.1 Related Work

Formal methods have been extremely successful identifying large classes of frequent bugs in
drivers [BLR11]. In contrast, complete formal verification results of even of the most simple
drivers have only recently appeared. An obvious prerequisite is a formal model of devices that
can be integrated with processor models both at the hardware and ISA level [HIdRP05]. At the
hardware level, processor and devices work in parallel in the same clock domain. At the hard-
ware level, the models of some devices are completely deterministic; an example is a dedicated
device producing timer interrupts. But these models also can have nondeterministic portions,
e.g. the response time (measured in hardware cycles) of a disk access. When we lift the hard-
ware construction to the ISA model, one arrives in a natural way at a nondeterministic concurrent
model of computation: processor and device steps are interleaved in an order not known to the
programmer at the ISA level or above. This order observed at the ISA level can be constructed
from the hardware construction and the nondeterminism stemming from the device models. A
formal proof for the correctness of such a concurrent ISA model for a single core ’processor
+ devices’ was given in [Tve09, HT09]. The hardware construction for catching the external
interrupts and the corresponding correctness argument are somewhat tricky due to an - at first
sight completely harmless - nonstandard specification in the instruction set of the underlying
processor, which was taken from [MP00]. There, external interrupts are defined to be of type
’continue’, i.e. the interrupted instruction is completed before the interrupt is handled. In the
MIPS-86 instruction set, this definition was changed to reflect standard specification, where ex-
ternal interrupts are of type ’repeat’, i.e. the interrupted instruction is not executed immediately,
but is instead repeated after the run of the handler.

Now consider a system consisting of a (single core) processor and k devices as shown in figure
3.5, and consider a run of a driver for device i. Then one wants to specify the behavior of the
driver by pre and post conditions. For example, if the driver writes a page from the processor to
the disk, the precondition would state that the page is at a certain place in processor memory and
the post condition would specify that it is stored at a certain place on the memory of the disk.
To prove this one has to show that the other devices do not interfere with the driver run. Indeed
one can show an order reduction theorem showing that if during the driver run i) interrupts of
other devices are disabled and ii) the processor does not poll the devices, then in a driver run
with arbitrary interleaving all steps of devices , i can be reordered such that they occur after
the driver run without affecting the result of the computation. A formal proof of this result is
given in [ASS08, Alk09]. At the same place and in [AHL+09] the integration of devices into the
serial model stack of the Verisoft project (resulting in C0 + assembly + devices) and the formal
verification of disk drivers is reported.

Note that the above reorder theorem for device steps has the nontrivial hypothesis that there
are no side channels via the environment, i.e. the outside world between the devices. This is not
explicitely stated; instead it it is implicitly assumed by formalizing figure 3.5 in the obvious way.
For example, if device 2 is a timer triggering a gun aimed at device 1 during the driver run of
device 1, the post condition is false after the run because the device is not there any more. Side

35

correctness

MASM compiler C compiler

correctness

C + MASM

ABI

ISA−u

MASM C

Figure 3.4: Combined semantics of C and Macro
Assembler.

...
ISA−u

Device k

Device 1

Figure 3.5: ISA model with devices.

channels abound of course, in particular in real time systems. If device 1 is the motor control
and device 2 the climate control in a car, then the devices are coupled in the environment via the
power consumption.

3.5.2 Multi-Core Processors and Devices

Only some very first steps have been made towards justifying verification of multi-core proces-
sors along with devices. The current MIPS-86 instruction set contains a generic device model
and a specification of a simplified APIC system consisting of an I/O APIC (a device shared be-
tween processors that distributes device interrupts) and local APICs (processor local devices for
handling external and inter processor interrupts). Rudimentary models of interrupt controllers
for various architectures have been built as parts of VCC verifications.

3.5.3 Future Work

Instantiating the generic device model of MIPS-86 with an existing formal disk model is straight-
forward. Justification of the concurrent ’multi-core processor + devices model’ of the MIPS-86
ISA requires of course the following steps

• extending the MIPS-ISA hardware from [Pau12] with the pipelined interrupt mechanism
from [BJK+03]. The catching and triggering of external interrupts needs to be modified to
reflect that external interrupts are now of type ’repeat’. This should lead to a simplification
of the construction.

• reverse engineering of hardware APICs and the mechanism for delivering inter processor
interrupts (IPIs).

• showing that the hardware constructed in this ways interprets the MIPS-86 ISA. This proof
should be simpler than the proof in [Tve09].

Three more tasks remain open: i) proving a reorder theorem for driver runs, ii) the reduction the-
orem from multi-core ISA-sp to ISA-u has to be generalized to the situation, where the hardware
contains devices, and iii) devices must be integrated in the serial model stack (resulting in C-IL

36

+ macro assembly + assembly + devices) along the lines of [ASS08, Alk09, AHL+09]. These
results would justify language-level reasoning about device drivers in multi-core systems.

Formally verifying secure booting is another interesting research direction: ’secure boot’ guar-
antees that the verified hypervisor (if we have it) is indeed loaded and run. This involves the use
of verified hardware and libraries for crypto algorithms. Such libraries have already formally
been verified in the Verisoft project [Ver07].

3.6 Extending the Serial Language Stack to Multi-Core
Computations

Language stacks deal with languages at various levels and translations between them. A ’basic’
language stack for multi-core computations consists simply of i) a specification of some version
of ’structured parallel C’, ii) a compiler from this version of parallel C to the ISA of a multi-core
machine and iii) a correctness proof showing simulation between the source program and the
target program. Definitions of versions of structured parallel C (or intermediate languages close
to it) and correctnes proofs for their compilers proceed in the flowing way:

• one starts with a small-step semantics of the serial version of the high level language; con-
figurations of such semantics have program rests/continuations, stacks, and global mem-
ory. Configurations for parallel C are easily defined: keep program rests and stack local
for each thread; share the global variables among threads. Computations for unstructured
parallel C are equally easy to define: interleave steps of the small steps semantics of the
individual threads in an arbitrary order.

• compiling unstructured parallel C to multi-core machines tends to produce very inefficient
code. Thus one structures the computation by restricting accesses to memory with an
ownership discipline very similar to the one of [CS10]. Different versions of parallel
C differ essentially by the ownership discipline used. As a directive for the compiler,
variables which are allowed to be unowned and shared (such that they can e.g. be used for
locks) are declared as volatile. Accesses to volatile variables constitute I/O-points of the
computation.

• Compilers do not optimize over I/O-points, thus I/O-points are consistency points. Except
for accesses to volatile variables, threads are simply compiled by serial compilers. Code
produced for volatile accesses has two portions: i) possibly a fence instruction draining
the local store buffer; clearly this is only necessary if the target machine has store buffers,
and ii) an appropriate atomic ISA instruction.

• Compiler correctness is then argued in the following steps: i) The compiled code obeys
the ownership discipline of the target language in such a way that volatile accesses of
the compiled code correspond to volatile accesses of the source code, i.e. I/O points are
preserved. Then one proves both for the source language and the target language that, due
to the ownership discipline, memory accesses between I/O points are to local, owned, or
shared-read-only addresses only. This implies at both language levels an order reduction

37

theorem restricting interleavings to occur at I/O points only. We call such an interleaving
an I/O-block schedule. iii) One concludes simulation between source code and target code
using the fact that I/O points are compiler consistency points and thus in each thread
compiler consistency is maintained by the serial (!) computations between I/O-points.

3.6.1 Related Work

The ’verified software toolchain’ project [App11] presently deals with a ’basis’ language stack.
C minor is used as serial source language. The serial compiler is the formally verified opti-
mizing compiler from the CompCert project [Ler09]. Permissions on memory are modified by
operations on locks – this can be seen as a kind of ownersip discipline. The target machine has
sequentially consistent shared memory in the present work; draining store buffers is identified
as an issue for future work. Proofs are formalized in Coq. In the proofs the permission status
of variables is maintained in the annotation language. We will return to this project in the next
section.

3.6.2 Extending the Language Stack

A crucial result for the extension of a language stack for ’C + macro assembly + ISA-sp +

devices’ to the multi-core world is a general order reduction theorem that allows to restrict
interleavings to I/O-block schedules for programs obeying the ownership discipline, even if
the changes of language level occur in a single thread of a concurrent program. Besides the
volatile memory accesses, this requires the introduction of additional I/O points: i) at the first
step in hypervisor mode (AS ID = 0) after a switch from guest mode (AS ID , 0) because we
need compiler consistency there, and ii) at any step in guest mode because guest computation
is in ISA-sp and we no not want to restrict interleavings there. An appropriate general reorder
theorem is reported in [Bau12]. Application of the theorem to justify correctness of compilation
across the language stack for a version of parallel C-IL without dirty bits and a corresponding
simple handling of store buffers is reported in [Kov12].

3.6.3 Future Work

The same reorder theorem should allow to establish correctness of compilation across the lan-
guage stack for a structured parallel C-IL with dirty bits down to ISA-u with dirty bits. However,
in order to justify that the resulting program is simulated in ISA-sp with store buffers one would
need a version of the Cohen-Schirmer theorem for machines with MMUs.

The language stack we have introduced so far appears to establish semantics and correctness
of compilation for the complete code of modern hypervisors, provided shadow pages tables
(which we introduced in the introduction) are not shared between processors. This restriction is
not terribly severe, because modern processors tend more and more to provide hardware support
for two levels of translations, which renders shadow page tables unnecessary in the first place.
As translations used by different processors are often identical, one can save space for shadow
page tables by sharing them among processors. This permits the implemention of larger shadow
page tables leading to fewer page faults and hence to increased performance. We observe that

38

this introduces an interesting situation in the combined language stack: the shadow page tables
are now a C data structure that is accessed concurrently by C programs in hypervisor mode and
the MMUs of other processors running in guest mode. Recall that MMUs set accessed and dirty
bits; thus both MMU und C program can read and write. Now interleaving of MMU steps and
hypervisor steps must be restricted. One makes shadow page tables volatile and reorders MMU
accesses of other MMUs immediately after the volatile writes of the hypervisor. To justify
this, one has to argue that the MMUs of other MMUs running in guest mode never access data
structures other than shadow page tables; with the modelling of the MMU as an explicit piece of
concurrent code, this proof becomes part of ordinary program verification.

3.7 Soundness of VCC and its Use

Formal verification with unsound tools and methods is meaningless. In the context of proving the
correctness of a hypervisor using VCC as a proof tool, two soundness arguments are obviously
called for: i) a proof that VCC is sound for arguing about pure structured parallel C. ii) a method
to ’abuse’ VCC to argue about machine components that are not visible in C together with a
soundness proof for this method.

3.7.1 Related Work

In the Verisoft project, the basic tool for proving program code correct was a verification con-
dition generator for C0 whose proof obligations were discharged using the interactive theorem
prover Isabell-HOL. The soundness of the verification condition generator for C0 was estab-
lished in a formal proof [Sch06]. The proof tool was extended to handle ’external variables’ and
’external functions’ manipulating these variables. Components of configurations not visible in
the C0 configuration of kernels (processor registers, configurations of user processes, and device
state) were coded in these external variables. The proof technology is described in great detail
in [AHL+09].

A formal soundness proof for a program analysis tool for structured parallel C is developed
in the ’verified software toolchain’ project [App11].

3.7.2 Soundness of VCC

An obvious prerequisite for a soundness proof of VCC is a complete specification of VCC’s
annotation language and its semantics. VCC’s annotations have two parts: i) a very rich language
extension for ghost code, where ghost instructions manipulate both ghost variables and ghost
fields which are added to records of the original implementation language, and ii) a rich assertion
language referring to both implementation and ghost data. A complete definition of ’C-IL +

ghost’ can be found in chapter 6 of this thesis together with a proof that ’C-IL + ghost’ is
simulated by C-IL provided ghost code always terminates.

The VCC assertion language is documented informally in a reference manual and a tutorial
[Micb]; the reference manual also has some rudimentary mathematical underpinnings. More of
these underpinnings are described in various articles [CDH+09, CAB+09, CMTS09]. However,

39

there is currently no single complete mathematical definition. Thus establishing the soundness
of VCC still requires considerable work (see subsection 3.7.5).

3.7.3 Using VCC for Languages Other Than C

As C is a universal programming language, one can use C verifiers to prove the correctness of
programs in any other programming language L by i) writing in C a (sound) simulator for pro-
grams in L, followed by ii) arguing in VCC about the simulated programs, and iii) proving prop-
erty transfer from VCC results to results over the original code given in language L. Extending
’C + macro assembly + assembly’ programs with a simulator for program portions not written
in C then allows to argue in VCC about such programs. A VCC extension for x64 assembly
code is described in [Mau11, MMS08] and was used to verify the 14K lines of macro assembly
code of the Hyper-V hypervisor. In the tool, processor registers were coded in a straightforward
way in a struct, a so called hybrid variable which serves the same role as an external variable
in the Verisoft tool chain mentioned above. Coding the effect of assembly or macro assembly
instructions amounts to trivial reformulation of the semantics of the instructions as C functions.
Calls and returns of macro assembly functions are coded in a naive way. The extension supports
gotos within a routine and function calls, but does not support more extreme forms of control
flow, e.g. it cannot be used to prove the correctness of thread switch via change to the stack
pointer.

Currently, however, there is a slight technical problem: VCC does currently not support hybrid
variables directly. We cannot place hybrid variables in ghost memory, because information
clearly flows from hybrid variables to implementation variables, and this would violates a crucial
hypothesis in the simulation theorem between original and annotated program. If we place it
into implementation memory, we have to guarantee that it is not reachable by address arithmetic
from other variables. Fortunately, there currently is a possible workaround: physical addresses
of modern processors have at most 48 bits and VCC allows up to 64 bit addresses. Thus hybrid
variables can be placed in memory at addresses larger than 248 − 1. Future versions of VCC are
planned to support hybrid memory as a third kind of memory (next to implementation and ghost
memory) on which the use of mathematical types is allowed; in turn, the formalization of ’C-IL
+ ghost’ should be extended to include this special hybrid memory.

The papers [Sha12, PSS12] show the soundness of an assembler verification approach in
the spirit of Vx86 relative to the mixed ’C-IL + macro assembly’ language semantics of our
language stack.

3.7.4 Verifying Device Drivers with VCC

One way to reason about device drivers is to use techniques from concurrent program reasoning.
In a concurrent program, one can rarely specify a function on shared state via a pre and post
condition on the state of the device, since other concurrent operations may overlap the execution
of the function. Instead, one can specify the function as a linearizable operation that appears
to take place atomically at some point between invocation of the function and its return. In
VCC, the usual idiom for such verification is to introduce a ghost data object representing the
abstract state provided by the device in combination with the driver; the state of this object is

40

coupled to the concrete states of the driver and the device via a coupling invariant. Associated
with a function call is a ghost object representing the operation being performed; this operation
includes a boolean field indicating whether the operation has completed; an invariant of the
operation is that in any step in which this field changes, it goes from false to true and the abstract
state of the device changes according to the semantics of the operation. The abstract device
has a field that indicates which operation (if any) is “executing” in any particular step, and has
an invariant that the abstract state of the device changes only according to the invariant of the
operation being performed (which might also be an operation external to the system).

However, another current limitation of VCC is that it allows ordinary C memory operations
only on locations that act like memory. This means that it cannot directly encode devices where
writing or reading a memory mapped I/O (MMIO) address has an immediate side effect on the
device state; currently, the semantics of such operations have to be captured via intrinsics.

3.7.5 Future Work

A proof of the soundness of VCC apparently still requires the following three major steps:

• documenting the assertion language. This language is rich and comprises i) the usual
assertions for serial code, ii) an ownership calculus for objects which is used in place of
separation logic to establish frame properties, and iii) a nontrivial amount of constructs
supporting arguments about concurrency.

• documenting the assertions which are automatically generated by VCC in order to i) guar-
antee the termination of ghost code, and ii) enforce an ownership discipline on the vari-
ables and a flushing strategy for store buffers.

• proving the soundness of VCC by showing i) ghost code of verified programs terminates;
thus we have simulation between the annotated program and the implementation code
(as in chapter 6 of this thesis), ii) assertions proven in VCC hold in the parallel C-IL
semantics; this is the part of the soundness proof one expects from classical theory (this
portion of the soundness proofs for VCC should work along the lines of soundness proofs
for rely/guarantee logics – a proof outline is given in the VCC manual [Micb]), and iii)
variables of verified programs obey ownership discipline and code of translated programs
obeys a flushing discipline for store buffers; this guarantees correct translation to the ISA-
sp level of the multi-core machine.

3.8 Hypervisor Correctness

Figure 3.7 gives a very high-level overview of the structure of the overall theory. After estab-
lishing the model stack and the soundness of proof tools and their application, what is left to do
is the actual work of program verification. Thus we are left in this survey paper with the task to
outline the proof of a hypervisor correctness theorem which expresses virtualization of several
ISA-sp machines enriched with system calls stated on ’C + macro assembly + ISA-u + ISA-sp’.
Fortunately we can build on substantial technology from other kernel verification projects.

41

guest

ownership
+

dirty bit

ISA−reduction

compiler

hypervisor

ISA−sp

ISA−u

ISA−sp

C + MASM

Figure 3.6: Using ownership and dirty bit conditions to
achieve simulation in a hypervisor model stack by propa-
gating ownership downwards.

ISA−reduction + compilation

timing analysis

hardware correctness

ISA−sp

correctness

Digital Hardware

hypervisor

VCC−C + ... + ISA−sp

soundness

Detailed Hardware

Figure 3.7: High-level overview of
the model stack and main theorems.

3.8.1 Related Work

The well known ’seL4’ project [KAE+10] succeeded in formally verifying the C portion of an
industrial microkernel comprising about 9000 lines of code (LOC), although that verification
ignored a number of important hardware issues such as the MMU and devices, and used a rather
unrealistic approach to interrupt handling, largely because that verification was based entirely
on sequential program reasoning. In the Verisoft project [Ver07] both the C portion and the
assembly portion of two kernels was formally verified: i) the code of a small real real time
kernel called OLOS comprising about 450 LOC [DSS09] and ii) the code of a general purpose
kernel called VAMOS of about 2500 LOC [DDB08, Dör10]. In that project the verification of
C portions and assembly portions was decoupled [GHLP05] in the following way: A generic
concurrent model for kernels and their user processes called CVM (for ’communicating virtual
machines’) was introduced, where a so called ’abstract kernel’ written in C communicates with a
certain number of virtual machines vm(u) (see figure 3.8) programmed in ISA. At any time either
the abstract kernel or a user process vm(u) is running. The abstract kernel uses a small number
of external functions called ’CVM primitives’ which realize communication between the kernel,
user processes and devices. The semantics of these user processes is entirely specified in the
concurrent CVM model. To obtain the complete kernel implementation, the abstract kernel is
linked with a few new functions and data structures, essentially process control blocks, page
tables and a page fault handler in case the kernel supports demand paging (e.g. like VAMOS
does); CVM primitives are implemented in assembly language. The resulting kernel in called
the ’concrete kernel’. Correctness theorems state that the CVM model is simulated in ISA by the
compiled concrete kernel together with the user machines running in translated mode. Since the
C portions of seL4 are already formally verified, one should be able to obtain a similar overall
correctness result by declaring appropriate parts of seL4’s C implementation as abstract kernel

42

...

CVM

...

concrete kernel

CVM primitives

vm(k)

implementation data structures
+ functions

abstract kernel

vm(1) vm(2)

Figure 3.8: The CVM kernel model.

without too much extra effort.

3.8.2 Hypervisor Verification in VCC

That VCC allows to verify the implementations of locks has been demonstrated in [HL09].
Partial results concerning concurrent C programs and their interrupt handlers are reported in
[ACHP10]. Program threads and their handlers are treated like different threads and only the C
portions of the programs are considered; APICs and the mechanism for delivery of inter proces-
sor interrupts (IPIs) are not modeled. Thus the treatment of interrupts is still quite incomplete.
The full formal verification of a small hypervisor written in ’C + macro assembly + assembly’
in VCC using the serial language stack of section 3.4 (which is also illustrated in figure 3.6) and
the proof technology described in subsection 3.7.3 is reported in [Sha12, PSS12]. The formal
verification of shadow page table algorithms without sharing of shadow page tables between
processors is reported in [Kov12, ACKP12].

3.8.3 Future Work

The following problems still have to be solved:

• Adding features to VCC that allow memory mapped devices to be triggered by reading or
writing to an address that already has a value identical to the data written.

• Proving the correctness of a ’kernel layer’ of a hypervisor. In order to provide guests with
more virtual processors than the number np of physical processors of the host, one splits
the hypervisor in a kernel layer and a virtualization layer. The kernel layer simulates large
numbers n of ’C + macro assembly + ISA-sp’ threads by np such threads. Implemen-
tation of thread switch is very similar to the switching of guests or of user processes. A
data structure called thread control block (TCB) takes the role of process control block.

43

Correctness proofs should be analogous to kernel correctness proofs but hinge on the full
power of the semantics stack.

• The theory of interrupt handling in concurrent C programs and its application in VCC has
to be worked out. The conditions under which an interrupt handler can be treated as an
extra thread needs to be worked out. This requires to refine ownership between program
threads and their interrupt handlers. For reorder theorems, the start and return of handler
threads has to become an I/O-point. Finally, for liveness proofs, the delivery of IPI’s (and
the liveness of this mechanism) has to be included in the concurrent language stack and
the VCC proofs.

• Proving actual hypervisor correctness by showing that the virtualization layer (which pos-
sibly uses shadow page tables depending on the underlying processor) on top of the kernel
layer simulates an abstract hypervisor together with a number of guest machines and their
user processes. Large portions of this proof should work along the lines of the kernel
correctness proofs of the Verisoft project. New proofs will be needed when one argues
about the state of machine components that cannot explicitly be saved at a context switch.
Store buffers of sleeping guests should be empty, but both caches and TLBs of sleeping
processors may contain nontrivial data, some or all of which might be flushed during the
run of other guests.

3.9 Conclusion

Looking at the last section, we see that i) the feasibility of formal correctness proofs for industrial
kernels has already been demonstrated and that ii) correctness proofs for hypervisors are not
that much more complex, provided an appropriate basis of mixed language semantics and proof
technology has been established. It is true that we have spent 6 of the last 7 sections of this
chapter for outlining a paper theory of this basis. But this basis seems to be general enough to
work for a large variety of hypervisor constructions such that, for individual verification projects,
’only’ the proofs outlined in section 3.8 need to be worked out.

44

4
MIPS-86 – a Formal Model of
a Multi-Core MIPS Machine

This chapter provides a horizontal slice of the model stack presented in the last chapter in terms
of a simple multi-core MIPS model we call MIPS-86. It aims at providing an overall specifi-
cation for the reverse-engineered hardware models provided in [Pau12]. Essentially, we take
the simple sequential MIPS processor model from [Pau12] and extend it with a memory and
device model that resembles the one of modern x86 architectures. The model has the following
features:

• Sequential processor core abstraction with atomic execute-and fetch transitions

In order to justify modeling instruction execution by an atomic transition that combines
fetching the instruction from memory and executing it, the absence of self-modifying code
is a prerequisite. When instructions being fetched cannot be changed by the execution of
other cores, these fetch cycles can be reordered to occur right before the corresponding
execute cycle. This, in turn, means that the semantics of fetch and execute steps can be
combined into single atomic steps.

• Memory-management unit (MMU) with translation-lookaside buffer (TLB)

The memory-management unit considered performs a 2-level translation from virtual to
physical addresses, caching partial and complete translations (which are called walks) in
a translation lookaside buffer (TLB). The page table origin, i.e. the address of the first-
level page table, is taken from the special purpose register pto. In order to allow an update
of page-tables to be performed in a consistent manner, the machine is extended by two
instructions: A flush-operation that empties the TLB of all walks, and an invalidate-page-
operation that removes all walks to a certain virtual page address from the TLB.

• Store buffer (SB)

In order to argue about store-buffer reduction, we provide a processor model with store-
buffer. The store-buffer we consider is simple in the sense that it does not reorder or
combine accesses but instead simply acts as a first-in-first-out queue for memory write op-
erations to physical addresses. We provide two serializing instructions: A fence-operation
that simply drains the store-buffer, and a read-modify-write-operation that atomically up-
dates a memory word on a conditional basis while also draining the store-buffer.

45

• Processor-local advanced programmable interrupt controller (local APIC)

In order to have a similar boot mechanism as the x86-architecture, we imitate the inter-
processor-interrupt (IPI) mechanism of the x86-architecture. We extend our MIPS model
by a strongly simplified local APIC for each processor. The local APIC provides interrupt
signals to the processor and acts as a device for sending inter-processor-interrupts between
processors. Local APIC ports are mapped into a processor’s memory space by means of
memory-mapped I/O.

• I/O APIC

The I/O APIC is a component that is connected to the devices of the system and to the lo-
cal APICs of the processors of the system. It provides the means to configure distribution
of device interrupts to the processors of the multi-core system, i.e. whether a given device
interrupt is masked and which processor will receive the interrupt. We do not consider
edge-triggered interrupts, however, we do model the end-of-interrupt (EOI) protocol be-
tween local APIC and I/O APIC: After sending an interrupt signal to a local APIC, the I/O
APIC will not sample a raised device interrupt again until the corresponding EOI message
has been received from the local APIC.

• Devices

We use a generic framework along the lines of the Verisoft device model [HRP05]: Device
configurations are required to have a certain structure which can be instantiated, e.g. cer-
tain device transitions that specify side-effects associated with reading or writing device
ports must be provided. Every device consists of ports and an interrupt line it may raise
as well as some internal state that may be instantiated freely. Devices may interact with
an external environment by receiving inputs and providing outputs.

In the following, we proceed by providing tables that give an overview over the instruction-set-
architecture of MIPS-86, followed by operational semantics of the non-deterministic MIPS-86
model.

4.1 Instruction-Set-Architecture Overview and Tables

The instruction-set-architecture of MIPS-86 provides three different types of instructions: I-type
instructions, J-type instructions and R-type instructions. I-type instructions are instructions that
operate with two registers and a so-called immediate constant, J-type instructions are absolute
jumps, and R-type instructions rely on three register operands.

4.1.1 Instruction Layout

The instruction-layout of MIPS-86 depends on the type of instruction. In the subsequent defini-
tion of the MIPS-86 instruction layout, rs, rt and rd specify registers of the MIPS-86 machine.

46

I-Type Instruction Layout

Bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 0
Field Name opcode rs rt immediate constant imm

R-Type Instruction Layout

Bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . . . 6 5 . . . 0
Field Name opcode rs rt rd shift amount sa function code f un

J-Type Instruction Layout

Bits 31 . . . 26 25 . . . 0
Field Name opcode instruction index iindex

Effect of Instructions

A quick overview of available instructions is given in tables 4.1 (for I-type), 4.2 (for J-type),
and 4.3 (for R-type). Note that these tables – while giving a general idea what is available and
what it approximately does – are not comprehensive. In particular, note that for all instructions
whose mnemonic ends with ”u”, register values are interpreted as binary numbers whereas in
all other cases they are interpreted as two’s-complement numbers. Note also that MIPS-86 is
still incomplete in the sense that in order to accommodate the distributed cache model of the
hardware construction, the architecture needs to be extended to allow proper management of
cache-bypassing memory access (e.g. to devices). The abstract model provided here is one
where caches are already abstracted into a view of a single coherent memory. The exact seman-
tics of all instructions present in the provided instruction-set architecture tables is given later in
the transition function of the MIPS-86 processor core.

4.1.2 Coprocessor Instructions and Special-Purpose Registers

Note that in contrast to most MIPS-architectures, in MIPS-86 coprocessor-instructions are pro-
vided as R-type instructions. Coprocessor instructions in MIPS-86 deal with moving data be-
tween special-purpose register file and general-purpose register file and exception return. The
available special purpose registers of MIPS-86 are listed in table 4.4.

4.1.3 Interrupts

Traditionally, hardware architectures provide an interrupt mechanism that allows the processor
to react to events that require immediate attention. When an interrupt signal is raised, the hard-
ware construction reacts by transferring control to an interrupt handler – on the level of hardware,
this basically means that the program counter is set to the specific address where the hardware
expects the interrupt handler code to be placed by the programmer and that information about
the nature of the interrupt is provided in special registers. Since interrupts are mainly supposed
to be handled by an operating system instead of by user processes, such a jump to interrupt
service routine (JISR) step also tends to involve switching the processor to system mode.

47

Table 4.1: I-Type Instructions of MIPS-86.

opcode Mnemonic Assembler-Syntax d Effect
Data Transfer
100 000 lb lb rt rs imm 1 rt = sxt(m)
100 001 lh lh rt rs imm 2 rt = sxt(m)
100 011 lw lw rt rs imm 4 rt = m
100 100 lbu lbu rt rs imm 1 rt = 024m
100 101 lhu lhu rt rs imm 2 rt = 016m
101 000 sb sb rt rs imm 1 m = rt[7:0]
101 001 sh sh rt rs imm 2 m = rt[15:0]
101 011 sw sw rt rs imm 4 m = rt
Arithmetic, Logical Operation, Test-and-Set
001 000 addi addi rt rs imm rt = rs + sxt(imm)
001 001 addiu addiu rt rs imm rt = rs + sxt(imm)
001 010 slti slti rt rs imm rt = (rs < sxt(imm) ? 1 : 0)
001 011 sltui sltui rt rs imm rt = (rs < zxt(imm) ? 1 : 0)
001 100 andi andi rt rs imm rt = rs ∧ zxt(imm)
001 101 ori ori rt rs imm rt = rs ∨ zxt(imm)
001 110 xori xori rt rs imm rt = rs ⊕ zxt(imm)
001 111 lui lui rt imm rt = imm016

opcode rt Mnemonic Assembler-Syntax Effect
Branch
000 001 00000 bltz bltz rs imm pc = pc + (rs < 0 ? imm00 : 4)
000 001 00001 bgez bgez rs imm pc = pc + (rs ≥ 0 ? imm00 : 4)
000 100 beq beq rs rt imm pc = pc + (rs = rt ? imm00 : 4)
000 101 bne bne rs rt imm pc = pc + (rs , rt ? imm00 : 4)
000 110 00000 blez blez rs imm pc = pc + (rs ≤ 0 ? imm00 : 4)
000 111 00000 bgtz bgtz rs imm pc = pc + (rs > 0 ? imm00 : 4)

Here, m = md(ea(c, I)).

Table 4.2: J-Type Instructions of MIPS-86

opcode Mnemonic Assembler-Syntax Effect
Jumps
000 010 j j iindex pc = bin32(pc+4)[31:28]iindex00
000 011 jal jal iindex R31 = pc + 4 pc = bin32(pc+4)[31:28]iindex00

48

Table 4.3: R-Type Instruction of MIPS-86.

opcode fun Mnemonic Assembler-Syntax Effect
Shift Operation
000000 000 000 sll sll rd rt sa rd = sll(rt,sa)
000000 000 010 srl srl rd rt sa rd = srl(rt,sa)
000000 000 011 sra sra rd rt sa rd = sra(rt,sa)
000000 000 100 sllv sllv rd rt rs rd = sll(rt,rs)
000000 000 110 srlv srlv rd rt rs rd = srl(rt,rs)
000000 000 111 srav srav rd rt rs rd = sra(rt,rs)
Arithmetic, Logical Operation
000000 100 000 add add rd rs rt rd = rs + rt
000000 100 001 addu addu rd rs rt rd = rs + rt
000000 100 010 sub sub rd rs rt rd = rs − rt
000000 100 011 subu subu rd rs rt rd = rs − rt
000000 100 100 and and rd rs rt rd = rs ∧ rt
000000 100 101 or or rd rs rt rd = rs ∨ rt
000000 100 110 xor xor rd rs rt rd = rs ⊕ rt
000000 100 111 nor nor rd rs rt rd = rs ∨ rt
Test Set Operation
000000 101 010 slt slt rd rs rt rd = (rs < rt ? 1 : 0)
000000 101 011 sltu sltu rd rs rt rd = (rs < rt ? 1 : 0)
Jumps, System Call
000000 001 000 jr jr rs pc = rs
000000 001 001 jalr jalr rd rs rd = pc + 4 pc = rs
000000 001 100 sysc sysc System Call
Synchronizing Memory Operations
000000 111 111 rmw rmw rd rs rt rd’ = m

m’ = (rd = m ? rt : m)
000000 111 110 mfence mfence
TLB Instructions
000000 111 101 flush flush flushes TLB
000000 111 100 invlpg invlpg rd rs flushes TLB translations

for addr. rd from ASID rs

Coprocessor Instructions
opcode rs fun Mnemonic Assembler-Syntax Effect
010000 10000 011 000 eret eret Exception Return
010000 00100 movg2s movg2s rd rt spr[rd] := gpr[rt]
010000 00000 movs2g movs2g rd rt gpr[rt] := spr[rd]

49

Table 4.4: MIPS-86 Special Purpose Registers.

i synonym
0 sr status register (contains masks to enable/disable maskable interrupts)
1 esr exception sr
2 eca exception cause register
3 epc exception pc (address to return to after interrupt handling)
4 edata exception data (contains effective address on pfls)
5 pto page table origin
6 asid address space identifier
7 mode mode register ∈ {0311, 032}

Table 4.5: MIPS-86 Interrupt Types and Priority.

interrupt level shorthand internal/external type maskable
1 I/O eev repeat 1 devices
2 ill iev abort 0 illegal instruction
3 mal iev abort 0 misaligned
4 pff iev repeat 0 page fault fetch
5 pfls iev repeat 0 page fault load/store
6 sysc iev continue 0 system call
7 ovf iev continue 1 overflow

Interrupts come in two major flavors: There are internal interrupts that are triggered by ex-
ecuting instructions, e.g. an overflow occuring in an arithmetic operation, a system-call in-
struction being executed (which is supposed to have the semantics of returning control to the
operating system in order to perform some task requested by a user processor), or a page fault
interrupt due to a missing translation in the page tables. In contrast, there are external interrupts
which are triggered by an external source, e.g. the reset signal or device interrupts. Interrupts of
lesser importance tend to be maskable, i.e. there is a control register that allows the programmer
to configure that certain kinds of interrupts shall be ignored by the hardware.

The possible interrupt sources and priorities of MIPS-86 are listed in table 4.5. Interrupts are
either of type repeat, abort, or continue. Here repeat expresses that the interrupted instruction
will be repeated after returning from the interrupt handler, abort means that the exception is
usually so severe that the machine will be by default unable to return from the exception, and
continue means that even though there is an interrupt, the execution of the interrupted execution
will be completed before jumping to the interrupt-service-routine. In case of a continue-interrupt
execution after exception return will proceed behind the interrupted execution. Note that the
APIC mechanism is discussed in more detail in section 4.7.1.

50

4.2 Overview of the MIPS-86-Model

4.2.1 Configurations

We define the set K of configurations of an abstract simplified multi-core MIPS machine in a
top-down way. I.e., we first give a definition of the overall concurrent machine configuration
which is composed of several subcomponent configurations whose definitions follow.

Definition 4.1 (Configuration of MIPS-86) A configuration

c = (c.p, c.running, c.m, c.d, c.ioapic) ∈ K

of MIPS-86 is composed of the following components:

• a mapping from processor identifier to processor configuration, c.p : [0 : np − 1]→ Kp,

(np is a parameter that describes the number of processors of the multi-core machine)

• a mapping from processor identifier to a flag that describes whether the processor is run-
ning, c.running : [0 : np − 1]→ B,

(If c.running(i) = 0, this means that the processor is currently waiting for a startup-inter-
processor-interrupt (SIPI))

• a shared global memory component c.m ∈ Km,

• a mapping from device identifiers to device configurations, c.dev : [0 : nd − 1] → Kdev,
and

(where Kdev =
⋃nd−1

i=0 Kdev(i) is the union of individual device configurations, and nd is a
parameter that describes the number of devices considered)

• an I/O APIC, c.ioapic ∈ Kioapic.

Processor

Definition 4.2 (Processor Configuration of MIPS-86)

Kp = Kcore × Ksb × Ktlb × Kapic

A processor p = (p.core, p.sb, p.tlb, p.apic) ∈ Kp is subdivided into the following components:

• a processor core p.core ∈ Kcore,

The processor core executes instructions according to the Instruction-Set-Architecture
(ISA).

• a store buffer p.sb ∈ Ksb,

A store-buffer buffers write accesses to the memory system local to the processor. If
possible, read requests by the core are served by the store-buffer. Writes leave the store-
buffer in the order they were placed (first-in-first-out).

51

...

I/O APIC

device subsystem

device device...

memory
subsystem

m

core
sb

tlb
local APIC

processor

core
sb

tlb
local APIC

processor

core
sb

tlb
local APIC

processor

external
environment

external
environment

Figure 4.1: Overview of MIPS-86 Model Components.

• a TLB p.tlb ∈ Ktlb

A translation-lookaside buffer (TLB) performs and caches address translations to be used
by the processor in order to establish a virtual memory abstraction.

• a local APIC p.apic ∈ Kapic

A local APIC receives interrupt signals from the I/O APIC and provides them to the pro-
cessor. Additionally, it acts as a processor-local device that can send inter-processor-
interrupts (IPI) to other processors of the system.

Definitions of Kcore,Ksb,Ktlb, and Kapic are each given in the section that defines the corre-
sponding component in detail.

Memory

Definition 4.3 (Memory Configuration of MIPS-86) For this abstract machine, we consider a
simple byte-addressable shared global memory component

Km ≡ B
32 → B8

which is sequentially consistent.

52

Definition 4.4 (Reading Byte-Strings from Byte-Addressable Memory) For a memory m ∈
Km and an address a ∈ B32 and a number d ∈ N of Bytes, we define

md(a) =

md−1(a +32 132) ◦ m(a) d > 0
ε d = 0

4.2.2 Transitions

We define the semantics of the concurrent MIPS machine MIPS-86 as an automaton with a
partial transition function

δ : K × Σ ⇀ K

and an output function
λ : K × Σ ⇀ Ω

where Σ is the set of inputs to the automaton and Ω is the set of outputs of the automaton. In
particular, in order to be able to define the semantics of our system as a deterministic automaton,
these inputs do include scheduling information, i.e. they determine exactly which subcomponent
makes what step. Note that, in the following sections, we will first define the semantics of all
individual components before we give the definition of δ and λ in section 4.10.

Scheduling

We provide a model in which the execution order of individual components of the system is not
known to the programmer. In order to prove correct execution of code, it is necessary to consider
all possible execution orders given by the model. We model this non-deterministic behavior by
deterministic automata which take, as part of their input, information about the execution order.
This is done in such a way that, in every step, it is specified exactly which subcomponent of the
overall system makes which particular step.

There are occasions where several components make a synchronous step. In such cases,
our intuition is that one very specific subcomponent actively performs a step, while all other
components make a passive step that merely responds to the active component in some way.
The memory, in particular, is such a passive component. Also, devices can react passively to
having their registers read by a processor, causing a side-effect on reading.

4.3 Memory

Definition 4.5 (Memory Transition Function) We define the memory transition function

δm : Km × Σm ⇀ Km

where
Σm = B32 × (B8)∗ ∪ B32 × B32 × B32

Here,

53

• (a, v) ∈ B32 × (B8)∗ – describes a write access to address a with value v, and

• (c, a, v) ∈ (B32)3 – describes a read-modify-write access to address a with compare-value
c and value v to be written in case of success.

We have

δm(m, in)(x) =

byte(〈x〉 − 〈a〉, v) in = (a, v) ∧ 0 ≤ 〈x〉 − 〈a〉 < len(v)/8
byte(〈x〉 − 〈a〉, v) in = (c, a, v) ∧ m4(a) = c ∧ 0 ≤ 〈x〉 − 〈a〉 < 4
m(x) otherwise

Note that, in this memory model, we assume that read accesses cannot change the memory
state – thus, any result of a read operation can simply be computed directly from a given memory
configuration. In a more concrete model where caches are still visible, we need to consider
memory reads as explicit inputs to the cache system.

4.4 TLB

4.4.1 Address Translation

Most processors, including MIPS-86 and x86-64, provide virtual memory which is mostly used
for implementing process separation in the context of an operating system. By performing ad-
dress translation from virtual memory addresses to physical memory addresses (i.e. regular
memory addresses of the machine’s memory system), the notion of a virtual memory is estab-
lished – if this translation is injective, virtual memory has regular memory semantics (i.e. writing
to an address affects only this single address and values being written can be read again later).
Mostly, this is used to establish several virtual address spaces that are mapped to disjoint address
regions in the physical memory of the machine. User processes of the operating system can then
each be run by the operating system in their respective address spaces without any risk of user
processes affecting each other or the operating system.

Processors tend to provide a mechanism to activate and deactivate address translation – usually
by writing some special control register. In the case of MIPS-86, a special-purpose-register mode
is provided which decides whether the processor is running in system mode, i.e. without address
translation, or in user mode, i.e. with address translation.

The translation from virtual addresses to physical addresses is usually given at the granularity
of memory pages – in the case of MIPS-86, a memory page consists of 212 consecutive bytes.
Since MIPS-86 is a 32-bit architecture, a page address thus consists of 20 Bits. Defining a
particular translation from virtual addresses to phyiscal addresses is done by establishing page
tables that describe the translation. In the most simple case, a single-level translation can be
given by a single page table – which is a sequence of page table entries that each describe how –
and if – a given virtual page address is translated to a corresponding physical page address. The
translation tends to be partial, i.e. not every virtual page address has a corresponding physical
page address, which is reflected in the page table entry by the present bit. Trying to access a
virtual address in user mode that does not have a translation set up in the page table according to

54

the present bit then results in a page-fault interrupt which returns the processor to system mode
– e.g. allowing the operating system to set up a translation for the faulting virtual page address.

MIPS-86, like x86-64, applies a multi-level page table hierarchy: Instead of translating using
a single page table that describes the virtual page address to physical page address translation,
there are several levels of page tables. One advantage of this is that multi-level page tables
tend to require less memory space: Instead of providing a page table entry for every virtual
page address, the page tables now form a graph in such a way that every level of page tables
effectively describes a part of the page address translation by linking to page tables belonging to
the next level of translation. Since only a part of the translation is provided, these page tables are
much smaller than a single-level translation page table. MIPS-86 provides 2 levels of address
translation (in comparison, x86-64 makes use of 4 levels). The first level page table – also called
page directory – translates the first 10 Bits of a page address by describing where the page
tables for translating the remaining 10 Bits can be found, i.e. they contain addresses of second
level page tables. These terminal page tables then provide the physical page addresses. Note
that, in defining a multi-level translation via page tables, page table entries can be marked as
not present in early translation levels which essentially means that no further page tables need
to be provided for the given virtual page address prefix – which effectively is the reason why
multi-level translations tend to require less memory space.

The actual translation is performed in hardware by introducing a circuit called memory man-
agement unit (MMU) which serves translation requests from the processor by accessing the page
tables residing in memory. In a naive hardware implementation of address translation, the pro-
cessor running in user mode could simply issue translation requests to the MMU in order as
needed for instruction execution and wait for the MMU circuit to respond with a translation.
Such a synchronous implementation however, would mean that the processor is constantly wait-
ing for the MMU to perform translations, limiting the speed of execution to that of the MMU
performing as many memory accesses as needed to compute the translations needed for instruc-
tion fetch and execution. Fortunately, however, it can be observed that instruction fetch in user
mode to a large degree tends to require translations for virtual addresses that lie in the same page
(with an appropriate programming style this is also mostly true for memory accesses performed
by instructions), thus, in order not to constantly have the MMU repeat a translation for the same
virtual page address, it might be helpful to keep translations available to the processor in a spe-
cial processor-local cache for translations. This cache is commonly called translation lookaside
buffer (TLB) and is updated by the MMU whenever necessary in order to serve translation re-
quests by the processor. Note that a hardware TLB may cache partial translations for virtual
page address prefixes in order to reuse them later.

Since the operating system may modify the page tables, translations in the TLB may become
outdated – removing or changing translations provided by the page tables can make the TLB
inconsistent with the page tables. Thus, architectures with TLB tend to provide instructions that
allow the processor to control the state of the TLB to some degree. The functionality needed in
order to keep the TLB consistent with the page tables is in fact quite simple: In order to ensure
that all translations present in the TLB are also given by the page tables, all we need is to be able
to remove particular translations (or all translations) from the TLB. Both x86-64 and MIPS-86
provide such instructions – for MIPS-86, invlpg invalidates a single virtual page address, while
f lush removes all translations from the TLB.

55

4.4.2 TLB Configuration

When the MIPS-86 processor is running in user mode, all memory accesses are subject to ad-
dress translation according to page tables residing in memory. In order to perform address
translation, the MMU operates on the page tables to create, extend, complete, and drop walks. A
complete walk provides a translation from a virtual address to a physical address of the machine
that can in turn be used by the processor core. Our TLB offers address space identifiers – a tag
that can be used to associate translations with particular users – which reduces the need for TLB
flushes when switching between users.

Definition 4.6 (TLB Configuration of MIPS-86) We define the set of configurations of a TLB
as

Ktlb = 2Kwalk

where the set of walks Kwalk is given by

Kwalk = B20 × B6 × {0, 1, 2} × B20 × B3 × B

The components of a walk w = (w.va,w.asid,w.level,w.ba,w.r,w. f ault) ∈ Kwalk are the fol-
lowing:

• w.va ∈ B20 – the virtual page address to be translated,

• w.asid ∈ B6 – the address space identifier (ASID) the translation belongs to,

• w.level ∈ {0, 1, 2} – the current level of the walk, i.e. the number of remaining walk
extensions needed to complete the walk,

• w.ba ∈ B20 – the physical page address of the page table to be accessed next, or, if the
walk is complete, the result of the translation,

• w.r ∈ B3 – the accumulated access rights, and

Here, r[0] stands for write permission, r[1] for user mode access, and r[2] expresses
execute permission.

• w. f ault ∈ B – a page fault indicator.

4.4.3 TLB Definitions

In the following, we make definitions that describe the structure of page tables and the translation
function specified by a given page table origin according to a memory configuration. Addresses
are split in two page index components px2, px1 and a byte offset px0 within a page:

a = a.px2 ◦ a.px1 ◦ a.px0

Definition 4.7 (Page and Byte Index) Given an address a ∈ B32, we define

• the second-level page index a.px2 = a[31 : 22],

56

• the first-level page index a.px1 = a[21 : 12], and

• the byte offset a.px0 = a[11 : 0]

of a.

Definition 4.8 (Base Address (Page Address)) The base address (also sometimes referred to
as page address) of an address a ∈ B32 is then given by

a.ba = a.px2 ◦ a.px1.

Definition 4.9 (Page Table Entry) A page table entry pte ∈ B32 consists of

• pte.ba = pte[31 : 12] – the base address of the next page table or, if the page table is a
terminal one, the resulting physical page address for a translation,

• pte.p = pte[11] – the present bit,

• pte.r = pte[10 : 8] – the access rights for pages accessed via a translation that involves
the page table entry,

• pte.a = pte[7] – the accessed flag that denotes whether the MMU has already used the
page table entry for a translation, and

• pte.d = pte[6] – the dirty flag that denotes whether the MMU has already used the page
table entry for a translation that had write rights. This particular field is only used for
terminal page tables.

Definition 4.10 (Page Table Entry Address) For a base address ba ∈ B20 and an index i ∈ B10,
we define the corresponding page table entry address as

ptea(ba, i) = ba ◦ 012 +32 020i00

The page table entry address needed to extend a given walk w ∈ Kwalk is then defined as

ptea(w) = ptea(w.ba, (w.va ◦ 012).pxw.level)

Definition 4.11 (Page Table Entry for a Walk) Given a memory m ∈ Kmem and a walk w ∈
Kwalk, we define the page table entry needed to extend a walk as

pte(m,w) = m4(ptea(w))

Definition 4.12 (Walk Creation) We define the function

winit : B20 × B20 × B6 → Kwalk

which, given a virtual base address va ∈ B20, the base address pto ∈ B20 of the page table origin
and an address space identifier asid ∈ B6, returns the initial walk for the translation of va.

winit(va,pto,asid) = w

57

is given by
w.va = va

w.asid = asid

w.level = 2

w.ba = pto

w.r = 111

w. f ault = 0

Note that in our specification of the MMU, the initial walk always has full rights (w.r = 111).
However, in every translation step, the rights associated with the walk can be restricted as needed
by the translation request made by the processor core.

Definition 4.13 (Sufficient Access Rights) For a pair of access rights r, r′ ∈ B3, we use

r ≤ r′
de f
⇔ ∀ j ∈ [0 : 2] : r[j] ≤ r′[j]

to describe that the access rights r are weaker than r′, i.e. rights r′ are sufficient to perform an
access with rights r.

Definition 4.14 (Walk Extension) We define the function

wext : Kwalk × B
32 × B3 → Kwalk

which extends a given walk w ∈ Kwalk using a page table entry pte ∈ B32 and access rights
r ∈ B3 in such a way that

wext(w,pte,r) = w′

is given by
w′.va = w.va

w′.asid = w.asid

w′.level =

w.level − 1 pte.p
w.level otherwise

w′.ba =

pte.ba pte.p
w.ba otherwise

w′.r =

w.r ∧ r pte.p
w.r otherwise

w′. f ault = ¬pte.p ∨ ¬r ≤ pte.r

58

Note that, in addition to restricting the rights according to the rights set in the page table entry
used to extend the walk, there is also a parameter r to restrict the rights even further – to account
for translations performed for accesses with restricted rights. This is needed in order to allow
the MMU to non-deterministically perform translation requests that do not need write rights,
and thus, do not require the dirty flag to be set.

Definition 4.15 (Complete Walk) A walk w ∈ Kwalk with w.level = 0 is called a complete
walk:

complete(w) ≡ w.level = 0

Definition 4.16 (Setting Accessed/Dirty Flags of a Page Table Entry) Given a page table en-
try pte ∈ B32 and a walk w ∈ Kwalk, we define the function

set-ad(pte,w) =

pte[a := 1, d := 1] w.r[0] ∧ w.level = 1 ∧ pte.r[0]
pte[a := 1] otherwise

which returns an updated page table entry in which the accessed and dirty bits are updated when
walk w is extended using pte. Extending a walk with write access right using a terminal page
table results in the dirty flag being set for the page table entry. Otherwise, only the accessed flag
is set.

Definition 4.17 (Translation Request) A translation request

trq = (trq.asid, trq.va, trq.r) ∈ B6 × B32 × B3

is a triple of

• address space identifier trq.asid ∈ B6,

• virtual address trq.va ∈ B20, and

• access rights trq.r ∈ B3.

Definition 4.18 (TLB Hit) When a walk w matches a translation request trq in terms of virtual
address, address space identifier and access rights, we call this a TLB hit:

hit(trq,w) ≡ w.va = trq.va[31 : 12] ∧ w.asid = trq.asid ∧ trq.r ≤ w.r

Note, that a hit may be to an incomplete walk.

Definition 4.19 (Page-Faulting Walk Extension) A page fault for a given translation request
can occur for a given walk when extending that walk would result in a fault: The page table
entry needed to extend is not present or the translation would require more access rights than the
page table entry provides. To denote this, we define the predicate

f ault(m,trq,w) ≡ /complete(w) ∧ hit(trq,w)
∧ wext(w, pte(m,w), trq.r). f ault

which, given a memory m, a translation request trq and a walk w, is fulfilled when walk extension
for walk w under translation request trq in memory configuration m page-faults.

59

Note that a page fault may occur at any translation level. However, the TLB will only store non-
faulting walks (this is an invariant of the TLB) – page faults are always triggered by considering
a faulting extension of a walk in the TLB.

How page faults are triggered is defined in the top-level transition function of MIPS-86 as
follows: the processor core always chooses walks from the TLB non-deterministically to either
obtain a translation, or, to get a page-fault when the chosen walk has a page faulting walk
extension. Note that, when a page-fault for a given pair of virtual address and address space
identifier occurs, MIPS-86 flushes all corresponding walks from the TLB. Another side-effect
of page-faults in the pipelined hardware implementation is that the pipeline is drained. Since
the MIPS-86 model provides a model of sequential instruction execution, draining the pipeline
cannot be expressed on this level, however, this behavior is needed in order to be able to prove
that the pipelined implementation indeed behaves as specified by MIPS-86.

Definition 4.20 (Transition Function of the TLB) We define the transition function of the TLB
that states the passive transitions of the TLB

δtlb : Ktlb × Σtlb → Ktlb

where
Σtlb = {flush} × B6 × B20 ∪ {flush-incomplete} ∪ {add-walk} × Kwalk

as a case distinction on the given input:

• flushing a virtual address for a given address space identifier:

δtlb(tlb, (flush, asid, va)) = {w ∈ tlb | ¬(w.asid = asid ∧ w.va = va)}

• flushing all incomplete walks from the TLB:

δtlb(tlb,flush-incomplete) = {w ∈ tlb | complete(w)}

• adding a walk:
δtlb(tlb, (add-walk,w)) = tlb ∪ {w}

4.5 Processor Core

Definition 4.21 (Processor Core Configuration of MIPS-86) A MIPS-86 processor core con-
figuration c = (c.pc, c.gpr, c.spr) ∈ Kcore consists of

• a program counter: c.pc ∈ B32,

• a general purpose register file: c.gpr : B5 → B32, and

• a special purpose register file: c.spr : B5 → B32.

60

Definition 4.22 (Processor Core Transition Function of MIPS-86) We define the processor core
transition function

δcore : Kcore × Σcore ⇀ Kcore

which takes a processor core input from

Σcore = Σinstr × Σeev × B × B

where
Σinstr = B32 × (B8 ∪ B16 ∪ B32 ∪ {⊥})

is the set of inputs required for instruction execution, i.e. a pair of instruction word I ∈ B32

and value R ∈ B8 ∪ B16 ∪ B32 ∪ {⊥} read from memory (which is only needed for read or rmw
instructions), and

Σeev = B256

is used to represent a vector eev ∈ B256 of interrupt signals provided by the local APIC. Also,
we explicitly pass the page fault fetch and page fault load/store signals pff, pfls ∈ B.

We define the processor core transition function

δcore(c, I,R, eev, pff, pfls) =

δjisr(c, I,R, eev, pff, pfls) jisr(c, I, eev, pff, pfls)
δinstr(c, I,R) ¬ jisr(c, I, eev, pff, pfls)

as a case distinction on the jump-interrupt-service-routine-signal jisr (for definition, see 4.5.3)
which formalizes whether an interrupt is triggered in the current step of the machine.

In the definition above, we use the auxiliary transition functions

δinstr : Kcore × Σinstr ⇀ Kcore

which executes a non-interrupted instruction of the instruction set architecture (for definition,
see section 4.5.2), and

δjisr : Kcore × Σcore → Kcore

which is used to specify the state the core reaches when an interrupt is triggered (for definition,
see section 4.5.4).

4.5.1 Auxiliary Definitions for Instruction Execution

In the following, we make auxiliary definitions in order to define the processor core transitions
that deal with instruction execution. In order to execute an instruction, the processor core needs
to read values from the memory. Of relevance to instruction execution is the instruction word
I ∈ B32 and, if the instruction I is a read or rmw instruction, we need the value R ∈ B8∪B16∪B32

read from memory.

61

Instruction Decoding

Definition 4.23 (Fields of the Instruction Layout) Formalizing the tables given in subsection
4.1.1, we define the following shorthands for the fields of the MIPS-86 instruction layout:

• instruction opcode
opc(I) = I[31 : 26]

• instruction type
rtype(I) ≡ opc(I) = 06 ∨ opc(I) = 0104

jtype(I) ≡ opc(I) = 0410 ∨ opc(I) = 0411

itype(I) ≡ rtype(I) ∨ jtype(I)

• register addresses
rs(I) = I[25 : 21]

rt(I) = I[20 : 16]

rd(I) = I[15 : 11]

• shift amount
sa(I) = I[10 : 6]

• function code (used only for R-type instructions)

f un(I) = I[5 : 0]

• immediate constants (for I-type and J-type instructions, respectively)

imm(I) = I[15 : 0]

iindex(I) = I[25 : 0]

Definition 4.24 (Instruction-Decode Predicates) For every MIPS-Instruction, we define a pred-
icate on the MIPS-configuration which is true iff the corresponding instruction is to be executed
next. The name of such an instruction-decode predicate is always the instruction’s mnemonic
(see MIPS ISA-tables at the beginning). Formally, the predicates check for the corresponding
opcode and function code. E.g.

lw(I) ≡ opc(I) = 100011

. . .

add(I) ≡ rtype(I) ∧ f un(I) = 100000

The instruction-decode predicates are so trivial to formalize that we do not explicitly list all of
them here.

62

Definition 4.25 (Illegal Opcode) Let

ill(I) = ¬(lw(I) ∨ . . . ∨ add(I))

be the predicate that formalizes that the opcode of instruction I is illegal by negating the dis-
junction of all instruction-decode predicates.

Note that, encountering an illegal opcode during instruction execution, an illegal instruction
interrupt will be triggered.

Arithmetic and Logic Operations

The arithmetic logic unit (ALU) of MIPS-86 behaves according to the following table:

alucon[3:0] i alures ovf
0 000 * a +32 b 0
0 001 * a +32 b [a] + [b] < T32
0 010 * a −32 b 0
0 011 * a −32 b [a] − [b] < T32

0 100 * a ∧32 b 0
0 101 * a ∨32 b 0
0 110 * a ⊕32 b 0
0 111 0 ¬32(a ∨32 b) 0
0 111 1 b[15 : 0]016 0
1 010 * 031([a] < [b]?1 : 0) 0
1 011 * 031(〈a〉 < 〈b〉?1 : 0) 0

Based on inputs a, b ∈ B32, alucon ∈ B4 and i ∈ B, this table defines alures(a,b,alucon,i) ∈ B32

and ov f (a,b,alucon,i) ∈ B.

Definition 4.26 (ALU Instruction Predicates) To describe whether a given instruction I ∈ B32

performs an arithmetic or logic operation, we define the following predicates:

• I-type ALU instruction: compi(I) ≡ itype(I) ∧ I[31 : 29] = 001

• R-type ALU instruction: compr(I) ≡ rtype(I) ∧ I[5 : 4] = 10

• any ALU instruction: alu(I) ≡ compi(I) ∨ compr(I)

Definition 4.27 (ALU Operands of an Instruction) Following the instruction set architecture
tables, we formalize the right and left operand of an ALU instruction I ∈ B32 based on a given
processor core configuration c ∈ Kcore as follows:

• left ALU operand: lop(c,I) = c.gpr(rs(I))

• right ALU operand: rop(c,I) =

c.gpr(rt(I)) rtype(I)
sxt32(imm(I)) /rtype(I) ∧ /I[28]
zxt32(imm(I)) otherwise

63

Definition 4.28 (ALU Control Bits of an Instruction) We define the ALU control bits of an
instruction I ∈ B32 as

alucon(I)[2 : 0] =

I[2 : 0] rtype(I)
I[28 : 26] otherwise

alucon(I)[3] ≡ rtype(I) ∧ I[3] ∨ /I[28] ∧ I[27]

Definition 4.29 (ALU Compute Result) The ALU result of an instruction I executed in pro-
cessor core configuration c ∈ Kcore is then given by

compres(c,I) = alures(lop(c, I), rop(c, I), alucon(I), itype(I))

Jump and Branch Instructions

Jump and branch instructions affect the program counter of the machine. The difference between
branch instructions and jump instructions is that branch instructions perform conditional jumps
based on some condition expressed over general purpose register values. The following table
defines the branch condition result bcres(a,b,bcon) ∈ B, i.e. whether for the given parameters
the branch will be performed or not, based on inputs a, b ∈ B32 and bcon ∈ B4:

bcon[3:0] bcres(a, b, bcon)
001 0 [a] < 0
001 1 [a] ≥ 0
100 * a = b
101 * a , b
110 * [a] ≤ 0
111 * [a] > 0

Definition 4.30 (Branch Instruction Predicates) We define the following branch instruction
predicates that denote whether a given instruction I ∈ B32 is a jump or successful branch in-
struction given configuration c ∈ Kcore:

• branch instruction: b(I) ≡ opc(I)[5 : 3] = 03 ∧ itype(I)

• jump instruction: jump(I) ≡ j(I) ∨ jal(I) ∨ jr(I) ∨ jalr(I)

• jump or branch taken:

jbtaken(c,I) ≡ jump(I) ∨ b(I) ∧ bcres(c.gpr(rs(I)), c.gpr(rt(I)), opc[2 : 0]rt(I)[0])

Definition 4.31 (Branch Target) We define the target address of a jump or successful branch
instruction I ∈ B32 in a given configuration c ∈ Kcore as

btarget(c,I) ≡

c.pc +32 sxt30(imm(I))00 b(I)
c.gpr(rs(I)) jr(I) ∨ jalr(I)
(c.pc +32 432)[31 : 28]iindex(c)00 j(I) ∨ jal(I)

64

Shift Operations

Shift instructions perform shift operations on general purpose registers.

Definition 4.32 (Shift Results) For a[n − 1 : 0] ∈ Bn and i ∈ {0, . . . , n − 1} we define the
following shift results (∈ Bn):

• shift left logical: sll(a,i) = a[n − i − 1 : 0]0i

• shift right logical: srl(a,i) = 0ia[n − 1 : i]

• shift right arithmetic: sra(a,i) = ai
n−1a[n − 1 : i]

Note that, for MIPS-86, we will use the aforementioned definitions only for n = 32.

Definition 4.33 (Shift Unit Result) We define the result of a shift operation based on inputs
a ∈ Bn, i ∈ {0, . . . , n − 1}, and s f ∈ B2 as follows:

sures(a,i,s f) =

sll(a, i) s f = 00
srl(a, i) s f = 10
sra(a, i) s f = 11

Definition 4.34 (Shift Instruction Predicate) We define a predicate that, given an instruction
I ∈ B32, expresses whether the instruction is a shift instruction by a simple disjunction of shift
instruction predicates:

su(I) ≡ sll(I) ∨ srl(I) ∨ sra(I) ∨ sllv(I) ∨ srlv(I) ∨ srav(I)

Definition 4.35 (Shift Operands) Given a shift instruction I ∈ B32 and a processor core con-
figuration c ∈ Kcore, we define the following shift operands:

• shift distance: sdist(c,I) =

〈sa(I)〉mod 32 f un(I)[3] = 0
〈c.gpr(rs(I))[4 : 0]〉mod 32 f un(I)[3] = 1

• shift left operand: slop(c,I) = c.gpr(rt(I))

Definition 4.36 (Shift Function) The shift function of a shift instruction I ∈ B32 is given by

s f (I) = I[1 : 0]

Memory Accesses

We define auxiliary functions that we need in order to define how values are read/written from/to
the memory in the overall system’s transition function.

Definition 4.37 (Effective Address and Access Width) Given an instruction I ∈ B32 and a
processor core configuration c ∈ Kcore, we define the effective address and access width of a
memory access:

65

• effective address: ea(c,I) =

c.gpr(rs(I)) +32 sxt32(imm(I)) itype(I)
c.gpr(rs(I)) rtype(I)

• access width: d(I) =

1 lb(I) ∨ lbu(I) ∨ sb(I)
2 lh(I) ∨ lhu(I) ∨ sh(I)
4 sw(I) ∨ lw(I) ∨ rmw(I)

The effective address is the first byte address affected by the memory address and the access
width is the number of bytes which are read, or, respectively, written.

Definition 4.38 (Misalignment Predicate) For an instruction I ∈ B32 and a processor core con-
figuration c ∈ Kcore, we define the predicate

mal(c,I) ≡ (lw(I) ∨ sw(I) ∨ rmw(I)) ∧ ea(c, I)[1 : 0] , 00

∨(lhu(I) ∨ lh(I) ∨ sh(I)) ∧ ea(c, I)[0] , 0

that describes whether the memory access is misaligned. To be correctly aligned, the effective
address of the memory access must be divisible by the access width.

Note that misaligned memory access triggers the corresponding interrupt.

Definition 4.39 (Load/Store Instruction Predicates) In order to denote whether a given in-
struction I ∈ B32 is a load or store instruction, we define the following predicates:

• load instruction: load(I) ≡ lw(I) ∨ lhu(I) ∨ lh(I) ∨ lbu(I) ∨ lb(I)

• store instruction: store(I) ≡ sw(I) ∨ sh(I) ∨ sb(I)

Definition 4.40 (Load Value) The value read from memory R ∈ B8 ∪ B16 ∪ B32 is given as an
input to the transition function of the processor core. In order to write this value to a general
purpose register, depending on the memory instruction used, we either need to sign-extend or
zero-extend this value:

lv(R) =

zxt32(R) lbu(I) ∨ lhu(I)
sxt32(R)

Definition 4.41 (Store Value) Given an instruction I ∈ B32 and a processor core configuration
c ∈ Kcore, the store value is given by the last d(I) bytes taken from the general purpose register
specified by rt(I):

sv(c,I) = c.gpr(rt(I))[8 · d(I) − 1 : 0]

General Purpose Register Updates

Definition 4.42 (General Purpose Register Write Predicate) The predicate

gprw(I) ≡ alu(I) ∨ su(I) ∨ lw(I) ∨ rmw(I) ∨ jal(I) ∨ jalr(I) ∨ movs2g(I)

describes whether a given instruction I ∈ B32 results in a write to some general purpose register.

66

Definition 4.43 (General Purpose Register Result Destination) We define the result destina-
tion of an ALU/shift/coprocessor/memory instruction I ∈ B32 as the following general purpose
register address:

rdes(I) =

rd(I) rtype(I) ∧ /movs2g(I)
rt(I) otherwise

Definition 4.44 (Written General Purpose Register) For an instruction I ∈ B32, the address
of the general purpose register which is actually written to is defined as

cad(I) =

15 jal(I) ∨ jalr(I)
rdes(I) alu(I) ∨ load(I) ∨ rmw(I)

Definition 4.45 (General Purpose Register Input) We define the value written to the general
purpose register specified above based on the instruction I ∈ B32 and a given processor core
configuration c ∈ Kcore as

gprdin(c,I,R) =

c.pc +32 432 jal(I) ∨ jalr(I)
lv(R) load(I) ∨ rmw(I)
c.spr(rd(I)) movs2g(I)
alures(lop(c, I), rop(c, I), alucon(I)) alu(I)
sures(slop(c, I), sdist(c, I), s f (I)) su(I)

4.5.2 Definition of Instruction Execution

Based on the auxiliary functions defined in the last subsection, we give the definition of instruc-
tion execution in closed form:

Definition 4.46 (Non-Interrupted Instruction Execution) We define the transition function
for non-interrupted instruction execution

δinstr : Kcore × Σinstr ⇀ Kcore

where
Σinstr = B32 × (B8 ∪ B16 ∪ B32 ∪ {⊥})

as

δinstr(c, I,R) =

unde f ined (load(I) ∨ rmw(I)) ∧ R < B8·d(I)

c′ otherwise

where

• c′.pc =

btarget(c, I) jbtaken(c, I)
c.spr(epc) eret(I)
c.pc +32 432 otherwise

67

• c′.gpr(x) =

gprdin(c, I,R) x = cad(I) ∧ gprw(I)
c.gpr(x) otherwise

• c′.spr(x) =

c.gpr(rt(I)) rd(I) = x ∧ movg2s(I)
0311 x = mode ∧ eret(I)
c.spr(esr) x = sr ∧ eret(I)
c.spr(x) otherwise

4.5.3 Auxiliary Definitions for Triggering of Interrupts

MIPS-86 provides the following interrupt types which are ordered by their priority (interrupt
level):

interrupt level shorthand internal/external type maskable
1 I/O eev repeat 1 devices
2 ill iev abort 0 illegal instruction
3 mal iev abort 0 misaligned
4 pff iev repeat 0 page fault fetch
5 pfls iev repeat 0 page fault load/store
6 sysc iev continue 0 system call
7 ovf iev continue 1 overflow

Note that the all continue interrupts are either triggered by execution of ALU operations with
overflow or execution of the sysc-Instruction.

While external event signals are provided by the local APIC as input eev ∈ B256 to the pro-
cessor core transition function, the internal event signals iev(c,I,pff,pfls) ∈ B8 are defined by the
following table that uses the page-fault signals pff, pfls ∈ B which are provided by the MMU of
the processor to the processor core transition function.

internal event signal defined by
iev(c, I, pff, pfls)[2] ≡ ill(I) ∨ c.mode[0] = 1 ∧ (movg2s(I) ∨ movs2g(I))
iev(c, I, pff, pfls)[3] ≡ mal(c, I)
iev(c, I, pff, pfls)[4] ≡ pff

iev(c, I, pff, pfls)[5] ≡ pfls
iev(c, I, pff, pfls)[6] ≡ sysc(I)
iev(c, I, pff, pfls)[7] ≡ ov f (lop(c, I), rop(c, I), alucon(I), itype(I))

Note that even though, from the view of the processor core, the page-fault signals appear just as
external as the external event vector provided by the local APIC, the difference is that the ex-
ternal interrupts provided by the local APIC originate from devices while the page-fault signals
originate from the MMU belonging to processor itself. This justifies classifying them as internal
event signals.

When an interrupt occurs, information about the type of interrupt is stored in a special purpose
register to allow the programmer to discover the reason, i.e. the cause, for the interrupt.

68

Definition 4.47 (Cause and Masked Cause of an Interrupt) We define the cause ca ∈ B8 of
an interrupt and masked cause mca ∈ B8 of an interrupt based on the current processor core
configuration c ∈ Kcore, the instruction I ∈ B32 to be executed, the external event vector eev ∈
B256 and the page-fault signals pff, pfls ∈ B as follows:

• cause of interrupt:

ca(c,I,eev,pff,pfls)[j] =

iev(c, I, pff, pfls)[j] j ∈ [2 : 7]∨255

i=0 eev[i] j = 1
0 otherwise

• masked cause:

mca(c,I,eev,pff,pfls)[j] =

ca(c, I, eev, pff, pfls)[j] j < {1, 7}
ca(c, I, eev, pff, pfls)[j] ∧ c.spr(sr)[j] j ∈ {1, 7}

Only interrupt levels 1 and 7 are maskable; the corresponding mask can be found in special
purpose register sr (status register) and is applied to the cause of interrupt to obtain the masked
cause.

Definition 4.48 (Jump-to-Interrupt-Service-Routine Predicate) To denote that in a given con-
figuration c ∈ Kcore for a given instruction I ∈ B32, external event signals eev ∈ B256, and
page-fault signals pff, pfls ∈ B an interrupt is triggered, we define the predicate

jisr(c,I,eev,pff,pfls) ≡
∨

j

mca(c, I, eev, pff, pfls)[j]

Definition 4.49 (Interrupt Level of the Triggered Interrupt) To determine the interrupt level
of the triggered interrupt, we define the function

il(c,I,eev,pff,pfls) = min{ j | mca(c, I, eev, pff, pfls)[j] = 1}

Definition 4.50 (Continue-Type Interrupt Predicate) The predicate

continue(c,I,eev,pff,pfls) ≡ il(c, I,R, eev) ∈ {6, 7}

denotes whether the triggered interrupt is of continue type.

4.5.4 Definition of Interrupt Execution

Definition 4.51 (Interrupt Execution Transition Function) We define δjisr(c, I,R, eev, pff, pfls) =

c′ where I ∈ B32 is the instruction to be executed and eev ∈ B256 are the event signals received
from the local APIC and pff, pfls ∈ B are the page-fault signals provided by the processor’s
MMU.

Let k = min{ j | eev[j] = 1}.

• c′.pc = 032

69

• c′.spr(x) =

032 x = sr
032 x = mode
c.sr x = esr
zxt32(mca(c, I, eev, pff, pfls)) x = eca
c.pc x = epc ∧ /continue(c, I, eev, pff, pfls)
δinstr(c, I,R).pc x = epc ∧ continue(c, I, eev, pff, pfls)
ea(c, I) x = edata ∧ il(c, I, eev, pff, pfls) = 5
bin32(k) x = edata ∧ il(c, I, eev, pff, pfls) = 1
c.spr(x) otherwise

• c′.gpr =

c.gpr /continue(c, I, eev, pff, pfls)
δinstr(c, I,R).gpr otherwise

4.6 Store Buffer

Store buffers are, in their simplest form, first-in-first-out queues for write accesses that reside
between processor core and memory. In a processor model with store-buffer, servicing memory
reads is done by finding the newest store-buffer entry for the given address if one is available –
otherwise the read is serviced by the memory subsystem. Essentially, this means that read ac-
cesses that rely on values from preceeding write accesses can be serviced even before they reach
the caches. The benefit of store-buffers implemented in hardware is that instruction execution
can proceed while the memory is still busy servicing previous write accesses.

In order to allow the programmer to obtain a sequentially consistent view of memory in the
presence of store-buffers, architectures whose abstract model contains store-buffers tend to pro-
vide instructions that have an explicit effect on the store-buffer, e.g. by draining the pipeline.
MIPS-86 offers a memory fence instruction f ence that simply drains the store buffer and a
read-modify-write operation rmw that performs an atomic conditional memory update with the
side-effect of draining the store-buffer.

Note that, even in a machine that has no store-buffer in hardware, pipelining of instruction
execution may introduce a store-buffer to the abstract machine model. We discuss this in the
next subsection before we give a definition of the store-buffer of MIPS-86.

4.6.1 Instruction Pipelining May Introduce a Store-Buffer

The term pipelining used in the context of gate-level circuit design can be used to describe
splitting up a hardware construction (e.g. of a processor) that computes some result in a sin-
gle hardware cycle (e.g. executes an instruction) into n smaller components which are called
pipeline stages whose outputs are always inputs of the next one and which each computes a
part of the final result in its own registers – in such a way that, initially, after n cycles, the first
result is provided by the nth component and then, subsequently, every following cycle a compu-
tation finishes. The reason why this is efficient lies in the fact that, in terms of electrophysics,

70

smaller circuits require less time for input signals to propagate and for output signals to stabi-
lize, thus, smaller circuits can be clocked faster than larger ones. Note that the increase in delay
for inserting additional registers in the subcomponents tends to be less than the delay saved by
splitting the construction into pipeline stages, resulting in an overall faster computation due to
the achieved parallelization.

A common feature to be found in processors is instruction pipelining. For a basic RISC
machine (like MIPS-86), the common five-stage pipeline is given by the following five stages:
IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access, and
WB = Register write back. Note that a naive hardware implementation where all that is changed
from the one-cycle hardware construction is that additional registers are inserted will, in general,
behave differently than the original construction: Execution of the next instruction may depend
on results from the execution of previous instructions which are still in the instruction pipeline.
The occurrence of such a dependency where the result of a computation in the naively pipelined
machine does not match the result of the sequential machine is referred to as a hazard. One
way to circumvent this is by software: If the programmer/compiler ensures that the machine
code executed by the pipelined machine does not cause any hazard (e.g. by inserting NOOPs
(no operations, i.e. instructions that do not have any effect other than incrementing the program
counter) or by reordering instructions). This, however, by requiring a much more conservative
style of programming, reduces the speedup gained by introducing pipelining in the first place.

In fact, instead of leaving hazard detection and handling exclusively to the programmer of the
machine, modern architectures implement proper handling of most hazards in hardware. When
a data hazard is detected (i.e. an instruction depends on some value computed by an earlier
instruction that is still in the pipeline), the hardware stalls execution of the pipeline on its own
until the required result has been computed. Additional hardware then forwards the result from
the later pipeline stage directly to the waiting instruction that is stalled in an earlier pipeline
stage. Note that even though many hazards can be detected and resolved efficiently in hardware,
it is not necessarily the best thing to prevent all hazards in hardware – overall performance of a
system may be better when minor parts of hazard handling are left to the programmer/compiler.
In fact, for modern pipelined architectures, it is common practice to allow slight changes to the
abstract hardware model at ISA level which allow for a less strict but more performant treatment
of hazards.

When a memory write is forwarded to a subsequent memory read instruction to the same
address (or to the instruction fetch stage, possibly), this can be modeled by introducing a store-
buffer between processor and memory system – even when there is no physical store-buffer
present in the hardware implementation [Hot12]. For a single-core architecture, it is not overly
hard to prove that a processor model with store-buffer is actually equivalent to the processor
model without store-buffer. For a multi-core architecture however, it is more involved to prove
that store-buffers become invisible on higher layers of abstraction: Since every processor has
its own store-buffer and the values from store-buffers are not forwarded to other processors, any
two processors may have different values for the same address present in their store-buffers. For
an in-detail treatment of hardware construction and correctness for a pipelined simple MIPS
machine, see [Pau12].

71

4.6.2 Configuration

Definition 4.52 (Store Buffer Configuration) The set of store buffer entries is given by

Ksbe ≡ {(a, v) | a ∈ B32 ∧ v ∈ B8 ∪ B16 ∪ B32}

while the set of store buffer configurations is defined as follows:

Ksb ≡ K∗sbe

We consider a store buffer modeled by a finite sequence of store buffer write accesses (a, v)
where a ∈ B32 is an address and v ∈ B8 ∪B16 ∪B32 is the value to be written starting at memory
address a.

4.6.3 Transitions

A step of the store buffer produces the memory write specified by the oldest store-buffer entry –
in order to be sent to the memory subsystem. When the store buffer is empty (c.sb = ε), it cannot
make a step. We always append at the front and remove at the end of the list. Transitions of the
store buffer are formalized in the overall transition relation – we do not provide an individual
transition relation for the store buffer.

4.6.4 Auxiliary Definitions

We define some auxiliary functions for use in the definition of the system’s transition function.

Definition 4.53 (Store Buffer Entry Hit Predicate) Given a store buffer entry (a,w) ∈ Ksbe
and a byte address x ∈ B32, we define the predicate

sbehit((a,w),x) ≡ 〈x −32 a〉 < |w|/8

which denotes that there is a store buffer hit for the given entry and address, i.e. the address is
written by the write access represented by the store buffer entry.

Definition 4.54 (Newest Store Buffer Hit Index) Given a store buffer configuration sb ∈ Ksb
and a byte address x ∈ B32, we define the function

maxsbhit(sb,x) ≡ max{ j | sbehit(sb[j], x)}

which computes the index of the newest entry of the store buffer for which there is a hit.

Definition 4.55 (Store Buffer Hit Predicate) Given a store buffer configuration sb ∈ Ksb and
a byte address x ∈ B32, the predicate

sbhit(sb,x) ≡ ∃ j : sbehit(sb[j], x)

denotes whether there is a store buffer hit for the given address in the given store buffer.

72

Definition 4.56 (Store Buffer Value) We define the function

sbv : Ksb × B
32 ⇀ B8

which, given a store buffer configuration sb and a byte-address x computes the value forwarded
from the store buffer for the given address, if defined:

sbv(sb,x) =

byte(〈x〉 − 〈a〉, v) sb[maxsbhit(sb, x)] = (a, v)
unde f ined otherwise

4.7 Devices

4.7.1 Introduction to Devices, Interrupts and the APIC Mechanism

Interesting hardware tends to include devices of some kind, e.g. screens, input devices, timers,
network adapters, storage devices, or devices that control factory robots, conveyor belts, nuclear
power plants, radiation therapy units, etc. In order to trigger interrupts in a processor core,
devices tend to provide interrupt request signals. Commonly, device interrupt request signals
are distinguished in edge-triggered signals, i.e. the device signals an interrupt by switching the
state of its interrupt request signals, and level-triggered signals, i.e. the interrupt request signal is
raised when an interrupt is currently pending (i.e. the interrupt request signal has the digital value
1). In a simple hardware implementation of a single-core architecture, level-triggered interrupt
request signals originating from devices basically just need to be connected to the processor
as external interrupt signals while edge-triggered signals need to be sampled properly and then
provided to the processor until it can accept them. Note that in MIPS-86, we restrict interrupt
request signals to level-triggered signals.

The processor tends to communicate with devices either by means of memory mapped in-
put/output (memory mapped I/O), i.e. device ports (which can essentially be considered user-
visible registers of a device) are mapped into the memory space of the processor and accessed
with regular memory instructions, or by using special I/O instructions that operate on a seperate
port address space where device ports reside. Reading or writing device ports tends to have
side-effects, e.g. such as disabling the interrupt request signal raised by the device, allowing the
processor to acknowledge that it has received the interrupt, or causing the device to initiate some
interaction with the external world.

For a multi-core architecture, device interrupts become more interesting: Is it desirable to
interrupt all processors when a device raises an interrupt signal? In many cases, the answer is
no: It is fully sufficient to let one processor handle the interrupt. The main question is mostly
which device interrupt is supposed to go to which processor. In x86 architectures this is re-
solved in hardware by providing each processor with a local advanced programmable interrupt
controller (local APIC) that receives interrupt messages from a global input/output advanced
programmable interrupt controller (I/O APIC) which collects and distributes the interrupt re-
quest signals of devices. In order not to transmit a single interrupt to a processor more often
than necessary, there is a protocol between I/O APIC and the processor (via the local APIC)
in which the processor has to acknowledge the handling of the interrupt by sending an end of

73

interrupt (EOI) message via the local APIC. Only after such an EOI message has been received
will the I/O APIC sample the corresponding interrupt vector again. Essentially, in the abstract
hardware model, both local APIC and I/O APIC can be seen as a special kind of device that does
not raise interrupts on its own but can be accessed by the processor by means of memory mapped
I/O just like a regular device. Since MIPS-86 implements a greatly simplified version of the x86
APIC mechanism, we will not discuss the detailed x86 APIC mechanism in the following and
focus on MIPS-86 in the following.

How exactly the I/O APIC distributes device interrupt signals to the individual processor cores
is specified by the redirect table – which can be accessed through the I/O APIC ports. This redi-
rect table – which must be set up by the programmer of the machine – specifies the following
for each device interrupt request signal: The destination processor, whether the interrupt signal
is masked already at the I/O APIC, and the interrupt vector to be triggered. The interrupt vector
of an interrupt is used to provide information about the cause of the interrupt to the processor.
Device interrupt signals are sampled at the I/O APIC and subsequently sent to the destination
processor’s local APIC over a common bus that connects all local APICs and the I/O APIC. The
local APIC associated with a processor core receives interrupt messages from the I/O APIC, col-
lecting interrupt vectors which are then passed to the processor core by raising external interrupt
signals at the processor core.

In addition to providing a means of distributing device interrupts, the APIC mechanism of-
fers processor cores of the multi-core system the opportunity to send inter-processor interrupts
(IPIs). This can, for example, be useful to implement communication between different proces-
sors in the context of an operating system. Sending of an inter-processor interrupt is triggered
by writing a particular control register belonging to the ports of the local APIC of the processor.
The content of this control register describes the destination processors, delivery status, delivery
mode and interrupt vector of the inter-processor interrupt. The IPI mechanism is particularly
important for booting the machine: Initially, after power on, only the bootstrap processor (BSP)
is running while all other processors are in a halted state with their local APICs waiting for an
initialization inter-processor interrupt (INIT-IPI) and a subsequent startup inter-processor inter-
rupt (SIPI). Effectively, booting the multi-core system can be done by the bootstrap processor in
a sequential fashion until it initializes and starts the other processor cores of the system via the
IPI mechanism.

4.7.2 Configuration

Definition 4.57 (Device Port Address Length) We assume a function

devpalen : [0 : nd − 1]→ N

to be given that specifies the address length of port addresses of all nd ∈ N devices of the system
in bits.

Definition 4.58 (Device Configuration) The configuration d ∈ Kdev(i) of device i is given by

• I/O ports d.ports : Bdevpalen(i) → B8,

• an interrupt request signal d.irq ∈ B, and

74

• internal state d.internal ∈ Di

Note that the Di have to be defined by users of our model to describe the devices they want to
argue about.

4.7.3 Transitions

Devices react to external inputs provided to them and they have side-effects that occur when their
ports are read, or, respectively, written. Note that we currently do not model read-modify-write
accesses to devices and we only consider word-accesses on device ports.

Definition 4.59 (Device Transition Function) For every device, we assume a transition func-
tion to be given of the form

δdev(i) : Kdev(i) × Σdev(i) ⇀ Kdev(i)

with
Σdev(i) = Σext(i) ∪ B

devpalen ∪ Bdevpalen × (B8)∗ ∪ B32 × Bdevpalen × B32

where the input to the transition function in ∈ Σdev(i) is either

• an external input for device i: in = ext ∈ Σext(i),

• an external input for device i: in = a ∈ Bdevpalen(i), or

• a word write-access to port address a with value v: in = (a, v) ∈ Bdevpalen(i) × B32.

Note that all active steps of a device are modeled via external inputs, i.e. every active step
of the device should be modeled by an input from Σext(i) that triggers the corresponding step.
Further, Σext(i) can be used to model how the device reacts to the external world.

Depending on the device in question, reading or writing port addresses may have side-effects
– for example, deactivating the interrupt request when a specific port is read. This needs to be
specified individually for the given device in its transition function. One restriction we make
in this model is that even though reading ports may have side-effects, the value being read is
always the one that is given in the I/O ports component of the device. This is reflected in the
next section when an overall view of memory with device I/O ports mapped into the physical
address space of the machine is defined.

4.7.4 Device Outputs

We allow devices to provide an output function

λdev(i) : Kext(i) × Σdev(i) ⇀ Ωdev(i)

in order to allow interaction with some external world. This is a partial function, since a device
does not need to produce an output for every given external input in a given configuration.

75

4.7.5 Device Initial State

To define a set of acceptable initial states of a device after reset, the predicate

initialstate(i) : Kdev(i) → B

shall be defined.

4.7.6 Specifying a Device

To specify a particular device of interest, we always need to define the following:

• Di – the internal state of the device,

• Σext(i) – the external inputs the device reacts to,

• Ωdev(i) – the possible outputs provided by the device,

• devpalen(i) – the length of port addresses of the device,

• δdev(i) – the transition function of the device,

• λdev(i) – the output function of the device, and

• initialstate(i) – the set of acceptable initial states of the device.

4.8 Local APIC

The local APIC receives device and inter-processor interrupts sent over the interrupt bus of the
system and provides these interrupts to the processor core it is associated with. While the local
APIC shares some behavior with devices (i.e. it is accessed by means of memory-mapped I/O)
some of its behavior differs significantly from that of devices (i.e. communicating over the
interrupt bus instead of raising an interrupt request signal, providing interrupt signals directly to
the processor core).

The x86-64 model of [Deg11] provides a local APIC model that describes sending of inter-
processor interrupts but ignores devices. While already simplified somewhat compared to the
informal architecture definitions, this model is still quite complex. Thus, Hristo Pentchev pro-
vides a simplified version of the x86-64 local APIC model in his upcoming dissertation in order
to prove formal correctness of an inter-processor interrupt protocol implementation [ACHP10].
On the one hand, the local APIC model we present in the following is even further simplified –
mostly by expressing APIC system transitions atomically instead of in terms of many interme-
diate steps and by reducing the possible interrupt types and target modes. On the other hand,
the model provided here is more powerful in the sense that device interrupts and I/O APIC are
modeled.

We have the following simplifications over x86-64:

• We only consider level-triggered interrupts.

76

• We reduce IPI-delivery to Fixed, INIT and Startup interrupts. The I/O APIC only delivers
Fixed interrupts.

• We only model physical destination mode where IPIs are addressed to a local APIC ID
(or to a shorthand). We don’t consider logical destination mode.

• We do not consider the error-status-register which keeps track of errors encountered when
trying to deliver interrupts.

4.8.1 Configuration

Definition 4.60 (Local APIC Configuration) The configuration of a local APIC

apic = (apic.ports, apic.initrr, apic.sipirr, apic.sipivect, apic.eoipending) ∈ Kapic

consists of

• I/O-ports apic.ports : B7 → B8,

• INIT-request register apic.initrr ∈ B,

(a flag that denotes whether an INIT-request is pending to be delivered to the processor)

• SIPI-request register apic.sipirr ∈ B,

(a flag that denotes whether a SIPI-request is pending to be delivered to the processor)

• SIPI-vector register apic.sipivect ∈ B8,

(the start address for the processor to execute code after receiving SIPI)

• EOI-pending register apic.eoipending ∈ B256

(a register that keeps track of all interrupt vectors for which an EOI message is to be sent
to the I/O APIC)

The I/O ports of the local apic can be accessed by the processor by means of memory mapped
I/O. All other local APIC components cannot be accessed by other components. This is reflected
in the overall transition relation of the system.

Local APIC ports

Let us define a few shorthands for specific regions in the local APIC ports:

• APIC ID Register
apic.APIC_ID = apic.ports4(07)

Bits description
31-28 reserved
27-24 local APIC ID
23-0 reserved

This register contains the local APIC ID of the local APIC. This ID is used when address-
ing inter-processor-interrupts to a specific local APIC.

77

• Interrupt Command Register (ICR)

apic.ICR = apic.ports8(47) ∈ B64

Bits abbreviation description
63-56 dest destination field
55-20 reserved
19-18 dsh destination shorthand

00b = no shorthand, 01b = self
10b = all including self, 11b = all excluding self

17-13 reserved
12 ds delivery status

0b = idle, 1b = send pending
11 destmode destination mode

0b = physical
10-8 dm delivery mode

000b = Fixed, 101b = INIT, 110b = Startup
7-0 vect vector

This register is used to issue a request for sending an inter-processor interrupt to the local
APIC.

• End-Of-Interrupt Register

apic.EOI = apic.ports4(127) ∈ B32

Writing to this register is used to signal to the local APIC that the interrupt-service-routine
has finished. This has the effect that the local APIC will eventually send an end-of-
interrupt acknowledgement to the I/O-APIC.

• In-Service Register
apic.ISR = apic.ports32(167) ∈ B256

This register keeps track of which interrupt vectors are currently being serviced by an
interrupt-service-routine. For our simple processor, maskable interrupts (to which device
interrupts belong) are by default masked in the processor core when an interrupt is trig-
gered. However, when the programmer explicitly unmasks device interrupts during the
interrupt handler run, it can happen that a higher-priority interrupt provided by the local
APIC may trigger another interrupt, resulting in several interrupt vectors being in service
at the same time.

• Interrupt Request Register

apic.IRR = apic.ports32(487) ∈ B256

This register keeps track for which interrupt vectors there is currently a request pending.
These requests are provided to the processor as external event signals. In this process, all

78

interrupt requests of lower priority than the ones currently in service are masked by the
local APIC.

Definition 4.61 (Processor Core External Event Signals) We define the external event vector
eev ∈ B256 provided by the local APIC apic ∈ Kapic to the processor core as

eev(apic)[j] =

0 ∃k ≤ j : apic.ISR[k] = 1
apic.IRR[j] otherwise

4.8.2 Transitions

We simplify device accesses in such a way that we expect only aligned word-accesses to occur
on device ports, i.e. halfword and byte accesses on devices are not modeled.

For all passive steps of the local APIC, we define a transition function

δapic : Kapic × Σapic → Kapic

where
Σapic ≡ B

7 × B32 ∪ {Fixed, INIT,SIPI} × B8

A passive step of a local APIC is a write access to its ports or a receive-interrupt step. We define

δapic(apic, in) = apic′

by a case-distinction:

• write without side-effects:
in = (a, v) ∧ a , 127

apic′.ports(x) =

byte(〈x〉 − 〈a〉, v) in = (a, v) ∧ 0 ≤ 〈x〉 − 〈a〉 < 4
apic.ports(x) otherwise

• write with side effects (to EOI-register):

in = (a, v) ∧ a = 127

apic′.EOI = v

apic′.ISR[j] =

0 j = min{k | apic.ISR[k] = 1}
apic.ISR[j] otherwise

All other local APIC ports stay unchanged.

apic′.eoipending[j] =

1 j = min{k | apic.ISR[k] = 1}
apic.eoipending[j] otherwise

Writing to the EOI-Register puts the local APIC in a state where it will send an EOI-
message over the interrupt bus in order to acknowledge handling of the highest-priority
interrupt to the I/O APIC.

79

• receiving an interrupt:

– in = (Fixed, vect)

apic′.IRR[j] =

1 j = 〈vect〉
apic.IRR[j] otherwise

All other ports unchanged.

– in = (SIPI, vect)

Receiving a startup-interrupt is successful when there is currently no startup-interrupt
pending: If apic.sipirr , 0, apic′ = apic (the local APIC will discard the interrupt),
otherwise

apic′.ports = apic.ports

apic′.sipirr = 1

apic′.sipivect = vect

This records a SIPI which can in turn be used by the local APIC to set the running
flag of the corresponding processor, effectively starting it.

– in = (INIT, vect)

Receiving an INIT-interrupt is successful when there is currently no INIT-interrupt
pending: If apic.initrr , 0, apic′ = apic, otherwise

apic′.ports = apic.ports

apic′.initrr = 1

When the local APIC received an INIT-IPI, it will force a reset on the corresponding
processor.

All components not explicitly mentioned stay unchanged between apic and apic′.
The active steps of the local APIC (i.e. sending IPIs, sending EOI messages, applying SIPI

and INIT-IPI to the processor) are treated in the overall transition relation of the system.

4.9 I/O APIC

The I/O APIC samples the interrupt request signals of devices and distributes the interrupts to
the local APICs according to its redirect table by sending interrupt messages over the interrupt
bus. Device interrupts can be masked directly at the I/O APIC.

4.9.1 Configuration

Definition 4.62 (I/O APIC Configuration) The configuration of an I/O APIC

ioapic = (ioapic.ports, ioapic.redirec) ∈ Kioapic

is given by

• I/O-ports ioapic.ports : B3 → B8, and

• a redirect table ioapic.redirect : [0 : 23]→ B32

80

I/O APIC Ports

Shorthands to the ports of the I/O APIC are

• select register ioapic.IOREGSEL = ioapic.ports4(03)

• data register ioapic.IOWIN = ports4(43)

Note a pecularity about the I/O APIC: instead of mapping the redirect table into the proces-
sor’s memory, only a select and a data register are provided. Writing the select register has the
side-effect of fetching the redirect table entry specified to the data register. Writing the data
register has the side effect of also writing the redirect table entry specified by the select register.
Reading from the I/O APIC ports does not have any side-effects.

Format of the Redirect Table

A redirect table entry e ∈ B32 has the following fields:

Bits Short Name Description
24-31 dest Destination Local APIC ID of destination local APIC
17-24 reserved
16 mask Interrupt Mask masked if set to 1
15 reserved
14 rirr Remote IRR 0b = EOI received

1b = interrupt was received by local APIC
13 reserved
12 ds Delivery Status 1b = Interrupt needs to be delivered to local APIC
11 reserved
8-10 dm Delivery Mode 000b = Fixed
0-7 vect Interrupt Vector

4.9.2 Transitions

We define a transition function for the passive steps of the I/O APIC

δioapic : Kioapic × Σioapic ⇀ Kioapic

with
Σioapic = B3 × B32 ∪ B8

where in ∈ Σ is either

• in = (a, v) ∈ B3 × B32 – a write access to port address a with value v,

• in = vect ∈ B8 – receiving an EOI message for interrupt vector vect

We define δioapic(ioapic, in) = ioapic′ by case distinction on in:

81

• in = (a, v) ∈ B3 × B32 – write access to the I/O APIC ports

δioapic(ioapic, in) is undefined iff a < {03, 43}. Otherwise

– Case a = 03:

ioapic′.IOREGSEL = v

ioapic.IOWIN = ioapic.redirect(〈v〉)

– Case a = 43:

ioapic′.IOWIN = v

ioapic′.redirect(i) =

v i = 〈ioapic.IOREGSEL〉
ioapic.redirect(i) otherwise

• in = vect ∈ B8 – receiving an EOI message for interrupt vector vect

ioapic′.redirect(i).rirr =

0 ioapic.redirect(i).vect = vect
ioapic.redirect(i).rirr otherwise

Receiving an EOI message for interrupt vector vect resets the corresponding remote inter-
rupt request signal associated with all redirect table entries associated with the interrupt
vector. Note that it is adviseable to configure the system in such a way that interrupt
vectors assigned to devices are unique.

All components not explicitly mentioned stay unchanged.
Active transitions of the I/O APIC can be found in the definition of the overall transition

relation.

4.10 Multi-Core MIPS

Transitions of the abstract machine are defined as

δ : K × Σ ⇀ K

Inputs of the system specify which processor component makes what kind of step and are defined
below. On the level of abstraction provided, we assume that the memory subsystem does not
make steps on its own, thus it may neither receive external inputs nor be scheduled to make an
active step.

The transition functions of the subcomponents are given by

• memory transitions : δm : Km × Σm → Km (always passive, section 4.3),

• processor core transitions : δcore : Kcore × Σcore ⇀ Kcore (section 4.5),

• passive TLB transitions : δtlb : Ktlb × Σtlb → Ktlb (section 4.4, active transitions are given
explicitly in the top level transition function),

• store-buffer transitions which are stated explicitly in the top level transition function,

82

• passive local APIC transitions : δapic : Kapic × Σapic → Kapic (see section 4.8),

• passive I/O APIC transitions: δioapic : Kioapic × Σioapic ⇀ Kioapic (section 4.9), and

• device transitions which are given by : δdev(i) : Kdev(i) × Σdev(i) → Kdev(i) (see section 4.7).

Additionally, we have an output-function

λ : K × Σ ⇀ Ω

where

Ω =

nd−1⋃
i=0

Ωdev(i)

that allows devices to interact in some way with the external world.

4.10.1 Inputs of the System

We define
Σ = Σp × [0 : np − 1] ∪ Σioapic+dev

as the union of processor inputs and I/O APIC and device inputs. In the following, we define
both of them.

Definition 4.63 (Processor Inputs) We have

Σp = {core} × Kwalk × Kwalk ∪ {tlb-create} × B20 ∪ {tlb-extend} × Kwalk × B
3

∪ {tlb-accessed-dirty} × Kwalk ∪ {sb}
∪ {apic-sendIPI, apic-sendEOI, apic-initCore, apic-startCore}

Note that the processor and the store buffer are both deterministic, i.e. they have only one active
step they can perform. In contrast, the TLB and the local APIC are non-deterministic, i.e. there
are several steps that can be performed, thus, the scheduling part of the system’s input specifies
which step is made.

Definition 4.64 (I/O APIC and Device Inputs) We have

Σioapic+dev = {ioapic-sample, ioapic-deliver} × [0 : nd − 1]
∪ {device} × [0 : nd − 1] × Σext

where
Σext =

⋃
i∈[0:nd−1]

Σext(i)

is the union of all external inputs to devices.

83

4.10.2 Auxiliary Definitions

In order to define the overall transition relation, we need a view of the memory that can serve read
requests of the processor in the way we expect: depending on the address, a read request can go
to a local apic, to the I/O-apic, to a device, to the store-buffer, or, if none of the aforementioned
apply, to the memory. Depending on whether the machine is running in user mode or system
mode, memory accesses are subject to address translation performed using the TLB component
of the machine.

Definition 4.65 (Local APIC Base Address) The local APIC ports in this machine are mapped
to address

apicbase ≡ 120012

Definition 4.66 (Local APIC Addresses) The set of byte-addresses covered by local APIC ports
is given by

Aapic = {a ∈ B32 | 0 ≤ 〈a〉 − apicbase < 128}

Definition 4.67 (I/O APIC Base Address) The I/O APIC ports in this machine are always mapped
to address

ioapicbase ≡ 119013

Definition 4.68 (I/O APIC Addresses) The set of byte-addresses covered by the I/O APIC
ports is

Aioapic = {a ∈ B32 | 0 ≤ 〈a〉 − ioapicbase < 8}

Definition 4.69 (Device Base Addresses) We assume a function

devbase : [0 : nd − 1]→ B32

to be given that specifies the base address of the ports region of all devices.

Definition 4.70 (Device Addresses) The set of addresses covered by device i’s ports is given
by

Adev(i) = {a ∈ B32 | 0 ≤ 〈a〉 − devbase(i) < 2devpalen}.

The set of all byte-addresses covered by device, local APIC and I/O APIC ports is defined as

Adev =

nd−1⋃
i=0

Adev(i) ∪ Aapic ∪ Aioapic

Definition 4.71 (Port Address) Given a memory address x, the corresponding port addresses
of devices, local APIC and I/O APIC are computed as

devadr(i,x)(i, x) = (x −32 devbase(i))[devpalen(i) − 1 : 0]

apicadr(x)(x) = (x −32 apicbase(i))[6 : 0]

ioapicadr(x)(x) = (x −32 ioapicbase(i))[2 : 0]

84

Definition 4.72 (Memory System) The results of read accesses performed by the processor
core are described in terms of a memory system that takes into account device ports, I/O APIC
ports, local APIC ports, the store buffer and the memory. We define a function ms that, given
these components, returns the merged memory view seen by the processor core:

ms(dev,ioapic,apic,sb,m)(x) =

sbv(sb, x) sbhit(sb, x)
apic.ports(apicadr(x)) ¬sbhit(sb, x) ∧ x ∈ Aapic

ioapic.ports(ioapicadr(x)) ¬sbhit(sb, x) ∧ x ∈ Aioapic

dev(i).ports(devadr(i, x)) ¬sbhit(sb, x) ∧ x ∈ Adev(i)
m(x) otherwise

Note that, in order to have a meaningful memory system, the machine must be configured in
such a way that address ranges of devices, I/O APIC and local APIC are pairwise disjoint.

Definition 4.73 (Current Address Space Identifier) The current address space identifier is given
by the last 6 bits of the special purpose register asid:

asid(core) = core.spr(asid)[5 : 0]

4.10.3 Transitions of the Multi-Core MIPS

Let us define the transition function δ and the output function λ of MIPS-86 by a case distinction
on the given input a:

δ(c, a) = c′

Any subcomponent of configuration c′ that is not listed explicitly in the following has the same
value as in configuration c.

• a = (core,wI ,wR, i) – processor core i performs a step (using walks wI and wR if running
in translated mode; in system mode, wI and wR are ignored)

In order to formalize a processor core step of processor i, we define the following short-
hands:

– ci = c.p(i).core – the processor core configuration of processor i,

– ms(i) = ms(c.dev, c.ioapic, c.p(i).apic, c.p(i).sb,m) – the memory view of processor
i,

– modei = ci.spr(mode)[0] – the execution mode of processor i,

– trqI = (asid(ci), ci.pc, 110) – the translation request for instruction execution if pro-
cessor core i is running in user mode,

– pff ≡ modei = 1∧ f ault(c.m, trqI,wI) – signals whether there is a page-fault-on-fetch
for the given walk wI and the translation request trqI, and

85

– pmaI =

wI .pa ◦ ci.pc[11 : 0] modei = 1
ci.pc modei = 0

– the physical memory address for instruction fetch of processor core i (which is
only meaningful if no page-fault on instruction fetch occurs),

– I = ms(i)4(pmaI)

– the instruction fetched from memory for processor core i (in case of a page-fault-
on-fetch the value of I has no further relevance),

– trqEA = (asid(ci), ea(ci, I), 01◦ (store(I)∨ rmw(I))) – the translation request for the
effective address if processor core i is running in user mode,

– pfls ≡ modei = 1 ∧ f ault(c.m, trqEA,wR) ∧ /pff ∧ (store(I) ∨ load(I) ∨ rmw(I))

– the page-fault-on-load-store signal for processor core i.

– pmaEA =

wR.pa ◦ ea(ci, I)[11 : 0] modei = 1
ea(ci, I) modei = 0

– the physical memory address for the effective address of processor core i,

– R =

⊥ pff ∨ pfls
ms(i)d(I)(pmaEA) otherwise

– the value read from memory for a read or rmw instruction of processor core i,

δ(c, a) is defined iff all of the following hold:

– modei = 1⇒ hit(wI , trqI) – running in translated mode, the walk wI must match the
translation request for instruction fetch, and

– modei = 1⇒ ((store(I)∨ load(I)∨ rmw(I))∧¬pff⇒ (hit(wR, trqEA))) – running in
translated mode, if there is a read or write instruction and no page-fault on fetch has
occurred, the walk wR must match the translation request for the effective address,
and

– ¬pff ⇒ complete(wI) – if there is no page-fault on fetch, walk wI is complete, and
thus, provides a translation from virtual to physical address, and

– ¬pfls⇒ complete(wR) – if there is no page-fault on load/store, walk wR is complete,
and thus, provides a translation from virtual to physical address, and

– (rmw(I) ∨ m f ence(I)) ⇒ c.sb = ε – a read-modify-write or a fence instruction can
only be executed when the store-buffer is empty, and

– pmaI < Adev – we do not fetch instructions from device ports, and

– (rmw(I) ∨ d(I) , 4 ∧ (load(I) ∨ store(I))) ⇒ pmaEA < Adev – we exclude read-
modify-write accesses and byte/halfword accesses to device ports, and

– c.running(i) – only processors that are not waiting for a SIPI can execute.

86

Then,

c′.p(j).core =

δcore(ci, I,R, eev(c.p(i).apic), pff, pfls) i = j ∧ (load(I) ∨ rmw(I))
δcore(ci, I,⊥, eev(c.p(i).apic), pff, pfls) i = j ∧ (¬load(I) ∧ ¬rmw(I))
c.p(j).core otherwise

c′.p(j).sb =

(pmaEA, sv(ci, I)) ◦ c.p(i).sb i = j ∧ store(I)
c.p(j).sb otherwise

c′.p(j).tlb =

∅ i = j ∧ f lush(I)
tlb′ i = j ∧ invlpg(I)
δtlb(c.p(i).tlb, (flush, asid(ci), ci.pc.ba)) i = j ∧ pff

δtlb(c.p(i).tlb, (flush, asid(ci), ea(ci, I).ba)) i = j ∧ /pff ∧ pfls
c.p(j).tlb otherwise

where

tlb′ = δtlb(δtlb(c.p(i).tlb, (flush, ci.gpr(rs(I))[5 : 0], ci.gpr(rd(I)).ba)),flush-incomplete)

c′.m =

δm(c.m, (ci.gpr(rd(I)), pmaEA, sv(ci, I))) rmw(I) ∧ pmaEA < Adev

c.m otherwise

c′.dev(j) =

δdev(j)(c.dev(j), devadr(j, pmaEA)) lw(I) ∧ pmaEA ∈ Adev(j)

c.dev(j) otherwise

The flag running cannot be modified by a processor core step; it can only be modified
by the corresponding local APIC. Local APIC and I/O APIC configurations are never
modified by a processor core step since neither local APICs nor I/O APIC have side-
effects on reads and we do not allow read-modify-write accesses to devices – writes to
devices always go through the store buffer, thus, any side-effects on device writes are
triggered when the write leaves the store buffer.

Performing a processor core step of core i, we apply the processor core transition function
to the current processor core configuration, providing the instruction word I read from
memory, the read value R (if needed), the external event signals eev(c.p(i).apic) provided
by the local APIC belonging to processor i, and the page-fault signals pff, and pfls given
above. In case of a store-instruction, the corresponding write access enters processor i’s
store buffer. If there is a page-fault, the TLB reacts by flushing all translations for the page-
faulting address – this is necessary in our model in order to allow the MMU to rewalk the
page-tables after interrupt handling without triggering the old page-fault. Only in case of a
read-modify-write instruction, the memory component reacts directly to the read-modify-
write access (since, in all other cases, the store-buffer receives any write requests). Last,
in case there is a read-access to a device, the corresponding device transition function is
triggered: It specifies how the device reacts to the read-access by specifying appropriate
side-effects on reading for the device.

87

λ(c, a) undefined: The processor core does not interact with the external environment, this
is exclusive to devices.

Note that continue interrupts can only be caused by execution of instructions that affect
only the processor core – thus, continue interrupts are covered in an adequate way in the
definitions given here. That is, we do not need to consider changes to other components
than the processor core in the case of a continue interrupt.

• a = (sb, i) – a memory write leaves store buffer i

δ(c, a) is defined iff c.p(i).sb , ε – the store buffer can only make a step when it is not
empty. Then,

c′.p(j).sb =

c.p(i).sb[|c.p(i).sb| − 1 : 1] i = j
c.p(j).sb i , j

c′.p(j).apic =

δapic(c.p(i).apic, (apicadr(a), v)) i = j ∧ c.p(i).sb[0] = (a, v) ∧ a ∈ Aapic

c.p(j).apic otherwise

c′.m =

δm(c.m, c.p(i).sb[0]) c.p(i).sb[0] = (a, v) ∧ a < Adev

c.m otherwise

c′.ioapic =

δioapic(c.ioapic, (ioapicadr(a), v)) c.p(i).sb[0] = (a, v) ∧ a ∈ Aioapic

c.ioapic otherwise

c′.dev(j) =

δdev(j)(c.dev(j), (devadr(j, a), v)) c.p(i).sb[0] = (a, v) ∧ a ∈ Adev(j)

c.dev(j) otherwise

Store buffer steps never change processor core configurations, TLB configurations or the
running flag. The oldest write in the store buffer is handled by the component the address
belongs to. Note that here, we rely on the correct alignment of accesses, since otherwise,
write accesses might partially cover ports and memory at the same time.

λ(c, a) undefined

• a = (tlb-create, va, i) – a new walk for virtual address va is created in TLB i

δ(c, a) is defined iff

– c.p(i).spr(mode)[0] = 1 – the TLB will only create walks when the processor is
running in user mode, and

– c.running(i) – the TLB will only create walks when the processor is not waiting for
SIPI.

Then,

c′.p(j).tlb =

c.p(i).tlb ∪ winit(va, ci.spr(pto).ba, asid(c.p(i)) i = j
c.p(j).tlb otherwise

Creating a new walk in the TLB is a step that affects only the TLB.

λ(c, a) undefined

88

• a = (tlb-set-accessed-dirty,w, i) – accessed and dirty bits of the page table entry needed
to extend walk w in TLB i are set appropriately

δ(c, a) is defined iff

– c.p(i).spr(mode)[0] = 1 – page table entry flags can only be set in translated mode,

– w ∈ c.p(i).tlb∧¬complete(w)∧w.asid = asid(c.p(i)) – we only set dirty and accessed
bits for incomplete walks of the current address space identifier, and

– pte(c.m,w).p = 1 – the MMU can only set accessed/dirty flags for page table entries
which are actually present.

Then,

c′.m = δm(c.m, (ptea(w), set-ad(pte(c.m,w),w)))

Setting the page table entry flags only affects the corresponding page table entry in mem-
ory. In this model, the MMU non-deterministically sets accessed and dirty flags – enabling
walk extension using the given page table entriy.

λ(c, a) undefined

• a = (tlb-extend,w, i) – an existing walk in TLB i is extended

δ(c, a) is defined iff

– w ∈ c.p(i).tlb – the walk is to be extended is contained in the TLB, and

– ¬complete(w) – the walk is not yet complete, and

– w.asid = asid(c.p(i)) – the walk is for the current ASID, and

– pte(c.m,w).a ∧ (w.level = 1 ⇒ pte(c.m,w).d) – the accessed/dirty flags are set
appropriately, and

– ¬wext(w, pte(c.m,w)). f ault – the walk extension does not fault result in a faulty
walk, and

– c.running(i) – the TLB will only extend walks when the processor is not waiting for
SIPI.

Then,

c′.p(j).tlb =

δtlb(c.p(i).tlb, add-walk(wext(w, pte(c.m,w)))} i = j
c.p(j).tlb otherwise

Walk extension only affects the TLB, note however, that in order to perform walk exten-
sion, the corresponding page-table entry is read from memory.

λ(c, a) undefined

• a = (apic-sendIPI, i) – local APIC i sends a pending inter-processor-interrupt to all target
local APICs

δ(c, a) is defined iff

– c.p(i).apic.ICR.ds = 1 – there is currently an inter-processor-interrupt to be deliv-
ered, and

89

– c.p(i).apic.ICR.destmode , 0 – the destination mode is set to something other than
0

Then,

c′.p(j).apic =

δapic(apic′, (type, vect)) i = j ∧ self-target
apic′ i = j ∧ ¬self-target
δapic(c.p(j).apic, (type, vect)) i , j ∧ (t = ID

∧c.p(j).apic.APIC_ID = c.p(i).apic.ICR.dest
∨t = ALL-BUT-SELF ∨ t = ALL)

c.p(j).apic otherwise

where
vect = c.p(i).apic.ICR.vect[7 : 0]

is the interrupt vector that is sent over the interrupt bus,

type =

Fixed c.p(i).apic.ICR.dm = 03

INIT c.p(i).apic.ICR.dm = 101
SIPI c.p(i).apic.ICR.dm = 110

is the type of interrupt as specified by the command register of the sending local APIC,

t =

ALL c.p(i).apic.ICR.dsh = 10
ALL-BUT-SELF c.p(i).apic.ICR.dsh = 11
SELF c.p(i).apic.ICR.dsh = 01
ID c.p(i).apic.ICR.dsh = 00

describes the target mode of the requested inter-processor interrupt,

self-target ≡ (t = SELF∨t = ALL∨(t = ID∧c.p(i).apic.APIC_ID = c.p(i).apic.ICR.dest))

expresses whether the sending local APIC is also a target of the inter-processor interrupt,
and apic′ is identical to c.p(i).apic everywhere except apic′.ICR.ds = 0.

Sending an inter-processor-interrupt only affects local APIC configurations – both of the
sending local APIC and the receiving ones. All receiving local APICs perform a passive
receive-interrupt transition.

λ(c, a) undefined

• a = (apic-sendEOI, i) – local APIC i sends an EOI message to the I/O APIC

δ(c, a) is defined iff

–
∨

i c.p(i).apic.eoipending[i] = 1 – there is currently an end-of-interrupt message
pending

90

Then,

c′.p(j).apic =

apic′ i = j
c.p(j).apic otherwise

where apic′ is identical to c.p(i).apic everywhere except

apic′.eoipending[k] =

0 k = 〈vect〉
c.p(i).apic.eoipending[k] otherwise

and vect = min{l | c.p(i).apic.eoipending[l] = 1}8
c′.ioapic = δioapic(c.ioapic, vect)

Transmitting an EOI message affects only the sending local APIC and the I/O APIC. When
a local APIC sends an EOI message it is always for the smallest interrupt vector for which
an EOI message is pending. The I/O APIC receives the EOI message and reacts with the
passive transition given by δioapic that resets the remote interrupt request flag in its redirect
table, re-enabling the I/O APIC to sample the corresponding device interrupt.

λ(c, a) undefined

• a = (apic-initCore, i) – local APIC i applies a pending INIT-IPI to processor core i

δ(c, a) is defined iff c.p(i).apic.initrr = 1 – there is currently an INIT-IPI pending in the
local APIC of processor i. Then,

c′.p(j).core =

core′ i = j
c.p(j).core otherwise

where

core′ is identical to c.p(i).core except for core′.pc = 032, core′.spr(mode) = 032 and
core′.spr(eca) = 032.

c′.running(j) =

0 i = j
c.running(j) otherwise

c′.p(j).apic =

apic′ i = j
c.p(j).apic otherwise

where apic′ is identical to c.p(i).apic everywhere except apic′.initrr = 0.

When the local APIC applies an INIT-IPI to the corresponding processor core, the store
buffer and TLB of that processor as well as the global memory and all other devices are
not affected. The INIT-IPI effectively acts as a warm reset to the processor core.

λ(c, a) undefined

• a = (apic-startCore, i) – local APIC i applies a pending SIPI interrupt to processor core i

δ(c, a) is defined iff

– c.p(i).apic.sipirr = 1 – there is currently a SIPI pending in the local APIC of pro-
cessor i, and

91

– c.running(i) = 0 – the processor is currently waiting for SIPI.

Then,

c′.p(j).core =

core′ i = j
c.p(j).core otherwise

where

core′ is identical to c.p(i).core except for core′.pc = c.p(i).apic.sipivect ◦ 024.

c′.running(j) =

1 i = j
c.running(j) otherwise

c′.p(j).apic =

apic′ i = j
c.p(j).apic otherwise

where apic′ is identical to c.p(i).apic everywhere except apic′.sipirr = 0.

Similar to the INIT-IPI, the store buffer and TLB of that processor as well as the global
memory and all other devices are not affected. The interrupt vector of the SIPI is used to
initialize the program counter of the processor core and the flag c.running(i) is set in order
to allow the processor core to perform steps.

λ(c, a) undefined

• a = (ioapic-sample, k) – the I/O APIC samples the raised interrupt of device k

δ(c, a) is defined iff

– c.dev(k).irq = 1 – device k does currently have an interrupt signal activated, and

– c.ioapic.redirect(k).mask = 0 – the interrupt of device k is not masked, and

– c.ioapic.redirect(k).rirr = 0 – handling of any previous interrupt for device k has
been acknowledged by an EOI message from the corresponding local APIC.

Then,

c′.ioapic is identical to c.ioapic except for

c′.ioapic.redirect(i).ds =

1 i = k
c.ioapic.redirect(i).ds otherwise

Sampling a device interrupt only affects the state of the I/O APIC. The delivery status bit of
the corresponding redirect table entry is set in order to allow a subsequent ioapic-deliver
transition.

λ(c, a) undefined

• a = (ioapic-deliver, k) – the I/O APIC delivers a pending interrupt from device k to the
target local APIC

δ(c, a) is defined iff

92

– c.ioapic.redirect(k).ds = 1 – there is currently an interrupt pending to be delivered
for device k

Then,

c′.p(j).apic =

δapic(c.p(j).apic, (Fixed, v)) c.p(j).apic.APIC_ID = c.ioapic.redirect(k).dest
c.p(j).apic otherwise

where v = c.ioapic.redirect(k).vect

and c′.ioapic is identical to c.ioapic except for the following:

– c′.ioapic.redirect(k).ds = 0

– c′.ioapic.redirect(k).rirr = 1

Delivering a pending device interrupt only affects the I/O APIC and the target local APIC
specified in the redirect table of the I/O APIC. The I/O APIC sets the remote interrupt
request flag in order to prevent sampling the same device interrupt several times. Only
after the corresponding local APIC acknowledges handling of the interrupt vector to the
I/O APIC by sending an EOI message, sampling the device interrupt is possible again.

λ(c, a) undefined

• a = (device, k, ext) – device k performs a step under given external input ext

δ(c, a) is defined iff

– ext ∈ Σdev(k) – the external input belongs to device k.

Then,

c′.dev(j) =

δdev(k)(c.dev(k), ext) j = k
c.dev(j) otherwise

Only device k is affected. Execution proceeds as specified by the device transition func-
tion.

λ(c, a) = λdev(k)(c.dev(k), ext)

The device may provide an output to the external world as specified by its output function.

4.10.4 Multi-Core MIPS Computation

Given an input sequence s : N → Σ of the Multi-Core MIPS and a sequence of Multi-Core
MIPS configurations (ci), these two define a Multi-Core MIPS computation if and only if

∀i : ci+1 = δ(ci, s(i))

4.11 Booting a MIPS-86 Machine

4.11.1 Initial Configuration after Reset

After reset, an arbitrary configuration c fulfilling the following restrictions is chosen non-deterministically:

93

• The program counter of all processors is initialized: ∀i ∈ [0 : np − 1] : c.p(i).pc = 032

• All processors except the boot-strap processor (BSP) are waiting for SIPI:

c.running(0) = 1, ∀i ∈ [1 : np − 1] : c.running(i) = 0

• All processors are in system mode:

∀i ∈ [0 : np − 1] : c.p(i).mode = 032

• The store-buffers of all processors are empty:

∀i ∈ [0 : np − 1] : c.p(i).sb = ε

• The TLBs of all processors do not contain translations:

∀i ∈ [0 : np − 1] : c.p(i).tlb = ∅

• The I/O APIC does not have any interrupts to deliver and all device interrupt lines are
masked:

∀i : c.ioapic.redirect(i).rirr = 0

∀i : c.ioapic.redirect(i).ds = 0

∀i : c.ioapic.redirect(i).mask = 0

• The local APICs of all processors do not have pending interrupts and the APIC ID is
initialized:

∀i ∈ [0 : np − 1] : c.p(i).apic.IRR = 0256

∀i ∈ [0 : np − 1] : c.p(i).apic.ISR = 0256

∀i ∈ [0 : np − 1] : c.p(i).apic.ICR = 064

∀i ∈ [0 : np − 1] : c.p(i).apic.APIC_ID = i8

• All devices are in an initial state:

∀i ∈ [0 : nd − 1] : initialstate(i)(c.dev(i))

4.11.2 Booting

Since initially, all processors except c.p(0) – the boot-strap processor (BSP) – are waiting for
a SIPI-interrupt, the machine executes sequentially until the BSP uses its local APIC to issue
SIPIs (startup inter-processor-interrupts) to the other processors.

94

5 C-IL Semantics

c noun, often capitalized often attributive

1. a : the 3rd letter of the English alphabet

[...]

8. a structured programming language designed to be compact and efficient

"c." Merriam-Webster.com. Merriam-Webster, 2011. Web. 6 July 2011.

5.1 The C Programming Language

A treatment of the history of C, describing the origins of the programming language C as a
successor of the languages BCPL and B, is given by Dennis M. Ritchie in "The development
of the C language"[Rit93]. C is a programming language designed from the very beginning
with system programming in mind: The development of the UNIX operating system together
with Ken Thompson required a programming language adequate to the task. Dennis M. Ritchie
characterizes the language as follows:

"BCPL, B, and C all fit firmly in the traditional procedural family typified by For-
tran and Algol 60. They are particularly oriented towards system programming,
are small and compactly described, and are amenable to translation by simple com-
pilers. They are ‘close to the machine’ in that the abstractions they introduce are
readily grounded in the concrete data types and operations supplied by conventional
computers, and they rely on library routines for input-output and other interactions
with an operating system."

"The development of the C language"[Rit93], Dennis M. Ritchie

From this, it is quite obvious, that C was never designed to be a ”beautiful” abstract language,
but instead, to serve the purpose of solving an engineering problem.

"Two ideas are most characteristic of C among languages of its class: the relation-
ship between arrays and pointers, and the way in which declaration syntax mimics
expression syntax. They are also among its most frequently criticized features, and
often serve as stumbling blocks to the beginner."

"The development of the C language"[Rit93], Dennis M. Ritchie

In fact, as one of the more serious stumbling blocks to C, I would like to mention the significant
amount of implementation-defined semantics, as given by the specific compiler implementation
and architecture used. Over the years, there have been many standardization attempts for C,
e.g. the book "The C Programming Language"[KR88] by Dennis M. Ritchie and Brian W.

95

Kernighan, the ANSI98 standard for C agreed on by the American National Standards Institute
(ANSI) which was – with some minor adaptations – adopted by the International Organization
for Standardization (ISO) to under the name C90 – which evolved to the C99 standard (ISO/IEC
9899) [ISO99]. Since an exact formalization of C is an arduous task without much gain (it
appears to be much more useful to retreat to a well-defined subset of C) the author of this thesis
does not even try to formalize standard-conforming C in all of its intricate details. Instead,
we take a route that others have gone before: We introduce a simple intermediate language
that can be used to implement C. Necula et al.[NMRW02] report considerable benefits gained
from translating C code to a "clean" language subset of C they call C intermediate language
(CIL). Xavier Leroy et al.[BL09] also used simplified and intermediate language versions of C –
Cminor and Clight – for their compiler verification efforts. Their language, however, obviously
aims at a somewhat higher level of abstraction by providing a memory model with an explicit
notion of a heap that obscures the exact memory layout. Implementing an operating system or
hypervisor, however, it appears desirable to have full control over the memory layout in order to
implement low-level memory management explicitly.

The main advantage of using an intermediate language is that, instead of considering many
different kinds of control structures and all the syntactic sugar C provides to the programmer,
we simply have to consider one representative instance for every unique semantic construct. To
argue that such a reduced intermediate language is adequate, it suffices to provide compilation
rules from C to the intermediate language and check that the semantics we obtain by executing
the compiled code matches what we expect.

What follows is a description of basic features of the intermediate-language C-IL proposed by
the author and a discussion of why the style of modeling chosen is useful in the bigger context
of pervasive system verification we aim at. A formal description of C-IL is given afterwards.

5.2 Basic Features & Design Decisions

Requirements imposed on C-IL stem from five different goals: i) the C-IL-model must be easy to
integrate with hardware models, ii) it must be possible to implement a large subset of standard-
compliant C using C-IL, iii) it must provide abstraction to allow verification tools to be efficient,
iv) it must be useable in a concurrent context, and v) it must be possible to write low-level system
code in it.

C-IL is a simple goto-language with very few different statements. At the same time, the
language makes use of a rich type set, a large subset of C’s types are provided. C-IL supports
complex expressions, which, however, are side-effect free. Programs operate on local variables
and on a byte-addressable global memory that closely corresponds to hardware memory. Pointer
arithmetics is allowed to the full extent covered by the standard. We model C-IL-programs using
mathematics – while the notation used is in many cases similar to the syntax of C, there are
certain differences. Since C-IL is merely an intermediate language, the explicit modeling of C’s
syntax is left as future work.

C-IL is designed as an intermediate language for C that can be adapted to different archi-
tectures and compilers in a modular way. For this, we introduce what we call environment
parameters: We model information about architecture, compiler, and the execution environment

96

explicitly and define the semantics of C-IL based on these parameters.
In the following, we elaborate on the basic features of C-IL and why they are adequate to

fulfill the requirements imposed on C-IL.

Reduced Number of Statements C-IL allows assignment, goto, if-not-goto, function call
and return statements. Obviously, with so few different statements, we obtain a very simple
language for which is it easy to correctly implement verification tools. With only three state-
ments (assignment, function call and return) updating memory content, it is not overly difficult
to extend the language to the concurrent case.

Unstructured Control-Flow Since we aim for the most simple low-level C language we
can imagine, it is an obvious choice to provide only one way to express the control flow of a
program. While high-level programming language constructs as while- or for-loops provide a
nice abstraction, they cannot be used easily to implement all types of branching provided by the
programming language C (e.g. switch, break). Thus, it seems a much more natural choice to
use a goto-formalism for C-IL; modeling the program as a flat transition system is also much
closer to how control flow is implemented in hardware. We implement this formally by defining
a location counter that points to the next statement to be executed in the current function body.
A function body is defined by a list of program statements.

Rich Type-System The choice of providing many C types and qualifiers (except bit-fields,
floating-point types and the restrict-qualifier) is rather unusual for an intermediate-language. The
modeling of qualifiers is owed directly to the fact that C-IL should be used with optimizing com-
pilers, while the explicit modeling of types is helpful in setting up an object-based concurrent
verification methodology (such as the one used in VCC) for C-IL.

Side-Effect-Free Expressions C-IL provides the following expressions: constant, variable,
function name, unary operation, binary operation, ternary operation, type cast, dereferencing of
pointer, taking address-of, field access, size of types/expressions. In combination with the rich
type system, we obtain a rather high-level language – considering C-IL is just an intermediate
language.

Byte-Addressable Memory C-IL operates on a byte-addressable global memory which, with
exception of the stack-region, coincides with the memory of the hardware machine. An impor-
tant software condition is that we never perform reads or writes to memory addresses belonging
to the stack region since we provide an abstract model of the stack that is to be used instead.
Intrinsically, C-IL has no notion of a heap or of memory allocation. This kind of abstraction
must be implemented by memory allocation functions, e.g. the ones from the C standard library,
or those implemented by an operating system or hypervisor.

Stack Abstraction The only memory region we do not consider as byte-addressable is the
stack-region. Note that we could consider the explicit stack layout in the global byte-addressable
memory. However, we do not want to expose this in our semantics. This is why we provide a

97

stack abstraction in form of a list of abstract stack frames. A frame contains information about
the values of local variables (modeled as byte-strings) and the control state.

Explicit Pointer Arithmetics On the global byte-addressable memory, any computation with
pointers is permitted. On local variables and parameters, pointer arithmetics is restricted to
calculating offsets that fall in the scope of the byte-representation of the corresponding local
variable or parameter. Since we abstract from the concrete stack layout by providing an abstract
stack, we do not know the base addresses of local variables and parameters in our semantics.
The execution of programs that do not adhere to this pretty lenient pointer arithmetics restriction
cannot be modeled with our semantics: Execution will get stuck. Since modern code verification
tools tend to enforce even stricter pointer arithmetics restrictions, this, however, is not a problem
in practice.

Environment Parameters These specify how the compiler and architecture behave and how
the program is set up in memory. This includes (but is not limited to) the endianness (byte-order)
of the architecture, the addresses of global variables in global memory, a type-cast function that
matches the behavior of the compiler, the size of struct/union types in bytes, offsets of fields in
struct/union types, the addresses of function pointers, and the type of the sizeof -operator.

What follows is a formal definition of the language C-IL and its operational semantics. After
introducing some basic sets, we begin by describing the environment parameters in detail, fol-
lowed by a definition of types, values, expressions, and statements of C-IL. We formally define
C-IL programs and the possible resulting program configurations. Expression evaluation is de-
fined in order to define operational semantics – which is defined in terms of a C-IL automaton
performing steps from configuration to configuration under some given program. C-IL can be
instantiated for given architectures and compilers. Thus, we give a definition of MIPS-86-C-IL
to illustrate how exactly C-IL semantics is supposed to be used.

5.2.1 Basic Sets

We define C-IL semantics based on some given sets which can be assumed to be isomorphic to
the natural numbers (i.e. infinite and enumerable). These sets are

• V – the set of variable names

Contains all possible variable names.

• F – the set of field names

Contains all possible names of fields of struct types.

• Fname – the set of function names

Contains all possible function names.

• TC – the set of composite type names

Contains all possible names of struct types.

98

While, essentially, all these sets could be defined to be identical, distinguishing between them
in the following definition of C-IL semantics should provide a better intuition in terms of what
kinds of names may occur where.

5.3 Environment Parameters

C-IL is such a low-level language that its semantics cannot be described fully without knowledge
about the environment it runs in. In particular, this involves specifying how the C-IL compiler
behaves and specifying certain features of the architecture the code will run on. Among other
things, we require that it is specified how structural types are laid out in memory and that we
know the base addresses of global variables in the byte-addressable memory.

We use θ ∈ paramsC-IL to denote a record of environment parameters for C-IL. It consists of
the following components:

• θ.TP ⊂ TPP – the set of primitive types offered by the compiler

This set is given as a subset of the set of possible primitive types TPP of C-IL which is
defined in the next section and includes all theoretically possible signed and unsigned
integer types as well as the type void. We currently do not consider floating-point types.
This, however, is a simple extension.

• θ.endianness ∈ {little,big} – the endianness of the underlying architecture

The endianness of an architecture determines the order of individual bytes in a memory
access that affects several bytes (e.g. a word access): Either, such data is transferred
to/from memory starting with the least significant byte (little-endian), or it is transferred
starting with the most significant byte (big-endian). To the programmer, this architecture
feature becomes visible when memory accesses of different byte-width are used on the
same memory region. While there are more exotic types of endianness, e.g. middle-
endian, we do not consider them currently.

• θ.sizeptr ∈ N – the size of pointer types in bytes

For many C compilers, the size of pointer types depends on the size of a machine word of
the underlying architecture. Thus, we make it a parameter of the semantics.

• θ.size_t ∈ θ.TP – the type of the value returned by the sizeof-operator

Every C compiler must fix a type for the value returned by the sizeof-operator. The
C99 Standard does not prescribe a specific type for this value. In practice, however, the
unsigned integer type that exactly matches a machine word of the architecture is chosen
most commonly.

• θ.cast : val × T⇀ val – a function that describes how the compiler handles type cast

The function takes a pair of value and type and returns the resulting value after casting
the given value to the given type. The C99 standard partially specifies the type casting
function. The undefined type casts may be handled by the compiler implementation in

99

any particular way. In order to allow stating semantics even for compiler-dependent type
casts, we have the type cast function as a parameter to the semantics. While the function
may be partial to account for undefined type casts, it must be defined for any type cast that
occurs in the considered program. A more in-depth examination of the type cast function
can be found in the section on values of C-IL (section 5.5.1).

• θ.op1 : O1 → (val ⇀ val) – a function that describes the behavior of un ary operators

For each unary operator from the set O1 of unary operators provided by C-IL (this is a
specific set of operators defined in section 5.5.2), it is possible to define how that unary
operator behaves. Actually, most of the operators provided are explicitly defined and do
not allow for implementation-specific behavior (see section 5.5.2). However, in case the C
code relies on implementation-defined behavior it can be useful to provide the semantics
explicitly.

• θ.op2 : O2 → (val×val ⇀ val) – a function that describes the behavior of binary operators

Similar to the unary operators, we explicitly provide semantics for binary operators from
the set O2 of C-IL. Note that most operators are only defined for pairs of values of the
same type; there are exceptions for adding integers to pointers, though.

• θ.intrinsics : Fname ⇀ FunT – a function table for compiler intrinsic functions

C compilers in general provide access to architecture-specific features by means of intrin-
sic functions. Essentially, these intrinsic functions stand for special hardware instructions
that are usually inlined (instead of compiled to actual function calls). θ.intrinsics provides
a function table for these intrinsic functions; a function table entry represents a function
declaration, i.e. how many parameters the function takes and whether it produces a return
value. The function table should be defined for any compiler intrinsic function used by
the program.

• θ.offset : TC × F⇀ N – byte offsets of fields in struct or union types

In order to express how field accesses on values of structural type operate on the byte-
addressable memory, we need to know the byte offsets of fields. These byte offsets can
then be used to calculate the base address of the sub-variable corresponding to the field
access for the memory access. It needs to be defined only for those field accesses which
do actually occur in the program. A restriction that must be fulfilled by the compiler is
that the byte offsets specified result in a memory layout in which the byte-representations
of struct fields do not overlap.

• θ.offset : TC ⇀ N – the size of struct or union types in bytes

The order of fields in struct and union types can be optimized by the compiler, e.g. in order
to save space while maintaining a correct alignment for all fields. Thus, it is not defined
by the C99 Standard how many bytes a struct or union occupies in memory. In order
to state the semantics of the sizeof-operator for struct and union types, we thus need
this information given as a parameter to the semantics. This partial function needs to be
defined for any composite type on which we use the sizeof-operator. The restriction here

100

is that the size needs to be large enough to completely cover the memory range occupied
by the byte-representations of all fields.

• θ.allocgvar : V⇀ B8·θ.sizeptr – the base addresses of global variables

Since the memory model chosen is simply the byte-addressable memory of the host ma-
chine, we can only express the effect of reads and writes to global variables when we know
their base addresses in that byte-addressable memory. This is a partial function that needs
to be defined for every global variable the program accesses. An imporant restriction is
that the global variable base addresses specified here result in non-overlapping memory
ranges for the declared global variables.

• θ.Fadr : Fname ⇀ B
8·θ.sizeptr – function pointer values

We do want to argue about code that stores function pointers in memory – in order to set up
interrupt descriptor tables to point to the begin of the respective compiled interrupt service
routines. Thus, we have – as a parameter to the semantics – a function that returns, for
a given function name, the corresponding address in the byte-addressable memory where
the compiled code for that function begins. This is a partial function that only needs to be
defined for any function we need to take a function pointer of.

• θ.Rextern : Fname ⇀ 2val∗×confC-IL×confC-IL – transition relations for external procedures

In order to define the effect of functions whose implementation is not given by the C-IL-
program, we define corresponding transition relations. These transition relations describe
the effect of the corresponding function under a given finite sequence of parameter values
on a pair of C-IL-states: When

((p1, . . . , pk), c, c′) ∈ θ.Rextern(f)

this denotes that, given parameter values p1, . . . , pk the function call to f in given state
c may result in state c′. This is used to define the effects of compiler intrinsic functions
or external function calls (e.g. to device drivers or functions implemented in different
programming languages or external libraries). A transition relation should be defined for
any function call which is not implemented by the C-IL-program; otherwise the semantics
will get ”stuck” at such a call.

Note that, for the purpose of C-IL on its own, we only need to express the effect of the
external function call on the C-IL state. When we are interested in bigger systems, we
must additionally specify the effect of external function calls on external state – which
shall be defined individually for such a system.

The components θ.offset and θ.sizecomp depend on the program for which semantics are stated
– while θ.allocgvar and θ.Fadr additionally depend on where in the memory of the physical ma-
chine the program is loaded, i.e. where the global memory starts and where the code region
starts. Given the composite type declarations, global variable declarations and function dec-
larations as well as their implementations, we can then get the desired information from the
compiler.

101

5.4 Types

C-IL provides a quite rich type system that provides primitive types (e.g., int, void), composite
types (structs), array types, pointer types, and function pointer types. Each of these can be
accompanied by type qualifiers – for C-IL, we only model the type qualifiers volatile and
const explicitly as type qualifiers (the type qualifier unsigned is instead modeled by defining
a corresponding separate C-IL type). In the following, we give a formal model of the types of
C-IL.

5.4.1 The Set of Types

Depending on the compiler and the underlying architecture, different primitive types may be
provided. The environment parameters θ include a set of primitive types θ.TP which must be
given as a subset of the set of possible primitive types TPP.

Definition 5.1 (Set of Possible Primitive Types) We define the set of possible primitive types
TPP of C-IL as the smallest set that fulfills the following:

• It contains the void type: void ∈ TPP

• It contains all possible integer types: n ∈ N>0 ∧ 8 | n⇒ in ∈ TPP

• It contains all possible unsigned integer types: n ∈ N>0 ∧ 8 | n⇒ un ∈ TPP

Note that we do not provide the type _Bool specified in the C99 standard. Obviously, this type
can be implemented on a higher level of abstraction using one of the primitive unsigned or signed
integer types.

Most commonly, compilers tend to provide only such integer types in, un for which ∃k : n =

2k · 8 holds – due to alignment restrictions of the underlying architecture.

Example 1 (Set of Primitive MIPS-86-C-IL Types) For MIPS-86, an appropriate set of prim-
itive C-IL types is the following:

TPP = {void, i8,u8, i16,u16, i32,u32}

Given just the set of primitive types θ.TP and the set of composite type names TC , we can
formally define the set of types for C-IL.

Definition 5.2 (Set of Types) We define the set of C-IL types T inductively as follows:

• Primitive types: t ∈ θ.TP ⇒ t ∈ T

A primitive type t ∈ T is simply one of the primitive types offered by the compiler – which
are specified by the environment parameter θ.TP.

• Pointer types: t ∈ T⇒ ptr(t) ∈ T

We distinguish between regular pointer types and function pointer types in C-IL. A regular
pointer type ptr(t) ∈ T is characterized by the type t of the value a pointer of this type
points to.

102

• Array types: t ∈ T, n ∈ N, n > 0⇒ array(t,n) ∈ T

In C-IL, we only consider arrays of fixed size – dynamic arrays can be modeled by simply
using pointers. An array type array(t, n) ∈ T is always characterized by the type of
elements t and the number of elements n of the array.

• Function pointers: t ∈ T,T ∈ (T \ {void})∗ ⇒ funptr(t,T) ∈ T

A function pointer type describes the signature of the function pointed to: Given the type
funptr(t,T) ∈ T t is the type of the return value and T is a list of parameter types of the
function pointed to.

• Struct types: tC ∈ TC ⇒ struct tC ∈ T

A struct type struct tC ∈ T is simply identified by its composite type name tC .

5.4.2 Type Qualifiers & Qualified Types

Type qualifiers can be used to annotate type declaration in order to give additional information
about the accessed values to the compiler.

The type qualifier volatile specifies that a variable of that type is subject to change by means
outside the program. This, for example, includes other threads accessing that variable, memory-
mapped I/O (device memory), or an interrupt handler accessing the variable. The consequence is
that the compiler optimizes much less aggressively over memory accesses marked as volatile –
e.g. it always writes/reads the value to/from memory instead of caching it in a register for faster
access. However, in many real-world compilers, the compilation of volatile memory accesses
does not conform to this notion of "being safe under changes from outside" – effectively resulting
in a common perception that the volatile keyword is actually useless in many of the interesting
situations (for an interesting discussion of miscompilation of volatiles, see [ER08]).

In contrast, the type qualifier const tells the compiler that the variable in question never
changes (and, as a consequence, may never be written). This may enable the compiler to perform
more aggressive optimization.

Definition 5.3 (Set of Type Qualifiers) We define the set of type qualifiers as

Q = {volatile, const}

Any type can be annotated with any subset of the set of type qualifiers.

Definition 5.4 (Set of Qualified Types) We define the set of qualified types TQ, inductively as
the smallest set containing the following:

• Qualified primitive types: q ⊆ Q, t ∈ θ.TP ⇒ (q, t) ∈ TQ

• Qualified pointer types: q ⊆ Q, x ∈ TQ ⇒ (q,ptr(x)) ∈ TQ

• Qualified array types: q ⊆ Q, x ∈ TQ, n ∈ N⇒ (q, array(x, n)) ∈ TQ

• Qualified function pointers: q ⊆ Q, x ∈ TQ, X ∈ T∗Q ⇒ (q, funptr(x, X)) ∈ TQ

103

• Qualified struct types: q ⊆ Q, tC ∈ TC ⇒ (q, struct tC) ∈ TQ

On the level of C-IL semantics, type qualifiers do not affect execution at all. Thus, in order to
shorten the definitions, we use unqualified types in the formal definitions wherever possible. In
order to properly describe the formal relation between qualified types and unqualified types, we
introduce a conversion function that maps qualified types to the corresponding unqualified ones.

Definition 5.5 (Converting from Qualified Type to Unqualified Type) We define the function
qt2t : TQ → T that converts qualified types to unqualified types as

qt2t(x) =

t x = (q, t) ∧ t ∈ TP

ptr(qt2t(x′)) x = (q,ptr(x′))
array(qt2t(x′), n) x = (q, array(x′, n))
funptr(qt2t(x′),map qt2t X) x = (q, funptr(x′, X))
struct tC x = (q, struct tC)

Definition 5.6 (Auxiliary Predicates on Types) In order to shorten notation, we define the fol-
lowing predicates on unqualified types to be used in the formal definition of C-IL:

• isptr(t) ≡ (∃t′ : t = ptr(t′))

• isarray(t) ≡ (∃t′, n : t = array(t′, n))

• isfunptr(t) ≡ (∃t′,T : t = funptr(t′,T))

In order to specify memory accesses to our byte-addressable memory, we need to know the
sizes of values of given types in bytes.

Definition 5.7 (Sizes of Types) We define the function sizeθ : T→ N as follows:

sizeθ(t) =

k/8 t = ik ∨ t = uk
θ.sizeptr isptr(t) ∨ isfunptr(t)
n · sizeθ(t′) t = array(t′, n)
θ.sizecomp(tC) t = struct tC

A Note on Recursive Composite Types

In order to represent the structure of recursive composite type declarations like, for example,

struct A {struct A* x};

we assume a composite type declaration function

TF : TC → (F × TQ)∗

that maps a given composite type name tC ∈ TC to a list of its field declarations (specifying pairs
of fields f ∈ F and qualified types t ∈ TQ). This function is always provided by the particular
C-IL program considered (see section 5.6).

104

Example 2 (Qualified Members of a Struct Type) Let us consider the following struct type
declaration:

s t r u c t A
{

v o l a t i l e i n t a ;
u n s i g n e d i n t b [1 0] ;
c o n s t i n t * c ;
i n t * v o l a t i l e d ;

} ;

Translating this struct declaration of C to C-IL on a 64-bit architecture, the corresponding com-
posite type declaration is:

TF(A) = [(a, ({volatile}, i64)),

(b, (∅, array(u64, 10)),

(c, (∅,ptr({const}, i64))),

(d, ({volatile},ptr(i64)))]

Note that the pointer c is not constant, however, the value it points to is. On the other hand, d is
a volatile pointer to a non-volatile 64-bit integer value.

5.5 Values

Values in C-IL semantics are modeled in a quite different way than in many high-level program-
ming language semantics. Instead of choosing an abstract representation for values, we simply
model most values as pairs of a bit-string of appropriate length and a type. In the case of primi-
tive values, the type denotes whether the bit-string component of the value has to be interpreted
as a binary number or as a two’s-complement-number.

Definition 5.8 (Set of C-IL Values) We define the set of C-IL values val as the union of the sets
of values of a given type:

val
de f
= valprim ∪ valptr+array ∪ valfunptr

In the following, we define and briefly discuss the sets of values of a given type.

Definition 5.9 (Set of Primitive Values) The set of primitive values valprim is defined as

valprim
de f
=
⋃

t∈TPP

valprim(t)

where
valprim(uk)

de f
= {val(n,uk) | n ∈ Bk}

and
valprim(ik)

de f
= {val(i, ik) | i ∈ Bk}

define the unsigned values and signed values, respectively.

105

Note that there is no value for the type void since the type void explicitly denotes the absence
of a value. Expressions of type void thus cannot be evaluated in C-IL (even though some C
compilers may effectively treat void as just another integer type). Also, struct types themselves
do not have corresponding values. Structs in C-IL are always accessed through their specific
primitive, pointer, or array type fields.

Since array values in C correspond directly to a pointer to the first element of the array, we
simply model arrays as pointers with an array type. However, pointers come in two specific
flavors: Pointers to the global memory and pointers to local variables (which reside on the
stack). The latter ones we call local references while we call the former ones pointer values or
pointers to the global memory in the following. A particular difference between them is that
pointer arithmetics on local references is restricted while it is always possible on pointer values.

Definition 5.10 (Set of Pointer and Array Values) We define the set of pointer and array val-
ues as the union of the set of pointer values and the set of local references:

valptr+array
de f
= valptr ∪ vallref

where a pointer value from the set

valptr
de f
=

⋃
t∈T∧(isptr(t)∨isarray(t))

valptr(t)

with
valptr(t)

de f
= {val(a, t) | a ∈ B8·θ.sizeptr}

is a pair val(a, t) of a bit-string a representing the address in memory the pointer points to and a
type t which is either a pointer or an array type, and where a local reference from the set

vallref
de f
=

⋃
t∈T∧(isptr(t)∨isarray(t))

vallref(t)

with
vallref(t)

de f
= {lref((v, o), i, t) | v ∈ V ∧ o ∈ N ∧ i ∈ N}

is a tuple lref((v, o), i, t) containing the name of the local variable v, a byte-offset o in the byte-
representation of that variable, a stack frame number i that denotes the number of the stack frame
the local variable can be found in, and a type t which is either a pointer or an array type.

In our semantics, we consider two different kinds of function pointer values: Those for which
the function pointer address is given by the environment parameters and those, where it is not
given. In the first case, we specify an actual function pointer value whereas in the second case,
we simply introduce a symbolic value that represents the function pointer. The symbolic value
can only be used to perform function calls – in particular, it can never be written to memory.

106

Definition 5.11 (Set of Function Pointer Values) The set of function pointer values valfunptr is
defined as

valfunptr
de f
= valfptr ∪ valfun

where a function pointer from the set

valfptr
de f
=

⋃
t∈T∧isfunptr(t)

valptr(t)

is a pair val(a, t) of a bit-string a representing a memory address where the compiled code of the
function starts and t is a function pointer type, and a symbolic function value from the set

valfun
de f
= {fun(f , t) | f ∈ Fname ∧ isfunptr(t)}

is characterized by a function name f and the corresponding function pointer type.

Operational semantics of C-IL function call is later defined both for explicit function pointer
values and for symbolic function values. We provide both definitions in order to account for
programs where we need to argue about function pointer addresses and for programs where we
do not actually need to store function pointers in memory.

Definition 5.12 (Zero-Predicate for Values) We define a partial function

zero : paramsC-IL × val ⇀ bool

that expresses whether a value is considered to be zero:

zero(θ,x) ≡

a = 08·sizeθ(t) x = val(a, t)
undefined otherwise

Definition 5.13 (Type of a Value) We define the function

τ(·) : val→ T

that extracts the type information from a value as

τ(x)
de f
=

t x = val(y, t)
t x = fun(f , t)
t x = lref((v, o), i, t)

5.5.1 Performing Type Cast on Values

The C99 standard requires certain properties to hold for the type cast function. In the following,
we consider those relevant to C-IL.

107

Type Casting Integers

"6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than
_Bool, if the value can be represented by the new type, it is unchanged. Other-
wise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new
type until the value is in the range of the new type. Otherwise, the new type is signed
and the value cannot be represented in it; either the result is implementation-defined
or an implementation-defined signal is raised."

"The C99 Standard"[ISO99]

This gives us the following properties of integer type casting:

• The value can be represented by the new type:

cast(val(b, ii), i j) = val(b′, i j)→ [b]i ∈ {−2 j−1, . . . , 2 j−1 − 1} → [b]i = [b′] j

cast(val(b, ii),u j) = val(b′,u j)→ [b]i ∈ {0, . . . , 2 j − 1} → [b]i = 〈b′〉 j

cast(val(b,ui), i j) = val(b′, i j)→ 〈b〉i ∈ {−2 j−1, . . . , 2 j−1 − 1} → 〈b〉i = [b′] j

cast(val(b,ui),u j) = val(b′,u j)→ 〈b〉i ∈ {0, . . . , 2 j − 1} → 〈b〉i = 〈b′〉 j

• The value cannot be represented by the new unsigned integer type:

cast(val(b, ii),u j) = val(b′,u j)→ [b]i < {0, . . . , 2 j − 1} → [b]i ≡mod 2 j 〈b′〉 j

cast(val(b,ui),u j) = val(b′,u j)→ 〈b〉i < {0, . . . , 2 j − 1} → 〈b〉i ≡mod 2 j 〈b′〉 j

• The value cannot be represented by the new signed integer type:

Implementation may define this in any way or may raise an exception.

Type Casting Pointers

"6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer to
void and back again; the result shall compare equal to the original pointer.

An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to
an entity of the referenced type, and might be a trap representation.

Any pointer type may be converted to an integer type. Except as previously speci-
fied, the result is implementation-defined. If the result cannot be represented in the
integer type, the behavior is undefined. The result need not be in the range of values
of any integer type.

A pointer to a function of one type may be converted to a pointer to a function of
another type and back again; the result shall compare equal to the original pointer.

108

If a converted pointer is used to call a function whose type is not compatible with
the pointed-to type, the behavior is undefined."

"The C99 Standard"[ISO99]

Applied to C-IL, this can be expressed formally as follows:

• A pointer to a struct type can be cast to a void pointer and back again, resulting in the
original pointer value:

cast(cast(val(a,ptr(struct tC)),ptr(void)),ptr(struct tC)) = val(a,ptr(struct tC))

• Type casting integers to pointer types is implementation-defined.

• Type casting pointers to integers is implementation-defined.

• Casting a function pointer type to a different function pointer type and back again results
in the original pointer value:

cast(cast(val(a, funptr(t,T)), funptr(t′,T ′)), funptr(t,T)) = val(a, funptr(t,T))

Note that, in practice, it is useful to define the type cast function implemented by the compiler
in question explicitly at the level of detail needed. Working just with the requirements imposed
by the C99 standard is often not feasible.

Example 3 (Type Cast Function for MIPS-86-C-IL) A definition of the type-cast function

θ.cast : val × TQ ⇀ val

for MIPS-86-C-IL is given as

θ.cast(x, t)
de f
=

val(a, t) x = val(a, t′) ∧ sizeθ(t′) = sizeθ(t)
val(sxtk(i), t) x = val(i, i j) ∧ t = ik ∧ k > j
val(i[k − 1 : 0], t) x = val(i, i j) ∧ t = ik ∧ k < j
val(0k− j ◦ n, t) x = val(n,u j) ∧ t = uk ∧ k > j
val(n[k − 1 : 0], t) x = val(n,u j) ∧ t = uk ∧ k < j
lref((v, o), i, t) x = lref((v, o), i, t′) ∧ (isptr(t) ∨ isarray(t))
undefined otherwise

5.5.2 Operators

C-IL provides the following operators to occur in expressions:

• unary operators O1 = {−,∼, !}

• binary operators O2 = {+,−, ∗, /,%, <<, >>, <, >, <=, >=,==, ! =,&, |, ,̂&&, ||}

109

Some more operators of C are provided (e.g. pointer-dereferencing, address-of, size-of).
However, even though they are called operators, they are not mathematical operators in a classi-
cal sense. These language constructs are handled explicitly by providing them as C-IL expres-
sions.

One of the simplifications over C that we make in C-IL is that we assume that the C program
is compiled to type-correct C-IL, i.e. all necessary type casts for promotion of types are made
explicit by using the corresponding type cast expression provided by C-IL. One exception we
make is that we model array accesses as pointer addition with an integer value: When an integer
typed value is added to a pointer, the added value is multiplied by the size of the type pointed to,
respectively, the size of the type of array elements. Since we assume array access to be modeled
as adding an integer type right operand to a pointer type left operand, we define just this kind of
pointer addition in the definition of operators for MIPS-86-C-IL. Another exception is that we
only allow shift amounts specified as unsigned integer values (since the effect of shifting by a
negative amount is undefined).

For different compilers and architectures, operators may behave differently. We will not con-
sider the restrictions of the C99 standard in the following. However, if one wants to implement a
C99 conforming C on top of C-IL, it is necessary to do so. Let us instead give a brief definition
of the individual operators for MIPS-86-C-IL:

• unary minus: θ.op1(−)(v) =

val(0k −k a, t) v = val(a, t) ∧ (t = ik ∨ t = uk)
undefined otherwise

• bitwise negation: θ.op1(∼)(v) =

val(a, t) v = val(a, t)
undefined otherwise

• logical negation: θ.op1(!)(v) =

val(1k, t) v = val(a, t) ∧ a = 0k ∧ (t = ik ∨ t = uk)
val(0k, t) v = val(a, t) ∧ a , 0k ∧ (t = ik ∨ t = uk)
undefined otherwise

• addition:

θ.op2(+)(v1, v2) =

val(a1 +8·sizeθ(t) a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
val(a1 +8·θ.sizeptr x,ptr(t′)) v1 = val(a1, t) ∧ v2 = val(a2, ik)

∧ (t = ptr(t′) ∨ t = array(t′, n))
w v1 = lref((v, o), i, t) ∧ v2 = val(a, ik)

∧ (t = ptr(t′) ∨ t = array(t′, n))
∧ o + [a] · sizeθ(t′) ≥ 0

undefined otherwise

where x = ([a2]·sizeθ(t′))8·θ.sizeptr and w = lref((v, o+[a]·sizeθ(t′)), i,ptr(t′)). Note that, by
performing pointer arithmetics on local references, we can obtain local references which
are no longer meaningful since the offset o exceeds the boundary imposed by the size of
the type of variable v. In such a case, C-IL semantics will get stuck when trying to read or

110

write from/to such an illegal local reference. In practice, this problem can be avoided by
enforcing a sufficiently strict programming discipline on the considered C-IL program.

• subtraction: θ.op2(−)(v1, v2) =

val(a1 −k a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
undefined otherwise

• multiplication: θ.op2(∗)(v1, v2) =

val(a1 ·k a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ t = uk
val(a1 ·tk a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ t = ik
undefined otherwise

• division: θ.op2(/)(v1, v2) =

val(a1 ÷k a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ t = uk
val(a1 ÷tk a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ t = ik
undefined otherwise

• modulo:

θ.op2(%)(v1, v2) =

val(a1 −k (a1 ÷k a2) ·k a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ t = uk
val(a1 −k (a1 ÷tk a2) ·tk a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ t = ik
undefined otherwise

• shift left:

θ.op2(<<)(v1, v2) =

val(x,uk) v1 = val(a1,uk) ∧ v2 = val(a2,ul)
undefined otherwise

where x = a1[k − 1 − (〈a2〉mod k) : 0] ◦ 0(〈a2〉mod k)

• shift right:

θ.op2(>>)(v1, v2) =

val(x,uk) v1 = val(a1,uk) ∧ v2 = val(a2,ul)
undefined otherwise

where x = 0(〈a2〉mod k) ◦ a1[k − 1 : (〈a2〉mod k)]

• less than:

θ.op2(<)(v1, v2) =

val(1k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 < 〈a2〉 ∨ t = ik ∧ [a1] < [a2])

val(0k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 ≥ 〈a2〉 ∨ t = ik ∧ [a1] ≥ [a2])

undefined otherwise

111

• greater than:

θ.op2(>)(v1, v2) =

val(1k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 > 〈a2〉 ∨ t = ik ∧ [a1] > [a2])

val(0k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 ≤ 〈a2〉 ∨ t = ik ∧ [a1] ≤ [a2])

undefined otherwise

• less than or equal:

θ.op2(<=)(v1, v2) =

val(1k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 ≤ 〈a2〉 ∨ t = ik ∧ [a1] ≤ [a2])

val(0k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 > 〈a2〉 ∨ t = ik ∧ [a1] > [a2])

undefined otherwise

• greater than or equal:

θ.op2(>=)(v1, v2) =

val(1k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 ≥ 〈a2〉 ∨ t = ik ∧ [a1] ≥ [a2])

val(0k, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
∧ (t = uk ∧ 〈a1〉 < 〈a2〉 ∨ t = ik ∧ [a1] < [a2])

undefined otherwise

• equal:

θ.op2(==)(v1, v2) =

val(1k, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ a1 = a2

val(0k, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ a1 , a2

undefined otherwise

• not equal:

θ.op2(! =)(v1, v2) =

val(1k, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ a1 , a2

val(0k, t) v1 = val(a1, t) ∧ v2 = val(a2, t) ∧ a1 = a2

undefined otherwise

• logical AND:

θ.op2(&&)(v1, v2) =

val(1k, τ(v1)) τ(v1) = τ(v2) ∧ ¬zero(θ, v1) ∧ ¬zero(θ, v2)
val(0k, τ(v1)) τ(v1) = τ(v2) ∧ (zero(θ, v1) ∨ zero(θ, v2))
undefined otherwise

112

• logical OR:

θ.op2(||)(v1, v2) =

val(1k, τ(v1)) τ(v1) = τ(v2) ∧ (¬zero(θ, v1) ∨ ¬zero(θ, v2))
val(0k, τ(v1)) τ(v1) = τ(v2) ∧ zero(θ, v1) ∧ zero(θ, v2)
undefined otherwise

• bitwise AND: θ.op2(&)(v1, v2) =

val(a1 ∧ a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
undefined otherwise

• bitwise OR: θ.op2(|)(v1, v2) =

val(a1 ∨ a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
undefined otherwise

• bitwise XOR: θ.op2(ˆ)(v1, v2) =

val(a1 ⊕ a2, t) v1 = val(a1, t) ∧ v2 = val(a2, t)
undefined otherwise

5.6 Programs

In order to define C-IL programs, we first define expressions and statements that can occur in
C-IL programs.

5.6.1 Expressions

C-IL offers a decent subset of the expressions provided by C. However, some C expressions are
treated as statements by C-IL, namely, function call and assignment.

Definition 5.14 (The Set of C-IL Expressions) We inductively define the set of C-IL expres-
sions E as the smallest set that obeys the following rules:

• Constants: c ∈ val⇒ c ∈ E

One base case of C-IL expressions are constants c given as C-IL value.

• Variable names: v ∈ V⇒ v ∈ E

Another basic expression is given by variable names v. Later, during expression evalua-
tion, we will see how local variables occlude global variables when they have the same
variable name.

• Function names: f ∈ Fname ⇒ f ∈ E

The last base case of expressions is given by function names f . These are needed in order
to call functions or to store function pointer values (for which a value is defined in the
environment parameters) to memory.

• Unary operation on expression: e ∈ E ∧ 	 ∈ O1 ⇒ 	e ∈ E

Applying an unary operators to an expression results in an expression.

113

• Binary operation on expressions: e0, e1 ∈ E ∧ ⊕ ∈ O2 ⇒ (e0 ⊕ e1) ∈ E

Application of binary operators to expressions is an expression.

• Conditional: e, e0, e1 ∈ E⇒ (e ? e0 : e1) ∈ E

The ternary (or conditional) operator is an expression based on sub-expressions e, e0, and
e1. When expression e evaluates to a non-zero value, the resulting value is e0, otherwise
it is e1.

• Type cast: t ∈ TQ, e ∈ E⇒ (t)e ∈ E

This expression describes type-casting expression e to type t.

• Dereferencing pointer: e ∈ E⇒ ∗(e) ∈ E

Dereferencing a pointer, the value pointed to is retrieved from the memory.

• Address of expression: e ∈ E⇒ &(e) ∈ E

If applicable, evaluating this expression returns the pointer to the subvariable described
by expression e. Note that taking address-of of an expression is not always meaningful:
We can only take address of variables or subvariables, never of constants or values.

• Field access: e ∈ E ∧ f ∈ F⇒ (e). f ∈ E

This expression describes accessing field f in the struct value described by expression e.

• Size of Type: t ∈ TQ ⇒ sizeof(t) ∈ E

Evaluating this expression returns the size in bytes of type t.

• Size of Expression: e ∈ E⇒ sizeof(e) ∈ E

Evaluating this expression returns the size in bytes of the type of expression e.

Note, that array access (e.g. a[k]) and pointer field access (e.g. a->b) are not expressions of
C-IL since they can easily be translated as follows:

• a[k] 7→ *((a + k))

In C, array access is essentially just a shorthand for adding the index to the array pointer.

• a->b 7→ (*(a)).b

Accessing a field from a pointer is the same as performing a field access on the derefer-
ences pointer value.

5.6.2 Statements

Since expressions are always evaluated in the context of a configuration of a C-IL program and
under given C-IL environment parameters, the definition of expression evaluation is postponed
until section 5.8 which deals with operational semantics of C-IL.

114

Definition 5.15 (The Set of C-IL Statements) We define the set of C-IL statements S induc-
tively as follows:

• Assignment: e0, e1 ∈ E⇒ (e0=e1) ∈ S

The value of expression e1 is written to the address of expression e0.

• Goto: l ∈ N⇒ goto l ∈ S

Control flow continues with the statement at label l.

• If-Not-Goto: e ∈ E ∧ l ∈ N⇒ ifnot e goto l ∈ S

If expression e evaluates non-zero, program execution continues from label l.

• Function Call: e0, e ∈ E, E ∈ E∗ ⇒ (e0=call e(E)) ∈ S

If expression e evaluates to a function pointer value or a symbolic function value, a func-
tion call to the corresponding function is performed with parameters given by evaluating
the parameter expression list E. The return value of the function is stored at the address
of expression e0.

• Procedure Call: e ∈ E, E ∈ E∗ ⇒ call e(E) ∈ S

A function call statement that has no return value.

• Return: e ∈ E⇒ return e ∈ S and return ∈ S

Return from the current function with return value given by expression e. Functions with
return type void use the variant without return expression e since they do not pass a return
value.

With statements and expressions, we can finally define C-IL programs.

Definition 5.16 (C-IL Program) A C-IL-program

π = (π.VG, π.TF , π.F) ∈ progC-IL

is described by the following:

• π.VG ∈ (V × TQ)∗ – a list of global variable declarations

This list declares all global variables of the C-IL program as pairs of variable name and
qualified type.

• π.TF : TC ⇀ (F × TQ)∗ – a type table for struct types

Given a struct name that is declared in the C-IL program, this function returns a field type
declaration list, i.e. a list of pairs of field name and qualified type.

• π..F : Fname ⇀ FunT – a function table

The function table maps all function names declared in the C-IL program to function table
entries from the set FunT – which we define now.

115

Definition 5.17 (C-IL Function Table Entry) A function table entry

f te = (f te.rettype, f te.npar, f te.V, f te.P) ∈ FunT

consists of the following:

• f te.rettype ∈ TQ – type of the return value

The type of the value returned by the function. Note that this type can be the void type
that denotes the absence of a return value.

• f te.npar ∈ N – number of parameters

How many parameters have to be passed to the function in a function call.

• f te.V : (V × TQ)∗ – parameter and local variable declarations

This list of pairs of variable name and qualified type declares the parameters and local
variables of the function – the first f te.npar entries describe the declared parameters.

• f te.P ∈ (S∗ ∪ {extern}) – function body

This component describes either the program code of the function as a list of C-IL state-
ments or expresses that the function in question is declared as an external function in the
C-IL program.

5.7 Configurations

In order to define the semantics of C-IL programs, we proceed by defining the state of the abstract
C-IL machine on which we state operational semantics in section 5.8.

Definition 5.18 (C-IL Stack Frame) A C-IL stack frame

s = (s.ME, s.rds, s. f , s.loc) ∈ frameC-IL

consists of

• s.ME : V⇀ (B8)∗ – local variables and parameters memory

We formalize the memory for local variables and parameters that is part of a C-IL stack
frame as a function that maps a declared variable name to a byte-string representation
of the value of the respective variable. Note that, if tv is the type of local variable v in
stack frame s of a valid C-IL configuration that |s.ME(v)| = sizeθ(tv). Note also that, in
contrast to the global memory (which is a mapping of byte-addresses represented by bit-
strings to bytes), we have lists of bytes here to represent the individual local variables’
local memories.

• s.rds ∈ valptr ∪ vallref ∪ {⊥} – return value destination

The return value destination rds describes where the return value of a function call has to
be stored by the called function when it returns. It is a pointer, a local reference, or the
value ⊥ that denotes the absence of a return value destination.

116

...

...

...

...

...

...

... ...

...

c.s

c.s[i].ME

vn 7→

c.s[i].loc

c.s[i]. f
v1 7→

v j 7→

c

π.F (c.s[i]. f)

c.M o

a

val(a, t) lref((v j, o), i, t)

Amax

npar P

V = (vn, tn) ◦ . . . ◦ (v1, t1)

rettype

c.s[|s| − 1]

c.s[i]

c.s[0]
Amin

Figure 5.1: Where C-IL pointer val(a, t) and local reference lref((v j, o), i, t) point to. Here,
Amax = 1θ.sizeptr and Amin = 0θ.sizeptr are the maximal and, respectively, minimal address of the
byte-addressable memory c.M and v j is the j-th declared variable name of the function associ-
ated with stack frame i.

• s. f ∈ Fname – function name

This is the name of the function the stack frame is associated with. We use this function
name and the function table of the C-IL program to obtain the types of declared local
variables and parameters, as well as the return value type and the function body.

• s.loc ∈ N – location counter

The location counter loc is the index of the next statement to be executed in the function
body of s. f .

Definition 5.19 (Sequential C-IL-Configuration) A C-IL-configuration

c = (c.M, c.s) ∈ confC-IL

consists of a byte-addressable memory c.M : B8·sizeptr → B8 and a C-IL stack c.s ∈ frame∗C-IL.
A C-IL stack is simply a list of C-IL stack frames (see next definition).

5.7.1 Memory

Overall, C-IL operates on flat byte-addressable memories. On the one hand, we have the global
memory, modeled as a mapping from addresses to bytes – similar to a hardware memory con-
figuration. On the other hand, we have local memories in the stack frames of C-IL, which are
modeled as mappings from variable names to byte-strings; the stack layout of the compiler is

117

abstracted away, but the byte-string representation of individual variables is still exposed. To get
an idea which memory locations C-IL pointers and local references point to, consider figure 5.1.

In some regards, the local memories of C-IL are similar to the memory model used in Cminor
[BL09]: we provide memory blocks that model the byte-string representation of variables. Inside
these memory blocks, pointer arithmetics is possible but we cannot argue about the addresses
of local variables in relation to each other. References to subvariables of local variables are
specified by giving an offset o (in our case modeled by a natural number) in a local variable v.

The global memory of C-IL is compatible with the memory model sketched for VCC in
[CMTS09]. The difference is that on the level of C-IL semantics, we do not consider or enforce
typedness of memory regions. Extension to the model sketched in [CMTS09] by overlaying a
model of typed objects on the byte-addressable memory is trivial. In our global memory, the
addresses of subvariables of global memory pointers are always computed explicitly according
to the memory layout of the given type.

Byte-String Representation of Values

In order to access byte-addressable memories to read and write C-IL values, it is helpful to
define functions that convert values between byte-string representation and C-IL representation.
Depending on the endianness of the architecture, the order of bytes in the memory is considered
from most-significant to least-significant byte or vice versa. This is reflected in the functions
that convert between C-IL-values and byte-strings.

Definition 5.20 (Converting Value to Byte-String) We define the function

val2bytesθ : val ⇀ (B8)∗

as

val2bytesθ(v) =

bits2bytes(b) v = val(b, t) ∧ θ.endianness = little
bits2bytes(rev(b)) v = val(b, t) ∧ θ.endianness = big
undefined otherwise

Here, bits2bytes converts from bit-strings to byte-strings in the obvious way.

Definition 5.21 (Converting Byte-String to Value) The function

bytes2valθ : (B8)∗ × T⇀ val

is given as

bytes2valθ(B,t) =

val(bytes2bits(B), t) t , struct tC ∧ θ.endianness = little
val(bytes2bits(rev(B)), t) t , struct tC ∧ θ.endianness = big
undefined otherwise

Here, bytes2bits converts from byte-strings to bit-strings.

118

Reading and Writing Byte-Strings from/to Memory

We define functions that read and write byte-strings from/to the memory components of a C-IL
configuration in order to express memory semantics of C-IL.

Definition 5.22 (Reading Byte-Strings from Global Memory) The function

readM : (B8·θ.sizeptr → B8) × B8·θ.sizeptr × N→ (B8)∗

given as

readM(M,a,s) =

readM(M, a +8·θ.sizeptr 18·θ.sizeptr , s − 1) ◦M(a) s > 0
ε s = 0

reads a byte-string of length s from a global memoryM starting at address a.

Definition 5.23 (Writing Byte-Strings to Global Memory) We define the function

writeM : (B8·θ.sizeptr → B8) × B8·θ.sizeptr × (B8)∗ → (B8·θ.sizeptr → B8)

that writes a byte-string B to a global memoryM starting at address a such that

∀x ∈ B8·θ.sizeptr : writeM(M,a,B)(x) =

M(x) 〈x〉 − 〈a〉 < {0, . . . , |B| − 1}
B[〈x〉 − 〈a〉] otherwise

Definition 5.24 (Reading Byte-Strings from Local Memory) The function

readE : (V⇀ (B8)∗) × V × N × N⇀ (B8)∗

with
readE(ME,v,o,s) =ME(v)[o + s − 1] ◦ . . . ◦ME(v)[o]

reads a byte-string of length s from local memoryME for a local variable v starting at offset o.
If s + o > |ME(v)| or v < dom(ME), the function is undefined for the given parameters.

Definition 5.25 (Writing Byte-Strings to Local Memory) We define the function

writeE : (V⇀ (B8)∗) × V × N × B8 ⇀ (V⇀ (B8)∗)

that writes a byte-string B to variable v of a local memoryME starting at offset o such that

∀w ∈ V : ∀i < |ME(w)| : writeE(ME,v,o,B)(w)[i] =

ME(w)[i] w , v ∨ i < {o, . . . , o + |B| − 1}
B[i − o] otherwise

If, however, |B| + o > |ME(v)| or v < dom(ME), the function is undefined for the given parame-
ters.

119

a

...

sizeθ(t)

bytes2valθ(·, t)

c.M

high addresses low addresses

Figure 5.2: Dereferencing a pointer
val(a,ptr(t)) to the global memory, i.e.
reading the value pointed to from memory, by
reading sizeθ(t) bytes starting at address a of
the global memory c.M of C-IL configuration
c.

low indices

...

sizeθ(t)

bytes2valθ(·, t)

o 0
......

c.s[i].ME(v)

sizeθ(tv) − 1

high indices

Figure 5.3: Dereferencing a local refer-
ence lref((v, o), i,ptr(t)) by reading sizeθ(t)
bytes starting at offset o of local memory
c.s[i].ME(v) of local variable v of type tv in
stack frame i of C-IL configuration c.

Reading and Writing Memory Values of a Configuration

In order to have a short notation for specifying updates on the C-IL-state, we introduce functions
that read and write C-IL values to/from C-IL configurations.

Definition 5.26 (Reading a Value from a C-IL Configuration) We define the function

read : paramsC-IL × con fCIL × val ⇀ val

as

read(θ,c,x) =

bytes2valθ(readM(c.M, a, sizeθ(t)), t) x = val(a,ptr(t))
bytes2valθ(readE(c.s[i].ME(v), o, sizeθ(t)), t) x = lref((v, o), i,ptr(t))
read(θ, c, val(a,ptr(t))) x = val(a, array(t, n))
read(θ, c, lref((v, o), i,ptr(t))) x = lref((v, o), i, array(t, n))
undefined otherwise

Given a record θ of C-IL environment parameters, a C-IL configuration c and a pointer value x,
it returns the C-IL value read from the memory pointed to. For an illustration of this definition,
see figures 5.2 and 5.3.

Note that in C, reading or writing an array means that the array is promoted to a pointer. Thus,
reading or writing of the first element of the array is performed. This is reflected in the read and
write functions for C-IL.

Definition 5.27 (Writing a Value to a C-IL Configuration) We define the function

write : paramsC-IL × con fCIL × val × val ⇀ con fCIL

120

that writes a given C-IL value y to a C-IL configuration c at the memory pointed to by pointer x
according to environment parameters θ as

write(θ,c,x,y) =

c[M := writeM(c.M, val2bytesθ(x), val2bytesθ(y))] x = val(a,ptr(t))
∧ y = val(b, t)

c′ x = lref((v, o), i,ptr(t))
∧ y = val(b, t)

write(θ, c, val(a,ptr(t)), y) x = val(a, array(t, n))
write(θ, c, lref((v, o), i,ptr(t)), y) x = lref((v, o), i, array(t, n))
undefined otherwise

where c′.s[i].ME = writeE(MEtop(c), v, o, val2bytesθ(y)) and all other parts of c′ are identical to
c.

5.8 Operational Semantics

We define operational semantics for the execution of C-IL programs. For this, we first give some
auxiliary definitions. Then we define how C-IL expressions are evaluated to C-IL values. Finally,
we state the transitions between C-IL configurations with respect to a C-IL program under given
C-IL environment parameters.

5.8.1 Auxiliary Definitions

For a shorter notation, we provide the following definitions:

Definition 5.28 (Combined Function Table) For a C-IL program π and a collection of C-IL
environment parameters θ, we define the combined function table

F θ
π = π.F ∪ θ.intrinsics

Note that the names of functions used in the program must be different from the names of
compiler intrinsic functions. This is a property that shall be checked by the compiler.

Definition 5.29 (Set of Declared Variables) For a variable declaration list, we define the func-
tion

decl : (V × TQ)∗ → 2V

that returns the set of declared variable names:

decl(V) =

{v} ∪ decl(V′) V = (v, t) ◦ V′

∅ V = ε

Definition 5.30 (Type of a Variable in a Declaration List) We define the function

τV : V × (V × TQ)∗ ⇀ TQ

121

that, given a variable and an appropriate declaration list, returns the type of the variable, as

τV (v,V) =

t V = (v, t) ◦ V′

τV (v,V′) V = (v′, t) ◦ V′ ∧ v′ , v
undefined V = ε

Definition 5.31 (Type of a Field in a Declaration List) Analogously, we define

τF : F × (F × TQ)∗ ⇀ TQ

which returns the type of a field as given by a field declaration list:

τF(f ,T) =

t T = (f , t) ◦ T ′

τF(f ,T ′) T = (f ′, t) ◦ T ′ ∧ f ′ , f
undefined T = ε

Definition 5.32 (Type of a Function) For function pointer types, we extract the type informa-
tion from the function table of the corresponding function. We define the function

τFf un : Fname ⇀ TQ

as
τFf un(f n) = (∅, funptr(F (f n).rettype, [t0, . . . , tnpar−1]))

where npar = F (f n).npar and ti is the type of the i-th declared variable: ∀i < npar : ∃vi :
F (f n).V[i] = (vi, ti). The result of the function is undefined if and only if f n < dom(F).

Definition 5.33 (Variable Declarations of the Top-Most Stack Frame) In evaluation, we will
often need to know for a given configuration of a C-IL-program which variables are declared for
the top-most stack frame. For this, we introduce the following shorthand notation:

Vtop(π,c) = π.F (c.s[|c.s| − 1]. f).V

Definition 5.34 (Qualified Type Evaluation) To talk about the optimizing compiler, we will
need to talk about qualified types that occur in a program. For this, we introduce the qualified
type evaluation function

τQ
·,·
·

(·) : confC-IL × progC-IL × paramsC-IL × E→ TQ

that, given a C-IL configuration, a C-IL program, C-IL environment parameters, and a C-IL ex-
pression, returns the qualified type of that expression in the given configuration of the program.
We define the function by a case distinction over the expression whose type is to be evaluated.

• Constant: x ∈ val⇒ τQ
π,θ
c (x) = (∅, τ(x))

• Variable Name: v ∈ V⇒ τQ
π,θ
c (v) =

τV (v,Vtop(π, c)) v ∈ decl(Vtop(π, c))
τV (v, π.VG) v < decl(Vtop(π, c)) ∧ v ∈ decl(π.VG)
(∅, void) otherwise

122

• Function Name: f n ∈ Fname ⇒ τQ
π,θ
c (f n) = τ

F θ
π

f un(f n)

• Unary Operator: e ∈ E,	 ∈ O1 ⇒ τQ
π,θ
c (e) = τQ

π,θ
c (e)

• Binary Operator: e0, e1 ∈ E,⊕ ∈ O2 ⇒ τQ
π,θ
c (e0 ⊕ e1) = τQ

π,θ
c (e0)

• Ternary Operator: e, e0, e1 ∈ E⇒ τQ
π,θ
c ((e ? e0 : e1)) = τQ

π,θ
c (e0)

Note that the compiler should ensure that the types of e0 and e1 match.

• Type Cast: t ∈ TQ, e ∈ E⇒ τQ
π,θ
c ((t)e) = t

• Dereferencing a Pointer: e ∈ E⇒ τQ
π,θ
c (∗(e)) =

t τQ

π,θ
c (e) = (q,ptr(t))

t τQ
π,θ
c (e) = (q, array(t, n))

(∅, void) otherwise

• Address of: e ∈ E⇒

τQ
π,θ
c (&(e)) =

τQ
π,θ
c (e′) e = ∗(e′)

(∅,ptr(τQ
π,θ
c (v)) e = v

(∅,ptr(q′ ∪ q′′, X)) e = (e′). f ∧ τQ
π,θ
c (e′) = (q′, struct tC)

∧ τF(f , π.TF(tC)) = (q′′, X)
(∅, void) otherwise

• Field Access: e ∈ E, f ∈ F⇒ τQ
π,θ
c (e. f) = τQ

π,θ
c (∗(&((e). f)))

• Size of Type: t ∈ TQ ⇒ τQ
π,θ
c (sizeof(t)) = (∅, θ.size_t)

• Size of Expression: e ∈ E⇒ τQ
π,θ
c (sizeof(e)) = (∅, θ.size_t)

Note that this definition is actually not needed at all for C-IL semantics itself – the semantics of
a C-IL program is not affected by type qualifiers, the correctness of its translation to machine
code however may require a proper annotation of accesses with type qualifiers.

5.8.2 Expression Evaluation

Definition 5.35 (Field Reference Function) Given C-IL environment parameters θ and a C-IL
program π, we define the function σπθ : val× F⇀ val which takes a pointer or local reference to
a struct type x and computes the pointer or local reference to a given field f in x:

σπθ (x, f) =

val(a +8·θ.sizeptr (θ.offset(tC , f))B8·θ.sizeptr , t′) x = val(a,ptr(struct tC))
lref((v, o + θ.offset(tC , f)), i, t′) x = lref((v, o), i,ptr(struct tC))
undefined otherwise

where t′ = ptr(qt2t(τF(f , π.TF(tC)))).

123

Definition 5.36 (Expression Evaluation) We define expression evaluation as a function

[[·]]·,·· : confC-IL × progC-IL × paramsC-IL × E⇀ val

that takes a C-IL configuration c, a C-IL program π, C-IL environment parameters θ, and a C-IL
expression as follows:

• Constant: x ∈ val⇒ [[x]]π,θc = x

A constant x always evaluates to x.

• Variable Name: v ∈ V⇒ [[v]]π,θc = [[∗(&(v))]]π,θc

Evaluating a variable name v is done by taking a pointer to v followed by dereferencing
that pointer, effectively reading the value associated with v from the appropriate memory.

• Function Name: f n ∈ Fname ⇒

[[f n]]π,θc =

val(θ.Fadr(f n), qt2t(τF

θ
π

f un(f n))) f n ∈ dom(F θ
π) ∧ f n ∈ dom(θ.Fadr)

fun(f n, qt2t(τF
θ
π

f un(f n))) f n ∈ dom(F θ
π) ∧ f n < dom(θ.Fadr)

undefined otherwise

Evaluating a declared function name f n results either in an explicit function pointer (if
an address for the function pointer is defined in the given C-IL environment θ) or in a
symbolic function value (if no function pointer address is defined in θ).

• Unary Operator: e ∈ E,	 ∈ O1 ⇒ [[e]]π,θc = θ.op1()([[e]]π,θc)

Application of an unary operator 	 to C-IL expression e is evaluated by applying the
operator function defined for 	 in θ to the value of expression e.

• Binary Operator: e0, e1 ∈ E,⊕ ∈ O2 ⇒ [[e0 ⊕ e1]]π,θc = θ.op2(⊕)([[e0]]π,θc , [[e1]]π,θc)

Analogous to evaluation of unary operators, we evaluate the sub-expressions and apply
the operator function defined in θ.

• Ternary Operator: e, e0, e1 ∈ E⇒ [[(e ? e0 : e1)]]π,θc =

[[e0]]π,θc zero(θ, [[e]]π,θc)
[[e1]]π,θc otherwise

The ternary operator performs a case distinction on the value of expression e. If e evaluates
to a zero-value, the ternary operator application evaluates to the value of e0, otherwise we
obtain the value of e1.

• Type Cast: t ∈ TQ, e ∈ E⇒ [[(t)e]]π,θc = θ.cast([[e]]π,θc , qt2t(t))

Performing a type cast applies the type cast function given by θ to the value of expression
e, resulting in a corresponding value of type t.

124

• Dereferencing a Pointer: e ∈ E⇒

[[∗(e)]]π,θc =

read(θ, c, [[e]]π,θc) (τ([[e]]π,θc) = ptr(t) ∧ ¬isarray(t))
∨ τ([[e]]π,θc) = array(t, n))

val(a, array(t, n)) [[e]]π,θc = val(a,ptr(array(t, n)))
lref((v, o), i, array(t, n)) [[e]]π,θc = lref((v, o), i,ptr(array(t, n)))
undefined otherwise

Dereferencing a pointer type pointing to a non-array type or dereferencing an array type
results in reading the corresponding value from the appropriate memory of configuration
c. Dereferencing a pointer or local reference to an array type results in a corresponding
array-type value (which is equivalent to a pointer to the array’s first element). Note that
function pointers cannot be dereferenced without a prior type-cast.

• Address of: e ∈ E⇒

[[&(e)]]π,θc =

[[e′]]π,θc e = ∗(e′)
lref((v, 0), |c.s| − 1,ptr(qt2t(τV (v,Vtop(π, c)))) e = v ∧ v ∈ decl(Vtop(π, c))
val(θ.allocgvar(v),ptr(qt2t(τV (v, π.VG)))) e = v ∧ v < decl(Vtop(π, c))

∧ v ∈ decl(π.VG)
σπθ ([[&(e′)]]π,θc , f) e = (e′). f
undefined otherwise

The address-of operation cancels out with the dereference-pointer operation. If the ex-
pression whose address is to be taken is a variable name v, the result depends on whether
v is the name of a local variable declared in the top-most stack frame of configuration c.
If yes, an appropriate local reference to v is returned, otherwise, if v is a declared global
variable name, we return a pointer to the base address of the global variable. When the
expression we take address-of is a field access, we compute the address of the resulting
local reference or pointer by using the field reference function σπθ .

• Field Access: e ∈ E, f ∈ F⇒ [[(e). f]]π,θc = [[∗(&((e). f))]]π,θc

Similar to evaluation of variable names, we compute the value of a field access by com-
puting and dereferencing the address of the field access. That this definition is not circular
can be checked by considering the definition of expression evaluation for the address-of
and the pointer-dereference operation.

• Size of Type: t ∈ TQ ⇒ [[sizeof(t)]]π,θc = val(sizeθ(qt2t(t))8·sizeθ(θ.size_t), θ.size_t)

Evaluating the size-of-type expression amounts to constructing a C-IL value by converting
the size of the type t in bytes to a byte-string of appropriate length for the type θ.size_t
which is the type of the size-of operator.

• Size of Expression: e ∈ E⇒ [[sizeof(e)]]π,θc = [[sizeof(τQ
π,θ
c (e))]]π,θc

Size-of-expression is evaluated by evaluating the type of expression e and then using the
previous definition.

125

5.8.3 Transition Function

For given C-IL program π and environment parameters θ, we define a partial transition function

δπ,θC-IL : confC-IL × Σ ⇀ confC-IL

where Σ is an input alphabet used to resolve non-deterministic choice occurring in C-IL seman-
tics. In fact, there are only two kinds of non-deterministic choice in C-IL: the first occurs in a
function call step – the values of local variables of the new stack frame are not initialized, thus,
they are chosen arbitrarily; the second is due to the possible non-deterministic nature of external
function calls – here, one of the possible transitions specified by relation θ.Rextern is chosen.
To resolve this non-deterministic choice, our transition function gets as an input either the lo-
cal memory configuration of all local variables, the resulting C-IL configuration for an external
function call, or – in case of a deterministic step – the value ⊥:

Σ = (V⇀ (B8)∗) ∪ confC-IL ∪ {⊥}

Auxiliary Definitions

In defining the semantics of C-IL we will use the following shorthand notation to refer to infor-
mation about the topmost stack frame in a C-IL-configuration:

• local memory of the topmost frame: MEtop(c) = hd(c.s).ME

• return destination of the topmost frame: rdstop(c) = hd(c.s).rds

• function name of the topmost frame: ftop(c) = hd(c.s). f

• location counter of the topmost frame: loctop(c) = hd(c.s).loc

• function body of the topmost frame: Ptop(π,c) = π.F (ftop(c)).P

• next statement to be executed: stmtnext(π,c) = Ptop(π, c)[loctop(c)]

We define functions that perform specific updates on a C-IL configuration in the following.

Definition 5.37 (Increasing the Location Counter) We define the function

incloc : confC-IL ⇀ confC-IL

that increases the location counter of the topmost stack frame of a C-IL configuration as follows:

incloc(c) = c[s := hd(c.s)[loc := loctop(c) + 1] ◦ tl(c.s)]

Definition 5.38 (Setting the Location Counter) The function

setloc : confC-IL × N⇀ confC-IL

defined as
setloc(c,l) = c[s := hd(c.s)[loc := l] ◦ tl(c.s)]

sets the location counter of the top-most stack frame to location l.

126

Definition 5.39 (Removing the Topmost Frame) The function

dropframe : confC-IL ⇀ confC-IL

which removes the top-most stack frame from a C-IL-configuration is defined as:

dropframe(c) = c[s := tl(c.s)]

Definition 5.40 (Setting Return Destination) We define the function

setrds : confC-IL × (vallref ∪ valptr ∪ {⊥}) ⇀ confC-IL

that updates the return destination component of the top most stack frame as:

setrds(c,v) = c[s := hd(c.s)[rds := v] ◦ tl(c.s)]

Note that all of the functions defined above are only well-defined when the stack is not empty;
this is why the latter functions have to be declared partial functions. In practice however, exe-
cuting a C-IL program always requires a non-empty stack.

Operational Semantics

Definition 5.41 (C-IL Transition Function) We define the transition function

δπ,θC-IL : confC-IL × Σ ⇀ confC-IL

by a case distinction on the given input:

• Deterministic step:

δπ,θC-IL(c,⊥) =

incloc(write(θ, c, [[&e0]]π,θc , [[e1]]π,θc) stmtnext(π, c) = (e0 = e1)
setloc(c, l) stmtnext(π, c) = goto l
setloc(c, l) stmtnext(π, c) = ifnot e goto l ∧ zero(θ, [[e]]π,θc)
incloc(c) stmtnext(π, c) = ifnot e goto l ∧ ¬zero(θ, [[e]]π,θc)
dropframe(c) stmtnext(π, c) = return
dropframe(c) stmtnext(π, c) = return e ∧ rds = ⊥

write(θ, c′, rds, [[e]]π,θc) stmtnext(π, c) = return e ∧ rds , ⊥
undefined otherwise

where c′ = setrds(dropframe(c),⊥) and rds = rdstop(dropframe(c)).

• Function call:

δπ,θC-IL(c,Mlvar), whereMlvar ∈ V ⇀ (B8)∗ provides initial values for all local variables of
the called function, is defined if and only if all of the following hold:

– stmtnext(π, c) = call e(E) ∨ stmtnext(π, c) = (e0 = call e(E)) – the next statement is a
function call (without or with return value),

127

– [[e]]π,θc = val(b, funptr(t,T)) ∧ f = θ.Fadr
−1(b) ∨ [[e]]π,θc = fun(f , funptr(t,T)) –

expression e evaluates to some function f ,

– |E| = F θ
π (f).npar ∧ ∀i ∈ {0, . . . , |E| − 1} : F θ

π (f).V[i] = (v, t) ⇒ τ([[E[i]]]π,θc) = t –
the types of all parameters passed match the declaration,

– F θ
π (f).P , extern – the function is not declared as extern in the function table, and

– ∀i ≥ F θ
π (f).npar : ∃v, t : F θ

π (f).V[i] = (v, t) ⇒ |Mlvar(v)| = sizeθ(t) – the byte-
string memory provided for all local variables is of adequate length.

Then, we define
δπ,θC-IL(c,Mlvar) = c′

such that
c′.s = (M′

E
,⊥, f , 0) ◦ incloc(setrds(c, rds)).s

c′.M = c.M

where

rds =

[[&e0]]π,θc stmtnext(π, c) = (e0 = call e(E))
⊥ stmtnext(π, c) = call e(E)

and

M′
E

(v) =

val2bytesθ([[E[i]]]π,θc) ∃i : F θ

π (f).V[i] = (v, t) ∧ i < F θ
π (f).npar

Mlvar(v) ∃i. F θ
π (f).V[i] = (v, t) ∧ i ≥ F θ

π (f).npar
undefined otherwise

• External procedure call:

δπ,θC-IL(c, c′) is defined if and only if all of the following hold:

– stmtnext(π, c) = call e(E) – the next statement is a function call without return value,

– [[e]]π,θc = val(b, funptr(t,T)) ∧ f = θ.Fadr
−1(b) ∨ [[e]]π,θc = fun(f , funptr(t,T)) –

expression e evaluates to some function f ,

– |E| = F θ
π (f).npar ∧ ∀i ∈ {0, . . . , |E| − 1} : F θ

π (f).V[i] = (v, t) ⇒ τ([[E[i]]]π,θc) = t –
the types of all parameters passed match the declaration,

– tl(c′.s) = tl(incloc(c).s) – the external procedure call does not modify any stack
frames other than the topmost frame,

– hd(c′.s).loc = hd(c.s).loc + 1 ∧ hd(c′.s).f = hd(c.s).f – the location counter of the
topmost frame is incremented and the function is not changed,

– F θ
π (f).P = extern – the function is declared as extern in the function table, and

– ([[E[0]]]π,θc , . . . , [[E[|E| − 1]]]π,θc , c, c′) ∈ θ.Rextern – the transition relation for external
functions given in the C-IL environment parameters allows a transition under given
parameters E from c to c′.

128

Note that we restrict external function calls in such a way that they cannot be invoked with
a return value. However, there is a simple way to allow an external function call to return
a result: It is always possible to pass a pointer to some subvariable to which a return value
from an external function call can be written.

Then,
δπ,θC-IL(c, c′) = c′

5.8.4 Concurrent C-IL

Since we want to argue about a multi-core machine that runs structured parallel C let us introduce
concurrent C-IL (CC-IL) that offers different C-IL threads which execute on a shared memory
interleaved at statement-level.

Definition 5.42 (Concurrent C-IL Configuration) A concurrent C-IL configuration

c = (c.M, c.Th) ∈ confCC-IL

is a pair of a byte-addressable memory c.M : B8·sizeptr → B8 and a partial function c.Th : N ⇀

frame∗C-IL that maps thread identifiers (given as natural numbers) to C-IL stacks.

Definition 5.43 (Transition Function of CC-IL) Semantics of CC-IL for a given C-IL program
π and environment parameters θ is given by the transition function

δπ,θCC-IL : confCC-IL × N × Σ ⇀ confCC-IL

where
δπ,θCC-IL(c, t, in).M = δπ,θC-IL((c.M, c.Th(t)), in).M

and

δπ,θCC-IL(c, t, in).Th(i) =

δπ,θC-IL((c.M, c.Th(t)), in).s i = t
c.Th(i) otherwise

Note that while we define concurrent C-IL semantics here by simply interleaving steps of
C-IL threads non-deterministically at small-step semantics level, establishing this abstraction
in a formal model stack is highly nontrivial, as described in chapter 3. Since C-IL statements
tend to compile to several machine instructions, it is necessary to show that this model is a
correct abstraction for a model that arbitrarily interleaves machine instructions. Applying an
ownership discipline and appropriate order-reduction theory [Bau12], however, it can be shown
that compiled C-IL code of programs that respect the ownership discipline can be reordered to
C-IL instruction boundaries in such a way that the concurrent C-IL model provided here is a
sound abstraction.

129

6
Specification (Ghost) State and

Code

spec·i·fi·ca·tion noun

1. the act or process of specifying

2. a : a detailed precise presentation of something or of a plan or proposal for
something – usually used in plural
b : a statement of legal particulars (as of charges or of contract terms); also :
a single item of such statement
c : a written description of an invention for which a patent is sought

"specification." Merriam-Webster.com. Merriam-Webster, 2011. Web. 6 July 2011.

During the VerisoftXT project, we have used the tool VCC, which is a powerful automated
verifier for concurrent C code. Code to be verified is annotated with specification of three kinds:

• specification (ghost) state,

This includes both adding ghost variables as well as adding ghost fields to struct variables.

• specification (ghost) code,

In order to update ghost state, we can use ghost code which is essentially ordinary C code
operating on ghost state only. Ghost code is explicitly not restricted to assignments, e.g.
it may include loops or function calls.

• assertions.

VCC’s assertion language allows to specify pre- and postconditions for functions and two-
state invariants on data structures. In addition, assert and assume statements are provided
in order to verify (or assume) specific assertions at specific points of program execution.

In order to argue soundness of VCC, it is necessary to prove that adding ghost state and code to
a C program does in fact not change the semantics of the original C program. That ghost state and
code where ghost code consists of simple assignment statements to ghost state can be eliminated
has been proven before [HP08]. That more sophisticated ghost code which is powerful enough to
implement control-flow altering or diverging program fragments does not change the semantics
of the original program, however, is a folklore theorem whose proof so far tends to be ignored
[CMST10]. A proof can be given by stating a simulation that expresses preservation of semantics
between the original C program and the annotated ’C + ghost’ program. In this chapter, we
introduce a formal model of C-IL+G (C-IL extended with ghost state), and we provide such
a proof. An important property of ghost code is that there is no information flow from ghost
state to implementation state; this property is enforced by VCC. Another important requirement

131

is termination of ghost code – since the provided ghost code is quite powerful, it is not hard
to write ghost code that diverges, effectively allowing us to deduce whatever we want in the
postcondition of a function with nonterminating ghost code; this property is to our knowledge
not yet enforced by VCC although the authors of VCC are aware of it (VCC proves partial
correctness only).

In the following, we define a formal model of C-IL+G stated in terms of operational seman-
tics. It includes both ghost state and ghost code – but not assertions since these belong to the
program logic applied to C-IL+G. Given such a model, proving soundness of a logic for sequen-
tial program verification with respect to the given model is no longer a difficult task. In order
to achieve a soundness proof of VCC’s verification methodology, what remains to be proven
is: i) that the concurrency verification methodology of VCC itself is sound (there are papers
[CDH+09, CAB+09, CMTS09] that support such claims on a high level of abstraction) and ii)
that the concurrency verification methodology is correctly implemented in the default ghost state
(ownership) of VCC. The latter can be argued based on an explicit encoding of the ownership
model of VCC in the ghost state of C-IL+G which is to be defined analogous to the ownership
state and assertions VCC generates when it compiles annotated C programs to Boogie.

We give a description of C-IL+G by first providing all definitions needed to describe ghost
state (i.e. ghost types, ghost values, ghost memory), followed by the definitions dealing with
ghost code (i.e. ghost expressions, ghost statements). Then, we define operational semantics of
C-IL+G (i.e. configurations, programs, and transition function) based on these definitions. Last,
we give a paper-and-pencil proof of semantics-preserving ghost state and code elimination.

6.1 Ghost State

We extend C-IL with ghost state. Ghost state can occur in the following forms:

• Ghost fields attached to implementation structs,

Any implementation struct may be enriched by adding ghost fields to it. A restriction is
that ghost field names must be disjoint from implementation field names.

• Local ghost variables

Functions may be annotated by declaring local ghost variables whose names shall be dis-
joint from the implementation local variable and parameter names.

• Ghost parameters in function calls

Function calls and function declarations can be enriched by allowing the passing of ghost
parameters. When a function declaration is extended by ghost parameters, all correspond-
ing function calls must be type-correct with respect to the annotated declaration.

• Global ghost variables

The annotated program may contain global ghost variables whose names are disjoint from
the implementation global variable names.

132

• Ghost heap variables

In order to allow for unlimited creation of ghost variables, we provide a ghost heap on
which ghost variables may be allocated. The ghost heap is infinite: since we are not lim-
ited by physical constraints like a finite physical memory, we do not consider deallocation
of ghost heap variables.

Similar to regular variables and struct fields, all ghost state components that are accessed by
a program must be declared beforehand. This is done by annotating the program text with ghost
declarations. These annotations are clearly separated from the original code by marking them
as ghost in the formal definition of the C-IL+G program. In addition to the existing C-IL-types,
the verification engineer may use special ghost types, e.g. Z (for a definition of ghost types, see
section 6.1.2) for declaration of ghost state components.

Since we want to reuse as much of the already existing formalism as possible, we define ghost
state to extend C-IL state (in which we have struct types, local variables and global variables
already) in such a way that we reuse semantics wherever possible. However, since we do not
support pointer arithmetics on ghost state – in particular defining a byte-string representation for
ghost types would be quite pointless – we can use a much more structured memory model to
store the content of ghost components.

To declare specification state, we extend a C-IL program to a C-IL+G program by adding
local and global ghost variable declarations and a ghost field declaration function for struct
types which may both use ghost types. To hold the values of these ghost variables and ghost
fields, we add a global ghost memory to the C-IL+G configuration and local ghost memories to
the stack frames of the C-IL+G configuration (see section 6.3.1). In the following, we provide
definitions of ghost memory, ghost types and ghost values.

6.1.1 Ghost Memory

For our ghost state, we actually do not want a memory that is close to the hardware memory in
terms of formalism. Instead, we can choose a much more abstract view. There is no point in
supporting pointer arithmetics on ghost state. Thus, we can simply model ghost memory in a
structured way in terms of structured ghost values.

Definition 6.1 (Structured Ghost Values) The set of structured ghost values valMG is defined
inductively as follows:

• Ordinary C-IL values, ghost values and no value: val ∪ valG ∪ {⊥} ⊆ valMG
As a base case, a structured ghost value can be an ordinary C-IL value, a ghost value (for
a definition of ghost values, see section 6.1.3) or the value ⊥ that denotes an unknown
value, e.g. the value of an uninitialized ghost field or variable.

• Struct and array values: f : (F ∪ N) ⇀ valMG ⇒ f ∈ valMG
We model struct and array ghost memory values as functions from field names, or, re-
spectively, array indices given as natural numbers to structured ghost values. Note that
for a type-correct C-IL+G program, dom(f) will always be appropriate for the type of the
corresponding ghost subvariable.

133

struct A
{

. . . // implementation fields
spec(t1 f1;) // ghost fields
. . .

spec(int fi[m];)
. . .

spec(tn fn;)
}

...

...

...

val(032, i32)

v

fi 7→

fn 7→

f1 7→

v(fi)
0 7→ val(032, i32)

m − 1 7→

Figure 6.1: Example structured ghost value v for struct A that provides values for the ghost fields
f1, . . . , fn declared in A. In this example, field fi is of type array(i32,m). The value of the array
field fi in structured ghost value v is given by structured ghost value v(fi) which, in this example,
provides appropriately typed zero-values for all array elements.

For an example of a structured ghost value, consider figure 6.1. This way of modeling memory
corresponds very closely to the memory model of C0 from the Verisoft project [Ver07]. In-
stead of considering a flat byte-addressable memory where all addresses of subvariables must
be computed according to the concrete layout of structs and arrays (like in C-IL), here, we do
not consider the concrete memory layout. Instead, when we need to talk about subvariables in
C-IL+G (e.g. when setting a ghost pointer to point to some ghost subvariable), we model this by
a base variable (for which ghost memory provides a structured ghost value) in combination with
a sequence of field and array accesses that describes a particular subvariable of the base variable.
The intricate nature of the memory model of C-IL+G results from the fact that we extend the
byte-addressable memory of the implementation C-IL machine with an abstract memory model
for the ghost state.

Definition 6.2 (Subvariable Selectors) In order to specify accessing a certain sub-value of a
structured ghost value, we use subvariable selectors

s ∈ F ∪ N

s ∈ F specifies a field access, while s ∈ N specifies an array access.

We use sequences of subvariable selectors to perform accesses to structured ghost values and to
describe subvariables of ghost variables.

Reading and Writing Structured ghost values

We define auxiliary functions that read from and write to structured ghost values by descending
into the structured ghost value by recursively applying subvariable selectors from a sequence of
subvariable selectors.

Definition 6.3 (Reading a Subvalue of a Structured ghost value) We define the function

readvalMG
: valMG × (N ∪ F)∗ ⇀ valMG

134

that reads subvalues specified by a sequence of subvariable selectors from a structured ghost
value as

readvalMG
(v,S) =

v S = ε

readvalMG
(v(hd(S)), tl(S)) S , ε ∧ hd(S) ∈ dom(v)

undefined otherwise

Definition 6.4 (Writing a Subvalue of a Structured ghost value) We define the function

writevalMG
: valMG × (N ∪ F)∗ × valMG ⇀ valMG

that writes a given structured ghost value to replace a given subvalue of another structured ghost
value as

writevalMG
(v,S ,y) =

y S = ε

v(hd(S) := writevalMG
(v(hd(S)), tl(S), y)) S , ε ∧ ∧hd(S) ∈ dom(v)

undefined otherwise

Global Ghost Memory

Global ghost memory contains the following:

• ghost data (ghost fields) of global implementation structs,

• ghost heap variables, and

• global ghost variables.

Essentially, we have three different kinds of ghost variables here, i) ghost variables that contain
the values of ghost fields of global implementation structs (which can be identified by a pair
(a, tC) of byte-address a and composite type name tC), ii) ghost heap variables (which we identify
by addressing them with natural numbers in the order of their allocation), and iii) global ghost
variables (which are identified simply by their variable name).

Definition 6.5 (Global Ghost Memory) A global ghost memory is a partial function

MG : (B8·θ.sizeptr × TC) ∪ N ∪ V⇀ valMG

that takes either a pair of implementation global memory address and composite type name, the
ghost heap address of a ghost heap variable, or the name of a global ghost variable. It returns a
structured ghost value that provides values for all subvariables of the given ghost variable.

Figure 6.2 illustrates this definition.

135

global
ghost
variables

ghost
heap
variables

ghost fields
of global
implementation
structs

...... ...

MG

0 7→(a1, tC1) 7→

hmax 7→ xs 7→(an, tCn) 7→

x1 7→

Figure 6.2: Contents of a global ghost memoryMG.
Here, (a1, tC1), . . . , (an, tCn) are pairs of implemen-
tation global memory address and composite type
name for which the global ghost memory cur-
rently provides ghost field values, the current ghost
heap variables are numbered from 0 to hmax, and
x1, . . . , xs are the names of all declared global ghost
variables.

...

local
ghost
variables

ghost fields of
local implementation
structs

...
wm 7→((vn, on), tCn) 7→

((v1, o1), tC1) 7→ w1 7→

MEG

Figure 6.3: Contents of a lo-
cal ghost memory MEG. Here,
((v1, o1), tC1), . . . , ((vn, on), tCn) are
pairs of local implementation subvariable
(specified by variable name and byte-
offset) and composite type name for which
the local ghost memory currently provides
ghost field values, and w1, . . . ,wm are the
names of all local ghost variables stored
in the local ghost memory.

Local Ghost Memory

Global ghost memory contains the following:

• ghost data (ghost fields) of local implementation struct-type subvariables, and

• local ghost variables (including ghost parameters).

Local ghost memory provides structured ghost values for two different kinds of ghost variables:
i) local ghost variables used to hold the ghost fields of local implementation struct-type subvari-
ables (which are identified by ((v, o), tC) where v is a local implementation variable name, o is
a byte-offset in the local implementation memory of v that specifies an implementation subvari-
able of v, and tC is a composite type name), and ii) local ghost variables (which are identified by
their variable name). Later, we will obtain C-IL+G stack frames by extending the definition of
C-IL stack frame with a local ghost memory.

Definition 6.6 (Local Ghost Memory) A local ghost memory is a partial function

MEG : (V × N) × TC ∪ V⇀ valMG

that maps local implementation struct-type subvariables and local ghost variables to their corre-
sponding structured ghost values.

Figure 6.3 illustrates this definition.

136

6.1.2 Ghost Types

In addition to the regular types of C-IL, special ghost types can be used to declare ghost state.
We define the set of all possible ghost types TG. Note that both the set of C-IL types T and the
set of ghost types TG will be used later in order to define C-IL+G programs.

Definition 6.7 (Ghost Types) We define the set of ghost types TG inductively as as follows:

• Mathematical integers: math_int ∈ TG
A type for unbounded integers (from the set Z).

• Generic pointers: obj ∈ TG
Not to be confused with ptr(t) which is a pointer type with a specific base type t. The
type obj is a generic pointer type in the sense that values of this type can hold arbitrary
pointers including their type information. In conjunction with maps (see below), this can
be used to formalize pointer sets.

• State-snapshots: state_t ∈ TG
In VCC it is possible to take a snapshot of the current state of the C-IL+Gmachine, storing
this snapshot in ghost state. This can be useful in order to argue about a history of program
states in invariants.

• Maps: t, t′ ∈ TG ∪ T⇒ map(t,t′) ∈ TG

A function type with domain type t and range type t′. Note that we can define maps over
both ghost types and regular C-IL types.

• Records: tC ∈ TC ⇒ record tC ∈ TG

Records, like structs, are given in terms of a composite type name. Record values are
functions from declared field names to correctly typed values. Note that we use the set
of composite type names TC known from C-IL also for ghost types; generally, a subset of
names from TC is used by the implementation C-IL program, while the remaining com-
posite type names can be used in ghost type declarations. Note that the main difference
between a ghost value of record type and a ghost value of struct type is that the fields of
a struct-type ghost variable can be addressed by ghost subvariables while the fields of a
record type cannot, i.e. a record is an atomic value.

• Pointers to ghost types: t ∈ TG ⇒ ptr(t) ∈ TG

• Arrays over ghost types: t ∈ TG ∧ n ∈ N⇒ array(t,n) ∈ TG

Definition 6.8 (Qualified ghost types) Analogously, we define the set of qualified ghost types
TQG inductively as the smallest set containing the following:

• Qualified mathematical integers: q ⊆ Q⇒ (q,math_int) ∈ TQG

• Qualified generic pointers: q ⊆ Q⇒ (q, obj) ∈ TQG

137

• Qualified state-snapshots: q ⊆ Q⇒ (q, state_t) ∈ TQG

• Qualified maps: q ⊆ Q ∧ t, t′ ∈ TG ∪ T⇒ (q,map(t, t′)) ∈ TQG

• Qualified records: q ⊆ Q ∧ tC ∈ TC ⇒ (q, record tC) ∈ TQG

• Qualified pointers to ghost types: q ⊆ Q ∧ X ∈ TQG ⇒ (q,ptr(X)) ∈ TQG

• Qualified arrays over ghost types: q ⊆ Q ∧ X ∈ TQG ∧ n ∈ N⇒ (q, array(X, n)) ∈ TQG

Note that we will assume an extension of the function qt2t : TQ ∪ TQG → T ∪ TG defined in
the obvious way – by stripping all type qualifiers from the qualified type recursively. We omit
its definition here.

Definition 6.9 (Auxiliary Predicates on Types) For C-IL+G, we extend the predicates unqual-
ified types from C-IL:

• isptr(t) ≡ (∃t′ : t = ptr(t′))

• isarray(t) ≡ (∃t′, n : t = array(t′, n))

• isfunptr(t) ≡ (∃t′,T : t = funptr(t′,T))

Note that syntactically, the definition looks identical to the C-IL definition, the semantic differ-
ence here is that these definitions are for both C-IL and ghost types.

6.1.3 Ghost Values

C-IL+G makes use of ghost values and regular C-IL values. Thus, in the following we define
ghost values.

Definition 6.10 (Set of ghost values) We define the set of ghost values valG as the union of the
sets of ghost values of a given type:

valG
de f
= valmath_int ∪ valobj ∪ valstate_t ∪ valmap ∪ valrecord ∪ valghost-ptr+array ∪ valgfun

In order to define range and domain of maps in a sufficiently strict way, we need a function
that, given a regular C-IL or ghost type, returns a set of possible values for that type.

Definition 6.11 (Values of a Given Type) We define the function

valG : T ∪ TG → 2val∪valG

138

which returns the set of values that can occur in a map value for a given type as

valG(t) =

valprim(t) t ∈ T ∧ t ∈ TPP

valptr(t) t ∈ T ∧ (isptr(t) ∨ isarray(t) ∨ isfunptr(t))
valmath_int t = math_int
valobj t = obj
valstate_t t = state_t
valmap(t’,t”) t = map(t′, t′′)
valrecord(tC) t = record tC
valgref(t) t ∈ TG ∧ isptr(t) ∨ isarray(t)
∅ otherwise

Note that we do not support maps that contain references to local variables (we only allow
pointers to the global memory) or symbolic function values. In this definition, we use sets of
individual ghost types which are defined below.

Definition 6.12 (Set of Mathematical Integer Values) The set of ghost mathematical integer
values is defined as

valmath_int
de f
= {gval(i,math_int) | i ∈ Z}

Definition 6.13 (Set of Generic Pointer Values) The set of generic pointer values is defined as

valobj
de f
= {gval(p, obj) | p ∈ valptr+array ∪ valghost-ptr+array}

Note that values of generic pointer type can contain both implementation and ghost pointer
values (including their type information).

Definition 6.14 (Set of State-Snapshots) We define the set of state-snapshots as

valstate_t
de f
= {gval(c, state_t) | c ∈ confC-IL+G}

Note that effectively, by using valG in the definition of some components of confC-IL+G (defined
in section 6.3.1), we obtain a mutually recursive definition. In practice, however, only configu-
rations that have been encountered before can be stored in a state-snapshot value of a C-IL+G

configuration, in particular, we can only take a state-snapshot of the current state. Thus, we only
use configurations and state-snapshots in a well-founded way.

Definition 6.15 (Set of Map Values) We define the set of map values as

valmap =
⋃

map(t,t′)∈TG

valmap(t,t′)

where
valmap(t,t′) = {gval(f ,map(t, t′)) | f : valG(t)→ valG(t′)}

139

That is, map values of type map(t, t′) are functions that map values of type t to values of type
t′. Note that t or t′ may be regular C-IL types or ghost types. This definition is mutually
recursive with that of valG(·). However, since types are well-founded, this construction is also
well-founded.

Definition 6.16 (Set of Record Values) We define the set of record values as

valrecord =
⋃

tC∈TC

valrecord(tC)

where
valrecord(tC) = {gval(r, record tC) | r : F⇀ (val ∪ valG)}

A record value is a pair gval(r, record tC) consisting of a partial function r from field names to
values that describes the content of the record and a record type record tC .

Definition 6.17 (Set of Ghost Pointers and Arrays) We define the set of ghost pointer and ar-
ray values as the union of the set of global ghost references and the set of local ghost references:

valghost-ptr+array
de f
= valgref ∪ vallrefG

As in C-IL, we distinguish strictly between local and global references.

Definition 6.18 (Set of Global Ghost References) We define the set of global ghost references
as

valgref
de f
=

⋃
t∈(T∪TG)∧(isptr(t)∨isarray(t))

valgref(t)

with

valgref(t)
de f
= {gref(v, S , t) | v ∈ V ∧ S ∈ (N ∪ F)∗}

∪ {gref(a, S , t) | a ∈ N ∧ S ∈ (N ∪ F)∗}
∪ {gref((a, tC), S , t) | ∃tC : a ∈ B8·θ.sizeptr ∧ tC ∈ TC ∧ S ∈ (N ∪ F)∗}

A global ghost reference gref(x, S , t) where S ∈ (N ∪ F)∗ is a finite sequence of subvariable
selectors, and t is a pointer or array type can be any of the following three:

• a reference to a subvariable of a global ghost variable, x ∈ V

Here, x is the name of a global ghost variable in which the ghost subvariable resides.

• a reference to a subvariable of a ghost object allocated on the ghost heap, x ∈ N

In this case, x is the ghost heap address of a ghost object which was allocated to the heap.

• a reference to a ghost subvariable of an implementation pointer, x ∈ (B8·θ.sizeptr × TC)

A reference to a ghost subvariable of an implementation struct is given when x is a pair of
implementation memory address and a composite type name.

140

Definition 6.19 (Set of Local Ghost References) We define the set of local ghost references as

vallrefG
de f
=

⋃
t∈(T∪TG)∧(isptr(t)∨isarray(t))

vallrefG(t)

where

vallrefG(t)
de f
= {lrefG(v, i, S , t) | v ∈ V ∧ S ∈ (N ∪ V)∗}

∪ {lrefG(((v, o), tC), i, S , t) | v ∈ V ∧ o ∈ N ∧ tC ∈ TC ∧ S ∈ (N ∪ F)∗}

A local ghost reference lrefG(x, i, S , t) where i ∈ N is a stack frame number, S ∈ (N ∪ F)∗ is a
finite sequence of subvariable selectors, and t is a pointer or array type is either

• a reference to a subvariable of a local ghost variable, x ∈ V,

A local ghost variable can be identified uniquely by its name x and the stack frame number
i it resides in. S then simply describes a ghost subvariable inside that local ghost variable.

• or a reference to a subvariable of a local implementation variable, x = ((v, o), tC) ∈ (V ×
N) × TC

The local implementation variable this local ghost reference refers to is identified by the
corresponding local reference lref((v, o), i, struct tC), which is easily constructed from x
and i.

The intuition behind these definitions is that, in order to refer to some ghost field, we only
need to describe the base object in which the ghost field resides and then describe the sequence
of struct and array accesses that lead to the ghost field.

Definition 6.20 (Symbolic Ghost Function Value) We define the set of symbolic ghost func-
tion values as

valgfun
de f
= {gfun(f) | f ∈ Fname}

Since we do not support function pointer addresses for ghost functions (which would indeed be
quite pointless since they do not have compiled code that can reside anywhere in the memory)
this symbolic function value definition is sufficient in order to allow us to evaluate function
expressions in order to perform function calls to ghost functions.

Definition 6.21 (Type of Values and ghost values) We extend the function τ : val → T from
CIL to

τG : val ∪ valG ⇀ T ∪ TG

where

τG(x) =

τ(x) x ∈ val
t x = gval(a, t)
t x = gref(a, t)
t x = lrefG(a, i, S , t)
undefined otherwise

This function takes a value or ghost value and returns the type of that value.

141

Definition 6.22 (Zero-Predicate for Values and ghost values) We extend the zero-predicate for
values from C-IL as follows:

zeroG : paramsC-IL × (val ∪ valG) ⇀ bool

where

zeroG(θ,v) ≡

a = 0sizeθ(t) v = val(a, t)
z = 0 v = gval(z,math_int)
undefined otherwise

Operators on ghost values

For most of the considered ghost values, we do not need any operators, we simply want to use
them to store auxiliary implementation variables or results that can be computed from imple-
mentation variables using the usual C operators. Mathematical integer values are an exception
for which we provide some definitions (which can be extended in the obvious way to provide
more operations if necessary).

Definition 6.23 (Mathematical Integer Operators of C-IL+G) We define the four operators

+ : valmath_int × valmath_int → valmath_int

− : valmath_int × valmath_int → valmath_int

∗ : valmath_int × valmath_int → valmath_int

/ : valmath_int × valmath_int → valmath_int

where
gval(x,math_int) + gval(y,math_int) = gval(x + y,math_int)

and
gval(x,math_int) − gval(y,math_int) = gval(x − y,math_int)

and
gval(x,math_int) ∗ gval(y,math_int) = gval(x ∗ y,math_int)

and
gval(x,math_int)/gval(y,math_int) = gval(bx/yc,math_int)

In the remaining definitions, we will just assume partial functions op1G and op2G that map
operator symbols to functions that compute results of applying these operators to ghost values.
Since we have only defined a few mathematical operators on mathematical integer values, the
reader may assume that op1G is undefined and that the domain of op2G is {+,−, ∗, /} ⊂ O2.

142

Type Cast for ghost values

For most ghost values, type casting does not make much sense (e.g. state snapshot, maps,
records, ghost pointers, arrays). Exceptions are mathematical integers and generic pointers for
which a type cast from appropriate values should be possible.

Definition 6.24 (Type Cast Function for C-IL+G) We define the function

castG : (val ∪ valG) × (T ∪ TG) ⇀ val ∪ valG

as

castG(v,t) =

θ.cast(v, t) v ∈ val ∧ t ∈ T
gval(〈x〉,math_int) v = val(x,ui) ∈ valprim ∧ t = math_int
gval([x],math_int) v = val(x, ii) ∈ valprim ∧ t = math_int
gval(v, obj) v ∈ valptr+array ∪ valghost-ptr+array ∧ t = obj
p v = gval(p, obj) ∈ valobj ∧ t = τG(p)
undefined otherwise

It is currently unclear whether this type cast function is sufficient – if it turns out not to be, it
should be extended to allow type casts between more types; usually in a straight-forward way.

6.2 Ghost Code

Similar to ghost state, ghost code comes in different flavors:

• regular C-IL statements operating on ghost state (i.e. assignment and gotos),

• calls to ghost functions,

• added ghost parameters on C-IL function calls, and

• allocation of ghost memory.

The goal is to define ghost code in such a way that it is not hard to show that a program
annotated with ghost code simulates the same program without ghost code. What we would like
to have is a clean separation between execution of ghost function calls and execution of ordinary
function calls (possibly annotated with ghost code) – so that we can extract the implementation
part of a C-IL+G execution (which is a C-IL execution) easily. We restrict function calls in
such a way that ghost functions cannot call implementation functions, whereas implementation
functions can call both ghost and annotated implementation functions. This restriction occurs
later in the definition of the transition function of C-IL+G but may be helpful to keep in mind
when looking at the following definitions. In the following, we formally introduce ghost code
by defining C-IL+G programs. This involves first defining ghost expressions followed by ghost
statements and an extended version of C-IL statements with ghost parameters on function calls
before we define C-IL+G function tables and C-IL+G programs.

143

6.2.1 Expressions

Definition 6.25 (Ghost Expressions) We inductively define the set of ghost expressions EG as
follows:

• Constants: c ∈ val ∪ valG ⇒ c ∈ EG

The difference to C-IL expressions is that constants may additionally be ghost values.

• Variable names: v ∈ V⇒ v ∈ EG

Identical to the same case of the C-IL expression definition.

• Function names: f ∈ Fname ⇒ f ∈ EG

Identical to the same case of the C-IL expression definition.

• Unary operation on expression: e ∈ EG ∧ 	 ∈ O1 ⇒ 	e ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpression.

• Binary operation on expressions: e0, e1 ∈ EG ∧ ⊕ ∈ O2 ⇒ (e0 ⊕ e1) ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpressions.

• Conditional: e, e0, e1 ∈ EG ⇒ (e ? e0 : e1) ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpressions.

• Type cast: t ∈ (TQ ∪ TQG), e ∈ EG ⇒ (t)e ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpression
and type.

• Dereferencing pointer: e ∈ EG ⇒ ∗(e) ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpression.

• Address of expression: e ∈ EG ⇒ &(e) ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpression.

• Field access: e ∈ EG ∧ f ∈ F⇒ (e). f ∈ EG

Structurally identical to the corresponding C-IL expression, allows ghost subexpression.

• Size of Type: t ∈ TQ ⇒ sizeof(t) ∈ EG
Identical to the same case of the C-IL expression definition. Note that we do not allow
taking the size of a ghost type since that would be quite meaningless.

• Size of Expression: e ∈ E⇒ sizeof(e) ∈ EG

Identical to the same case of the C-IL expression definition. Note that we explicitly do not
allow taking the size of a ghost expression.

144

• Map and ghost array access: e, e′ ∈ EG ⇒ e[e′] ∈ EG

Note that using brackets for array access is only defined for ghost arrays in the semantics
of C-IL+G since in C-IL, we model array access by means of pointer arithmetics. Map
access means retrieving the value of the map described by e for a given element described
by e′ of its domain.

• Lambda expression: t ∈ TQ ∪ TQG ∧ v ∈ V ∧ e ∈ EG ⇒ lambda(t v; e) ∈ EG

In order to assign map values, we provide a lambda expression that results in a map from
elements of type t to elements of the type of e where the lambda parameter variable v may
occur as a free variable in e.

• Record update: e, e′ ∈ EG ∧ f ∈ F⇒ e{ f : =e′} ∈ EG

C-IL+G provides an expression to update a field of a record. Note that in the semantics
we do not provide an expression that assigns all fields of a record at once. This could,
however, be added as syntactic sugar.

• State-snapshot: current_state ∈ EG
In order to take a state-snapshot of the current state, C-IL+G provides an expression. This
is in fact the only way to obtain a state-snapshot.

• Use a state-snapshot to evaluate an expression: e, e′ ∈ EG ⇒ in_state(e,e′) ∈ EG

Given a C-IL+G expression e that evaluates to a state-snapshot, e′ is evaluated in the state
specified by e′.

Note that, since the structure of the set of ghost expression encompasses that of the set of C-IL
expressions, the proof that E ⊂ EG is trivial.

6.2.2 Statements

Definition 6.26 (C-IL Statements Extended with Ghost Parameters on Function Call) We de-
fine the set S′ which is the set of C-IL statements extended with ghost parameters on function
call, or shorter extended C-IL statements as follows:

• Assignment: e0, e1 ∈ E⇒ (e0=e1) ∈ S′

• Goto: l ∈ N⇒ goto l ∈ S′′

• If-Not-Goto: e ∈ E ∧ l ∈ N⇒ ifnot e goto l ∈ S′

• Function Call: e0, e ∈ E, E ∈ E∗, E′ ∈ E∗G ⇒ (e0=call e(E,E′)) ∈ S′

• Procedure Call: e ∈ E, E ∈ E∗, E′ ∈ E∗
G
⇒ call e(E,E′) ∈ S′

• Return: e ∈ E⇒ return e ∈ S′ and return ∈ S′

145

Note that this definition is structurally identical to the definition of C-IL statements except for
the fact that function calls now include a second list of parameters E′ which is used for ghost
parameter passing at function call. The reason for this is that these statements are used to rep-
resent the implementation C-IL program that is part of a C-IL+G program. The definition for
statements of ghost code follows just below.

Definition 6.27 (Ghost Statements) To represent – and visually distinguish – ghost code, we
define the set of ghost statements SG as follows:

• Assignment: e0, e1 ∈ EG ⇒ ghost(e0=e1) ∈ SG

• Goto: l ∈ N⇒ ghost(goto l) ∈ SG

• If-Not-Goto: e ∈ EG ∧ l ∈ N⇒ ghost(ifnot e goto l) ∈ SG

• Function Call: e0, e ∈ EG, E ∈ E∗G ⇒ ghost(e0=call e(E)) ∈ SG

• Procedure Call: e ∈ EG, E ∈ E∗G ⇒ ghost(call e(E)) ∈ SG

• Return: e ∈ EG ⇒ ghost(return e) ∈ SG and ghost(return) ∈ SG

• Ghost Allocation: e ∈ EG ∧ t ∈ T ∪ TG ⇒ ghost(e=allocghost(t)) ∈ SG

Note that while we do not consider a heap abstraction for C-IL, we do consider an infinite heap
for ghost objects. This is why we provide a ghost allocation statement that allocates a new ghost
object of type t on the ghost heap. (For C-IL, such an abstraction can be implemented by C-IL
code that explicitly performs memory management to establish the notion of a heap.)

6.2.3 Programs

Definition 6.28 (Annotated C-IL Function Table Entry) In order to describe ghost parame-
ters annotated to C-IL functions, we use the following function table definition for implementa-
tion functions in C-IL+G: An annotated function table entry

f te = (f te.rettype, f te.npar, f te.ngpar, f te.V, f te.VG, f te.P) ∈ FunT’

consists of

• f te.rettype ∈ TQ – type of the return value

Identical to the C-IL definition.

• f te.npar ∈ N – number of implementation parameters

Identical to the C-IL definition.

• f te.ngpar ∈ N – number of ghost parameters

Describes how many ghost parameters must be passed to the function.

146

• f te.V ∈ (V × TQ)∗ – implementation parameter and local variable declarations

Identical to the C-IL definition.

• f te.VG ∈ (V × (TQ ∪ TQG))∗ – ghost parameter and local ghost variable declarations

A list of pairs of variable names and qualified ghost or implementation types that declares
ghost parameters and local ghost variables of the function. Analogous to the C-IL defini-
tion, the first f te.ngpar entries describe the declared ghost parameters while the remaining
entries declare local ghost variables. Note that ghost variables and parameters may use im-
plementation types in addition to ghost types and that for a well-defined configuration, the
declared ghost variable and parameter names should be disjoint from the implementation
variable and parameter names.

• f te.P ∈ ((S′ ∪ SG)∗ ∪ {extern}) – function body

The function body of an implementation function of C-IL+G may contain both annotated
C-IL statements and ghost statements.

Definition 6.29 (Ghost Function Table Entry) A ghost function table entry

f te = (f te.rettype, f te.ngpar, f te.VG, f te.P) ∈ FunTG

consists of the following:

• f te.rettype ∈ TQ ∪ TQG - type of the return value

• f te.ngpar ∈ N - number of ghost parameters

• f te.VG ∈ (V × (TQ ∪ TQG))∗ - ghost parameter and local ghost variable declarations
(beginning with parameters)

• f te.P : (S∗
G
∪ {extern}) - function body

Note that a ghost function only has ghost parameters and uses only ghost statements but it may
use implementation types for parameters or local variables.

With these definitions we are now able to define C-IL+G programs.

Definition 6.30 (C-IL+G Program) A C-IL+G program

π = (π.VG, π.VGG, π.TF , π.TFG, π.F , π.FG) ∈ progC-IL+G

is described by the following:

• π.VG : (V × TQ)∗ - a list of implementation global variable declarations

Identical to the definition of C-IL programs.

• .VGG : (V × (TQ ∪ TQG))∗ - a list of global ghost variable declarations

This list declares all global ghost variables of the C-IL+G program. Declared ghost and
implementation variable names must be disjoint.

147

• π.TF : TC ⇀ (F × TQ)∗ - a type table for implementation fields of struct types

Identical to the definition of C-IL program. Note that pure ghost structs or record types
will not have any implementation fields declared by this function. Thus, every composite
type name in the domain of this function is an implementation struct type.

• π.TFG : TC ⇀ (F × (TQ ∪ TQG))∗ - a type table for ghost fields of struct types

This function returns for a given composite type name all ghost field declarations. Note
that in order to have a valid C-IL+G program, we must require that for a given compos-
ite type tC the declared implementation field names and declared ghost field names are
disjoint.

• π.F : Fname ⇀ FunT’ - a function table for annotated implementation functions

The annotated function table for the implementation C-IL program.

• π.FG : Fname ⇀ FunTG - a function table for ghost functions

The function table for ghost functions maps declared ghost function names to ghost func-
tion table entries. Similar to struct type name declarations, we must enforce dom(π.F) ∩
dom(π.FG) = ∅ in order to have a meaningful C-IL+G program.

Auxiliary Definitions

In the following, we present auxiliary definitions for C-IL+G programs and parts thereof. Most
of these definitions are very similar to auxiliary definitions from C-IL semantics and are just the
old definitions extended to ghost programs in the obvious way.

Definition 6.31 (Implementation Function Table) For a C-IL+G program π and C-IL environ-
ment parameters θ, we define the implementation function table

F θ
π

de f
= π.F ∪ θ.intrinsics

analogous to the C-IL definition.

Definition 6.32 (Combined C-IL+G Function Table) For a C-IL+G program π and C-IL en-
vironment parameters θ, we define the combined C-IL+G function table as union of the imple-
mentation function table and the ghost function table:

FC-IL+G
de f
= F θ

π ∪ π.FG

Definition 6.33 (Set of Declared Ghost Variables) We define the function

declG : (V × (TQ ∪ TQG))∗ → 2V

that, given a ghost variable declaration list, returns the set of declared variables as

declG(V)
de f
=

{v} ∪ declG(V′) V = V′ ◦ (v, t)
∅ V = ε

148

Definition 6.34 (Set of Declared Ghost Field Names) We define the function

declG : (F × (TQ ∪ TQG))∗ → 2F

that, given a ghost field declaration list, returns the set of declared fields as

declG(F)
de f
=

{ f } ∪ declG(F′) F = F′ ◦ (f , t)
∅ F = ε

Definition 6.35 (Type of Variable/Field in a Ghost Declaration List) We define the functions

τVG : V × (V × (TQ ∪ TQG))∗ → TQ ∪ TQG

and
τFG : F × (F × (TQ ∪ TQG))∗ → TQ ∪ TQG

that, given a variable (respectively, field) and an appropriate ghost declaration list, returns the
type of the variable (field) in that declaration list.

τVG(v,V) =

t V

de f
= (v, t) ◦ V′

τVG(v,V′) V = (v′, t) ◦ V′ ∧ v′ , v
(∅, void) V = ε

τFG(f ,T)
de f
=

t T = (f , t) ◦ T ′

τFG(f ,T ′) T = (f ′, t) ◦ T ′ ∧ f ′ , f
(∅, void) T = ε

6.3 Operational Semantics

We proceed by defining the state of C-IL+G in terms of C-IL+G configurations and the transition
function of C-IL+G for which we define expression evaluation of C-IL+G expressions. Note that
C-IL+G does not need any additional environment parameters and simply makes use of C-IL’s
environment parameters to give semantics of the C-IL part of C-IL+G.

6.3.1 Configurations

Definition 6.36 (C-IL+G Stack Frame) A stack frame of C-IL+G

s = (s.ME, s.MEG, s.rds, s. f , s.loc) ∈ frameC-IL+G

consists of

• s.ME : V→ (B8)∗ – local variables and parameters memory

Identical to C-IL, used to model values of implementation local variables and parameters.

149

• s.MEG : (V×N)×TC ∪V→ valMG – local ghost variables and ghost parameters memory

A local ghost memory that describes the content of local ghost variables and ghost param-
eters as well as the content of ghost fields of local implementation variables.

• s.rds ∈ valptr ∪ vallref ∪ valgref ∪ vallrefG ∪ {⊥} – return value destination

The return value destination which describes where the return value of the function call has
to be stored when a called function returns to this stack frame. Note that ghost references
will only occur in frames of ghost functions, for implementation functions we only use
implementation pointers.

• s. f ∈ Fname – function name

Identical to the C-IL definition. May, however, refer to declared ghost functions in addition
to implementation functions.

• s.loc ∈ N – location counter

Identical to the C-IL definition.

Definition 6.37 (Sequential C-IL+G-Configuration) A sequential C-IL+G configuration

c = (c.M, c.MG, c.s, c.nfG) ∈ confC-IL+G

consists of

• c.M : Bsizeptr ⇀ B8 – global byte-addressable memory

The same global byte-addressable memory that occurs in C-IL configurations.

• c.MG : (B8·θ.sizeptr × TC) ∪ N ∪ V ⇀ valMG – global ghost memory of structured ghost
values

This memory maps implementation pointers, ghost heap addresses and global ghost vari-
able names to structured ghost values which can be used to evaluate ghost subvariables of
the aforementioned.

• c.s : frame∗C-IL+G
– stack

The stack of a C-IL+G configuration is composed of C-IL+G stack frames.

• c.nfG ∈ N – the next free address on the ghost heap

In order to maintain the ghost heap, we count the number of heap variables allocated on
the ghost heap. Ghost heap variables are addressed by natural numbers in the order of
their allocation.

Figure 6.4 illustrates where the values pointed to by different kinds of C-IL+G pointers can be
found in a C-IL+G configuration.

150

...

...

(reference to ghost data of

(reference to global ghost variable)

(reference to ghost heap variable)

implementation struct)

(implementation struct pointer)

implementation struct)
(reference to ghost data of local

struct subvariable)
(reference to local implementation

(reference to local ghost variable)

...

...

...

...

...
...

...
...

...

...

...

...

...

...

...

......

wk 7→

wm 7→

c.s

xs 7→

Amax a

c.M

c.nfG

hmax 7→

x1 7→0 7→

xl 7→b 7→(a, tC) 7→

gref((a, tC), ε, t)

gref(xl, ε, t)

gref(b, ε, t)

lref((v j, o), i, struct tC)

val(a, struct tC)

lrefG(((v j, o), tC), i, ε, t)

lrefG(wk, i, ε, t)

c.MG

c.s[i].ME

vn 7→

c.s[i].loc

c.s[i]. f
v1 7→

v j 7→

o

c

c.s[i].MEG

π.F (c.s[i]. f)

((v j, o), tC) 7→

π

w1 7→

npar ngpar

c.s[i]

VGG = (xs, vs) ◦ . . . ◦ (x1, v1) rettype P

VG = (wm, um) ◦ . . . ◦ (w1, u1)

V = (vn, tn) ◦ . . . ◦ (v1, t1)

TFVG FFG

c.s[|s| − 1]

TFG

c.s[0]
Amin

Figure 6.4: Where references and pointers of C-IL+G point to. Here, Amin and Amax are the
minimal and, respectively, maximal address of the implementation memory c.M, hmax = c.n fG−
1 is the newest ghost heap variable, v j is the j-th local variable declared in function c.s[i]. f , wk

is the k-th local ghost variable declared in function c.s[i]. f , b is the b-th ghost heap variable, and
xl is the l-the declared global ghost variable.

151

Definition 6.38 (Concurrent C-IL+G-Configuration) A concurrent C-IL+G configuration

c = (c.M, c.MG, c.Th, c.nfG) ∈ confCC-IL+G

consists of

• c.M : Bsizeptr → B8 – shared global byte addressable memory

• c.MG : (B8·θ.sizeptr × TC) ∪ N ∪ V→ valMG – shared global ghost memory

• c.Th : N⇀ frame∗C-IL+G
– mapping of thread identifiers to C-IL+G stacks

• c.nfG ∈ N – the next free address on the shared ghost heap

Auxiliary Definitions

Concerning configurations, we make the following auxiliary definitions.

Definition 6.39 (Top-Most Stack Frame) We define the top-most stack frame of a C-IL+G

configuration
stacktop : confC-IL+G → frameC-IL+G

as
stacktop(c) = c.s[|c.s| − 1]

Definition 6.40 (Stack Index where Ghost Frames Begin) We define a function that calcu-
lates the first index on the stack where a ghost frame resides – if no such index exists the function
returns the value ⊥. We define

siG : progC-IL+G × confC-IL+G → N ∪ {⊥}

where

siG(π,c) =

min{i ∈ {0, . . . , |c.s| − 1} | c.s[i]. f ∈ π.FG} ∃i : c.s[i]. f ∈ π.FG
⊥ otherwise

Note that, since ghost functions are restricted by the semantics to only be able to call other ghost
functions, all subsequent frames will also be ghost frames for any C-IL+G configuration that
occurs in a valid C-IL+G execution.

We extend the functions read and write from C-IL in order to have similar functions for C-
IL+G.

Definition 6.41 (Reading a Value from a C-IL+G Configuration) We define the function

readG : paramsC-IL × confC-IL+G × (val ∪ valG) ⇀ valMG

152

where

readG(θ,π,c,x) =

read(θ,C-IL(π, c), x) x ∈ val
readvalMG

(c.MG(y), S) x = gref(y, S , t)
readvalMG

(c.s[i].MEG(y), S) x = lrefG(y, i, S , t)

undefined otherwise

Note that this function returns structured ghost values which, however, include C-IL values
(val ⊂ valMG). Thus, we can use the function read from C-IL to read from the implementa-
tion memories of the projected C-IL configuration C-IL(π, c) that corresponds to the C-IL+G

configuration c.

The formal definition of the projection function C-IL : confC-IL+G → confC-IL which converts
a C-IL+G configuration to a corresponding C-IL configuration by extracting everything related
to ghost state and code is given in section 6.4.1 before we discuss simulation between C-IL and
C-IL+G. While this function could have been introduced here, it appears more sensible to give
all definitions related to projecting C-IL+G to C-IL in a single place later.

Definition 6.42 (Writing a Value to a C-IL+G Configuration) We define the function

writeG : paramsC-IL × confC-IL+G × (val ∪ valG) × valMG ⇀ confC-IL+G

as

writeG(θ,π,c,x,y) =

merge-impl-ghost(c,write(θ,C-IL(π, c), x, y)) x ∈ val ∧ y ∈ val
c[MG := c.MG[z := writevalMG

(c.MG(z), S , y)]] x = gref(z, S , t)
c′ x = lrefG(z, i, S , t)
undefined otherwise

where merge-impl-ghost is a function that updates all implementation memories of a C-IL+G

configuration based on a given C-IL configuration (formally defined below) and c′ is a C-IL+G

configuration which is identical to c except for c′.s[i].MEG(z) = writevalMG
(c.s[i].MEG(z), S , y).

In the previous definition, we have used a function merge-impl-ghost(c, c′) to merge the im-
plementation memories of configuration c′ to configuration c. The intuition behind this is that
we would like to reuse the C-IL definition of the write-function in order to perform writes to im-
plementation variables by converting the C-IL+G configuration to a C-IL configuration in which
we perform the write. Now, to obtain a C-IL+G configuration in which the implementation vari-
able was written, we need to take all memory components of the updated C-IL configuration and
”merge” them into the original C-IL+G configuration.

Definition 6.43 (Merging a C-IL+G Configuration and a C-IL Configuration) The function

merge-impl-ghost : confC-IL+G × confC-IL → confC-IL+G

is defined as

merge-impl-ghost(c,c′) = c′′

153

where
c′′.M = c′.M

c′′.MG = c.MG

c′′.s = c.s[|c.s| − 1 : |c′.s|] ◦ merge-stacks(c.s[|c′.s| − 1 : 0], c′.s)

c′′.nfG = c.nfG

Note that the stack of the C-IL configuration may that is merged may be shorter than the stack
of the C-IL+G configuration. This is to account for the fact that the C-IL+G configuration may
contain ghost frames that do not occur in a projected C-IL configuration.

Here,
merge-stacks : frame∗C-IL+G × frame∗C-IL → frame∗C-IL+G

is defined as

merge-stacks(s, s′) =

s s′ = ε

hd(s)[ME := hd(s′).ME] ◦ merge-stacks(tl(s), tl(s′)) s′ , ε

6.3.2 Expression Evaluation

Analogous to the C-IL definitions, we define shorthand notation for a C-IL+G to get the vari-
able declarations for the top-most stack frame. For this, we introduce the following shorthand
notation:

Definition 6.44 (Implementation Variables of the Top-Most Stack Frame) We denote the im-
plementation variable declarations of the top-most stack frame of a C-IL+G program π and a
C-IL+G configuration c by

Vtop(π,c)
de f
=

π.F (stacktop(c). f).V siG(π, c) = ⊥

ε otherwise

Definition 6.45 (Ghost Variables of the Top-Most Stack Frame) We use

VGtop(π,c)
de f
= FC-IL+G(stacktop(c). f).VG

to refer to the ghost variable declarations of the top-most stack frame of a C-IL+G configuration
c of a given C-IL+G program π.

Definition 6.46 (Field Reference Function for C-IL+G) We provide an extension of the field
reference function from C-IL to include ghost references. Given environment parameters θ and
a C-IL+G program π, we define the function

σG
π
θ : (val ∪ valG) × F⇀ val ∪ valG

154

which takes a (ghost) pointer or local reference x and a field name f and computes the pointer
or local reference for the field access of f in x.

σG
π,c
θ (x, f)

de f
=

σπθ (x, f) x ∈ val ∧ f ∈ F ∧ f < declG(π.TFG(tC))
lrefG(((v, o), tC), i, [f], t) x = lref((v, o), i,ptr(struct tC)) ∧ f ∈ declG(π.TFG(tC))
gref((a, tC), [f], t) x = val(a,ptr(struct tC)) ∧ f ∈ declG(π.TFG(tC))
lrefG(y, i, S ◦ f , t) x = lrefG(y, i, S ,ptr(struct tC)) ∧ f ∈ declG(π.TFG(tC))
gref(y, S ◦ f , t) x = gref(y, S ,ptr(struct tC)) ∧ f ∈ declG(π.TFG(tC))
undefined otherwise

where t = ptr(τF(tC , π.TFG(tC))). In case we access a field of a ghost structure, the correspond-
ing field name is appended to the subvariable selector string of the ghost reference.

Note that when x is a pointer or local reference to an implementation variable of struct-pointer
type, we explicitly construct an appropriate ghost reference to the ghost subvariable associated
with accessing field f in the ghost data variable associated with x.

Definition 6.47 (Ghost Array Index Reference Function for C-IL+G) In order to provide ref-
erences to array subvariables of ghost variables at ghost array access, we define the function

γG
π
θ : valG × Z⇀ valG

which takes a ghost pointer or local reference x and an index z and computes the ghost reference
for the array access of z in x.

γG
π,c
θ (x,z)

de f
=

lrefG(y, i, S ◦ z,ptr(t)) x = lrefG(y, i, S ,ptr(array(t, n))) ∧ z ∈ [0 : n − 1]
lrefG(y, i, S ◦ z,ptr(t)) x = lrefG(y, i, S , array(t, n)) ∧ z ∈ [0 : n − 1]
gref(y, S ◦ z,ptr(t)) x = gref(y, S ,ptr(array(t, n))) ∧ z ∈ [0 : n − 1]
gref(y, S ◦ z,ptr(t)) x = gref(y, S , array(t, n)) ∧ z ∈ [0 : n − 1]
undefined otherwise

Definition 6.48 (Expression Evaluation of C-IL+G) We define expression evaluation for C-
IL+G as a function that takes a C-IL+G-configuration c ∈ confC-IL+G, a partial function pλ : V⇀
valMG providing lambda-parameter-values, a C-IL+G program π, C-IL environment parameters
θ ∈ paramsC-IL, and a ghost expression e ∈ EG. The signature of expressions evaluation for
C-IL+G is the following:

G[[·]]·,··,· : confC-IL+G × (V⇀ valMG) × programC-IL+G × paramsC-IL+G × EG ⇀ valMG

In the following we will use expression evaluation from C-IL where possible by using the pro-
jected C-IL configuration and the projected C-IL program which can be obtained from their C-
IL+G counterparts by removing everything related to ghost (definitions of the projection func-
tions are provided later in section 6.4.1). We proceed by making a case distinction over the
possible types of expressions:

155

• Constant: x ∈ val ∪ valG ⇒ G[[x]]π,θc,pλ = x

• Variable Name: v ∈ V⇒

G[[v]]π,θc,pλ =

G[[∗&v]]π,θc,pλ v ∈ declG(Vtop(π, c) ◦ π.VG ◦ VGtop(π, c) ◦ π.VGG) ∧ v < dom(pλ)
pλ(v) v ∈ dom(pλ)
undefined otherwise

• Function Name: f n ∈ Fname ⇒

G[[f n]]π,θc,pλ =

[[f n]]C-IL(π),θ

C-IL(π,c) f n ∈ dom(F θ
π)

gfun(f n) f n ∈ dom(π.FG)
undefined otherwise

• Unary Operator: e ∈ EG,	 ∈ O1 ⇒
G[[e]]π,θc,pλ = (θ.op1() ∪ op1G())(G[[e]]π,θc,pλ)

• Binary Operator: e0, e1 ∈ EG,⊕ ∈ O2 ⇒

G[[e0 ⊕ e1]]π,θc,pλ = (θ.op2(⊕) ∪ op2G(⊕))(G[[e0]]π,θc,pλ ,
G[[e1]]π,θc,pλ)

• Ternary Operator: e, e0, e1 ∈ EG ⇒
G[[(e ? e0 : e1)]]π,θc,pλ =

G[[e0]]π,θc,pλ zeroG(θ, G[[e]]π,θc,pλ)
G[[e1]]π,θc,pλ otherwise

• Type Cast: t ∈ TQ ∪ TQG, e ∈ EG ⇒ G[[(t)e]]π,θc,pλ = castG(G[[e]]π,θc,pλ , qt2t(t))

• Dereferencing a Pointer: e ∈ EG ⇒

G[[∗e]]π,θc,pλ =

readG(θ, π, c, x) (τG(x) = ptr(t) ∧ ¬isarray(t) ∨ τ(x) = array(t, n))
val(a, array(t, n)) x = val(a,ptr(array(t, n)))
lref((v, o), i, array(t, n)) x = lref((v, o), i,ptr(array(t, n)))
gref(a, S , array(t, n)) x = gref(a, S ,ptr(array(t, n)))
lrefG(a, i, S , array(t, n)) x = lrefG(a, i, S ,ptr(array(t, n)))
undefined otherwise

where x = G[[e]]π,θc,pλ .

• Address of: e ∈ EG ⇒

G[[&e]]π,θc,pλ =

G[[e′]]π,θc,pλ e = ∗e′

[[&e]]C-IL(π),θ
C-IL(π,c) e = v ∧ (v ∈ decl(Vtop(π, c) ◦ π.VG))

x e = v ∧ v ∈ declG(VGtop(π, c))
gref(v, ε,ptr(τVG(v, π.VGG))) e = v ∧ v ∈ declG(π.VGG) \ declG(VGtop(π, c))
σG

π,c
θ (G[[e′]]π,θc,pλ , f) e = (e′). f

γG
π,c
θ (G[[e′]]π,θc,pλ , z) e = e′[e′′] ∧ G[[e′′]]π,θc,pλ = gval(z,math_int)

undefined otherwise

156

where x = lrefG(v, |c.s| − 1, ε,ptr(τVG(v,VGtop(π, c)))).

• Field access: e ∈ EG, f ∈ F⇒

G[[(e). f]]π,θc,pλ =

G[[∗&e]]π,θc,pλ

G[[e]]π,θc,pλ < valrecord

r(f) G[[e]]π,θc,pλ = gval(r, record tC) ∧ f ∈ declG(π.TFG(tC))
undefined otherwise

• Size of Type: t ∈ TQ ⇒
G[[sizeof(t)]]π,θc,pλ = [[sizeof(t)]]C-IL(π),θ

C-IL(π,c)

• Size of Expression: e ∈ E⇒ G[[sizeof(e)]]π,θc,pλ = [[sizeof(e)]]C-IL(π),θ
C-IL(π,c)

• Map or ghost array access: e, e′ ∈ EG ⇒

G[[e[e′]]]π,θc,pλ =

 f (G[[e′]]π,θc,pλ)
G[[e]]π,θc,pλ = gval(f ,map(t, t′)) ∧ t = τG(G[[e′]]π,θc,pλ)

∗&e[e′] otherwise

• Lambda expression: t ∈ TQ ∪ TQG, v ∈ V, e ∈ EG ⇒

G[[lambda(t v; e)]]π,θc,pλ = gval(λx ∈ valG(qt2t(t)).G[[e]]π,θc,pλ(v:=x),map(t, t′))

where t′ = τG(G[[e]]π,θc,pλ(v:=E(valG(qt2t(t))))). Note that, since for correctly typed programs,
type evaluation does not depend on the particular value of a variable (i.e. it only depends
on the type of the value), the particular chosen value used in evaluating the type here does
not matter.

Note that, in the map value obtained, all occurrences of variable name v in expression
e evaluate to the value passed to the function that defines the map. To achieve this, we
use pλ in expression evaluation to provide values for such bound subvariables in lambda-
expressions.

• Record update: e, e′ ∈ EG, f ∈ F⇒

G[[e{ f := e′}]]π,θc,pλ =

gval(r(f := G[[e′]]π,θc,pλ), record tC) G[[e]]π,θc,pλ = gval(r, record tC)

∧ τFG(f , π.TFG(tC)) = τG(G[[e′]]π,θc,pλ)
undefined otherwise

• State-snapshot: G[[current_state]]π,θc,pλ = gval(c, state_t)

• Use a state-snapshot to evaluate and expression: e, e′ ∈ EG ⇒

G[[in_state(e, e′)]]π,θc,pλ =

G[[e′]]π,θc′,pλ
G[[e]]π,θc,pλ = gval(c′, state_t)

undefined otherwise

157

6.3.3 Transition Function

We define the partial transition function

δπ,θC-IL+G
: confC-IL+G × Σ ⇀ confC-IL+G

for a given C-IL+G program π and C-IL environment parameters θ in a very similar way to that
of C-IL. In fact, Σ = (V ⇀ (B8)∗) ∪ confC-IL ∪ {⊥} is the same input alphabet used by C-IL to
resolve nondeterminism. Note that ghost instructions are fully deterministic.

Auxiliary Definitions

We use the following shorthand notation that looks exactly identical to the corresponding C-IL
definitions – the only difference is that these definitions apply to C-IL+G configurations instead
of C-IL configurations.

• function body of the topmost frame: PtopG(π,c) = FC-IL+G(stacktop(c). f).P

• location counter of the topmost frame: loctop(c) = stacktop(c).loc

• next statement to be executed: stmtnext(π,c) = PtopG(π, c)[loctop(c)]

Further, we define the following auxiliary functions:

Definition 6.49 (Increasing the Location Counter) We define

incloc : confC-IL+G ⇀ confC-IL+G

which increments the location of the top-most stack frame of a C-IL+G-configuration as

incloc(c) = c[s := hd(c.s)[loc := c.loctop + 1] ◦ tl(c.s)]

Definition 6.50 (Setting the Location Counter) The function

setloc : confC-IL+G × N⇀ confC-IL+G

is defined as
setloc(c,l) = c[s := hd(c.s)[loc := l] ◦ tl(c.s)]

and sets the location of the top-most stack frame to location l.

Definition 6.51 (Removing the Topmost Frame) The function

dropframe : confC-IL+G ⇀ confC-IL+G

which removes the top-most stack frame from a C-IL+G-configuration is defined as

dropframe(c) = c[s := tl(c.s)]

Definition 6.52 (Setting Return Destination) We define the function

setrds : confC-IL+G × (vallref ∪ valptr ∪ vallrefG ∪ valgref ∪ {⊥}) ⇀ confC-IL+G

that updates the return destination component of the topmost stack frame as:

setrds(c,v) = c[s := hd(c.s)[rds := v] ◦ tl(c.s)]

158

Operational Semantics

Definition 6.53 (C-IL+G Transition Function) We define the transition function

δπ,θC-IL+G
: confC-IL+G × Σ ⇀ confC-IL+G

by a case distinction on the given input:

• Deterministic step:

δπ,θC-IL+G
(c,⊥) =

c′ stmtnext(π, c) = (e0 = e1) ∨ stmtnext(π, c) = ghost(e0 = e1)
setloc(c, l) stmtnext(π, c) = goto l ∨ stmtnext(π, c) = ghost(goto l)
setloc(c, l) (stmtnext(π, c) = ifnot e goto l ∨ stmtnext(π, c) = ghost(ifnot e goto l))

∧ zeroG(θ, G[[e]]π,θc,∅)

incloc(c) (stmtnext(π, c) = ifnot e goto l ∨ stmtnext(π, c) = ghost(ifnot e goto l))
∧ ¬zeroG(θ, G[[e]]π,θc,∅)

setrds(dropframe(c),⊥) stmtnext(π, c) = return ∨ stmtnext(π, c) = ghost(return)
setrds(dropframe(c),⊥) (stmtnext(π, c) = return e ∨ stmtnext(π, c) = ghost(return e))

∧ rds = ⊥

c′′ (stmtnext(π, c) = return e ∨ stmtnext(π, c) = ghost(return e))
∧ rds , ⊥

c′′′ stmtnext(π, c) = ghost(e = allocghost(t))
c′′′′ (stmtnext(π, c) = ghost(call e(E)) ∨ stmtnext = ghost(e0 = call e(E)))

∧ G[[e]]π,θc,∅ = gfun(f) ∧ FC-IL+G(f).P , extern
undefined otherwise

where
rds = rdstop(dropframe(c))

c′ = incloc(writeG(θ, π, c, G[[&e0]]π,θc,∅,
G[[e1]]π,θc,∅)

and
c′′ = writeG(θ, π, setrds(dropframe(c),⊥), rds), G[[e]]π,θc,∅)

and

c′′′ = writeG(θ, π, incloc(c), G[[&e]]π,θc,∅, gref(c.nfG, ε,ptr(t)))[nfG := c.nfG + 1]

and c′′′′ is the resulting configuration after calling a ghost function:

c′′′′.s = (∅,M′
EG
,⊥, f , 0) ◦ incloc(setrds(c, rds)).s

c′′′′.M = c.M, c′′′′.MG = c.MG, c′′′′.nfG = c.nfG
where

rds =

G[[&e0]]π,θc,∅ stmtnext(c) = ghost(e0 = call e(E))

undefined stmtnext(c) = ghost(call e(E))

159

and

M′
EG

(v) =

G[[E[i]]]π,θc,∅ ∃i : FC-IL+G(f).VG[i] = (v, t) ∧ i < FC-IL+G(f).ngpar

undefined otherwise

• (Annotated) implementation function call:

δπ,θC-IL+G
(c,Mlvar) is defined if and only if all of the following hold:

– stmtnext = call e(E, E′) ∨ stmtnext = (e0 = call e(E, E′)) – the next statement is an
annotated function call,

– G[[e]]π,θc,∅ = val(b, funptr(t,T)) ∧ f = θ.Fadr
−1(b) ∨ G[[e]]π,θc,∅ = fun(f , funptr(t,T)) –

expression e evaluates to some function f ,

– |E| = FC-IL+G(f).npar
∧ ∀i ∈ {0, . . . , |E| − 1} : FC-IL+G(f).V[i] = (v, t) ⇒ τ(G[[E[i]]]π,θc,∅) = t – the types of
all implementation parameters passed match the declaration,

– |E′| = FC-IL+G(f).ngpar
∧ ∀i ∈ {0, . . . , |E′| − 1} : FC-IL+G(f).VG[i] = (v, t) ⇒ τ(G[[E′[i]]]π,θc,∅) = t – the types
of all ghost parameters passed match the declaration,

– FC-IL+G(f).P , extern – the function is not declared as extern in the function table,
and

– ∀i ≥ FC-IL+G(f).npar : ∃v, t : FC-IL+G(f).V[i] = (v, t) ⇒ |Mlvar(v)| = sizeθ(t) – the
byte-string memory provided for all local variables is of adequate length.

Then, we define
δπ,θC-IL+G

(c,Mlvar) = c′

such that
c′.s = (M′

E
,M′

EG
,⊥, f , 0) ◦ incloc(setrds(c, rds)).s

c′.M = c.M, c′.MG = c.MG, c′.nfG = c.nfG

where

rds =

G[[&e0]]π,θc,∅ stmtnext(c) = (e0 = call e(E, E′))

⊥ stmtnext(c) = call e(E, E′)

and

M′
E

(v) =

val2bytesθ(

G[[E[i]]]π,θc,∅) ∃i : F θ
π (f).V[i] = (v, t) ∧ i < FC-IL+G(f).npar

Mlvar(v) ∃i. FC-IL+G(f).V[i] = (v, t) ∧ i ≥ FC-IL+G(f).npar
undefined otherwise

and

M′
EG

(v) =

G[[E′[i]]]π,θc,∅ ∃i : FC-IL+G(f).VG[i] = (v, t) ∧ i < FC-IL+G(f).ngpar

undefined otherwise

160

• External procedure call:

δπ,θC-IL+G
(c, c′) is defined if and only if all of the following hold:

– stmtnext = call e(E, ε): the next statement is a function call without return value and
without ghost parameters,

– G[[e]]π,θc,∅ = val(b, funptr(t,T)) ∧ f = θ.Fadr
−1(b) ∨ G[[e]]π,θc,∅ = fun(f , funptr(t,T)):

expression e evaluates to some function f ,

– |E| = F θ
π (f).npar ∧ ∀i ∈ {0, . . . , |E| − 1} : F θ

π (f).V[i] = (v, t) ⇒ τ([[E[i]]]π,θc) = t –
the types of all parameters passed match the declaration,

– F θ
π (f).P = extern: the function is declared as extern in the function table, and

– (G[[E[0]]]π,θc,∅, . . . ,
G[[E[|E| − 1]]]π,θc,∅,C-IL(π, c), c′) ∈ θ.Rextern: the transition relation

for external functions given in the C-IL environment parameters allows a transition
under given parameters E from the projected C-IL configuration C-IL(π, c) to c′.

Then,
δπ,θC-IL+G

(c, c′) = merge-impl-ghost(incloc(c), c′)

Note that we do not support annotating compiler intrinsics with ghost state updates di-
rectly. This, however, is not a problem since ghost steps in the concurrent machine will
always be attached to the next implementation step – interleaving is performed only at
implementation steps. Thus, we can effectively annotate any ghost state update on any
given implementation step by simply adding ghost statements that perform the update.

Concurrent Operational Semantics

In contrast to the freely interleaved scheduling of concurrent C-IL, we consider a more restricted
scheduling for C-IL+G: Only implementation steps are interleaved, all ghost steps before an
implementation step are attached to that implementation step.

Definition 6.54 (C-IL+G Transition Function for Ghost Steps) We denote the transition func-
tion that executes ghost steps until it encounters an implementation step by:

Gδπ,θC-IL+G
(c) =

Gδπ,θC-IL+G
(δπ,θC-IL+G

(c,⊥)) stmtnext(c) ∈ SG
c otherwise

Definition 6.55 (Transition Function of CC-IL+G) We define the transition function for con-
current C-IL+G

δπ,θCC-IL+G
: confCC-IL+G × N × Σ ⇀ confCC-IL+G

as
δπ,θCC-IL+G

(c, t, in) = c′

where
c′.M = δπ,θC-IL+G

(Gδπ,θC-IL+G
(ct), in).M

c′.MG = δπ,θC-IL+G
(Gδπ,θC-IL+G

(ct), in).MG

161

c′.Th = c.Th(t := δπ,θC-IL+G
(Gδπ,θC-IL+G

(ct), in).s)

c′.nfG = δπ,θC-IL+G
(Gδπ,θC-IL+G

(ct), in).nfG

and
ct = (c.M, c.MG, c.Th(t).s, c.nfG)

Thread t of the concurrent configuration makes as many ghost steps as necessary, followed by
an implementation step on its own stack and the shared memories.

6.4 Simulation Between C-IL and C-IL+G

In order to define a simulation relation between execution of a C-IL program annotated with
ghost and the same program without all the ghost state and code, we begin by defining func-
tions that project C-IL+G components (i.e. program and configuration) to their underlying C-IL
components by removing everything related to ghost state and code. These projection functions
serve to define the simulation relation (and are also used in some parts of C-IL+G semantics as
defined in the last section). Afterwards, we state invariants that must be fulfilled in order to show
the simulation and give a paper and pencil simulation proof.

6.4.1 Projecting C-IL+G to C-IL

In the following, we introduce for every subcomponent of C-IL+G programs a function C-IL(·)
that converts to a corresponding subcomponent of C-IL. While these functions all share the same
name, they can always be uniquely identified by their type.

Extracting the C-IL Program from a C-IL+G Program

Definition 6.56 (Projecting C-IL+G Program to C-IL Program) In every C-IL+G-program,
there is a C-IL-program we get by throwing away all the ghost code and declarations. For this,
we define the function

C-IL : progC-IL+G → progC-IL

that takes a C-IL+G-program and returns the corresponding C-IL-program as follows

C-IL(π).VG = π.VG

C-IL(π).TF = π.TF

C-IL(π).F = (λ f .C-IL(π.F (f)))

Note that we use the function C-IL : FunT’ → FunT here which converts an annotated function
table entry to a C-IL function table entry. The definition of this function can be found below.

Definition 6.57 (Projecting Annotated Function Table Entry to C-IL Function Table Entry)
We define the function

C-IL : FunT’→ FunT

162

as
C-IL(f te).rettype = f te.rettype

C-IL(f te).npar = f te.npar

C-IL(f te).V = f te.V

C-IL(f te).P = C-IL(f te.P)

In order to define the function C-IL which converts a C-IL+G function body to a C-IL function
body, consider the following: We need to remove all ghost code, which, in particular, means that
we need to recalculate the locations of all goto and ifnotgoto statements and we need to drop all
annotation from implementation statements.

Definition 6.58 (Projecting Annotated C-IL Statement to C-IL Statement) The function

C-IL : S′ → S

which converts an annotated statement to its unannotated version by dropping ghost code is
defined as

C-IL(s) =

call e(E) s = call e(E, E′)
(e0 = call e(E)) s = (e0 = call e(E, E′))
s otherwise

Dropping ghost code from C-IL+G implementation statements simply means removing ghost
parameters on function calls.

Definition 6.59 (Projecting C-IL+G Function Body to C-IL Function Body) We define

C-IL : ((S′ ∪ SG)∗ ∪ {extern})→ (S∗ ∪ {extern})

as
C-IL(P) = dropghost(adjustgotos(P, 0))

where
dropghost : ((S′ ∪ SG)∗ ∪ {extern})→ (S∗ ∪ {extern})

is defined as

dropghost(P) =

C-IL(hd(P)) ◦ dropghost(tl(P)) hd(P) ∈ S′

dropghost(tl(P)) hd(P) ∈ SG
ε P = ε

and drops all ghost code from the program while

adjustgotos : ((S′ ∪ SG)∗ × N→ ((S′ ∪ SG)∗

adjusts the target locations of all goto statements as follows:

163

adjustgotos(P,loc)

=

adjustgotos(P[loc := goto (countstmt(P, l))], loc + 1) P[loc] = goto l
adjustgotos(P[loc := ifnot e goto (countstmt(P, l))], loc + 1) P[loc] = ifnot e goto l
P otherwise

where
countstmt : (S′ ∪ SG)∗ × N→ N

counts the number of implementation statements in a function body P up to (but not including)
a given location l:

countstmt(P,l) =

1 + countstmt(P, l − 1) P[l − 1] ∈ S′

0 + countstmt(P, l − 1) P[l − 1] ∈ SG
0 otherwise

Extracting the C-IL Configuration from a C-IL+G Configuration

Definition 6.60 (Projecting C-IL+G Stack Frame to C-IL Stack Frame) We define the func-
tion

C-IL : frameC-IL+G → frameC-IL

which converts a single C-IL+G stack frame to a corresponding C-IL stack frame as follows:

C-IL(s f).ME = s f .ME

C-IL(s f).rds =

s f .rds s f .rds ∈ val
⊥ otherwise

C-IL(s f). f = s f . f

C-IL(s f).loc = countstmt(π.F (s f . f).P, s f .loc)

Definition 6.61 (Projecting C-IL+G Configuration to C-IL Configuration) To obtain the C-
IL configuration associated with a C-IL+G configuration of a given C-IL+G program πG, we
define

C-IL : progC-IL+G × confC-IL+G → confC-IL

as
C-IL(πG,c).M = c.M

C-IL(πG, c).s =

map(C-IL, c.s[siG(πG, cG) − 1 : 0]) siG(πG, cG) ∈ N
map(C-IL, c.s) siG(πG, cG) = ⊥

That is, we drop all pure ghost frames and convert the remaining C-IL+G stack frames to C-IL
stack frames.

164

6.4.2 Software Conditions and Invariants for Simulation

In order to be able to prove simulation between an annotated program and its non-annotated
version, we need several software conditions and we make use of a few invariants over program
execution. These are described in the following.

Definition 6.62 (Software Condition 1 (Non-Ghost Expression does not use Ghost)) Given a
C-IL expression e ∈ E, a function name f ∈ Fname and a C-IL+G program πG, we define the
predicate

sw1(πG) ≡ ∀(e, f) ∈ expr(πG) : vnames(e) ⊆ decl(πG.VG) ∪ decl(πG.F (f).V)
∧ fnames(e) ⊆ dom(πG.F)

which states that all variable names and functions occurring in e are declared in C-IL(πG) if
expression e occurs in a given function f . Here, expr is a function that takes a C-IL+G program
and returns pairs of expression and function name in which the expression occurs by recursively
collecting all subexpressions of implementation statements of the program, vnames(e) returns
the set of all variable names occurring in e, and fnames(e) returns the set of all function names
occurring in e. This property can be checked statically, i.e. by just considering the annotated
program text. We need this software condition in order to show that expression evaluation in
C-IL+G and the corresponding projected C-IL configuration result in the same value.

Definition 6.63 (Software Condition 2 (Ghost Assignment has Ghost Left Value)) For a C-
IL+G configuration cG, a C-IL+G program πG and C-IL environment parameters θ, we define
the predicate

sw2(cG, πG, θ) ≡ stmtnext(cG) ∈ {ghost(e0 = e1), ghost(e = allocghost t)} ⇒ G[[&e0]]π,θc,∅ ∈ valG

which states that, if the next statement to execute in cG is a ghost assignment or allocation
statement, the address to be written will evaluate to a ghost left value. We need this condition in
order to show that ghost statements never change implementation state.

Definition 6.64 (Software Condition 3 (Ghost Gotos Never Leave a Ghost Block)) We define
the predicate

sw3(πG) ≡ ∀ f ∈ πG.F : ∀l < |πG.F (f).P| :
(πG.F (f).P[l] = ghost(goto l′) ∨ πG.F (f).P[l] = ghost(ifnot e goto l′))⇒

countstmt(πG.F (f).P, l′) = countstmt(πG.F (f).P, l)

which, given a C-IL+G program πG states that there are no ghost-gotos that leave a block of
ghost instructions. This is expressed in terms of the number of implementation statements that
can be counted up to the location l of the ghost goto statement and the target location l′ of the
ghost goto statement. We need this condition in order to show that annotating ghost code does
not affect the control flow of the implementation program.

165

Definition 6.65 (Software Condition 4 (Return Destination of Ghost Function))
For a C-IL+G configuration cG, a C-IL+G program πG and C-IL environment parameters θ, we
define the predicate

sw4(cG, πG, θ) ≡ stmtnext(cG) = ghost(e0 = call e(E))⇒ G[[&e0]]π,θc,∅ ∈ valG

which states that the left side of a ghost function call statement has a ghost lvalue. We need this
in order to show that ghost code does not modify implementation state.

Definition 6.66 (Invariant 1 (Return Destination of Ghost Function has Ghost LValue))
By requiring software condition 4 for all reachable states, we can establish the following invari-
ant on C-IL+G configurations

Inv1(cG) ≡ (∀i ∈ [siG(πG, cG) : |cG.s|] : cG.s[i].rds ∈ valG)

which allows to deduce that executing a ghost return statement in C-IL+G does not modify
implementation state.

Definition 6.67 (Software Condition 5 (Validity of Ghost Code)) We state a predicate for C-
IL+G programs πG that expresses validity of the program as

sw5(πG) ≡ (∀(e, f) ∈ exprG(πG) :
vnames(e) ⊆ (decl(πG.VG) ∪ declG(πG.VGG) ∪ decl(πG.F (f).V)

∪ declG(πG.F (f).VG) ∪ declG(πG.FG(f).VG))
∧ fnames(e) ⊆ dom(πG.F) ∪ dom(πG.FG))
∧ well-typedG(πG)
∧ well-formedG(πG)

where exprG is a function that takes a C-IL+G program and returns a set of pairs of expression
and function name in which the expression occurs that is obtained by recursively collecting all
subexpressions of ghost statements. Validity of ghost code and state includes that all variables
and function names in ghost expressions occurring in ghost code are properly declared in ei-
ther the ghost or implementation part of the program, and that ghost code is well-typed. We
omit the definition of well-typedG here since it is quite obvious how to define well-typedness
for C-IL+G statements and C-IL+G expressions recursively. The predicate well-formedG(πG)
expresses certain well-formedness conditions over C-IL+G programs:

• there are no ghost return statements in implementation functions, and
(∀ f ∈ dom(πG.F) : ∀i < |πG.F (f).P| :
πG.F (f).P[i] < {ghost(return), ghost(return e)})

• ghost function calls always call ghost functions directly.
(∀ f ∈ dom(πG.FG) : ∀i < |πG.FG(f).P| :
πG.FG(f).P[i] ∈ {ghost(call e(E)), ghost(e0 = call e(E))} ⇒ e ∈ dom(πG.FG) ⊂ Fname)

This property can be checked statically.

166

Definition 6.68 (Invariant 2 (Ghost Code Can Always Execute)) Using software condition 5
and the definition of the C-IL+G transition function, we maintain the following invariant over
C-IL+G configurations:

Inv2(πG, θ, cG) ≡ stmtnext ∈ SG ⇒ ∃c′
G

: δπG,θC-IL+G
(cG,⊥) = c′

G

The machine of the operational semantics never gets stuck on ghost steps for valid ghost code.

Definition 6.69 (Invariant 3 (Return Destinations of Implementation Stack)) Also derived from
software condition 5, we have for C-IL+G configurations c and C-IL+G programs π

Inv3(c, π) ≡ rdstop(C-IL(π, c)) = ⊥ ∧ (∀i < |C-IL(π, c).s| : cG.s[i].rds ∈ val ∪ ⊥)

that the return destination of the projected top-most implementation frame is ⊥ and that return
destinations in the implementation part of the stack are all implementation values.

Definition 6.70 (Invariant 4 (State of the Ghost Stack)) For a C-IL+G configuration cG and a
C-IL+G program πG,

Inv4(cG, πG) ≡ (stmtnext(cG) ∈ S′ ⇒ siG(πG, cG) = ⊥)
∧ (stmtnext(cG) ∈ {ghost(return e), ghost(return)} ⇒ siG(πG, cG) , ⊥)

when the next statement to execute is an implementation statement, there are no ghost frames on
the stack, while, when the next statement to execute is a ghost return statement, there is at least
one ghost frame on the stack.

Definition 6.71 (Software Condition 6 (Ghost Code Terminates)) Given a C-IL+G configu-
ration cG, a C-IL+G program πG and C-IL environment parameters θ, the predicate

sw6(cG, πG, θ) ≡ ∃i, c′
G

: δπG,θC-IL+G

i
(cG,⊥) = c′

G
∧ stmtnext(c′G) ∈ S′

states that we can always reach an implementation statement by executing a finite number of
steps. This implies that ghost code must always terminate.

Definition 6.72 (All Software Conditions/Invariants in a Single Predicate) While many of the
software conditions are expressed on particular configurations, we actually need to require them
for all reachable configurations to prove simulation. Thus, we provide the predicate

Psw(cG, πG, θ) ≡ sw1(πG) ∧ sw3(πG) ∧ sw5(πG)

∧∀β, c′
G

: cG
β
⇒

δ
πG ,θ

C-IL+G

c′
G
⇒ sw2(c′

G
, πG, θ) ∧ sw4(c′

G
, πG) ∧ sw6(c′

G
, πG, θ)

∧Inv1(cG) ∧ Inv2(cG, πG, θ) ∧ Inv3(cG, πG) ∧ Inv4(cG, πG)

that collects all software conditions for all reachable states from given configuration cG of a C-

IL+G program πG under C-IL environment parameters θ. Here,
β
⇒

δ
πG ,θ

C-IL+G

denotes the relation that

describes execution of several C-IL+G steps under finite input sequence β.

167

6.4.3 Lemmas for Simulation

We present a collection of lemmas that we will need to prove a simulation between C-IL+G and
C-IL before we state the simulation theorem and give a paper and pencil proof of the theorem.
The majority of these lemmas relies on the software conditions and invariants stated in the last
subsection, thus, the reader should assume Psw to hold for the configurations, programs and
environment parameters occuring in the following lemmas.

Lemma 6.73 (Next Statement to Execute) Given a C-IL+G configuration cG and C-IL+G pro-
gram πG, the following holds: stmtnext(cG) < SG ⇒

stmtnext(C-IL(πG, cG)) =

goto (countstmt(Ptop(cG), l)) stmtnext(cG) = goto l
ifnot e goto (countstmt(Ptop(cG), l)) stmtnext(cG) = ifnot e goto l
C-IL(stmtnext(cG)) otherwise

That is, whenever the next statement to be executed in cG is an implementation statement, the
next statement to be executed in the projected C-IL configuration C-IL(πG, cG) is an equivalent
C-IL statement.

Lemma 6.74 (Expression Evaluation) Given a C-IL+G configuration cG, a C-IL+G program
πG and C-IL environment parameters θ, we have

∀e ∈ E, f ∈ Fname : (e, f) ∈ expr(πG)⇒ G[[e]]πG,θcG,∅
= [[e]]C-IL(πG),θ

C-IL(πG,cG)

When software condition 1 is fulfilled for a C-IL expression e, we know that e will evaluate to
the same value in the projected C-IL configuration as it does in C-IL+G.

Lemma 6.75 (Write-Equivalence) Given a C-IL+G configuration cG, C-IL+G program πG and
C-IL environment parameters θ, the following holds:

∀x, y ∈ val : write(θ,C-IL(πG, cG), x, y) = C-IL(writeG(θ, πG, cG, x, y))

Writing some implementation value y at implementation address x in cG has the same effect on
the projected configuration as first projecting the configuration and then writing y to x.

Lemma 6.76 (Incrementing the Location Counter) Given a C-IL+G configuration cG and a
C-IL+G program πG, we have

stmtnext ∈ S
′ ∧ incloc(C-IL(πG, cG)) = C-IL(incloc(cG))

∨ stmtnext ∈ SG ∧ C-IL(πG, cG) = C-IL(incloc(cG))

Either, the next statement to execute is a non-ghost statement and incrementing the location
counter on the projected configuration yields the same as first increasing the location counter
and then performing the projection, or, the next statement is a ghost statement and incrementing
the location counter on the configuration with ghost state yields the same projected configuration
as before.

168

Lemma 6.77 (Writing to Ghost State) For a C-IL+G configuration cG, C-IL+G program πG
and C-IL environment parameters θ,

∀x, y ∈ val ∪ valG : x ∈ valG ⇒ C-IL(πG, cG) = C-IL(writeG(θ, πG, cG, x, y))

writing to ghost state does not change the projected configuration.

Lemma 6.78 (Setting the Location Counter) Given a C-IL+G configuration cG, a C-IL+G pro-
gram πG and a program location l,

C-IL(setloc(cG, l)) = setloc(C-IL(πG, cG), countstmt(PtopG(cG), l))

setting the location in cG is the same as setting the location in the projected configuration to the
number of implementation statements that can be counted up to location l in PtopG(cG).

Lemma 6.79 (Ghost-Goto Preserves Projected Location) For a given C-IL+G configuration
cG, C-IL+G program πG, and program location l, we have

stmtnext(cG) ∈ {ghost(goto l), ghost(ifnot e goto l)} → C-IL(setloc(cG, l)) = C-IL(πG, cG)

that setting the location in cG to some location l of a ghost-goto-statement does not change the
location in the projected configuration due to software condition 3.

Lemma 6.80 (Updating the Stack in a Configuration) Given a C-IL+G configuration cG, C-
IL+G program πG, and a new C-IL+G stack s′, we have

C-IL(πG, cG[s := s′]) =

C-IL(πG, cG)[s := map(C-IL, s′[siG(πG, cG) − 1 : 0])] siG(πG, cG) , ⊥
C-IL(πG, cG)[s := map(C-IL, s′)] otherwise

Projecting a configuration where the stack was updated to s′ is the same as first projecting the
configuration and then updating the projected configuration with the projected value.

Lemma 6.81 (Dropping Frame) For a C-IL+G configuration cG and a C-IL+G program πG,
we have

siG(πG, cG) = ⊥ ∧ dropframe(C-IL(πG, cG)) = C-IL(πG, dropframe(cG))

∨ siG(πG, cG) , ⊥ ∧ C-IL(πG, cG) = C-IL(πG, dropframe(cG))

If the topmost frame is a non-ghost frame, projecting the configuration after dropping the frame
yields the same as projecting the configuration first, then dropping the frame, while dropping
ghost frames does not change the projected configuration.

Lemma 6.82 (Return Destinations of Implementation Stack) We have for C-IL+G configu-
rations

∀i < |C-IL(πG, cG).s| − 1 : cG.s[i].rds = C-IL(πG, cG).s[i].rds

that the return destinations of the implementation part of the C-IL+G stack are identical to those
of the projected configuration.

169

Lemma 6.83 (Updating the Ghost Heap Allocation Counter) For a C-IL+G configuration cG
and a natural number x,

C-IL(πG, cG[nfG := x]) = C-IL(πG, cG)

updating the nfG-component does not change the projected configuration.

Lemma 6.84 (Merging Implementation and Ghost) Given a C-IL+G configuration cG, a C-
IL+G program πG and a C-IL configuration c, we have

(∀i ∈ [0 : |c.s| − 1] : c.s[i]. f = cG.s[i]. f ∧ c.s[i].loc = countstmt(πG.F (cG.s[i]. f).P, cG.s[i].loc))

⇒ C-IL(πG,merge-impl-ghost(cG, c)) = c.

Merging the implementation configuration with the C-IL+G configuration and projecting after-
wards results in the merged implementation configuration.

6.4.4 Simulation Proof

Ultimately, we aim at the simulation between concurrent C-IL and concurrent C-IL+G as stated
here:

Theorem 6.85 (Simulation between Concurrent C-IL+G and Projected Concurrent C-IL)
Given a C-IL+G program πG and C-IL environment parameters θ, as well as a concurrent C-
IL+G configuration cG and a concurrent C-IL configuration c,

∀c′, t, in : PCsw(cG, πG, θ) ∧ c ∼ cG ∧ c
t,in
{

δ
C-IL(πG),θ
CC-IL

c′ ⇒

∃c′
G

: cG
t,in
{

δ
πG ,θ

CC-IL+G

c′
G
∧ c′ ∼ c′

G

for every step of a thread t of a concurrent C-IL program there exists a step of the corresponding
concurrent C-IL+G program in such a way that the simulation relation given by the projection
function is preserved for each thread. We use

c ∼ cG
de f
⇔ dom(c.Th) = dom(cG.Th)

∧ (∀t : th(t, c) = C-IL(πG, th(t, cG)))

and

PCsw(cG, πG, θ)
de f
⇔ (∀t : Psw(th(t, cG), πG, θ))

where th(t, c) denotes the sequential configuration of the t-th thread of configuration c.

This, however can easily be proven by applying the sequential simulation theorem below:

170

Theorem 6.86 (Simulation between Sequential C-IL+G and the Projected C-IL) Given a C-
IL+G program πG and C-IL environment parameters θ, as well as a C-IL+G configuration cG,
we show that

∀c′, in : Psw(cG, πG, θ) ∧ C-IL(πG, cG)
in
{

δ
C-IL(πG),θ
C-IL

c′ ⇒

∃c′
G
, c′′
G

: cG {
Gδ

πG ,θ

C-IL+G

c′′
G

in
{

δ
πG ,θ

C-IL+G

c′
G
∧ c′ = C-IL(πG, c′G)

every C-IL step of the projected configuration under the projected program is matched by exe-
cuting an implementation step and its preceding ghost steps of the C-IL+G configuration under
the C-IL+G program in such a way that the resulting C-IL configuration is the projection of the
resulting C-IL+G configuration.

This theorem can in turn be proven by using the following step-by-step simulation lemma:

Lemma 6.87 (Sequential Step-by-Step Simulation) Given a C-IL+G program πG and C-IL
environment parameters θ, the following holds:

∀cG : Psw(cG, πG, θ)⇒

(stmtnext(cG) ∈ SG ∧ (∃c′
G

: cG
⊥
{

δ
πG ,θ

C-IL+G

c′
G
∧ C-IL(πG, cG) = C-IL(πG, c′G))

∨ stmtnext(cG) ∈ S′ ∧ (∀c′, in : C-IL(πG, cG)
in
{

δ
C-IL(πG),θ
C-IL

c′

⇒ (∃c′
G

: cG
in
{

δ
πG ,θ

C-IL+G

c′
G
∧ c′ = C-IL(πG, c′G))))

The C-IL+G program may either make a ghost step, preserving the projected configuration, or it
must match any implementation step that is possible from the projected configuration.

Proof Let a C-IL+G program πG and C-IL environment parameters θ, as well as a C-IL+G

configuration cG with
Psw(cG, πG, θ)

be given. Depending on whether the next statement to be executed in cG is a ghost or an im-
plementation statement, we have to prove either that the C-IL+G program makes a step without
changing the projected configuration, or that, given a step of the projected program, the C-IL+G

program performs a matching implementation step.
In the following, we perform a case distinction on the next statement to be executed in cG:

1. Case: Annotated Implementation Statement stmtnext(cG) ∈ S′

We have to show

∀c′, in : C-IL(πG, cG)
in
{

δ
C-IL(πG),θ
C-IL

c′ ⇒ (∃c′
G

: cG
in
{

δ
πG ,θ

C-IL+G

c′
G
∧ c′ = C-IL(πG, c′G))

Thus, let a C-IL configuration c′ and an input to C-IL semantics in ∈ Σ be given such that

δ
C-IL(πG),θ
C-IL (C-IL(πG, cG), in) = c′

171

a) Case: Assignment stmtnext(cG) = (e0 = e1):

We use lemma 6.73 to conclude that stmtnext(C-IL(πG, cG)) = e0 = e1, and thus,
C-IL-semantics results in a step to

c′ = incloc(write(θ,C-IL(πG, cG), [[&e0]]C-IL(πG),θ
C-IL(πG,cG), [[e1]]C-IL(πG),θ

C-IL(πG,cG)))

From the semantics of C-IL+G, we can see that from cG a step to

c′
G

:= incloc(writeG(θ, πG, cG, G[[&e0]]πG,θcG,∅
, G[[e1]]πG,θcG,∅

))

can be performed.

We merely have left to prove that C-IL(πG, c′G) = c′ holds.

C-IL(πG, c′G)

= C-IL(πG, incloc(writeG(θ, πG, cG, G[[&e0]]πG,θcG,∅
, G[[e1]]πG,θcG,∅

)))

= C-IL(πG, incloc(writeG(θ, πG, cG, [[&e0]]C-IL(πG),θ
C-IL(πG,cG), [[e1]]C-IL(πG),θ

C-IL(πG,cG)))) (6.74, sw1)

= incloc(C-IL(πG,writeG(θ, πG, cG, [[&e0]]C-IL(πG),θ
C-IL(πG,cG), [[e1]]C-IL(πG),θ

C-IL(πG,cG)))) (6.76)

= incloc(write(θ,C-IL(πG, cG), [[&e0]]C-IL(πG),θ
C-IL(πG,cG), [[e1]]C-IL(πG),θ

C-IL(πG,cG))) (6.75)
= c′

√

b) Case: Goto stmtnext(cG) = (goto l)

(
(6.73)
⇒ stmtnext(C-IL(πG, cG)) = goto (countstmt(PtopG(cG), l)))

In this case, we have

c′ = setloc(c, countstmt(PtopG(cG), l))

From the semantics of C-IL+G, we obtain

c′
G

= setloc(cG, l)

Then,

C-IL(πG, c′G) = C-IL(πG, setloc(cG, l))
= setloc(C-IL(πG, cG), countstmt(PtopG(cG), l)) (6.78)
= setloc(c, countstmt(PtopG(cG), l))
= c′

√

c) Case: If-Not-Goto stmtnext(cG) = (ifnot e goto l)

(
(6.73)
⇒ stmtnext(C-IL(πG, cG)) = ifnot e goto (countstmt(PtopG(cG), l)))

172

In this case, we have

c′ =

setloc(C-IL(πG, cG), countstmt(PtopG(cG), l)) zero(θ, [[e]]C-IL(πG),θ
C-IL(πG,cG))

incloc(C-IL(πG, cG)) otherwise

From the semantics of C-IL+G:

c′
G

=

setloc(cG, l) zeroG(θ, G[[e]]πG,θcG,∅
)

incloc(cG) otherwise

Then,

C-IL(πG, c′G)

=

C-IL(πG, setloc(cG, l)) zeroG(θ, G[[e]]πG,θcG,∅
)

C-IL(πG, incloc(cG)) otherwise

=

C-IL(πG, setloc(cG, l)) zero(θ, [[e]]C-IL(πG),θ
C-IL(πG,cG))

C-IL(πG, incloc(cG)) otherwise
(sw1, 6.74, zerodef)

=

setloc(C-IL(πG, cG), countstmt(PtopG(cG), l)) zero(θ, [[e]]C-IL(πG),θ
C-IL(πG,cG))

incloc(C-IL(πG, cG)) otherwise
(6.78, 6.76)

= c′
√

d) Case: Regular Function/Procedure Call
(stmtnext(cG) = call e(E, E′) ∨ stmtnext(cG) = e0 = call e(E, E′))

(
(6.73)
⇒ stmtnext(C-IL(πG, cG)) = call e(E) ∨ stmtnext(C-IL(πG, cG)) = e0 = call e(E))

From C-IL semantics we know that, in order to make this step, the following must
already be fulfilled:

• in ∈ V→ (B8)∗

• [[e]]C-IL(πG),θ
C-IL(πG,cG) = val(b, funptr(t,T)) ∧ f = θ.Fadr

−1(b)

∨[[e]]C-IL(πG),θ
C-IL(πG,cG) = fun(f , funptr(t,T))

• F θ
C-IL(πG)(f).P , extern

• ∀i ≥ F θ
C-IL(πG)(f).npar : ∃v, t : F θ

C-IL(πG)(f).V[i] = (v, t)⇒ |in(v)| = sizeθ(t)

According to C-IL semantics, we then have

c′ = C-IL(πG, c)[s := (M′
E
,⊥, f , 0) ◦ incloc(setrds(C-IL(πG, cG), rds)).s]

where

rds =

[[&e0]]C-IL(πG),θ
C-IL(πG,cG) stmtnext(C-IL(πG, cG)) = e0 = call e(E)

undefined stmtnext(C-IL(πG, cG)) = call e(E)

173

and

M′
E

(v) =

val2bytesθ([[E[i]]]C-IL(πG),θ
C-IL(πG,cG)) ∃i : F θ

C-IL(πG)(f).V[i] = (v, t)

∧ i < F θ
C-IL(πG)(f).npar

in(v) ∃i. F θ
C-IL(πG)(f).V[i] = (v, t)

∧ i ≥ F θ
C-IL(πG)(f).npar

undefined otherwise

We have to show that there exists a configuration c′
G

with C-IL(πG, c′G) = c′ accord-
ing to C-IL+G semantics. In order for the C-IL+G semantics to make a function or
procedure call step, we need to show

• G[[e]]π,θc,∅ = val(b, funptr(t,T))∧ f = θ.Fadr
−1(b)∨G[[e]]π,θc,∅ = fun(f , funptr(t,T))

• FC-IL+G(f).P , extern

• ∀i ≥ FC-IL+G(f).npar : ∃v, t : FC-IL+G(f).V[i] = (v, t)⇒ |in(v)| = sizeθ(t)

These conditions can easily be shown using software condition 1 in conjunction with
lemma 6.74 as well as the definition of the projection functions for C-IL+G function
tables.

The step performed then results in configuration

c′
G

= cG[s := (M′′
E
,M′′

EG
,⊥, f , 0) ◦ incloc(setrds(cG, rdsG)).s]

where

rdsG =

G[[&e0]]πG,θcG,∅
stmtnext(cG) = (e0 = call e(E, E′))

undefined stmtnext(cG) = call e(E, E′)

and

M′′
E

(v) =

val2bytesθ(
G[[E[i]]]πG,θcG,∅

) ∃i : F θ
πG

(f).V[i] = (v, t)

∧ i < FC-IL+G(f).npar
in(v) ∃i. FC-IL+G(f).V[i] = (v, t)

∧ i ≥ FC-IL+G(f).npar
undefined otherwise

and

M′′
EG

(v) =

G[[E′[i]]]πG,θcG,∅
∃i : FC-IL+G(f).VG[i] = (v, t) ∧ i < FC-IL+G(f).ngpar

undefined otherwise

174

As always, we have to show C-IL(πG, c′G) = c′:

C-IL(πG, c′G)
= C-IL(πG, cG[s := (M′′

E
,M′′

EG
,⊥, f , 0) ◦ incloc(setrds(cG, rdsG)).s])

= C-IL(πG, cG)[s := map(C-IL, (M′′
E
,M′′

EG
,⊥, f , 0) ◦ incloc(setrds(cG, rdsG)).s)] (Inv4, 6.80)

= C-IL(πG, cG)[s := C-IL((M′′
E
,M′′

EG
,⊥, f , 0)) ◦map(C-IL, incloc(cG).s)] Def. map

= C-IL(πG, cG)[s := (M′′
E
,⊥, f , 0) ◦map(C-IL, incloc(cG).s)] Def. C-IL

= C-IL(πG, cG)[s := (M′′
E
,⊥, f , 0) ◦ C-IL(πG, incloc(cG)).s] (Inv4, 6.61)

= C-IL(πG, cG)[s := (M′′
E
,⊥, f , 0) ◦ incloc(C-IL(πG, cG)).s] (6.76)

Using software condition 1 and lemma 6.74, we see that M′
E

= M′′
E

and, thus,
C-IL(πG, c′G) = c′

√

e) External Procedure Call stmtnext(cG) = call e(E, ε)

(
(6.73)
⇒ stmtnext(C-IL(πG, cG)) = call e(E))

From C-IL semantics, we know

• c′ = in (the resulting configuration is non-deterministically chosen and provided
as input parameter to the C-IL transition function, δπ,θC-IL(πG, c, in) = in)

• [[e]]C-IL(πG),θ
C-IL(πG,cG) = val(b, funptr(t,T))∧ f = θ.Fadr

−1(b)∨[[e]]C-IL(πG),θ
C-IL(πG,cG) = fun(f , funptr(t,T))

• tl(c′.s) = tl(incloc(C-IL(πG, cG)).s)

• hd(c′.s).loc = hd(C-IL(πG, cG).s).loc + 1 ∧ hd(c′.s).f = hd(C-IL(πG, cG).s).f

• F θ
C-IL(πG)(f).P = extern

• ([[E[0]]]C-IL(πG),θ
C-IL(πG,cG), . . . , [[E[|E| − 1]]]C-IL(πG),θ

C-IL(πG,cG),C-IL(πG, cG), c′) ∈ θ.Rextern

Using these conditions, we prove the corresponding C-IL+G conditions for external
procedure call applying software condition 1 and lemma 6.74.

According to the semantics of C-IL+G, we have

c′
G

= merge-impl-ghost(incloc(cG), c′)

for which we can show C-IL(πG, c′G) = c′ by applying lemma 6.84.

f) Case: Return stmtnext(cG) = return e ∨ stmtnext(cG) = return

(
(6.73)
⇒ stmtnext(C-IL(πG, cG)) = return e ∨ stmtnext(C-IL(πG, cG)) = return)

According to C-IL semantics,

c′ =

write(θ, dropframe(C-IL(πG, cG)), rds), [[e]]C-IL(πG),θ
C-IL(πG,cG)) rds , ⊥

dropframe(C-IL(πG, cG)) otherwise

where rds = rdstop(dropframe(C-IL(πG, cG))

175

From C-IL+G-semantics we have

c′
G

=

writeG(θ, πG, dropframe(cG), rdsG, G[[e]]πG,θcG,∅
) rdsG , ⊥

dropframe(cG) otherwise

where rdsG = rdstop(dropframe(cG))

Then,

C-IL(πG, c′G)

=

C-IL(πG,writeG(θ, πG, dropframe(cG), rdsG, G[[e]]πG,θcG,∅
)) rdsG , ⊥

C-IL(πG, dropframe(cG)) otherwise

=

C-IL(πG,writeG(θ, πG, dropframe(cG), rds, [[e]]C-IL(πG),θ
C-IL(πG,cG))) rds , ⊥

C-IL(πG, dropframe(cG)) otherwise
(6.74, 6.82)

=

write(θ,C-IL(πG, dropframe(cG)), rds, [[e]]C-IL(πG),θ
C-IL(πG,cG)) rds , ⊥

C-IL(πG, dropframe(cG)) otherwise
(6.75)

=

write(θ, dropframe(C-IL(πG, cG)), rds, [[e]]C-IL(πG),θ
C-IL(πG,cG)) rds , ⊥

dropframe(C-IL(πG, cG)) otherwise
(Inv4, 6.81)

= c′
√

2. Case: Ghost Statement stmtnext(cG) ∈ SG We have to show

∃c′
G

: cG
⊥
{

δ
πG ,θ

C-IL+G

c′
G
∧ C-IL(πG, cG) = C-IL(πG, c′G)

From invariant 2, we know that there exists a C-IL+G configuration c′
G

such that

δ
πG,θ

C-IL+G
(cG,⊥) = c′

G

a) Case: Assignment stmtnext(cG) = ghost(e0 = e1)

From the semantics of C-IL+G, we see that a step from cG to

c′
G

= incloc(writeG(θ, πG, cG, G[[&e0]]πG,θcG,∅
, G[[e1]]πG,θcG,∅

))

is performed.

Then, we have

C-IL(πG, c′G)

= C-IL(πG, incloc(writeG(θ, πG, cG, G[[&e0]]πG,θcG,∅
, G[[e1]]πG,θcG,∅

)))

= C-IL(πG,writeG(θ, πG, cG, G[[&e0]]πG,θcG,∅
, G[[e1]]πG,θcG,∅

)) (6.76)
= C-IL(πG, cG) (sw2, 6.77)

√

176

b) Case: Goto stmtnext(cG) = ghost(goto l)

We have
c′
G

= setloc(cG, l)

Then,

C-IL(πG, c′G) = C-IL(πG, setloc(cG, l))
= C-IL(πG, cG) (sw3, 6.79)

√

c) Case: If-Not-Goto stmtnext(cG) = ghost(ifnot e goto l)

We have

c′
G

=

setloc(cG, l) zeroG(θ, G[[e]]πG,θcG,∅
)

incloc(cG) otherwise

Then,

C-IL(πG, c′G) =

C-IL(πG, setloc(cG, l)) zeroG(θ, G[[e]]πG,θcG,∅
)

C-IL(πG, incloc(cG)) otherwise

=

C-IL(πG, cG) zero(θ, [[e]]C-IL(πG),θ
C-IL(πG,cG))

C-IL(πG, cG) otherwise
(sw3, 6.79, 6.76)

= C-IL(πG, cG)
√

d) Case: Function/Procedure Call (stmtnext(cG) = ghost(call e(E)) ∨ (stmtnext(cG) =

ghost(e0 = call e(E))))

From C-IL+G semantics, we have

c′
G

= cG[s := (∅,M′
EG
,⊥, f , 0) ◦ incloc(setrds(cG, rds)).s]

where

rds =

G[[&e0]]πG,θcG,∅
stmtnext(cG) = ghost(e0 = call e(E))

undefined stmtnext(cG) = ghost(call e(E))

and

M′
EG

(v) =

G[[E[i]]]πG,θcG,∅
∃i : FC-IL+G(f).VG[i] = (v, t) ∧ i < FC-IL+G(f).ngpar

undefined otherwise

We only have to show C-IL(πG, c′G) = C-IL(πG, cG).

Since according to software condition 5, f is a ghost function, we know by definition
of siG that siG(πG, c′G) , ⊥ and that siG(πG, c′G) ≤ |cG.s|. Further, we can easily see
by definition of siG that

(∗) siG(πG, c′G) =

siG(πG, cG) siG(πG, cG) , ⊥
|cG.s| otherwise

177

Let c′′ = incloc(setrds(cG, rds)) and

s′ =

map(C-IL, c′′.s[siG(πG, cG) − 1 : 0])] siG(πG, cG) , ⊥
map(C-IL, c′′.s[|cG.s| − 1 : 0])] otherwise

Thus, we have

C-IL(πG, c′G)
= C-IL(πG, cG[s := (∅,M′

EG
,⊥, f , 0) ◦ incloc(setrds(cG, rds)).s])

= C-IL(πG, cG)[s := map(C-IL, ((∅,M′
EG
,⊥, f , 0) ◦

c′′.s)[siG(πG, c′G) − 1 : 0]] (6.80)
= C-IL(πG, cG)[s := map(C-IL, c′′.s[siG(πG, c′G) − 1 : 0])] siG(πG, c′G)

≤ |cG.s|
= C-IL(πG, cG)[s := s′ (∗)
= C-IL(πG, cG)[s := C-IL(πG, incloc(setrds(cG, rds))).s] (6.61)
= C-IL(πG, cG)[s := C-IL(πG, setrds(cG, rds)).s] (6.76)
= C-IL(πG, cG)[s := C-IL(πG, cG).s] (sw4, Inv3, 6.60)
= C-IL(πG, cG)

√

Using software condition 4 we maintain invariant 1.

e) Case: Return stmtnext(cG) = ghost(return e) ∨ stmtnext(cG) = ghost(return)

From C-IL+G-semantics we have

c′
G

=

writeG(θ, πG, dropframe(cG), rdsG, G[[e]]πG,θcG,∅
) rdsG , ⊥

dropframe(cG) otherwise

where rdsG = rdstop(dropframe(cG))

Then,

C-IL(πG, c′G) =

C-IL(πG, dropframe(cG)) rdsG , ⊥
C-IL(πG, dropframe(cG)) otherwise

Inv1 + (6.77)

=

C-IL(πG, cG) cG.rdstop , ⊥

C-IL(πG, cG) otherwise
(Inv4, 6.81)

= C-IL(πG, cG)
√

f) Case: Ghost Allocation stmtnext(cG) = ghost(e = allocghost t)

From C-IL+G semantics we have

c′
G

= writeG(θ, πG, incloc(cG), G[[&e]]πG,θcG,∅
, gref(cG.nfG, ε,ptr(t)))[nfG := cG.nfG + 1]

Thus,

C-IL(πG, c′G)

= C-IL(πG,writeG(θ, πG, incloc(cG), G[[&e]]πG,θcG,∅
, gref(cG.nfG, ε,ptr(t)))) (6.83)

= C-IL(πG, incloc(cG)) (sw2, 6.77)
= C-IL(πG, cG) (6.76)

√

178

Note that, in order to elaborate this to a complete proof, what is left to do is to prove all the
lemmas and show that invariants are maintained for valid C-IL+G executions.

179

7 Future Work & Conclusion

In this thesis, we describe a model stack for pervasive formal verification of multi core operating
systems and hypervisors. In particular, we defined cornerstone semantics of that model stack.
This includes an abstract hardware model, a rather low-level intermediate language for C and
an extension of that intermediate language with specification state and code which can be used
to argue about the soundness of the verification tool VCC. We give the main lemmas and a
pencil and paper proof of how to prove a simulation between program annotated with ghost
code and the original program. This, however, is only a fraction of what needs to be done to
achieve a pervasive theory of multi core systems and their verification with VCC. While a quite
comprehensive list of future work and achieved results has been given already in chapter 3, the
author would like to elaborate on a few specific topics related to the models given in this thesis
in the following. A reference to where the corresponding item is mentioned in chapter 3 is given,
when applicable. First, a few future work topics are discussed, followed by collaborations and
subsequent work based on this dissertation.

Future Work

Extending and Improving MIPS-86 with Caches (Section 3.2.4) While MIPS-86 is a
good start to serve as a top-level specification of the x86-64 inspired, reverse-engineered hard-
ware models from [Pau12], it currently does not cover caches yet. Thus, a necessary extension is
to introduce memory access modes (and a means to give control over memory access modes to
the programmer) and replace the memory component by a memory system consisting of concur-
rent caches with visible cache states and a main memory on which memory accesses annotated
with different access modes can be performed. In that model, reads to the memory system have
side-effects: The cache state is modified according to the access mode. This necessarily results
in a slight reformulation of the top-level transition function of MIPS-86: All reads from memory
must be explicitly formalized as inputs to the memory system. Since all memory reads are given
in the top-level transition function in order to pass them to the processor core’s transition func-
tion (which performs instruction execution based on the values read from memory), performing
this reformulation should be a simple task.

Completing the Reverse-Engineered Hardware Design for the MIPS-86 Model (Section
3.2.4) After caches have been introduced to the MIPS-86 system programmer specification, a
main task is to give a complete the gate-level hardware design that actually implements MIPS-
86. This involves integrating and extending existing gate-level designs, such as the pipelined
processor core or the cache system from [Pau12], but also requires to construct gate-level designs

181

for the APIC model and the MMU model of MIPS-86 in such a way that devices are accessible
by memory mapped I/O.

Compiler Correctness One place where our formal theory is lacking is in the compiler cor-
rectness department. While a compiler correctness theorem (based on an explicit simulation
relation) for C-IL has been stated and used in [Sha12], an actual compiler for C-IL has neither
been defined nor implemented, and, as a consequence, we do not have a compiler correctness
proof. In order, however, to transfer ownership safety from high levels of the model stack to the
bottom layers, we do need to at least define a compiler, i.e. give a definition of the translation
from ownership-annotated C-IL to ownership-annotated assembler code. Based on such a com-
piler definition, we can prove that safe C-IL code translates to safe assembler code – which in
turn implies that concurrent C-IL is a sound abstraction of compiled machine code execution.

Since compilers are complex constructs when implemented in an efficient way, it is very
tempting to resort to using the compiler correctness result of Xavier Leroy et. al’s CompCert
compiler [Ler09] – after all, their results are proven formally in Coq and describe quite an effi-
cient optimizing C compiler. At the time of development of our theories, however, the compiler
specification (which is given in terms of specific observable external events resulting from code
execution, e.g. external function calls) of CompCert was too weak for our purposes. The collab-
oration between Appel and Leroy driven by Appel’s verified software toolchain project [App11],
however, has led to major improvements in the memory model of CompCert [LABS12] – in-
cluding even a basic ownership discipline formulated in terms of permissions. The ownership
discipline in question, however, is still simpler than the one we use in our model stack, thus, if
we want to use the CompCert results, it has to be checked in what regards they are applicable
and where extensions are needed. Another consequence of using the CompCert compiler in our
model stack would be that we end up with a different (higher-level) C semantics for which the
specification state and code extension would have to be redone. If we were to start this project
anew at the time being however, evaluating the applicability of the CompCert results would be a
high priority.

Documenting the Assertion Language of VCC (Section 3.7.5) C-IL+G is defined with a
soundness proof of VCC in mind. Using C-IL+G, the assertion language and ownership disci-
pline of VCC should be formalized in order to specify what exactly VCC proves about concur-
rent C programs. Except for some constructs of VCC, like claims, this should be quite simple
since the memory model of VCC is compatible with the byte-addressable implementation mem-
ory of C-IL+G and the control flow of C-IL+G is very close to that of Boogie, the intermediate
verification language VCC translates annotated C code to. Based on this semantics, the verifica-
tion methodology of VCC could be proven sound as outlined in [Mica].

Collaborations, Subsequent Work and Work in Progress Based on this Thesis

Collaboration: C-IL Compiler Correctness Specification (Section 3.6) Andrey Shadrin
formalized the compiler correctness theorem for C-IL in his dissertation [Sha12] in collabora-
tion with the author of this thesis. A simulation relation that expresses when C-IL and baby

182

VAMP machine configurations are consistent is formalized explicitly and the simulation theo-
rem states that the simulation relation is maintained at IO-points – which in the sequential case
are essentially configurations before and after execution of an external function call.

Collaboration: Integrated Semantics of C-IL and Macro Assembler (Section 3.6) A
formal model of C-IL and Macro Assembler code execution has been established in collaboration
with Andrey Shadrin. The resulting integrated semantics which is based on the byte-addressable
C-IL memory and stack abstraction can be found in the corresponding dissertation and confer-
ence paper [Sha12, SS12]. The main feature of the integrated semantics is the call stack between
the two languages and the explicit modeling of compiler calling conventions without fully ex-
posing the low-level stack layout. That the integrated semantics provides a sound abstraction of
machine code execution is argued by applying the compiler correctness theorems for C-IL and
MASM.

Subsequent Work: Simplified Model Stack for TLB Virtualization in the Context of Hy-
pervisor Verification (Section 3.8.3) In his dissertation [Kov12], Mikhail Kovalev presents
a detailed formulation of a simplified model stack for the x86-64 hardware model [Deg11] fol-
lowing the ideas presented in chapter 3 of this thesis. In order to prove TLB virtualization for a
multi-core shadow page table algorithm, the focus is mainly on lifting the TLB model to C-IL
level in order to justify the code verification done with VCC. Software conditions used in the
given reduction theorems for other components of the multi-core architecture are more strict
than we describe in chapter 3, resulting in a simplified but complete model stack.

Subsequent Work: Justifying the Approach of Macro Assembler Verification with a C
Verifier (Section 3.7) Using the integrated semantics from [Sha12, SS12], Andrey Shadrin
was able to state and prove correct a translation of Macro assembler code to C-IL code that
implies a simulation between the original C-IL+MASM program and the resulting C-IL program
in the spirit of the Vx86 assembler verification approach of Stefan Maus [MMS08].

Work in Progress: Concurrent Compiler Correctness (Section 3.6) Christoph Bau-
mann uses his symbolic ownership-based order reduction theorem [Bau12] and the compiler
correctness specification from [Sha12] to show that the concurrent C-IL model is a sound ab-
straction of concurrent machine code execution. The proof is based on using the ownership
discipline to reorder the steps of individual C-IL threads to occur in sequential execution blocks
between IO-points, which in the concurrent case also include volatile accesses.

Work in Progress: Proving Store Buffer Reduction on MIPS-86 (Section 3.5.5) As
mentioned in chapter 3, in the presence of MMUs, the store buffer reduction theorem of [CS10]
is not applicable: memory accesses of MMUs bypass store buffers. Thus, the model of the store
buffer reduction theorem needs to be improved in order to allow an instantiation of the model
– on which store buffer reduction is proven formally – with MIPS-86. There appear to be two
particularly promising ways of how to do this: i) extend the model with components that access
memory directly and allow communication between these components and designated program

183

components, or ii) allow program components to issue store-buffer-bypassing memory accesses
(which would allow instantiating processor core together with MMU as a program component).
The main challenge here appears to lie in formulating an extended software condition – which
is both simple and powerful – that restricts the store-buffer bypassing memory accesses in such
a way that the store-buffers can still be reduced.

Work in Progress: Extending C-IL+MASM Semantics for a Thread-Switch Kernel (Sec-
tion 3.8.3) One particularly interesting challenge encountered in the hypervisor verification
project was to argue about the correctness of the kernel layer (which provides an abstraction of
running many threads on individual processors by providing a cooperative thread switch routine
and thread data structures) in a C verifier. C semantics tends to make use of some kind of stack
abstraction. However, in implementing such a thread switch kernel, the explicit stack layout
must be exploited to some degree in order to create threads, and the stack pointer registers of
the machine must be accessed at thread switch – in order to store the stack pointers of the old
thread and load the stack pointers of the new thread when performing the switch. The goal here
is to extend C-IL+MASM semantics in such a way that a proper abstraction for threads and their
stacks is provided on a level abstract enough to allow use of the C verifier in proving the correct-
ness of the kernel implementation. Similar to the CVM model from the Verisoft project [Ver07]
this can be done by providing appropriate primitives (i.e. external function calls that implement
the desired functionality in pure assembler code; their effect being specified as an atomic step on
the more abstract levels of the model stack) for thread creation and thread switch. The C verifier
can then be used to argue about the kernel C code using the extended C-IL+MASM semantics
with primitives – after we have proven that the implemented primitives indeed have the effect
specified in the extended abstract semantics.

Conclusion

Establishing formal semantics for use in realistic systems is never a trivial task. Things get
particularly interesting when the overall goal is to establish a pervasive theory in terms of a
model stack with simulation theorems between neighboring models; now the task is not just to
give an adequate model that describes machine or program execution, but, to give a model that
is neither too specific nor too generic for the given abstraction level of the model stack. An
additional design goal is that simulation between neighboring models should always be straight-
forward – avoiding unnecessary technical detours.

While an ultimate goal lies in proving symbolic theorems that can be instantiated for specific
realistic languages and systems, getting to such a result depends largely on exploratory work
as given in this thesis: In order to identify adequate symbolic models it is necessary to first
solve interesting problems for specific machines and formalizations. In particular in the area
of hardware verification and hardware modeling, there is still much work to be done in order
to arrive at models that can be used in a pervasive theory. But also on higher levels of the
model stack, it is often far from obvious what an ideal semantics would look like. In fact, which
formulation is ideal depends quite obviously on the context in which the model is used: With
application code verification in mind, a rather abstract programming language semantics with a
high-level memory model is appropriate, while, for operating systems verification, dealing with a

184

too high level of abstraction in programming language semantics can actually turn out to be more
complicated than resorting to a lower-level formalization of programming language semantics
in the first place. Indeed, in a model stack that goes from gate level up to application level,
it even appears quite natural to have different levels of abstraction of the same programming
language presented to the user of the pervasive theory (e.g. a low-level C semantics without
the notion of a heap and a high-level C semantics with an abstract heap – which is obtained by
implementing a library with memory management procedures in the low-level semantics, and,
possibly, on the formalization side, by using a more abstract memory model). Unfortunately,
it appears that, in computer science, the academic community is split into a (large) software
community that overall prefers to deal with high-level abstract models and a (smaller) hardware
community that appears not particularly interested in programming languages and compilers.
This results in a quite large gap between the code-verification usually performed at a very high
level of abstraction and the actual execution of machine code by an abstract hardware model.
One of the main customers for models belonging into this gap is the (very small) operating
systems verification community.

With this thesis, the author hopes to have brought some insight into what kinds of models
can provide a solid basis for arguing about operating system and hypervisor implementations in
VCC. We sketched a model stack for multi-core hypervisor and operating system verification
and described important software conditions and simulation theorems needed to establish such a
model stack. One of the main efforts was finding an appropriate order in which to apply reduction
theorems that abstract away specific hardware features in the model stack – providing a roadmap
to follow in constructing the desperately needed theory in chapter 3. In this process, we surveyed
the current state of the theory and exposed gaps that need to be closed in order to achieve a sound
verification with respect to a realistic underlying gate-level hardware construction.

While the models presented in this thesis are likely far from perfect, chapter 3 gives evidence
that they at least appear to allow arguing about a pervasive model stack in a pretty straight-
forward way. The collaborations and subsequent work based on the models presented support
this notion. The models so far proved to be particularly useful in providing a sanity check for
theorems proven about symbolic models, e.g. the store-buffer reduction theorem of [CS10] or
the general reorder theorem of [Bau12] – being able to instantiate a symbolic model to obtain
a specific model of interest (e.g. such as MIPS-86) demonstrates the usefulness of the corre-
sponding symbolic theory. The main advantage of the described MIPS-86 model over the one
that was already established during the Verisoft-XT project, i.e. the x86-64 model defined by
Ulan Degenbaev [Deg11], lies in its comparatively compact nature; the author made an effort
to strip all unnecessary complexity while preserving the core features of the memory system
which are reverse-engineered in the gate-level hardware designs provided in [Pau12]. A major
problem with realistic models is, in fact, that they contain an abundance of little details which,
by themselves, are not difficult to understand, but which nonetheless make it very difficult for a
human to deal with these huge models; in particular, when the interesting parts of a correctness
proof can also be expressed over a much simpler model and later be extended to a proof of the
full detailed model with the help of computer-aided verification tools.

Indeed, the same is true for the programming language C: in order to implement and argue
about an operating system or a hypervisor, only a tiny fragment of C is actually needed. Sim-
ilar to how compilers use intermediate languages, verification tools like VCC use intermediate

185

languages (e.g. VCC uses the intermediate verification language Boogie). In order to show
soundness of such a verification tool, we can rely on the soundness of the verification condition
generator for the intermediate verification language used. However, VCC is a verification tool
that covers a very large subset of C code – mainly to provide a comfortable interface for the ver-
ification engineer – which means that the semantics of the generated intermediate verification
language code and the original C code are quite different in structure. Thus, the task of prov-
ing VCC’s soundness can be simplified by translating the C code to a C intermediate language
whose semantics is structurally similar to the intermediate verification language (such as C-IL)
and then proving a simulation between the resulting C intermediate language code and the gen-
erated intermediate verification language code, obtaining the soundness of verification condition
generation for the C intermediate language; which can in turn be lifted to the C level. Since the
VCC allows the verification engineer to use ghost state and quite powerful ghost code, it is nec-
essary to prove the termination of ghost code – which in turn requires to have proper semantics
for ghost code. These considerations resulted in the creation of C-IL+G, a semantics of a C inter-
mediate language combined with ghost code and state in the style provided by VCC. The goal of
the language is to be both low-level enough to allow integration of low-level hardware features
(e.g. such as MMUs setting accessed/dirty flags of page-tables, or allowing the semantics to
be extended to properly model thread switch by writing stack pointers on an abstract level) and
high-level enough to serve as a basis for arguing the soundness of the verification tool. These re-
quirements naturally contradict each other: For proving soundness of a verification tool, it tends
to be helpful to use a semantics as abstract as possible, while for arguing about code that exploits
lowest-level hardware functionality, having a much more concrete semantics – closely matching
the hardware machine model – is favored. The C-IL semantics given in this thesis results from a
compromise between the two requirements which, so far, appears to work in an acceptable way
for both applications: While the memory model of C-IL is as low-level as possible, the stack
abstraction provided hides the concrete stack layout of the machine.

As has been argued, the main challenge in establishing a pervasive theory of multi-core sys-
tems lies in finding acceptable semantics for different layers of the model stack. This is why
this thesis deals, to a large degree, with semantics. It is crucial to study semantics for realistic
systems and, in a subsequent step, identify symbolic models of common interest; since systems
are mostly built out of reuseable components, establishing symbolic theory for any such com-
ponent is meaningful – albeit only after finding an appropriate abstract model that both captures
exactly the relevant behavior and is applicable to a significant number of realistic implemen-
tations. It is crucial to identify how exactly the symbolic theory needs to be stated in order to
allow different components and abstraction levels to be combined into models of real systems –
symbolic models which can not be instantiated for realistic systems are effectively worthless. At
the present time, while we are quite close to establishing a model stack for a specific multi-core
architecture, we are still very far from establishing a symbolic model stack for multi-core archi-
tectures; such a symbolic model stack can be thought of as a patch-work of symbolic models
and theorems which can be instantiated and arranged to obtain correctness results over different
models that share particular features. While the store-buffer reduction theorem from [CS10] is
one such symbolic theorem, it is too restricted to be applied to MIPS-86. However, realizing in
which way the symbolic theorem is inadequate directs us towards a new and improved symbolic
theorem which actually is flexible enough to be applied. Indeed, it would be desirable to have

186

similar symbolic simulation theorems that abstract away other hardware features under appropri-
ate software conditions, e.g. for MOESI-based cache systems or the virtual memory abstraction
given by MMUs. To confirm that proposed symbolic models are indeed useful, MIPS-86 serves
as an academic target architecture for which the proposed theory must be applicable.

Overall, it can be said that this thesis provides crucial semantic models and an outline for con-
structing a realistic multi-core model stack which can be used as a foundation in order to argue
mathematically about the correctness of multi-core operating system and hypervisor verification.

187

Symbol Tables

In the following, we provide symbol tables for the basic notation used in this thesis (chapter 2),
MIPS-86 (chapter 4), C-IL (chapter 5), and C-IL+G (chapter 6). Entries are ordered alphabeti-
cally, where possible. The page number given for a symbol table entry directs the reader to the
definition of the corresponding symbol or function.

Basic Notation

B set of Booleans, 9
Bn range of values of bit-strings interpreted as natural num-

bers, 10
binn(x) binary representation of natural number x, 10
byte(i,a) i-th byte of bit-string a, 11

E Hilbert-choice operator, 5
ε empty finite sequence, 7

hd(x) head of a finite sequence x, 8

map(f ,x) finite sequence obtained by applying function f to every
element of finite sequence x, 8

≡ mod k congruence modulo k, 11
mod modulo operator, 11
modt two’s complement modulo operator, 11

N set of natural numbers (non-negative integers), 5

rev(x) finite sequence obtained by reverting the order of ele-
ments of finite sequence x, 8

sxtk(a) sign-extended version of bit-string a to length k, 10

Tn range of values of bit-strings interpreted as two’s-
complement numbers, 10

tl(x) tail of a finite sequence x, 8
twocn(x) two’s-complement representation of integer x, 10

Z set of integers, 5
zxtk(a) zero-extended version of bit-string a to length k, 10
#A amount of elements of finite set A, 5

189

2A power ser of set A, 5
f (x:=y) function update notation, replacing value of f for x by y,

6
c[ni:=a] record update notation, replacing value of field ni of

record c by a, 7
Xn set of n-tuples over the set X, 7
X∗ set of finite sequences over the set X, 7
|x| length of finite sequence x, 8
a ◦ b concatenation of finite sequences a and b, 8
xn finite sequence that repeats element x for n times, 8
∧ logic operator AND, 9
∨ logic operator OR, 9
⊕ logic operator XOR, 9
(A?x : y) ternary operator that choses between value x and value y

depending on statement A, 9
〈a[n − 1 : 0]〉B value of bit-string a interpreted as natural number to base

B, 9
[b] value of bit-string b interpreted as two’s-complement

number, 10
xn binary representation of natural number x (shorthand), 10
xtn two’s-complement representation of integer x (short-

hand), 10
+n n-bit binary addition, 11
−n n-bit binary subtraction, 11
·n n-bit binary multiplication, 11
·tn n-bit two’s-complement multiplication, 12
÷n n-bit binary division, 12
÷tn n-bit two’s-complement division, 12

190

MIPS-86 Symbol Table

.a accessed flag (of a page table entry), 57
Aapic set of byte-addresses covered by the local APIC I/O ports,

84
Adev set of byte-addresses covered by device I/O ports, 84
Adev(i) set of byte-addresses covered by device i’s I/O ports, 84
Aioapic set of byte-addresses covered by the I/O APIC ports, 84
alu(I) predicate that expresses whether the given instruction

word I is an ALU instruction, 63
alucon(I) ALU control bits of ALU instruction I, 64
alures(a,b,alucon,i) ALU result for input values a and b given alu control bits

alucon and i, 63
.apic local APIC component (of a processor configuration), 52
apicadr(x) function that computes the local APIC port address of a

given memory address x, 84
apicbase base memory address of local APIC I/O ports, 84
.APIC_ID shorthand for the APIC ID register (of the local APIC I/O

ports), 77
.asid address space identifier component (of a translation re-

quest), 59
.asid address space identifier (ASID) component (of a TLB

walk), 56
asid(core) current address space identifier of processor core core, 85

b(I) predicate that expresses whether instruction word I is a
branch instruction, 64

.ba base address of the next page table (of a page table entry),
57

.ba physical page address component (of a TLB walk), 56

.ba base address / page address (of an address), 57
bcres(a,b,bcon) branch condition result for input values a and b given

branch control bits bcon, 64
btarget(c,I) function that computes the branch target of a jump of suc-

cessful branch instruction I in processor core configura-
tion c, 64

ca(c,I,eev,pff,pfls) interrupt signals raised when instruction word I is exe-
cuted in processor configuration c given external event
signals eev and page-fault signals pff and pfls, 69

cad(I) general purpose register address to which the result of an
instruction I is to be written, 67

191

compi(I) predicate that expresses whether the given instruction
word I is an I-type ALU instruction, 63

complete(w) predicate that expresses whether a TLB walk is complete,
59

compr(I) predicate that expresses whether the given instruction
word I is an R-type ALU instruction, 63

compres(c,I) result value of ALU instruction I in processor core con-
figuration c, 64

continue(c,I,eev,pff,pfls) predicate that expresses whether the interrupt occuring
during execution of instruction word I in processor con-
figuration c given external event signals eev and page-
fault signals pff and pfls is of type continue, 69

.core processor core component (of a processor configuration),
51

.d dirty flag (of a page table entry), 57
d(I) access width in bytes of load/store instruction word I, 66
δ MIPS-86 transition function, 82
δapic transition function of the local APIC, 79
δcore transition function of the processor core, 61
δdev(i) transition function of device i, 75
δinstr transition function for processor core instruction execu-

tion, 67
δioapic transition function of the I/O APIC, 81
δjisr transition function for processor core interrupt execution,

69
δm transition function of the memory, 53
δtlb transition function of the TLB, 60
.dev devices component (of a MIPS-86 configuration), 51
devadr(i,x) function that computes the device port address of device i

given a memory address x, 84
devbase base memory addresses of device I/O ports, 84
devpalen function that specifies length of port addresses of devices

in bits, 74

ea(c,I) effective address of load/store instruction word I executed
in processor core configuration c, 66

eev(apic) external event vector provided by the local APIC apic to
the processor core, 79

.EOI shorthand for the end-of-interrupt register (of the local
APIC I/O ports), 78

.eoipending EOI-pending register component (of the local APIC), 77

192

f ault(m,trq,w) predicate that expresses whether extension of walk w us-
ing memory m page-faults for translation request trq, 59

. f ault page fault indicator component (of a TLB walk), 56
f un(I) function that decodes the function code f un from instruc-

tion word I, 62

.gpr general purpose register component (of a processor core),
60

gprdin(c,I,R) value written to the gpr for instruction word I in processor
core configuration c given value read from memory R, 67

gprw(I) predicate that describes whether executing a given in-
struction word I involves writing to a general purpose reg-
ister, 66

hit(trq,w) predicate that expresses whether walk w is a TLB hit for
translation request trq, 59

.ICR shorthand for the interrupt command register (of the local
APIC I/O ports), 78

iev(c,I,pff,pfls) internal event signals that occur when instruction word I
is executed in processor configuration c given page-fault
signals pff and pfls, 68

iindex(I) function that decodes the instruction index iindex from
instruction word I, 62

il(c,I,eev,pff,pfls) function that computes the interrupt level of an interrupt
occuring during execution of instruction word I in proces-
sor configuration c given external event signals eev and
page-fault signals pff and pfls, 69

ill(I) predicate that expresses whether instruction word I is an
illegal instruction, 63

imm(I) function that decodes the immediate constant imm from
instruction word I, 62

initialstate(i) predicate that specifies a set of acceptable initial states for
device i, 76

.initrr INIT-request register component (of the local APIC), 77

.internal internal state component (of a device), 75

.ioapic I/O APIC component (of a MIPS-86 configuration), 51
ioapicadr(x) function that computes the I/O APIC port address of a

given memory address x, 84
ioapicbase base memory address of I/O APIC ports, 84
.IOREGSEL shorthand for the select register (of the I/O APIC ports),

81
.IOWIN shorthand for the data register (of the I/O APIC ports), 81
.irq interrupt request signal component (of a device), 74

193

.IRR shorthand for the interrupt request register (of the local
APIC I/O ports), 78

.ISR shorthand for the in-service register (of the local APIC
I/O ports), 78

itype(I) predicate that expresses whether instruction word I repre-
sents an I-type instruction, 62

jbtaken(c,I) predicate that expresses whether execution of instruction
word I in processor core configuration c results in a jump
or branch being performed, 64

jisr(c,I,eev,pff,pfls) predicate that expresses whether execution of instruction
word I in processor configuration c given external event
signals eev and page-fault signals pff and pfls triggers an
interrupt, 69

jtype(I) predicate that expresses whether instruction word I repre-
sents a J-type instruction, 62

jump(I) predicate that expresses whether instruction word I is a
jump instruction, 64

K MIPS-86 configuration, 51
Kapic local APIC configuration, 77
Kcore processor core configuration, 60
Kdev device configuration, 51
Kdev(i) configuration of device i, 74
Kioapic I/O APIC configuration, 80
Km memory configuration, 52
Kp processor configuration, 51
Ksb store buffer configuration, 72
Ksbe store buffer entry configuration, 72
Ktlb TLB configuration, 56
Kwalk TLB walk, 56

λ MIPS-86 output function, 83
λdev(i) output function of device i, 75
.level level component (of a TLB walk), 56
load(I) predicate that expresses whether instruction word I is a

load instruction, 66
lop(c,I) value of the left operand of ALU instruction I in processor

core configuration c, 63
lv(R) load value of the processor core given value read from

memory R, 66

.m shared global memory component (of a MIPS-86 config-
uration), 51

194

md(a) reading d bytes starting from address a from memory m,
53

mal(c,I) predicate that expresses whether the memory access of
load/store instruction word I in processor configuration c
is misaligned, 66

maxsbhit(sb,x) index of the newest store buffer entry in store buffer sb for
which there is a store buffer hit for address x, 72

mca(c,I,eev,pff,pfls) interrupt signals raised after masking maskable interrupts
when instruction word I is executed in processor config-
uration c given external event signals eev and page-fault
signals pff and pfls, 69

ms(dev,ioapic,apic,sb,m) merged memory view of MIPS-86 based on devices
configuration dev, I/O apic configuration ioapic, local
APIC configuration apic, store buffer configuration sb
and memory configuration m, 85

nd number of devices, 51
np number of processors, 51

Ω MIPS-86 output alphabet, 83
Ωdev(i) external output alphabet of device i, 75
opc(I) opcode of an instruction word I, 62
ov f (a,b,alucon,i) ALU overflow result for input values a and b given alu

control bits alucon and i, 63

.p present bit (of a page table entry), 57

.p processor component (of a MIPS-86 configuration), 51

.pc program counter component (of a processor core), 60

.ports I/O ports component (of the local APIC), 77

.ports I/O ports component (of a device), 74

.ports I/O ports component (of the I/O APIC), 80
pte(m,w) page table entry of a given TLB walk w in memory m, 57
ptea(w) page table entry address for a given TLB walk w, 57
.px0 byte offset (of an address), 57
.px1 first-level page index (of an address), 57
.px2 second-level page index (of an address), 56

.r access rights (of a page table entry), 57

.r access rights component (of a translation request), 59

.r accumulated rights component (of a TLB walk), 56
rd(I) function that decodes register address rd from instruction

word I, 62

195

rdes(I) general purpose register address to which the result of
an ALU/shift/coprocessor/memory instruction I is to be
written, 67

.redirect redirect table component (of the I/O APIC), 80
rop(c,I) value of the right operand of ALU instruction I in proces-

sor core configuration c, 63
rs(I) function that decodes register address rs from instruction

word I, 62
rt(I) function that decodes register address rt from instruction

word I, 62
rtype(I) predicate that expresses whether instruction word I repre-

sents an R-type instruction, 62
.running processor running flags component (of a MIPS-86 config-

uration), 51

sa(I) function that decodes the shift amount sa from instruction
word I, 62

.sb store buffer component (of a processor configuration), 51
sbehit((a,w),x) predicate that denotes whether store buffer entry (a,w) is

a store buffer hit for address x, 72
sbhit(sb,x) predicate that denotes whether store buffer sb contains a

store buffer hit for address x, 72
sbv(sb,x) partial function that returns the value forwarded from

store buffer sb for byte-address x, if it exists, 73
sdist(c,I) value of the shift distance for shift instruction I in proces-

sor core configuration c, 65
set-ad(pte,w) function that sets the accessed and dirty bits of a page-

table entry pte depending on the access rights of TLB
walk w, 59

s f (I) shift function of a shift instruction word I, 65
Σ MIPS-86 input alphabet, 83
Σapic input alphabet of the local APIC, 79
Σcore input alphabet of the processor core, 61
Σdev(i) input alphabet of device i, 75
Σeev external event signals for the processor core, 61
Σext external input alphabet for all devices, 83
Σext(i) external input alphabet of device i, 75
Σinstr input alphabet for processor core instruction execution, 61
Σioapic input alphabet of the I/O APIC, 81
Σioapic+dev input alphabet for I/O APIC and devices, 83
Σm input alphabet of the memory, 53
Σp input alphabet for the processor, 83
Σtlb input alphabet of the TLB, 60
.sipirr SIPI-request register component (of the local APIC), 77

196

.sipivect SIPI-vector register component (of the local APIC), 77
sll(a,i) function that computes the shift left logical value for bit-

string a shifted by natural number i, 65
slop(c,I) value of the left shift operand for shift instruction I in

processor core configuration c, 65
.spr special purpose register component (of a processor core),

60
sra(a,i) function that computes the shift right arithmetic value for

bit-string a shifted by natural number i, 65
srl(a,i) function that computes the shift right logical value for bit-

string a shifted by natural number i, 65
store(I) predicate that expresses whether instruction word I is a

store instruction, 66
su(I) predicate that expresses whether instruction word I repre-

sents a shift instruction, 65
sures(a,i,s f) shift unit result for input values a and i given shift function

bits s f , 65
sv(c,I) store value for store instruction word I in processor core

configuration c, 66

.tlb TLB component (of a processor configuration), 52

.va virtual address component (of a translation request), 59

.va virtual page address component (of a TLB walk), 56

wext(w,pte,r) function that extends TLB walk w using page table entry
pte and access rights r, 58

winit(va,pto,asid) intial TLB walk for given virtual address va, page table
origin pto and address space identifier asid, 57

r ≤ r′ access rights r′ are sufficient to perform an access with
access rights r, 58

197

C-IL Symbol Table

.allocgvar base addresses of global variables (in environment param-
eters), 101

array(t,n) ∈ T array type of length n with elements of type t (from the
set T), 103

bytes2valθ(B,t) C-IL value of type t represented by byte-string B under
environment parameters θ, 118

c ∈ E constant (in set of C-IL expressions), 113
call e(E) ∈ S procedure call to function specified by expression e with

parameters E (in set of C-IL statements), 115
.cast type cast function (in environment parameters), 99
confCC-IL concurrent C-IL-configuration, 129
confC-IL sequential C-IL-configuration, 117

decl(V) set of variable names declared by variable declaration list
V, 121

δπ,θC-IL C-IL semantics transition function, 127
δπ,θCC-IL concurrent C-IL semantics transition function, 129
dropframe(c) function that removes the topmost stack frame of a C-IL

configuration c to l, 127

E set of expressions, 113
.endianness endianness of the underlying architecture (in environment

parameters), 99

F set of field names, 98
. f function name component (in stack frame), 117
.F function table (in program), 115
.Fadr function pointer values (in environment parameters), 101
f ∈ E function name (in set of C-IL expressions), 113
Fname set of function names, 98
F θ
π combined function table for program π and environment

parameters θ, 121
ftop(c) function name of the topmost stack frame of configuration

c, 126
funptr(t,T) ∈ T function pointer type with return value type t and param-

eter type sequence T (from the set T), 103
FunT function table entry configuration, 116

199

goto l ∈ S jump to program location l (in set of C-IL statements),
115

ifnot e goto l ∈ S conditional jump to program location l based on expres-
sion e (in set of C-IL statements), 115

incloc(c) function that increases the location counter of the topmost
stack frame of a C-IL configuration c, 126

.intrinsics function table for compiler intrinsic functions (in environ-
ment parameters), 100

isarray(t) predicate that checks whether type t is an array type, 104
isfunptr(t) predicate that checks whether type t is a function pointer

type , 104
isptr(t) predicate that checks whether type t is a pointer type, 104

.loc location counter component (in stack frame), 117
loctop(c) location counter of the topmost stack frame of configura-

tion c, 126

.M global memory component (in sequential C-IL-
configuration), 117

.M global memory component (in concurrent C-IL-
configuration), 129

.ME local memory component (in stack frame), 116
MEtop(c) local memory of the topmost stack frame of configuration

c, 126

.npar number of function parameters (in function table entry),
116

O1 set of unary operator symbols, 109
O2 set of binary operator symbols, 109
.offset byte offsets of fields in struct/union types (in environment

parameters), 100
.op1 unary operator semantics (in environment parameters),

100
.op2 binary operator semantics (in environment parameters),

100

.P function body (in function table entry), 116
Ptop(π,c) function body of the topmost stack frame of configuration

c in program π, 126
paramsC-IL environment parameters configuration, 99
π program, 115
progC-IL program configuration, 115

200

ptr(t) ∈ T pointer to type t (from the set T), 102
.sizeptr size of pointer types in bytes (in environment parameters),

99

Q set of type qualifiers, 103
qt2t function that converts qualified type to unqualified type,

104

.Rextern function pointer values (in environment parameters), 101

.rds return value destination component (in stack frame), 116
rdstop(c) return destination of the topmost stack frame of configu-

ration c, 126
read(θ,c,x) function that reads the memory value pointed to by

pointer value x from C-IL configuration c under environ-
ment parameters θ, 120

readE(ME,v,o,s) function that reads a byte-string of length s from local
memoryME of variable v starting at offset o, 119

readM(M,a,s) function that reads a byte-string of length s from global
memoryM starting at address a, 119

.rettype return value type (in function table entry), 116
return e ∈ S return the value of expression e (in set of C-IL state-

ments), 115
return ∈ S return without value (in set of C-IL statements), 115

S set of statements, 115
.s stack component (in sequential C-IL-configuration), 117
setloc(c,l) function that sets the location counter of the topmost stack

frame of a C-IL configuration c to l, 126
setrds(c,v) function that sets the return destination of the topmost

stack frame of a C-IL configuration c to v, 127
σπθ (x, f) field reference function, computes a pointer to the sub-

variable identified by field f in struct-type local reference
or pointer x, 123

.offset size of struct/union types in bytes (in environment param-
eters), 100

sizeθ(t) size of values of type t in bytes, 104
sizeof(e) ∈ E size of type (in set of C-IL expressions), 114
sizeof(t) ∈ E size of type (in set of C-IL expressions), 114
.size_t type of the value returned by the sizeof-operator (in en-

vironment parameters), 99
stmtnext(π,c) next statement to be executed in the function body of the

topmost stack frame of configuration c in program π, 126
struct tC ∈ T struct type specified by composite type name tC (from the

set T), 103

201

T set of C-IL types, 102
TC set of composite type names, 98
.TF type table for struct field declarations (in program), 115
t ∈ T primitive type t (from the set T), 102
.TP set of primitive types offered by the compiler (in environ-

ment parameters), 99
TPP set of possible primitive types, 102
TQ set of qualified types, 103
τ(x) type of a value x, 107
τF(f ,T) type of field f in field declaration list T , 122
τFf un(f n) type of function f n in function table F , 122
τQ

π,θ
c (x) function that returns the qualified type of an expression x

in a given configuration c of a program π under environ-
ment parameters θ, 122

τV (v,V) type of variable v in variable declaration listV, 122
.Th thread component (in concurrent C-IL-configuration),

129
θ environment parameters, 99

V set of variable names, 98
.V parameter and local variable declaration list (in function

table entry), 116
.VG global variable declaration list (in program), 115
v ∈ E variable name (in set of C-IL expressions), 113
Vtop(π,c) local variable and parameter declaration list of the top-

most stack frame of configuration c under program π, 122
val set of values, 105
valfptr set of explicit function pointer values, 107
valfun set of symbolic function pointer values, 107
valfunptr set of function pointer values, 107
vallref set of local references, 106
valprim set of primitive values, 105
valptr set of global memory pointer values, 106
valptr+array set of pointer and array values, 106
val2bytesθ(v) byte-string representation of C-IL value v under environ-

ment parameters θ, 118

write(θ,c,x,y) function that writes the value y to the memory of C-IL
configuration c at the location specified by pointer value
x under environment parameters θ, 121

writeE(ME,v,o,B) function that writes byte-string B to local memoryME of
variable v starting at offset o, 119

202

writeM(M,a,B) function that writes byte-string B to global memory M
starting at address a, 119

zero(θ,x) predicate that expresses whether a given value x is a zero-
value under environment parameters θ, 107

[[x]]π,θc function that evaluates an expression x in a given config-
uration c of a program π under environment parameters θ,
returns a value, 124

	e ∈ E unary operator application on expression e (in set of C-IL
expressions), 113

(e0 ⊕ e1) ∈ E binary operator application on expressions e0 and e1 (in
set of C-IL expressions), 114

(e ? e0 : e1) ∈ E ternary operator on expressions e, e0 and e1 (in set of C-IL
expressions), 114

(t)e ∈ E type cast (in set of C-IL expressions), 114
∗(e) ∈ E dereferencing pointer operation (in set of C-IL expres-

sions), 114
&(e) ∈ E address of operation (in set of C-IL expressions), 114
(e). f ∈ E field access (in set of C-IL expressions), 114
(e0=e1) ∈ S assignment of value of expression e1 to the memory lo-

cation specified by the address of expression e0 (in set of
C-IL statements), 115

(e0=call e(E)) ∈ S function call to function specified by expression e with
parameters E that assigns the return value of the function
to the memory location specified by the address of expres-
sion e0 (in set of C-IL statements), 115

203

C-IL+G Symbol Table

adjustgotos(P,loc) function that adjust the location counters of all implemen-
tation goto statements in function body P, 164

array(t,n) ∈ TG array ghost type with n elements of ghost type t (from the
set of ghost types), 137

c ∈ EG constant (from the set of ghost expressions), 144
call e(E,E′) ∈ S′ annotated procedure call to function specified by expres-

sion e with implementation parameters E and ghost pa-
rameters E′ (from the set of annotated C-IL statements),
145

castG(v,t) function that performs type cast for implementation or
ghost value v to implementation or ghost type t, 143

C-IL(π) function that projects C-IL+G program π to a C-IL pro-
gram, 162

C-IL(f te) function that projects annotated C-IL+G function table
entry f te to a C-IL function table entry, 163

C-IL(s) function that projects annotated C-IL+G statement s to a
C-IL statement, 163

C-IL(P) function that projects annotated C-IL+G function body P
to a C-IL function body, 163

C-IL(s f) function that projects C-IL+G stack frame s f to a C-IL
stack frame, 164

C-IL(πG,c) function that projects C-IL+G configuration c to a C-IL
configuration given C-IL+G program πG, 164

confCC-IL+G concurrent C-IL+G configuration, 152
confC-IL+G sequential C-IL+G configuration, 150
countstmt(P,l) function that counts the number of implementation state-

ments in function body P up to (but not including) loca-
tion l, 164

current_state ∈ EG state-snapshot of the current state (from the set of ghost
expressions), 145

declG(V) declared variable names of a ghost variable declaration
listV, 148

declG(F) declared field names of a ghost field declaration list F,
149

δπ,θCC-IL+G
concurrent C-IL+G transition function, 161

δπ,θC-IL+G
C-IL+G transition function, 158

dropframe(c) function that removes the top-most stack frame of config-
uration c, 158

205

dropghost(P) function that removes all ghost statements from C-IL+G

function body P, 163

EG set of ghost expressions, 144

FC-IL+G combined C-IL+G function table, 148
.F function table of annotated implementation functions (in

C-IL+G program), 148
. f function name (in C-IL+G stack frame), 150
.FG function table of ghost functions (in C-IL+G program),

148
f ∈ EG function name (from the set of ghost expressions), 144
F θ
π implementation function table, 148

frameC-IL+G C-IL+G stack frame configuration, 149
FunTG set of ghost function table entries, 147
FunT’ set of annotated C-IL function table entries, 146

γG
π,c
θ (x,z) array access reference function that computes a pointer

value to the subvariable of array value x specified by ar-
ray index z given C-IL+G configuration c and C-IL+G

program π, 155
ghost(e=allocghost(t)) ∈ SG allocate a new ghost variable of implementation or ghost

type t on the ghost heap, returning a pointer to the mem-
ory location specified by ghost expression e (from the set
of ghost statements), 146

ghost(call e(E)) ∈ SG ghost procedure call to function specified by ghost expres-
sion e with ghost parameters E (from the set of ghostl
statements), 146

ghost(goto l) ∈ SG ghost code jump to program location l (from the set of
ghost statements), 146

ghost(ifnot e goto l) ∈ SG conditional ghost code jump based on the value of ghost
expression e to program location l (from the set of ghost
statements), 146

ghost(return e) ∈ SG return the value of ghost expression e (from the set of
ghost statements), 146

ghost(return) ∈ SG return without value (from the set of ghost statements),
146

ghost(e0=e1) ∈ SG ghost assigment of value specified by expression e1 to
memory address specified by expression e0 (from the set
of ghost statements), 146

ghost(e0=call e(E)) ∈ SG ghost function call to function specified by ghost expres-
sion e with ghost parameters E that writes the return value
of the function to the memory location specified by ghost
expression e0 (from the set of ghost statements), 146

206

goto l ∈ S′ jump to program location l (from the set of annotated C-IL
statements), 145

ifnot e goto l ∈ S′ conditional jump based on the value of expression e to
program location l (from the set of annotated C-IL state-
ments), 145

in_state(e,e′) ∈ EG evaluating ghost expression e′ in the state specified by
state-snapshot given by expression e (from the set of ghost
expressions), 145

incloc(c) function that increases the location counter of the top-
most stack frame of configuration c, 158

Inv1 invariant 1 (return destination of ghost functions are ghost
left values, 166

Inv2 invariant 2 (ghost code can always execute), 167
Inv3 invariant 3 (return value destinations of implementation

stack frames are all implementation values), 167
Inv4 invariant 4 (state of the ghost stack), 167
isarray(t) predicate that checks whether implementation or ghost

type t is an array type, 138
isfunptr(t) predicate that checks whether implementation or ghost

type t is a function pointer type, 138
isptr(t) predicate that checks whether implementation or ghost

type t is a pointer type, 138

lambda(t v; e) ∈ EG lambda expression with parameter v of type t specified
by ghost expression e (from the set of ghost expressions),
145

.loc location counter (in C-IL+G stack frame), 150

.ME local implementation memory (in C-IL+G stack frame),
149

.MEG local ghost memory (in C-IL+G stack frame), 150
MEG local ghost memory, 136
MG global ghost memory, 135
.M global implementation memory (in concurrent C-IL+G

configuration), 152
.M global implementation memory (in sequential C-IL+G

configuration), 150
map(t,t′) ∈ TG map ghost type from type t to type t′ (from the set of ghost

types), 137
math_int ∈ TG mathematical integer ghost type (from the set of ghost

types), 137
merge-impl-ghost(c,c′) function that merges the implementation memories of C-

IL configuration c′ to C-IL+G configuration c, 153

207

.MG global ghost memory (in concurrent C-IL+G configura-
tion), 152

.MG global ghost memory (in sequential C-IL+G configura-
tion), 150

.nfG next free ghost heap address (in sequential C-IL+G con-
figuration), 150

.nfG next free ghost heap address (in concurrent C-IL+G con-
figuration), 152

.ngpar number of ghost parameters (in annotated C-IL function
table entry), 146

.ngpar number of ghost parameters (in ghost function table en-
try), 147

.npar number of implementation parameters (in annotated C-IL
function table entry), 146

obj ∈ TG generic pointer ghost type (from the set of ghost types),
137

.P function body (in annotated C-IL function table entry),
147

.P function body (in ghost function table entry), 147
PtopG(π,c) function body of the top-most stack frame of configura-

tion c in program π, 158
progC-IL+G C-IL+G program configuration, 147
ptr(t) ∈ TG pointer type to ghost type t (from the set of ghost types),

137

.rds return value destination (in C-IL+G stack frame), 150
readG(θ,π,c,x) function that reads an implementation or ghost value from

C-IL+G configuration c from the memory location spec-
ified by C-IL+G pointer value x under environment pa-
rameters θ and C-IL+G program π, 153

readvalMG
(v,S) function that reads the subvalue specified by subvariable

selector string S of a structured ghost value v, 135
record tC ∈ TG record ghost type identified by composite type name tC

(from the set of ghost types), 137
.rettype type of the return value (in annotated C-IL function table

entry), 146
.rettype type of the return value (in ghost function table entry),

147
return e ∈ S′ return the value of expression e (from the set of annotated

C-IL statements), 145

208

return ∈ S′ return without value (from the set of annotated C-IL state-
ments), 145

.s stack (in sequential C-IL+G configuration), 150
SG set of ghost statements, 146
S′ set of annotated C-IL statements, 145
setloc(c,l) function that sets the location counter of the top-most

stack frame of configuration c to l, 158
setrds(c,v) function that sets the return value destination of the top-

most stack frame of configuration c to v, 158
siG(π,c) function that returns the index of the first ghost frame in

the stack of C-IL+G configuration c given C-IL+G pro-
gram π, 152

σG
π,c
θ (x, f) field reference function that computes a pointer value to

the subvariable of struct pointer value x specified by field
f given C-IL+G configuration c and C-IL+G program π,
155

sizeof(e) ∈ EG size of ghost expression e (from the set of ghost expres-
sions), 144

sizeof(t) ∈ EG size of type t (from the set of ghost expressions), 144
stacktop(c) function that returns the top-most stack frame of C-IL+G

configuration c, 152
state_t ∈ TG state-snapshot ghost type (from the set of ghost types),

137
stmtnext(π,c) next statement to be executed in configuration c of pro-

gram π, 158
sw1 sofware condition 1 (non-ghost expression does not use

ghost), 165
sw2 sofware condition 2 (ghost assignment has ghost left

value), 165
sw3 sofware condition 3 (gotos never leave a ghost block), 165
sw4 sofware condition 4 (return value destination of ghost

functions are a ghost values), 166
sw5 software condition 5 (validity of ghost code), 166
sw6 software condition 6 (ghost code terminates), 167

.TF type table for fields of implementation struct types (in C-
IL+G program), 148

.TFG type table for ghost fields of struct types (in C-IL+G pro-
gram), 148

TG set of ghost types, 137
τFG(f ,T) declared type for field name f in ghost field declaration

list T , 149
τG(x) type of ghost or implementation value x, 141

209

τVG(v,V) declared type for variable name v in ghost variable decla-
ration listV, 149

.Th thread component (in concurrent C-IL+G configuration),
152

.VG implementation global variable declarations (in C-IL+G

program), 147
.VGG global ghost variable declarations (in C-IL+G program),

147
.V implementation parameter and local variable declarations

(in annotated C-IL function table entry), 147
.VG ghost parameter and local variable declarations (in anno-

tated C-IL function table entry), 147
.VG ghost parameter and local variable declarations (in ghost

function table entry), 147
VGtop(π,c) function that returns the set of ghost local variable names

declared in the top-most stack frame of C-IL+G configu-
ration c given C-IL+G program π, 154

v ∈ EG variable name (from the set of ghost expressions), 144
Vtop(π,c) function that returns the set of implementation local vari-

able names declared in the top-most stack frame of C-
IL+G configuration c given C-IL+G program π, 154

valgfun set of symbolic ghost function values, 141
valG set of ghost values, 138
valG(t) set of values of implementation or ghost type t, 139
valghost-ptr+array set of ghost pointer and array values, 140
valgref set of global ghost reference values, 140
vallrefG set of local ghost reference values, 141
valMG set of structured ghost values, 133
valmap set of map values, 139
valmath_int set of mathematical integer values, 139
valobj set of generic pointer values, 139
valrecord set of record values, 140
valstate_t set of state-snapshot values, 139

writeG(θ,π,c,x,y) function that writes implementation or ghost value y to C-
IL+G configuration c to the memory location specified by
C-IL+G pointer value x under environment parameters θ
and C-IL+G program π, 153

writevalMG
(v,S ,y) function that writes a structured ghost value y to a struc-

tured ghost value v as subvalue specified by subvariable
selector string S , 135

210

zeroG(θ,v) predicate that checks whether given implementation or
ghost value x is a zero-value given C-IL environment pa-
rameters θ, 142

G[[x]]π,θc,pλ function that evaluates ghost expression x in a given C-
IL+G configuration c and C-IL+G program π under envi-
ronment parameters θ and lambda-parameter value func-
tion pλ, 156

	e ∈ EG unary operator applied to ghost expression e (from the set
of ghost expressions), 144

(e0 ⊕ e1) ∈ EG binary operator applied to ghost expressions e0 and e1
(from the set of ghost expressions), 144

(e ? e0 : e1) ∈ EG ternary operator applied to ghost expressions e, e0 ane e1
(from the set of ghost expressions), 144

(t)e ∈ EG type cast of ghost expression e to implementation or ghost
type t (from the set of ghost expressions), 144

∗(e) ∈ EG pointer dereferencing operation applied to ghost expres-
sion e (from the set of ghost expressions), 144

&(e) ∈ EG address-of operation applied to ghost expression e (from
the set of ghost expressions), 144

(e). f ∈ EG field access of field f in ghost expression e (from the set
of ghost expressions), 144

e[e′] ∈ EG map or ghost array access of index or parameter specified
by ghost expression e′ in ghost expression e (from the set
of ghost expressions), 145

e{ f : =e′} ∈ EG record update of field f with value specified by ghost ex-
pression e′ to record specified by ghost expression e (from
the set of ghost expressions), 145

(e0=e1) ∈ S′ implementation assigment of value specified by expres-
sion e1 to memory address specified by expression e0
(from the set of annotated C-IL statements), 145

(e0=call e(E,E′)) ∈ S′ annotated function call to function specified by expres-
sion e with implementation parameters E and ghost pa-
rameters E′ that writes the return value of the function to
the memory location specified by expression e0 (from the
set of annotated C-IL statements), 145

211

Bibliography

[ACHP10] E. Alkassar, E. Cohen, M. Hillebrand, and H. Pentchev. Modular specification and
verification of interprocess communication. In Formal Methods in Computer Aided
Design (FMCAD) 2010. IEEE, 2010.

[ACKP12] E. Alkassar, E. Cohen, M. Kovalev, and W. Paul. Verification of tlb virtualization
implemented in c. In 4th International Conference on Verified Software: Theories,
Tools, and Experiments, VSTTE’12, Lecture Notes in Computer Science, Philadel-
phia, USA, 2012. Springer-Verlag.

[Age01] International Atomic Energy Agency. Investigation of an accidental exposure of
radiotherapy patients in Panama : report of a team of experts 26 May-1 June 2001.
IAEA, Vienna :, 2001.

[AHL+09] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach, N. W. Schirmer, A. Starostin,
and A. Tsyban. Balancing the load: Leveraging semantics stack for systems veri-
fication. 42, Numbers 2-4:389–454, 2009.

[AL88] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theo-
retical Computer Science, 82:253–284, 1988.

[Alk09] Eyad Alkassar. OS Verification Extended - On the Formal Verification of Device
Drivers and the Correctness of Client/Server Software. PhD thesis, University of
Saarland, 2009.

[App11] Andrew W. Appel. Verified software toolchain. In Proceedings of the 20th Euro-
pean conference on Programming languages and systems: part of the joint Euro-
pean conferences on theory and practice of software, ESOP’11/ETAPS’11, pages
1–17, Berlin, Heidelberg, 2011. Springer-Verlag.

[ASS08] Eyad Alkassar, Norbert Schirmer, and Artem Starostin. Formal pervasive verifi-
cation of a paging mechanism. In C. R. Ramakrishnan and Jakob Rehof, editors,
14th intl Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS08), volume 4963 of LNCS, pages 109–123. Springer, 2008.

[Bau08] Christoph Baumann. Formal specification of the x87 floating-point instruction set.
Master’s thesis, Saarland University, 2008.

[Bau12] Christoph Baumann. Reordering and simulation in concurrent systems. Technical
report, Saarland University, Saarbrücken, 2012.

[BJ01] C. Berg and C. Jacobi. Formal verification of the VAMP floating point unit. In
Proc. 11th Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME), volume 2144 of LNCS, pages 325–339.
Springer, 2001.

213

[BJK+03] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W.J. Paul. Instantiating unin-
terpreted functional units and memory system: functional verification of the vamp.
In D. Geist and E. Tronci, editors, CHARME 2003, volume 2860 of LNCS, pages
51–65. Springer, 2003.

[BL09] Sandrine Blazy and Xavier Leroy. Mechanized semantics for the clight subset of
the c language. Journal of Automated Reasoning, 43:263–288, 2009.

[BLR11] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software
model checking with slam. Commun. ACM, 54(7):68–76, July 2011.

[Boc] Bochs ia-32 emulator project. URL: http://bochs.sourceforge.net.

[CAB+09] E. Cohen, A. Alkassar, V. Boyarinov, M. Dahlweid, U. Degenbaev, M. Hille-
brand, B. Langenstein, D. Leinenbach, M. Moskal, S. Obua, W. Paul, H. Pentchev,
E. Petrova, T. Santen, N. Schirmer, S. Schmaltz, W. Schulte, A. Shadrin, S. Tobies,
A. Tsyban, and S. Tverdyshev. Invariants, modularity, and rights. In Amir Pnueli,
Irina Virbitskaite, and Andrei Voronkov, editors, Perspectives of Systems Informat-
ics (PSI 2009), volume 5947 of Lecture Notes in Computer Science, pages 43–55.
Springer, 2009.

[CDH+09] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C. In
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Markus Wenzel, editors,
Proceedings of the 22nd International Conference on Theorem proving in Higher-
Order Logics (TPHOLs 2009), volume 5674 of Lecture Notes in Computer Science,
pages 23–42, Munich, Germany, 2009. Springer.

[CMST10] Ernie Cohen, Michał Moskal, Wolfram Schulte, and Stephan Tobies. Local verifi-
cation of global invariants in concurrent programs. In Proceedings of the 22nd in-
ternational conference on Computer Aided Verification, CAV’10, pages 480–494,
Berlin, Heidelberg, 2010. Springer-Verlag.

[CMTS09] Ernie Cohen, Michał Moskal, Stephan Tobies, and Wolfram Schulte. A precise yet
efficient memory model for C. Electronic Notes in Theoretical Computer Science,
254:85–103, 2009.

[CPS13] E. Cohen, W. Paul, and S. Schmaltz. Theory of multi core hypervisor verification.
In Proceedings of the 39th Conference on Current Trends in Theory and Practice
of Computer Science, SOFSEM ’13, Berlin, Heidelberg, 2013. Springer-Verlag.

[CS10] Ernie Cohen and Bert Schirmer. From total store order to sequential consistency:
A practical reduction theorem. In Matt Kaufmann and Lawrence Paulson, editors,
Interactive Theorem Proving, volume 6172 of Lecture Notes in Computer Science,
pages 403–418. Springer Berlin / Heidelberg, 2010.

214

http://bochs.sourceforge.net

[CYGC10] Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou. Ef-
ficient methods for formally verifying safety properties of hierarchical cache
coherence protocols. Formal Methods in System Design, 36:37–64, 2010.
10.1007/s10703-010-0092-y.

[DDB08] Matthias Daum, Jan Dörrenbächer, and Sebastian Bogan. Model stack for the per-
vasive verification of a microkernel-based operating system. In Bernhard Beckert
and Gerwin Klein, editors, 5th International Verification Workshop (VERIFY’08),
volume 372 of CEUR Workshop Proceedings, pages 56–70. CEUR-WS.org, 2008.

[Deg11] Ulan Degenbaev. Formal Specification of the x86 Instruction Set Architecture. PhD
thesis, Saarland University, Saarbrücken, 2011.

[DMS+09] Markus Dahlweid, Michał Moskal, Thomas Santen, Stephan Tobies, and Wolfram
Schulte. VCC: Contract-based modular verification of concurrent C. In ICSE
Companion 2009: 31st International Conference on Software Engineering, pages
429–430. IEEE, May 2009.

[Dör10] Jan Dörrenbächer. Formal Specification and Verification of a Microkernel. PhD
thesis, Saarland University, Saarbrücken, 2010.

[DPS09] Ulan Degenbaev, Wolfgang J. Paul, and Norbert Schirmer. Pervasive theory of
memory. In Susanne Albers, Helmut Alt, and Stefan Näher, editors, Efficient Algo-
rithms – Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday,
volume 5760 of Lecture Notes in Computer Science, pages 74–98. Springer, 2009.

[DSS09] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. Implementation cor-
rectness of a real-time operating system. In 7th IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2009), 23–27 November 2009,
Hanoi, Vietnam, pages 23–32. IEEE, 2009.

[ER08] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about it.
In Proceedings of the 8th ACM international conference on Embedded software,
EMSOFT ’08, pages 255–264, New York, NY, USA, 2008. ACM.

[Fre05] Freescale semiconductor. Programming Environments Manual for 32-Bit Imple-
mentations of the PowerPC™Architecture, September 2005.

[GHLP05] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the correctness of
operating system kernels. In J. Hurd and T. Melham, editors, Theorem Proving in
High Order Logics (TPHOLs) 2005, LNCS, Oxford, U.K., 2005. Springer.

[HIdRP05] M. Hillebrand, T. In der Rieden, and W.J. Paul. Dealing with I/O Devices in the
Context of Pervasive System Verification. In 23nd IEEE International Conference
on Computer Design: VLSI in Computers and Processors (ICCD 2005), 2-5 Octo-
ber 2005, San Jose, CA, USA, Proceedings, pages 309–316. IEEE, 2005.

215

[HL09] Mark A. Hillebrand and Dirk C. Leinenbach. Formal Verification of a Reader-
Writer Lock Implementation in C. Electron. Notes Theor. Comput. Sci., 254:123–
141, October 2009.

[Hot12] Jenny Hotzkow. Store Buffers as an Alternative to Model Self Modifying Code.
Bachelor’s Thesis, Saarland University, Saarbrücken, 2012.

[HP08] Martin Hofmann and Mariela Pavlova. Elimination of ghost variables in program
logics. In In Trustworthy Global Computing: Revised Selected Papers from the
Third Symposium TGC 2007, number 4912 in LNCS, pages 1–20. Springer, 2008.

[HRP05] Mark A. Hillebrand, Thomas In der Rieden, and Wolfgang J. Paul. Dealing with
I/O Devices in the Context of Pervasive System Verification. In Proceedings of the
2005 International Conference on Computer Design, ICCD ’05, pages 309–316,
Washington, DC, USA, 2005. IEEE Computer Society.

[HS65] Juris Hartmanis and Richard E. Stearns. On the Computational Complexity of
Algorithms. Transactions of the American Mathematical Society, 117:285–306,
May 1965.

[HT09] M. Hillebrand and S. Tverdyshev. Formal verification of gate-level computer sys-
tems. In A. Rybalchenko A. Morozov, K. Wagner and A. Frid., editors, 4th In-
ternational Computer Science Symposium in Russia, volume 5675 of LNCS, pages
322–333. Springer, 2009.

[Int10] Intel, Santa Clara, CA, USA. Intel®64 and IA-32 Architectures Software Devel-
oper’s Manual: Volumes 1-3b, June 2010.

[ISO99] ISO 9899:1999 Programming Languages - C, 1999.

[KAE+10] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal Veri-
fication of an Operating System Kernel. Communications of the ACM, 53(6):107–
115, Jun 2010.

[Kov12] Mikhail Kovalev. TLB Virtualization in the Context of Hypervisor Verification.
PhD thesis, Saarland University, Saarbrücken, 2012.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Pren-
tice Hall Professional Technical Reference, 2nd edition, 1988.

[LABS12] Xavier Leroy, W. Appel, Andrew, Sandrine Blazy, and Gordon Stewart. The Com-
pCert Memory Model, Version 2. Rapport de recherche RR-7987, INRIA, June
2012.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

216

[Lan97] G. Le Lann. An analysis of the Ariane 5 flight 501 failure - a system engineer-
ing perspective. Proceedings of the International Conference and Workshop on
Engineering of Computer-Based Systems, pages 339–346, 1997.

[Lei08] Dirk Leinenbach. Compiler Verification in the Context of Pervasive System Verifi-
cation. PhD thesis, Saarland University, Saarbrücken, 2008.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[Lev93] Nancy G. Leveson. An Investigation of the Therac-25 Accidents. IEEE Computer,
26:18–41, 1993.

[LS09] D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V hypervisor with
VCC. In 16th International Symposium on Formal Methods (FM 2009), vol-
ume 5850 of Lecture Notes in Computer Science, pages 806–809, Eindhoven, the
Netherlands, 2009. Springer.

[Mau11] Stefan Maus. Verification of Hypervisor Subroutines written in Assembler. PhD
thesis, Universität Freiburg, 2011.

[Mica] Microsoft Research. The VCC Manual. URL: http://vcc.codeplex.com.

[Micb] Microsoft Research. The VCC webpage. URL: http://vcc.codeplex.com.

[MIP05] MIPS Technologies, 1225 Charleston Road, Mountain View, CA. MIPS32 Archi-
tecture for Programmers Volume II: The MIPS32 Instruction Set, 2.5 edition, July
2005.

[MMS08] Stefan Maus, Michał Moskal, and Wolfram Schulte. Vx86: x86 assembler simu-
lated in C powered by automated theorem proving. In José Meseguer and Grigore
Roşu, editors, Algebraic Methodology and Software Technology (AMAST 2008),
volume 5140 of Lecture Notes in Computer Science, pages 284–298, Urbana, IL,
USA, July 2008. Springer.

[Moo89] J Strother Moore. System verification. Journal of Automated Reasoning, 5:409–
410, 1989. 10.1007/BF00243130.

[MP00] S.M. Müller and W.J. Paul. Computer Architecture, Complexity and Correctness.
Springer, 2000.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. Cil:
Intermediate language and tools for analysis and transformation of c programs. In
Proceedings of the 11th International Conference on Compiler Construction, CC
’02, pages 213–228, London, UK, 2002. Springer-Verlag.

[nxb10] AMD64 Architecture Programmer’s Manual: Volumes 1-3, 2010.

217

http://vcc.codeplex.com
http://vcc.codeplex.com

[Owe10] Scott Owens. Reasoning about the implementation of concurrency abstractions
on x86-tso. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 478–503, Berlin, Heidelberg, 2010. Springer-
Verlag.

[Pau12] Wolfgang Paul. A Pipelined Multi Core MIPS Machine - Hardware
Implementation and Correctness Proof. URL: http://www-wjp.cs.
uni-saarland.de/lehre/vorlesung/rechnerarchitektur2/ws1112/
layouts/multicorebook.pdf, 2012.

[Pra95] Vaughan Pratt. Anatomy of the pentium bug. In TAPSOFT ’95: Theory and Prac-
tice of Software Development, volume 915 of Lecture Notes in Computer Science,
pages 97–107. Springer-Verlag, 1995.

[PSS12] Wolfgang J. Paul, Sabine Schmaltz, and Andrey Shadrin. Completing the auto-
mated verification of a small hypervisor - assembler code verification. In George
Eleftherakis, Mike Hinchey, and Mike Holcombe, editors, SEFM, volume 7504 of
Lecture Notes in Computer Science, pages 188–202. Springer, 2012.

[QEM] Qemu processor emulator project. URL: http://qemu.org.

[Rit93] Dennis M. Ritchie. The development of the C language. In The second ACM
SIGPLAN conference on History of programming languages, HOPL-II, pages 201–
208, New York, NY, USA, 1993. ACM.

[Sch06] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München, 2006.

[Sha12] Andrey Shadrin. Mixed low- and high level programming language semantics
and automated verification of a small hypervisor. PhD thesis, Saarländische
Universitäts- und Landesbibliothek, Postfach 151141, 66041 Saarbrücken, 2012.

[SS86] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and
their support by the ieee futurebus. In Proceedings of the 13th annual international
symposium on Computer architecture, ISCA ’86, pages 414–423, Los Alamitos,
CA, USA, 1986. IEEE Computer Society Press.

[SS12] S. Schmaltz and A. Shadrin. Integrated semantics of intermediate-language c
and macro-assembler for pervasive formal verification of operating systems and
hypervisors from verisoftxt. In Rajeev Joshi, Peter Müller, and Andreas Podel-
ski, editors, 4th International Conference on Verified Software: Theories, Tools,
and Experiments, VSTTE’12, volume 7152 of Lecture Notes in Computer Science,
Philadelphia, USA, 2012. Springer Berlin / Heidelberg.

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. x86-tso: a rigorous and usable programmer’s model for x86 mul-
tiprocessors. Commun. ACM, 53(7):89–97, July 2010.

218

http://www-wjp.cs.uni-saarland.de/lehre/vorlesung/rechnerarchitektur2/ws1112/layouts/multicorebook.pdf
http://www-wjp.cs.uni-saarland.de/lehre/vorlesung/rechnerarchitektur2/ws1112/layouts/multicorebook.pdf
http://www-wjp.cs.uni-saarland.de/lehre/vorlesung/rechnerarchitektur2/ws1112/layouts/multicorebook.pdf
http://qemu.org

[Tve09] Sergey Tverdyshev. Formal Verification of Gate-Level Computer Systems. PhD
thesis, Saarland University, Computer Science Department, 2009.

[Ver07] Verisoft Consortium. The Verisoft Project. URL: http://www.verisoft.de/,
2003-2007.

[Ver10] Verisoft Consortium. The Verisoft-XT Project. URL: http://www.verisoftxt.
de/, 2007-2010.

[Vir] Virtualbox x86 virtualization project. URL: http://www.virtualbox.org.

[vW81] A. van Wijngaarden. Revised report of the algorithmic language algol 68. ALGOL
Bull., pages 1–119, August 1981.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
methods: Practice and experience. ACM Comput. Surv., 41:19:1–19:36, October
2009.

219

http://www.verisoft.de/
http://www.verisoftxt.de/
http://www.verisoftxt.de/
http://www.virtualbox.org

	Introduction
	Notation
	Fundamental Notation
	Sequences
	Booleans and Logic Operators
	Representations of Numbers
	Binary Numbers and Bit-Strings
	Arithmetics on Binary Numbers

	Models of Computation
	Automata
	Reachability & Traces
	Simulation Theorems

	Semantics of Programming Languages
	Operational Semantics
	Formalizing Operational Semantics as an Automaton

	Concurrency

	Theory of Multi-Core Hypervisor Verification
	Introduction and Overview
	Correctness of Operating System Kernels and Hypervisors
	Overview

	ISA Specification and Processor Correctness
	Related Work
	Modeling an x86-64-like ISA-sp
	Gate Level Correctness for Multi-Core Processors
	Future Work

	Abstracting ISA-sp to ISA-u
	Caches
	Store Buffers and Ownership Disciplines
	Eliminating MMUs
	Mixed ISA-sp and ISA-u Computations
	Future Work

	Serial Language Stack
	Using Consistency Relations to Switch Between Languages
	Related Work
	A Serial Language Stack for Hypervisor Verification
	Future Work

	Adding Devices
	Related Work
	Multi-Core Processors and Devices
	Future Work

	Extending the Serial Language Stack to Multi-Core Computations
	Related Work
	Extending the Language Stack
	Future Work

	Soundness of VCC and its Use
	Related Work
	Soundness of VCC
	Using VCC for Languages Other Than C
	Verifying Device Drivers with VCC
	Future Work

	Hypervisor Correctness
	Related Work
	Hypervisor Verification in VCC
	Future Work

	Conclusion

	MIPS-86 – a Formal Model of a Multi-Core MIPS Machine
	Instruction-Set-Architecture Overview and Tables
	Instruction Layout
	Coprocessor Instructions and Special-Purpose Registers
	Interrupts

	Overview of the MIPS-86-Model
	Configurations
	Transitions

	Memory
	TLB
	Address Translation
	TLB Configuration
	TLB Definitions

	Processor Core
	Auxiliary Definitions for Instruction Execution
	Definition of Instruction Execution
	Auxiliary Definitions for Triggering of Interrupts
	Definition of Interrupt Execution

	Store Buffer
	Instruction Pipelining May Introduce a Store-Buffer
	Configuration
	Transitions
	Auxiliary Definitions

	Devices
	Introduction to Devices, Interrupts and the APIC Mechanism
	Configuration
	Transitions
	Device Outputs
	Device Initial State
	Specifying a Device

	Local APIC
	Configuration
	Transitions

	I/O APIC
	Configuration
	Transitions

	Multi-Core MIPS
	Inputs of the System
	Auxiliary Definitions
	Transitions of the Multi-Core MIPS
	Multi-Core MIPS Computation

	Booting a MIPS-86 Machine
	Initial Configuration after Reset
	Booting

	C-IL Semantics
	The C Programming Language
	Basic Features & Design Decisions
	Basic Sets

	Environment Parameters
	Types
	The Set of Types
	Type Qualifiers & Qualified Types

	Values
	Performing Type Cast on Values
	Operators

	Programs
	Expressions
	Statements

	Configurations
	Memory

	Operational Semantics
	Auxiliary Definitions
	Expression Evaluation
	Transition Function
	Concurrent C-IL

	Specification (Ghost) State and Code
	Ghost State
	Ghost Memory
	Ghost Types
	Ghost Values

	Ghost Code
	Expressions
	Statements
	Programs

	Operational Semantics
	Configurations
	Expression Evaluation
	Transition Function

	Simulation Between C-IL and C-IL+G
	Projecting C-IL+G to C-IL
	Software Conditions and Invariants for Simulation
	Lemmas for Simulation
	Simulation Proof

	Future Work & Conclusion
	Symbol Tables
	Basic Notation
	MIPS-86 Symbol Table
	C-IL Symbol Table
	C-IL+G Symbol Table

	References

