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Abstract

This thesis introduces the DLXπ+, a super-pipelined processor with variable cycle
time. The cycle time of the DLXπ+ may be as low as 9 gate delays (including 5
gate delays for registers), which is assumed to be a lower bound for the cycle time.
For the parts of the DLXπ+ that significantly differ form previous implementations
correctness proofs are provided. Formulas are developed which compute restrictions
to the parameters of the DLXπ+, e.g., the maximum number of reservation station
entries for a given cycle time. The formulas also compute what modifications to the
base design have to be made in order to realize a certain cycle time and what theimpact
is on the number of pipeline stages. This lays the foundation for computing the time
per instruction of the DLXπ+ for a given benchmark and different cycle times in future
work in order to determine the “optimum” cycle time.

Kurzzusammenfassung

In dieser Arbeit wird die DLXπ+ eingef̈uhrt, ein super-gepipelineter Prozessor mit va-
riabler Zykluszeit. Die Zykluszeit der DLXπ+ kann bis auf 9 Gatter-Delays (inklusive
5 Gatter-Delays f̈ur Register) reduziert werden, was als untere Schranke für die Zy-
kluszeit angesehen wird. Für die Teile der DLXπ+, die sich signifikant von bisherigen
Implementierungen unterscheiden, werden Korrektheits-Beweise geliefert. Desweite-
ren werden Formeln entwickelt, die Beschränkungen f̈ur die Parameter der DLXπ+ wie
zum Beispiel die maximale Anzahl von Reservation Station Einträgen f̈ur eine gege-
bene Zykluszeit berechnen. Die Formeln errechnen ausserdem welche Modifikationen
am Basis-Design notwendig sind, um eine bestimmte Zykluszeit zu erreichen und wel-
chen Einfluss dies auf die Anzahl der Pipeline-Stufen hat. Damit wird die Grundlage
gelegt, um als zuk̈unftige Arbeit die ben̈otigte Zeit pro Instruktion der DLXπ+ für
einen gegebenen Benchmark bei verschiedenen Zykluszeiten zu berechenen und da-
mit die “optimale” Zykluszeit zu bestimmen.
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Extended Abstract

In order to increase the performance of a processor regarding a specific benchmark one
can either decrease the cycle time of the processor or the CPI (cycles perinstruction)
that the processor needs for the benchmark. Usual ways to decreasethe CPI are, e.g.,
pipelining, out-of-order execution, branch prediction, or super-scalar designs. This
thesis focuses on the cycle time.

The cycle time of a processor can be improved by increasing the number of pipeline
stages of the processor and therefore decreasing the amount of workto be done in each
stage. This is called super-pipelining. Note that super-pipelining may increase the CPI
for several reasons. Due to the increased number of pipeline stages, data dependencies
may have a larger impact. Also, the fewer amount of logic that fits into one cyclemay
have a negative impact on the micro-architecture, e.g., reduce the maximum number
of possible reservation stations entries. This may increase the frequency of stalls and
therefore increase the CPI. Thus, the minimum cycle time may not be the optimal cycle
time for a design and a given benchmark.

This thesis introduces the DLXπ+, a super-pipelined processor with variable cycle
time, i.e., with a variable number of pipeline stages. For computation of cycle time
and cost of the DLXπ+ the technology independent gate model from [MP00] is used.
The cycle time of the DLXπ+ may be as low as 9 gate delays (including 5 gate delays
for the registers). For comparison, a 16 bit addition (which has 12 combinational gate
delays in the used model) needs less than half a cycle in the deeply pipelined Pentium
4 processor [HSU+01], but needs 3 cycles in the DLXπ+ with 9 gate delays cycle time.

The variant of the DLXπ+ with 9 gate delays cycle time is more a proof of concept
rather than it is assumed to have a good performance. Therefore, the mainpart of this
thesis only handles cycle times of at least 10 in order to simplify the design. A variant
of the DLXπ+ with a cycle time smaller than 9 is not assumed to be possible, although
no formal proof for this is provided.

In this thesis formulas are developed which compute restrictions to the parameters
of the DLXπ+, e.g., the maximum number of reservation station entries for a given
cycle time. Other formulas compute what modification to the base design have to be
made in order to realize a certain cycle time and what the impact is on the number
of pipeline stages. This lays the foundation to write a cycle-accurate DLXπ+ simu-
lator, that computes the performance of the DLXπ+ for a given benchmark and dif-
ferent cycle times in future work. Using this simulator the optimum cycle time of the
DLXπ+ for the benchmark could be determined.

The DLXπ+is an out-of-order processor that uses the Tomasulo scheduler [Tom67].
The design is based on the work of Kröning [Krö99]. The instruction set architecture
(ISA) is taken from the MIPS R3000 processor [KH92] with small modifications sim-
plifying the adaptation of the design. This allows a simulation of the DLXπ+with
MIPS R3000 instruction traces [Hil95] of the SPEC92 benchmark [SPEC].

In order to realize the small cycle times, parts of the DLXπ+differ significantly
from the design presented by Kröning. In particular new stalling and forwarding tech-
niques are used. If these techniques are used it is for example not longer obvious that a
RAM access returns the correct result. Therefore, correctness proofs are provided for
the critical parts of the DLXπ+.
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Zusammenfassung

Um die Leistung eines Prozessors bezüglich eines spezifischen Benchmarks zu verbes-
sern, kann man entweder die Zykluszeit oder die CPI (benötigte Anzahl von Zyklen
pro Instruktion) des Prozessors reduzieren. Bekannte Methoden dieCPI zu reduzieren
sind zum Beispiel Pipelining, Out-of-order Execution, Branch Predictionoder super-
skalare Designs. In dieser Arbeit geht es hingegen in erster Linie um dieReduzierung
der Zykluszeit.

Die Zykluszeit eines Prozessors kann durch Erhöhen der Anzahl von Pipeline-
Stufen des Prozessors und damit durch Reduzierung der Arbeit, die in jeder dieser Stu-
fen verrichtet werden muss, verbessert werden. Dies wird Super-Pipelining genannt.
Man beachte, dass Super-Pipelining die CPI aus verschiedenen Gründen erḧohen kann.
Auf Grund der gr̈oßeren Anzahl von Pipeline-Stufen könne Daten-Abḧangigkeite einen
größeren Einfluß haben. Ausserdem kann die geringe Menge von Logik,die in einen
Zyklus passt, negative Auswirkungen auf die Mikro-Architektur des Prozessors haben,
indem zum Beispiel die maximal m̈ogliche Anzahl von Reservation Stations Einträgen
reduziert wird. Dies kann die Ḧaufigkeit von Stalls und damit die CPI erhöhen. Daher
muss die minimale Zykluszeit nicht notwendigerweise die optimale Zykluszeit für ein
Design und einen gegebenen Benchmark sein.

In dieser Arbeit wird die DLXπ+ eingef̈uhrt, ein super-gepipelineter Prozessor
mit variabler Zykluszeit, das heisst mit variabler Anzahl von Pipeline-Stufen. Zur Be-
rechnung von Zykluszeit und Kosten der DLXπ+ wird das von der Technologie un-
abḧangige Gatter Model aus [MP00] verwendet. Die Zykluszeit der DLXπ+ kann bis
auf 9 Gatter-Delays (inklusive 5 Gatter-Delays für die Register) reduziert werden. Zum
Vergleich, die Berechnung einer 16 bit Addition (die in dem benutzten GatterModel
12 Gatter-Delays benötigt) braucht weniger als einen halben Takt im tief gepipelineten
Pentium 4 Prozessor [HSU+01], aber braucht 3 Takte in der DLXπ+ mit 9 Gatter-
Delays Zykluszeit.

Die Variante der DLXπ+ mit 9 Gatter-Delays Zykluszeit dient nur als Machbarkeits-
Beweis. Es wird nicht erwartet, dass sie eine gute Leistung erreicht. Deshalb betrachtet
der Hauptteil dieser Arbeit nur Zykluszeiten von mindestens 10 um das Design zu ver-
einfachen. Eine Variante der DLXπ+ mit einer Zykluszeit von weniger als 9 wird nicht
als m̈oglich erachtet, auch wenn kein formaler Beweis dafür gegeben wird.

In dieser Arbeit werden Formeln entwickelt, die Beschränkungen f̈ur die Parameter
der DLXπ+wie zum Beispiel die maximale Anzahl von Reservation Station Einträgen
in Abhängigkeit von der Zykluszeit berechnen. Andere Formeln errechnen, welche
Modifikationen am Basis-Design notwendig sind um eine bestimmte Zykluszeit zu
erreichen und welchen Einfluss dies auf die Anzahl der Pipeline-Stufenhat. Damit
wird die Grundlage gelegt, um als zukünftige Arbeit einen Zyklus-genauen DLXπ+-
Simulator zu schreiben, der die Leistung der DLXπ+ für einen gegebenen Benchmark
und verschiedenen Zykluszeiten berechnet. Mit diesem Simulator wäre es m̈oglich, die
optimale Zykluszeit der DLXπ+für den Benchmark zu bestimmen.

Die DLXπ+ ist ein out-of-order Prozessor der den Tomasulo Scheduler [Tom67]
benutzt. Das Design basiert auf der Arbeit von Kröning [Krö99]. Der Instruktions-Satz
wurde mit kleinenÄnderungen, die die Anpassung des Designs erleichtern, vom MIPS
R3000 Prozessor [KH92]̈ubernommen. Dadurch ist es möglich, die DLXπ+ mit Hilfe
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von MIPS R3000 Traces [Hil95] des SPEC92 Benchmarks [SPEC] zu simulieren.
Um die geringe Zykluszeit zu erreichen, müssen Teile der DLXπ+ gegen̈uber dem

Design von Kr̈oning signifikant ver̈andert werden. Insbesondere müssen neue Techni-
ken zum Stallen und Forwarden einführt werden. Durch den Einsatz dieser Techniken
ist es zum Beispiel nicht mehr offensichtlich, dass ein RAM-Zugriff die korrekten Da-
ten liefert. Deshalb werden für die kritischen Teile der DLXπ+ Korrektheits-Beweise
geführt.
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Chapter 1

Introduction

Over the past fifty years the performance of microprocessors has dramatically in-
creased. The advances in lithography allowed the building of constantly smaller tran-
sistors. This made the transistors faster and also increased the number of available
transistors. A larger number of transistors made it possible to additionally increase the
performance of the processor by implementing more advanced and complex designs.

The performance of a processor regarding a specific benchmark canbe measured
in TPI, the average time per instruction. The TPI can be computed as the product
of the cycle time of the processor and the CPI (cycles per instruction). To increase
the performance of a processor one can either decrease the cycle time orthe CPI.
Known techniques that may decrease the CPI are, e.g., pipelining, out-of-order execu-
tion, branch prediction, or super-scalar designs. This thesis focuseson improving the
cycle time of the processor.

If technology improvements are neglected and the total work for processing an
instruction is not changed, a lower cycle time can only be achieved by increasing the
number of pipeline stages of the processor. Increasing the number of pipeline stages
over the 5 stages of a simple pipelined processor, e.g., the MIPS R3000 [KH92], is
called super-pipelining. However, extensive super-pipelining in orderto minimize the
cycle time does not necessarily maximize the TPI, since it may have a negative impact
on the CPI.

An increased number of pipeline stages increases the number of cycles needed for
“critical” loops, e.g, the execution of an ALU instruction and the forwardingof its
result to the following instructions, or the resolving of a branch misprediction. Thus,
the penalty for data dependencies or mispredicted branches becomes higher. This leads
to stall conditions occurring more often which increases the CPI. Note that aconstant
part of the cycle time is consumed by the register delay. Only the remaining partis
available for useful work. Splitting the cycle time in half therefore reduces the useful
work by more than the half. The number of cycles needed for a computation can be
more than doubled. Hence, the gain due to the lower cycle time may be lower than the
loss due to the increased CPI.

Additionally, the decreased logic depth that fits into a cycle may have a negative
impact on the micro-architecture of the processor. For example, if a register file access
must be pipelined, forwarding of the write ports must be implemented which increases
the combinational delay of the register file access. Also, it may happen that certain
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parameters of the micro-architecture such as the number of reservation stations entries
are bounded by the cycle time. Hence, for small cycle times it might be necessary to
reduce the number of reservation station entries which could increase the CPI. Numer-
ous other examples can be found throughout this thesis.

In order to investigate the side-effects and the limits of super-pipelining, this thesis
introduces the DLXπ+, a super-pipelined processor with a variable cycle time. The cy-
cle time and the cost of the DLXπ+ is computed using the technology independent gate
model from [MP00]. Additionally to the cycle time the DLXπ+ supports other vari-
able parameters, e.g., cache size, number of functional units, or number of reservation
station entries.

The minimum cycle time of the DLXπ+ is only 9 gate delays (including 5 gate de-
lays for the registers, thus leaving 4 gate delays for useful work). Notethat the deeply
pipelined Pentium 4 processor can compute a 16 bit addition (which has 12 combina-
tional gate delays in our model) in less than half a cycle [HSU+01]. Hence, based on
our model the amount of useful work that can be done in one cycle of the Pentium 4 is
at least six times higher than the 4 gate delays in one cycle of the DLXπ+ with mini-
mum cycle time. Even though the delay model may not be accurate as it neglects wire
delay and fanout, the error is probably much less than a factor of six. Theminimum
cycle time of the DLXπ+ is therefore assumed to be far smaller than the cycle time of
the Pentium 4 processor.

Some critical circuits of the DLXπ+ need two levels of multiplexers which together
have 4 gate delays and hence use up all the useful work that can be done with minimum
cycle time. Although no formal proof is provided, the author therefore assumes that it
is not possible to build a DLXπ+ with a cycle time below 9 without sacrificing, e.g, a
best-case CPI of 1. On the other hand, several trade-offs needed tobe made in order
to realize the DLXπ+ with 9 gate delays cycle time that can significantly increase the
CPI for realistic benchmarks. Therefore for simplicity the main part of this thesis only
treats cycle times of at least 10.

For cycle times of 10 and above this thesis develops formulas that define the behav-
ior of the DLXπ+. Dependent on the cycle time these formulas compute the necessary
modifications, the number of pipeline stages of the different parts of the design, and
the cost of the processor. Additionally, formulas are developed that compute restric-
tions to the parameters of the DLXπ+for a given cycle time. Using these formulas one
can write a cycle-accurate DLXπ+ simulator that computes the TPI of the DLXπ+ for
a given benchmark and different cycle times. Hence, one can determine the “opti-
mum” cycle-time giving maximum overall performance for the benchmark. This part
is future work.

The design of the DLXπ+is based on Kr̈oning’s out-of-order variant [Kr̈o99] of
the DLX [HP96] implementation by M̈uller and Paul [MP00]. The instruction set
architecture (ISA) is taken from the MIPS R3000 processor [KH92] withsmall modi-
fications simplifying the adaptation of the design. In contrary to the design of Müller
and Paul, the DLXπ+supports integer multiplications and divisions and does not use
a delayed PC. The choice of the MIPS R3000 ISA allows for an accurate simula-
tion of the DLXπ+by using MIPS R3000 instruction traces [Hil95] of the SPEC92
benchmark [SPEC]. A complete listing of the DLXπ+instruction set can be found in
appendix A.
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The DLX implementation by Kr̈oning is used as the starting point for the DLXπ+.
However, most circuits of Kr̈oning’s design have been redesigned. The changes either
decreased the combinational delay of the design or were necessary to allow small
cycle times. Especially an instruction fetch mechanism using branch predictionhad to
be introduced.

1.1 Outline

This thesis is structured as follows: the basics needed for the design of theDLXπ+ are
presented in chapter 2. Chapter 3 describes the Tomasulo algorithm that is used by the
DLXπ+ in order to execute instructions out-of-order. The design of the processor core
of the DLXπ+ with a cycle time of 10 and above is presented in chapters 4 to 6. Chap-
ter 4 details the core of the DLXπ+, chapters 5 and 6 detail the design of memory unit
and instruction fetch. The results of this thesis including the modifications necessary
for the DLXπ+ with a cycle time of 9 are discussed in chapter 7. A summary is given
in chapter 8.
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Chapter 2

Basics

In this chapter basic concepts used in this thesis are discussed. The notation and nam-
ing conventions are summarized in section 2.1. Section 2.2 introduces the gate model
used to compute cost and delay of circuits. The basic circuits used in this thesis are
presented in section 2.3. Section 2.4 introduces half-unary encoding used through-
out this thesis. Sections 2.5 and 2.6 discuss pipelining of circuits and RAM blocks.
These techniques are essential for the design of the DLXπ+ processor and the general
discussion simplifies the description in the later chapters.

2.1 Notation

In this thesis the following naming conventions will be used for circuits and signals:

• Circuit names are written insans serif.

• Register and signal names are written initalic.

• The output signal of a registerreg is also denoted byreg. The data input signal
is denoted byreg′.

• A busbus with indexes fromj to i is denoted bybus[j : i].

• Signals and busses can be combined to a multi-bus. A signalsig of a multi-bus
mbus is denoted bymbus.sig. The whole multi-bus is denoted bymbus.⋆.

• The outputs of a circuitCirc are often combined to the multi-busCirc.⋆.

• The concatenation of two signalssig1 andsig2 is denoted by{sig1, sig2}. If
the signals belong to the same multi-busmbus the notationmbus.{sig1, sig2}
is used.

• If multiple signals are differentiated by an index (e.g.sig0 to sign), thensig⋆

denotes all signals of this kind.

For readability the usage of⋆ to denote all signals of a multi-bus or all indexes
may be used imprecisely if it is clear from the context which signals are meant. If the
context differentiates the signalsmbus.a andmbus.⋆, thenmbus.⋆ means all signals
of the multi-bus except the signalmbus.a.
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2.2 Cost and Delay Model

To compare the performance and the cost (i.e., the area) of different processor designs
a simple gate model based on the gate model in [MP95] is used. All gates and registers
have constant delay. Fanout is not taken into account. The cost and delay of the gates
are summarized in table 2.1. A register has a delay of4 for the outputs and additionally
a setup time of1 for the inputs resulting in an overall delay of5.

INV NAND NOR AND OR MUX XOR XNOR REG

cost 1 2 2 2 2 3 4 4 8
delay 1 1 1 2 2 2 2 2 4+1

Table 2.1: Cost and delay of gates

The delay of a combinational path in a circuit is defined as the sum of the delays of
the gates on the path. The delay of a signal is the maximum delay of all combinational
paths from a register to the signal (excluding the delay of the register). The delay of a
circuit is the delay of the longest combinational path from an input or a register inside
the circuit to an output or a register inside the circuit. The following notations are used
for cost and delay of gates, signals, and circuits:

• For a gateGATE or a registerREG, the delays are denoted byDGATE and
DREG. The cost are denoted byCGATE andCREG.

• The delay of the signalsig is denoted byD(sig).

• D(sig1, sig2) denotes the maximum delay of two signalssig1 andsig2.

• For signalssig1 andsig2, D(sig1  sig2) denotes the maximum delay of all
combinational paths fromsig1 to sig2.

• For a circuitCirc, D(Circ) denotes the delay and C(Circ) denotes the cost of the
circuit.

INV NAND NOR AND OR MUX XOR XNOR REG

1 0

Table 2.2: Gate symbols

The symbols used for gates in this thesis are shown in table 2.2. Inverted linesare
indicated by small circles at the input or output of gates or circuits (see e.g.the NOR
gate). All registers have a clock enable signal. The clock enable signal isconnected
to the triangle shape of the register symbol. If no signal is connected to the triangle
shape, the clock enable is tied to one, i.e., the register is always clocked.

Registers are assumed to deliver both the negated and the non-negated value. Thus,
it is possible to replace any AND or OR gate on the critical path by NAND and NOR
gates using de Morgan’s law. For the same reason all inverters on the critical path
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can be removed. If a signal is used in multiple critical paths, it may be necessary
to compute both the negated and non-negated value. For the sake of readability in the
designs AND- and OR-gates will be used, but with the reduced delay to reflect a design
with NAND- and NOR-gates. The revised delay of inverters, AND- and OR-gates is
summarized in table 2.3.

INV AND OR

D 0 1 1

Table 2.3: Revised delay of inverters, AND-, and OR-gates

A RAM block with A lines,D data bits, and a single read/write port is denoted by
RAM(A, D). Cost and delay of such a RAM block can be computed by the following
formula from [MP95]:

C(RAM(A, D)) = 3 · (A + 3) · (D + ⌈log log D⌉),

D(RAM(A, D)) =

{

⌈log D⌉ + ⌈A/4⌉ A ≤ 64

3 · ⌈log A⌉ + 10 A > 64
.

RAM blocks may have multiple read and write ports. The write ports are numbered
from 1 to w. If multiple write accesses have the same target address, the write ports
with smaller index have higher priority.

A RAM block with r read ports andw write port is denoted byRAM(A, D, r, w).
Cost and delay of this RAM block is based on the delay of a simple RAM block. The
formula is taken from [Kr̈o99]:

C(RAM(A, D, r, w)) = C(RAM(A, D)) · (0.4 + 0.3 · (r + 2w)),

D(RAM(A, D, r, w)) = D(RAM(A, D)) · (0.5 + 0.25 · (r + 2w)).

At higher frequencies it is not possible to access a RAM block in a single cycle.
A RAM block which needsc cycles for every access is denoted byRAM(A,D,r,w,c).
The additional registers increases the cost of the RAM block by 10% per cycle.

C(RAM(A, D, r, w, c)) = C(RAM(A, D, r, w)) · (0.9 + 0.1 · c).

The design of pipelined RAM blocks that take multiple cycles for accesses is detailed
in section 2.6. The given cost does not include any additional circuits needed for
forwarding between the write and the read ports (see section 2.6.1).

2.3 Basic Circuits

Basic circuits such as adder, decoder, etc. which are used in this thesis are not dis-
cussed in detail. For cost and delay of the basic circuits and the design of ahalf-unary
find-last-one circuit see appendix C.1. The symbols for the basic circuits are shown in
table 2.4
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EncDec Decoder / Encoder

Sel Select Circuit (multiplexer with unary select signals)

FFO FLO Find-First-One Circuit / Find-Last-One Circuit

HFLO Half-unary Find-Last-One Circuit

ADD INC Adder / Incrementer

PP-ANDPP-OR
Parallel-Prefix-OR / Parallel-Prefix-AND

LS RS Left-Shifter / Right-Shifter

CLS CRS Cyclic-Left-Shifter / Cyclic-Right-Shifter

EQ =k? Equality Checker / Test against constant k

AND-Tree / OR-Tree

Circ
Tree of associative circuitCirc

Table 2.4: Basic Circuits

2.4 Encodings

The binary encoding withn bits of a numberi with 0 ≤ i < 2n is denoted by(i)bin(n).
If the width of the encoding is clear from the context, it can be omitted, i.e., the en-
coding can be denoted by(i)bin. The number represented by an binary encodingv of
lengthn is denoted by〈v〉. Thus:

〈v〉 =
n−1
∑

j=0

v[j] · 2j .

In multiple parts of the design of the DLXπ+unary respectively half-unary encod-
ings are used to represent numbers. The unary or half-unary encoding of lengthn of a
numberi is denoted by(i)un(n) respectively(i)hun. It is defined by:

(i)un(n) := 0n−i−2, 1, 0i,

(i)hun(n) := 0n−i−2, 1i+1.

The value represented by a vectorv in unary or half-unary encoding is denoted by
〈v〉un respectively〈v〉hun. Thus, assumingv is a valid encoding it holds:

〈v〉un = j if v[j] = 1,

〈v〉hun = max{j|v[j] = 1}.
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stallfull data

fullOut

fullIn dataIn

stall

clear

dataOut

logic
combinational

Figure 2.1: Stage

For unary and half-unary encodings, incrementers and decrementerscan be imple-
mented by one bit shifters, which have a constant delay ofDMUX :

(i + 1)un = (i)un[n − 2 : 0], 0, (i − 1)un = 0, (i)un[n − 1 : 1],

(i + 1)hun = (i)un[n − 2 : 0], 1, (i − 1)hun = 0, (i)un[n − 1 : 1].

Unary and half-unary encodings additionally allows the comparison of the represented
value against a given constant with zero delay since this information can bedirectly
derived from the signal with the corresponding index. Unary encodings are usually
used if it must be checked whether the value is equal to the constant, half-unary en-
codings are used if it must be checked whether the value is larger than a constant. For
a vectorv in unary respectively half-unary encoding and a numberj holds:

(v)un = j iff v[j] = 1,

(v)hun ≥ j iff v[j] = 1

Note that in half-unary encoding the bit0 is always one. Thus, it can often be
removed to reduced the size of the vector. In this case the value0 is represented by all
bits being zero.

2.5 Pipelining

2.5.1 Stages

The circuits of the processor are divided intostages. A stage is a combinational circuit
with a set of input registers (see figure 2.1). The delay of the combinational circuit is
calledcombinational delayof the stage. Usually a stage has an explicitfull register
indicating whether the stage contains valid information. A stage is calledfull if the full
bit is set. The clear signalclear resets the full bit, thus invalidating the content of the
stage. The stall signalstall is active if the registers of the stage may not be updated.

A sequence of numbered stages, where the outputs of stagei are used as inputs of
stagei + 1 is calledpipeline[Kog81] (see figure 2.2). If the signal namesig is used in
multiple stages, the index of the stage is added to the signal name (sigi) to distinguish
the signals. The combinational delay of a pipeline is the sum of the combinational
delays of the stages. Usually all stages of a pipeline have a common clear signal.
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clear

stall0

stalln−1

stall1

full0

full1

fulln−2

data0

data1

fullIn dataIn

fullOut dataOut

stage 0

stage 1

stage n-1
dataOutfullOut

fullOut dataOut

fullOut dataOut

fullIn dataIn

dataInfullIn

fullIn dataIn

clear

stall

clear

clear

stall

stall

datan−2

Figure 2.2: Pipeline withn stages

If the clear signal is not active, the flow of information through the pipeline is
steered by the stall signals. Assume the stagei is full. If the stagei + 1 is stalled
(i.e., the signalstalli+1 is active) the information in stagei cannot proceed to the next
stage. Then the stagei must also be stalled because otherwise the information in stage
i would be overwritten. If the stagei + 1 is not stalled, but the stagei is stalled (e.g.,
due to a cache miss), the output full bit of stagei which is the input full bit of stage
i+1 must be invalidated. Otherwise the information of stagei would be duplicated. If
a stage is not full it does not have to be stalled, as no information could be overwritten
or duplicated.

The stall engine of [Kr̈o01] also computes additional update enable signals that
control the update of the data registers. The update enable signal of a stage i is acti-
vated if the signalstalli is not active and the full bit of the stagei−1 is set. Hence, the
stagei is only updated if valid information flow from stagei − 1 to i. However, this it
not necessary for correctness, since the content of the data registermay be arbitrary if
the full bit is not set. Therefore, the update enable signals are omitted in this thesis.

In some circuits, parts of the registers of a stage have to be updated even ifthe
stage is stalled. These registers are not directly controlled by the stall signal, but the
new value of the registers often depends on the stall signal. Note that the delay of the
stall signal may be large and may increase combinational delay of the stage.

In order to combine multiple pipelines, a pipeline has two additional stall signals
stallIn andstallOut. The input signalstallIn must be active if the pipeline may
not output data on its data outputdataOut. The output signalstallOut is active if
the first stage of the pipeline cannot accept new data on its data inputdataIn, i.e.,
stallOut = stall0.

Consider a stage with a combinational delayD. The input registers have a delay
of DREG = 4. Due to the setup time of registers (which is 1), the stage bounds the
cycle timeτ to be at leastD + 5. To allow cycle times smaller thanD + 5, the stage
can be replaced by a pipeline of multiple stages that computes the same outputs. This
is done by splitting the combinational circuit in parts and adding registers whichstore
the intermediate results, called “pipelining the stage”.

If a certain cycle timeτ has to be reached, pipelining of the circuit must be done
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such that the combinational delay of each stage may be at mostδ := τ − 5. This max-
imum value for combinational delay of the stagesδ is calledstage depth. In this thesis
δ is considered instead of the cycle timeτ to reflect the frequency of the processor.

The transformation of a circuit into a pipeline ofs stages changes the number of
cycles needed to compute the result. For many circuits presented in this thesis the
value ofs is not relevant for the correctness of the processor. For example, it does not
matter if a floating point computation is divided into2 or 5 stages. It can be chosen
such that the pipeline adheres to the maximum stage depthδ. In this case this thesis
only describes the combinational circuit.

The transformation of a stage into a pipeline withc stages increases the cost of the
circuit (mainly) by the cost of the staging registers. Computing the exact number of
staging registers is usually difficult and needs to be done for eachs separately, because
it largely depends on the width of the intermediate results. In this thesis the additional
cost is only approximated by:

(c − 1) · ⌈(I + O)/2⌉ · CREG. (2.1)

where I is the number of inputs and O is the number of outputs of the combinational
circuit. This includes all additional hardware of the pipelining including the stall com-
putation and the buffer circuits (see the following section).

2.5.2 Computation of Stall Signals

A stagei of a pipeline can be stalled for two reasons. The stagei can generate the stall
itself, e.g., a cache stage might generate a stall due to a detected cache miss. This is
indicated by the signalgenStalli. If the stagei+1 is stalled, the stagei has also to be
stalled as the information in stagei cannot proceed to the stagei+1. Both cases can be
ignored, if stagei is not full (fulli = 0). In this case the registers of the stage do not
contain valid information and the stage can therefore receive new data. Tosummarize,
the stall signal of a stage is computed as:

stalli = fulli ∧ (genStalli ∨ stalli+1).

Similar to pipelines two signalsstallIni andstallOuti are defined for every stage
i. The signalstallIni corresponds to the signalstalli+1, stallOuti corresponds to
stalli.

A pipeline stage including the computation of the stall signal is shown in figure
2.3. The dashed line can be ignored for now. The full outputfullOut is only set to
zero if the signalgenStall is active in contrary to figure 2.1 where the stall signal is
used to resetfullOut. This simplification can be made as the information in the stage
cannot be duplicated ifgenStall is not active. Otherwise the stage can only be stalled
if the signalstallIn is active. In this case the succeeding stage is stalled too, will thus
not be updated, and hence the succeeding stage ignores the full output.

Consider a pipeline withc stages. Assume that no stage can generate a stall, i.e.,
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fullOut

Figure 2.3: A stage with stall computation

genStalli = 0 for all i. This simplifies the computation of the stall signal to:

stalli = fulli ∧ stalli+1

=
c−1
∧

j=i

fullj ∧ stallIn

Thus, a stage can only be stalled if all succeeding stages are full. Assume stagei is
the non-full stage with the highest index. If the stall input of the pipeline is active all
stages with index higher thani are stalled and all stages with index lower or equal toi
are not stalled. This removes the invalid information in stagei (called pipeline-bubble
removal).

Theorem 2.1. If the above implementation of the stall computation is used, the com-
binatorial depthD of a pipeline may be at most:

D ≤ δ · 2δ

Proof. Let c be the number of stages of the pipeline. It must holdc ≥ D/δ. The stall
signal for stage0 is computed as AND of the full bits of all stages and the input bit.
Thus, the delay is at leastDAND · ⌈log(c + 1)⌉. The stall signal must be computed in
one cycle. Thus:

δ ≥ DAND⌈· log(c + 1)⌉ ≥ log(c) ≥ log(D/δ)

⇔ 2δ ≥ D/δ

⇔ δ · 2δ ≥ D

The combinational delay of the multiplicative floating point unit used in this thesis
is 168. The theorem bounds the stage depthδ to be larger than5 since5 · 25 = 160.
Hence, in order to reduce the stage depth to5 or below, a different implementation for
stall computation must be found.
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2.5.3 Optimization of the Stall Computation

The simplest way to raise the bound given by the theorem is to change the computation
of the stall signal such that pipeline-bubbles are no longer removed. Forcorrectness it
is usually sufficient to compute the stall signal the following way:

stalli = genStalli ∨ stalli+1.

Yet the minimum stage depth is still bounded by the delay of the OR of all signals
genStall⋆ and the delay of the stall input of the pipeline. The delay of the stall input
can be significant, e.g., if the information in the last stage in the pipeline can flow into
multiple succeeding pipeline (as during decode where an instruction can be issued to
different reservation station (see chapter 3). Then the stall input must be computed
from the stall output of all acceding pipelines.

The bound given by the signalsgenStall⋆ and the stall input is highly implementa-
tion dependent and therefore not treated in detail. Instead a more sophisticated solution
to reduce the bound for the stage depth is described. This solution reduces the delay of
the stall signals by pipelining the stall computation itself, i.e., registers are inserted in
the stall computation circuit. This can be done by inserting a buffer circuit between the
registers of a stage and the combinational circuit, as shown in figure 2.4. The buffer
circuit is inserted at the dashed line of figure 2.3.

As long as the stage is not stalled, the buffer circuit is transparent, i.e. the outputs of
the buffer circuit are equal to the corresponding inputs. The signalfullBuf is then0
and hence connects the data output with the data input. However, if the stageis stalled,
the content of the full and data registers is saved in the buffer circuit. Thisenables the
stage to receive data from the preceding stage into the input registers without loosing
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the current information; the stall needs not to be propagated to the preceding stage. If
the buffer circuit contains a valid instruction, the output stall signal is active and the
stage is stalled. Hence, the stage is stalled not earlier than one cycle after theinput stall
signal becomes active. As soon as the stage is no longer stalled, the savedinformation
from the buffer circuit is sent, i.e., the buffer circuit is emptied, before thebuffer circuit
goes back into transparent mode.

The buffer circuit decreases the delay of the signalstallOut to the delay of an
AND gate independent of the delay of the stall inputstallIn. It divides the pipeline
in two pipelines with smaller stall circuits. Hence, the maximum combinational delay
is not longer limited by the stall signals. Note that each buffer circuit increases the
combinational delay of the pipeline by the delay of a mux. The correctness ofthe
buffer circuit is summarized in the following theorem. Note that the theorem only
handles the buffer circuit. Thus the signals used in the theorem as, e.g.,stallIn and
stallOut describe the inputs and output of the buffer circuit and not the stage.

Theorem 2.2. Assume the inputs of the buffer circuit obey the following properties.
The clear signal is active exactly in cycle 0:

clear(t) =

{

1 if t = 0

0 if t > 0
. (P0)

The signalstallIn is live:

∀t > 0∃t′ : t′ > t ∧ stallIn(t′) = 0. (P1)

The data of all instructions which enter the buffer circuit are distinguishable:

∀t, t′ > 0 :fullIn(t) = fullIn(t′) = 1 ∧ stallOut(t) = stallOut(t
′) = 0

∧ dataIn(t) = dataIn(t′) ⇒ t = t′. (P2)

Then the buffer circuit adheres to the following statements:
The buffer circuit is empty in cycle1:

fullBuf (1) = 0. (S0)

The signalstallOut is live.

∀t > 0∃t′ : t′ > t ∧ stallOut(t
′) = 0. (S1)

Every instruction which enters the circuit leaves the circuit exactly in the next possible
cycle:

∀t > 0 : fullIn(t) = 1 ∧ stallOut(t) = 0

⇒ {t′|fullOut(t
′) = 1 ∧ stallIn(t′) = 0 ∧ dataOut(t

′) = dataIn(t)} (S2)

= {min{t′ ≥ t|StallIn(t′) = 0}}

The ability to distinguish the instruction is needed for statement (S2). It can be
reached by adding a unique index to every instruction.1 Since this index has no influ-
ence on the behavior of the buffer circuit, it must not be implemented in hardware to
reach correctness. It is merely a means to state the theorem.

1It is a common trick to use a infinite set of tags for a completeness criterion.In can be proven later
on that a finite set suffices for correctness as, e.g., in [BJK+03].
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Proof. Statement (S0): The statement follows directly from the construction of the
clear signal.

Statement (S1): The output stall signal may only be active if the input stall signal
was active in the preceding cycle.

stallOut(t) = fullBuf (t)

= (fullBuf (t−1) ∨ full(t−1)) ∧ stallIn(t−1)

≤ stallIn(t−1)

The statement follows from property (P1).
Statement (S2): The equivalence of the sets is proven in two steps.

“⊇” Let t be such thatfullIn(t) = 1 andstallOut(t) = 0. It follows:

fullBuf (t) = stallOut(t) = 0. (2.2)

Let t′ bemin{t′ ≥ t|StallIn(t′) = 0}. The following two cases can be distin-
guished:

t′ = t: It follows:

fullOut(t
′) = fullOut(t) = fullIn(t) ∨ fullBuf (t) (2.2)

= fullIn(t) = 1,

dataOut(t
′) = dataOut(t) =

{

dataBuf (t) if fullBuf (t) = 1

dataIn(t) if fullBuf (t) = 0

(2.2)
= dataIn(t).

t′ 6= t: Hence,stallIn(t) = 1. If follows:

fullBuf (t+1) = (fullBuf (t) ∨ fullIn(t)) ∧ stallIn(t) ≥ fullIn(t) = 1,

dataBuf (t+1) =

{

dataBuf (t) if fullBuf (t) = 1

dataIn(t) if fullBuf (t) = 0

(2.2)
= dataIn(t).

By definition oft′ for all t with t < t < t′ holdsstallIn(t) = 1. For these
t the following can be proven by induction:

fullBuf (t+1) = (fullBuf (t) ∨ full(t)) ∧ stallIn(t)

≥ fullBuf (t) (Ind.)
= 1, (2.3)

dataBuf (t+1) =

{

dataBuf (t) if fullBuf (t) = 1

dataIn(t) if fullBuf (t) = 0

= dataBuf (t) (Ind.)
= dataIn(t). (2.4)
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Thus, the content of the registersfullBuf anddataBuf does not change
as long asstallIn andfullBuf are active. For the cyclet′ it follows:

fullOut(t
′) = fullIn(t′) ∨ fullBuf (t′) (2.3)

= 1,

dataOut(t
′) =

{

dataBuf (t′) if fullBuf (t′) = 1

dataIn(t′) if fullBuf (t′) = 0

(2.3)
= dataBuf (t′) (2.4)

= dataIn(t).

Thus,t′ is in the set{t′|fullOut(t
′) = 1 ∧ stallIn(t′) = 0 ∧ dataOut(t

′) =
dataIn(t)}

“⊆” Let t′ be such thatfullOut(t
′) = 1, stallIn(t′) = 0 anddataOut(t

′) = data(t).
Let t′′ bemax{t′′ < t′|stallOut(t

′′) = 0}. It follows:

fullBuf (t′′) = stallOut(t
′′) = 0 (2.5)

t′′ = t′: If follows:

fullIn(t′′) (2.5)
= fullIn(t′′) ∨ fullBuf (t′′) = fullOut(t

′′)

= fullOut(t
′) = 1

dataOut(t
′) = dataOut(t

′′) =

{

dataBuf (t′′) if fullBuf (t′′) = 1

dataIn(t′′) if fullBuf (t′′) = 0

(2.5)
= dataIn(t′′)

t′′ 6= t′: Hence,fullBuf (t′) = stallOut(t
′) = 1. It follows:

dataOut(t
′) =

{

dataBuf (t′) if fullBuf (t′) = 1

dataIn(t′) if fullBuf (t′) = 0

= dataBuf (t′)

By definition of t′′ for all t with t′′ < t < t′ holdsstallOut(t) = 1. For
theset the following can be proven by induction:

fullBuf (t) = stallOut(t) = 1 (2.6)

stallIn(t) ≥ stallIn(t) ∧ (fullBuf (t) ∨ fullIn(t))

= fullBuf (t+1) (2.6)
= 1

dataOut(t
′) (Ind.)

= dataBuf (t+1) =

{

dataBuf (t) if fullBuf (t) = 1

dataIn(t) if fullBuf (t) = 0

(2.6)
= dataBuf (t) (2.7)



2.5 Pipelining 17

genStall
fullBuf ′

(a)

stallIn

genStall

≡

fullBuf

clear

full

fullBuf ′

stallIn

(b)

clear

full

fullBuf

Figure 2.5: Optimized computation offullBuf ′

For the cyclet′′ it follows:

fullBuf (t′′) = stallOut(t
′′) = 0 (2.8)

stallIn(t′′) ≥ stallIn(t′′) ∧ (fullBuf (t′′) ∨ fullIn(t′′))

= fullBuf (t′′+1) (2.6)
= 1

dataOut(t
′) (2.7)

= dataBuf (t′′+1) =

{

dataBuf (t′′) if fullBuf (t′′) = 1

dataIn(t′′) if fullBuf (t′′) = 0

(2.8)
= dataIn(t′′)

From the property (P2) it followst′′ = t. As stallIn(t) = 1 for all t ≤ t < t′ it
follows: t′ = min{t′ ≥ t|StallIn(t′) = 0}.

2.5.4 Maximum Delay of Stall Inputs

Let the stagei of a pipeline have a buffer circuit and assume none of the stagesj ∈
{i + 1, . . . , n} for ann ≥ i has a buffer circuit. For all stagesj the AND-gate that
forces the clocking of the full register in case the clear signal is active (see figure 2.3)
can be removed from the critical path by rebalancing. The computation of thestall
signal for stagei comprises the stall signals for all stagesj. Hence, the delay of the
stall signals for all stagesj is at most as high as the delay of the input of the register
fullBuf in the buffer circuit of stagei (see figure 2.4). Thus, if the delay of this signal
fullBuf i′ is at mostδ the stall signals for all stagesj can be computed in one cycle.
Therefore, only the stages with a buffer circuits have to be checked whether the delay
of the stall inputs is too large.

Figure 2.5(a) details the computation of the signalfullBuf ′ from figure 2.4. The
stall inputstallIn usually is computed by an AND-Tree. If the signalgenStall is not
constantly zero the OR-gate hinders the integration of the last AND-gate into this tree.
If the order of the gates is switched using the distributive law as shown in figure 2.5(b),
the AND-gate can be integrated into the tree in order to reduce the delay.

Figure 2.6 depicts an example of the integration into the AND tree if the stall input
is computed as AND of the signalsfull1 to fullk. The overall delay of the circuit
is equivalent to the delay of the AND-tree of the full bits with1 + 2⌈DOR/DAND⌉

additional inputs (i.e.,3 additional inputs if the delay of AND and OR gates is equal as
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Figure 2.6: Merging logic into the tree of the stall input computation

in the gate model used in this thesis). Hence, if the input stall signal of a buffer circuit
is computed by an AND-tree withk inputs and the stage with the buffer circuit cannot
generate a stall, the signalfullBuf ′ can be computed in one cycle if:

δ ≥ D(AND-tree(k + 3)).

If the stage with the buffer circuit can generate a stall the delay of the inputof
the registerfullBuf increases be the rightmost OR-gate in figure 2.5(b). Thus, the
following equation must hold:

δ ≥ D(AND-tree(k + 3)) + DOR.

Let i be chosen as above andn be the length of the pipeline. Then, the input of the
registerfullBuf of stagei depends on the input stall signalstallIn of the pipeline.
If the stagei cannot generate a stall, it holds:

fullbuf i′ = (fullBuf i ∨ fulli) ∧ clear ∧
n
∧

j=i+1

fullj ∧ stallIn

Thus, if the stall inputstallIn is computed by an AND-Tree withl inputs it must hold:

D(AND-Tree(n − i + 3 + l)) ≤ δ.

If stallIn cannot be merged into the AND-tree of the full signals it must hold:

D(AND-Tree(n − i + 3)) ≤ δ − DAND and

D(stallIn) ≤ δ − DAND. (2.9)

The delay of the stall computation increases by at leastDOR if any stagej for
i ≤ j ≤ n can generate a stall. Thus, in order to minimize the restrictions for the stall
inputstallIn, i should be chosen such that no such stagej can generate a stall. If last
stage of a pipeline can generate a stall,i cannot be chosen as above. It must then hold:

D(stallIn) ≤ δ − (DOR + DAND). (2.10)

2.6 Pipelining of RAM Blocks

In order to reduce the access time of a RAM block it is mandatory to also pipeline
the RAM block. A schematic view of a RAM block withn address bits andm data
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Figure 2.8: Forwarding of a write port

bits is shown in figure 2.7. A RAM block can be divided into three parts: the decode
of the address bus, the update of the data registers and the selection of theaddressed
data [KP95].

Inserting registers in the decode and the select stage allows for smaller cycle times.
However a read access to such a pipelined RAM takes into account only thewrite
accesses that have been started before the read access. At the time the result of a
read access is on the output data bus, the accessed address may already be overwritten
by a succeeding write access. Thus, the RAM only returns the value of theaccessed
address at the time the read access entered the RAM. However in many applications in
this thesis the read access must return the value of the accessed addressat the time it
leaves the RAM. To obtain the latest value of an address, all write accesses that have
been started after the read access have to be forwarded to the output ofthat read.

2.6.1 Forwarding

If forwarding is used it could happen that an instruction does not enter or leave the
RAM environment in the same cycle in which the instruction enters respectivelyleaves
the RAM block. In the following the term “a RAM access is started” always means
that the access enters the RAM environment (which is usually as soon as allsignals
needed for the access are available). “An access finishes” always means that the access
leaves the RAM environment.

The forwarding of a write portW to a read portR is done using the forwarding
circuit from figure 2.8. If the RAM block is pipelined intoc stages, the forwarding
circuit is also divided intoc stages. The stages of the forwarding circuit contain the
data corresponding to the read access in the corresponding stage of theRAM block.

In every cycle the forward circuit compares the newly started write access with all
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read accesses of all stages. If the write access overwrites the same address as a read
access in the pipeline, the corresponding stage of the forwarding circuitis updated with
the new write data. At the last stage of the forwarding circuit the read result is selected
between the output of the RAM block and the data potentially saved in the forwarding
circuit. In that way any write data to the read address is forwarded.

The details of the forwarding circuit are shown in figure 2.9. The address of the
read access in stagei is saved in the registeraddri. The registerforwi carries the
information whether the stagei of the forwarding circuit holds valid forwarded write
data. In that case the data of the last forwarded write access is saved in the register
datai. The stagei computes the updated valuesforwUpdi anddataUpdi, which take
the current write access onW.⋆ into account. The outputs of stagei are saved in the
registers of stagei + 1.

A write access is forwarded to the read access in stagei, if the write signal is
active and the address of the accesses are equal. This is indicated by thesignal
Test.forwardi computed by the sub-circuitTest shown in the left part of figure
2.9. For simplicity the circuit also bypasses the data of the write access to the output
Test.datai. Using the signalsTest.forwardi andTest.datai, the updated values
forwUpdi anddataUpdi can be computed as:

forwUpdi = forwi ∨ Test.forwardi,

dataUpdi =

{

Test.datai if Test.forwardi = 1

datai if Test.forwardi = 0
.

At the last stagec − 1 of the forwarding circuit, the signalforwUpdc−1 is active,
if there has been a write access started after the read access, which hasoverwritten
the content of the accessed address. In this case the signaldataUpdc−1 contains the
newest content of the RAM address. IfforwUdpc−1 is not active, the output of the
RAM RAM.data contains the correct value. Hence, the current content of the ac-
cessed address can be computed as:

dataOut =

{

dataUpdc−1 if forwUpdc−1 = 1

RAM.data if forwUpdc−1 = 0
.
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Figure 2.10: Forwarding circuit with stalling

2.6.2 Forwarding with Stalling

If the read access to a RAM block can be stalled it is not sufficient to updatethe read
access with new write data only in those cycles the read advances to the nextstage.
Since new write accesses may be started even if the read access is stalled, forwarding
must be possible within a stage when the read access does not progress.

Figure 2.10 shows a forwarding circuit with stalling. It is based on the forwarding
circuit without stalling in 2.9. If the stagei is stalled, the updated valuesforwUpdi

anddatai must not be written into the registers of stagei + 1 but in the registers of
stagei itself. Thus, a mux above the registerdata andforw of the stagei selects the
outputs of the stagesi andi−1 as inputs for the registers depending on the stall signal
stalli:

datai′ =

{

dataUpdi if stalli = 1

dataUpdi−1 if stalli = 0
,

forwi′ =

{

forwUpdi if stalli = 1

forwUpdi−1 if stalli = 0
.

Note that the stall signal is used in the combinational circuit to control the muxes
above the registers. Thus, the stall signals of all stagesi must adhere to:

D(stalli) ≤ δ − DMUX . (2.11)

2.6.3 Pipelining of the Forwarding Circuits

Let n be the width of the address bus. The critical path of the circuit presented in
section 2.6.1 goes from the write portW.⋆ to the updated datadataOut. The delay of
this path is

D(EQ(n+1)) + 2 · DMUX .
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To reduce the cycle time below this bound, the path from the write port to the
updated data must be pipelined. The intermediate results of the pipelined computation
are stored in registers and flow together with address, forward bit and data through the
pipeline of the forwarding circuit. Figure 2.11 depicts as an example the stages i and
i + 1 of a forwarding circuit without stalling where the computation of the updated
data is split after the circuitTest. The registertmpi+1 is used to store the outputs of
the circuitTest and to pipeline them into the next forwarding stage.

The forwarding circuit is now pipelined in two dimensions. Within the same cycle
the read access moves to the next stage of the forwarding circuit and the computation
of the updated data moves to the next part of the computation (see the path highlighted
in figure 2.11). While the computation of the updated data for one write accessmoves
to the second part, a new computation can be started for the next write access.

In the forwarding circuit with stalling the forwarding of the write port must proceed
to the next part of the computation even if the instruction does not move to the next
stage of the forwarding circuit. Therefore, above every register saving the temporary
results a multiplexer is added. This multiplexer selects depending on the stall signal
whether the register is updated with the output of the current or the preceding stage
(analogously to the multiplexers above the forward bit and the data registersin figure
2.10).

Figure 2.12 depicts as an example a stagei of a forwarding circuit with stalling,
where the circuitTest is divided into two circuitsTest1 and Test2 and pipelining
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registers are added after both circuits. The path highlighted in the figure shows the
forwarding of the write port if the stage is stalled twice.

In order to pipeline the computation of the updated data in the forwarding circuit
without stalling (calledForward), the computation must be divided into parts with
a combinational delay of at mostδ. In the forwarding circuit with stalling (called
ForwardStall), every inserted pipelining register increases the combinational delay
from the write input to the updated data by the delay of the multiplexer above the
register. Hence, for the circuitForwardStall the computation of the updated data must
be divided into parts with a combinational delay of at mostδ − DMUX .

Note that the new values written into the registerforw anddata in the circuit
ForwardStall depend on the previous value of the registers. If a pipelining register
would be added into this path, old data would be used to update the registers. For
the data register this would mean that it holds the correct data only every other cycle.
A general solution to pipeline these one-cycle dependencies cannot be given, but the
resulting bound to the stage depth from this dependency is acceptable:

δ ≥ max{DOR, DMUX} + DMUX (2.12)

In our gate model this only requires thatδ ≥ 4.

Compensating the pipelining cycles

Assumek pipeline registers are inserted into each stage of the forwarding circuit. Then
the forwarding circuit needsk + 1 cycles to forward the write port into the data regis-
ters. Thus, the write accesses which have been started in the lastk cycles before the
read access is finished are not taken into account for the read result. Due to the pipelin-
ing it is not possible to take all writes into account that have been started before a read
access, but it often suffices to take all those writes into account, that have entered the
RAM block at the time the read access finishes.

For a read access in order to take into account all the write accesses thathave
entered the RAM block at the time the read is finished, forwarding must be started at
leastk cycles before the write accesses enter the RAM block. This can be done by
delaying the write port byk cycles and forwarding the un-delayed writes (see figure
2.13(a)).

Due to delaying of the write port, the up tok write accesses in the registersW1.⋆
to Wk−1.⋆ have been started before the read access but not yet entered the RAMblock.
If the read access directly enters the RAM block when its started, thesek writes are
not taken into account for the result of the RAM block. Therefore, the read port is also
delayed byk cycles. The forwarding circuit must be increased byk stages to align
with the read access.

Delaying the write port usually has no impact on the performance (as long asthe
un-delayed write is forwarded). The delaying of the read port of the RAM increases
the overall delay of the read access and therefore the overall delay ofthe circuit where
the RAM is used.

Figure 2.13(b) shows a solution to take thek writes started directly before the read
access into account for the result without delaying the read access. Atthe time the read
is started, the addresses, write signals and data of thesek write accesses are known and
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stored in the registersW1.⋆ to Wk−1.⋆. These write accesses are forwarded separately
using a forwarding tree.

A circuit for a forwarding tree withk inputs is depicted in figure 2.14. All write
accesses are tested in parallel using the circuitTest. The circuitForw computes from
the signalsforw anddata of two successive write accesses the combined values of
the signalsforw anddata. The write access at inputIn1.⋆ is assumed to be started
after the write access at inputIn2.⋆. Thus, the inputIn1.⋆ has higher priority. If the
forward bitIn1.forw is active, the busIn1.data is the new data output, otherwise the
busIn2.data. The outputforw is active if either of the inputsIn⋆.forw is active.
The circuitsForw can be arranged in a tree structure due to following lemma.

Lemma 2.3. The function

◦ : B
2 × B

2 7→ B
2, (f1, d1) ◦ (f2, d2) → (f1 ∨ f2, f1d1 ∨ f1d2)

is associative
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Proof.

((f1, d1) ◦ (f2, d2)) ◦ (f3, d3) = (f1 ∨ f2, f1d1 ∨ f1d2) ◦ (f2, d2)

= (f1 ∨ f2 ∨ f3, (f1 ∨ f2)(f1d1 ∨ f1d2) ∨ (f1 ∨ f2)d3)

= (f1 ∨ f2 ∨ f3,

f1f1d1 ∨ f1f1d2 ∨ f2f1d1 ∨ f2f1d2 ∨ f1f2d3)

= (f1 ∨ f2 ∨ f3, f1d1 ∨ f1f2d2 ∨ f1f2d3)

= (f1 ∨ f2 ∨ f3, f1d1 ∨ f1(f2d2 ∨ f2d3))

= (f1, d1) ◦ (f2 ∨ f3, f2d2 ∨ f2d3)

= (f1, d1) ◦ ((f2, d2) ◦ (f3, d3))

Using the pipelined forwarding circuit it is possible to compute the content of a
RAM block at the time a read access is returned even for a small stage depthδ. How-
ever the write accesses which have been started but have not yet entered the RAM
block at the time the read access finishes cannot be forwarded. Additionally delaying
the write port may have further implications to the circuit writing the RAM. There-
fore, in the following sections for every RAM it is discussed which and howthe write
ports are forwarded to the read ports and why the forwarding sufficesto guarantee the
correctness.

2.6.4 Cost and Delay

If forwarding can be done without using a forwarding tree, the read access to the RAM
is delayed by an additional mux for selecting between the forwarding data and the
RAM output into the forwarding circuit. If a forwarding tree is used (it is assumed
to be faster than the RAM access), the access is delayed by two muxes for selecting
between the RAM output, the data output of the forwarding tree and the data output of
the forwarding circuit (see figure 2.13(b)).

The longest combinational path for both forwarding circuits is the path fromthe
inputsW.⋆ to the outputsdataOut. Let n be the number of address bits. Then the
delay of the forwarding circuits are:

D(ForwardStall(n)) ≤ D(Test(n)) + 2 · DMUX ,

D(Forward(n)) ≤ D(Test(n)) + 2 · DMUX .

When pipelining the circuitForward with n address bits the computation of the out-
puts from the inputsW.⋆ takes

cF (n) ≤

⌈

D(Forward(n))

δ

⌉

.

cycles. In order to pipeline the circuitForwardStall an additional mux is needed
before every inserted register. Thus, the pathW.⋆  dataout must be divided into
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parts with combinational delay ofδ − DMUX . In the last stage no additional mux is
needed. Thus, the computation of the outputs of the circuit takes

cFS(n) ≤

⌈

D(Forward(n)) − DMUX

δ − DMUX
.

⌉

cycles (if it is not stalled).

Let n be the number of address bits,m the number of data bits, andc be the
number of stages of the forwarding circuits. Without temporary registers the cost of
the forwarding circuits is:

C(Forward(n, m, c)) ≤ C(Test) + m · CMUX + (c − 1) · (C(Test)

+ (m + n + 1) · CREG + COR + m · CMUX),

C(ForwardStall(n, m, c)) ≤ C(Forward(n, m, c)) + (c − 1) · (m + 1) · CMUX .

Let cF andcFS be the minimum number of cycles needed for forwarding respec-
tively forwarding with stalling. The total cost of the forwarding circuits are(approxi-
mated with equation 2.1):

C(Forward(n, m, c, cF ) ≤ C(Forward(n, m, c)) + (c − 1) · cF

· ⌈((m + n + n + 1) + (m + 1))/2 · CREG⌉

≤ C(Forward(n, m, c)) + (c − 1) · cF

· (m + n + 1) · CREG.

C(ForwardStall(n, m, c, cFS) ≤ C(ForwardStall(n, m, c)) + (c − 1) · cFS

· ⌈((m + n + n + 1) + (m + 1))/2⌉

· (CREG + CMUX)

≤ C(Forward(n, m, c))

+ (c − 1) · cF · (m + n + 1) · (CREG + CMUX).

The cost of the forwarding tree withk inputs (without registers) is:

C(ForwardTree(n, m, k)) ≤ k · C(Test) + (k − 1) · C(Forw) + m · CMUX .

The forwarding tree needs to be divided into as many stages as the RAM access. Let
c be the number of stages of the RAM access. Then the total cost of the pipelined
forwarding tree is approximately:

C(ForwardTree(n, m, k, c) ≤ C(ForwardTree(n, m, k)) + (c − 1)

· ⌈((k · (m + n + n + 1)) + m + 1)/2⌉ · CREG

≤ C(ForwardTree(n, m, k))

+ (c − 1) · k · (n + m + 1) · CREG.



Chapter 3

Tomasulo Algorithm

The DLX variant presented by Kröning which the DLXπ+ is based on, uses the Toma-
sulo algorithm [Tom67] to execute instructions out-of-order which allows for low CPI
ratios [MLD+99]. It is assumed that the reader is familiar with this algorithm. There-
fore this chapter gives only an informal description of the algorithm to define the terms
used throughout this thesis. A formal description including correctness proofs can be
found, e.g., in [KMP99].

The description of the Tomasulo algorithm is divided into three parts. In section 3.1
a general overview is given which defines the most important terms. Section3.2 de-
scribes the basic data structures used by the algorithm. Finally in section 3.3 thealgo-
rithm is presented in more detail showing the execution of an example instruction.

3.1 Overview

For the Tomasulo algorithm every instruction which is being processed needs to be
identified by a unique number. This number is calledtag. The instructions which are
processed at a given time are calledactive instructions.

Figure 3.1 shows an overview of the Tomasulo hardware. The instruction fetch unit
does not differ from in-order processors. It loads the instruction stream from the main
memory and delivers it in-order to the decode environment. In the decode environment
the operands of the instructions are determined. If an operand is not computed yet,
the decode environment determines the tag of the instruction which will compute the
operand. Afterward the instruction is sent to a reservation station.

The instructions wait in the reservation stations until all operands are valid.The
reservation stations check if the CDB carries the result of an instruction thatis needed
as operand for a waiting instruction. If this is the case the data is copied and the
operand is validated. This forwarding from the CDB is calledsnooping. As soon as
all operands are valid, the instruction is sent to a functional unit, independent of the
instruction order.

The functional unit computes the result of the instruction and writes it to the com-
mon data bus. The common data bus forwards the result to the reservation stations and
writes it in the reorder buffer. The reorder buffer reorders the instruction in program
order before it writes the result in the register file.
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Figure 3.1: Overview of the Tomasulo hardware

mnemonic functional unit
BCU branch checking unit
Mem memory unit
IAlu integer ALU
IMul integer multiplicative unit
FAdd floating point additive unit
FMul floating point multiplicative unit
FMisc floating point miscellaneous unit

Table 3.1: Functional units types of the DLXπ+

3.2 Basic Data Structures

3.2.1 Functional Units

The functional units(FUs) perform the actual execution of the instructions. A proces-
sor can have different FU types, each executing only subsets of the instruction set.
Multiple FUs of the same type are supported. The FU types of the DLXπ+ are listed
in table 3.1. Tables A.1 to A.7 in the appendix list all DLXπ+ instructions sorted by
the type of their functional unit.

3.2.2 Register Files and Producer Tables

The DLXπ+has three differentregister files(RF): the general purpose register file
(GPR), the floating point register file (FPR), and the special purpose register file (SPR).
For every register file entry, the Tomasulo algorithm additionally stores a validbit and
a tag field. If no active instruction will write a register file entry, the content of the
register file can be used as operand of a new instruction. In this case the valid bit of the
register file entry is set to one. If one or more active instructions will write anentry,
the valid bit is zero and the tag field stores the tag of the youngest active instruction
which will write this entry.
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The valid bits and the tag bits of the register file entries are saved in theproducer
tables(PT). Usually the producer tables have more access ports than the register files.
Therefore, they are saved in different RAM blocks.

3.2.3 Reservation Stations

The reservation stations(RS) consist of multiple entries. Each entry can hold one
instruction. The instructions wait in the entries until all operands are valid. To keep
track of the state of the operands, each operand of an entry has a valid bit and a tag field,
either indicating that the data in the entry is already valid or identifying the instruction
which will eventually compute the value of the operand data.

The DLXπ+has exactly one reservation station (of multiple entries) for every func-
tional unit. Therefore, the reservation station if often identified with its functional unit.
It is also possible to use only one reservation station per instruction type or even only
one global reservation station [HP96]. For simplicity the latter cases are nottreated in
this thesis.

3.2.4 Common Data Bus

All functional units write the instruction results to thecommon data bus(CDB). To
identify the current result on the CDB, the CDB has a valid and tag field. Thisrelates
the result to the instruction which computed that result. The common data bus writes
the result to the reorder buffer. Also, the result is forwarded to the reservation stations.
This allows the reservation stations to snoop on the CDB, i.e., check whether the result
is needed as operand for a waiting instruction.

3.2.5 Reorder Buffer

The reordering of the instructions before the update of the register files isdone by the
reorder buffer(ROB). For every instruction, an entry in the reorder buffer is allocated
in program order. For each entry the reorder buffer has a valid bit. This bit is active
if the result of the instruction has already been computed. If the valid bit of the oldest
instruction in the ROB is active, the instruction is removed from the ROB in order
to write its result to the register file. The address of the reorder buffer entry of an
instruction is used as tag for the instruction.

3.3 Instruction Execution

The execution of an instruction is done in six phases: fetch, decode, dispatch, execute,
complete, and retire. The instruction fetch does not differ from in-orderprocessors.
Let I be an instruction which is being executed by the processor.

3.3.1 Decode

In the decode phase the opcode of the instructionI is decoded and the valid bit, the
tag, and the data field of the operands are determined. The producer tableentry of
the destination register ofI is updated and a new entry forI is reserved in the reorder
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buffer. Afterward the instruction is sent to the reservation stations. This last step is
calledissue.

The decoding of the instructionI is straightforward and does not differ much from
an in-order processor. The decode environment computes the addresses of the operand
and the destination registers as well as the control signals used by the functional units.

For each operand the decode phase must determine the valid bit, the tag, andthe
data field. The correct value for the data field of an operand can be found at one of
four different places:

• The register file: If no preceding active instruction writes the register file entry,
the register file contains the valid data for the operand. In this case the valid
bit of the corresponding producer table entry is set. If the valid bit is not set,
the valuetagP of the tag field of the producer table entry identifies the latest
instructionIP which will compute the value of the operand.

• The reorder buffer: If the instructionIP has already completed but is not retired
yet, the data for the operand can be found in the reorder buffer. This can be
tested by checking the valid bit of the reorder buffer entry of the instruction IP .
Note that the address of the entry ofIP in the reorder buffer istagP .

• The common data bus: If the instructionIP is about to complete, the operand
can be found on the CDB. This is the case if the valid bit of the CDB is active
and the tag of the CDB equalstagP .

• The reservation stations or the functional units: In this case the value of the
operand is not computed yet.

In the first three cases the valid bit of the operand can be set to one and the data can be
taken from the corresponding place. In the last case, the valid bit of the operand has to
be set to zero and the tag field of the operand is set totagP . Then the instruction will
wait in the reservation station until the result of the instructionIP (identified bytagP )
becomes available on the CDB.

In parallel to the determination of the operands, the decode phase reserves a new
entry in the ROB for the instructionI. For this the valid bit of the entry is reset. All the
instruction’s information which are known at decode time (e.g., the destination register
address) are written into the corresponding ROB fields. Lettag be the address of the
reorder buffer entry ofI.

For the succeeding instructions to use the correct data, the producer table entry of
the destination register of the instructionI is updated. The valid bit of the entry is set
to zero and the tag is set totag. This tells succeeding instruction that the new value of
the register will be computed by instructionI.

At the end of the decode phase the instruction is sent to the reservation station of
the functional unit that corresponds to the type of the instruction. If multiple func-
tional units respectively reservation stations of one type exist, one of these reservation
stations has to be chosen. In this thesis the first reservation station that is notfull is
used.
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3.3.2 Dispatch

The instructionI waits in the reservation station until all of its operands are valid.
Assume an operand ofI is not valid and depends on instructionIP . The Decode phase
guarantees that in this case the instructionIP is in a reservation station or a functional
unit (see above). Hence, the result ofIP will eventually be sent via the common data
bus. The reservation station entry of instructionI snoops on the CDB for the tagtagP

of the instructionIP . If the tag of the CDB matchestagP and the valid bit of the CDB
is active, the data of the CDB is copied to the data field of the operand and the operand
is marked as valid in the reservation station.

As soon as all operands are valid, the instructionI is sent to the functional unit
(dispatch). If multiple instructions in a reservation station are valid at the same time,
the oldest instruction is dispatched.

3.3.3 Execute

During the execute phase, the actual execution of the instruction is performed. This is
done in the functional units. The functional units do not necessarily return the instruc-
tions in the order they enter. For example a floating point multiplication can overtake
a floating point division [Jac02].

3.3.4 Completion

During the completion phase the results of the functional units are written to the ROB
and forwarded to the reservation stations via the CDB. The number of functional units
is usually larger than the number of results which fit on the CDB. Therefore, an arbiter
decides which functional unit with an available result may write to the common data
bus. During the completion phase the valid bit of the ROB entry of the instructionis
set to one.

3.3.5 Retire

The original Tomasulo algorithm [Tom67] writes the register files out-of-order. For
precise interrupt handling it is necessary to be able to restore the contentof the register
file as if the instructions would be executed in order. This can be very complex if in-
structions write the register file out-of-order. Therefore, the instructionsare reordered
into program order before updating the register files using the ROB [SP85].

To restore the program order, only the oldest instruction in the ROB is checked
for whether it has already completed. In this case the instruction is taken outof the
reorder buffer and the result is written into the destination register entry ofthe register
files. The valid bit of the register file can then be set to flag valid data unless ayounger
active instruction writes to the same register.

In order to check whether a younger active instruction will write the same register,
the producer table entry of the destination register is read. If the tag storedin the
producer table matches the tag of the instructionI no younger instruction may write
the same destination register. Otherwise it would have updated the tag of the producer
table entry. In this case the valid bit of the producer table entry can be set.
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In the retire phase the instruction is also checked whether it causes an interrupt or
whether a branch misprediction occurred. In these cases all succeedinginstructions are
invalid and the processor has to be flushed. Since the register file is in a sequentially
correct state, the producer table entries are all set to valid to indicate that no instructions
will write the registers.



Chapter 4

Processor Core

In this chapter the design of the DLXπ+ core (without instruction fetch unit) is pre-
sented. The stage depth of the presented design is variable and is assumedto be at
least 5 gate delays. Sections 4.1 to 4.5 describe the hardware for the five phases of the
instruction processing in the core (decode, dispatch, execute, completion, and retire).
Since the main RAM structures are accessed in multiple phases, they are described
afterwards in the sections 4.6 to 4.8.

The design of the core is based on the Tomasulo DLX of Kröning [Krö99]. Split-
ting of the ROB into multiple smaller RAMs to reduce the number of ports was intro-
duced by Hillebrand [Hil00]. Yet almost all non-trivial circuits had to be redesigned in
order to maximize the performance and to allow a stage depth of 5 gate delays.

4.1 Decode

4.1.1 Overview

The decode phase is divided into the two sub-phasesD1 andD2. In the sub-phase
D1 the instruction word is decoded and the control signals for the instruction are com-
puted. The valid bit, the tag, and the data of the operands are read from thecurrent
content of the producer tables respectively register files. In the sub-phaseD2 the in-
struction is issued to a reservation station corresponding to the type of the instruction.
In parallel the reorder buffer is checked if any of the instruction identified by the tags
of the operands have already completed. If this is the case, the valid bit andthe data
field of the operand are updated. The decode phase uses the instructionregister as
input. The instruction register environment is described in section 6.4 as part of the
the instruction fetch chapter.

Sub-phase D1

Figure 4.1 gives an overview of the sub-phaseD1. The sub-circuitDecode computes
the control signals for the current instruction. In parallel to the decodingthe operands
of the instruction are determined. For this the register files in the sub-circuitRF and
the corresponding producer tables in the sub-circuitPT are accessed. Each register
file type (GPR, FPR, and SPR) is accessed speculatively under the assumption that the
operands are registers of this register file. The addresses of the accesses are computed
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Figure 4.1: Decode sub-phaseD11

inside the register file and producer table environments using the instruction register
IR. The design of the register files and the producer tables are described indetail in
sections 4.7 and 4.8.

The circuitOpGen selects for each operandi the register file which is used based
on the outputs of the circuitDecode. If none of the register files is selected an imme-
diate constant computed byDecode is used as operand data.

To update the destination register entry of the producer table, the register file and
the address of the destination register must be known. Theses values arecomputed
by the circuitDestCmp. Due to the delay of the circuitDestCmp, the update of the
producer table entry of the destination register is startedcDC ≥ 1 cycles after the
read of the operand’s producer table entries. The read access to the producer tables
for the operands must return the content of the producer table after the decoding of all
preceding instructions. Hence, to maintain correctness, the update of the destination
register must be forwarded to the nextcDC instructions. This is done in the producer
table environment (see section 4.8).

Apart from the instruction the instruction fetch unit delivers data to the decode
phase which is needed for interrupts and branch checking, e.g., the PC of the instruc-
tion and the predicted target of branches. This data is not modified by the decode
sub-phaseD1.

Sub-phase D2

The design of the decode sub-phaseD2 differs from the design proposed in [Krö99].
In Kröning’s work the instructions first access the ROB and are then issued to the
reservation stations. For the correctness of the Tomasulo algorithm it is necessary that
no update of the ROB by the CDB is missed by the instruction until the instruction is
written to a reservation station and starts to snoop on the CDB. This can be guaranteed
easily if the whole decode phase including issuing of the instruction fits into onecycle
as in the design presented by Kröning. However, for a small stage depth it is difficult
to forward the CDB while issuing.

Figure 4.2 shows an overview of the decode sub-phaseD2. The design presented
in this thesis issues the instructions in parallel to the ROB access. This can be done
because the operands of an instruction have consistent values for the valid bit, the

1The producer table is accessed twice during decode. In order to emphasize that the two accesses are
largely independent the producer table environment is depicted twice in thefigure, even if it is imple-
mented only once.
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tag and the data when the instruction leaves the decode sub-phaseD1, i.e., if valid is
active, the data field contains the correct operand data, otherwise the tagcontains the
tag of the instruction that computes the operand. If the result of the read access to the
ROB by this instruction is available, it is used to update the instruction’s operanddata
in the reservation station. For this the reservation stations snoop on the output of the
ROB access in the same way they snoop on the CDB.

The ROB access and the issuing must not be aligned, i.e., if issuing is stalled, the
ROB access can still progress. It must only be guaranteed, that the instruction is issued
before the ROB access finishes. Otherwise the instruction would miss the result of the
ROB access, as this only updates the reservation stations but not the instructions in the
issue circuit. This may lead to a dead lock, since then the reservation station maywait
indefinitely for receiving valid operand data.

The ROB read access by an instruction must take all writes to the ROB by the
CDB into account, that have been started until the instruction is issued to a reservation
station. This is guaranteed by the ROB environment (see section 4.6). Oncean in-
struction is issued to a reservation station all updates to the ROB by the CDB areused
to update the instruction’s operands through snooping of the reservationstation.

In parallel to the read access to the ROB a new ROB entry must be allocated for
the instruction. This is done by resetting the valid bit of the ROB entry and writing
all information about the instruction that is already known during decode intothis
entry (e.g., the destination address, the PC of the instruction, or interrupts occurring
during fetch or decode). The design of the ROB environment is described in detail in
section 4.6.

4.1.2 Operands

An instruction may have up to four operandsOpi for i ∈ {1, . . . 4}. The first two
operands have up to 64 bits for double precision operations. They are divided into
a low part andOpi.lo and a high partOpi.hi each 32 bits wide. The operandsOp3

andOp4 contain the floating point mask and the rounding mode which are needed by
floating point instructions. The floating point mask is 5 bits wide, the rounding mode
is 2 bits wide. These operands are not divided into high and low part. Note that the
operandOp3 andOp4 always read the special register file.

In the Tomasulo algorithm each part of an operand consists of avalid bit, a tag,
and adata field. The valid bit is set if thedata field contains valid data. If thevalid bit

2As in figure 4.1 the ROB environment is depicted twice to emphasize the two independent accesses
to the ROB.
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is not set, thetag field contains the tag of the instruction which computes this operand.
In case an operand is not needed for an instruction, the valid bit is set to one in order
to prevent the reservation station from waiting and snooping for this operand.

Each operand can be either an immediate constant or an entry of one of the register
files GPR, FPR, andSPR. The signals for the operandOpi from the register file are
denoted byOpi.R.{valid, tag, data}. If the operand is an immediate constant the bus

Opi.CO.{valid, tag, data} := {1, 0lROB , Opi.imm}

is used, whereOpi.imm is the immediate constant forOpi computed by the circuit
Decode.

The memory unitMem and the branch checking unitBCU may use a third operand
as address offset. This operand is always an immediate constant, hence itis always
valid and does not need to be updated in the reservation station. This operand may
thus be treated like a control signal rather than as operand for the functional units.
This saves the logic for this operand in the reservation station.

4.1.3 Instruction Decoding Circuit

The sub-circuitDecode of the decode sub-phaseD1 computes the following control
signals for every instruction. The precise definition and the computation of thesignal
is described in appendix C.2.1:

• FU.{Mem, IAlu, IMul, FAdd, FMul, FMisc, BCU}: These signals indi-
cate to which functional unit type an instruction is sent. If an instruction has
been predicted to be a branch instruction (indicated by the signalIFQ.pb, see
section 6.3), the instruction is sent to the BCU, independent of the real opcode
(see the BCU section 6.5). To simplify the ROB environment, all instructions
use an FU, even if they do not produce a result, e.g., due to an instruction page
fault. Such instructions use the integer ALU as fake FU. This guarantees that
exactly one of the signalsFU.⋆ is active at any cycle.

• Opi.{gpr.fpr.spr}: These signals indicate from which register file the operand
i is read (i ∈ {1, 2}). For each operand at most one of these signals may be
active. If none of the signals is active, the operand is assumed to be an immediate
constant.

• Opi.dbl: For operandsi ∈ {1, 2}, this signal is active if the operand is a double
precision floating point register.

• Opi.imm: If the operandi ∈ {1, 2} is an immediate constant, the value of
this constant is encoded inOPi.imm. On an instruction memory interrupt the
immediate constant is set to the PC of the instruction. This simplifies the reorder
buffer (see section 4.5.3).

• ill: This signal is active if an illegal instruction occurred. This can happen,e.g.,
due to an invalid opcode or due to a double precision floating point access toan
odd register address.
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• readIEEEf, writeIEEEf : These signals are active if the instruction is a
move instruction that reads respectively writes the special registerIEEEf .

• FPstore: This signal is active for floating point stores.

Cost and Delay

Cost and delay of this circuit are (see appendix C.2.1):

C(Decode) ≤ 381 · CAND + 64 · COR + 32 · DMUX ,

D(Decode) ≤ 6 · DAND + 5 · DOR.

4.1.4 Operand Generation

The circuitOpGen determines the operands of the instruction. If one of the control
signalsOPi.{gpr, fpr, spr} is active, the output for the operandi of the corresponding
register file is selected. If none of the control signals is active, the immediate constant
OPi.CO.⋆ is used.

The operandsOP3 and OP4 are only used by floating point operations. They
always read the same special registers: the floating point mask bits (SPR[0]) and the
rounding mode (SPR[6]). Thus:

OPi.⋆ := OPi.SPR.⋆ for i ∈ {3, 4}

The high part of the operandsOP1 andOP2 is only used if the operand is a floating
point double precision register (indicated byOPi.dbl = 1). Thus, the high part always
reads the floating point register file:

OPi.hi.valid :=

{

OPi.FPR.hi.valid if OPi.dbl = 1

1 else
for i ∈ {1, 2},

OPi.hi.{tag, data} := OPi.FPR.hi.{tag, data}.

The low part of the first two operands can be an immediate constant or a register
from any register file. The signalsOPi.{gpr, fpr, spr} from the circuitDecode de-
termine which register file is used. At most one of these signals may be active.The
low part of the first two operands can then be computed as:

OPi.lo.⋆ :=























OPi.GPR.⋆ if OPi.gpr = 1

OPi.FPR.lo.⋆ if OPi.fpr = 1

OPi.SPR.⋆ if OPi.spr = 1

OPi.CO.⋆ else

for i ∈ {1, 2}.

The reservation stations require four additional control signalsOPi.depDbl and
OPi.odd for i ∈ {1, 2} to decide whether the data needed by an operand is on the
low or the high part of an instruction’s result. The signalOPi.depDbl is active if the
operandi depends on a 64 bit result. The signalOPi.odd indicates, that the address of
the operandOPi is odd. Since 64 bit operands must read an even address it follows,
that the operand is 32 bits wide and therefore only uses the low part of the operand. If
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both signals are active, it follows, that the low part of the operand depends on the high
part of an 64 bit result (64 bit instructions always write its low part in an even register
and its high part in an odd register). In all other cases the low part of the operand
depends on the low part of the result. The high part of an operand can always read the
high part of a result as 32 bit instructions write their result on both the high and the
low part of the CDB and the ROB (see section 4.3).

64 bit results are either written to the floating point register files or to the special
purpose register file (by integer multiplications / divisions). The producertables of
these register files return the signalsOPi.R.dbl indicating that an odd register is writ-
ten by a 64 bit result fori ∈ {1, 2} andR ∈ {FRP, SPR}. The overall signals
OPi.depDbl andOPi.odd can be computes as:

OPi.depDbl :=











OPi.FPR.depDbl if OPi.fpr = 1

OPi.SPR.depDbl if OPi.spr = 1

0 else

.

The FPR and the SPR also return the lowest bit of the addresses used by the operands
1 and2, OPi.R.addr[0]. Then the signalOPi.odd can be computed as:

OPi.odd :=











OPi.FPR.addr[0] if OPi.fpr = 1

OPi.SPR.addr[0] if OPi.spr = 1

0 else

.

Cost and Delay

The circuitOpGen is implemented as a unary select circuit. It is controlled by the
signalsOP⋆.{gpr, fpr, spr} and(OP⋆.gpr ∧ OP⋆.fpr ∧ OP⋆.spr). The last signal
can be computed by the circuitDecode, its delay is part of the delay of this circuit.
Let lROB be the width of the tags. Cost and delay of the circuitOpGen are as follows:

C(OpGen) ≤ 2 · COR + 2 · 2 · CAND

+ 2 · (1 + 32 + lROB) · C(Sel(4)) + 4 · C(Sel(2)),

D(OpGen) ≤ D(Sel(4)).

4.1.5 Destination Computation

The circuitDestCmp computes the signalsD.⋆ needed for updating the producer table
entry of the destination register of the instruction. The valid bit of the producer table
entry is always set to zero and the tag field is set to the tag of the instruction. The tag
of the instruction is the current tail pointer of the ROB:

D.valid := 0,

D.tag := ROB.tail.

For each register fileR the circuitDestCmp computes a write signalD.R.write
and an addressD.R.addr. It also computes a double signal for the register filesFPR
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andSPR (integer multiplications / divisions write their 64 bit result into two SPR reg-
ister). As for the circuitDecode the detailed computation for this circuit is described
in the appendix C.2.2.

At most one of the write signalsD.R.write is active. This signal determines the
register file that the result is written to. Thus, the actual address of the destination
registerD.addr can be computed by selecting the addresses for the register files with
the write signals. An instruction writes a double precision result if the floating point
or the special purpose double bit is active. Thus:

D.addr :=























D.GPR.addr if D.GPR.write = 1

D.FPR.addr if D.FPR.write = 1

D.SPR.addr if D.FPR.write = 1

⋆ else

,

D.dbl := (D.FPR.dbl ∧ D.FPR.write) ∨ (D.SPR.dbl ∧ D.SPR.write).

The signalsD.addr, D.dbl, andD.R.write are saved in the ROB to define the desti-
nation register for the retire phase.

Cost and Delay

The cost and the delay of the circuitDestCmp can be estimated as follows (see ap-
pendix C.2.2):

C(DestComp) ≤ 58 · CAND + 16 · COR + 27 · CMUX ,

D(DestComp) ≤ max{2 · DOR, 2 · DAND, DMUX} + 2 · DOR.

4.1.6 Instruction Issue

The circuit Issue issues the instructions to the reservation stations. For simplicity a
number is assigned to every functional unit type (see table 4.1). The control signal
FU.⋆ computed by the circuitDecode are renamed toFUi, i ∈ {0, . . . , 6}, wherei is
the number of the type of the functional unit (e.g.,FU.IAlu is renamed toFU1). An
instruction which uses a functional unit of typei is called “instruction of typei”.

Due to restrictions in the dispatch order (see section 4.2.2) the processor must
have exactly one memory and one branch checking unit. For all other typesmulti-
ple functional units are possible. The number of functional units of typei for i ∈
{0, . . . , 6} is denoted byni. The functional units of typei are denoted byFUi,j for
j ∈ {0, . . . ni−1}. The total number of functional unitsn is defined byn :=

∑6
i=0 ni.

The processor has one reservation station per functional unit. The reservation sta-
tion of a functional unit of typei is called “reservation station of typei”. The reser-
vation station of functional unitFUi,j is denoted byRSi,j . All reservation stations of
one type have the same number of entries.

An instruction of typei is issued to the first reservation stationRSi,j which can
accept a new instruction (i.e.,RSi,j .stallOut = 0). The instruction is sent to that
reservation station by asserting its full input. If none of the reservation stations of type
i can accept new instructions, issuing has to be stalled.
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no mnemonic functional unit

0 Mem memory unit
1 IAlu integer ALU
2 IMul integer multiplicative unit
3 FAdd floating point additive unit
4 FMul floating point multiplicative unit
5 FMisc floating point miscellaneous unit
6 BC branch checking unit

Table 4.1: Functional unit numbers
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Figure 4.3: Computation of stall signal and full bits for issue

Figure 4.3 gives an overview of the circuitIssue. It shows the computation of the
output stall signalstallOut of the circuitIssue and the full signals for the functional
units FUi,j .full. The full signals for the functional units are connected to the full
inputs of the corresponding reservation station. The data signals of the instruction
to be issued (i.e.,tag, operands, andcontrol) are not shown in figure 4.3. The are
simply distributed to all reservation stations and connected to the corresponding input
busses.

The selection of the reservation station is done as follows: first the signalfullIn
(indicating that the input registers of the issue circuit contains a valid instruction) is
AND-ed with the FU-type indicatorsFUi to obtainFUi.full for i ∈ {0, . . . , 6}. The
signalFUi.full indicates that a valid instruction needs to be issued to a reservation
station of typei. Next, the numberj ∈ {0, . . . , ni} of the first reservation station of
typei that can accept an instruction is determined. This can be done by a find-first-one
circuit using the negated stall signals of the reservation stations of typei. The output
of the find-first-one circuit is AND-ed to the signalFUi.full to obtain the full signals
for the functional unitsFUi,j .full for j ∈ {0, . . . , ni}.

The zero output of the find-first-one circuit for the typei indicates that no reser-
vation stations of a type can accept a new instruction. It is used as stall signal for the
functional unit typeFUi.stall. The overall stall signal for the circuitIssue is com-
puted by selecting the stall signal of the type of the instruction to be issued (defined by
the FU-type indicatorFU0...6). This is done by the select circuit in figure 4.3.

If the number of the functional units of a typeni is one, the find-first-one circuit
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Buf

Sel

Buf

Issue(g0)

Figure 4.4: Pipelined distribution to the FU types

and the AND gate can be omitted. In this case the full and stall signals for this unit
type and reservation station are the same.

Pipelining

The delay of the stall outputstallOut of the issue circuit is:

D(stallOut) ≤ max{max
0≤i≤6

(D(RSi,⋆.stallOut) + D(FFO(ni))), D(FU⋆)}

+ D(Sel(7)).
(4.1)

Assume the processor has two integer ALUs and FP additive units, i.e.,n1 = n3 = 2.
The delay of the signalstallOut would then beD(FFO(2)) + D(Sel(7)) = 5. In
order to compute the stall signal for the input register of the issue circuit in one cycle,
the delay of the signalstallOut may be at mostδ−DAND = δ−1 (see section 2.5.4).
Thus, to support the above values the stage depth must be at least6.

In order to relax this bound the distribution to the FU types can be split into mul-
tiple cycles. For this the FUs types are combined to groups (and sub-groups if the
circuit Issue is split in more than two cycles). The instructions are first distributed to
their group (and sub-group) and then to the functional units. Since the delay of the
stall signal is critical, a buffer circuit is placed after the registers for the FU group to
decompose the stall computation.

Figure 4.4 shows an overview of a pipelined issue circuit. The FU types aredivided
into g groups (G0 to Gg−1). The groupGl hasgl members (forl in {0, . . . , g − 1}).
For each groupGl a new signalFUGl has to be computed, indicating whether the
instruction has to be issued to a FU type of this group:

FUGl :=
∨

i∈Gl

FUi.

These signals can already be computed in the decode circuit. Then, they come directly
out of the output registers of the decode sub-phaseD1. Therefore, it is assumed that
the signalsFUG⋆ have the same delay as the signalsFU⋆.

Let the typei of an instruction be in the groupGk. In the pipelined issue circuit
the instructions are first issued to the groupGk. From the groupGk the instruction is
sent to the circuitIssue(gk) which needs to support onlygk FU types.
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The buffer circuit inserted after the registers for a group decouples the stall signal
for the issuing to a group and the stall signals for the issuing from the groups to the
reservation stations. Note that the stall signalsFUG⋆.stall are compute by AND-ing
the full bit of the register and the buffer circuit for that group and therefore have delay
DAND (see figure 2.4 on page 13). For the sake of readability, this AND-gate is not
shown in figure 4.4.

If issuing from the groupGk to the reservation station still cannot be done in one
cycle, the groups can be further divided into sub-groups. The circuitIssue(gk) is then
build analogously to the pipelined issue circuit in figure 4.4. If the circuit fits into one
cycles it is build analogously to the non-pipelined circuit in figure 4.3.

The computation of the full bit for the groupsFUG⋆.full and the output stall sig-
nalstallOut based on the stall signals of the groupsFUG⋆.stall happens analogously
to the computation for the instruction types in the non-pipelined case. Note that the
input signals for the circuitsIssue(⋆) come out of buffer circuits. For the equation
(4.1) then holdsD(FU⋆) = DMUX (see figure 2.4).

The circuit described above pipelines the issuing of an instruction to its type,but
not the issuing from an instruction type to the reservation stations. In orderto pipeline
this part registers need to be inserted into the computation of the stall signal ofthe FU
typesFUi.stall. This would mean that also the computation of the signalsFUi,j .full
would take several cycles. However, these signals are used inside the reservation sta-
tion to compute the output stall signals of the reservation stations for the next cycle
(see section 4.2.2) and therefore its own value for the next cycle.

Inserting registers into this computation can lead to inconsistencies due to the one
cycle dependency, e.g., two instructions could be sent to a reservation station that can
only accept one instruction. In order to avoid this problem, issuing from theFU type
to the functional units of the type has to be done in one cycles. The bound implicated
by this is acceptable.

Cost and Delay

If the size of the group from which an instruction of typei is issued to the reservation
stations is one, the full signal for the FU typeFUi.full can be directly derived from
the full bit of the group. It does not have to be AND-ed with the FU type indicator
FUi. The delay of the full bit for the group isDOR from the buffer circuit. The find-
first-one circuit and the AND-gate at its output are only needed ifni > 1. This reduces
the delay of the full signals for the FUsFUi,⋆.full to:

D(FU⋆,⋆.full) ≤ max{DOR, max
0≤i≤6

(D(RSi,⋆.stallOut) + D(FFO(ni)))}

+

{

0 if ni = 1

DAND if ni > 1
.

Let eRSi
be the number of entries of the reservation stations of typei. Then the

delay of the stall output of these reservation stations isD(PP-OR(eRSi
)) as will later

be derived in section 4.2.2. The input full signal to the reservation stationsmay have
at most the delayδ − DMUX (see section 4.2.1). Since the issuing from the FU type
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to the reservation station is not pipelined,ni andeRSi
are bounded by the following

equation:

δ ≥ DMUX + D(FUi,⋆.full)

≥ DMUX + max{DOR, max
0≤i≤6

(D(PP-OR(eRSi
)) + D(FFO(ni)))}

+

{

0 if ni = 1

DAND if ni > 1
.

(4.2)

The input registers of the decode sub-phaseD2 are not assumed to have buffer
circuits. This reduces the delay of the input signal to the issue circuitFU⋆ to zero.
The delay of the output stall signal (see equation (4.1)) may be at mostδ − DAND.
Let the variablepI be one, if the circuitIssue has to be pipelined. Hence:

pI =











0 if
δ ≥ max0≤i≤6(D(PP-OR(eRSi

)) + D(FFO(ni)))

+D(Sel(7)) + DAND

1 else

.

If pI is one, three numbersH, I, andJ have to be computed. The numberH
defines the maximum number of FU types to which an instruction can be issued in one
cycle. The maximum number of groups an instruction can be issued to in one cycle
is denoted byI. The maximum number of sub-groups an instruction can be issued to
from a group is denoted byJ .

The delay of the data output of a buffer circuit isDMUX and the delay of the stall
output of a buffer circuit isDAND. The delay of the output stall signal of an stage may
be at mostDAND, as it is computed by an select circuit and therefore the AND-gate
of the buffer circuit cannot be merged into the computation (see section 2.5.4). Thus,
H, I, andJ can be computed using the following equations:

H = max{h|δ ≥ max{max
0≤i≤6

(D(PP-OR(eRSi
)) + D(FFO(ni))), DMUX}

+ D(Sel(h)) + DAND},

I = max{i|δ ≥ DAND + D(Sel(i)) + DAND},

J = max{j|δ ≥ max{DAND, DMUX} + D(Sel(j)) + DAND}.

The value ofJ can be increased using the following optimization. Assume issuing
takescI cycles. Instead of clearing the issue circuit if the signalclear is active, it
suffices to clear the reservation stations forcI cycles when clear is active. After the first
clear cycle, the reservation stations do not produce a stall and therefore the instructions
in the issue circuit advance in at mostcI − 1 cycles to the reservation stations where
they are cleared. Note that no valid instruction can enter the reservation stations in the
cI cycles after a clear .

Therefore, it can be assumed, that the registers of the issue circuit do not have
to be cleared. Figure 4.5 (a) depicts the computation of the input of the register
FUG.fullBuf of a groupFUG that issues an instruction to the sub-groupsFUSG0

to FUSGJ−1 without taking the clear signal into account. The figure includes the
OR-gate that is used inside the buffer circuit of the group to compute the fulloutput
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Figure 4.5: Optimized issuing to sub-groups

(see figure 2.4 on page 13. It also includes for each sub-groupFUSGi the AND-
gate that is used inside the buffer circuit of the sub-group to compute the stall output
FUSGi.stall.

The signalsFUSG⋆ have delayDMUX since they are part of the data output of the
buffer circuit for the groupFUG (see figure 2.4). All other input signals in the figure
come directly out of registers. Hence, the delay of the signalFUG.fullBuf ′ can be
reduced by moving the last AND-gate of the computation below the select circuit (see
figure 4.5 (b)). Then the value ofJ can be computed as:

J = max{j|δ ≥ max{2 · DAND, DAND + DOR, DMUX} + D(Sel(j))}.

In order to reduce the number of FU types per groupsI andJ must be at least2.
Thus, it must hold:

δ ≥ DAND + D(Sel(2)) + DAND, (4.3)

δ ≥ max{2 · DAND, DAND + DMUX , DMUX} + D(Sel(2)). (4.4)

Both equations hold forδ ≥ 5.
The number of cycles needed for the circuitIssue cI can be computes as follows:

cI =























1 if pI = 0

2 if pI = 1 ∧ H · I ≥ 7

3 if pI = 1 ∧ H · I < 7 ∧ H · I · J ≥ 7

4 if pI = 1 ∧ H · I · J < 7

.

The delay of the output stall signal is:

D(stallOut) ≤































max0≤i≤6(D(PP-OR(eRSi
))

+D(FFO(ni))) + D(Sel(7))
if cI = 1

DAND + D(Sel(⌈7/G⌉)) if cI = 2

DAND + D(Sel(⌈7/(G · H)⌉)) if cI = 3

DAND + D(Sel(⌈7/(G · H · I)⌉)) if cI = 4

.

The inputs to the circuitIssue are the full bit, the tag, the operands, and the control
bits. The width of the control bits for the functional units except the memory and the
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branch checking units is approximated by 8. The memory unit needs an additional 16
bit immediate constant. The branch checking unit needs and 24 bit immediate constant,
the PC of the instruction, the predicted branch target, and the way of the branch target
buffer as additional control signals (see chapter 6). Thus, the numberof input II and
outputsOI of the issue circuit are:

II = 1 + 7 · lROB + 64 + 64 + 5 + 2 + 8 + 24 + 32 + 32 + kBTB,

OI = n · (1 + 3 · lROB + 64 + 8) + (n3 + n4 + n5) · (4 · lROB + 64 + 5)

+ 16 + 24 + 32 + 32 + kBTB.

Then the approximated cost of the issue circuit is:

C(Issue) ≤
6

∑

i=0

(C(FFO(ni)) + ni · CAND) + 7 · CAND + C(Sel(7))

+ (cI − 1) · ⌈(II + OI)/2⌉ · CREG.

4.1.7 Stalling

The first stage of the sub-phaseD1 has to be stalled if the ROB is full or if decoding
has to be stopped until a detected branch misprediction has retired. The ROBis full
if the signalROB.full computed by the ROB control (see section 4.6.5) is active.
Decoding has to be stopped due to a misprediction if the signalIF.haltdec computed
by the instruction register environment (see section 6.4) is active. Thus:

D1.genStall0 := ROB.full ∨ IR.haltdec, (4.5)

D1.stall0 := D1.full0 ∧ (D1.stallIn0 ∨ D1.genStall0). (4.6)

An instruction which reads the special registerIEEEf (indicated by the con-
trol signalreadIEEEf computed in the circuitDecode) must wait until all floating
point operations have retired. This is due to the fact that all floating point instructions
write the registerIEEEf implicitly. For simplicity the instructions reading that reg-
ister wait until all preceding instructions have retired, which is indicated by the signal
allRet computed by the ROB control. Instructions reading the registerIEEEf are
considered rare, hence the performance impact can be neglected.

The instructions which read the registerIEEEf must wait in the pipeline stage of
the decode sub-phaseD1 in which the register files in the circuitRF return the result
of the read access (denoted bycRF ). The SPR guarantees that the correct content of
registerIEEEf is returned as soon as the signalallRet is active without restarting
the read access (see section 4.7.4). Thus:

D1.genStallcRF := readIEEEf ∧ allRet, (4.7)

D1.stallcRF := D1.fullcRF ∧ (D1.stallIncRF ∨ D1.genStallcRF ). (4.8)

As discussed in the overview section, the ROB access in sub-phaseD2 must not
finish before the corresponding instruction has been issued. Otherwisethe instruction
would miss the result of the ROB access. If issuing is done in one cycle, this can be
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Figure 4.6: Issue test

guaranteed without extra hardware. It suffices that the output stall signal of the issue
circuit is used as stall signal of the input register of the sub-phaseD2:

D2.stall0 := D2.full0 ∧ Issue.stallOut. (4.9)

An instruction then waits in the input register of the decode sub-phaseD1 until it is
issued. The ROB access does not have to be stalled.

If issuing is pipelined additional hardware is needed to detect whether an instruc-
tion has already been issued. For each stage of the ROB access, a circuit IssueTest
(see figure 4.6) checks if the instruction which is in this stage is already issued to a
reservation station.

An instruction is issued to a functional unit of typei if the stall signal for this
typeRSi.stall is not active and the full bit for this typeFUi.full is active (see sec-
tion 4.1.6). To check whether the issued instruction is the instruction in the ROB
access stage, the tags are compared. The tag of the instruction in the ROB access stage
is calledD2.ROB.tag in the figure. The signalnewissue is active if the instruction
in the ROB access stage is issued to any functional unit. The values ofnewissue are
accumulated in the registerissued, i.e., issued is active if the instruction has been
issued in any previous cycle.

The registerissued has to be updated even if the stage of the ROB access is stalled.
The update of this register is done analogously to the update of the registerforw in
the forwarding circuit with stalling (see section 2.6.3), i.e., if the ROB access stage is
stalled, the registerissued is updated, otherwise the updated result is saved in the next
stage. The computation ofnewissue can be pipelined similar to the computation of
forw in the forward circuit with stalling.

Let cD2 be the number of stages of the ROB read access in the decode sub-phase
D2. The output register of the ROB access has to be stalled if it is full and the register
issued is not active:

D2.stallcD2 := D2.fullcD2 ∧ D2.issuedcD2 .

This guarantees that the ROB read access of an instruction is held in the laststage of
the access until the instruction is in the reservation station and snoops on the output of
the ROB. The other stages are stalled as usual, i.e.,stallOut := stallIn∧full. Thus,
the stall output of the ROB accessROB.stallOut can be computed as:

ROB.stallOut :=

cD2
∧

i=1

D2.fulli ∧ D2.issuedcD2 (4.10)
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The input register of the decode sub-phaseD2 is stalled if either the ROB access
or the issue circuit produce a stall:

D2.stall0 := D2.full0 ∧ (ROB.stallOut ∨ Issue.stallOut). (4.11)

Let cI be the number of cycles needed for issuing. Then, combining formulas 4.9
and 4.11 one gets for stall output of the decode sub-phaseD2 (which is the stall signal
of the first stage ofD2):

D2.stallOut :=

{

D2.full0 ∧ ROB.stallOut if cI = 1

D2.full0 ∧ (ROB.stallOut ∨ Issue.stallOut) if cI > 1

(4.12)

Let lROB be the width of the tags. The the delay of the circuitIssueTest is:

D(IssueTest) ≤ D(EQ(lROB + 1)) + D(OR-Tree(7)) + DOR.

Let cIT be the number of cycles needed for the circuitIssueTest. The number of
inputs and outputs are8 · lROB + 15 respectively 1. It holds

cIT = ⌈D(IssueTest)/(δ − DMUX)⌉,

C(Issue Test) ≤ 7 · C(EQ(lROB + 1)) + 8 · COR + CMUX + CREG

+ cIT · (4 · lROB + 8) · (CREG + CMUX).

4.1.8 Cost and Delay

The delay of the decode phase depends on the number of buffer circuitsthat have to be
inserted in order to compute the stall signals within the cycle time. Up to two buffer
circuits are inserted in order to reduce the delay of the stall signals. The first buffer
circuit is inserted after the stagecRF in which the register files return the results. The
second buffer circuit is inserted somewhere before the stagecRF . To further decrease
the delay of the stall signal, more buffer circuits could be inserted into the stages of
D1 and the ROB access inD2; however, this is not necessary for a stage depth of 5
and greater.

If no buffer circuit has to be inserted into the decode sub-phaseD1, its delay is:

D(D1) ≤ max{D(PT), D(RF), D(Decode)} + D(OpGen).

The values for the number of cycles of the sub-phaseD1 cD1 and for cRF can be
computed based on the number of buffer circuitsb:

cD1(b) = ⌈(D(D1) + b · DMUX)/δ⌉,

cRF (b) =

{

⌈D(SPR-RF)/δ⌉ if b ≤ 1

⌈(D(SPR-RF) + DMUX)/δ⌉ if b > 1
.

If no buffer circuits are inserted in the sub-phaseD1, the stall signal for the
first stage ofD1 (and therefore the output stall signal of the whole decode phase
D1.stallOut) is computed as (see equation 4.6):

D1.stallOut = D1.full0 ∧ (D1.stallIn0 ∨ D1.genStall0)
(4.5)
= D1.full0 ∧ (D1.stallIn0 ∨ ROB.full ∨ IR.haltdec).
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The stages1 to cRF − 1 do not generate stall signals. Thus:

D1.stallOut = D1.full0 ∧ ((

cRF−1
∧

i=1

D1.fulli ∧ D1.stallIncRF−1)

∨ ROB.full ∨ IR.haltdec).

This can be transformed using the distributive law to:

D1.stallOut = (

cRF−1
∧

i=0

D1.fulli ∧ D1.stallIncRF−1)

∨ (D1.full0 ∧ (ROB.full ∨ IR.haltdec)).

Using formula 4.8 for the computation ofD1.stallcRF = D1.stallIncRF−1 it follows:

D1.stallOut = (

cRF
∧

i=0

D1.fulli ∧ (D1.stallIncRF ∨ D1.genStallcRF ))

∨ (D1.full0 ∧ (ROB.full ∨ IR.haltdec))

(4.13)

(4.7)
= (

cRF
∧

i=0

D1.fulli ∧ (D1.stallIncRF ∨ (readIEEEf ∧ allRet)))

∨ (D1.full0 ∧ (ROB.full ∨ IR.haltdec))

The remaining stages of the sub-phaseD1 do not generate stalls. LetcD1 be the
number of stages ofD1. Then, if no buffer circuits are inserted inD1, the stall output
of the decode phase can be computed as:

D1.stallOut = (

cRF
∧

i=0

D1.fulli ∧ ((

cD1−1
∧

j=cRF +1

D1.fulli ∧ D2.stallOut)

∨ (readIEEEf ∧ allRet)))

∨ (D1.full0 ∧ (ROB.full ∨ IR.haltdec))

Figure 4.7 shows the computation of the signalD1.stallOut.

Let cI be the number of stages needed for the circuitIssue andcD2 the number
of cycles needed for the ROB access in the decode sub-phaseD2. The value ofcD2

is computed in the ROB section 4.6. Then the delay of the output stall signal forthe
decode sub-phaseD2 can be computed as:

D(ROB.stallOut)
(4.10)

≤ D(AND-Tree(cD2)),

D(D2.stallOut)
(4.12)

≤











D(Issue.stallOut) if cI = 1

max{D(ROB.stallOut),

D(Issue.stallOut)} + DOR

if cI > 1
.
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Figure 4.7: Computation of the decode stall output without buffer circuit

The control signalsAllRet, IEEEfRead, andIR.haltdec come directly out of
registers and therefore have delay zero. The signalROB.full has delayDMUX as
discussed later in the section 4.6.7. The stall output of the decode phase mayat most
have the delayδ − DMUX (see section 6.4). Thus, the number of buffer circuitsb can
be zero if the following equation holds:

δ − DMUX ≥ max{max{D(D2.stallOut), D(AND-Tree(cD1(0) − cRF (0) − 1))}

+ DAND + DOR,

D(AND-Tree(cRF (0) + 1)), D(ROB.full) + DOR}

+ DAND + DOR.

The first buffer circuit is inserted in the stage after the output of the register files
return the result of the read accesses, i.e.,cRF (1) + 1. This allows to split the stall
computation at the signalD1.stallcRF +1 = D1.stallIncRF . In equation 4.13 the
signalD1.stallIncRF can then be computed as (see figure 2.4 on page 13):

D1.stallIncRF = D1.fullcRF +1 ∨ D1.fullBuf cRF +1.

The critical signal of the stall computation of the sub-phaseD1 for the stages below the
stagecRF is then the input of the full bit of the buffer circuitD1.fullBuf cRF +1′. The
AND-gate in the buffer circuit that is needed for the computation of this signal (see fig-
ure 2.4) can be incorporated into the AND-Tree for the signalsD1.fullcRF +1...cD1−1.
This increases the number of inputs by 2 (see section 2.5.4). Figure 4.8 shows the
computation of the critical signals of the stall computation if one buffer circuit isin-
serted.

Thus, one buffer circuit is sufficient (b = 1) if the following equations holds:

δ ≥ max{D(D2.stallOut), D(AND-Tree(cD1(1) − cRF (1) + 1)) + DAND},

δ ≥ max{DAND + DOR, D(AND-Tree(cRF (1) + 1)), DMUX + DOR}

+ DAND + DOR + DMUX .
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Figure 4.8: Computation of the decode stall signal with one buffer circuit inserted
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D1.fullcSPR+1
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D1.full1...cSPR
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D1.fullBuf0
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Figure 4.9: Computation of the signalD1.fullBuf0′ with two buffer circuits inserted

The AND-gate and the two OR-gates needed for the computation of OR of the signals
D1.stallIncRF andD1.genStallcRF (see figure 4.8) can be merged into the AND-
tree below. This effectively increases the number of inputs of the AND-tree by 4 and
allows the balancing of the AND-tree in order to minimize the overall delay. Thus, the
second equation can be replaced by:

δ ≥ max{D(AND-Tree(cRF (1) + 5)), DMUX + DOR + DAND}

+ DOR + DMUX .

If δ does not fulfill the last equation a second buffer circuit is inserted into stage0
of D1. The the delay of the stall output of the decode phase isDAND since it comes
directly out of a buffer circuit. Thus, forδ ≥ 5, the requirementD(D1.stallOut) ≤
δ − DMUX (see section 6.4) holds.

Figure 4.9 depicts the computation of the inputD1.fullBuf0′ of the full register
of the buffer circuit in stage0 of sub-phaseD1 if two buffer circuits are inserted into
D1. Using the trick presented in figure 2.5 on page 17 the last AND-gate of the circuit
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can be removed from the critical path. This adds 3 more inputs to the AND-tree. Thus,
if two buffer circuits are inserted, the following equations must hold:

δ ≥ max{D(D2.stallOut), D(AND-Tree(cD1(2) − cRF (2) + 1)) + DAND},

δ ≥ max{D(AND-Tree(cRF (2) + 7)), DMUX + DOR + DAND} + DOR.

These equations hold forδ = 5.

The inputs of the decode sub-phaseD1 consist of the full bit, the instruction regis-
ter, and the signals used by the branch prediction. The width of the input is100+kBTB

(the full bit, the 32 bit instruction word, the 32 bit instruction address, the 32bit pre-
diction result, two interrupt signals, a control signal, andkBTB bits for the branch
target buffer way, see section 6.9). The outputs of the decode sub-phaseD1 consist of
the inputs to the issue circuit and the data written into the ROB in sub-phaseD2. The
width of the output isII +15. The total cost for the decode sub-phaseD1 is (excluding
the RAM environments):

C(D1) ≤ C(Decode) + C(DestCmp) + C(OPGen)

+ cD1 · ⌈(115 + kBTB + II)/2⌉ · CREG.

Let cI be the number stages of the circuitIssue and letcD2 be the number of stages
of the read access to the ROB duringD2. The cost of the sub-phaseD2 not counting
the ROB environment is:

C(D2) ≤ C(Issue) + (II + 15) · CREG

+

{

0 if cI = 1

cD2 · C(IssueTest) if cI > 1
.

4.2 Dispatch

As described in chapter 3 each functional unit has one reservation station of one or
more entries. The instructions wait in the reservation stations until all operands are
valid. The operands get valid by snooping on the CDB and on the output ofthe ROB
access started during decode. The snooping on the ROB output is necessary since the
instructions are issued before the ROB access. As soon as all operands are valid, the
instruction is sent to the functional unit and the entry holding the instruction is cleared.

Figure 4.10 shows a reservation station witheRS entries. Each entry can hold one
instruction. The circuits for the entriesRS-Entryk (k ∈ {0, . . . eRS − 1}) form a
queue. New instructions are always filled into entry0. Whenever possible instructions
move to the next entry to make room for new instructions in entry0. Since instructions
cannot overtake each other in the reservation station, the oldest instruction is always
in the entry with the highest number.

The bussesCDB.⋆ and D2.OP⋆.ROB.⋆ are connected to every entry. If the
tag on one of the busses equals the tag of a not already valid operand of an entry, the
operand in the entry is updated. The data on the bus is saved and the operand is marked
valid. An arbitration of the two busses is not necessary, as they cannot update the same
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Figure 4.10: Reservation station

operand in the same cycle, since otherwise the instruction that is forwardedwould be
on the CDB and in the ROB at the same time.

The reservation station is controlled by the circuitRS-Control. This circuit selects
the oldest instruction which is ready (i.e., all operands are valid) and sends it to the
functional unit via the busRS.⋆. This step is called dispatch of an instruction. The
reservation station control also controls the movement of the entries in the queue and
computes the output stall signal of the reservation station.

4.2.1 Entries

The circuitRS-Entry for one reservation station entry is depicted in figure 4.11. The
input busIn.⋆ equals the output bus of the preceding entry respectively the input
received from the issue circuit in case of the entry0. The output busOut.⋆ contains
the updated content of the entry. If the control signalfill is active, the entry is filled
with the content of the busIn.⋆. Otherwise the current content is updated and held in
that stage.

The registerfull indicates that the entry contains a valid instruction. It is set by
filling a valid instruction into the entry via the busIn.⋆. Thefull signal is reset if
the instruction is dispatched to the functional unit (indicated bydisp = 1) or if the
reservation station is cleared (clear = 1). The registercon contains information about
the instruction which are not altered by the reservation station, for example the tag and
the opcode of the instruction. Hence, it is only updated iffill = 1.

The circuitRS-Entry has a sub-circuitRS-Op for every operand. Each operand
has a valid bit, a tag and a data field. The number of operandso depends of the type
of the functional unit. The maximum number of operands is six for the floating point
units. Table 4.2 maps the operands to theRS-Op circuits of the reservation station
entries for the functional units.

The operands are updated by the CDB busCDB.⋆ and the output of the ROB read
access which was started in decode sub-phaseD2. Note that the ROB is accessed for
every operand in parallel and therefore computes one separate bus for every operand
(see section 4.6). Similar to the forwarding circuit with stalling the CDB and the ROB
update the output busOut.⋆ of the entry. Thus, if the instruction flows from entryi
to i + 1 the entryi + 1 is updated. If the instruction remains in entryi, this entry is
updated.

The busEntry.⋆ is sent to the control circuitRS-Control. The content of this bus
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Figure 4.11: Reservation station entry

RS-Op1 RS-Op2 RS-Op3 RS-Op4 RS-Op5 RS-Op6

width 32 32 32 32 5 2

Mem OP1.lo OP2.lo

IAlu OP1.lo OP2.lo

IMulDiv OP1.lo OP2.lo

FAdd OP1.hi OP1.lo OP2.hi OP2.lo OP3 OP4

FMulDiv OP1.hi OP1.lo OP2.hi OP2.lo OP3 OP4

FMisc OP1.hi OP1.lo OP2.hi OP2.lo OP3 OP4

BCU OP1.lo OP2.lo

Table 4.2: Mapping of the operands

is the same as the content of the busOut.⋆ with two differences: first, the full bit of
the busEntry holds the content of the registerfull instead of the updated value. This
old value of the full bit is used to decide whether new informations can be filledinto
the entry (see section 4.2.2). Second, the busEntry.⋆ has an extra bitreq indicating
that the entry contains a valid and ready (i.e., all operands are valid) instruction and
hence requests that the instruction in this entry gets dispatched:

ready :=

o
∧

j=1

Opj .valid,

req := full ∧ ready.

Let wC be the width of the registercon. Then the cost of an entry witho operands
with width w1 to wo can be estimated as:

C(RS-Entry(wC , o, w⋆)) ≤
o

∑

j=1

C(RS-Op(wj)) + C(AND-Tree(o))

+ 2 · CAND + CMUX + (wC + 1) · CREG.
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Figure 4.13: Modified test circuit for low part operands reading double precision re-
sults

Operands

Figure 4.12 shows the operand circuitRS-Op. The circuit saves the valid bit, the tag
and the data of the operand in the respective registers. If thefill signal is active, the
content of the input busIn.⋆ is saved into the registers, otherwise the current operand
is held in the entry, i.e., the output busOut.⋆ with the updated values for the operand
is latched.

Similar to the RAM forwarding circuit in section 2.6.1 the sub-circuitsTest com-
pares the tag of the bussesCDB.⋆ andROB.⋆ with the tag of the operand. If the tags
match, the signalsCDB.full respectivelyROB.full indicate valid forwarding data,
and the operand is not yet valid, the respective forwarding data are multiplexed into
the data outputOut.data. The new valid signal is computed as OR of the old valid
and the forward signals from the two test circuits.

Assume a 32 bit instruction uses the high part of a 64 bit result as operand. This
can happen if the 32 bit instruction depends on a 64 bit result and reads an odd register.
64 bit results are either written into the floating point register file or the registers8 and
9 of the special purpose register file (integer multiplication / division instructions) file
as target. The high part of these registers can only be used by the operand 2 of the
memory unit and the integer ALU, and operands2 and4 of the floating point units.

For these operands, the circuitTest is replaced by a modified circuit that uses
the high part of the CDB respectively the ROB output if the instruction readsan odd
address and the depends on 64 bit result (see figure 4.13). The signal depDbl indicates
that the instruction that the operand depends on is a double precision instruction, the
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Figure 4.14: Reservation station control

signalodd is active if the operand address is odd. These two signals are computed
during decode (see section 4.1.4) and are part of the control buscon of the reservation
station entries.

The cost of an operand circuit withw data bits can be estimated as:

C(RS-Op(w)) ≤ 2 · C(Test(lROB)) + 3 · w · CMUX + w · CREG

+ 2 · COR + CAND + CMUX + (1 + lROB) · CREG.

The additional costs for the entries of a reservation station of typei (i = 2 for an
integer ALU reservation station,i ∈ {4, 5, 6} for floating point reservation stations)
are:

C(RS-Entry(o, w⋆, wC))+ ≤











32 · CMUX + CAND if i = 1

2 · (32 · CMUX + CAND) if i ∈ {3, 4, 5}

0 else

.

4.2.2 Reservation Station Control

The reservation station control circuitRS-Control (see figure 4.14) computes the con-
trol signalsdisp⋆ andfill⋆ for the entries, the outputRS.⋆ of the reservation station
to the functional unit, and the stall signalstallOut to the issue circuit.

The entryk can be filled if the entry is not full (fullk) or the content is filled into
the next entry (fillk+1). The reservation station can accept new data if the first entry
may be filled. Since the last entry (numbereRS − 1) cannot be filled into any other
entry, it follows:

fillk :=

eRS−1
∨

j=k

fullj ,

stallOut := fill0.

Note that the stall output only depends on the full bits of the entries. Hence,the
reservation station splits the stall signal similar to the buffer circuit. The drawback is
that the issue circuit may be stalled even if an instruction is currently dispatched to
the functional unit and therefore its entry could be filled. Taking the dispatch signals
into account for the computation of the fill and the stall signals would significantly
increase the delay of the stall output. This could make it necessary to add a buffer
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Figure 4.15: Dispatch computation for memory (a) and branch checking (b) unit

circuit above the reservation station. Instead one could just increase thesize of the
reservation station by one entry to get the same effect.

If the stall inputStallIn from the functional unit is not active, the control circuit
dispatches the oldest instruction in the reservation station which is ready to thefunc-
tional unit. The entryk contains a valid and ready instruction if the signal request
signal of this entryEntryk.req is active. A find-first-one circuitFFO using the re-
quest signals computes as outputffo the entryk with the highest index that contains a
valid and ready instruction. Hence, the signalsselect⋆ computed from the outputffo
unary select the entry containing the oldest ready instruction. The negation of the stall
input stallIn is AND-ed to this output obtaining the dispatch signalsdisp⋆. Thus, no
instruction is dispatched if the stall input is active.

The outputzero of the circuitFFO indicates that no entry is full and ready. If this
signal is not active, a valid instruction can be sent to the functional unit. Thus, negation
of the zero output can be used asfull signal for the output busRS.⋆. The signals
select⋆ are used to select from the entry outputsEntry⋆.⋆ the instruction which is
sent to the functional unit via the output busRS.⋆.

For the memory unit and the branch checking unit small changes have to be made
to the computation of the dispatch signals due to restrictions of the dispatch order. Note
that due to these restrictions the DLXπ+ must have exactly one memory and branch
checking unit.

The reservation station of the memory unit has to guarantee that no memory in-
struction overtakes a store instruction, as the store may write to the same address.
Note that the address of a memory access is computed inside the memory unit and
therefore not known by the memory reservation station. A memory instruction may
only be dispatched if no older instruction is a store instruction. In order to check for
all entries whether an older instruction is a store instruction, a parallel prefix OR of the
signalsEntry⋆.store ∧ Entry⋆.full indicating a valid store instruction is computed.
The output of the parallel prefix OR is used to turn off the dispatch signal as computed
from the find first one circuit (see figure 4.15 (a)).

The branch checking unit can check branches only in-order. Hence, the reservation
station of the branch checking unit must dispatch the instructions in order. Only the
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oldest valid instruction is checked if it is ready. The oldest valid instruction can be
computed using a find-first-one circuit on the full bits. The output of the find-first-one
circuit is AND-ed with the ready bits in order to check whether the oldest instruction is
actually ready (see figure 4.15 (b)). Since only the oldest instruction may be dispatched
to the branch checking unit the signalsselect⋆ can be derived directly from the output
of the find-first-one circuit.

If the number of entrieseRS is 1, the requirements for memory and branch check-
ing unit are automatically fulfilled. Thus, no special circuit is needed ifeRS is 1.
Additionally the signalsfill anddisp cannot be active at the same time (the full bit
must be inactive forfill and active fordisp). This allows to move the AND gate which
resets the full bit on dispatch in figure 4.11 below the multiplexer controlled by the fill
signal (see figure 4.16). Hence, the delay of the path through the dispatch signal is
further reduced.

The cost of the control circuitRS-Control for a reservation station of typei with
o operands of widthw1 to wo andwC control bits is:

C(RS-Control(eRS , o, w⋆, wC)) ≤ C(PP-OR(eRS)) + C(FFO(eRS))

+ 2 · eRS · CAND

+ (
o

∑

j=0

wj + wC + 1) · C(Sel(eRS))

+















C(PP-OR(eRS − 1))

+eRS · CAND

if i = 0

0 if i 6= 0

.
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4.2.3 Pipelining

For a integer ALU reservation station of type witheRS entries, the delay of the path
from the bussesCDB.⋆ andROB.⋆ to the full bit is:

D({ROB, CDB}.⋆ Entry⋆.full′) ≤ D(Test(lROB)) + 2 · DOR

(Out.valid, figure 4.12)

+ D(AND-TREE(2))
(ready, figure 4.11)

+ DAND (req, figure 4.11)

+ D(FFO(eRS)) + DAND

(disp⋆, figure 4.14)

+ DAND + DMUX .

Even if the number of entries is1 (which deceases the delay by the find-first-one circuit
and the multiplexer) this computation cannot be done in one cycle for a stage depth δ
of 5. Thus, the computation must be pipelined if the stage depth is too small.

No pipelining registers are inserted inside the last part of the computation starting
at the signalreq⋆. The bound forδ given by the last part of the path is acceptable.
The pipelining of the path until the signalready⋆ can be done similarly to the for-
warding circuit with stalling, i.e., using two-dimensional pipelining (see section 2.6.3).
In one dimension the path from the signals{ROB, CDB}.⋆ to the signalready⋆ is
pipelined, the second pipelining dimension is the movement of the instruction through
the reservation station queue.

In order to insert a pipelining register after the computation of the request signal
some modifications have to be made to the reservation station entries (see figure4.11)
in order to maintain correctness. The modification to the entries is depicted in fig-
ure 4.17. The request signal is reset whenever the full bit is reset due to a dispatch or a
clear. Otherwise, if the valid bit is reset in the last cycle due to dispatching theinstruc-
tion or a clear, the request bit would still be active. This could lead to dispatching an
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instruction twice or dispatching invalid data if the construction of the reservation sta-
tion entry from figure 4.11 would not be adjusted. Note that the extra logic asdepicted
in figure 4.17 introduces an additional AND-gate on the path from the bussesCDB.⋆
andROB.⋆ to the full bit. Also, the clear signal is AND-ed to the full bit before the
full bit is used to compute the request signal (in contrast to figure 4.11) since otherwise
the delay of the path would increase by a second AND-gate.

In the memory unit the computation of the dispatch signal also depends on the
AND of the signalsEntry⋆.write andEntry⋆.full indicating valid store instructions.
A register can be inserted after the computation of this AND similar to the register after
the request bit. Thus, the minimum delay of the dispatch signals for the reservation
stations of the memory and branch checking unit is only byDAND greater than for the
other reservation stations.

In order to compute the minimum delay of the inputs to the full registers and there-
fore the bound for the stage depthδ, the following assumptions are made: the input
stall signalstallIn from the FU comes directly out of a buffer circuit. Thus, the delay
of this signal isDAND (see section 2.5.3). A register is added directly after the request
signals as in figure 4.17, leading to delay of0 for these signals. Leti be the type of the
reservation station (see table 4.1 on page 40, i.e.,i = 0 for the memory andi = 6 for
the branch checking reservation station). Then is must hold for a reservation station
with eRS entries:

δ ≥











3 · DAND if eRS = 1

max{DAND, D(FFO(eRS))} + 2 · DAND + DMUX if eRS > 1 ∧ i 6∈ {0, 6}

max{DAND, D(FFO(eRS))} + 3 · DAND + DMUX if eRS > 1 ∧ i ∈ {0, 6}

.

(4.14)

Note that for a givenδ this bounds the number of entrieseRS of the reservation stations.

Cost and Delay

To compute the number of cycles needed for dispatching instructions, two paths have
to be considered. The path from the input busIn.⋆ to the registerfull determines the
minimum number of cycles that an instruction has to stay in the reservation station,
if all operands of the instruction are already valid during issue. The initial value of
the request signalreq (i.e., the AND of the full bit and the operand valid signal) can
be computed during issue without increasing the delay of the issue circuit. Thus, an
issued instruction for which the operands are all valid can be dispatched inthe next
cycle.3.

The path from the bussesROB.⋆ andCDB.⋆ to the full register determines the
minimum number of cycles it takes from receiving the last operand (viaROB.⋆ or
CDB.⋆) to dispatching of the instruction. In order to compute the delay of the path
the boolean variablepreq has to be introduced, which indicates whether a pipelining
register is added after the computation of the request bit. Ifpreq is one (i.e., a register
is added), the delay increases by the delay of the AND which resets the request signal
as in figure 4.17.

3The additional cost of C(AND-Tree(o+1)) is added to the cost of the reservation station
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To compute the cases wherepreq must be one the stall inputstallIn from the FU
is again assumed to come directly out of a buffer circuit (i.e.,D(stallIn) = DAND).
If eRS = 1, the stall inputstallIn is at least as timing critical as the request bit. Thus,
in this casepreq can be zero. ForeRS > 1, the delay of the find-first-one circuit is at
leastDAND. Thus, the the path from the request signal is critical. The variablepreq

can then be zero if the path from the signalsready⋆ to the input of the full registers
fits into one cycle. Leti be the type of the reservation station. Thenpreq is:

preq =























0 if
δ ≥

{

D(FFO(eRS)) + 3 · DAND + DMUX if i 6= 0

D(FFO(eRS)) + 4 · DAND + DMUX if i = 0

∨eRS = 1

1 else

.

Using the variablepreq, the delay of the path from the busses{ROB, CDB}.⋆ to
the full register foreRS > 1 can be computed as follows:

D({ROB, CDB}.⋆ Entry⋆.full′) ≤ D(Test(lROB)) + 2 · DOR (Out.valid)

+ D(AND-TREE(o)) (ready)

+ (preq + 1) · DAND (req)

+











0 if i = 6

D(FFO(eRS)) + DAND if i = 0

D(FFO(eRS)) else

+ DAND (disp⋆)

+ DAND + DMUX .

If eRS = 1 then no special computation is made for the branch checking and the
memory reservation station and hencepreq is zero. Thus, the delay of the path is:

D({ROB, CDB}.⋆ Entry⋆.full′) ≤ D(Test(lROB)) + 2 · DOR (Out.valid)

+ D(AND-TREE(o)) (ready)

+ DAND (req)

+ DAND (disp⋆)

+ DAND.

The number of cycles needed from receiving the last operand from theCDB or the
RAM to dispatching the instructioncU2D can be computed similarly as the forwarding
circuit with stalling (see section 2.6.4):

cU2D =

⌈

D({ROB, CDB}.⋆ Entry⋆.full′) − DMUX

δ − DMUX

⌉

.

Now consider the output busRS.⋆ from the reservation station to the functional
unit. This bus is computed by selecting the bussesEntry⋆.⋆ using the signalsselect⋆
(see figure 4.14). The delay of the bussesEntry⋆.⋆ and the signalsselect⋆ is smaller
thanδ due to the pipelining of the path from the busses{ROB, CDB}.⋆ to the full bits



4.2 Dispatch 61

of the entries (see above). Due to the additional delay of the select circuit,the delay of
the output busRS.⋆ may be greater thanδ, but the select circuit can be pipelined easily
since it does not contain any loops. For simplicity this is done by adding the delay of
the path that does not fit into one cycle to the delay of the functional unit. Notethat
if the delay of the busRS.⋆ is smaller thanδ, the delay of the functional unit can be
decreased, because the functional unit can already do useful computations in the cycle,
in which the instruction is dispatched.

In order to compute the delay of the busRS.⋆ the delay of the bussesEntry⋆.⋆ and
the signalsselect⋆ after pipelining of the reservation station must be computed. Let
D′(Entry⋆.⋆) andD′(select⋆) denote the delay of these signals before any pipelining
registers are inserted into the path from{ROB, CDB}.⋆ to the full bits of the entries.
For the reservation station of the BCU (i = 6) the select signal only depends on the full
bits of the entries. For the other reservation stations the select signals depend on the
request signalsEntry⋆.req. The delay of this signal can be derived from the formula
above for the path from the busses{ROB, CDB}.⋆ to the full bit of the entries. Thus:

D′(select⋆) ≤

{

D(Entry⋆.req) if i 6= 6

D(Entry⋆.full) if i = 6

+ D(FFO(eRS))

≤











D(Test(lROB)) + 2 · DOR + D(AND-Tree(o))

+(preq + 1) · DAND

if i 6= 6

0 if i = 6

+ D(FFO(eRS)).

The delay of the busEntry⋆.⋆ is dominated by the data of the operands. Thus, the
delay of the bus is (see busOut.data in figure 4.12).

D′(Entry⋆.⋆) ≤ D(Test(lROB)) + max{DOR + DAND, DMUX} + DMUX .

Due to the pipelining intocU2D stages the delay ofselect⋆ andEntry⋆.⋆ can be re-
duced by up to(cU2D−1) ·(δ−DMUX). Since no pipelining registers are inserted be-
tween the request signalsreq⋆ and the signalsselect⋆, the delay of the signalsselect⋆
cannot get smaller than the delay from request signals. Thus, after inserting pipelining
registers the delays are reduced to:

D(select⋆) ≤ max{D(FFO(eRS)) +

{

(1 − preq) · DAND if i 6= 6

0 if i = 6
,

D′(select⋆) − (cU2D − 1) · (δ − DMUX),

D(Entry⋆.⋆) ≤ max{0, D′(Entry⋆.⋆) − (cU2D − 1) · (δ − DMUX)}.

If eRS = 1 no select signals are needed to compute the output busRS.⋆. Thus, the
delay added to the functional unit of the reservation station is:

D(FU(eRS))+ ≤

{

D(Entry⋆.⋆) − δ if eRS = 1

max{D(select⋆), D(Entry⋆.⋆)} − δ if eRS > 1
.
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Note that if this value is negative, the delay of the functional unit is effectively reduced,
i.e., logic from the functional unit is pulled into the last cycle of dispatch.

The delay of the output stall signalstallOut is:

D(stallOut) ≤ D(PP-OR)(eRS).

In order to compute the maximum number of entrieseRS for a givenδ, the delay of
the stall inputstallIn was assume to beDOR. For a giveneRS the delay of the stall
inputstallIn from a functional unit of typei is bounded by:

D(stallIn) ≤ δ −

{

2 · DAND if eRS = 1

(2 · DAND + DMUX) if eRS > 1
. (4.15)

The number of inputs and outputs of an entry witho operands of widthw1 to wo

andwC control signals is2 ·
∑o

j=1 wj +o · (lROB +1)+33+ lROB +wC respectively
∑o

j=1 wj + 3 + wC . Thus, the cost of the entries increases through pipelining by:

C(RS-Entry(o, w⋆, wC))+ ≤ (cU2D − 1) · (CMUX + CREG)

· ⌈(3 ·
o

∑

j=1

wj + (o + 1) · (lROB + 1) + 2 · wC + 35)/2⌉.

The cost of a reservation station withr entries ando operands of widthw1 to wo

is:

C(RS(eRS , o, w⋆, wC) ≤ eRS · C(RS-Entry(o, w⋆, wC))

+ C(RS-Control(eRS , o, w⋆, wC))

+ C(AND-Tree(o + 1)).

Let ni be the number of functional units andeRSi
the number of entries of the

reservations stations of typei ∈ {0, . . . , 6}. Using the width of the control signals as
approximated in section 4.1.6 the total cost of the dispatch phase is:

C(Dispatch) ≤ C(RS(eRS0 , 2, 32, 32, 24))

+ C(PP-OR(eRS0 − 1)) + eRS0 · CAND

+ n1 · C(RS(eRS1 , 2, 32, 32, 8 + lROB))

+ n2 · C(RS(eRS2 , 2, 32, 32, 8 + lROB))

+ n3 · C(RS(eRS3 , 6, 32, 32, 32, 32, 5, 2, 8 + lROB))

+ n4 · C(RS(eRS4 , 6, 32, 32, 32, 32, 5, 2, 8 + lROB))

+ n5 · C(RS(eRS5 , 6, 32, 32, 32, 32, 5, 2, 8 + lROB))

+ C(RS(eRS6 , 2, 32, 32, 96 + kBTB + lROB)).

Note the additional cost for the memory unit (i = 0) due to parallel prefix OR that
checks for older store instructions in the queue.
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FU CDB.hi CDB.lo case

BCU target PC result
ALU result.lo result.lo
IMulDiv result.hi result.lo
FPU result.hi result.lo dbl

result.lo result.lo dbl

Mem effective address dpf ∨ dmal

result.lo result.lo (dpf ∨ dmal)

Table 4.3: Mapping of the FU output to the CDB

4.3 Functional Units

The processor has seven different types of functional units: memory unit, integer ALU,
integer multiplier / divider, three different floating point unit types (additive, multi-
plicative, and misc) and a branch checking unit. To comply with the fast processor
core, the fastest published additive and multiplicative floating point units aretaken
from [Sei99]. The delay values for these FUs are taken from [Sei03].The miscella-
neous floating point unit is not assumed to be critical and taken from [Jac02]. Delay
values are from synthesis of the Verilog description [Lei02] using Synergy [Cad97].

Pipelining of the floating point and integer units is straightforward using buffer
circuits if the stall path gets to long. These functional units are not described in detail
here. The delay value and the computation of the stall signals for these units can be
found in appendix D. The memory unit is described in chapter 5, the branchchecking
unit is described together with the instruction fetch in section 6.5.

Table 4.3 shows the mapping of the outputs of the FUs to the CDB. In order to
allow the high part of the reservation station operands to 32 bit results, 32 bit results
are written to the high and the low part of the CDB. This is only needed for FUswhich
may write the floating point register file (Alu, Mem, and floating point FUs).

If the memory unit returns an interrupt, the effective address is saved onthe low
part of the CDB. This allows to omit an additional exception data field in the ROB
entries. The branch checking unit returns the target PC which is neededfor interrupts
of type continue (see section 4.5.3) on the high part, and the result of a branch instruc-
tion on the low part. A branch instruction produces a result if it writes to a register
file entry: jump and link instructions write the address of the next instruction intothe
general purpose register file; return-from exception instructions writethe value of the
special register ESR (which is used as second operand of these instruction) into the
special purpose register file.

Different units can produce different interrupts. For example only the floating point
units can produceIEEEf interrupts. Hence, all interrupts which cannot occur for a
unit are set to zero at the output of the unit. Then all interrupt signals have defined
values for all units. The outputs of the functional units have width74+ lROB, (the full
bit, 64 data bits, 8 interrupt bits, a misprediction signal from the BCU, andlROB bits
for the tag).
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to RS

Arbiter

FU0 FUn − 1

stalln−1

FUn−1.⋆
stall0

FU0.⋆

ROB

CDB

Figure 4.18: Completion phase

4.4 Completion

In the completion phase the functional units write their result to the CDB. If multiple
functional units have results available, one unit is selected and may write its result
in the CDB register. The other functional units are stalled. The content of the CDB
register is written into the ROB and distributed to the reservation stations.

Figure 4.18 depicts an overview of the completion phase. For the completion phase
the type of a functional unit is irrelevant. For simplicity the FUs are numbered from 0
to n − 1. The selection of the functional unit which may write to the registerCDB.⋆
is done by the arbiter circuitArbiter. This arbiter assigns the CDB to the functional
units round robin, i.e., starting from the unit that wrote to the CDB in the last cycle, it
selects the next functional unit whose output is full. If the output of no functional unit
with higher index is full, the search is continued from index0. If none of the FUs has
a valid result ready the index is unchanged and the full bit of the CDB is setto 0.

Let j(t) denote the index of the last FU which has written to the CDB and letn be
the number of functional units. The indexj(t+1) of the next FU which may write to
the CDB can be computed by the following formula:

j(t+1) :=











min{i|(FUi.full = 1) ∧ (j(t) < i < n)} if
∨n−1

i=j(t)+1
FUi.full = 1

min{i|(FUi.full = 1) ∧ (0 ≤ i < n)} else if
∨n−1

i=0 FUi.full = 1

j(t) else

.

(4.16)

The write access to the ROB is never stalled. Hence, the registerCDB.⋆ may be
updated every cycle and the arbiter has no stall input.

4.4.1 Arbiter

The circuit for the arbiter is shown in figure 4.19. The sub-circuitAck computes the
acknowledge signalsAck which unary selects the FU that may write to the CDB. The
FUs that are not selected have to be stalled. Therefore, the negation of the acknowledge
signals can be used as stall input to the functional units. The circuitAck also computes
the full bit of the CDB.

The width of the data bus is73 + lROB (64 data bits, 8 interrupt signals, the
misprediction bit, and the instruction tag). Thus, cost and delay of the arbitercircuit
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FU⋆.⋆stall⋆FU⋆.full

Ack
Sel

clear

full

Out.⋆

Ack(n)

Figure 4.19: Arbiter circuit

zero zero zero

In⋆.full

last

Out.full

Ack

FLOh FLOlHFLOh HFLOl

floflofloflo

1 0 1 0

Figure 4.20: Computation of the acknowledge signals

are:

D(Arbiter(n)) ≤ D(Ack(n)) + D(Sel(n)),

C(Arbiter(n)) ≤ C(Ack(n)) + CAND + (74 + lROB) · C(Sel(n)).

Acknowledge computation

Figure 4.20 shows the implementation of the circuitAck which computes the round
robin acknowledge signals. It is a delay optimized version of the circuit in [Krö99]
which is based on the formula (4.16). The indexj(t) of the last functional unit which
has written on the CDB is saved in the registerlast in half-unary encoding (see section
2.4), i.e., all bits of the registerlast with an index equal or lower thanj(t) are one, the
other bits are zero. Thus, the AND-gate above the rightmost find-last-onecircuit FLOl

in figure 4.20 forces the full bits of those FUs to zero which have an index lower or
equal toj(t). The circuitFLOl thus computes the following functions:

FLOl.f lo := (min{i|(FUi.full = 1) ∧ (j(t) < i < n)})un,

FLOl.zero :=
n−1
∧

i=j(t)+1

FUi.full.

If the minimum does not exist, the zero signal is active and the output of the find-
last-one circuit with unmasked inputsFLOh is taken. If none of the full bits is active,
the zero bit of the circuitFLOh is active. Hence, the negation of this signal becomes
the full bit for the CDB register.

For the registerlast, the index is needed in half-unary encoding. This is done
by the find-last-one circuits that return the result in half-unary encodingHFLO in the
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left part of the circuit (see appendix C.1.1 for the construction of the circuit HFLO).4

The registerlast is only updated if a functional unit has written on the CDB, i.e.,
CDB.valid = 1.

The delay and cost of the acknowledge computation are:

D(Ack(n)) ≤ DAND + D(FLO(n)) + DMUX , (4.17)

C(Ack(n)) ≤ 2 · C(FLOH(n)) + 2 · C(FLO(n))

+ n · (2 · CAND + 2 · CMUX + CREG).

4.4.2 Pipelining

The path from the acknowledge signals to the CDB register has no loops andcan
therefore be pipelined easily; it is not treated in detail here. Yet the acknowledge
signalsAck are used to compute the stall inputs of the functional units and therefore
the delay must be small enough that the functional units can compute their stall signals
within one cycle.

In order to compute the maximum delay allowed for the circuitAck(n), the follow-
ing assumptions are made which minimize the delay of the inputs and the requirements
of the acknowledge signal: the last stage of all functional units is not assumed to gen-
erate stall signals (i.e.,genStall = 0) and are not assumed to have a buffer circuit.
Thus, for all functional unitsi D(FUi.full) = 0 holds true. The acknowledge signals
are not computed using an AND-Tree. Hence, in order to be able to computethe stall
signals in the functional units it must hold (see equation (2.9) in section 2.5.4):

δ − DAND ≥ D(Ack(n))
(4.17)
⇔ δ ≥ 2 · DAND + D(FLO(n)) + DMUX . (4.18)

Sincen must be at least7, the proposed circuit cannot be used at a stage depth
of 5. The delay of the circuitAck can be reduced in two different ways. The arbiter
can be replaced by a tree of arbiters, thus reducing the number of inputs of the single
arbiters or the full outputs of the functional units can be pre-computed onecycle ahead
which allows to compute the acknowledge signals in two cycles. In this thesis onlythe
arbiter tree is presented.

Figure 4.21 depicts as an example an arbiter tree with two stages. The original
arbiter withn inputs is divided intos arbiters witht := ⌈n/s⌉ inputs in the first stage
and one arbiter withs inputs in the second stage. All stages except the first stage of
the arbiter tree have buffer circuits on their input registers in order to decouple the stall
signals in the tree.

In contrary to the arbiter on the root of the tree, the arbiters in the upper nodes need
to process a stall input from the lower stages. If the stall input signal is active the buffer
circuit cannot accept new data. Thus, none of the acknowledge signals of the arbiter
may be active. The stall signal can be incorporated in the presented arbiter circuit with
only small changes that do not change the delay of the arbiter (see figure4.22). Due to
the half-unary encoding, the least significant bit of the registerlast is always 1. The

4The original arbiter in [Kr̈o99] uses a parallel prefix OR over the busAck to compute the half-unary
encoding which increases the delay of the arbiter circuit.
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FU0.⋆ FUt−1.⋆stallOut0 stallOutt−1
stallOutn−t−1 FUn−t−1.⋆ FUn−1.⋆ stallOutn−1

stall

Buf0

stall

stall

Out.⋆

Buf0

stall

Arbiter(t) Arbiter(t)

Arbiter(s)

Figure 4.21: Arbiter tree
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zero zero zero

last
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FLOh FLOlHFLOh HFLOl

stallIn
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stallIn

Out.full

f lo flo flo flo

1 0 1 0

Figure 4.22: Acknowledge computation with stall input

least significant bit of the input of the rightmost find-last-one circuitFLOl is therefore
always 0 and can be ignored. Instead the stall inputstallIn is used as least significant
bit of the input ofFLOl. Thus, ifstallIn is active the least significant bit of theflo
output ofFLOl is active. Since this bit is replaced by a0 in figure 4.22 and thezero
output ofFLOl is not active, none of the acknowledge signals is active if the stall input
is active.

The registerlast is only updated if new data is written into the buffer circuit, i.e.,
if the following signal is active:

updlast := stallIn ∧ Out.full

To allow for a small stage depth, the arbitration circuit for only two inputs can be
optimized using a binary encoding for the registerlast (see figure 4.23). For an op-
timized delay the sub-circuitAck(2) computes different signals for stalling the inputs
and for selecting between the two data ports. The stall outputsstall⋆ are computed
exploiting that the value of the stall output may be arbitrary if the corresponding input
full signal is not active, since in this case the input is not stalled anyway. Also, the
select signal for the data may be arbitrary if the input stall signal is active,since then
the output data is not latched into the next stage anyway.
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stallIn

stallInIn0.full In1.full In0.full In1.full

last

Ack(2)

stall0 stall1

0 1

0 1

clear

In0.⋆ In1.⋆

Out.full Out.⋆

Figure 4.23: Arbiter with stall for two inputs (with sub-circuitAck(2))

The delay of the stall input of the arbiter is at mostDAND since it comes directly
out of a buffer circuit. Thus, for the 2 input arbiter it holds (see figure 4.23):

D(Ack(2)) ≤ max{DMUX , 2 · DAND, DAND + DOR}, (4.19)

D(Arbiter(2)) ≤ 2 · DAND + DMUX ,

C(Arbiter(2)) ≤ 4 · DAND + 3 · COR + (74 + lROB) · CMUX + CREG.

Assume that the last stages of the functional units cannot generate a stall signal.
Then for all stages of the buffer tree the delay of the input full signals is at mostDOR

(see figure 2.4). The delay of the stall outputs of the arbiters to the preceding stage of
the tree respectively to the functional unit may be at mostδ−DAND (see equation 2.9)
in section 2.5.4). Thus, using a tree of two-port arbiters, the bound forδ from equation
(4.18) can be reduced to:

δ − DAND ≥ DOR + D(Ack(2))
(4.19)
⇔ δ ≥ DAND + DOR + max{DMUX , 2 · DAND, DAND + DOR},

(4.20)

which holds forδ ≥ 5. Note that this bound is independent of the number of functional
unitsn.

4.4.3 Cost and Delay

In order to compute the number of stages of the arbiter tree of the completion phase,
two variables are introduced: the variabletL denotes the maximum number of inputs
of the arbiters at the leaves of the tree,tI denotes the maximum number of inputs of
the inner nodes of the tree.

For the computation oftL it is assumed that the last stages of the functional units
do not generate a stall and do not have buffer circuits. Thus, the delayof the full
signals of the inputs is zero and the delay of the outputs may be at mostδ − DAND.
Using equations (4.17) and (4.19)tL can be computed as:

tL = max{t|δ − DAND ≥ D(Ack(t))}

= max

{

t|

{

δ ≥ D(FLO(t)) + DMUX + 2 · DAND if t > 2

δ ≥ DAND + max{DMUX , 2 · DAND, DAND + DOR} if t = 2

}

.

(4.21)
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Figure 4.24: Arbiter tree with pipeline select circuits

For the inner nodes the delay of the input full signals isDOR due to the buffer circuits
between the stages (see section 2.5.3). Hence,tI can be computed as:

tI = max{t|δ − DAND ≥ DOR + D(Ack(t))}

= max











t|











δ ≥ DOR + D(FLO(t)) + DMUX + 2 · DAND if t > 2

δ ≥ DOR + DAND

+ max{DMUX , 2 · DAND, DAND + DOR}
if t = 2











.

Then the number or arbiter stagescAT in the arbiter tree is:

cAT =
⌈

logtI ⌈n/tL⌉
⌉

.

The path from the acknowledge signals through the selection circuit to the data
output can be easily pipelined if necessary. Note that the delay of the acknowledge
computationD(Ack(n)) is at least as large as the delay of the select circuitD(Sel(n)).
Thus, the output of the arbiter can be computed in at most two cycles.

In an arbiter tree, the computation of the data output of stagei of the tree can be
done in parallel to the arbiter of stagei + 1 of the tree. See figure 4.24 for an example
with 2 stages. In the figure, the select circuitsSel(t) compute the data for stage 1
in parallel to the acknowledge computation circuitAck(s) of stage 2. Thus, only the
select circuit of root of the arbiter tree needs an additional stage.

Note that performing the selection of stagei in parallel to the arbitration of stagei
delays the data inputs for the section of stagei + 1. Thus, even if the Arbiter of stage
i + 1 itself would fit into one cycle, the selection must then be moved to the next stage
due to the delay of the data inputs. Thus, if the outputs of any arbiter in the treeis
computed in two cycles, the overall number of cycles needed for the computation of
the output of the arbiter tree is the number of stages of the tree plus one.

Let the boolean variablepAT be one if either the arbiters at the leaves or the arbiters
at the inner nodes of the tree need two cycles to compute the data outputs. Forthe
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arbiters at the leaves of the tree the delay of the full inputs is zero. For the inner
arbiters of the tree the full bits come out of a buffer circuit and thereforehave delay
DOR. Thus:

pAT =

{

1 if max{D(Arbiter(tL)), DOR + D(Arbiter(tI))} > δ

0 else
.

The total number of stages for the completion phasecC is then:

cC = cAT + pAT .

Due to the buffer circuits the delay of the stall inputs of the arbiters on the leaves
of the arbiter tree isDAND. Hence, the stall input is at most as critical as the full input
(see figures 4.22 and 4.23). Since the full inputs of these arbiters do notcome out of
buffer circuits it holds:

D(FU⋆.stallIn) ≤ D(Ack(tL))

≤

{

DAND + D(FLO(min{tL, n})) + DMUX if tL > 2

max{DMUX , 2 · DAND, DAND + DOR} if tL = 2

(4.22)

Let n be the number of functional units. The number of inputs of the complete
phase is approximatelyn · (74+ lROB), the number of outputs is74+ lROB. Then the
cost of the completion phase can be approximated by:

C(Complete) ≤



























C(Arbiter(n)) + (n + 1) · (74 + lROB) · CREG if tL ≥ n

⌈n/tL⌉ · C(Arbiter(tL))

+(tcAT−1
I − 1)/(tI − 1) · C(Arbiter(tI))

+(cC + 1) · ⌈((n + 1) · (74 + lROB))/2⌉ · CREG

if tL < n
.

4.5 Retire

During the retire phase the results of the instructions are written into the register files.
In order to support branch prediction and precise interrupts, the instructions are re-
ordered using the reorder buffer before they write the register file. Ifno succeeding
instruction writing the same register is processed at the time the register file is updated,
the retiring instruction sets the valid bit of the producer table entry of the destination
register.

4.5.1 Overview

An overview of the retire phase is depicted in figure 4.25. The retire phaseis divided
into three sub-phasesRet1, Ret2, andRet3 such that in each phase only one RAM
access is made. The following sections describe the three sub-phases.
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Figure 4.25: Retire phase5

Sub-phase Ret1

The first sub-phaseRet1 reads the oldest instruction which is currently in the ROB.
If this instruction in the ROB has already completed, i.e., the valid bit of the entry is
set, the instruction is retired. The hardware for the sub-phaseRet1 is presented in the
ROB section 4.6.

Sub-phase Ret2

In the second sub-phaseRet2 the producer table is checked for whether no succeeding
instruction currently being processed write to the same destination register. Only then
the valid bit of the producer table entry of the destination register may be set when
the destination register is written. Otherwise the producer table entry must stayun-
changed. In order to check whether the instruction being retired is the lastone to write
a register, the sub-phaseRet2 reads the producer tablePT for the destination register
entry of the retiring and then compares the tag with the tag of the instruction in the
circuit TagCheck. Since every instruction writes its tag to the producer table entry of
its destination register during decode, no other instructions currently processed writes
its result to the same register if and only if the tags match. If the tags don’t match the
write signal for the producer table is disabled.

In parallel to this check the sub-phaseRet2 computes all remaining signals which
are needed for retiring the instruction. In particular, these are the new value for the
floating point flag registerIEEEf and the interrupt busJISR.⋆. For this the sub-
phaseRet2 accesses the special purpose register which delivers the value of the special
registerIEEEf andSR for the time the instruction enters the sub-phaseRet3 (see
section 4.7.4). The registerSR is then used to compute the interrupt bus.

Sub-phase Ret3

In the sub-phaseRet3 the producer tables and the register files are updated. If an
interrupt or a branch misprediction has occurred, the processor is flushed by activat-
ing the signalclear. The signalclear resets the full bits of all stages as well as the

5The producer tables and the SPR are accessed twice during retire (the SPR is accessed the second
time as part of the register files). Both RAMs are depicted twice in order to emphasize the independent
accesses.
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producer tables and the ROB. Since retire is done in order this leaves the processor
in a consistent state. The computation of the clear signal depends on the handling of
branch misprediction and is therefore presented in more detail in the instruction fetch
chapter 6. The sub-phaseRet3 only consists of these RAM accesses and is presented
in the sections for the register file and the producer table (4.7 and 4.8).

4.5.2 Tag Check

The circuitTagCheck checks for all register filesR ∈ {GPR,FPR,SPR} if the tag of
the destination registerPT.R.tag of the instruction equals the tagROB.tag of the
instruction read from the ROB. If the tags are equal and the write signal for the register
file typeROB.D.R.write is active, the valid bit of the destination register entry must
be set by writing to the producer table. Thus, the write signals for the producer tables
are computed as follows:

D.PT.R.write := D.R.write ∧ (ROB.tag = PT.R.tag).

Let I be an instruction in the retire sub-phaseRet2. The outputPT.R.tag of
the read access to the producer table forI must contain the value of the entry at the
time the instructionI enters the sub-phaseRet3. Otherwise it could happen that a
new instructionIn which updates the producer table during its decode phase is not
recognized. The updated value ofIn could be overwritten by the instructionI in sub-
phaseRet3 which may lead to data inconsistencies. Hence, all write accesses to the
PT during decode that start beforeI enters the sub-phaseRet3 must be forwarded to
the read access in the retire sub-phaseRet2. The forwarding of the producer table
described in detail in section 4.8.

The cost and delay of the circuitTagCheck are:

C(TagCheck) ≤ 3 · C(EQ(lROB + 1)),

D(TagCheck) ≤ D(EQ(lROB + 1)).

4.5.3 Interrupt Handling

The circuit JISR computes all interrupt related signals. If an interrupt occurs, the
processor is flushed and the instruction fetch is restarted at the start of the interrupt
service routine (ISR). The service routine then executes code to reacton the interrupt
(it “handles” the interrupt). The last instruction of the ISR is always a return-from-
exception (rfe) instruction which returns to the code that caused the interrupt. In order
to allow precise interrupt handling some registers of the SPR defining address and type
of the interrupt must be updated when an interrupt occurs. A detailed description of
the interrupt handling including a correctness proof can be found in [MP00].

The supported interrupts are shown in table 4.4 ordered by priority. If twodifferent
interrupts occur for one instruction, the interrupt with higher priority (lower index)
is handled first. The internal interrupts (priority 1 to 12) are detected in the phases
instruction fetch, decode, and execute. The corresponding signals are collected and
saved in the ROB. The external interrupts are assigned to the first instruction which
enters the retire sub-phaseRet2 after the interrupt occurred. As in [MP00], the external
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name signal priority type maskable external

reset reset 0
abort

no

yes
illegal instruction ill 1

no

misaligned access mal 2
page fault IM Ipf 3

repeat
page fault DM Dpf 4
trap trap 5

continue

FXU overflow ovf 6

yes

FPU overflow fOV F 7
FPU underflow fUNF 8
FPU inexact result fINX 9
FPU divide by zero fDBZ 10
FPU invalid operation fINV 11
FPU unimplemented uFOP 12 no
external I/O exj 12+j yes yes

Table 4.4: Interrupts

interrupts signals are required to remain active until the processor is flushed. The
internal and external interrupts are combined in the busCA[31 : 0] according to their
priority:

CA[i] :=







































































pup if i = 0

ROB.ill if i = 1

ROB.dmal ∨ ROB.imal if i = 2

ROB.Ipf if i = 3

ROB.Dpf if i = 4

ROB.trap if i = 5

ROB.ovf if i = 6

ROB.IEEEf [i − 7] if 7 ≤ i ≤ 12

ex[i − 13] if i ≥ 13

Misaligned memory accesses can occur during instruction fetch (imal) or during data
memory accesses (dmal). Both interrupts are combined to the misaligned interrupt
signalCA[2].

The interrupts 6 to 11 and 13 to 31 can be masked by the mask registerSR. These
interrupts are ignored if the corresponding bit of the registerSR is not set. The masked
interrupt busMCA is defined as:

MCA[i] :=

{

CA[i] ∧ SR[i] if 6 ≤ i ≤ 11 ∨ 13 ≤ i

CA[i] if i ≤ 5 ∨ i = 12

The signaljisr indicates that a non-masked interrupt has occurred:

jisr := ROB.full ∧
31
∨

i=0

MCA[i]
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An interrupt can be of one of the typesabort, repeat, or continue. If an abort inter-
rupt occurs, the processor is restarted. If the interrupt is of type repeat, the instruction
that caused the interrupt has to be repeated after the interrupt has beenhandled by
the ISR. If the interrupt is of type continue, the processor continues at the succeeding
instruction after the execution of the ISR. Since the content of the register files is ir-
relevant if the interrupt is of type abort, the processor core distinguishes only between
the types repeat and continue:

repeat := MCA[3] ∨ MCA[4] = CA[3] ∨ CA[4].

Repeat interrupts have higher priority than continue interrupts and are not maskable.
Thus, the interrupt with highest priority cannot be of type continue ifrepeat is active.

The PC of the instruction which must be executed after the interrupt has been han-
dled is stored in the special registerePC. For abort interrupts the value written into
this register may be arbitrary. If the interrupt is of type repeat, this is the PC of the
instruction that caused the interrupt. If the interrupt is of type continue, thisis the
PC of the next instruction. The PC of the next instruction depends on the type of the
instruction for which the interrupt occurred. If the instruction is a branchinstruction
(indicated by the signalbranch in the ROB entry), the branch target has been com-
puted in the BCU, which delivers the target on the high part of the result bus (see
table 4.3). Otherwise the PC of the next instruction is the PC of the current instruction
plus 4. The special registerePC is updated using the busePC which therefore is
defined by:

ePC :=











ROB.data.hi if repeat ∧ ROB.branch

ROB.PC + 4 if repeat ∧ ROB.branch

ROB.PC if repeat

.

If the interrupt is caused by a trap instruction, the registereData must be updated
with the immediate constant of the instruction. If the interrupt is caused by a page fault
or a misaligned memory access the registereData must be updated with the effective
address of the memory access. In any case the value that has to be written into the
registereData can be found in the low part of the result busROB.data as explained
in the following.6

For instruction memory interrupts, the decode circuit sets the immediate constant
to the PC of the instruction, i.e., the effective address of the memory access (see sec-
tion 4.1.3). Thus for both trap instructions and instruction memory interrupts thereg-
ister eData must be set to the value of the immediate constant. In both cases the
instruction causing the interrupt uses the integer ALU which then copies the imme-
diate constant to the low part of the result bus. If a data memory interrupt occurs,
the memory unit also stores the effective address on the low part of the result (see
table 4.3). The special registereData is updated using the buseData. Thus:

eData := ROB.data.lo.

6Thus, the ROB entries of the DLXπ+do not need an extra 32 bit field for the exception data as the
designs proposed in [Krö99] and [Hil00].
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Before the processor jumps into the ISR, all instructions preceding the instruction
that caused the interrupt must have updated the register files. This is guaranteed as
retiring is done in order. The instruction causing the interrupt may only update the
register files if it is not of type repeat. Thus, the write signal for a registerfile R ∈
{GPR,FPR,SPR} may not be active for interrupts of type repeat:

D.RF.R.write := D.R.write ∧ repeat.

The busJISR.⋆ updates the instruction fetch unit. The full bit must be active if an
interrupt occurred. It forces the instruction fetch unit to continue the instruction fetch
at the start of the ISR, i.e., at addressJISR.sisr. This bus is set to the constant SISR
(start of the interrupt service routine):

JISR.full := jisr,

JISR.sisr := SISR.

Stalling

The last stage of the retire sub-phaseRet2 has to be stalled if an interrupt occurs
and the instruction fetch unit cannot accept new data, which is indicated bythe signal
IF.lastcycle (see section 6.1.2). If the retire sub-phaseRet2 is divided into multiple
stages the stalling only affects the last stage. The other stages are never stalled. Since
the interrupt flushes the whole processor core anyway, inconsistent data for the suc-
ceeding instructions do not affect the correctness. LetcRet2 be the number of stages of
the retire sub-phaseRet2. Then:

Ret2.stalli := 0 for i ∈ {0, . . . , cRet2 − 2},

Ret2.stallcRet2−1 := JISR.full ∧ IF.lastcycle.

Cost and Delay

The cost and delay of the circuitJISR are:

C(JISR) ≤ C(OR-Tree(32)) + C(INC(32)) + 32 · C(Sel(3)) + 30 · CAND + COR,

D(JISR) ≤ max{D(INC(32)), 2 · DAND + D(OR-Tree(32))}.

4.5.4 Cost and Delay

Sub-phase Ret1

For performance measurements the number of cycles needed to read out the ROB
in the sub-phaseRet1 has no impact. The minimum number of cycles between the
completion and the retiring of an instruction is defined by the number of cyclescC2R

it takes to forward the data on the CDB to the output of the ROB in the read access in
sub-phaseRet1. The value ofcC2R is computed in the ROB section 4.6. The retire
sub-phaseRet1 needs no additional hardware apart of the ROB.
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Sub-phase Ret2

The total delay and the number of stages needed for the the sub-phaseRet2 are:

D(Ret2) ≤ max{D(PT. ⋆ .tag) + D(TagCheck), D(SPR.newSR) + D(JISR),

D(SPR.newIEEEf)},

cRet2 ≤ ⌈D(Ret2)/δ⌉.

The inputs to the retire phaseRet2 are the outputs of ROB and producer table and
the external interrupts. Thus, the number of inputs is 140. The outputs of the retire
phaseRet2 are the interrupt busJISR.⋆, the destination register busD.⋆, and the
interrupt signals for the special purpose register file. The number of output bits is 264.
The cost of the sub-phase is:

C(Ret2) ≤ C(TagCheck) + C(JISR) + 5 · COR + cRet2 · 182 · CREG.

Sub-phase Ret3

The number of stages of the retire sub-phaseRet3 has no impact on the performance
of the processor. The cost of the sub-phaseRet3 is the cost of the input registers:

C(Ret3) ≤ 264 · CREG.

4.6 Reorder Buffer Environment

The reorder buffer is a queue used to rearrange instructions into program order before
they are retired. This is needed for precise interrupt handling [SP85].New entries in
the ROB are allocated during decode. When an instruction completes, the validbit of
the entry is set. If the oldest instruction in the ROB is valid, it is retired.

4.6.1 Overview

The ROB is implemented as a RAM block with head and tail pointer. The head pointer
addresses the oldest entry, the tail pointer points to the entry which should be filled next
with a new instruction. When an instruction retires, the head pointer is incremented;
when a new entry is allocated, the tail pointer is incremented. If the ROB is full no new
instructions are decoded (see section 4.1.7). Thus a new entries are onlyallocated, if
the ROB is not full.

The ROB is read in two different contexts and written in two further contexts.In
order to distinguish these four contexts a name is introduced for every context. The
four different accesses to the ROB are listed in the following:

Allocation-context: During the decode sub-phaseD2 (see section 4.1.1) a ROB entry
is allocated for the new instruction by writing to the ROB. The address of the
entry which is allocated is given by the tail pointer. This access resets the valid
bit of the entry to indicate that the instruction has not yet completed and writes
the information for the instruction which are known during decode (e.g., the
address of the destination register) into the ROB.
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group name width purpose

valid valid 1 valid signal for entry
dataLow data[31 : 0] 32 lower 32 bit of result
dataHi data[31 : 0] 32 upper 32 bit of result

onIssue

ill 1 illegal instruction
imal 1 misaligned IMem access
ipf 1 IMem page fault
trap 1 trap instruction
uFOP 1 unimplemented FP instruction
D.addr 5 destination address
D.dbl 1 double precision result
D.GPR.write 1 GPR destination
D.FPR.write 1 FPR destination
D.SPR.write 1 SPR destination
branch 1 branch instruction
writeIEEEf 1 instruction writes IEEEf register
PC 32 instruction PC

onCompl

dmal 1 misaligned DMem access
dpf 1 DMem page fault
ovf 1 ALU overflow
IEEEf 5 IEEE flags
mp 1 misprediction

Table 4.5: Components of an ROB entry

Operand-read-context: In parallel to the access-context the ROB is read for each of
the (up to six) operands of the new instruction. If the entry read for the operand
has already completed, the result can be forwarded to the reservation station.

Completion-context: During completion the result of the instruction is written into
the ROB. This access also sets the valid bit of the ROB entry.

Retiring-context: In the retire sub-phaseRet1 the ROB entry addressed by the head
pointer is read in order to retire the oldest instruction. If the valid bit of the read
instruction is set, the instruction is retired.

Table 4.5 lists the fields of the ROB entries. Not all fields are used in every context.
The components which are used in the same contexts are combined into the following
groups as proposed in [Hil00]:

valid: This group contains the valid bit of the entry. This bit indicates that the instruc-
tion which is saved in this entry has already completed and hence the ROB entry
contains the valid result of this instruction. It is accessed in every context.

dataHi, dataLo: The two groups dataHi and dataLo contain the high respectively low
part of the result. Both groups are read in the operand-read context and the retire-
context and written in the completion-context. Note that data needed by the high
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group ports width
allocation operand-read completion retiring

valid 1W 6R 1W 1R 1
dataLo 3R 1W 1R 32
dataHi 3R 1W 1R 32
onIssue 1W 1R 48
onCompl 1W 1R 9

Table 4.6: Data width and number of ports of the ROB groups

parts of the operandsOP1 andOP2 can only be found in the group dataHi (see
section 4.1.2). The low part of the operandsOP1 andOP2 can only be found
in the group dataLo. The operandsOP3 andOP4 can only be written by 32 bit
results and can therefore be found in both the groups dataHi and dataLo(see
section 4.3). In order to distribute the read ports evenly for the operandOP3

the group dataLo is read and for the operandOP4 the group dataHi is read.
Therefore, only three read ports are needed for the operand-readcontext.

onIssue: All information about the instruction which do not change after the decode
phase are combined in the group onIssue. This comprises the interrupt condi-
tions which are detected during instruction fetch and decode, the information
about the destination register, the PC of the instruction, thebranch bit indicat-
ing a branch instruction (i.e., a branch or a jump), and the bitwriteIEEEf
indicating a moveI2S instruction which writes the special registerIEEEf . The
group onIssue is written in the allocation-context and read in the retire-context.

onCompl: This group contains the interrupt conditions which are detected during ex-
ecute and the branch misprediction signal. Since these informations are not
needed by succeeding instructions this group is not accessed in the operand-
read context. Thus, the group is only accessed in the completion- and retiring-
context.

Table 4.6 shows the width and the number of ports needed by the groups of the
ROB. The valid group needs seven read ports. To reduce the number of read ports the
three copies of the RAM block for the valid group are used with the same write ports
but less read ports. The first two RAM blocks with3 read ports each correspond to the
RAM blocks of the groups dataLo and dataHi and are accessed in the samecontexts.
The last RAM block has only one read port and is accessed in the retire context. In
order for all sub-groups to have the same content, every sub-group has the same two
write ports. Since the valid group consists of only one bit, the additional costfor the
RAM blocks is not significant.

4.6.2 Pipelining of the Retiring-Context

Pipelining of the ROB access in the retiring-context must be done differentlyto all
other RAM accesses as the decision which address has to be read next depends on the
last read result.
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Let cRet1 be the number of cycles needed for a read access to the ROB in the retire-
context. In [Kr̈o99] the read access for the oldest instruction is restarted if the valid
bit of the oldest instruction is not set. Then no instruction could be retired for the next
cRet1 − 1 cycles. This degrades the performance ifcRet1 is larger than one. In order to
avoid a restart of the read access, the read access of the oldest instruction I is stalled
in the last stage of the ROB if theI has not completed yet. Upon completion ofI the
result is forwarded to this read access. The forwarding also sets the valid bit of the
data read from the ROB and the instruction can retire.

Since a read access for the ROB takescRet1 cycles, the read access for the second-
oldest instruction must already have been started, when the oldest instruction is retired.
Otherwise instructions could only be retired everycRet1 cycles. Lett be the tag of the
oldest instruction in the ROB. In order to be able to retire an instruction everycycle,
the read access for the entryt+1 must be in the second-last stage of the read access, the
access for entryt + 2 in the third last and so on. If the processor is flushed, the oldest
instruction in the ROB will have the tag0. Thus, upon activation of the clear signal the
pipeline of the read access is set up such that the last stage contains a read access for
the entry zero, the second last stage a read access for the entry one, and so on. Thus,
the first stage of the read access in the retire context must contain a read access for the
entrycRet − 1. The address of the first stage of the read access is determined by the
head pointer. Thus, the head pointer does not point to the oldest instruction, but to the
cRet1 − 1-oldest instruction. If the oldest instruction is retired, all read accessesmove
to the next stage and the head pointer is incremented. Hence, ift is the tag of the oldest
instruction in the ROB, the stages0 to cRet1 − 1 of the read access in the retire-context
always contain read accesses to the entriest + cRet1 − 1 to t.

Note that the read accesses in the retire context are started speculatively, i.e., a read
access can be started even before the entry has been allocated for an instruction. Thus,
the RAM will not return any valid data for the read access. In this case all information
of the instruction must be returned by means of forwarding.

4.6.3 Forwarding

In this section the forwarding of the write accesses in the allocation- and completion-
contexts to the read accesses in the operand-read- and retiring-contexts is described.
Every of the four possible combinations is discussed separately.

Allocation-Context to Operand-Read-Context

Only the valid bit of the ROB entries are written in the allocation-context and read
in the operand-read context. The allocation-context disables the valid bit. Hence,
forwarding of this bit would mean that the entry of an instructions that has already
retired is invalidated. Yet, the register file and producer table environments use the fact
that the results of instructions that have been retired can still be read out of the ROB.
This allows to omit forwarding in the register file and producer table environment from
the retire phase to the decode phase (see section 4.7.1). Hence, no forwarding is done
from the allocation-context to the read-context.

The read accesses in the operand-read-context can be stalled since ithas to wait
until the instruction is issued (see section 4.1.7). The write accesses in the allocation-
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context is not stalled. Thus, a write accesses can overtake a read accesses. If the read
access uses the same address as the write access, the read access would return the data
written by the write access. Thus, even if no forwarding is done, the readaccess could
return data written by write accesses that have not been started before.In order to
prevent this it must be guaranteed that the write accesses that can overtake a read do
not use the same address as the read access.

The accesses in the allocation and operand-read-context for an instruction are both
started when the instruction enters the decode sub-phaseD2. The read access is stalled
in the first stage ofD2 if the output stall signal of the issue circuit is active. The read
access must not finish before an instruction is issued (see section 4.1.7).If issuing can
be done in one cycle the read access does not have to be stalled, once it enters the
second stage ofD2. If issuing takes multiple cycles, the last stage of the ROB read
access is stalled if the control signalissued is not active. Thus, in this case all stages
of the ROB access can be stalled.

The write access in the allocation-context is never stalled. In fact if the instruction
is stalled in the first stage of the decode sub-phaseD2 multiple write accesses will be
started for the instruction. Hence, if issuing can be done in one cycle, the read access
in the operand-read-context of an instructionI can be overtaken by the write access in
the allocation-context ofI itself. Once the read access is in the second stage no more
write accesses can overtake the read. Thus, in this case it must be guaranteed that the
tags of the operands ofI returned by the producer table may not have the same value
as the tag ofI.

If issuing takes multiple cycles, a read access can be stalled in every stage of the
access. Hence, a read access in the operand-read-context of an instructionI can be
overtaken by the write accesses in the allocation context of all instructions that can be
in the decode sub-phaseD2 at the same time asI. Let cD2 be the number of cycles of
the decode sub-phaseD2 and lett be the tag ofI. Since decode is done in order, the
writes that can overtake the read access in the operand-read-contextof I have the tags
t + cD2 − 1 to t (modulo the size of the ROBLROB). Thus it must be guaranteed, that
the instructionI does not depend on any instruction with these tags.

Completion-Context to Operand-Read-Context

If not all operands of an instructionI are valid, the results of all instructions that
have not updated the register files must be forwarded to the instructionI until all
operands are valid. The read access to the ROB RAM in the operand-read-context of
instructionI returns the results of all instructions which have already completed at the
time the read access is started. As soon as the instructionI is in a reservation station,
the forwarding is done by the reservation station by snooping on the CDB. Thus, the
forwarding circuit for the ROB read access in the completion-context must take all
instructions into account that complete in the window from the start of the readaccess
of the instructionI to the arrival ofI in the reservation station.

If issue is done in one cycle, the window consists of exactly the one cycle in which
the instruction is issued. The forwarding of this cycle is done by a forwarding tree
with one input. If the issuing takes multiple cycles, the CDB has to be forwardeduntil
the signalissued is active (see section 4.1.7). Since the read access can be stalled if
issuing takes multiple cycles, the forwarding is done by means of a forwarding circuit
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Figure 4.26: Forwarding for the ROB access in the retiring-context

with stalling.

Allocation-Context to Retiring-Context

The read access in the retiring-context is done speculatively. Thus the read access in
the retiring-context for an instructionI can have been started even before an entry
was allocated forI in the allocation-context. Therefore, the allocate context must be
forwarded to the retiring-context in order to read, e.g., the destination address. Also the
forwarding from the allocation-context must reset the valid bit of the entry. Otherwise
if the the read access in the retiring-context is started before the write in the allocation-
context, the read could return a spurious valid signal. As the read accessin the retiring-
context can be stalled, the forwarding is done using a forwarding circuitwith stalling.

Completion-Context to Retiring-Context

Due to the speculative read, the read access in the retiring-context for an instructionI
can have been started before the instruction writes its result to the ROB in the comple-
tion context. Thus, the write access in the completion context is also forwarded to the
retiring-context by means of a forwarding circuit with stalling.

4.6.4 Implementation of Forwarding

Figure 4.26 depicts an overview of the ROB forwarding in the retiring-context. Note
that all groups of the ROB RAM except the valid group are only written in either
the allocation- or the completion-context. Thus, for each of these groups only one
forwarding circuit is needed. The valid bit is reset in the allocation-context and set in
the completion-context and therefore depends on both forwarding circuits.

The output of the ROB is forced to zero when the ROB is empty (indicated by the
signalROB.empty, computed by the ROB control), resulting in the signalRAM.valid.
This is done to prevent spurious valids. This output of the RAM is combined with the
signalsreset andset generated from the outputsforwOut of the forwarding circuits
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Figure 4.27: Stagei of the forwarding circuit for the ROB

for the allocate- respectively completion-context. These signals indicate that the last
stage of the corresponding forwarding circuit contains data to be forwarded.

The signalreset is active if the allocation of the entry for an instructionI is done
after the read access in the retire context forI has been started. Since the allocation
resets the valid bit the signalreset forces the signalRAM.valid to zero. The signal
set is active if the instruction stored in the ROB entry has completed since the RAM
access has been started. This signal forces the signalRAM.valid to one, resulting in
the signalROBhead.valid. The signalset has higher priority than the signalreset as
the write in the completion-context for an instruction is always started after thewrite
in the allocation-context. The signalROBhead.valid indicates whether the oldest
instruction in the ROB is valid. It is used as full input of the retire sub-phaseRet2.

Note that upon activation of the clear signal the ROB access in the retiring-context
is not started from the beginning, but the whole pipeline is filled with the read requests
for the ROB entriescRet1−1 to0 (see section 4.6.2). The valid outputROBhead.valid
of the RAM access in the retire-context depends on the forward signals of the forward
circuits, hence these signals have to be reset upon clear. Figure 4.27 depicts a modified
stage of the forwarding circuit for the read access in the retiring context(see figure 2.10
on page 21 for the unmodified stage). If the signalclear is active, the stage resets the
bit forw and sets the address of the access tocRet1 − i.

4.6.5 Control

Stall signals

The write accesses in the allocation- and the completion-context are never stalled. The
stalling of the ROB read accesses in the operand-read context has beendiscussed in
section 4.1.7. The read-access in the retiring-context has to be stalled if thevalid bit
ROBhead.valid (see figure 4.26) of the oldest instruction (which is in the last stage
of this read-access) is not active:

Ret1.stallIn := ROBhead.valid.

If ROBhead.valid is not active, the oldest instruction is stalled in the last stage of
the read access in the retiring-context until the instruction completes and the forward-
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ing circuit for the completion-context forces the signalROBhead.valid to one, as
depicted in figure 4.26.

This stall signal is used in a forwarding circuit with stalling. Thus it must hold (see
equation (2.11) on page 21):

D(ROBhead.valid) := D(Ret1.stallIn) ≤ δ − DMUX . (4.23)

The signalROBhead.valid is computed using the outputsforwOut of forwarding
circuits with stalling (see figure 4.26). The outputs are based on the updatedforward
bits of the last stage of forwarding circuit (see figure 4.27). Thus, the delay of the
outputforwOut must hold:

D(forwOut) + DOR + DAND ≤ D(ROBhead.valid)
(4.23)

≤ δ − DMUX

⇔ D(forwOut) ≤ δ − (DMUX + DOR + DAND). (4.24)

If a pipelining register is added after the test circuit in the stages of the forwarding
circuit (see figure 4.27), the outputsforwUpd⋆ of the stages have delayDOR. Hence
the outputforwOut of the forwarding circuit has delayDOR and the equation holds
true forδ = 5.

Head and tail pointer

The head and the tail pointer of the ROB are implemented using two counters in the
circuit HeadTail (see figure 4.28). The head pointer addresses the oldest instruction
in the ROB. When this instruction is retired (i.e.,ROBhead.valid = 1), the head
pointer is incremented. The tail pointer addresses the next free entry of the ROB. If
a new instruction enters the core, the value of the tail pointer is assigned as tag to the
instruction and the tail pointer is incremented. A new instruction enters the coreif the
first stage of the decode sub-phaseD1 is full and not stalled. The incrementation of
head and tail pointer is controlled by the signalsheadce andtailce:

headce := ROBhead.valid,

tailce := D1.full0 ∧ D1.stall0

= D1.full0 ∧ D1.full0 ∧ (D1.stallIn0 ∨ D1.genStall0))

= D1.full0 ∧ (D1.stallIn0 ∨ D1.genStall0).

If the signalclear is active the head and the tail pointer are reset. The tail pointer is
set to zero. Due to the pipelining of the ROB accesses the head pointer is setto cRet1−
1, wherecRet1 is the number of stages of the retire sub-phaseRet1 (see section 4.6.2).

The delay of the computation of the new values for the head and tail pointer (see
the figure 4.28) isD(Inc(lROB)) + DMUX . If this cannot be computed in one cycle,
the counter can be pipelined easily. Upon clear of the counters the pipeliningregisters
must be setup such that the counters increment correctly from0 respectivelycRet1−1.
The cost of the circuitHeadTail can be estimated as:

C(HeadTail) ≤ 2 · (C(Inc(lROB) + COR + lROB · (CMUX + CREG)) + CAND.
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Figure 4.28: Head and tail pointer computation

Full and empty bit

The ROB control computes two signalsROB.full andROB.empty indicating that
the ROB is full respectively empty. The signalROB.full is used as stall signal in the
decode phase, since new instruction may only enter the decode phase if theROB is
not full. If no instruction is in the ROB, the output of the ROB is invalid. In order to
prevent an invalid instruction from retiring, the valid output of the ROB is ignored if
the signalROB.empty is active as depicted in figure 4.26.

The computation of the full and empty bits is based on a circuit which counts the
number of valid instructions in the ROB as proposed in [Lei99]. Due to the pipelining
of the decode and retire phases two separate counters have to be used for the compu-
tation of the full and the empty signal.

The ROB full signal is used to guarantee tag-uniqueness, i.e., that no two instruc-
tions with the same tag are active at the same time. Therefore, the counter for the
ROB full signal must take all instructions into account which have already entered the
decode sub-phaseD1 but have not yet written the register files, i.e., entered the retire
sub-phaseRet3. These instructions are calledactiveinstructions.

The ROB empty signal is used to invalidate the ROB output if the ROB does not
contain any valid instruction. Therefore, the counter for the ROB empty signal must
only count the instructions which really are in the ROB, i.e., the instructions forwhich
the write access in the allocation-context during decode has been started and the read
access in the retiring-context has not yet finished. The write access in the allocate
context is started in decode sub-phaseD2. The read access in the retiring-context is
finished if an instruction enters the retire sub-phaseRet2.

In [Lei99] decoding or retiring an instruction only takes one cycle. Thus,instruc-
tions allocate a ROB entry in the same cycle they enter the decode phase and write
the register files in the same cycle they are read out of the ROB. Therefore, the same
counter can be used for the full and the empty bit in [Lei99].

Figure 4.29 depicts the circuitFullEmpty with the countersfcnt andecnt for the
computation of the ROB full signalROB.full and ROB empty signalROB.empty.

Instructions get active when they enter the decode sub-phaseD1. This is indicated
by the signaltailce. Instructions get inactive when they enters the last retire sub-phase
Ret3. Since this sub-phase is never stalled, this is indicated by the full bit of the
input registersRet3.full0. Hence, the signalstailce andRet3.full0 can be used to
increment respectively decrement the counterfcnt.
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Figure 4.29: Computation of the full and empty bit

An instruction is read out of the ROB if it the oldest instruction in the ROB and
already has completed. In this case the instruction enters the retire sub-phaseRet2.
This is indicated by the signalheadce which thus determines whether the counter
ecnt shall be decremented. A new write access in the allocate-context is started ifan
instruction is in the first stage of the decode sub-phaseD2 and this stage is not stalled:

inROB := D2.full0 ∧ D2.stall0

Thus, the signalsinROB can be used to increment the counterecnt with the follow-
ing small restriction: LetcA2R be the number of cycles needed for forwarding from
the allocation-context to the retiring-context. Thus, it takescA2R cycles to clear the
valid output of the ROBROBhead.valid using forwarding (by the signalreset, see
figure 4.26). Then the signalinROB must be delayedcA2R−1 cycles and the delayed
versioninROBd must be used to increment the counterecnt in figure 4.29. Other-
wise the empty signal might become inactive before the write in the allocation-context
is forwarded to the retiring-context and has reset the valid outputRAM.valid of the
ROB. The valid bit stored in the ROB RAM could still be active from the last instruc-
tion that used the entry. Thus the signalROBhead.valid could be active which would
lead to a spurious retirement of an invalid ROB entry.

To reduce the delay of the countersfcnt andecnt, half-unary counters are used.
This allows to increment the counter with a 1-bit left-shifterLS(1) and to decrement
with a 1-bit right-shifterRS(1) (see the figure 4.29). Since the last bit of the half-unary
encoding is always zero these bits is ignored for the counters, i.e., a0 is represented
by all bits being zero. Both counters can be cleared using the signalclear.

The ROB empty signalROB.empty must be inactive if the value represented by
ecnt is at least one. Thus:

ROB.empty :=

{

0 if 〈ecnt〉hun ≥ 1

1 else

= ecnt[0].
(4.25)
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The ROB full signal must be computed differently depending on whether issuing can
be done in one cycle. LetcI be the number of cycles needed for issuing an instruction
and letcD2 be the number of cycles needed for the read access to the ROB in the
operand-read-context. As described in section 4.6.3 up tocD2 writes in the allocation-
context can overtake a read of the ROB in the operand-read context if issuing cannot
be done in one cycle (i.e.,cI > 1). Otherwise only the write access in the allocation-
context of an instruction can overtake its own read access in the operand-read-context.

If issuing can be done in one cycle, the ROB full signal is set to one, ifLROB − 1
instructions are active, otherwise it is already set to one ifLROB − cD2 instructions
are active. This is required by the correctness proofs of the forwarding for register file
and producer table. If follows:

ROB.full :=











1 if cI = 1 ∧ 〈fcnt〉hun ≥ LROB − 1

1 if cI > 1 ∧ 〈fcnt〉hun ≥ LROB − cD2

0 else

=

{

fcnt[LROB − 2] if cI = 1

fcnt[LROB − 1 − cD2] if cI > 1
.

(4.26)

Note that the new value of the registersecnt andfcnt must be computed in one
cycles based on the old value. Thus

δ ≥ D(LS(1)) + D(RS(1)) + DAND

= 2 · DMUX + DAND (4.27)

which holds forδ ≥ 5. The cost of the circuitFullEmpty is:

C(FullEmpty) ≤ 2 · LROB · (2 · CMUX + CAND + CREG)

+ (cA2R − 1) · CREG + CAND.

Check for oldest instruction

Instructions reading the special registerIEEEf must wait at the stagecRF of the
decode sub-phaseD1 until all preceding instructions have retired, which is indicated
by the signalallRet (see section 4.1.7). This is necessary as instructions write the
registerIEEEf implicitly, i.e., forwarding is not done using the Tomasulo algorithm.

Figure 4.30 shows the computation of the signalallRet. LetD1.tagcRF be the tag
of the waiting instruction. The instruction is the oldest instruction in the ROB if the tag
of the instruction in the last stage of the read access in the retiring-context of the ROB
ROB.tag matchesD1.tagcRF . No instruction is in the retire sub-phaseRet2 if all
full bits of Ret2 are zero. This is indicated by the signalRet2.clean. All instructions
preceding the waiting instructions have retired if the tags match andRet2.clean is
active.

The cost of the computation of the signalallRet is:

C(allRet) ≤ C(EQ(lROB)) + cRet2 · CAND + 2 · CREG.
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Ret2.full0...cRet2−1 =0?

Figure 4.30: Computation of the signalallRet

4.6.6 Correctness

The goal of this thesis is not to formally prove the correctness of the DLXπ+. Yet
“paper-and-pencil” proofs are given for the parts of the design of the DLXπ+that differ
from a Tomasulo DLX with a simple pipeline (of which the correctness is formally
proven, e.g., in [Kr̈o01]) and that are not obviously correct. These are especially the
different computation of the ROB full and empty signals and the forwarding.Note
that some of the lemmas proven here are needed for the correctness proofs of the
forwarding of register files and producer tables in sections 4.7.1 and 4.8.1.

The following definitions are used in the theorems and lemmas below.

Definition 4.1. An instruction is called “active” if it has entered the decode sub-phase
D1, but has not written the register files (i.e., has not entered the retire sub-phase
Ret3).

An instruction is called “in the ROB” if for this instruction the write access in
the allocate-context has been started, but the instruction has not yet entered the retire
sub-phaseRet2.

Let cA2R be the number of cycles needed for forwarding from the allocation- to
the retiring-context. An instruction is called “visible in the ROB” if the ROB write
access in the allocation context has been started at leastcA2R − 1 cycles before, but
the instruction has not yet entered the retire sub-phaseRet2.

The ROB is called empty if no instruction is in the ROB.

Note that from the time instruction is visible in the ROB, all read accesses in the
retiring-context that finish, will take the write access in the allocation-context into ac-
count due to forwarding. This cannot be guaranteed for instruction that are “in the
ROB” but not “visible in the ROB”. Also note that every instruction that is “visible in
the ROB” is also “in the ROB” and every instruction that is “in the ROB” is also “ac-
tive”. If decoding and retiring is done in one cycle andcA2R = 1 (as, e.g., in [Lei99])
all three terms define the same set of instructions.

Lemma 4.2. The number of active instructions is equal to〈fcnt, 1〉hun. The number
of instructions that are visible in the ROB is equal to〈ecnt, 1〉hun.

Proof. The lemma can be proven by induction on the number of cycles since the last
cycle in which the clear signal was active.

Induction base:The clear signal is active, hence the core is cleared and no instruc-
tion is active or visible in the ROB at the end of the cycle. The countersfcnt andecnt
are set to0LROB due to the clear signal (see figure 4.29), which proves the induction
base.

Induction step:Assume the clear signal is not active and the claim holds for the
previous cycle. The counterfcnt is increased if a new instruction becomes active and
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it is decreased if an instruction retires. The signalinROBd is active if the allocate
access for an instruction has been started exactlycA2R cycles ago. This signal incre-
ments the counterecnt. The signalheadce which is active if an instruction enters the
retire sub-phaseRet2 decrements the counterecnt. Thus, it remains to show that the
counters do not overflow or underflow to prove the induction step.

If the signalROB.full is active, the first stage of the decode sub-phaseD1 is
stalled (see section 4.1.7). Thus, no instruction can become active, the counterfcnt
cannot overflow. As every instruction that is visible in the ROB is also activethe value
of ecnt cannot be larger than the value offcnt and henceecnt cannot overflow, too. If
ROB.empty is active, no instructions can enter the sub-phaseRet2. Thus, the counter
ecnt cannot underflow. Since an instruction cannot be visible in the ROB if it is not
active, the value offcnt must be larger than the value ofecnt and hencefcnt cannot
underflow.

Corollary 4.3. Let cD2 be the number of cycles needed for the ROB access in the
operand-read-context. If issuing is done in one cycle, at mostLROB instructions are
active at any time. If issuing is done in multiple cycles, at mostLROB − cD2 + 1
instructions are active at any time.

Proof. If issuing is done in one cycle andLROB − 1 instructions are active, the signal
ROB.full := fcnt[LROB − 2] is active (see equation (4.26)). This stalls the first
stage of decode sub-phaseD1. Thus, including the instruction in the first stage of
decode sub-phaseD1, at mostLROB instructions can be active. If issuing is done in
multiple cycles the statement can be proven analogously from equation (4.26).

Corollary 4.4. No two instructions with the same tag can be active at the same time.

Proof. Assume two instructionsI, I ′ with the same tag are active. ThelROB bit
wide tail counter is incremented whenever an instruction becomes active. Thus, at
leastLROB − 1 = 2lROB − 1 instructions must have become active between the two
instructionsI, I ′. The instructionsI and I ′ are active and therefore have not yet
retired. Since retire is done in order it follows that the other instructions have not yet
retired, too. Thus, at leastLROB + 1 instructions must be active which contradicts
corollary 4.3.

Corollary 4.5. If the signalROB.empty is not active, the ROB is not empty. Let in
this caseI be the oldest instruction in the ROB. Then the allocate access forI has
been started at leastcA2R − 1 cycles before.

Proof. If ROB.empty is not active, the signalecnt[0] is one (see equation( 4.25)).
Thus,〈ecnt, 1〉hun ≥ 1. It follows from lemma 4.2 that there is at least one instruction
which is visible in the ROB. This instruction is therefore in the ROB and the ROB is
not empty.

Let I be the oldest instruction in the ROB. Since allocation is done in order, the
instructions that are visible in the ROB cannot have started the ROB access inthe
allocation-context beforeI. Hence,I must also be visible in the ROB.

Lemma 4.6. Let cD2 be the number of cycles needed for the ROB access in the
operand-read-context and letI be an active instruction with tagt. If issuing is done in
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one cycle, no older active instruction can have the tagt. If issuing is done in multiple
cycles no active instruction can have one of the tagst to t + cD2 − 1 (modulo the size
of the ROBLROB).

Proof. Let I0 be an active instruction with tagt0 and letI1 be an instruction older than
I0 with tagt1. Let d be such thatt0 = t1 + d (mod LROB) for d ∈ {1, . . . , LROB}.
The tail pointer assigning tags to the instruction is incremented for every instruction be-
coming active. Since decoding and retiring are done in order, for everyj ∈ {0, . . . , d}
an instructions with tagt := t1 +j (mod LROB) must be active. Hence, at least those
d + 1 instructions are active.

If issuing is done in one cycle, it follows from corollary 4.3 thatd < LROB and
hencet0 6= t1. If issuing is done in multiple cycles, if follows from the corollary that
d < LROB − cD2 + 1. Hence, the instructiont1 cannot have one of the tagst0 to
t0 + cD2 − 1 (moduloLROB).

The lemma guarantees that decoding is stopped before any ROB entries thatare
read in the operand-read-context are invalidated by the allocation-accesses of succeed-
ing accesses.

Theorem 4.7.LetLROB be the number of entries of the ROB and letcRet1 be the num-
ber of cycles needed for the ROB read access in the retiring-context. IfLROB > cRet1

and the signalROBhead.valid is active, then the ROB is not empty and the instruc-
tion in the last stage of the read access in the retire-phase has already completed.

Proof. Assume the signalROBhead.valid is active. For this either the signalset or
the output of the RAM must be active (see figure 4.26).

Case 1, the signalsset is not active. Then the output of the ROB valid RAM must
be one and the signalsreset andROB.empty must be inactive. Thus, according to
corollary 4.5 the ROB is not empty. LetI be the oldest instruction in the ROB. It
follows from corollary 4.5 that a write access in the allocation-context forI has been
started at leastcA2R − 1 cycles before. Sincereset is not active, this write access
must have been started before the read access in the retiring-context has been started.
Therefore, the RAM block returns the correct value for the valid bit of instructionI.
Since the output of the RAM is active,I must have already completed.

Case 2, the signalset is active. Lett be the address (i.e., the tag) of the last stage
of the ROB access in the retiring-context. If the signalset is active, an instruction
I with tag t has completed after the ROB access in the retiring-context to the entry
with addresst has been started. An instruction can only complete if it has been is-
sued before. The write access in the allocation-context is started when aninstruction
is issued. Thus, the instructionI must already have started the write access in the
allocation-context. This proves the first part ofI is in the ROB from definition 4.1.

In order to prove thatI is in the ROB it remains to show that instructionI has not
yet retired. From the correctness of the Tomasulo algorithm follows that noinstruction
can complete twice. Sinceset is active the instructionI cannot have already completed
before the read access in the retiring-context with tagt has been started. Thus, the
instructionI cannot have retired without setting the signalset of an read access in the
retiring-context as proven in case 1. FromLROB > cRet1 it follows that no two stages
with the same address can exist in the retire access to the ROB. Thus, the result of the
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instructionI can only have been forwarded to the read which is now in the last stage
of the ROB access in the retiring-context. Hence, the instructionI cannot have retired
yet.

Since the instructionI has not yet retired, it must be in the ROB, the ROB is not
empty. It follows that the instruction in the last stage of the retiring-context is the
instructionI, which has already completed.

Note that the requirementLROB > cRet1 of the theorem holds true for reasonable
values ofLROB.

Theorem 4.8. If the ROB is not empty, the signalROBhead.valid gets active even-
tually.

Proof. Let I be the oldest instruction in the ROB. Since the read access in the retiring
context is stalled ifROBhead.valid is inactive, the instructionI remains the oldest
instruction unitROBhead.valid gets active.

The liveness of the Tomasulo algorithm guarantees that the instructionI completes
eventually (as proved, e.g., in [Krö01]). If the read access in the retiring-context forI
has been started beforeI completes, the signalset gets active eventually which forces
ROBhead.valid to one.

If the read access in the retiring-context forI has been started after the instruction
completes, the ROB RAM for the valid bit returns a one. The write access in the
allocation-context is started in parallel to the issue of an instruction. Thus, itmust
have been started before the instruction completes. According to corollary4.4 no
other instruction with the same tag asI can be active. Therefore, no write access in
the allocate context can have been started to the entry of instructionI and hencereset
cannot be active. Since the allocation access has already been started at most after
cA2R cycles the signalROB.empty gets inactive and henceROBhead.valid gets
active.

Cost

The total cost of the ROB control is (including the gates to compute the valid output
ROBhead.valid):

C(ROB-Control) ≤ C(HeadTail) + C(FullEmpty) + C(allRet)

+ 2 · CAND + COR.

4.6.7 Delay Optimizations

The critical signals of the ROB control are the clock enables for the head and tail
pointerheadce andtailce. In the described implementation the signalsheadce and
tailce may have a delay of at mostδ− (DMUX +DAND) as they control the counters
ecnt andfcnt

The signalheadce is derived directly from the signalROBhead.valid which has
at most the delayδ − DMUX (see equation (4.23) on page 83). In the computation
of the ROB empty signalROB.empty in figure 4.29 the AND gate for clearing the
counter can be moved above the right shifter controlled byheadce (see the left part
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Figure 4.31: Optimized Computation of the full and empty bit

of figure 4.31). Even ifheadce is active while clearing the counter, the value of the
counter will still be set to all zeros as the right-shift only increases the number of zeros.
Then the signalheadce may have a delay ofδ − DMUX .

The signaltailce is derived from the signalD1.stallIn0 ∨ D1.genStall0 (see
section 4.1.8) which is assumed to have a delay of at mostδ. On the other hand the de-
lay of the signalROB.full was assumed to beDMUX in the computation of the stall
signals for the decode phase. This allows moving the left shifter in the computation
for the signalROB.full in figure 4.29 below the register and using a delayed version
tailced of the signaltailce to control the shifter (see the right part of figure 4.31). If
the counter is reset, the left-shift behind the register is prevented by forcing the signal
tailced to zero on clear. The AND gate does not increase the delay of the signal as

tailce ∧ clear = D1.full0 ∧ (D1.stallIn0 ∨ D1.genStall0) ∧ clear

= ¬(D1.full0 ∨ D1.stallIn0 ∨ D1.genStall0 ∨ clear)

and the OR-Tree can be balanced such that the delay is the same as the delayof the
signalD1.stallIn0 ∨ D1.genStall0 (see figure 4.9 on page 50). Hence, in the circuit
in figure 4.31 only boundsδ by the loops throughecnt andfcnt:

δ ≥ 2 · DMUX + DAND,

which holds true forδ = 5.

The signalheadce and tailce are also used to control the clocking of the head
and tail pointers in figure 4.28. Due to the clear logic the delay of the signals may
be at mostδ − DOR, which is already achieved forheadce. However, to achieve
this requirement for the signaltailce the logic for clearing the tail counter must be
changed (see figure 4.32). The circuit in the figure forces the output ofthe register
tail to zero from the cycle after the clear signal has been active to the cycle where the
first instruction enters the decode sub-phaseD1. As a side-effect the modification also
forces the output to zero, whenever the input register of the decode sub-phaseD1 is
not full, but in this case the tail pointer may have arbitrary value.
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Figure 4.32: Optimized clearing of the tail counter

The circuit delays the signalclear is delayed by one cycle. This allows to optimize
the computation of the clock enable signal of the registertail, since the signalclear
resets the full bits of the decode stage, the ROB full signalROB.full, and the signal
IR.haltdec (see section 6.4). Thus, when the delayed clear signalcleard is active, the
signalsD1.stallIn0 andD1.genStall0 are inactive, i.e.:

cleard = 1 ⇒ D1.stallIn0 ∨ D1.genStall0 = 0. (4.28)

Therefore, the signalcleard∨ tailce used to reset the output of the tail counter can be
simplified as:

cleard ∨ tailce = cleard ∨ (D1.full0 ∧ (D1.stallIn0 ∨ D1.genStall0))

= (cleard ∨ D1.full0) ∧ (cleard ∨ (D1.stallIn0 ∨ D1.genStall0))
(4.28)
= (cleard ∨ D1.full0) ∧ (D1.stallIn0 ∨ D1.genStall0)

= ¬((cleard ∨ D1.full0) ∨ D1.stallIn0 ∨ D1.genStall0).

The OR-Tree can again be balanced such that the delay of the signalcleard ∨ tailce
has the same delay as the signalD1.stallIn0 ∨ D1.genStall0 which is at mostδ.

In order to force the signalROB.tail to zero until the first instruction enters the
decode sub-phaseD1 the registertail is also cleared if the signalD1.full is not active.
Since the stall signal for the first stage cannot get active until the first instruction enters
the decode sub-phaseD1 the stall signal must not be taken into account.

Assume the number of cyclescI needed for issuing is greater than one. Then the
write access in the completion-context must be forwarded to the read access in the
operand-read-context with a forwarding circuit with stalling. This requires that the
stall signalsD2.stalli of all stagesi of the read access in the operand-read-context
have at most delayδ − DMUX (see equation (2.11) on page 21). If the read access
takescD2 cycles and the stall signals are computed the usual way, it must hold for the
stall signal for the second stage:

δ − DMUX ≥ D(D2.stall1)

= D(ROB.stallOut)
(4.10)
= D(AND-Tree(cD2 + 1))

For lROB ≥ 6 andδ = 5 it holdscD2 > 7. Then, the equation does not hold.
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To reduce the delay of the stall signal Instead pipeline bubbles are only removed
in the last seven stages of the ROB read access, i.e., only the full bits of the last seven
stages are taken into account for computing the stall signals as proposed inthe first
part of section 2.5.3. Thus, for all other stages the stall signal is computed as:

stall =

cD2
∧

i=cD2−6

D2.fulli ∧ D2.issuedcD2

The additional cost for the delay optimizations are:

C(HeadTail)+ ≤ 2 · COR + CREG,

C(FullEmpty)+ ≤ CAND + CREG.

4.6.8 Cost and Delay

The delay of the ROB access in the operand-read context determines the delay of the
decode sub-phaseD2. The delay of the ROB access in the retire context determines
the delay of the retire sub-phaseRet1. The delay of the ROB accesses are:

D(D2) ≤ max{D(RAM(LROB, 1, 3, 2)), D(RAM(LROB, 32, 4, 1))} + DMUX ,

D(Ret1) ≤ max{D(RAM(LROB, 1, 1, 2)) + 2 · DAND + DOR,

max{D(RAM(LROB, 32, 4, 1)), D(RAM(LROB, 48, 1, 1)),

D(RAM(LROB, 9, 1, 1))}

+ DMUX}.

Let cD2 andcRet1 be the number stages of the two ROB accesses respectively the
corresponding sub-phases. DefinecROB to be the maximum number of cycles needed
for any of the two ROB read accesses:

cD2 = ⌈D(D2)/δ⌉,

cRet1 = ⌈D(Ret1)/δ⌉,

cROB = max{cD2, cRet1}.

The number of stages for the retire sub-phaseRet1 is only needed for cost com-
putations. The minimum number of cycles between the complete and the retire of an
instruction is bounded by the number of cycles needed for forwarding withstalling
cC2R:

cC2R = ⌈(D(Test(lROB)) + 2 · DOR + DAND − DMUX)/(δ − DMUX)⌉.

The number of cyclescA2R needed to forward from the write accesses in the allocation-
context is computed analogously, i.e.,cA2R = cC2R.

The cost of the ROB RAM blocks can be estimated as:

C(ROB-RAM) ≤ C(RAM(LROB, 1, 1, 2, cROB))

+ 2 · C(RAM(LROB, 1, 3, 2, cROB))

+ 2 · C(RAM(LROB, 32, 4, 1, cROB))

+ C(RAM(LROB, 48, 1, 1, cROB))

+ C(RAM(LROB, 9, 1, 1, cROB)).
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For the retire context two forwarding circuits with stalling are needed. One for-
warding circuit forwards the valid and the onIssue group from the allocate context
(width 48), the other circuit forwards the valid, dataLo, dataHi, and the onCompl
group from the complete context (width 74). LetcI be the number of stages of the
issue circuit. IfcI = 1 the forward circuit in the forward context consists of a For-
warding Tree with one leaf for each operand. IfcI > 1 a forward circuit with stalling
is needed for each operand.

Let cFS(lROB) be the number of cycles needed for forwarding with stalling (with
lROB address bits). Then the cost of the forwarding circuits of the ROB can beesti-
mated as:

C(ROB-Forward) ≤ C(ForwardStall(lROB, 48, cRet1, cFS))

+ C(ForwardStall(lROB, 74, cRet1, cFS))

+















































4 · C(Forward-Tree(lROB, 32, 1, cD2))

+C(Forward-Tree(lROB, 5, 1, cD2))

+C(Forward-Tree(lROB, 2, 1, cD2))

if cI = 1

4 · C(ForwardStall(lROB, 32, cD2, cFS))

+C(ForwardStall(lROB, 5, cD2, cFS))

+C(ForwardStall(lROB, 2, cD2, cFS))

if cI > 1

.

The total cost of the ROB environment is:

C(ROB) ≤ C(ROB-RAM) + C(ROB-Control) + C(ROB-Forward).

4.7 Register File Environment

The processor has three different types of register files: the general purpose register file
GPR, the floating point register fileFPR, and the special purpose register fileSPR.
All register files have one write port used in the retire sub-phaseRet3 to store the
result and multiple read ports used in the decode sub-phaseD1 to read the operands.
The SPR has two additional read ports and one additional write port. The additional
read ports are used in the retire sub-phaseRet2. These read ports always read the
registersSR andIEEEf and therefore have constant address busses. The additional
write port is used in sub-phaseRet3 to store the new value of the registerIEEEf
computed in the sub-phaseRet2 from the old value and the floating point exceptions
of the instruction. The standard port for storing the result cannot be used to write the
registerIEEEf as floating point compare instructions may write two special registers,
namelyFCC for the comparison result andIEEEf for the exceptions.

The addresses of the read accesses during decode sub-phaseD1 are computed in
the register file environments from the instruction registerIR[31 : 0]. The encodings
of the addresses in the instruction words is listed in table A.8 in the appendix A. The
address and write signals used for the write access are computed in the retire sub-phase
Ret2. They are combined in the busRet.D.⋆.
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Figure 4.33: Register files

4.7.1 Forwarding

No forwarding is done from the write accesses in the retire sub-phaseRet3 writing
the instruction results to the read accesses in the decode sub-phaseD1 reading the
operands. This is not needed for the correctness as stated by the following theorem.

Theorem 4.9. The write accesses to the register files in the retire sub-phaseRet3
need not to be forwarded to the read accesses to the register files ports in the decode
sub-phaseD1.

Proof. Let ID be an active instruction in the decode phase that depends on the result of
an instructionIR. If IR has written its result to the register file beforeID starts its read
access to the register file, no forwarding has to be done because the register file RAM
will return the result of the instructionIR. Thus, assume thatIR is still active (i.e., has
not yet written the register file) at the timeID starts its read access to the register file.
Then the producer table entry of the operand ofID that depends onIR still contains
the tag ofIR. Hence, the instructionID will check the ROB if it contains the result of
IR.

If IR has not completed before the instructionID starts the ROB read access in
the operand-read-context, it follows from the construction of the forwarding circuit for
the ROB (see section 4.6.3) that the result ofIR is forwarded toID. Thus, assume
that IR has completed beforeID starts the read access to the ROB. Thus, the ROB
contains the result ofIR. It remains to show that the read access to the ROB in the
operand-read-context of the instructionID returns the result ofIR.

At the timeID is in the first stage of decode sub-phaseD1, the instructionIR has
not yet written the register file, i.e.,IR is active. Thus, from lemma 4.6 it follows that
no instruction older or equal toID and younger thanIR can have the same tag asIR

and therefore will not overwrite to the ROB entry ofIR and hence the ROB entry of
IR is still valid at the timeID starts the ROB read access in the operand-read-context.

If issue is done in one cycle, only the write access to the ROB in the allocation-
context of the instructionID can overtake the read access to the ROB in the operand-
read-context ofID as discussed in section 4.6.3. SinceID has not the same tag asIR

the write access in the allocation-context will not overwrite the entry ofIR. Hence, the
read access returns the value of the ROB at the time the read access has been started,
i.e., the valid result ofIR.

Let cD2 be the number of cycles needed for the read access to the ROB in the
operand-read-context. If issuing is done in multiple cycles also the write accesses to
the ROB in the allocation-context of thecD2−1 instructions followingID can overtake
the read access to the ROB ofID. From lemma 4.6 it follows that these instructions
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Figure 4.34: Forwarding circuitIEEEfC

cannot have the same tag asIR and thereforeID reads the valid result ofIR.

IEEEf

Let I be an instruction in the retire sub-phaseRet2. As discussed in section 4.5 the
special purpose register must return the values of the special registersIEEEf and
SR at the time the instructionI enters the retire sub-phaseRet3. The register files
are only written in the retire sub-phaseRet3. Thus, to obtain the value of the registers
at the time the instructionI enters the sub-phaseRet3 it suffices to read the register
whenI enters the sub-phaseRet2 and forward the writes to these registers of all older
instructions in the sub-phaseRet2.

The forwarding for the registerSR can be done using a standard forwarding tree
(see section 2.6.1). This forwarding tree combines the updates to the register SR
of the instructions inRet2 which are older thanI in parallel toI ’s read access to
the registerSR. The outputs of the forwarding tree and the register access are then
combined to obtain the busnewSR containing the value of the registerSR at the time
the instructionI will enter the sub-phaseRet3.

To forward the registerIEEEf a modified forwarding tree must be used as the
registerIEEEf can be written in two different ways: if the instruction which retires
is a floating point operation, the new value ofIEEEf is computed by OR-ing the
floating point exception bits of the instruction to the old value ofIEEEf [IEEE]; if
the instruction explicitly writes the registerIEEEf (e.g., a moveI2S instruction), the
old value is overwritten.

The circuitIEEEfC (see figure 4.34) combines the updates to the registerIEEEf
of two succeeding instruction. For this it uses the typesw and datad for updating the
registerIEEEf of an instruction. The typew of an instruction is one if the instruction
explicitly writes the registerIEEEf with the datad; if w is zero, the datad is to be
OR-ed to the old value.

Let w1 andd1 be type and data of an instructionI1 that succeeds an instructionI0

with typew0 and datad0. The combined typewOut of the instructionsI1 andI0 is
the OR the types indicating that any of the instructionsI1 andI0 will directly write the
register. Ifw1 is one, the instructionI1 will overwrite the access done byI0. Thus,
in this case the combined datadOut is the datad1 of instructionI1. If w1 is zero
the datad1 will be OR-ed to the datad0 of the instructionI0. In this case, ifw0 is
active, the preceding instructions will be overwritten with the OR of both instructions,
otherwise the OR of both instructions will be OR-ed to the old vale. Thus, updating
the registerIEEEf with the combined valueswOut anddOut has the same effect as
the sequential updates of instructionsI0 andI1.
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Using the fact that the circuitIEEEfC computes an associative function (proven in
the following lemma 4.10) a forwarding tree can be built with the circuitIEEEfC at the
nodes. Using all instructions in the retire sub-phaseRet2 as inputs, this tree computes
the combined update of these instructions to the registerIEEEf . The output of the
special purpose register RAM can then be combined with the output of the forwarding
tree by anotherIEEEfC circuit obtaining the valuenewIEEEf of the register at the
time the youngest instruction in the tree retires.

The typew and datad for every instruction can be computed as follows. A
stage in the sub-phaseRet2 contains amoveI2S instruction which writes the reg-
isterIEEEf and therefore will explicitly write the register, if the stage is full and the
signalROB.writeIEEEf is active. Thus, the typew can be computed as:

w := full ∧ ROB.writeIEEEf.

If w is one, the data that has to be written into the registerIEEEf is located in the
lowest 5 bits of the result busROB.data. Otherwise the floating point exception bits
read from the ROBROB.IEEEf are used. If the stage is not full the floating point
exception bits of the stage are set to zero. Then the datad used to update the register
IEEEf are:

d :=

{

ROB.D.data.lo[4 : 0] if w

ROB.IEEEf ∧ full if w

Hence, if the stage is not full the registerIEEEf is not changed as it is OR-ed with a
constant zero. Especially if no instruction is retiring the busnewIEEEf contains the
value stored in the register file.

Lemma 4.10. The circuitIEEEfC computes an associative function.

Proof. Without loss of generality letd be only one bit wide. Let(w0, d0), (w1, d1),
and(w2, d2) be in{0, 1}2. The function◦ computed by the circuitIEEEfC is:

(w1 , d1) ◦ (w0 , d0) = (w1 ∨ w0 , w1 ? d1 : (d1 ∨ d0))

= (w1 ∨ w0 , w1d1 ∨ w1(d1 ∨ d0))

It holds:

((w2 , d2) ◦ (w1 , d1)) ◦ (w0 , d0)

= (w2 ∨ w1 , w2d2 ∨ w2(d2 ∨ d1)) ◦ (w0 , d0)

= (w2 ∨ w1 ∨ w0 , (w2 ∨ w1)(w2d2 ∨ w2(d2 ∨ d1))

∨ (w2 ∨ w1)(w2d2 ∨ w2(d2 ∨ d1) ∨ d0))

= (w2 ∨ w1 ∨ w0 , w2d2 ∨ w2w1d2 ∨ w2w2(d2 ∨ d1) ∨ w2w1(d2 ∨ d1)

∨ w2w1(w2d2 ∨ w2(d2 ∨ d1) ∨ w2d0 ∨ w2d0))

= (w2 ∨ w1 ∨ w0 , w2d2 ∨ w2w1(d2 ∨ d1) ∨ w2w1(d2 ∨ d1 ∨ d0))

= (w2 ∨ w1 ∨ w0 , w2d2 ∨ w2(w1d2 ∨ w1d2 ∨ w1d1 ∨ w1(d1 ∨ d0)))

= (w2 ∨ w1 ∨ w0 , w2d2 ∨ w2(d2 ∨ w1d1 ∨ w1(d1 ∨ d0)))

= (w2 , d2) ◦ (w1 ∨ w0 , w1d1 ∨ w1(d1 ∨ d0))

= (w2 , d2) ◦ ((w1 , d1) ◦ (w0 , d0))
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W1
RAM

32×32

Ret3.full

Ret3.D.GPR.write

D1.OP1.GPR.data.lo

D1.OP2.GPR.data.lo

Ret3.D.{addr, data.lo}

IR[25 : 21] R2

IR[20 : 16] R1

Figure 4.35: General purpose register file

Cost and Delay

The cost and delay of the circuitIEEEfC are:

D(IEEEfC) ≤ DOR + DMUX ,

C(IEEEfC) ≤ 5 · CMUX + 6 · DOR.

Since the delay of the forwarding tree used to compute the signalsnewIEEEf
andnewSR are only logarithmic in the number of stages ofRet2, the circuit is not
assumed to be critical compared to the register file access. The delay of the output
SPR.newIEEEf andSPR.newSR then are:

D(SPR.newIEEEf) ≤ D(SPR-RF) + D(IEEEfC),

D(SPR.newSR) ≤ D(SPR-RF) + DMUX .

Let cRF be the number of cycles needed for an register file read access and let
cRet2 be the number of cycles needed for the retire sub-phaseRet2. Then the cost of
the forwarding for the register files are:

C(RF-Forward) ≤ C(Forward-Tree(5, 32, cRet2, cRF ))

+ cRet2 · (5 · CMUX + 6 · CAND + C(IEEEfC))

+ cRF · ⌈(cRet2 · 12 + 6)/2⌉ · CREG.

4.7.2 General Purpose Register File

The GPR consists of 32 register each of which is 32 bits wide. The addresscompu-
tation for the read accesses of theGPR is rather simple. For all instructions which
access theGPR, it holds (see appendix A):

OP1.GPR.addr[4 : 0] := IR[25 : 21],

OP2.GRP.addr[4 : 0] := IR[20 : 16].

The design of the GPR is straightforward (see figure 4.35). It is a RAM block with
32 entries each consisting of 32 bits and two read and one write port. The write signal
may only be active if an instruction is in the retire sub-phaseRet3. Only the low part
of the data bus is used for read and write accesses. No forwarding is necessary for the
GPR as stated in theorem 4.9.

The write path of does not influence any critical path or the number of pipeline
stages. Therefore, only the delay of the read access of the GPR is takeninto account.
The same holds true for all other register files. Hence, the delay of the GPRis estimated
as:

D(GRP-RF) ≤ D(RAM(32, 32, 2, 1)).
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Figure 4.36: Floating point register file

Let cRF be the delay of a register file access. The cost of the GPR environment is:

C(GRP-RF) ≤ C(RAM(32, 32, 2, 1, cRF )) + CAND.

4.7.3 Floating Point Register File

The FPR holds 32 single precision registers with 32 bits. The 16 pairs of even and
odd registers (i.e., the pairs 0 and 1 to 30 and 31) can also be accessed as64 bits wide
double precision registers using the address of the even register. Double precision
accesses with an odd address raise an illegal instruction interrupt in the decode phase.

To support the two access modes, theFPR is divided in two register files of 16
entries for even and odd registers (see figure 4.36). The lowest bit ofthe addresses of
the two read ports select the outputs of the RAMs for the low parts of the two outputs.
The high part always uses the odd RAM, as 64 bit register accesses always have even
addresses.

The FPR uses the two separate write signals. The signalD.FPR.write.lo controls
the RAM block containing the odd registers,D.FPR.write.hi controls the RAM
block containing the even registers. For 64 bit results (indicated byD.dbl), the write
signals for both RAM blocks must be active. For 32 bit results only the write signal
for the addressed RAM block may be active. Analogously to the GPR the writeport
is only active if the retire sub-phaseRet3 is full. The write signalsD.FPR.write.lo
andD.FPR.write.hi are computed during the sub-phaseRet2 as:

D.FPR.write.lo := D.FPR.write ∧ D.addr[0],

D.FPR.write.hi := D.FPR.write ∧ (D.addr[0] ∨ D.dbl).

The low part of the resultD.data.lo is connected to the RAM block for the even
registers, the high partD.data.hi is connected to the RAM block for the odd registers.
Note that in order to write 32 bit results into the results must be available on both the
high and the low part of the data bus (see table 4.3 on page 63).

For all instructions which read the FPR except floating point stores the address of
the first operand isIR[20 : 16], the address of the second operand isIR[15 : 11] (see
appendix A). The floating point store instruction (indicated by the signalFPstore
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computed in theDecode circuit) uses the the bitsIR[20 : 16] as second operand.
Thus, the address of the floating point operands is:

OP1.FPR.addr := IR[20 : 16],

OP2.FPR.addr :=

{

IR[20 : 16] if FPstore

IR[15 : 11] if FPstore
.

To hide the delay of the signalFPstore, the FPR is accessed under the assumption
that the instruction in not a floating point store. If the instruction signalFPstore is
active, the output for the first operand is used as output for the second operand. This is
done by the multiplexer controlled by the signalFPstore in figure 4.36.

The selection of the operands using the signalFPstore can be combined with
the select circuit in the circuitOpGen (see section 4.1.4), which selects between the
outputs of the different register files. Hence, instead of a 4 input selectcircuit an 5
input select circuit is used. The difference in delay and cost are added to the floating
point register file. It holds:

D(Sel(5)) − D(Sel(4)) = DOR,

C(Sel(5)) − C(Sel(4)) = DAND + DOR.

Hence, the delay of the last multiplexer for the computation ofD1.OP1.FPR.data.lo
can be replaced byDOR. The overall delay of the FPR RAM is:

D(FPR-RF) ≤ D(RAM(16, 32, 2, 1)) + DMUX + DOR.

Let cRF be the number of cycles for a register file access. The cost of the FPR includ-
ing the computation of the write signals is approximated by:

C(FPR-RF) ≤ 2 · C(RAM(16, 32, 2, 1, cRF )) + 4 · CAND + COR

+ 64 · CMUX + 32 · (CAND + COR).

4.7.4 Special Purpose Register File

The special purpose register file consists of 10 register which are summarized in ta-
ble 4.7. The register 0 to 4 are used for interrupt handling. The roundingmode for
floating point operations is stored in register 5. Register 6 collects the floatingpoint
exception flags. The result of floating point compares are stored in register 7, which
may then be used by floating point branches. The registers 8 and 9 are used to store
the 64 bit wide results of integer multiplication and divisions.

When an interrupt occurs, the special purpose register file must perform the fol-
lowing actions:

SR := 0,

ESR := SR,

EPC := Ret3.ePC,

ECA := Ret3.MCA,

EData := Ret3.eData.
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addr name purpose

0 SR status register (interrupt mask)
1 ESR exception status register
2 EPC exception program counter
3 ECA exception cause register
4 EData exception data register
5 RM floating point rounding mode
6 IEEEf IEEE interrupt flags
7 FCC floating point condition code
8 LO LO register
9 HI HI register

Table 4.7: Special purpose registers
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Figure 4.37: Special purpose register file

The implementation of this operation is not discussed in detail here. It is assumed that
a special RAM block can be used which performs these operations if the clear signal
is activated. A construction for such a RAM block using discrete gates canbe found,
e.g., in [Kr̈o99].

The circuitSPR is depicted in figure 4.37. It consists of one RAM block with8
entries and two RAM blocks with one entry7 for the registersLO andHI. Similar
to an even / odd pair of floating point registers these two registers can be written in
parallel to store the 64 bit wide result of an integer multiplication or division.

The following four instruction types have SPR registers as operands (see appen-
dix A):

• moveS2I instructions: These instructions read an arbitrary special register as
second operand and save it in an general purpose register. The address of the

7A RAM block with only one entry is basically a single register and therefore need no address entry.
For the sake of description they are yet treated as RAM blocks.
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special register is encoded in the bits[15 : 11] of the instruction word.

• return-from-exception (rfe) instructions: The rfe instruction sets the PCto the
value of the special registerEPC and copies the special registerESR into
the special registerSR. It uses the registerESR as first andEPC as second
operand.

• branch on floating point condition code (BC1) instructions: TheBC1 instruc-
tions are conditional branches that depend on the value of the special register
FCC. This register is used as first operand of the instruction.

• floating point instructions: These instructions depend on the special registers
RM andSR as third and fourth operand.

Hence, the addresses of the four special purpose register operands are:

OP1.SPR.addr :=

{

00001 if rfe

00111 if rfe
,

OP2.SPR.addr :=

{

00010 if rfe

IR[15 : 11] if rfe
,

OP3.SPR.addr := 00101,

OP4.SPR.addr := 00000.

To implement this, the SPR has one variable read port and five constant read ports for
the entriesEPC, ESR, FCC, RM , andSR. Similar to the floating point store for
the FPR, a multiplexer controlled by the signalrfe indicating an rfe-instruction selects
the data output for the first and second operand.

If the instruction is amoveS2I instruction which reads the registerIEEEf (in-
dicated by the signalreadIEEEf ), the SPR returns the current content of the bus
Ret3.newIEEEf and not the content of the register. Recall that an instruction read-
ing the registerIEEEf waits in the pipeline stage of the decode phase in which the
SPR return the result. These instructions wait there until all preceding instructions
have retired (see section 4.1.7). As soon as this happens, the SPR must return the cor-
rect value of the registerIEEEf without restarting the read access. This can be done
by returning the busRet3.newIEEEf which then contains the correct value of the
register (see section 4.7.1).

Every instructionI which enters the retire sub-phaseRet2 must read the reg-
istersSR and IEEEf from the SPR in order to compute the bussesnewSR and
newIEEEf containing the value of these registers at the time the instructionI enters
the sub-phaseRet3 (see section 4.7.1). The SPR has already a constant read port for
the registerSR, thus only one additional constant read port is needed for reading the
registerIEEEf .

The registers 8 and 9 must be written at the same time to store the 64 bit result
of integer multiplications or divisions. Therefore, these registers are treated separately
from the registers 0 to 7. The registers 8 and 9 are divided into two RAM blocks,
which may be written in parallel. If the register 9 is written with a 32 bit result (by the
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instructionmoveI2S), the data must be on the high part of the input data bus. Since
moveI2S instructions use the ALU which writes its results to both the high and low
parts of the result bus, this is already guaranteed (see table 4.3 on page 63).

To compute the write signals for the two RAM blocks the signalD.dbl computed
by the circuitDestCmp is used. If the result is stored in the SPR this signal indicates
an integer multiplication or division. Thus, ifD.dbl is active the address bits of the
destination address can be ignored. IfD.dbl is not active, the bits0 and3 of the address
are used to decide which RAM block is written. As for the FPR, the write signalsare
assumed to be computed during the retire sub-phaseRet2.

SPR.write07 := D.SPR.write ∧ D.dbl ∧ D.addr[3],

SPR.write8 := D.SPR.write ∧ (D.dbl ∨ (D.addr[3] ∧ D.addr[0])),

SPR.write9 := D.SPR.write ∧ (D.dbl ∨ (D.addr[3] ∧ (D.addr[0])).

The IEEEf register is written using an additional write port with constant ad-
dress. If the retire sub-phase is not full, the value of the input busRet3.newIEEEf
is the unchanged value of the previous instruction (see section 4.7.1). Thus, this write
port can be active in every cycle. Due to the construction of the forwarding circuit, the
inputs of both write ports are identical if an instructions writes the registerIEEEf
explicitly. Hence, the priority of the write ports is irrelevant.

The rightmost multiplexers in figure 4.37 can be incorporated into select circuit of
the circuitOpGen analogously to the FPR. Hence, the delay and cost of this multi-
plexers can be replaced byDOR respectivelyCAND + COR. The delay of the SPR
RAM is:

D(SPR-RF) ≤ max{D(RAM(8, 32, 2, 2)), D(RAM(1, 32, 1, 1)) + 2 · DMUX}

+ DMUX + DOR,

The cost and delay of the RAM block for the SPR registers 0 to 7 are approximated
by the cost and delay of RAM block with 2 variable read and write ports. LetcRF be
the number of cycles needed for a register files access. Then the cost and delay of the
circuit SPR can be approximated by:

C(SPR-RF) ≤ C(RAM(8, 32, 2, 2, cRF )) + 2 · C(RAM(1, 32, 1, 1, cRF ))

+ 5 · CAND + COR + 3 · 32 · CMUX + 2 · 32 · (CAND + COR).

4.7.5 Cost and Delay

The read accesses to the SPR in the retire sub-phaseRet2 are not assumed to be critical
for the overall delay of the register file environment, as they use read ports with con-
stant addresses. For the register file accesses in the decode sub-phaseD1 no forward-
ing in necessary (see theorem 4.9). Hence, the delay of the register file environment
and the number of cycles needed for a register file accesscRF is:

D(RF) ≤ max{D(GPR-RF), D(FPR-RF), D(SPR-RF)},

cRF = ⌈D(RF)/δ⌉.
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The cost of the register files is:

C(RF) ≤ C(GPR-RF) + C(FPR-RF) + C(SPR-RF).

4.8 Producer Table Environment

The producer tables are similar to their corresponding register files, but have one addi-
tional read and one additional write port. The new write port is used duringthe decode
sub-phaseD1 to write the tag of the instruction into the producer table. The additional
read port is used during the retire sub-phaseRet2 to check if no succeeding instruction
has overwritten the entry. All producer tables have a reset signal whichsets all valid
bits to one.

The environment of the RAM blocks itself is basically the same as for the register
files and therefore not discussed in detail. The address and write signalsfor the addi-
tional ports are computed in advance by the circuitDestCmp. The priority of the new
write access duringD1 is higher than the priority of the write access duringRet3.

The entries of the producer tables consist of the valid bit and the tag for thecor-
responding register file entries. The entries for the odd registers of the floating point
producer table and the register9 of the special purpose producer table need an extra
bit dbl that indicates whether this register is written by a double precision result. The
outputOPi.R.dbl for i ∈ {1, 2} andR ∈ {FPR, SPR} returns the value of this bit,
if one of these registers is addressed by the operand, otherwise0. The output is needed
by the reservation stations to decide if it needs to use the high or the low part toupdate
an operand. The value of the bitdbl is set to the value of the signalD.R.dbl computed
by the circuitDestCmp if one of the registers is written during the decode sub-phase
D1. It is set to0 if the producer table is written during the retire sub-phaseRet3.

4.8.1 Forwarding

The producer tables are accessed in four different contexts (operand-read, updating,
checking, and retiring). In the decode sub-phaseD1 the producer tables are read to
obtain the valid bit and the tag of the operands (operand-read-context). Also in the
decode sub-phaseD1 the tag of the new instruction is written into the producer table
entry of the destination register of the instruction (updating-context). In theretire sub-
phaseRet2 the producer table entry of the destination register is read again to check
whether a succeeding instruction will write the same register (checking-context). If
no such instruction exists, in the retire sub-phaseRet3 the producer producer table
entry of the destination register is set valid in order to flag valid register file content
(retiring-context). The following lemmas summarize the dependencies betweenthe
accesses.

Lemma 4.11. The result of the read access to the producer table in the checking-
context for an instructionI must take all write accesses to the producer table in the
updating-context into account that are started before the instructionI writes the pro-
ducer table in the retiring-context.

Proof. All write accesses to the producer table that are started before the read access in
the checking-context starts are taken into account by construction of theRAM. Hence,
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let an instructionI1 write the producer table in the updating-context after an older
instructionI0 has started the read access in the checking-context and beforeI0 starts
the write access in the retiring-context. LetI1 be the first instruction succeedingI0

that writes the same destination register asI0. If the write in the updating-context by
I1 is not forwarded to the read access in the checking-context byI0, the instructionI0

will read its own tag. Thus,I0 will set the valid bit in the retiring-context, even if the
content of the register is not valid as it will eventually be overwritten byI1.

Theorem 4.12.The write access to the producer table in the retiring-context does not
have to forwarded to the read access in the checking-context.

Proof. Let I0 be an instruction which writes its result into the register file in the
retiring-context andI1 be an instruction which simultaneously reads the producer ta-
ble in the checking-context. Assume the instructionsI0 andI1 write the same register.
Then both instructions have written their tags to the producer table entry of thisreg-
ister in the updating-context. As decode and retire are done in order, the instruction
I1 has written the producer table entry after the instructionI0 in the updating-context.
This update of the instructionI1 must have been forwarded to the read access in the
checking-context of instructionI1 (see lemma 4.11). Thus, the instructionI0 cannot
have read its own tag in the check-context. Thus, the instructionI0 will not write the
producer table in the retire context.

Let cTC denote the number of cycles it takes from the start of the forwarding of
a write access in the updating-context to the end of the retire sub-phaseRet2. Then
in order to compute the content of the producer table at the time an instruction enters
the retire sub-phaseRet2, the write access in the updating-context must be delayed by
cTC − 1 cycles (see section 2.6.3). As the content of the register does not depend on
the write access in the retire context (see theorem 4.12), this write port does not need
to be delayed.

Theorem 4.13. The read access in the operand-read-context does not depend on the
write access in the retiring-context.

The accesses in the operand-read-context and the retiring-context correspond to
the read and write accesses to the register files. Instead of forwarding the write access
the data are read out of the ROB. Thus, this theorem can be proven analogously to the
theorem 4.9 on page 95.

Lemma 4.14.The read access in the operand-read-context must take exactly the writes
in the updating-context into account that are started by preceding instruction.

Proof. An instruction must not depend on a succeeding instruction; therefore thewrite
access in the updating-context by succeeding instruction must not be forwarded. Since
an instruction may depend on any preceding instruction the writes in the updating-
context of all preceding instructions must be forwarded.

Figure 4.38 details the forwarding for the producer tables. The write access in
the retiring-context does not interfere with any other accesses and is therefore directly
connected to the RAM blocks of the producer tables.
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Figure 4.38: Forwarding of the producer table

Due to the circuitDestCmp the address, data, and write signalD1.D.⋆ for the
write access in the updating-context are not known before cyclecDC of D1. At this
cycle, the write access in the updating-context is forwarded to the read access in the
checking-context (to addressRet2.D.addr) analogous to figure 2.13 on page 24 using
the forwarding circuit and the forwarding tree on the left side of figure 4.38. Note that
in order to realize this forwarding, the write access has to delayed by another cTC − 1
cycles and hence enters the RAM blocks in cyclecDC + cTC − 1.

The read access in the operand-read-context enters the RAM blocks incycle0 of
the decode sub-phaseD1. It must take all write accesses in the updating-context of
preceding instructions into account. Since the write access in the updating-context is
not started before cyclecDC + cTC − 1, the RAM blocks do not return the data of the
write accesses in the updating-context of thecDC + cTC − 1 preceding instructions.
These write accesses must be forwarded using a forwarding tree.

The address and write signal of the write access in the updating-context isnot
known before cyclecDC of D1. Therefore the forwarding tree is delayed bycDC

cycles and compares the address of the read access in the operand-read-context in
cyclecDC D1.OP⋆. ⋆ .addrcDC with the addresses of the write access in the updating-
context of the instructions in thecDC +cTC −1 succeeding stages (i.e., stagescDC +1
to 2 · cDC + cTC − 1). Note that the delay of the circuitDestCmp is relatively small
in comparison to the delay of the RAM access. Therefore, it can be assumed that the
forwarding tree needs less cycles than the RAM access even if it is delayed by cDC

cycles.
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4.8.2 Cost and Delay

Let b := lROB +1 be the width of the producer table entries. The delay of the producer
tables without forwarding can be estimated as:

D(GRP-PT) ≤ D(RAM(32, b, 3, 2)),

D(FPR-PT) ≤ D(RAM(16, b + 1, 3, 2)) + DMUX + DAND,

D(SPR-PT) ≤ max{D(RAM(8, b, 3, 3)), D(RAM(1, b + 1, 2, 2)) + 2 · DMUX}

+ DMUX + DAND,

D(PT-RAM) ≤ max{D(GPR-PT), D(FPR-PT), D(SPR-PT)}.

The delay of the read access in the operand-read context is:

D(D1.OP⋆. ⋆ .{valid, tag}) ≤ D(PT-RAM) + DMUX .

Let cTC be the number of cycles needed from forwarding the write port in the
updating-context to the end of the retire sub-phaseRet2. The producer table access is
assumed to be the critical path of the retire sub-phaseRet2, otherwise it can be delayed
such that it has the same delay as the critical path. In any casecTC is determined by the
delay of the forwarding circuit for5 address bits and the delay of the circuitTagCheck:

cTC = ⌈(D(Forward(5)) + D(TagCheck))/δ⌉.

If cTC = 1, the write in the updating-context does not have to be delayed and no
additional forwarding tree is needed for the read access in the checking-context. In
this case the forwarding increases the delay of the read access in the checking-context
by the mux inside the forwarding circuit needed for merging the outputs of forwarding
circuit and RAM, otherwise by the two muxes for first merging the output of the RAM
with the output of the forwarding tree inside the forwarding tree and for merging with
the output of the forwarding circuit (see figure 4.38). Thus, the delay of the producer
table access in the checking-context is:

D(Ret2.PT. ⋆ .tag) ≤ D(PT-RAM) +

{

DMUX if cTC = 1

2 · DMUX if cTC > 1
.

The maximum delay of the read accesses to the producer table and the numberof
cyclescPT needed is:

D(PT) ≤ max{D(D1.OP⋆. ⋆ .{valid, tag}), D(Ret2.PT. ⋆ .tag)},

cPT = ⌈D(PT )/δ⌉.
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The costs of the producer tables without forwarding are:

C(GRP-PT) ≤ C(RAM(32, b, 3, 2, cPT )) + CAND,

C(FPR-PT) ≤ C(RAM(16, b, 3, 2, cPT )) + C(RAM(16, b + 1, 3, 2, cPT ))

+ 6 · CAND + COR + 6 · CMUX

+ 2 · b · CMUX + 2 · 2 · b · CAND,

C(SPR-PT) ≤ C(RAM(8, b, 3, 3, cPT ))

+ C(RAM(1, b, 2, 2, cPT )) + C(RAM(1, b + 1, 2, 2, cPT ))

+ 12 · CAND + 2 · COR + 3 · b · CMUX + 4 · b · CAND,

C(PT-RAM) ≤ C(GPR-PT) + C(FPR-PT) + C(SPR-PT).

The number of cycles needed for the computation of the destination registerscDC

is:

cDC = ⌈D(DestComp)/δ⌉.

The forward circuit for the read access in the checking-context consists of a forward
circuit and a forwarding tree withcTC inputs for each PT. The forward circuit for the
read access in the operand-read-context consists of a forwarding tree withcTC +cDC−
1 leaves for each operand output of the PTs (note that the high parts of theFPR and
the SPR uses only 4 address bits). The total cost for the forwarding circuit of the PT
are:

C(PT-Forward) ≤ 3 · C(Forward(5, b, cPT , cF (5)))

+ 3 · C(Forward-Tree(5, b, cTC , cPT ))

+ 4 · C(Forward-Tree(5, b, cDC + cTC − 1, cPT ))

+ 6 · C(Forward-Tree(4, b, cDC + cTC − 1, cPT ))

+ (cDT + cTC) · 38 · CREG.

The total cost for the producer tables is:

C(PT) ≤ C(PT-RAM) + C(PT-Forward).



Chapter 5

Memory Unit

This section describes the memory unit of the DLXπ+. An overview of the memory
unit is given in section 5.1. Sections 5.2 to 5.8 describe the non-blocking datacache
used in the memory unit.

5.1 Overview

The memory unit handles all load and store accesses to the main memory. The unit
presented in this thesis does not support virtual memory, i.e. the addresses sent by the
processor can be directly used to address the main memory. Page fault interrupts are
not computed by the memory unit but are assumed to be computed by the main mem-
ory. Furthermore the memory unit is not assumed to be able to write to the instruction
memory. Thus, no cache coherency protocol is needed between the instruction and the
data cache. Lines in the cache do not have to be invalidated.

The memory unit is divided into the three circuitsSh4S, DCache, andSh4L (see
figure 5.1). The data cache which does the actual memory access is contained in the
circuit DCache. All accesses to the data cache must be aligned to word-addresses.
The adaption for instructions which do not access whole words are doneby the cir-
cuits Sh4S and Sh4L. In contrary to the memory unit of the DLX by M̈uller and
Paul [MP00] double word accesses are not supported by the MIPS R3000 ISA.

The memory unit gets as input the control buscon that defines the type of the
access (including the signalwrite indicating a store and an immediate constantimm),
the tag of the instruction, and the two operandsOP1 andOP2. The circuitSh4S first

Sh4L

DCache

Sh4S

Figure 5.1: Memory Unit
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computes the effective addressaddr of the access as sum of the first operand and the
immediate constant. If the memory access is misaligned, the circuitSh4S raises the
data access misaligned interruptDmal. In this case the instruction is sent directly to
the circuitSh4L. Thus, the data cache does not need to handle misaligned accesses.

Based on the lower bits of the effective address, the second operand isshifted to
the correct position for a word-wise access, resulting in the data busdata. In parallel
the circuitSh4S computes for every bytei ∈ {0, . . . , 3} of the data word a usage bit
ubi which marks the bytes used by the access. Hence, for loads the busub⋆ selects the
bytes to be read, for storesub⋆ selects the bytes that are written.

The data cache uses the write bit, the effective address, the data bus, and the usage
bits to perform the memory access. For load accesses the data cache returns the result
on the data bus. Along with the result, the data cache returns the effective address
of the access, the page fault interrupt signalDpf received from the main memory,
and the control signals which are passed unchanged by the cache, e.g.,the tag of the
instruction.

The memory unit is able to handle load word left (LWL) respectively load word
right (LWR) instructions (see table A.1 in the appendix). These instructionsupdate
only parts of the target registers and are used to access misaligned words. Since the
processor core updates always whole register entries, the destination register is also
used as second operand. The result of the load access is combined with the content of
the destination register to compute the result. Thus, for LWL/LWR instructions,the
data cache must return the content of the main memory for the bytes for whichub⋆ is
active, and the content of the second operand for the bytes for whichub⋆ is inactive.

The circuitSh4L shifts the result of the cache access as requested by the instruction
based on the lower bits of the effective address and the value of the control signals in
the buscon. The result of load accesses is returned to the processor on the high and the
low part of the CDB (see table 4.3 on page 63). If an interrupt occurredthe memory
unit returns the effective address on the low part of the CDB.

The construction and the pipelining of the circuitsSh4S andSh4L is straightfor-
ward and not discussed in detail. The circuits can be found in the appendixD.4. Delay
and cost of the circuits are:

D(Sh4S) ≤ max{D(Add(32)), D(Add(2)) + D(HDec(2)) + 2 · DMUX},

D(Sh4L) ≤ 4 · DMUX ,

C(Sh4S) ≤ C(Add(32)) + 2 · C(Dec(2)) + C(HDec(2))

+ 104 · CMUX + 11 · COR + 10 · CAND,

C(Sh4L) ≤ C(Inc(2)) + C(Dec(2)) + C(Sel(4))

+ 186 · CMUX + 3 · DOR + DAND.

5.2 Overview of the Data Cache

The data cache presented in this thesis is a “non-blocking write-through write-allocate”
cache. In contrary to the simpler blocking caches, anon-blockingcache does not stall
the memory unit in case of a cache miss. It can service multiple misses at a time and
return the result of a hit before a preceding miss has completed. Awrite-throughcache
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updates the main memory (or the next cache level) for every write access to the cache.
Thus, the main memory always contains the same data as the cache. In contrary the
write-back variant only updates the memory if a line that has been written is evicted
out of the cache. A new cache-line is written into the cache whenever an access misses
the cache. This is calledwrite-allocate. A read-allocate cache would only write new
lines into the cache for read-misses.

A cache-linecontainsSDC = 2sDC (aligned) bytes. On a miss always a whole
cache-line is read from the main memory and saved in the cache. The data cache is
assumed to be non-sectored, i.e. the width of the cache RAM equals the width of a
cache-line. Accesses to the cache RAM always write or read whole cache-lines. The
data cache is aKDC-way set associative cache (KDC = 2kDC ). Every line of the
main memory can be saved atKDC different locations in the cache. The location of a
cache-line currently saved in the cache is defined by thewayof the cache-line.

The basics of non-blocking caches were presented by Kroft [Kro81]. The pre-
sented design of a non-blocking cache is based on the work of Sicolo [Sic92]. In
his thesis Sicolo gives an overview of the basic structures of a non-blocking cache,
but does not handle the gate-level implementation, pipelining and interrupts. To solve
these problems the design of Sicolo had to be adopted significantly.

The cache design presented by Sicolo combines two succeeding stores to the same
cache-line to a single store. This is not possible for a first level cache aswrites have
to be executed in order due to interrupts. Also Sicolo uses a write-back strategy which
has the following drawback not handled in his work: before a new cache-line is written
into the cache it must be checked if any succeeding access will replace thisline. If this
is the case and the cache-line has been modified by a store the cache-line must not be
written into the cache but back into the main memory.

Note that for the check the way in which the succeeding accesses write is needed.
Hence, only those accesses can be taken into account for which the wayhas already
been computed. To cover the remaining accesses, additionally every new access must
be checked if it will overwrite a cache-line which is about to be written into the cache.
This can only be done after the hit signal for the instruction has been computed and
therefore delays misses.

Figure 5.2 depicts an overview of the data cache. The cache consists of four sub-
circuits: the hit computationHC, the update queueUpdQ, the read queueReadQ, and
the cache coreCore containing the actual cache RAM. The update queue combines
the miss queue and the replace queue of the design presented in [Sic92].

The cache core contains the cache memory, the cache directory and the replace-
ment circuit. The update queue holds all accesses that will update the cache core
eventually (i.e., store instructions and cache misses). The read queue contains all read
misses. The circuitHC computes the overall hit signal, taking the content of the queues
and the cache core into account.

5.2.1 Execution of Memory Accesses

Depending on the type of the memory access, different data are requiredfor the execu-
tion of the access. Loads only require the data that are actually read. Stores require the



112 Memory Unit

ReadQ

Main
Memory

Core

UpdQ

HC

Figure 5.2: Overview of the data cache

whole cache-line in order to update the cache core. This are called the required data of
the access.

New memory accesses first enter the hit computation. The hit computation com-
putes a hit signal indicating whether the required data of the access are in the cache.
It may happen that only parts of the data needed by an access are in the cache, e.g., if
a load follows a store to the same address. In this case the access is treated as miss.
Apart from the hit signal the hit computation also returns all required bytesof which
the value is known. These bytes are marked valid using an additional valid bitper byte.

Based on the result of the hit computation the type of the access instructions are
sent to different queues. Stores are sent to the update queue. Loadsmisses are sent to
both the update queue and the read queue. The load hits are directly returned to the
memory unit. Hence, the data cache can return instructions out-of-order.

The misses in the update queue start read requests to the main memory. The main
memory returns the result of the access on the result bus. The content ofthe result bus
is used to update the entries in the update queue as well as the read queue. As soon
as all bytes of a load in the read queue are valid, the result is returned to thememory
unit. If all the bytes of a cache-line in the update queue are valid, the cachecore can
be updated. Since the cache is a write through cache, no cache-line must be evicted to
the main memory before it is overwritten. If the entry in the update queue is a store,
the main memory is also updated and the store is returned to the memory unit.

5.2.2 Cache Core and Main Memory

The handling of misses is done outside the cache core macro. Therefore the data path
of the cache core can be the same as for a simple blocking cache. Additionallythe
cache core does not handle any data dependencies. This enables to easily pipeline
the core. The only problem may be the replacement circuit, which decides which
cache-line has to be overwritten. Advanced replacement algorithms (e.g., LRU) take
all preceding instructions into account and assume that the instructions in thecache
are handled in order. Yet a strict adherence of the replacement circuitaccording to
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the strategy is not needed for data-consistency. Therefore, in this thesis a pipelined
LRU algorithm that does forward the preceding instructions is used which simplifies
the design of the cache core.

The main memory is not assumed to return the read accesses in order. This makes
it possible to build multiple levels of non-blocking caches using the presented design.
To identify the results returned from the main memory, the main memory must return
the address of the request along with the data.

5.2.3 Speculation

If an instruction causes an interrupt or has been mispredicted, all succeeding instruc-
tions must be aborted. Updates of the cache core or the main memory are not recover-
able. Thus, a store instruction may not update the cache core or the main memory as
long as the instruction may be aborted. An instruction won’t be aborted if the instruc-
tion does not cause a repeat interrupt (i.e., a page fault) and all preceding instructions
have retired, i.e. the instruction is the oldest active instruction.

The page fault interrupt is computed by the main memory. It can only be caused
by accesses to cache-lines that are not in the cache. Thus the value of the page fault
interrupt is known before a store instruction updates the cache or the main memory,
since the instruction first tries to fetch the cache-line from the main memory in case of
a miss. If this read access causes a page fault, the store instruction is not executed.

To guarantee that store instructions won’t update the cache core or the main mem-
ory before they become the oldest active instruction, two solutions are possible. The
simple solution is to stall a store instruction at the end of the hit computation until it
becomes the oldest active instruction. Due to the special memory reservationstation
(see section 4.2.2) a store instruction is always the oldest memory instruction when
it enters the memory unit. Thus, no preceding instruction gets stalled and the store
instruction eventually becomes the oldest active instruction.

This simple variant has some drawbacks: load instructions may not overtakestore
instructions in the reservation station. Thus, a store instruction stalls all succeeding
load instructions. Further more, before a store instruction can leave the hitcomputation
all queues of the cache have to be emptied. This means especially that at mostone store
instruction can be in the update queue.

A more efficient solution is to stall store instructions in the update queue just before
they update the cache RAM or the main memory. The stores are stalled until they
become the oldest instruction and it is clear that they did not cause an interrupt. This
method is used in the presented design and is described in more detail in the update
queue section 5.5.

5.3 Hit Computation

The hit computation computes the two signalshit andsl. The signalhit (calledhit
signal) is active if the required data is already in the cache. The signalsl (calledsame-
line signal) is active if a preceding instruction inside the cache accesses the same line.
In this case even if the requested data is not yet in the cache, no new request to the
main memory has to be made. The signalshit andsl may be active at the same time,
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e.g., if the cache-line containing the required data has been requested by apreceding
instruction and has just been returned by the main memory. The hit signal hasa higher
priority.

If an memory access succeeds a store that writes some of the requested data of the
access, it may happen that only parts of the requested data are known atthe time the
hit computation returns the data for the access. Therefore, the circuitHC computes a
byte-valid signalbvi for every bytei of the requested data. The signalbvi is active if
the value of the bytei is known. The hit signalhit is active if the byte-valid signals
for all required bytes of the access are active. The signalshit, sl, andbv⋆ together are
calledglobal hit signals.

For every bytei for which bvi is active, the hit computation returns the value
written by the last store being processed by the cache which updates this byte. If no
such instruction exists, the hit computation returns the current content of the cache
RAM for this byte.

In order to later update the cache core, the hit computation also computes the bus
way which points to the way of the cache core which has to be written. If the cache
currently processes an access that addresses the same cache-line, the way must be
the way computed for this access. Otherwise the value computed by the replacement
circuit of the cache core is used. Note that in case of a hit the replacementcircuit
returns the index of the way that contains the requested data.

Based on the type of the access and the value of the global hit signals, the hit
computation computes the action to be done for the instruction. The instruction can be
sent to the update queue, the read queue, both queues, or can directly be returned to
the memory unit.

Note that an access is treated as hit whenever the requested data can be found in
the cache, even if it would be a miss if the accesses would be handled sequentially.
Assume the cache core contains a cache-linel0 and an access to the cache-linel1 will
replace the cache-linel0. If a second access to the cache-linel0 is started before the
line is replaced, this access is treated as hit as the cache core returns the correct data.
If the access to the cache-linel0 is a store, it will update the cache core and thereby
overwrite the cache-linel1 written into the cache core by the preceding access. Since
the cache is a write-through cache this can be done without checking if datawould be
lost.

5.3.1 Overview of the Hit Signal Computation

The requested data of an instruction can be located in four different places in the cache:
in the cache core, in the update queue, on the result bus of the main memory, or as write
data of a preceding store in the hit computation itself. If the requested data cannot be
found in any of these places, the data must be loaded from the main memory.

The update queue and the hit computation compute for every entry respectively
pipeline stage a local same-line signal and local byte-valid signals. The local same-
line signal is active if the entry or stage contains an instruction which accesses the
same line as the instruction for which the global hit signals are being computed.Let
SDC = 2sDC be the number of bytes of a cache-line. Then two instructions access the
same lines if the bits 31 tosDC of the addresses (calledline-address) are equal. The
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local byte-valid signals indicate that the entry or stage contains the correctvalue for
that byte. They may only be active if the local same-line signal is active. Forthe cache
core and the result bus of the main memory all bytes are valid on a hit. Therefore, these
circuits only compute a local hit signal which is active if the requested line is found.

The global hit signals must reflect the content of the cache at the time the queues
are updated. The computation of the global hit signals may take multiple cycles due to
pipelining. Therefore, all changes to the content of the cache during thecomputation
must be forwarded in order to be reflected in the result. The cache core isonly updated
by the update queue. Thus, in order to forward all possible changes ofthe cache core
it suffices to forward the content of the update queue at the time the hit computation is
started and all updates to the update queue.

The entries of the update queue are updated by the result bus of the main memory
and by the hit computation for allocating new entries. Note that stores are processed
in order. Thus, only the instructions in the hit computation which are started before
the instruction for which the global hit signals are being computed have to be taken
into account. Hence, all possible updates to the update queue by the hit computation
are known at the time the hit computation for an access is started. The updatesto the
update queue by the main memory are not known at the time the hit computation is
started. They must be forwarded in every cycle of the hit computation.

Figure 5.3 shows an overview of the computation of the global hit signals. For
the computation of the global hit signals, the hit computation first computesstatic
and dynamic hit signals. The static hit signals are based on the content of the hit
computation, the update queue, and the cache core. They must represent the value
of these circuits at the time an instruction enters the hit computation and have to be
computed only once. The dynamic hit signals are based on the content of theresult
bus of the main memory and have to be computed in every cycle. Since all bytes of the
result bus are valid, the dynamic hit signals only consist of a hit signal (thedynamic
hit signal) without byte-valid signals.

The dynamic hit signal must be set if the line-addresses of the current data on the
result bus and the instruction for which the hit signals are being computed are equal.
Assume the cache is a RAM block with32 − sDC address bits that is written by the
result bus of the main memory. If the computation of the global hit signal is seenas
read to that RAM block the dynamic hit signal must be set exactly if the write port
would be forwarded to the read port of the RAM block. Thus, the computation of the
dynamic hit signals can be done using a forwarding circuit (with stalling) of such a
RAM with 32 − sDC address bits.

Let cM2H denote the number of cycles needed for the computation of the global hit
signals based on the content of the result bus of the main memory. In order totake all
data from the result bus into account that have updated the update queueat the time the
global hit signals are computed, the result bus is delayed bycM2H − 1 cycles similar
to the pipelined forwarding circuits (see section 2.6.3). The forwarding circuit then
uses the un-delayed result bus and thecM2H − 1 additional stages of the result bus are
forwarded using a forwarding tree. This tree is included into the computationof the
static hit signals.

The circuitstaticHC in figure 5.3 computes the static hit signalsssl (static same-
line) andsbv⋆ (static byte-valid) along with the corresponding data bussessbyte⋆ and
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Figure 5.3: Overview of the hit signal computation

the waysway. For this computation, the cache core and the update queue are accessed
to compute local hit signals. Additionally to these local hit signals the circuitstaticHC
uses the stages1 to cM2H − 1 of the delayed result bus and the preceding instructions
in the hit computation to compute the static hit signals.

The dynamic hit signaldhit and the corresponding data bussesdbyte⋆ are com-
puted using a forwarding circuit with stalling (ForwardStall). This circuit uses the
un-delayed result bus. The outputs of the two circuitsstaticHC andForwardStall are
combined in the circuitglobalHC to compute the global hit signals, byte values and
the way.

5.3.2 Local Hit Signals

For the computation of the static hit signals, first local same-line and byte-validsignals
must be computed for all stages of the hit computation and all update queue entries.
These signals are calledHC.lsli (local same-line) andHC.lbv⋆,i (local byte-valid) for
stagei of the hit computation andUpdQ.lsli respectivelyUpdQ.lbv⋆,i for the entryi
of the update queue. For the stages of the delayed result bus of the main memory and
the cache core a local hit signal must be computed. These signals are called MM.lhiti
(local hit) for the stagei of the delayed result bus, andCore.lhit for the cache core.

The local same-line signal indicates that the stage or entry holds an access which
addresses the same cache-line as the access for which the hit signals arebeing com-
puted. Which bytes of this cache-line are valid is defined by the local byte-valid sig-
nals. The local hit signals for the result bus and cache core are activeif the required
data is in the delayed result bus stage respectively cache core. The computation of the
local signals for cache core and update queue are described in the section 5.4 and 5.5.

To compute the local hit signals for the hit computation stages, the busub⋆ indi-
cating which bytes of a word are used must be extended to a whole line. Figure 5.4
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Figure 5.5: Computation of the local hit signals for a delayed result bus stagei and a
hit computation stagej

depicts the computation of the extended usage-bitseub⋆. The byte4 · m + n for
m ∈ {0, . . . , L/4 − 1} andn ∈ {0, . . . , 3} of a line is used if the instruction accesses
the wordm of the line and the byten of the word is used. Which word of a cache-line
is accessed can be computed by decoding the bitssDC − 1 to 2 of the address. Ad-
ditionally the circuit in figure 5.4 computes the byte bussesbyteSDC−1...0 by copying
the data busSDC/4 times. The computation of the signalseub⋆ andbyte⋆ must only
be done once for every instruction which enters the hit computation.

The circuit in figure 5.5 computes the local hit signals from the accesses in the hit
computation and the stages of the delayed result bus. LetcHC be the number of cycles
of the hit computation. LetI be an instruction which enters the hit computation, i.e.,
I is in stage 0. An instruction in stagej ∈ {1, . . . , cHC − 1} of the hit computation
accesses the same line asI if the line addressHCj .addr of the instruction in stage
j is the equal to the line addressHC0.addr of the instructionI in stage0. If this is
the case and the stagej contains a valid access (HCj .full = 1) the signalHC.lslj is
activated. IfHC.lslj is active, the local byte-valid signals are activated for all bytes
written by the instruction in stagej (indicated byHCj .eub⋆ ∧HCj .write). Note that
this disables all byte-valid signals if the access in stagej is a load.

The local hit signal for stagei ∈ {1, . . . , cM2H−1} of the delayed result bus can be
computed by comparing the line addresses of the delayed result bus stageMM i.addr
with the address ofI and checking the full bitMM i.full. Since all bytes of the result
bus are valid no byte-valid signals are needed.

5.3.3 Static Hit Signals

The static byte-valid signal for a bytek sbvk must be active if any local byte-valid
signal for the bytek of a hit computation stage or an update queue entry is active or
the local hit signal for a delayed result bus stage or the cache core is active. If the
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signalssbvk is active, the bussbytek for the corresponding data must contain the value
of the last instruction preceding to I which updates that byte. If no such instruction
exist, the bussbytek must contain the current content of the main memory. Figure 5.6
shows the computation of the signalssbvk andsbytek for a bytek.

The computation of the byte-valid signals and the corresponding bytes can be done
using a tree as in the forwarding tree (see section 2.6.3). The tree computesan OR of
the local byte-valid signals (respectively hit signals for cache core andresult bus).
Parallelly the tree selects the first byte (from the left) for which the byte-validsignal is
active.

The outputs of the cache coreCore.lhit andCore.byte⋆ are assumed to be timing
critical as they depend on an access to the cache RAMs. Therefore, they are not used
before the last stage of the tree. The outputs of the tree which do not take the signals
from the cache core into account are calledqbv⋆ respectivelyqbyte⋆. Thus, for a byte
k with 0 ≤ k ≤ SDC − 1 holds:

sbvk = qbvk ∨ Core.hit, (5.1)

sbytek =

{

qbytek if qbvk = 1

Core.bytek if qbvk = 0
. (5.2)

The instructions in the hit computation have been started after the instruction in
the update queue and must have a higher priority in the tree. Since instructions enter
hit computation and update queue in order and are not reordered within, the stages
respectively entries with lower index must have higher priority. The resultbus of
the main memory and the cache core only contain data written by already completed
instructions and therefore have a lower priority than hit computation and update queue.
Since cache and main memory contain the same data due to the write-through strategy,
the order is irrelevant for the result bus stages and the cache core.

The static same-line signalssl must be active if the local same-line signal is active
for any hit computation stage or update queue entry. The staticway must be the way of
the last instruction for which the local same-line signal is active. If none ofthe same-
line signals is active, the way must be set to the way output of the coreCore.way. The
circuit for the computation of the signalsssl andsway is shown in figure 5.7.
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Figure 5.7: Computation of the signalsssl andsway

Among other things, the static way of the instruction in stage 0 of the hit com-
putationsway depends on the way of the instruction in stage 1 which is computed
only one cycle beforesway. Thus, the delay of the pathHC1.way  sway must be
at most one cycle. In order to minimize the delay on this path, the static way is not
computed using a forward tree like the byte-valid signals and the data. Instead, the
first instruction for which the local same-line signal is active is computed using a find-
first-one circuit. If none of the local same-line signals is active the zero outputz of the
find-first-one circuit is active. Thus, the static same-line signal must be active, if the
zero output is inactive. Using the outputffo which unary selects the first instruction
with active same-line signal, the way of this instruction is selected. If the zero output
is active, the way of the core is selected. In order to minimize the delay for the signals
HC1.way andCore.way, the select circuit is “unbalanced” accordingly.

5.3.4 Global Hit Signals

The global byte-valid signal for a bytek bvk has to be active if either the static byte-
valid signal for this bytesbvk or the dynamic hit signaldhit is active. Since only the
processor writes the main memory, the dynamic datadbyte⋆ from the main memory
cannot be newer than the static datasbyte⋆ in the cache. Thus, if the static byte-valid
signal is active, the static data have to be returned:

bvk = sbvk ∨ dhit, (5.3)

bytek =

{

sbytek if sbvk = 1

dbytek if sbvk = 0
. (5.4)

The global hit signalhit must be active if all bytes required by the instruction
are valid. For write instructions all bytes of the cache line are required in order to
update the cache core. Yet the bytes of the line written by the instruction (indicated by
HC0.eub⋆) are valid and need not to be found in the cache. For read instructions the
bytes to be read (indicated byHC0.eub⋆) need to be valid:

hit =

SDC−1
∧

k=0

(

bvk ∨ (HC0.eubk ⊕ HC0.write)
)

.

Note that the signalHC0.eub⋆ andHC0.write are known early in the hit com-
putation and not as timing critical as the dynamic hit signal and the hit signal from
the cache core. Therefore, the computation of the hit signal is optimized using the
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distributive law:

hit
(5.3)
=

SDC−1
∧

k=0

(

dhit ∨ sbvk ∨ (HC0.eubk ⊕ HC0.write)
)

(5.1)
=

SDC−1
∧

k=0

(

dhit ∨ Core.hit ∨ qbvk ∨ (HC0.eubk ⊕ HC0.write)
)

= dhit ∨ Core.hit ∨

SDC−1
∧

k=0

(

qbvk ∨ (HC0.eubk ⊕ HC0.write)
)

.

No dynamic way and same-line signal are computed for the result bus of the main
memory. The static way and same-line signal are therefore used as global way and
same-line signal:

sl = ssl

way = sway

5.3.5 Actions

Based on the global hit signals the hit computation either directly returns the result
to the memory unit or allocates new entries in the read and the update queue. Ifa
new update queue entry is allocated, also the bitsreq andrdy for this entry have to
be computed. The request bitreq has to be active if the entry must request the line
from the main memory. The ready bitrdy indicates that the entry contains already the
correct data. Based on the signalshit andmiss and the type of the access (indicated
by the signalwrite which is active for stores), the following actions have to be taken:

• write∧ hit: The instruction is a load-hit. The result of the load can be returned
from the hit computation directly to the memory unit.

• write ∧ hit ∧ sl: The instruction is a load-miss but a preceding instruction
accesses the same line. A new entry in the read queue has to be made. Since the
required data will be requested by a preceding instruction no new update queue
entry is needed.

• write ∧ hit ∧ sl: The instruction is a load-miss and no preceding instruction
accesses the same line. New entries in the read queue and the update queuehave
to be made. The request bitreq of the new entry is set to one. The ready bitrdy
of the entry is set to zero.

• write ∧ hit: The instruction is a store-hit. A new entry in the update queue has
to be made. The bitrdy is set to one and the bitreq is set to zero.

• write ∧ hit ∧ sl: The instruction is a store-miss but a preceding instruction
accesses the same line. A new entry in the update queue has to be made. Since
no new read request for the cache-line has to be made, the bitsrdy andreq are
set to zero.
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Figure 5.8: Computation of the data bus to the read queue and the memory unit

• write ∧ hit ∧ sl: The instruction is a store-miss and no preceding instruction
accesses the same line. A new entry in the update queue has to be made, which
requests the required cache-line from the main memory. The bitrdy is set to
zero and the bitreq is set to one.

The result of a load access is returned to the memory unit using the busSh4L.⋆.
New entries for the update queue and the read queue are allocated using the busses
UpdQ.⋆ respectivelyReadQ.⋆. The full bit of the busses is active if the corresponding
action has to be taken. Based on the preceding list the full bits to the circuitSh4L and
the two queues as well as the bitsreq andrdy for the bus to the update queue can be
computed as follows:

Sh4L.full = write ∧ hit,

ReadQ.full = write ∧ hit,

UpdQ.full = write ∨ (hit ∧ sl),

UpdQ.rdy = hit,

UpdQ.req = hit ∧ sl.

(5.5)

The byte-valid signals and the corresponding data sent to the update queue are
calledUpdQ.Byte⋆.bv andUpdQ.Byte⋆.data. The valid signals for the bytes of the
update queue must be active for all bytes for which the byte-valid signals of the hit
computation are active or which are written by the instruction. The byte data for the
update queue are the global byte values. For a bytek with 0 ≤ k ≤ SDC − 1 holds:

UpdQ.Bytek.bv = (HC0.eubk ∧ HC0.write) ∨ bvk,

UpdQ.Bytek.data =

{

HC0.bytek if HC0.eubk = 1

bytek if HC0.eubk = 0
.

The data busReadQ.Byte⋆.data to the read queue is only 32 bits wide. Thus,
the requested word must be selected out of the cache-line returned by theglobal hit
computation. LetW be the index of the requested word in the cache-line, i.e.:

W := 〈HC0.addr[sDC − 1 : 2]〉.

Then, the bytesW to W + 3 have to be selected in order to compute the data bus to
the read queue. The byte-valid signals for the read queueReadQ.Byte⋆.bv must be
active for all bytes of the word which are valid or not used by the access(indicated by
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the un-extended usage bitsHC0.ub). Due to the LWL and LWR instructions the bytes
which are not used by the instruction have to be set to the value of the value of the
input data bus of the instruction. Hence, the bussesReadQ.Byte⋆.{bv, data} to the
read queue can be computed as (0 ≤ k ≤ 3):

ReadQ.Bytek.bv = HC0.ubk ∨ bvW+k,

ReadQ.Bytek.data =

{

HC0.data[8 · k + 7 : 8 · k] if HC0.ubk = 1

byteW+k if HC0.ubk = 0
.

The data on the busReadQ.Byte⋆.data contains all requested data in case of a cache-
hit. Thus, the data bus to the memory unitSh4L.data can be directly derived from the
busReadQ.Byte⋆.data. The bus to the memory unit does not need byte-valid signals,
since all bytes have to be valid for read hits. Figure 5.8 depicts the computationof the
data busses and the byte-valid signals to the read queue and the data bus to the memory
unit.

5.3.6 Stall Computation

The hit computation has to be stalled if the action for the access cannot as described
above be performed. A result cannot be returned to the memory unit ifSh4L.stallOut
is active. A new read or update queue entry cannot be made if the corresponding stall
signalsReadQ.stallOut or UpdQ.stallOut are active. Hence, the input stall signal
for the hit computation can be computed as:

HC.stallIn = (Sh4L.full ∧ Sh4L.stallOut)

∨ (ReadQ.full ∧ ReadQ.stallOut)

∨ (UpdQ.full ∧ UpdQ.stallOut).

5.3.7 Cost and Delay

The overall delay of the hit computation is dominated by the access to the cacheRAM
in the cache core. Thus, the critical signals areCore.hit andCore.byte⋆. As one can
easily verify the output of the hit computation with the highest delay is the data bus to
the read queueReadQ.Byte⋆.data. Thus, the overall delay of the hit computation is:

D(HC) ≤ D(Core) (Core.byte⋆)

+ DMUX (sbyte⋆, equation (5.2))

+ DMUX (byte⋆, equation (5.4))

+ (sDC − 2) · DMUX + DMUX . (ReadQ.Byte⋆.data, figure 5.8)

To compute the number of cycles the result bus of the main memory has to be
delayed, the maximum delay from the first stage of the result busMM0.⋆ to the out-
puts of the hit computation needs to be known. As above, the path from to the bus
ReadQ.Byte⋆.data has the highest delay out of all paths that start atMM0.⋆. The
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Figure 5.9: Modified test circuit

delay this path is:

D(MM0.⋆ ReadQ.Byte⋆.data) ≤ D(EQ(33 − sDC)) + DMUX

(dbyte⋆, figure 5.3)

+ DMUX (byte⋆, equation (5.4))

+ (sDC − 2) · DMUX + DMUX .

This delay can be reduced, if the selection step from the cache-line to the accessed
word in figure 5.8 is removed from the critical path. The selection for the cache-lines
of the result bus can be done in parallel to the computation of the forward signal using
a modified circuitTest (see figure 5.9) in the forward tree. The circuit computes a
second data outputrbyte⋆ which contains the data needed by read accesses. This
output is treated like the standard data in the forwarding circuit, i.e. the forwarding
circuit computes8 · SDC + 32 data bits. The additional byte busses computed by the
forwarding circuit are calleddrbyte⋆.

Using the new busdrbyte⋆ the output to the read queue can be computed as follows
(for a bytek with 0 ≤ k ≤ 3 andB := 8 · k):

ReadQ.Bytek.data =

{

HC0.data[B + 7 : B] if HC0.ubk = 1

byteW+k if HC0.ubk = 0

(5.4)
=











HC0.data[B + 7 : B] if HC0.ubk = 1

sbyteW+k if HC0.ubk = 0 ∧ sbvW+k = 1

dbyteW+k else

=











HC0.data[B + 7 : B] if HC0.ubk = 1

sbyteW+k if HC0.ubk = 0 ∧ sbvW+k = 1

drbytek else

(5.2)
=































HC0.data[B + 7 : B] if HC0.ubk = 1

qbyteW+k if HC0.ubk = 0 ∧ qbvW+k = 1

Core.byteW+k if
HC0.ubk = 0 ∧ qbvW+k = 0

∧Core.hit = 1

drbytek else

.

Note that the most critical bus on which the busReadQ.Byte⋆.data depends isdrbyte⋆

since it determines the delay of the path from the main memory to the read queue and
therefore determines the number of cycles the result bus has to be delayed. The second
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Figure 5.10: Optimized computation of the byte-valid and data signals for the read
queue

most critical signals are the outputs of the cache coreCore.⋆ since they determine the
overall delay of the hit computation.

Figure 5.10 depicts how the order of the multiplexers which compute the bus
ReadQ.Byte⋆.data can be changed in order to use the critical signals as late in the
multiplexer-tree as possible. The left side of the figure depicts the computationof the
signalsReadQ.Byte⋆.{data, bv} as described in the previous sections. This circuit
can be transformed into the circuit on the right side of the figure by moving themul-
tiplexers for the signalsCore.byte⋆ anddbyte⋆ to the bottom (and replacingdbyte⋆

by drbyte⋆). Note that this also reduces the delay of the signalsReadQ.Byte⋆.bv
that also depends on the output of the cache core and the memory unit (via the signals
Core.hit respectivelydhit). The modifications depicted in figure can also be used in
order to reduce the delay of the busses to the update queueUpdQ.Byte⋆.{data, bv}.

Finally the delay of the reduction from the cache-line to the accessed word can be
reduced if the address is decoded and a unary select circuit is used. Figure 5.11 shows
a version of the global hit computation which takes all optimizations into account.

Using the circuit in figure 5.11 the overall delay of the hit computation is:

D(HC) ≤ D(Core) + D(Sel(SDC/4)) + 2 · DMUX . (5.6)

The delay of the path from the result bus to outputs of the hit computation are:

D(MM0.⋆ ReadQ.Byte⋆.data) ≤ max{D(EQ(33 − sDC)),

(sDC − 2) · DMUX}
(hit, rbyte⋆, figure 5.9)

+ DMUX (drbyte⋆, figure 5.3)

+ DMUX .

Let cHC be the number of cycles needed for the hit computation, and letcM2H be the
number of cycles needed to compute the outputs of the hit computation based onthe
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result bus. Then:

cHC = ⌈D(HC)/δ⌉,

cM2H = ⌈D(MM.⋆ ReadQ.Byte⋆.data)/δ⌉.

The result bus must be delayed bycM2H − 1 cycles.

The delay of the hit computation depends on the width of the cache-linesSDC .
It can be reduced without changingSDC be using a sectored cache. In a sectored
cache, the width of the cache-lines are a multiple of the width of the data RAM and
the data bus to the memory unit. Assumew ≥ 32 is the width of the data RAM and
SDC = k · w. The cache core returns aw bit wide data bus and the delay of the hit
computation is reduced to:

D(HC) ≤ D(Core) + D(Sel(w/4)) + 2 · DMUX .

The disadvantage of a sectored cache is that it takesk cycles to return the result of a
read request from the main memory or to write a cache-line into the cache core. The
details of the necessary modifications are not discussed in this thesis.

Let KDC = 2kDC be the associativity of the cache core. ThuskDC is the width of
the busway. Let eUQ be the number of entries of the update queue. The cost of the
static hit computation is (excluding registers):

C(staticHC) ≤ C(Dec(sDC − 2)) + (SDC + 1) · CAND

+ (cHC − 1 + cM2H − 1) · C(EQ(33 − sDC)) + (cHC − 1) · CAND

+ C(ForwardTree(32 − sDC , 8 · SDC , cHC − 1 + eUQ + cM2H , cHC))

+ C(FFO(cHC − 1 + eUQ)) + kDC · C(Sel(cHC + eUQ)).
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The cost for the global hit computation is (excluding registers):

C(globalHC) ≤ 3 · CAND + COR + SDC · (CAND + CXNOR)

+ C(Dec(sDC − 2)) + 68 · C(Sel(SDC/4))

+ C(AND-Tree(SDC)) + (2 · SDC + 10) · COR

+ 3 · (SDC + 32) · CMUX .

The hit computation has32 + 32 + 4 + 1 + 1 inputs from the memory unit,8 ·
SDC +kDC +1 inputs from the cache core,eUQ · (9 ·SDC +1) inputs from the update
queue, and8 · SDC + 32 inputs from the result bus. The hit computation computes
32 + 3 signals sent to the memory unit,9 · SDC + 5 signals sent to the update queue,
and32 + 4 + 3 signals sent to the read queue. The total cost for the hit computation
(including all registers) is thus estimated as:

C(HC) ≤ C(staticHC) + C(globalHC)

+ C(ForwardStall(32 − sDC , 8 · SDC + 32, cHC , cM2H))

+ (cHC − 1) · ⌈(25 · SDC + kDC + 182 + eUQ · (9 · SDC + 1))/2⌉ · CREG.

5.4 Cache Core

For the cache core the same hardware can be used as for simple blocking cache (ex-
cluding the control and the interface to the main memory). The cache core is basically
a k way set associative cache. The design of the cache core is not discussed in this
thesis. It can be found, e.g., in [MP00]. The cache core must follow the behavior
described below.

The cache core has a read and a write port which are used by the hit computation
for reading and the update queue for writing. On a read access the cache core returns
additionally to the data a hit signal and a way. The hit signalhit is active if the
requested line is in the cache. Then the data outputdata contains the requested line
and the way outputway points the the way of the cache where the line is saved. Ifhit
is inactive,way points to the way in which the requested line should be written. This
is determined from the internal replacement algorithm of the cache core. For write
accesses the address busaddr must contain the address of the line which is written
and the input busway must point to the way in which the line is written. The busdata
must contain the current value of the line.

For correctness the replacement algorithm is irrelevant, e.g., a least recently used
(LRU) algorithm can be used. It must only be made sure that a line is stored inat most
one way. Note that multiple accesses to the cache can be made between the compu-
tation of the way for an access and the update of the cache by this access.Thus, for
an LRU-algorithm at the time an access writes to the cache core the cache-linethat is
overwritten may not longer be the least recently used. For this to happen several ac-
cesses to addresses that are stored in the same line of the cache core mustbe processed
at the same time. Since this is considered rare and the replacement algorithm does not
affect the correctness it is acceptable.

Let SDC = 2sDC be the number of bytes of a line,LDC = 2lDC be the number
of lines, andKDC = 2kDC be the number of ways of the data cache. LetcHC be the
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number of cycles of the hit computation. If a LRU algorithm is used, the cost for the
replacement circuitCore-Replace with 34− sDC + kDC inputs andkDC outputs are
(formulas taken from [MP00]):

C(Core-Replace) ≤ C(RAM(LDC , KDC · kDC , 1, 1, cHC))

+ KDC · (C(EQ(kDC)) + CAND) + C(PP-OR(KDC))

+ KDC · kDC · 5 · CMUX + C(Enc(KDC))

+ ⌈34 − lDC + 2 · kDC/2⌉ · cHC · CREG.

The number of inputs to the cache core are33+kDC +SDC ·8, the number of outputs
of the cache core are1 + kDC + SDC · 8. The cost and the delay of the cache core are:

D(Core) ≤ max{D(RAM(LDC , 8 · SDC , 1, 1),

D(RAM(LDC , 33 − lDC − sDC , 1, 1)) + D(EQ(33 − lDC − sDC)))}

+ D(Sel(KDC)),

C(Core) ≤ KDC · (C(RAM(LDC , 8 · SDC , 1, 1, cHC))

+ C(RAM(LDC , 33 − lDC − sDC , 1, 1, cHC))

+ C(EQ(33 − lDC − sDC)))

+ 8 · SDC · C(Sel(KDC)) + C(OR-Tree(KDC))

+ C(Dec(kDC)) + KDC · CAND

+

{

0 if KDC = 1

C(Core-Replace) if KDC > 1
.

5.5 Update Queue

The update queue contains all cache accesses that will update the cacheRAM even-
tually, i.e., load misses and stores. A store access may only update the cache RAM
or the main memory if all preceding instructions have retired and no page faultinter-
rupt occurred for the instruction. This is necessary for precise interrupts and branch
speculation.

Figure 5.12 depicts the update queue witheUQ entries. The update queue is built
similar to the reservation stations (see section 4.2). The update queue is controlled by
the circuitUpdQ-Control. The circuitsUpdQ-Entry⋆ form a queue and contain the
update queue entries. New instructions are always filled into the entry0 in the circuit
UpdQ-Entry0. An instruction proceeds to the next entry whenever this entry is empty.

If the update queue is full, the control raises the signalstallOut. This prevents the
hit computation from filling new entries into the update queue. New entries are filled
into the update queue by the hit computation on the busHC.UpdQ.⋆.

The control circuit starts all read or write accesses to the main memory using the
busUpdQ.MM.⋆. The main memory can accept new requests, if the control signal
MM.ack is active. The result of the read accesses are sent to all queue entriesusing the
result bus of the main memoryMM.⋆ similar to the CDB in the reservation stations.
If the result bus is delayed, the last stage of the delayed result bus is used by the update
queue (see figure 5.3 in section 5.3).
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The update queue updates the cache core using the busUpdQ.Core.⋆ and returns
the stores to the memory unit on the busUpdQ.Sh4L.⋆. Stores need to be returned
to the memory unit in order to be removed from the reorder buffer. Note thatstores
must return the effective address in case of an interrupt and hence produce a result in
this case. This result then has to be written into the reorder buffer via the CDB. If the
memory unit cannot accept an instruction, the signalstallIn is raised.

5.5.1 Entries

Figure 5.13 depicts the circuit for the update queue entries. The basic structure equals
the reservation station entries. If the signalfill is inactive the updated values of the
instruction currently stored in the entry are written into the registers. If the signalfill
is active the registers are overwritten with the updated values of the instruction in the
preceding entry (respectively the hit computation for the first entry).

For every bytek ∈ {0, . . . , SDC − 1} of a cache-line, the update queue entries
have a sub-circuitBytek. These sub-circuits store for each byte a valid bit and the
data similar to the operands of the reservation station entries. Additionally eachentry
contains the following registers:
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• full: This bit indicates that the entry contains a valid instruction. It is reset if the
processor is flushed (indicated by the global control signalclear) or the entry is
removed from the queue (indicated by the signalrfq).

• write: This bit is active for store instructions.

• req: This bit indicates that a read request to the main memory has to be made.
It is initialized with one for misses and zero for hits or same-line misses (see
equation (5.5) on page 121). The register is reset when the request is sent to the
main memory (indicated by the signalsent).

• rdy: This bit is active if all bytes are valid and initialized with one for hits (see
equation (5.5) on page 121). The bit is set if the memory returns the requested
line (indicated by the signalupd).

• con: This field contains all information about the instruction which are not al-
tered by the update queue. These are the address of the requested lineaddr, the
tag of the instructiontag, and the opcode of the instruction.

• Dpf : This signal is active if the access caused a page fault interrupt. It is com-
puted by the main memory and updated when the memory returns the requested
line.

The circuit Bytek for each bytek is shown in figure 5.14. For every byte the
circuit saves a valid bitbv. This valid bit is initialized with the value of the signal
HC.UpdQ.bvk (see page 121).

The control signalsfill, sent, andrfq are computed by the update queue control
circuit. The entry computes the control signalslsl, upd, andallRet. The signallsl
is active if the instruction in the entry accesses the same line as the instruction which
enters the hit computation. It is computed by the static hit computation. For the com-
putation of the signallsl the addresses of the two instructions are compared and the
full bit of the entry is checked. The signalupd has to be active if the result bus returns
the data needed to update the entry. This is the case if the cache-line addresses of the
result bus and the entry match and the full bit of the result bus is active. The signal
allRet indicates, that all instructions preceding to the instruction in the entry have re-
tired. This signal can be computed analogously to the signalallRet computed by the
ROB control (see section 4.6.5).
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Figure 5.15: Update queue control (part 1)

Let SDC = 2sDC be the number of bytes of a cache line andLROB = 2lROB be
the number ROB entries. The cost of an update queue entry is (without pipelining):

C(UpdQ-Entry) ≤ SDC · (COR + 10 · CMUX + 9 · CREG)

+ 2 · C(EQ(33)) + C(EQ(lROB)) + CAND

+ COR + 3 · CAND + 5 · CMUX + (38 + lROB) · CREG.

5.5.2 Control

The control circuitUpdQ-Control controls the entries of the update queue and com-
putes the global outputs. The entries are controlled by the signalsfill⋆, sent⋆, and
rfq⋆ which are computed for every entry. The global outputs are the stall signal to
the hit computationstallOut, the busUpdQ.MM.⋆ which starts new read or write
requests to the main memory, the busUpdQ.HC.⋆ containing the local hit signals for
the hit computation, the busUpdQ.Core.⋆ which is used to update the cache core, and
the busUpdQ.Sh4L.⋆ which returns the results of a store instruction to the memory
unit.

Figure 5.15 shows the first part of the update queue control. The busUpdQ.HC.⋆
sent to the hit computation can be computed directly by renaming the outputs of the
entries according to the naming convention used in section 5.3. The signalsfill⋆
controlling the movement of the instructions in the queue can be computed as in the
reservation station. An instruction proceeds to the next entry whenever the next entry is
empty. This is computed by the parallel-prefix OR in figure 5.15. The signalstallOut
is active if the first entry cannot be filled:

stallOut = fill0.

The remaining signals computed by the update queue control depend on which
actions need to be performed for the instructions in the entries. If an instruction is not
ready it must start a read request to the main memory to load the needed line. Ifa store
instruction is ready it must update the main memory and the cache core. As soonas
a store instruction has updated main memory and cache core, it can be removed from
the update queue and be returned to the memory unit. Load instructions updatethe
cache core as soon as they are ready. They can be removed from the update queue
afterwards without being returned to the memory unit, since load misses are returned
to the memory unit by the read queue.

In order to simplify the coherency, all actions except the read request tothe main
memory are done in one cycle. Thus, store instructions must update the main memory
and the cache core, be returned to the memory unit and be removed from thequeue at
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the same time. Load misses are removed from the queue when they update the cache
core.

If an instruction accesses a non-valid page, the main memory activates the page
fault interruptMM.Dpf and returns invalid data. Yet the ready bit for the instructions
is set in order to return the instructions to the memory unit. To stay consistent, all
updates to the main memory or the cache core must be prevented if an instructionhas
caused a page fault. Note that a page fault can only occur on a read request. When the
main memory is updated by a store instruction, the cache-line is already in the cache
and therefore the access cannot cause a page fault.

The main memory is assumed to be single ported. Thus, at most one read or
write request can be started in one cycle. The signalMM.ack indicates that the main
memory can accept a new request. If the instruction in entryi sends a read request to
the main memory the signalsenti is activated. This signal resets the request bit of the
instruction to prevent the same request to be sent twice. If a store in entryi updates
the main memory the signalrfqi is activated which removes the store from the queue.

If two entries need to start accesses of the same type, the entry with the higher
index (i.e., which holds the older instruction) is preferred. Read accesses have a higher
priority than write accesses. This is done to minimize the delay of loads, which are
assumed to be performance critical.

To compute the control signalssent⋆ andrfq⋆ for all entries the requests made
by the update queue entries must be computed. Three different types of requests are
possible. If an entry contains an access that is not ready (i.e., not all data of the cache-
line is valid) it must start a read request. If an entry contains a ready storethat may
update the main memory (since all preceding instructions have retired) a write request
must be started. A write request also indicates that the store needs to updatethe cache
core, removed from the update queue and returned to the memory unit. If anentry
contains a ready load it must start a update request in order to update the cache core
and be removed from the update queue. Note that at any time only one of the three
requests may be active.

The entryi needs to start a read request if it contains a valid access and the request
bit req of the entry is set:

rreqi = Entryi.full ∧ Entryi.req. (5.7)

Note that the request bit is reset once the read request is granted in oder to prevent that
the access starts a second read request.

The entryi needs to start a write request to the main memory (indicated bywreqi)
if it is valid, a write instruction, all preceding instructions are retired, and allbytes are
valid. Thus:

wreqi = Entryi.full ∧ Entryi.write ∧ Entryi.allRet ∧ Entryi.rdy. (5.8)

Since the signalallRet can be active for at most one instruction,wreqi can by active
for at most one entryi.

If the full bit of the entryi is active an the write bit is inactive the entry must start
update request indicated bycreqi:

creqi = Entryi.full ∧ Entryi.write ∧ Entryi.rdy.



132 Memory Unit

01 rreq

Sel

MM.Ack

FFO

rreq⋆

Entry⋆.⋆

ffo

sent⋆

UpdQ.MM.⋆

wreqrreq

UpdQ.MM.full

.Dpf

MM.Ack wreq⋆

stallIn

01

Sel

rreq wreq

FFO
ffo

creq⋆

Entry⋆.⋆ creq

rfq⋆ UpdQ.Core.full

.Dpf

UpdQ.{Sh4L, Core}.⋆ UpdQ.Sh4L.full

Figure 5.16: Update queue control (part 2)

From the construction of the update queue and the hit computation it follows that
the bitsreq andrdy of a single entry cannot be active at the same time. Thus, at most
one of the request signals may be active for an entry at a certain time.

A read request must be ignored if the main memory cannot accept a new request,
i.e., if the signalMM.Ack is inactive. A write request must be ignored ifMM.Ack is
inactive or the store cannot be returned to the memory unit (indicated bystallIn). The
signalsrreq⋆, wreq⋆, andcreq⋆ are combined to overall request signalsrreq, wreq,
andcreq which are active if any of the entries wants to start a request of this type and
the request does not have to be ignored:

rreq =





eUQ−1
∨

i=0

rreqi



 ∧ MM.Ack, (5.9)

wreq =





eUQ−1
∨

i=0

wreqi



 ∧ MM.Ack ∧ stallIn, (5.10)

creq =

eUQ−1
∨

i=0

creqi.

Read requests to the main memory have the highest priority. They are sent to the
main memory even if an older write request wants to update the main memory. Note
that this is consistent since the data of the write has already been forwarded in the
hit computation. Updates to the cache core are forwarded to the hit computation and
therefore not performance critical. Updates of the cache core by load instructions have
lowest priority as the stalling the entry in the update queue does not preventthe read
queue from returning the result to the memory unit.

Figure 5.16 shows the second part of the update queue control. The main function
of this part of the control is to compute the bussessent⋆ andrfq⋆ (in the center of the
figure). For each request type the entry holding the oldest instruction witha request
of this type is computed. For the signalsrreq⋆ andcreq⋆ this is done using a find-
first-one circuit. Since at most one of the write requestswreq⋆ may be active, the
find-first-one circuit may be omitted for these signals.
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The write requests are ignored ifMM.Ack is inactive orstallIn is active. For
the read requestsrreq⋆, the signalMM.Ack is used as most significant input of the
find-first-one circuit computing the oldest instruction with a read request. Thus, if
MM.Ack is inactive only the most significant bit of the output of the find-first-one
circuit is active. This bit is ignored and therefore no read request is sent if the signal
MM.Ack is inactive.

The read requests to the main memory have the highest priority. Therefore,the
signalssent⋆ can be computed directly from the outputs of the find-first-one circuit
for the read requests. A store instruction can be removed from the updatequeue if a
write request to the main memory can be done (wreq is active) and no read request is
done (rreq is inactive). In this case the write requests are used to compute the signal
rfq⋆. Otherwise the outputs of the find-first-one circuit using the request signalscreq⋆

are used.

The control circuit in figure 5.16 also computes the busses to the main memory
UpdQ.MM.⋆, the cache coreUpdQ.Core.⋆, and the memory unitUpdQ.Sh4L.⋆.
An access to the main memory is made (indicated byUpdQ.MM.full) if rreq or
wreq are active and the selected instruction did not cause a page fault interrupt (indi-
cated by the signalDpf of the entry). Note that the signalDpf cannot be active for
read accesses since it can only be activated when the memory returns the result of the
read request. Ifrreq is active, the read requests are used to select the instruction which
accesses the main memory, otherwise the write requests are used.

An instruction is returned to the memory unit (indicated byUpdQ.Sh4L.full if
a write request to the main memory is made. The cache core is updated (indicated
by UpdQ.Core.full) if an instruction is returned to the memory unit or the queue
contains a ready load instruction (creq is active). The cache core must not be updated
if the selected instruction caused a page fault. Cache core and memory unit are updated
by the same instruction and therefore use the same data. The instruction is selected
with the signalsrfq⋆.

5.5.3 Delay Optimizations

The computation of the signalsrreq andwreq of an entry can be pipelined similar to
the signalreq in the reservation station entries (see section 4.2.3). The signalsrreq and
wreq must be reset if the control signalssent respectivelyrfq are active or the update
queue is cleared by the signalclear. Figure 5.17 shows the pipelined computation of
the request signalsrreq andwreq for an update queue entry. Note that the update
queue is then pipelined in two dimensions.

In order to fit into one cycle, the delay of the signalrfq⋆ in figure 5.17 must be at
mostδ − DAND − DMUX . Due to the pipelining the delay of the signalswreq⋆ and
rreq⋆ can be assumed to be 0. The first stage of the circuitSh4L is assumed to have
has a buffer circuit, thus the delay of the signalstallIn is equal toDAND. Using the
proposed circuit for the update queue control bounds the stage depthδ to be at least
(with the critical path going through the signalwreq (see equation (5.10)) on the right
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Figure 5.17: Pipelining of the request signals computation

side of figure 5.16):

δ − DAND − DMUX ≥ D(rfq⋆)

≥ D(wreq) + DAND + DMUX

≥ D(OR-Tree(eUQ)) + 2 · DAND + DMUX

⇔ δ ≥ D(OR-Tree(eUQ)) + 3 · DAND + 2 · DMUX

For δ = 5 this does not hold true.

To reduce the delay of the critical path of the control circuit the following restric-
tion to the update queue is introduced: only the last entry of the update queuemay
update the cache RAM or the main memory. Thus, no signalrfqi has to be computed
for i < eUQ−1. For load instructions this has no performance impact because the read
queue can already return the instruction to the memory unit while the instruction still
waits in the update queue for updating the cache core. However, it might happen that
the update queue is full more often. Write instructions are only delayed if the write
is the last active instruction and the data are valid before the instruction enters the last
entry. For small stage depth and small numbers of entries, this is not assumedto have
a significant performance impact.

Figure 5.18 shows the delay optimized version of the second part of the update
queue control using the above restriction. The restriction allows the following mod-
ifications of the control circuit. If the last queue entry contains a ready load miss
(indicated byEntryeUQ−1.write∧EntryeUQ−1.rdy), it can update the cache core in
any case. Thus the instruction can be removed from the queue. This can be done by
overwriting the entry by activating the fill signal for this entryfilleUQ−1. The com-
putation of the fill signals is adjusted accordingly. Thus, for the computation of the
signal rfqeUQ−1 load misses do not have to be taken into account. Since only the
last entry may update the main memory or the cache core, the page fault signalof the
entry that does the update must not longer be computed with a select circuit. This re-
duces the delay of the full signals for main memoryUpdQ.MM.full and cache core
UpdQ.Core.full.

Assume the delay of the request signals and the acknowledge signalMM.ack is 0
and the delay of the stall signalstallIn is DAND. Then, the modifications reduce the
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delay of the signalrfqeUQ−1 to:

D(rfqeUQ−1) ≤ max{D(rreq), 2 · DAND} + DAND

(5.9)

≤ max{D(OR-Tree(eUQ)) + DAND, 2 · DAND} + DAND

≤ max{D(OR-Tree(eUQ)), DAND} + 2 · DAND

If rfqeUQ−1 is active it follows that the last entry is not empty and does not contain
a load miss. Hence, the signalfilleUQ−1 can not be active. This allows to move the
AND-gates that clear the full and the write request signal of the last queue entry below
the multiplexer controlled byfilleUQ−1. Figure 5.19 depicts the modification applied
to figure 5.17. With this modification, the bound forδ regarding the signalsrfq⋆ is
reduced to:

δ − DAND ≥ D(rfq⋆) (5.11)

⇔ δ ≥ max{D(OR-Tree(eUQ)), DAND} + 3 · DAND. (5.12)
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Note that the signalsfill⋆ do not depend on the signalrfqeUQ−1 in order to re-
duce the delay. Thus, if a store updates the cache core and the main memory the last
update queue entry is not filled in the next cycle. Hence, store instructionscan only
complete every other cycle. This is not assumed to have a performance impact as store
instructions must wait until they are the oldest active instruction anyway.

5.5.4 Optimized Completion for Store Instructions

If a store instruction does not cause an interrupt, it does not produce aresult which
would be forwarded to the succeeding instruction. Thus, it is not necessary to send
a store instruction via the CDB. At the time the store instruction updates the cache
core and the main memory, it must be at the head of the ROB. Thus, to complete
a store instruction that did not cause an interrupt, it suffices to activate thesignal
ROBhead.valid indicating that the instruction at the ROB head has completed.

The modified completion of store instructions has the following advantages. The
number of cycles needed to complete stores can be reduced. If the instructions follow-
ing the store have completed earlier, this can reduce the number of instructions in the
ROB. Also store instructions do not block the CDB for instructions of which the result
is needed by later instructions. The modifications to the ROB environment is shown in
figure 5.20.

The simplest way to modify the update queue control accordingly is to set the full
signal to the memory unitUpdQ.Sh4L.full to 0 for store instructions if their page
fault signalEntryeUQ−1.Dpf is inactive. This modification does not affect the delay
of the update queue. However, stores are then stalled by the input signalstallIn even
if they do not use the circuitSh4L.

In order to complete store instructions even if the stall input is active, the com-
putation of the signalsrfqeUQ−1, UpdQ.Sh4L.full, andUpdQ.Core.full must be
adopted as shown in figure 5.21. Note that this modification increases the delay from
the stall input to the signalrfqeUQ−1. Yet, if stallIn directly comes out of a buffer
circuit the delay ofrfqeUQ−1 based onstallIn is DOR + 3 · DAND and thus it holds
D(rfqeUQ−1) ≤ δ − DAND for δ ≥ 5. Therefore, this second option can be used.
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Figure 5.21: Update queue control with optimized completion

5.5.5 Cost and Delay

For the bound toδ given by the update queue, the stall inputstallIn is assumed
to come directly out of a buffer circuit, i.e., the delay ofstallIn is assumed to be
DAND. Also it is assumed that a register is inserted after the computation of the
signalswreqeUQ−1 and rreq⋆. The delay of the signalrfqeUQ−1 may be at most
δ − DAND (see equation (5.11)). The modified computation of the signalrfqeUQ−1

from figure 5.21 increases the bound forδ to

δ ≥ max{D(OR-Tree(eUQ)), 2 · DAND} + 3 · DAND. (5.13)

The delay of the signalssent⋆ (computed in figure 5.18) may be not larger than
δ − DMUX − DAND (see figure 5.13). Thus, it must also hold:

δ ≥ D(FFO(eUQ + 1)) + DAND + DMUX . (5.14)

Note that the equations (5.13) and (5.14) imply a bound for the number of update
queue entrieseUQ for a givenδ.

Let the boolean variableprrq andpwrq be zero if the requirements for the signals
rfqeUQ−1 and sent⋆ also hold if no register is added after the computation of the
signalsrreq⋆ andwreqeUQ−1. If no registers are added the delay from the full bits of
the entries through the signalsrreq⋆ andwreqeUQ−1 to the signalrfqeUQ−1 (which
updates the full bit of entryeUQ − 1) is (see equations (5.7), (5.8), and (5.9) and
figure 5.21):

D(Entry⋆.full rreq⋆  rfqeUQ−1) ≤ DAND (rreq⋆)

+ D(OR-Tree(eUQ))

+ DAND (rreq)

+ DAND, (rfq⋆)

D(Entry⋆.full wreqeUQ−1  rfqeUQ−1) ≤ 2 · DAND (wreqeUQ−1)

+ 3 · DAND.

The delay of the path from the request bits of the entries through the signalsrreq⋆ to
the signalssent⋆ is (see equation (5.7) and figure 5.18):

D(Entry⋆.req  rreq⋆  sent⋆) ≤ DAND (rreq⋆)

+ D(FFO(eUQ+1)). (sent⋆)
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Thus, the variablesprrq andpwrq can be computed as:

prrq =











0 if
δ ≥ max{D(OR-Tree(eUQ)) + 4 · DAND,

D(FFO(eUQ + 1)) + 2 · DAND + DMUX}

1 else

,

pwrq =

{

0 if δ ≥ 6 · DAND

1 else
.

The read request signalrreq⋆ (see equation (5.7)) of an entry that is filled into the
update queue can already be computed during the hit computation (for an additional
cost ofCAND). Thus, it can be assumed that an access that is filled into the update
queue can start a read request to the main memory within the following cycle.

Let cM2W be the minimum number of cycles needed between the update of the
update queue by the result bus of the main memory and the retiring of a store instruc-
tion. The number of cycles is defined by the delay of the path from the resultbus to
the full bit of the last entry of the update queue. The stall inputstallIn is not assumed
to be timing critical, otherwise a buffer circuit can be inserted in the first stageof the
memory unit. The delay of the path via the signalwreqeUQ−1 is (see equation (5.8)
and figures 5.13 and 5.18) :

D(MM.⋆ wreqeUQ−1  EntryeUQ−1.full′) ≤ D(EQ(33)) (Entry⋆.upd)

+ DOR (Entry⋆.rdy)

+ (2 + pwrq) · DAND

(wreqeUQ−1)

+ 3 · DAND (rfqeUQ−1)

+ DAND.

Thus:

cM2W ≤

⌈

D(MM.⋆ wreqeUQ−1  EntryeUQ−1.full′) − DMUX

δ − DMUX

⌉

.

For read instructions the delay of the path from the memory unit to the full bit of
the last entry via the signalfilleUQ−1 is (see figures 5.13 and 5.21):

D(MM.⋆ creqeUQ−1  EntryeUQ−1.full′) ≤ D(EQ(33)) (Entry⋆.upd)

+ DOR (Entry⋆.rdy)

+ DAND + DOR (filleUQ−1)

+ DMUX + DAND.

Let cM2R be the minimum number of cycles between the requested data being in the
last stage of the result bus and the update of the cache core by a load instruction. Then
it holds:

cM2R ≤

⌈

D(MM.⋆ creqeUQ−1  EntryeUQ−1.full′) − DMUX

δ − DMUX

⌉

.
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The delay of the outputsUpdQ.MM.⋆ which does not fit into the cycle in which
the entries are updated is added to the delay of the main memory. It depends onthe
signalssel⋆ which select the entry sent to the main memory. The delay of the signals
sel⋆ depends on whether the read or write request is critical and whether registers are
added after the request signals:

D(sel⋆) ≤ max{(1 − pwrq) · 2 · DAND + 2 · DAND,

D(EQ(33)) + DOR + 4 · DAND − (cM2W − 1) · δ,

(1 − prrq) · DAND + D(OR-Tree(eUQ)) + DAND,

D(EQ(33)) + DOR + 2 · DAND + D(OR-Tree(eUQ))

− (cM2R − 1) · δ} + DMUX .

Then the following delay has to be added to the delay of the main memory:

D(MM)+ ≤ D(Sel(eUQ)) + D(sel⋆) − δ.

The delay of the signalstallOut sent to the hit computation is:

D(stallOut) ≤ D(PP-OR(eUQ + 2)). (5.15)

If the optimized completion for stores is used and the control is modified as shown in
figure 5.21 the delay of the stall inputstallIn is bounded by

δ ≥ D(stallIn) + 4 · DAND. (5.16)

Note that if the stall input is computed with an AND-tree the first AND-gate can be
merged into this tree. If this bound does not hold, the update queue controlcan not be
modified as in figure 5.21 and thus stores are stalled by the signalstallIn even if they
are not returned to the memory unit (see section 5.5.4).

Let SDC = 2sDC be the number of bytes of a cache-line. The number of inputs of
the update queue from the main memory are33 + 8 · SDC . The number of outputs to
the update queue are5 + 8 ·SDC . The additional cost for the update queue entries due
to pipelining are approximated by:

C(UpdQ-Entry)+ ≤ (cM2W − 1) · (19 + 8 · SDC) · (CMUX + CREG) + 2 · CAND.

The cost of the update queue control are:

C(UpdQ-Control) ≤ C(FFO(eUQ + 1)) + C(PP-OR(eUQ + 1))

+ 2 · COR + 6 · CAND

+ (34 + 8 · SDC) · C(Sel(eUQ))

+ eUQ · 3 · CAND.

The overall cost for the update queue are:

C(UpdQ) ≤ eUQ · C(UpdQ-Entry) + C(UpdQ-Control).
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5.6 Read Queue

The read queue holds one entry for each load miss. The load misses wait in the read
queue until the needed line is obtained from the main memory. When the main memory
sends the required cache-line, the entry is updated and the load can be returned to the
circuit Sh4L of the memory unit (see figure 5.1). The main memory access will be
started from the corresponding entry of the update queue. Note that dueto same-line
miss multiple loads and up to one store can share the same entry in the update queue
(see section 5.3.5).

Similar to the update queue, the read queue entries have a valid bit for everybyte
of the requested word. The bytes that are not needed by the load access and the bytes
that are valid at the time the load is filled into the read queue due to forwarding are
marked valid already during the hit computation (see figure 5.8). In order tovalidate
the other bytes, the read queue snoops on the result bus of the main memory.

If the result bus is delayed, the read queue must snoop on the last stage of the
delayed result result bus. Otherwise it could happen that a load which is filled into the
read queue misses the cache-line required by this load. This would be the case if the
required line was requested by a preceding access and is already in the stages of the
delayed result bus at the time the second load is sent to the read queue. Therefore, the
read queue must snoop on the last stage of the delayed result bus. In order to improve
the performance the read queue could additionally snoop on the un-delayed result bus.
This optimization is not discussed in detail.

The general design of the read queue is very similar to the update queue orthe
reservation stations. Figure 5.22 shows a read queue entry. The read queue has one
Byte sub-circuit for each of the four bytes of a word. The registerscon, Dpf , rdy
andfull have the same meaning as the corresponding registers of the update queue.
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Figure 5.23: Read queue control

If the signalsfull andOut.rdy are active, the load in the entry can be returned to the
memory unit. This is indicated by the signalreq.

The control of the read queue (see figure 5.23) is built analogously to thecontrol
of the reservation stations (see section 4.2.2). An entry can be filled if it is not full.
A find-first-one circuit selects the oldest load (i.e., the load in the entry with highest
index) for which the request bitreq is active. If the read queue is not stalled, the
load can be returned to the circuitSh4L of the memory unit. Therefore, the output
select⋆ of the find-first-one circuit is AND-ed with the negated stall input to compute
the signalsrfq⋆ which clears the entry containing the load. The signalsselect⋆ can
be used to compute the outputReadQ.Sh4L.⋆ of the read queue, which is sent to the
memory unit. The full bit of the bus to the memory unit is set if at least one entry is
ready (indicated by the negated zero output of the find-first-one circuit.

If the number of entries of the read queueeRQ is one, the same simplifications as
for the reservation station can be made to reduce the delay requirements forthe signals
rfq⋆.

5.6.1 Cost and Delay

Let eRQ be the number of read queue entries. The computation of the request signal
req⋆ := full⋆ ∧ rdy⋆ can be pipelined as in the reservation station (see section 4.2.3).
Then, the maximum number of entries of the read queueeRQ is bounded by:

δ ≥

{

3 · DAND if eRQ = 1

max{DAND, D(FFO(eRQ))} + 2 · DAND + DMUX if eRQ > 1
. (5.17)

The delay of the stall outputstallOut is:

D(stallOut) ≤ D(PP-OR(eRQ)). (5.18)

The variableprq is 1, if a register needs to be added in the computation of the
signalreq⋆, otherwise0. Thus:

prq =

{

0 if δ ≥ D(FFO(eRQ)) + 3 · DAND + DMUX ∨ eRQ = 1

1 else
.

Let cM2R be the minimum number of cycles between the last stage of the result
bus containing the needed data and a read miss being returned to the memory unit.
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This number depends on the delay of the path from the result busMM.⋆ to the full
bits of the entries. The delay of this path foreRS > 1 is:

D(MM.⋆ Entry⋆.full′) ≤ D(EQ(33)) (Entry⋆.upd)

+ DOR (Entry⋆.rdy)

+ (1 + prq) · DAND (req⋆)

+ D(FFO(eRQ)) + DAND (rfq⋆)

+ DAND + DMUX .

If eRS = 1 the delay of the path is:

D(MM.⋆ Entry⋆.full′) ≤ D(EQ(33)) (Entry⋆.upd)

+ DOR (Entry⋆.rdy)

+ DAND (req⋆)

+ DAND (rfq⋆)

+ DAND.

It holds:

cM2Q ≤

⌈

D(MM.⋆ Entry⋆.full′) − DMUX

δ − DMUX

⌉

.

The delay of the outputsReadQ.Sh4L.⋆ to the memory unit which does not fit
into the cycle where the entries are updated is added to the delay of the circuitSh4L.
The additional delay depends on the delay of the signalsrfq⋆. The delay ofrfq⋆ is:

D(rfq⋆) ≤ max{max D(stallIn), (1 − prq) · DAND + D(FFO(eRQ))},

D(MM.⋆ Entry⋆.full′) − (cM2Q − 1) · (δ − DMUX)}.

Then the additional delay for the circuitSh4L is:

D(Sh4L)+ ≤ max{0, D(rfq⋆) + D(Sel(eRQ)) − δ}.

The delay of the stall inputstallIn from the memory unit is bounded by:

δ ≥ D(stallIn) +

{

2 · DAND if eRS = 1

2 · DAND + DMUX if eRS > 1
. (5.19)

The number of inputs of a read queue entry from the main memory are33 + 8 ·L.
The number of outputs to the read queue control are35. The cost of a read queue entry
are approximated by:

C(ReadQ-Entry) ≤ 4 · (COR + 10 · CMUX + 9 · CREG) + C(EQ(33)) + COR

+ 2 · CAND + 4 · CMUX + (36 + lROB) · CREG

+ (cM2R − 1) · (34 + 4 · L) · (CMUX + CREG).

The cost of the read queue control is:

C(ReadQ-Control) ≤ C(FFO(eRQ)) + C(PP-OR(eRQ))

+ 2 · eRQ · DAND + (67 + lROB) · C(Sel(eRQ)).

The overall cost for the read queue is:

C(ReadQ) ≤ eRQ · C(ReadQ-Entry) + C(ReadQ-Control).
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Figure 5.24: Arbiter circuit to the memory unit

5.7 Stall Computation

Data can be returned from the data cache to the memory unit by the hit computation,
the read queue, and the update queue. Additionally instructions are sent directly from
the circuitSh4S to the output of the data cache in case of a misaligned access. A small
arbiter circuit is needed to select between the busses from the four circuits. Loads are
assumed to be most performance critical. Therefore the read queue has the highest
priority, followed by the hit computation and the update queue. Misaligned accesses
have the lowest priority as they cause an interrupt anyway.

The arbiter circuit can be seen as part the circuitSh4L and is added to its cost
and delay. The circuit is depicted in figure 5.24. The find-first-one circuit selects the
input with the highest priority that wants to send an access (indicated by the full bit).
An input is stalled if the full bit of the input is active and the full bit of any input with
higher priority (computed by a parallel-prefix OR) or the stall input of the circuit Sh4L
is active.

The total delay of the circuitSh4L (including the additional delay from the queues)
is

D(Sh4L) ≤ max{D(FFO(4)), D(Sel(eRQ)) + D(ReadQ.rfq⋆) − δ}

+ D(Sel(4)) + 4 · DMUX .

The input stall signal of the hit computationHC is defined as

HC.stallIn = (Sh4L.full ∧ Sh4L.HC.stall)

∨ (ReadQ.full ∧ ReadQ.stallOut)

∨ (UpdQ.full ∧ UpdQ.stallOut).

The input stall signal for the circuitSh4S is defined as

Sh4S.stallIn = (Dmal ∧ Sh4L.Sh4S.stall) ∨ (Dmal ∧ HC.stallOut). (5.20)

5.8 Cost and Delay

Up to one buffer circuit in inserted into each of circuitsSh4S, Sh4L, andHC. Let the
variablesbSh4S , bSh4L, andbHC be one if a buffer circuit is inserted in the respective
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circuit, otherwise the variables are zero. Then the number of stagescSh4L, cSh4S , and
cHC for the respective circuits are

cSh4L(bSh4L) = ⌈(D(Sh4L) + bSh4L · DMUX)/δ⌉,

cSh4S(bSh4S) = ⌈(D(Sh4S) + bSh4S · DMUX)/δ⌉,

cHC(bHC) = ⌈(D(HC) + bHC · DMUX)/δ⌉.

Let n be the number of functional units andtL be the number of inputs of the first
stage of the arbiter tree in the completion circuit (see equation (4.21) on page68).
Then the delay of the input stall signalMem.stallIn from the completion phase to
the functional unit is (see equation (4.22) on page 70)

D(Mem.stallIn) ≤

{

DAND + D(FLO(min{tL, n})) + DMUX if tL > 2

DAND + DOR if tL = 2
.

Then for the four stall outputs of the circuitSh4L holds:

D(Sh4L.ReadQ.stall(bSh4L)) ≤ max{D(Mem.stallIn),

D(AND-Tree(cSh4L(bSh4L) + 1))}

+ DAND,

D(Sh4L.HC.stall(bSh4L)) ≤ max{D(Mem.stallIn),

D(AND-Tree(cSh4L(bSh4L) + 1))}

+ DAND + DOR,

D(Sh4L.UpdQ.stall(bSh4L)) ≤ max{D(Mem.stallIn), DOR + DAND,

D(AND-Tree(cSh4L(bSh4L) + 1))}

+ DAND + DOR,

D(Sh4L.Sh4S.stall(bSh4L)) ≤ max{D(Mem.stallIn), 2 · DOR + DAND,

D(AND-Tree(cSh4L(bSh4L) + 1))}

+ DAND + DOR.

The delay of the stall output of the hit computation is (see equations (5.15) and (5.18)
for the delay of the stall outputs of the queues)

D(HC.stallOut(bHC)) ≤ max{max{D(UpdQ.stallOut), D(ReadQ.stallOut)}

+ DAND + 2 · DOR,

D(Sh4L.HC.stall) + DAND + DOR,

D(AND-Tree(cHC(bHC))), }

+ DAND.

Note that the delay of the path from the hit computation to the queues is onlyDMUX .
Thus, inserting a buffer circuit at the output registers of the circuitHC to the queues
does not increase the delay. These output registers for cache misses can be stalled
independently from the output registers for cache hits to the circuitSh4L (which are
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the input registers of the circuitSh4L). Then the stall outputs of the queues must obey
the following restriction:

δ ≥ max{D(UpdQ.stallOut), D(ReadQ.stallOut), DOR + DAND}

+ DAND + DOR

which holds true if the restrictions for the queues (equations (5.13) and (5.17)) are
fulfilled. Thus, by inserting a buffer circuit at the output registers to the queues the
delay of the stall output of the circuitHC can be reduced to:

D(HC.stallOut(bHC)) ≤ max{2 · DAND + 2 · DOR,

D(Sh4L.HC.stall) + DAND + DOR,

D(AND-Tree(cHC(bHC))), }

+ DAND.

Finally for the stall output of the circuitSh4S respectively the memory unit it
holds true:

D(Sh4S.stallOut(bSh4S , bHC)) ≤ max{max{D(HC.stallOut(bHC))

D(S4hL.Sh4S.stall)} + DMUX ,

D(AND-Tree(cSh4S(bSh4S)))} + DAND.

Let eRQ be the number of entries of the read queue andeRS1 be the number of
entries of the memory reservation station. Due to the restrictions of read queue (equa-
tion (5.19)), update queue (equation (5.16)) and reservation station (equation (4.15) on
page 62) regarding the delay of the stall inputs, without any buffer circuit the following
equations must hold:

δ ≥ D(Sh4L.ReadQ.stall(0)) +

{

2 · DAND if eRQ = 1

2 · DAND + DMUX if eRQ > 1
, (5.21)

δ ≥ D(Sh4L.UpdQ.stall(0)) + 3 · DAND, (5.22)

δ ≥ D(Sh4S.stallOut(0, 0)) +

{

2 · DAND if eRS1 = 1

3 · DAND + DMUX if eRS1 > 1
. (5.23)

Note that the restriction for the update queue can be reduced as the first AND-gate on
the stall path of the update queue can be merged into the computation of the signal
Sh4L.UpdQ.stall using the distributive law.

The bounds forδ are successively reduced by setting firstbSh4L, thenbHC , and
finally bSh4S to one. The position of the buffer circuit in the circuitSh4L depends on
δ. For δ = 5 the buffer circuit is placed in the first stage, forδ > 5 it is placed in the
second stage.

If δ = 5 it must holdtL = 2 (see equation (4.21) on page 68) and therefore
D(Mem.stallIn) = DAND + DOR. Hence, the stall input from the completion
phase is uncritical. For stall signal of the first stage of the circuitSh4L it must hold
true:

δ ≥ max{3 · DOR, D(AND-Tree(cSh4l(1)) + DAND} + DOR + DAND
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which is assumed to hold forδ = 5. The equations (5.21) and (5.22) then hold by
construction of read queue and update queue. The stall output to the circuit HC and
Sh4S come directly out of buffer circuits, thus:

D(Sh4L.{HC, Sh4S}.stall) = DAND.

If δ > 5 for the stall input from the completion phaseD(Mem.stallIn) it can
only be guaranteed thatD(Mem.stallIn) ≤ δ − DAND. Only the first stage of the
circuit Sh4L can generate a stall. Thus, if the buffer circuit is placed in the second
stage, the stall input fulfills the requirements for the stall signals of stage two and
above (see section 2.5.4). The delay of the stall outputs of the circuitSh4L then are:

D(Sh4L.ReadQ.stall) = DAND + DAND,

D(Sh4L.HC.stall) = DAND + DOR + DAND,

D(Sh4L.UpdQ.stall) = max{DAND, DOR} + DOR + DAND,

D(Sh4L.Sh4S.stall) = max{DAND, 2 · DOR} + DOR + DAND.

Thus, the equations (5.21) and (5.22) hold forδ > 5.

Buffer circuits are inserted into the circuitsHC andSh4S if the equation (5.23)
does not hold for the new delay of the stall inputs to the circuitsHC andSh4S. First
a buffer circuit is inserted into the first stage of the circuitHC. This replaces the equa-
tion (5.23) by:

δ ≥ max{2 · DAND + 2 · DOR, D(AND-Tree(cHC(1) + 3))} + DAND, (5.24)

δ ≥ max{max{DAND, D(Sh4L.Sh4S.stall)} + DMUX ,

D(AND-Tree(cSh4S(0)))}

+ DAND +

{

2 · DAND if eRS1 = 1

2 · DAND + DMUX if eRS1 > 1
.

(5.25)

Note that the number of cyclescHC needed for the hit computation is mainly deter-
mined by the delay of the cache core (see equation 5.6). Yet, the equation (5.24) is
assumed to hold true for allδ ≥ 5 for a reasonably large data cache. If the equation
(5.25) does not hold, a buffer circuit is inserted into the first stage of thecircuit Sh4S.
Forδ ≥ 5 the first AND-gate of equation (5.20) for the computation of the stall input of
the circuitSh4S can be merged into the computation of the signalSh4L.Sh4S.stall.
Then the equation (5.25) can be replaced by:

δ ≥ max{

{

D(Sh4L.Sh4S.stall) + DMUX if δ = 5

D(Sh4L.Sh4S.stall) + DOR if δ > 5
,

D(AND-Tree(cSh4S(1) + 2))} + DAND.

(5.26)

which is assumed to be fulfilled for allδ ≥ 5. The requirements for the stall input of
the reservation station then hold true by construction of the reservation station.

The inputs to the circuitSh4S are the full bit, the tag, the operands, a 16 bit
immediate constant and 8 bit control signals (89 + lROB bits in total). The outputs are
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the full bit, the tag, the write data, the effective address, the busub⋆ and 8 bit control
signals (77 + lROB bits in total). The cost of the circuitSh4S including pipelining is
approximated by (see appendix D.4.1):

C(Sh4S) ≤ C(Add(32)) + 2 · C(Dec(2)) + C(HDec(2))

+ 104 · CMUX + 11 · COR + 10 · CAND

+ (cSh4S(bS) − 1) · (83 + lROB) · CREG.

The inputs to the circuitSh4L are the full bit, a tag, 32 data bits, and 8 control bits for
from the read queue as well as the hit computation, and a full bit, a tag, an interrupt
signal, and the effective address fromSh4S and update queue (148 + 4 · lROB bits
in total). The outputs are the full bit, the tag, 64 bit data, and 2 interrupts signals
(67 + lROB bits in total). Thus, the total cost of the circuitSh4L including pipelining
is (see appendix D.4.2):

C(Sh4L) ≤ C(Inc(2)) + C(Dec(2)) + C(Sel(4))

+ 186 · CMUX + 3 · DOR + DAND

+ C(PP-OR(4)) + C(FFO(4)) + (34 + lROB) · C(Sel(4))

+ (cSh4L(bL) − 1) · ⌈(215 + 5 · lROB)/2⌉ · CREG.

Let SDC be the width of the data cache-lines. The number of inputs of the hit com-
putation is77 + lROB. The outputs are the full bit, the tag, effective address, the hit
signal, the cache-line and byte-valid signals to the update queue and the word with
valid signals to the read queue (38 + lROB + 9 · SDC bits in total). Then cost of the
data cache are:

C(DCache) ≤ D(HC) + D(Core) + D(UpdQ(eUQ)) + D(ReadQ(eEQ))

+ cHC(bH) · (105 + 2 · lROB + 9 · SDC) · CREG.

The overall cost of the memory unit is:

C(Mem) ≤ D(Sh4S) + D(DCache) + D(Sh4L).
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Chapter 6

Instruction Fetch

This chapter presents the circuits which perform the instruction fetch. Theinstruc-
tion fetch mechanism and the branch prediction used by the DLXπ+is presented in
section 6.1. Section 6.2 describes the instruction fetch unit, which delivers aparallel
instruction stream. The instruction fetch queue presented in section 6.3 serializes the
stream and sends the instructions to the instruction register environment described in
section 6.4. The branch checking unit presented in section 6.5 checks whether branch
predictions made by the instruction fetch unit are correct and initiates a rollback in
case of a misprediction. The flush of the processor needed for the rollback is detailed
in section 6.6.

6.1 Instruction Fetch Mechanism

6.1.1 Overview

The instruction fetch loads the instructions to be executed from the main memory.If
a branch instruction (i.e., a conditional branch or a jump) is fetched, the address of
the next instruction to be fetched is not known. Since waiting for the core to compute
the target of the branch instruction would take several cycles, the address of the next
instruction is predicted. To ensure the correctness, the branch checking unit (BCU)
verifies the prediction and initiates a rollback in case it detects a misprediction.

The rollback of a mispredicted branch instruction is done in two steps. If the BCU
detects a misprediction, the program counter (PC) pointing to the address ofthe next
instruction is set to the correct branch target of the branch instruction. To prevent
wrongly fetched instruction from initiating another rollback, all branch instruction fol-
lowing the mispredicted branch are invalidated. This is done by clearing the BCU, the
reservation station of the BCU, and the decode stage. Since decode and dispatch of
branch instructions is done in order no instruction preceding to the branchinstruction
is cleared.

The wrongly fetched instructions may have altered the producer tables. Thus, be-
fore new instructions may enter the decode phase, the producer tables must be restored.
The restore can be done when the mispredicted branch instruction retires.Since retire
is done in order, all remaining instructions in the core have been wrongly fetched after
the mispredicted branch and thus have to be invalidated. Hence, no valid instructions
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Figure 6.1: Generation of the slow clock form = 4

are in the core after clearing and the producer table can simply be reset, i.e.all valid
bits are set to one. As soon as the producer table is reset, new instructionsfetched from
the correct branch target address can enter the decode phase.

6.1.2 Clocking of the Instruction Fetch

To be able to fetch one instruction per cycle, the instruction fetch must predict the
address of the next instruction within one cycle. If the stage depthδ goes down to 5
gate delays a nontrivial branch prediction is not possible. Therefore,the cycle time
of the clock of the instruction fetch circuit (IFCLK) is an integer multiplem of the
cycle time of the core clock (CLK). In each cycle of the slow clockIFCLK the
instruction fetch delivers up toFS = 2fs instructions, withFS ≥ m. The parallel
instruction stream is loaded into an instruction fetch queue (IFQ), from which every
CLK-cycle one instruction can be sent to the decode phase.

The divided clockIFCLK can be produced, e.g., by the circuit shown in fig-
ure 6.1. This circuit also provides the signallastCycle which is active during the last
cycle of the fast clock before the rising edge of the slow clock. Note that the circuit in
figure 6.1 does not generate a symmetric clock as shown in the timing diagram. This
is not problematic as edge-triggered registers are used.

6.1.3 Branch Prediction

The instruction fetch mechanism is based on a design of an instruction fetch with
branch prediction for super-scalar processors proposed in [Yeh93]. As required in
the previous section, this mechanism delivers multiple instructions per cycle. The
branch prediction is based on the division of the instruction stream intobasic blocks.
A basic block is a sequence of non-branch instructions followed by a single branch
instruction. Since only the last instruction of a basic block is a branch, the instructions
of a basic block are stored in consecutive memory cells. Therefore, if thestart address
of the basic block is known, the whole basic block can be fetched without any branch
prediction. The start address of the next basic block is predicted in parallel to the
fetching of the basic block.

The instruction cache delivers up to one aligned block of sizeFS = 2fs words
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respectively instructions per cycle, calledfetch block. A basic block may be distributed
over multiple fetch blocks. In this case the fetching of the basic block has to bedone
in multiple cycles. If the current fetch block does not contain a branch instruction, the
instruction fetch continues at the start of the next fetch block.

The address used to fetch a fetch block is calledfetch address. The branch pre-
diction uses the fetch address to predict the fetch address for the next cycle and the
number of instructions which belong to the current basic block. If the fetchblock is
the last fetch block of a basic block this number identifies the address of the branch
instruction of the basic block.

It is also possible to identify the branches by the start address of their basic block.
This scheme is called basic block addressing in contrast to the fetch address scheme.
More detailed information on the basic block addressing can be found, e.g.,in [Yeh93].

The prediction can be overruled by two events. If the branch checking unit detects
a misprediction, the instruction fetch continues at the correct target of the mispredicted
branch. The prediction circuit is then updated with the corrected result. Ifan interrupt
occurs, the instruction fetch continues at the start of the interrupt service routine.

The prediction circuit presented in this thesis computes the prediction in one cy-
cle. To implement more complex prediction circuits with a reasonable cycle time, the
prediction must be done in multiple cycles. Then fetching usually continues by default
at the beginning of the next fetch block. If the prediction circuit detects a taken con-
ditional branch or a jump, the already fetched instructions are invalidated and fetching
continues at the target of the branch instruction. Details on branch prediction schemes
requiring multiple cycles are not treated in this thesis.

6.2 Instruction Fetch Unit

6.2.1 Overview

Figure 6.2 depicts an overview of the instruction fetch circuit. The circuit comprises
the instruction cacheICache and the circuitNextPC which computes the PC for the
next cycle using branch prediction. The circuitNextPC computes the fetch-PCfPC
containing the current fetch address. The fetch-PC is used to access the cache. The
outputs of the two circuits are sent to the instruction fetch queue (IFQ), which serializes
the parallel instruction stream (see section 6.3).

The instruction cache delivers theFS = 2fs word wide fetch block, the page fault
signalIpf , and a hit signal. As long as the hit signal is zero the other signals are not
valid and the instruction fetch has to be stalled.

The instruction fetch queue expects the valid instructions to be right aligned.There-
fore, the data returned by the instruction cache is shifted to the right if the fetch ad-
dress does not point to the beginning of an aligned fetch block. The firstinstruc-
tion in the fetch block which belongs to the current basic block is at word position
〈fPC[fs + 1 : 2]〉. Thus, by shifting the fetch block by〈fPC[fs + 1 : 2]〉 words
to the right, this first instruction is at the bit position[31 : 0] of the shifter out-
put. The output of the shifter is then divided into the 32 bit wide bussesinstri for
i ∈ {0, . . . , FS − 1} whereinstr0 contains the first instruction in the fetch block
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that belongs to the current basic block. See figure 6.3 for an example of this shift for
fs = 2 and〈fPC[fs + 1 : 2]〉 = 1.

All instructions returned by the cache belong to the same (aligned) fetch block,
thus the high order bits[31 : fs+2] of the addresses of these instructions are identical.
Let PCi[fs + 1 : 2] denote the low order bits of the address of the instruction with
indexi. The value ofPCi[fs + 1 : 2] can be computed by adding the value of the bits
fs+1 : 2 of the fetch-PC toi. Hence, the bussesPC⋆[fs+1 : 2] can be computed by
shifting the constant vector(FS − 1)bin(fs), . . . , (0)bin(fs) by 〈fPC[fs + 1 : 2]〉 · fs
positions to the right.

To invalidate the instructions following the predicted branch position in the fetch
block, the busmask computed by the circuitNextPC is used. It encodes the number
of instructions in the fetch block which belong to the current basic block in addition
to the instruction addressed by the fetch-PC. The busmask uses half-unary encoding,
thus if in totalj instructions of the fetch block belong to the current basic block, the
bits mask[j − 1 : 0] are one, the bitsmask[FS − 1 : j] are zero. Note that the
number of ones in the encoding is the number of valid instructions in the current fetch
block as bit0 of half-unary encodings is always one. Hence, the signalmask[i] for
i ∈ {0, . . . , FS − 1} can be used as valid signal for the instruction businstri. Note
that by shifting the output of the cache to the right, invalid data are shifted into the
leftmost 〈fPC[fs + 1 : 0]〉 instruction busses. Thus, the busmask may at most
encode the numberFS − 〈fPC[fs + 1 : 0]〉 − 1.

The circuitNextPC gets updated by the misprediction busMP.⋆ from the branch
checking unit (see section 6.5) and the interrupt busJISR.⋆ computed by the retire
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sub-phaseRet2 (see section 4.5.4). The busMP.⋆ contains information about all
mispredicted branches, including instructions which have been wrongly predicted to
be branches. Using the busJISR.⋆, the instruction fetch is updated in case of an
interrupt.

The instruction fetch unit delivers apart from the actual instructions the addresses
of the instructions, the predicted next fetch-PC, and the way of the branch target buffer
(see section 6.2.3). These informations are needed by the branch checking unit (see
section 6.5) and for interrupt handling (see section 4.5.3) and are sent along with the
instructions through the processor.

6.2.2 Instruction Cache

The instruction cache is a simple blocking cache withSIC = 2sIC bytes per line
(SIC ≥ 4 · FS), LIC = 2lIC lines, andKIC = 2kIC ways, similar to the cache core
of the data cache. Since instruction fetch is done in order a non-blocking cache has no
advantages. The instruction cache is only updated by the main memory. Forwarding
can be done by a forwarding circuit with stalling.

Figure 6.4 depicts the instruction cache. The cache core circuitIC-Core contains
the cache RAM including the replacement circuit. The cache core is assumedto be
not sectored; the modifications for a sectored cache core are simple, butnot treated in
this thesis. The page fault signalIpf is computed by the main memory. It can not be
active if the data is already located in the cache core.

The sub-circuitTest of the forwarding circuit must be adopted ifSIC > FS.
Then the requested fetch block is selected from the cache-line returned by the main
memory. The same has to be done to the line returned by the cache core (not shown in
the figure).

Note that the memory might return data from a fetch request that was started before
the instruction fetch has been cleared due to a misprediction or an interrupt. Thus, the
returned data may be not valid for the fetch. Thus, it is necessary that theaddress on
the result bus of the main memory is checked for each stage of the forwarding circuit.

If neither the core nor the forwarding circuit return valid data (ohit ∨ forw = 0)
and the last stage of the forwarding pipeline contains a valid entry, the access is treated
as a miss. In this case the stage (and the preceding stages) are stalled and amemory
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request is started. When the memory returns the dataforw gets active and the valid
data is sent to the output.

Figure 6.5 shows the computation of the request signal to the main memory. A new
request to the main memory is started if a miss is in the last stage (fullcIF−1 ∧ hit)
and no request is pending (reqp = 0). As soon as the main memory does not stall,
i.e. Mem.Ack = 1, the request is accepted and the registerreqp is set. The register
reqp stays set until the request returns andhit gets active. The address for the main
memory request can be taken from the last stage of the forwarding circuit.

Cost and Delay

Let LDC = 2lDC be the number of lines,SIC = 2sIC be the number of bytes of a
line, andKIC = 2kIC be the number of ways of the instruction cache. LetcIF be the
number of cycles of the instruction fetch. If an LRU algorithm is used for replacement,
the cost and delay of the instruction cache can be computed similar to the cachecore
of the data cache. The delay and cost of such a cache are [MP00]:

D(IC-Core) ≤ max{D(RAM(LIC , 8 · SIC , 1, 1)),

D(RAM(LIC , 33 − lIC − sIC , 1, 1))

+ D(EQ(33 − lIC − sIC))}

+ D(Sel(KIC)),

C(IC-Core-Replace) ≤ C(RAM(LIC , KIC · kIC , 1, 1, cIF ))

+ KIC · (C(EQ(kIC)) + CAND) + C(PP-OR(KIC))

+ KIC · kIC · 5 · CMUX + C(Enc(KIC))

+ ⌈(34 − lIC + 2 · kIC)/2⌉ · cIF · CREG,

C(IC-Core) ≤ KIC · (C(RAM(LIC , 8 · SIC , 1, 1, cIF ))

+ C(RAM(LIC , 33 − lIC − sIC , 1, 1, cIF ))

+ C(EQ(33 − lIC − sIC)))

+ 8 · SIC · C(Sel(KIC)) + C(OR-Tree(KIC))

+ C(Dec(kIC)) + KIC · CAND

+

{

0 if KIC = 1

C(IC-Core-Replace) if KIC > 1
.

Let FS be the number of instructions per fetch block and letcFS(32− sIC) be the
number of cycles needed for forwarding with stalling for32 − sIC address bits. For
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the overall delay and cost of the instruction cache it holds:

D(ICache) ≤ D(IC-Core) + max{2 · DAND, DMUX} + DAND,

C(ICache) ≤ C(IC-Core)

+ C(ForwardStall(32 − sIC , 8 · SIC + 1, cIF , cFS(32 − sIC)))

+ DOR + (cIF + 1) · 32 · FS · C(Sel(4 · SIC/FS))

+ 5 · CAND + 2 · COR + CREG.

6.2.3 Computation of the Next Fetch-PC

Overview

The circuitNextPC is divided into two parts. The first part computes the current fetch-
PC fPC based on the predicted fetch-PC from the last cycle (pPC) and the input
bussesMP.⋆ andJISR.⋆. The second part computes the fetch-PC for the next cycle
and the number of valid instructions in the current fetch block using branchprediction.
The branch prediction is based on the value offPC computed in the first part.

Figure 6.6 shows the circuitNextPC. The fetch-PCfPC is computed in the sub-
circuit UpdPC. If an interrupt has occurred (indicated byJISR.full = 1), fPC is set
to the start of the interrupt service routineJISR.sisr. Otherwise, if a misprediction
has been detected by the BCU (indicated byMP.full), fPC is set to the corrected
branch targetMP.cPC. If neither an interrupt occurred nor a misprediction has been
detected the address predicted in the last cycle which is saved in the registerPC is
used. Thus, the circuitUpdPC computes:

fPC =











JISR.sisr if JISR.full

MP.cPC if JISR.full ∧ MP.full

pPC if JISR.full ∧ MP.full

.

The fetch-PC is used in the circuitPred to predict the next fetch-PCnPC and the
busmask which encodes the number of valid instruction in the current fetch block. If
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the prediction circuit does not produce a valid prediction (indicated byPred.hit = 0)
default values are used fornPC and mask. The default values are based on the
assumption that the fetch block does not contain any branch instructions following the
addressfPC. Accordingly,nPC is set to the beginning of the next cache-line and all
instructions following the fetch address are assumed to be valid. The default value for
the next fetch-PC is:

default.nPC[31 : 0] = (〈fPC[31 : fs + 2], 0fs+2〉 + 2fs+2)bin(32).

The busmask must encode the number of valid instructions in the current fetch block
in half-unary encoding (not counting the instruction addressed by the fetch PC). The
current fetch block containsFS−〈fPC[fs+1 : 2]〉−1 instructions that succeed the
instruction addressed by the fetch-PC. Thus, the default value for the bus mask can be
computed as:

default.mask[fs − 1 : 0] = (FS − 〈fPC[fs + 1 : 2]〉 − 1)hun(FS)

= (〈fPC[fs + 1 : 2]〉 (mod FS))hun(FS)

= (〈fPC[fs + 1 : 2]〉)hun(FS).

Hence, the default values can be computed using a half-decoder and anincrementer.
Let FS = 2fs be the size of the fetch block in words. The cost and delay of the

circuit nextPC are:

D(fPC) ≤ D(UpdPC) ≤ 2 · DMUX ,

D(NextPC) ≤ D(fPC) + max{D(HDec(fs)), D(Pred), D(Inc(30 − fs))}

+ DMUX ,

C(UpdPC) ≤ 2 · 32 · CMUX ,

C(NextPC) ≤ C(HDec(fs)) + C(Inc(30 − fs)) + C(Pred) + C(UpdPC)

+ (32 + FS) · CMUX + 32 · CREG.

Prediction Circuit

The circuitPred does the actual branch prediction. In this thesis a simple branch target
buffer (BTB) [LS84] is described. It is a cache which saves the last target address of
jumps and taken branches. More sophisticated algorithms using a return stack [Web88]
or combining multiple prediction schemes [McF93] lie beyond the scope of this thesis.

For not-taken branches the fetching must continue at the next instruction.Thus,
regarding the address of the next instruction not-taken branches can be treated like non-
branch instructions. To exploit this fact the BTB does not contain entries for not-taken
branches. The BTB predicts the target of the first branch instruction in the current
fetch block which is a predicted to be taken branch. Hence, the prediction circuit
can correctly predict up toFS branch instructions in one cycle if the firstFS − 1
instructions are not-taken branches.

The branch prediction reads the BTB every cycle in order to check whether it
contains information about the current fetch-PC. On a hit the BTB returnsthe predicted
values formask andnPC and sets the signalhit to one. Otherwise the signalhit is
set to zero.
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The update of the BTB is controlled by the branch checking unit. The simple
BTB used here needs to be updated only in case of a misprediction. More complex
prediction schemes also learn from correctly predicted branches, thus those schemes
update the BTB for every branch instruction.

Two different cases of mispredictions must be kept apart. If the result of a branch
was predicted wrongly, the corrected result is saved in the branch target buffer. If the
branch target buffer contains an entry for a non-branch instruction or a branch that
should be predicted to be not taken, the entry must be invalidated. Note that the first
case may occur due to self-modifying code.

The BTB is built as aKBTB = 2kBTB way cache withLBTB = 2lBTB lines of
width 32 + FS (nPC andmask) and can be built similar to the instruction cache.
Figure 6.7 shows the prediction circuitPred containing the BTB. The memory bus
used in the instruction cache is replaced by the busMP.⋆. In contrast to the instruction
cache a miss does not produce a stall or a memory request.

The BTB has to be updated if the branch checking unit returns a misprediction
(MP.full is active). The signalMP.branch indicates if the predicted branch was
indeed a branch. This signal is used to write the valid bit of the cache entry.The fields
mask andnPC of the entry are updated with the values of the bussesMP.mask and
the correct branch targetMP.cPC. The busMP.fPC contains the fetch-PC of the
mispredicted branch and is used to select the line and update the cache directory.

The prediction circuit also computes returns way. Ifhit is active the way addresses
the BTB entry that caused the hit and that has to be updated in case of a misprediction.
If hit is inactive the way indicates which entry has to be updated if a new entry is made.
Since the updates of the BTB are started by the BCU, the way must be sent to the BCU
along with the instruction. The BCU then returns the way on the busMP.way that
determines, which way is written on an update of the BTB.

Pipelining of the circuit is not possible as the predicted PCnPC has to be com-
puted in one cycle of the slow clockIFCLK. However, for performance reasons
forwarding is used in order to instantly use the results of the BCU. To support updates
and requests at the same time all RAM blocks have separated read and write ports.

If a basic block is distributed over multiple fetch blocks, the fetch-PC of the branch
is always the address of the fetch block containing the branch. Hence, the probability
that the lastfs + 2 bits of the fetch-PC are all equal to zero is disproportionately high.
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For this reason the bits[fs + 3 : 4] are used to address the cache-lines instead of the
usual bits[fs + 1 : 2]. This usually results in a better prediction, as shown in [Yeh93].

If KBTB = 2kBTB andLBTB = 2lBTB are the number of ways and lines of the
BTB andFS = 2fs is the fetch size, the cost and delay of the core of the BTB can be
estimated as:

D(BTB-Core) ≤ max{D(RAM(LBTB, 32 + fs, 1, 1)),

D(RAM(LBTB, 33 − lBTB, 1, 1))

+ D(EQ(33 − lBTB))}

+ D(Sel(KBTB)),

C(BTB-Core-Replace) ≤ C(RAM(LBTB, KBTB · kBTB, 1, 1, 1))

+ KBTB · (C(EQ(kBTB)) + CAND)

+ C(PP-OR(KBTB))

+ KBTB · kBTB · 5 · CMUX + C(Enc(KBTB))

+ ⌈(34 − lBTB + 2 · kBTB)/2⌉ · CREG,

C(BTB-Core) ≤ KBTB · (C(RAM(LBTB, 32 + FS, 1, 1, 1))

+ C(RAM(LBTB, 33 − lBTB, 1, 1, 1))

+ C(EQ(33 − lBTB)))

+ (32 + FS) · C(Sel(KBTB)) + C(OR-Tree(KBTB))

+ C(Dec(kBTB)) + KBTB · CAND

+

{

0 if KBTB = 1

C(BTB-Core-Replace) if KBTB > 1
.

The overall delay and cost of the prediction circuit are:

D(Pred) ≤ D(BTB-Core) + max{2 · DAND, DMUX},

C(Pred) ≤ C(BTB-Core) + COR

+ C(ForwardStall(32, 33 + FS + kBTB, 1, cFS(32))).

6.2.4 Instruction Fetch Control

The instruction fetch control (see figure 6.8) computes the stall signals forthe instruc-
tion fetch unit. Note that the branch prediction done in the circuitNextPC must be
done within one cycle. However, the access to the instruction cache can bepipelined as
the prediction does not depend on the result of the cache access. Thus, the instruction
fetch unit can have multiple stages.

Additionally the instruction fetch control synchronizes between the fast clockCLK
and the slower clockIFCLK. LetcIF be the number of stages of the instruction fetch.
The synchronization of the clocks is done via the full signalIF.fullcIF for the output
registersIF.⋆ of the instruction fetch unit (see figure 6.2). The full signalIF.fullcIF is
updated every cycle of the fast clockCLK. It is set to one if at the end of the lastCLK
cycle before the rising edge ofIFCLK (indicated bylastcycle = 1) the instruction
cache returns a hit and the preceding stage is full, i.e.IF.fullcIF ∧ IC.hit = 1.
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The output registers of the instruction fetch unit are stalled as long as the full signal
IF.fullcIF is active and theIFQ cannot accept new data (IFQ.stallOut = 1). Note
that full signalIF.fullcIF is clocked with the fast clockCLK. Thus, as soon as the
stall output of the IFQIFQ.stallOut becomes zero, the signalIF.fullcIF is reset
in order to mark that the instructions in the output registers of the instruction fetch
unit have been sent to the IFQ. Then the output registers can be updatedwith the next
rising edge of the slow clockIFCLK. The last stage ofIF can generate a stall if the
instruction cache returns a miss. The stall computation is adapted as usual.

The instruction fetch control also computes the interrupt signalImal indicating a
misaligned fetch. It can be computed by OR-ing the two least significant bits ofthe
fetch address.

6.2.5 Cost and Delay

The new value for the registerPC has to be computed in one cycle. Thus, the delay
of the circuitNextPC gives a lower bound for the cycle timem · τ of the instruction
fetch clockIFCLK. Thus, it must hold:

m · τ − 5 ≥ D(NextPC).

The overall delay of the instruction fetch and the number of cyclescIF needed for the
instruction fetch are:

D(IF) ≤ max(D(fPC) + D(IC) + fs · DMUX , D(NextPC)),

cIF = ⌈D(IF)/(m · τ − 5)⌉.

The width of the registersIF.⋆ is 67 + FS · (33) + kBTB (full bit, two interrupts,
fetch-PC, predicted PC,FS instructions including valid bit, and the way of the BTB).
Thus, the cost of the instruction fetch is:

C(IF) ≤ C(IC) + C(NextPC) + (8 · SIC − FS) · CMUX

+ (67 + FS · 33 + kBTB) · CREG.

6.3 Instruction Fetch Queue

The instruction fetch queue (IFQ) serializes the parallel instruction stream delivered
by the instruction fetch unit. It is a parallelly loadable FIFO queue withFS entries.
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New instructions are only filled into theIFQ if the queue is empty. This simplifies the
design of the IFQ as an instructioninstri for i ∈ {0, . . . FS − 1} is always filled into
the entry numberFS − 1− i. Also all valid instructions in the queue share the signals
fPC[31 : fs + 2], nPC, way, hit, Ipf , andImal are the same, since these signals
are the same within a fetch block.

Figure 6.9 depicts an overview of the instruction fetch queue. The signalsfPC[31 :
fs + 2], nPC, way, hit, Ipf , andImal are stored only once for all entries of the
queue. They are updated whenever new instructions are loaded into the queue (i.e., the
queue is empty). The instructionsinstr⋆ and the lower order bits of the instruction’s
addressPC⋆[fs + 1 : 2] are stored in the sub-circuitIFQ-Core, which is built similar
to the other queues, e.g., the reservation station. This circuit also computes the stall
output of the IFQIFQ.stallOut, and the full bit which is sent to the instruction reg-
ister environment. The addressPC of the instruction sent to the decode phase can be
obtained by concatenating the common high order bitsfPC[31 : fs + 2] and the low
order bitsPC[fs + 1 : 2] of the instruction.

6.3.1 IFQ Entries

A single entry of the circuitIFQ-Core is shown in figure 6.10. New instructions and
addresses are filled into the IFQ when the signalupdate is active. The instruction
FS − 1 − i is then filled into entryi for i ∈ {0, . . . FS − 1}. The instruction is valid
if the signalIF.mask[FS − 1− i] is active and the output of the instruction fetch unit
is valid (indicated byIF.full).

If the signalfill is active, the content of the entry advances into the next entry.
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Since the IFQ is only loaded parallelly the inputIn.full of entry0 has to be constantly
zero. The signalclear clears all entries of the IFQ, even if new entries are filled into
the IFQ.

6.3.2 Control

The instruction fetch aligns all valid instructions within a fetch block by shifting them
to the right (see section 6.2.1). The rightmost instructioninstr0 is filled into entry
FS − 1. Therefore, no invalid instruction is followed by a valid one inside the queue.
Thus, it is not necessary to remove empty entries from the queue. Hence,if the instruc-
tion register produces a stall (IR.stallout = 1), all entries of the queue are stalled.
Thus, for each entryi ∈ {0, . . . FS − 1} of the IFQ it holds:

IFQ.fill = IR.stallout.

Note that in contrary to the reservation stations the fill signal directly depends on the
stall input. This means that a new fetch block may be loaded into the queue, and
simultaneously the fill bit is active, i.e. the queue instructions in the queue advance.
Thus, if the instruction register environment does not produce a stall whilethe IFQ is
loaded, the instructioninstr0 is directly sent to the instruction register. The instruction
FS − 1 − i is then filled into entryi + 1.

Since no full entry may follow an empty one in the IFQ, the whole queue is empty
if the last entry (numberFS − 1) is empty. New instructions are filled into theIFQ
if the queue is empty. The instruction fetch must be stalled if the IFQ is not empty.
Hence,

IFQ.empty = fullFS−1,

IFQ.update = fullFS−1,

IFQ.stallOut = fullFS−1.

The decode phase also needs the signalIFQ.pb which indicates whether an in-
struction was predicted to be a taken branch (see appendix C.2.1). This is the case if
the hit signal of the prediction circuit was active and the instruction is the lastvalid
instruction in the fetch block. Thus:

IFQ.pb = IFQ.hit ∧ EntryFS−1.full ∧ EntryFS−2.full.

6.3.3 Cost and Delay

The critical path in the IFQ is the update of the full bits of the entries. This path bounds
δ to be at least

δ ≥ 2 · DAND + DOR + DMUX . (6.1)

The cost of the IFQ entries and the IFQ control are:

C(IFQ-Entry) ≤ (65 + 2 · FS) · CMUX + (33 + FS) · CREG)

+ 4 · CAND + COR,

C(IFQ-Control) ≤ 2 · CAND + COR.
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The total cost of the IFQ is:

C(IFQ) ≤ FS · C(IFQ-Entry) + C(IFQ-Control)

+ (67 − FS + kBTB) · (CREG + CMUX).

This cost is added to the cost of the of instruction fetch unit.

6.4 Instruction Register Environment

The decoding of instructions must be stopped if a branch misprediction has been de-
tected. Instruction decoding may be resumed with the correct instructions when the
mispredicted instruction has retired. This is done by the instruction register control
(see figure 6.11).

The registerhaltdec is set if a misprediction occurred (i.e.,MP.full is active).
If haltdec is active, the instruction register is stalled (see section 4.1.7). The register
haltdec is reset again if the mispredicted instruction leaves the second retire phase.
This is indicated by the signalRet2.mp.

The cost of the instruction register control is added to the cost of the decode sub-
phaseD1:

C(D1)+ ≤ CREG + CAND + COR.

6.5 Branch Checking Unit

The branch checking unit (BCU) computes the target of branch instructions and checks
if the branch prediction has correctly predicted that target. In order to check the pre-
diction every instruction that has been predicted to be a branch instruction issent to
the BCU, even if the instruction is actually no branch instruction (see section 4.1.3).
In case of a misprediction, the BCU initiates a rollback and updates the branchtarget
buffer. For jump-and-link and return-from-exception instruction the BCUalso com-
putes a result that has to be written into the register files.

The BCU is divided into the two circuitsBComp and BCheck. The circuit
BComp computes the result and the branch target of a branch instruction. The cir-
cuit BCheck uses the outputs ofBComp to check whether the target of the branch
instruction has been predicted correctly.
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The circuit BComp is shown in figure 6.12. The circuit uses multiple control
signals which can be computed from the opcode of the branch instruction. The com-
putation of these signals is not assumed to be critical and not discussed in detail. The
left part of the circuit computes the signalbtaken which indicates if a branch has to
be taken. Using the signalbtaken the corrected PCcPC of the branch instruction is
computed in the right part of the circuit.

Two types of branches are supported: regular branches which check if the two
operandsOP1 andOP2 are equal and branch-zero instructions (indicated by the signal
bz) which compares the first operand against zero. Regular branches can be divided
into branch-equal and branch-not-equal instructions (indicated bybneq). The type of a
branch-zero instruction is defined by the signalsblz, bgz, andbeqz indicating a branch-
less-than-zero, branch-greater-than-zero, respectively branch-equal-zero. Multiple of
these signals may be active to indicate, e.g., a branch-greater-equal-zero.

Note that branch on floating point condition code (BC1) instructions (see table A.7
in appendix A) use the special registerFCC as first operand. Thus, the instruction
BC1F can be implemented by settingbeqz to one, the instruction BC1T by settingbgz
to one.

The correct PC of the instruction following the branch instructioncPC can have 4
different values:

• The signalfpb (computed in the decode phase) is active if the instruction is not
a branch instruction but has been wrongly predicted to be a branch instruction
by the branch prediction. The instruction fetch must then be restarted at the
wrongly predicted branch, i.e.,cPC must be set to the address of the instruction
PC.

• For jump-register and return-from-exception instructions (indicated byjrrfe)
the buscPC must be set to the value of the second operand.

• For jump instructions (indicated byjump) and taken branches (indicated by
btaken), an immediate constant is added to the address of the instruction to
computecPC.

• For not-taken branches the buscPC is the by 4 incremented address of the
branch instruction.
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For jump-and-link and return-from-exceptions instructions, the BCU computes a
result. For jump-and-link instructions this is the addressPC of the instruction incre-
mented by 4, for return-from-exception instructions it is the first operand.

The circuitBComp computes the misprediction busMP.full (see figure 6.13). If
the instruction that caused the misprediction is a taken branch, the signalMP.branch
is set. This signal is used to set the valid bit of the BTB, i.e. on a misprediction the
signalMP.branch defines whether the entry that caused the misprediction is updated
or removed. A misprediction has occurred in one of the following three cases:

• A branch instruction has wrongly been predicted not to be a branch. Thisis
indicated by the signalnpb computed in the decode phase.

• An instruction has been wrongly predicted to be a branch instruction (indicated
by fpb).

• The fetch-PC of the next basic block was predicted incorrectly for a branch (i.e.,
nPC is not equal tocPC).

If a not-taken branch was not predicted to be a branch instruction the IFUhas
correctly continued fetching at the following address. Thus non-taken branches that
have not been predicted to be a branch instruction does not need to be handled as
mispredictions. Therefore the signalMP.full is set to zero in this case and no new
entry is made in the BTB for the not-taken branch.

In case of a misprediction, the signalMP.branch must not be active for instruction
that have wrongly predicted to be a branch and for not-taken branches. This removes
the entry which produced the misprediction.

The target of the branch instructioncPC is used to update the branch target buffer
via the busMP.cPC. The busMP.mask indicating the position of the branch in the
fetch block is computed by a half-decoder on the bitscPC[fs + 1 : 2]. The signal
MP.way indicating the way of the BTB that is updated is set to the value of the bus
way that was computed during the prediction (see section 6.2.3).
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IF.lastcycle

to IF
MP.full
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from / to Completion

BCheck.MP.⋆
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BCU.⋆BCU.StallIn

to / from RS

BCU.StallOut

RS.⋆

MP.⋆

Figure 6.14: Branch Checking Unit

6.5.1 Stall Computation

If the BCU detects a misprediction, it must update the instruction fetch unit. The IFU
can only accept new data if the signallastcycle is active. In order not to affect the
completion of correctly predicted branches an extra stage is added in whichmispre-
dicted branches wait until the signallastcycle gets active (see figure 6.14). If this
stage contains a mispredicted branch, the BCU is cleared.

A branch instruction proceeds to the additional stage at the same time it enters the
completion stage. If the branch instruction cannot proceed to the completion phase the
additional stage must not be filled. Otherwise if the branch instruction was mispre-
dicted, the BCU would be cleared and the branch instruction does not complete, which
is needed for the rollback.

This additional stage does not have to stall the other stages of the BCU as all
stages of the BCU are cleared anyway if a misprediction is in the additional stage
(indicated by the signalBCU.mp). Thus, the other stages of the BCU are only stalled
by the signalBCU.stallIn received from the completion phase. The additional stage
is stalled by

MP.full ∧ IF.lastcycle.

Note that once a misprediction is in the additional stage, the stage is stalled until the
instruction fetch unit can be updated. Thus, the mispredicted branch in the additional
stage will not be overwritten be succeeding instructions.

6.5.2 Cost and Delay

The delay of the BCU is:

D(btaken) ≤ max{D(EQ(32)) + DXOR, D(Zero(32)) + 2 · DAND + DOR}

+ DMUX ,

D(BCU) ≤ max{D(Add(32)), D(Inc(32)) + DMUX ,

D(btaken) + DAND + DOR}

+ DMUX + D(EQ(32)) + DOR + DAND.
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Let the variablebBCU be one if a buffer circuit is added after the input registers of
the BCU, otherwisebBCU is zero. The number of cyclescBCU needed for the BCU is:

cBCU (bBCU ) = ⌈(D(BCU) + bBCU · DMUX)/δ⌉.

Let BCU.stallIn be the stall input of the BCU from the completion phase. If
bBCU = 0, the delay of the output stall signalstallOut of the BCU is:

D(stallOut) ≤ max{D(AND-Tree(cBCU (0) + 1)), D(BCU.stallIn)} + DAND.

Let eRS7 be the number of entries of the reservation station of the BCU. The reserva-
tion station then requires (see equation (4.15) on page 62):

δ ≥ D(BCU.stallOut) +

{

2 · DAND if eRS7 = 1

3 · DAND + DMUX if eRS7 > 1
.

If this equation can not be fulfilled,bBCU must be one. This reduces the bound to:

δ ≥ max{D(AND-Tree(cBCU (1) + 2)), D(BCU.stallIn)} + DAND

which hold true forδ ≥ 5. The requirement for the input stall signal of the reservation
station are then fulfilled by construction of the reservation station.

The number of inputs of the BCU is161 + kBTB + lROB, the number of outputs
is 97 + fs + kBTB + lROB. The cost of the BCU is approximated by:

C(BCU) ≤ C(Add(32)) + C(Inc(32)) + 2 · C(EQ(32)) + C(Zero(32))

+ 129 · CMUX + 9 · CAND + 7 · COR + CXOR

+ (32 + fs + kBTB) · CREG + 2 · CAND

+ (cBCU − 1) · ⌈(258 + fs + 2 · kBTB + 2 · lROB)/2⌉ · CREG.

6.6 Processor Flush

The processor must be flushed if an interrupt occurred or a mispredictionhas been
detected. Interrupts are detected during the retire sub-phaseRet2, mispredictions are
detected by the BCU. After a flush the processor must be in a state it would have
after the execution of the instruction that caused the flushing (respectivelybefore the
execution depending on the type of the interrupt of misprediction) if all instructions
would be executed sequentially. This is done when the instruction enters the retire
sub-phaseRet3 since then all registers have the correct value and the producer tables
can be reset.

In order to reduce the penalty of mispredictions, the instruction fetch is restarted
at the correct address as soon as the misprediction is detected by the BCU.To guar-
antee that no wrongly fetched instruction causes another misprediction the flush of the
processor is done in two steps. As soon as a misprediction is detected all succeeding
branches are flushed. This is done by clearing the instruction fetch unit, the instruction
fetch queue, the decode phase, and the BCU including the corresponding reservation
station. Since these parts of the processor execute instructions in-orderno preceding
instruction is cleared. After the clear the instruction fetch is resumed at the correct
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address, but the instruction succeeding the mispredicted instruction is stalledat the in-
struction register (see section 6.4). When the mispredicted instruction entersthe retire
sub-phaseRet3 the remaining parts of the processor are flushed and the succeeding
instruction can be decoded.

Interrupts are detected at the end of the retire sub-phaseRet2. Therefore, the flush
of the processor is not done in two steps. When an instruction that causedan interrupt
enters the retire sub-phaseRet3 all parts of the processor are cleared.

Note that in parallel to first part of the flush due to a misprediction of the the flush
due to an interrupt the instruction fetch unit must be updated. This can only be done
if the signallastcycle is active. The flushing must not affect the additional stage of
the BCU and the first stage of the retire sub-phaseRet3 since these stages contain
the instructions that caused the flush. Note that interrupts have a higher priority than
mispredictions. Thus, if a mispredicted instruction is in the additional stage of the
BCU at the same time an instruction that caused an interrupt is in the fist stage ofthe
sub-phaseRet3 the misprediction has no effect.

Also the remaining stages of the sub-phaseRet3 must not be flushed as they con-
tain instructions preceding the instruction that caused the flush. However,the writes
to the producer table duringRet3 are overwritten by the clear signal of the producer
table. It follows:

IF.clear
IFQ.clear

D1.clear
D2.clear

RS6.clear
FU6.clear































= (JISR.full ∨ MP.full) ∧ lastcycle,

RS0...5.clear
FU0...5.clear

Complete.clear
Ret1.clear
Ret2.clear
ROB.clear

PT.clear







































= (JISR.full ∧ lastcycle) ∨ Ret2.mp.

The clear signals are assumed to have a delay of zero. This is not a problem for
the signalsJISR.full, Ret2.mp, andlastcycle as they are not assumed to be critical.
The signalMP.full is the critical signal of the BCU, but the OR- and AND-gate for
the computation of the clear signal can be put in the additional stage for mispredicted
branches and therefore have no impact on the delay of the BCU.
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Chapter 7

Discussion

This chapter discusses the results of the preceding chapters. In section7.1 the reduc-
tion of the stage depth below five gate delay is investigated. Section 7.2 discusses the
advantages and disadvantages of the gate model used in this thesis. The cost and delay
values of the DLXπ+ that can be derived from the formulas in the preceding chapters
are presented in section 7.3 and compared against the Tomasulo DLX from [Krö99]
on which the DLXπ+ is based. Related work is discussed in section 7.4

7.1 Stage depths below 5

In this thesis all circuits of the DLXπ+ where designed in order to allow a stage depth
δ ≥ 5 for the given gate model. This section describes possible enhancements in order
to allow a stage depth of4.

All basic bounds forδ regarding forwarding and stalling hold forδ = 4. If a
stage can generate a stall the stall input may have at most delay see equation(2.10) on
page 18)

D(stallIn) ≤ δ − (DOR + DAND).

If a stall signal is used in a forwarding circuit with stalling it must hold:

D(stall) ≤ δ − DMUX .

Since the delay of stall signals can be reduced toDAND by inserting buffer circuits
these equations can be satisfied withδ = 4. The forwarding circuits require (see
equation (2.12) on page 23)

δ ≥ max{DMUX , DOR} + DMUX ,

which is fulfilled for δ = 4.

The equation (4.14) on page 59 boundsδ for a reservation station of typei as
follows:

δ ≥











3 · DAND if eRS = 1

max{DAND, D(FFO(eRS))} + 2 · DAND + DMUX if eRS > 1 ∧ i 6∈ {0, 6}

max{DAND, D(FFO(eRS))} + 3 · DAND + DMUX if eRS > 1 ∧ i ∈ {0, 6}

.
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This equation can be fulfilled forδ = 4 only if eRS = 1, i.e. all reservation stations
may have at most one entry. The number of functional unitsni of a typei for a given
δ is bounded by equation (4.2) on page 43:

δ ≥ DMUX + max{DOR, max
0≤i≤6

(D(PP-OR(eRSi
)) + D(FFO(ni)))}

+

{

0 if ni = 1

DAND if ni > 1
.

Hence, forδ = 4 the number of functional units of for each type may be at most2.
The issue circuit also requires that in one cycle an instruction can be issued to at

least two groups (see equations (4.3) and (4.4) on page 44):

δ ≥ DAND + D(Sel(2)) + DAND,

δ ≥ max{2 · DAND, DAND + DMUX , DMUX} + D(Sel(2)).

Both equations hold true forδ ≥ 4. The requirements for the remaining stall signals
of the decode phase can be reduced by adding additional buffer circuits. Note that this
would mean to add a buffer circuit into a RAM block (see figure 2.7) which is not
necessary forδ ≥ 5.

The completion phase can be built forδ = 4 if a tree of two-port arbiters is used.
These arbiters reduce the requirements of the completion phase to the boundgiven by
equation (4.20) on page 68:

δ ≥ 2 · DAND + 2 · DOR

which also holds true forδ = 4.

The retire phase has no additional requirements to the stage depthδ. However, the
ROB environment used in the retire phase introduces multiple bounds on delta.The
delay of the outputforwOut of the forwarding circuits for the retire context of the
ROB access is bounded by (see equation (4.24) on page 83)

D(forwOut) ≤ δ − (DMUX + DOR + DAND).

In the standard implementation of the forwarding circuit the outputforwOut has at
least delayDOR and thus the equation does not hold forδ = 4. In order to fulfill
the bound, the signalforwOut must be derived from the registerforwcRet1−1 of
the last stage of the forwarding circuit (see figure 4.27 on page 82) andnot from the
signalforwUpdcRet1−1 which has a delay of at leastDOR. This does not affect the
correctness but increases the number of cyclescC2R andcA2R needed to forward from
the write access in the completion- respectively allocation-context to the readaccess
in the retiring-context by one.

The delay optimizations for the ROB control signalheadce and tailce in sec-
tion 4.6.7 also apply forδ = 4. They only assume that equation (4.24) holds true
and the delay of the signalD1.stallIn0 ∨ D1.genStall0 is at mostδ, which can be
achieved by inserting buffer circuits in the decode phase (see above).

The counters for the full and empty bits require (see equation (4.27) on page 86)

δ ≥ 2 · DMUX + DAND
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Figure 7.1: Optimized full and empty counter forδ = 4

due to the loop for the computing of the next counter value. This does not hold for
δ = 4. Therefore, the counters for the full and empty bit must be modified as de-
picted in figure 7.1. Both counter delay one of the control signals for incrementing and
decrementing (tailce respectivelyheadce) by one cycle and use the delayed signal to
modify the output of the counter (similar to the counter for the full bit in figure 4.31
on page 91). Due to the delaying of the signalstailce andheadce all control signals
for the counter come directly out of a register. This allows to use a 4 input selection
circuit instead of two variable shifters to compute the next value of the counter. Based
on the value of the increment respectively decrement signals the selection circuit se-
lects between the shifted or the un-shifted counter value. If only one of theincrement
or decrement signals is active, the left- respectively right-shifted value isselected. If
none or both signals are active the un-shifted counter value is selected, since the left-
and the right-shift eliminate each other. Note that the constant shifters in figure 7.1
only consists of wiring and therefore have no delay. Thus, the modified counter only
bounds delta by:

δ ≥ max{D(Dec(2)), DAND} + D(Sel(4))

which holds true forδ = 4.

The update queue of the data cache boundsδ as follows (see equation (5.12) on
page 135):

δ ≥ max{D(OR-Tree(eUQ)), DAND} + 3 · DAND.

Thus, forδ = 4 the number of entries of the update queueeUQ must be one. If the
optimized completion for stores is used, the path from the stall input to the full bitof
the entry bounds the stage depth by (see equation (5.13) on page 137):

δ ≥ max{D(OR-Tree(eUQ)), 2 · DAND} + 3 · DAND.
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Figure 7.2: Optimized IFQ entry

Since this does not hold forδ = 4 the optimized completion cannot be used forδ = 4.
The signalssent⋆ bound the stage depthδ by (see equation (5.14) on page 137)

δ ≥ D(FFO(eUQ + 1)) + DAND + DMUX

which holds true foreUQ = 1 andδ = 4.
For the read queue it must hold (see equation (5.17) on page 141):

δ ≥

{

3 · DAND if eRQ = 1

max{DAND, D(FFO(eRQ))} + 2 · DAND + DMUX if eRQ > 1
.

Thus, the number of read queue entrieseRQ must also be one forδ = 4.

The instruction fetch queue requires that the stage depth fulfills the equation(6.1)
on page 161

δ ≥ 2 · DAND + DOR + DMUX

which does not hold forδ = 4. In order to be able to build the IFQ forδ = 4 the
following modifications have to be made: the AND-ing of the full bit and the mask
is done in the instruction fetch unit. This can be done without increasing the delay,
but upon activation of the clear signal all mask bits have to be reset. Then the circuit
depicted in figure 7.2 can be used for the entries of the instruction fetch queue. Note
that in this optimized version the entries might be filled even if the clear signal is active.
Thus, the clear signal for the IFQ must be active at least two cycles.

Using the modifications described in this section it is possible to build the DLXπ+

with a stage depthδ of 4. However, equation (4.14) on page 59 bounds the number of
reservation station entries for all reservation stations to one. Note that the reservation
stations stall output is active even if an instruction is currently dispatched, since other-
wise the delay of the stall output would get too large. Thus, instructions canbe issued
to reservation stations with one entry only every other cycle.

Thus, in order to be able to issue one instruction of a type in every cycle the
DLXπ+ needs two functional units of the type. Since the maximum number of func-
tional units of a type is two due to equation (4.2) on page 43, at most two instructions
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of a type can wait for their operands. Since for such a deep pipeline it is very likely
that the operands of an instruction are not valid at the time the instruction is issued,
this is assumed to have a large performance impact.

Also, the optimization of the update queue from figure 5.21 on page 137 cannot be
done (see equation 5.16 on page 139). Thus, despite the optimized completion, stores
can only be completed if the stall from the memory unit to the read queue of the data
cache is inactive.

For these reasons and the large increase in the number of cycles neededit is very
unlikely that the performance of the DLXπ+ regarding a reasonable benchmark can be
improved by reducing the stage depth from5 to 4. Therefore, in this thesis only stage
depthsδ ≥ 5 were discussed in detail.

This thesis does not provide a formal proof that it is impossible to build the DLXπ+

with a stage depthδ = 3 without sacrificing fundamental aspects of the DLXπ+, e.g.,
the out-of-order execution, the precise interrupts, or the possible bestcase CPI (cycles-
per-instruction) of 1. However, the author thinks that it is at least very unlikely that
such a DLXπ+ is possible, since even after the described enhancements most equa-
tions bound the stage depth to be at least4. In particular the bound given by the loop
for the data of the forwarding circuit with stalling (see equation (2.12) on page 23) that
bounds delta to

δ ≥ 2 · DMUX

is assumed to be hard to improve.

7.2 Gate Model

The gate model used in this thesis is rather simple, since it does not take fanout or wire
delays into consideration. Note that some of the path that bound the stage depth δ have
large fanout, e.g., the signalROBhead.valid which stalls the whole ROB read access
in the retiring context. Due to the reduction of the device sizes in integrated circuits
the delay of wires will have an increasing influence on the combinational delay of
signals and therefore should not be neglected [HHM99]. This can also affect some of
the critical paths (in particular stall signals) of the DLXπ+. Thus, the gate model used
in this thesis could be too optimistic regarding delay.

On the other hand the gate model only allows two-input gates and two-port muxes.
Thus, using the more complex gates available in real designs like multi-input NANDs
and NORs or wide transmission-gate-muxes [WH04] the delay of the critical path
could be reduced. This could make up for the too optimistic estimations of the gate
model due to the neglected fanout and wire delays.

Even if one assumes that the gate model is not very realistic, the degree of pipelin-
ing presented in this thesis is still very high in comparison to previous work. For
example in the deeply pipelined Pentium 4 processor a 16 bit addition (which has 12
combinational gate delays in our model) can be in less than half a cycle [HSU+01].
Thus, even if the used gate model is off by a factor of two, the amount of useful work
that can be done in a cycle of the Pentium 4 is still more than three times more than
the 4 gate delays of the DLXπ+ with minimum cycle time.
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Variable Description

τ = δ + 5 cycle time of the DLXπ+

LROB = 2lROB # lines of the reorder buffer
ni # FU’s of typei (0 ≤ i ≤ 6)
eRSi

# entries of the RSs of typei (0 ≤ i ≤ 6)
LDC = 2lDC # lines of the data cache
SDC = 2sDC # bytes of the cache-lines of the data cache
KDC = 2kDC associativity of the data cache
eUQ # entries of the update queue
eRQ # entries of the read queue
LIC = 2lIC # lines of the instruction cache
SIC = 2sIC # bytes of the cache-lines of the instr. cache
KIC = 2kDC associativity of the instruction cache
LBTB = 2lBTB # lines of the branch target buffer
KBTB = 2kBTB associativity of the branch target buffer
FS = 2fs # instructions fetched perIFCLK cycle

Table 7.1: Parameters of the DLXπ+

The author thinks that even for a more realistic model (e.g., the logical effort
model [SSH99]) it would still be possible to allow a similarly extensive super-pipelining.
In addition to the techniques discussed in this thesis it would probably be necessary to
further decrease the delay of stall signals, e.g., by pipelining the full bits ofan instruc-
tion one cycle ahead of the actual data and thus computing the stall signal onecycle
ahead. Also the functional units (except the memory unit) would not need stall signals
if the number of CDBs were equal to the number of functional units and instructions
could not “collide” inside the functional units. Collisions could be prevented,e.g., by
handling divisions in software and therefore resolving loops, or by adapting the dis-
patch logic.

7.3 Overall Cost and Delay

In this section the variables describing the pipelining of the DLXπ+ (e.g., the number
of cycles needed for decoding) in dependence of the parameters (e.g.,cycle time or
ROB size) are presented. The parameters of the DLXπ+ are listed in table 7.1. The
variables describing the behavior of the DLXπ+ are listed in table 7.2.

Using the formulas presented in this thesis it is straightforward to write a small
program that computes the variables and the cost of the DLXπ+ in dependence of the
parameters.1 In appendix E the values of the variables for some combinations of the
parameters are described.

Table 7.3 compares the DLXπ+with the out-of-order DLX presented in [Krö99]
which is in the following called DLXK . In order to match the DLXK , the following
parameters are chosen for the DLXπ+:

1The program can be found at
http://www-wjp.cs.uni-sb.de/leute/private homepages/jochen/DLX+.tgz.
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Variable Description

m multiplier for IFCLK

cIF # IFCLK cycles of the instruction fetch
cD1 # cycles needed for the decode sub-phaseD1

cD2 # cycles needed for the ROB access in the decode sub-phaseD2

cI # cycles needed for issuing
cT # cycles (needed ifcI > 1)
cU2DM minimum # cycles from the update of an instruction in the memory RS

to the dispatch of the instruction
cU2DI minimum # cycles from the update of an instruction in an integer or

BCU RS to the dispatch of the instruction
cU2DF minimum # cycles from the update of an instruction in an FP RS to the

dispatch of the instruction
cU2DB minimum # cycles from the update of an instruction in an branch check-

ing RS to the dispatch of the instruction
cAT # cycles needed for the arbiter tree in the complete phase
cC # cycles needed for the complete phase
cC2R minimum # cycles from the completion to the retiring of an instruction
cRet2 # cycles needed for the retire sub-phaseRet2

cSh4S # cycles needed for the shift for store circuit
cHC # cycles needed for the hit computation
cM2H # cycles the result bus must be delayed
cM2W minimum # cycles between the returning of a memory request and the

update of the cache core by a store in the update queue
cM2R minimum # cycles between the returning of a memory request and the

update of the cache core by a load in the update queue
cM2Q minimum # cycles between the returning of a memory request and the

returning of a load by the read queue
cSh4L # cycles needed for the shift for load circuit
cIAlu # cycles needed for the integer ALU
cIMul1 # cycles needed for the first part of the integer multiplicative unit
cIMul2 # cycles needed for the second part of the integer multiplicative unit
cIMul3 # cycles needed for the third part of the integer multiplicative unit
cFPAdd # cycles needed for the FP additive unit
cFPMul1 # cycles needed for the first part of the FP multiplicative unit
cFPMul2 # cycles needed for the second part of the FP multiplicative unit
cFPMul3 # cycles needed for the third part of the FP multiplicative unit
cFPMul4 # cycles needed for the fourth part of the FP multiplicative unit
cFPMisc # cycles needed for the FP miscellaneous unit
cBCU # cycles needed for the branch checking unit

Table 7.2: Variables describing the behavior of the DLXπ+
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• The ROB has 16 entries.

• Every functional unit type is instantiated only once. In the DLXK the reservation
stations of the floating point units have two entries, all other reservation stations
have four entries. The reservation stations of the DLXK can issue an instruction
into a reservation entry in the same cycle an instruction is dispatched from the
reservation station, even if the reservation station is full. This is not possiblein
the DLXπ+, see section 4.2.2. Therefore, the number of entries is increased by
one for the DLXπ+.

• The DLXK uses a common 16KB direct-mapped cache for data and instructions.
In order to match the size, the DLXπ+ uses two 8KB direct-mapped caches for
the instruction fetch and the memory unit.

• The other parameters have no counterpart in the DLXK and are chosen as fol-
lows: update queue and read queue have 4 entries, the BTB has 256 entries and
is 4-way set associative. The instruction fetch unit fetches 8 instructionsper
IFCLK-cycle.

The cycle time of the DLXK is 106 [Krö99]. The cycle timeτ of the DLXπ+ must
be at least12 (δ = 7) in order to allow five reservation station entries (see sec-
tion 4.2.3). Thus, for cycle timesτ ∈ {10, 11} the number of reservation stations
is set to at most2 respectively4. Note that in table 7.3 the columns for those values of
the cycle timeτ have been omitted which would have the same entries as the column
for the next smallerτ .

Only the variablesm andcIF change their value for cycle times greater the37.
At a cycle timeτ = 50 the multiplierm can be set to one, but then the instruction
cache access must be pipelined, i.e.,cIF becomes2. If τ = 68 both valuesm andcIF

can be one. Since the instruction fetch unit delivers up to8 instruction per instruction
fetch cycle, is not assumed to be performance critical if the instruction fetchtakes two
cycles. Therefore, in the following only cycles times of37 and below are investigated
for the DLXπ+.

Note that the DLXK does not divide the decode phase into the sub-phasesD1 and
D2. Therefore, the number of cycles needed for issuing and for the ROB access in the
decode sub-phaseD2 are set to zero for the DLXK . For cycles times of30 and above,
the valuecIALU of the DLXπ+ is zero. This indicates that the integer ALU does not
contain any registers. Thus, the instruction can directly proceed from thereservation
station through the integer ALU to the CDB register. In the the DLXK all functional
units must have a register, but the completion phase has no register, which has the same
effect. In order to simplify the comparison the variablescIALU andcC of the DLXK

are set to the same value as for the DLXπ+ with a cycle time of30.
The DLXπ+ with a cycle time of37 needs in the best case 5 cycles to process an

integer ALU instruction (instruction fetch not counted): 1 cycle decode, 1cycle issue,
1 cycle dispatch + execution, 1 cycle completion, and 1 cycle retiring. This is one
cycle more than needed for the DLXK which does decoding and issuing in the same
cycle. However, the cycle time of the DLXK is roughly 3 times as large as the cycle
time of this variant of the DLXπ+. Thus, even without super-pipelining the DLXπ+is
assumed to have a much better performance than the DLXK .
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DLXπ+ DLXK

τ 10 11 12 13 14 15 16 17 18 20 21 23 25 30 34 35 37 50 68 106

m 5 5 5 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1
cIF 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 1 1 2 1 1
cD1 7 6 5 4 4 4 3 3 3 2 2 2 2 2 2 1 1 1 1 1
cD2 4 4 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 0
cI 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

cU2DM 3 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
cU2DI 4 4 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
cU2DF 5 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
cU2DB 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

cC 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cC2R 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cRet2 7 6 5 5 4 4 4 3 3 3 2 2 2 2 2 2 1 1 1 1

cIALU 4 3 3 2 1 1 2 2 1 1 1 1 1 0 0 0 0 0 0 0

Table 7.3: Comparison of selected variables of the DLXπ+ and DLXK

DLXπ+ DLXK

τ 10 11 12 15 18 25 37 106

IF/BCU 344895 342703 339568 337376 335337 334241 291155 189741
Decode 22637 21125 17764 9001 7489 5977 4465 3970

Dispatch 216404 314301 272798 193953 169423 74372 74372 43679
Complete 11776 12684 7268 7268 7268 7268 7268 196
Ret./ROB 49464 43650 35197 28106 26648 16822 15364 19807

RF 23433 20055 18103 14722 14184 11856 11670 19545
PT 29690 25117 19802 12320 12320 7083 4966 15574

Mem 1202498 973211 904068 601757 507442 329466 277848 225336
IALU 4502 4038 4038 3110 3110 3110 2646 3693
IMul 16813 15445 14533 14077 12709 12709 12253 na2

FPAdd 43447 38967 36279 32695 30903 27319 25527 23735
FPMul 75333 69957 65477 59205 56517 52933 50245 47557

FPMisc 19510 18614 17718 16822 16822 15926 15926 18135
Total 2060402 1899867 1752613 1330412 1200172 899082 793705 610968

Table 7.4: Comparison of the costs of the DLXπ+ and the DLXK

The critical path of the DLXK starts at the instruction register, goes through the de-
code phase and finally updates the PC register which determines the address of the next
instruction. The last part of this path has been removed for the DLXπ+ by using branch
prediction. Then by splitting the decode phase into two sub-phases and improving the
circuits of the decode phase, the cycle time could be dramatically improved without
increasing the number of stages significantly.

Table 7.4 list the cost of the DLXπ+ and the DLXK for some selected cycle times

2The DLXK does not support integer multiplications and divisions.
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τ 10 11 12 15 18 25 37

IF/BCU 118.5% 117.7% 116.6% 115.9% 115.2% 114.8% 100.0%
Decode 507.0% 473.1% 397.8% 201.6% 167.7% 133.9% 100.0%

Dispatch 291.0% 422.6% 366.8% 260.8% 227.8% 100.0% 100.0%
Complete 162.0% 174.5% 100.0% 100.0% 100.0% 100.0% 100.0%
Ret./ROB 321.9% 284.1% 229.1% 182.9% 173.4% 109.5% 100.0%

RF 200.8% 171.9% 155.1% 126.2% 121.5% 101.6% 100.0%
PT 597.9% 505.8% 398.8% 248.1% 248.1% 142.6% 100.0%

Mem 432.8% 350.3% 325.4% 216.6% 182.6% 118.6% 100.0%
IALU 170.1% 152.6% 152.6% 117.5% 117.5% 117.5% 100.0%
IMul 137.2% 126.1% 118.6% 114.9% 103.7% 103.7% 100.0%

FPAdd 170.2% 152.7% 142.1% 128.1% 121.1% 107.0% 100.0%
FPMul 149.9% 139.2% 130.3% 117.8% 112.5% 105.3% 100.0%

FPMisc 122.5% 116.9% 111.3% 105.6% 105.6% 100.0% 100.0%
Total 259.6% 239.4% 220.8% 167.6% 151.2% 113.3% 100.0%

Table 7.5: Relative increase of the cost of the DLXπ+

from table 7.3. The cost of the cache of the DLXK were evenly distributed to the
instruction fetch and the memory unit. The higher cost of the DLXπ+ with cycle time
37 compared to the DLXK is mainly due to the branch prediction and the non-blocking
cache, which increase the cost of the instruction fetch respectively the memory unit.

Table 7.5 lists the relative increase of the cost for the DLXπ+ if the cycle time is
reduced (normalized to the DLXπ+ with a cycle time of37). The increase of the cost
is only due to the additional forwarding circuits and registers, the number ofgates for
the actual computations is the same. The number of registers that has to be added due
to pipelining is reciprocal to the stage depth. Note that forwarding circuits and queues
use two-dimensional pipelining, i.e., the number of registers increases quadratically if
the stage depth is reduced.

Queues are used in the memory unit and the dispatch phase. Extensive forwarding
is used in the ROB and the producer table environment. Therefore, these parts have
a large relative increase. The cost of the dispatch get smaller again forτ ∈ {10, 11}
since the number of reservation station entries has to be reduced for thesecycle times.
The cost of the decode phase increases drastically if the issue circuit has to pipelined.
The cost of the instruction fetch is not sensitive to the decrease of the cycle time as
the multiplierm for the instruction fetch clockIFCLK increases if the cycle time
decreases. Since the total cost of the instruction fetch is high this reducesthe relative
increase of the DLXπ+.

7.4 Related Work

Super-pipelining is a well-known technique to improve processor performance. It is
used in many commercial processors, e.g., in the succeeding generation ofthe MIPS
R3000 processor on which the DLXπ+ ISA is based on [BLM91]. Other work com-
bines super-pipelining with other techniques such as super-scalar designs [JCL94],
multi-threading [GV95], or both [GV96]. However these studies use rather moderate
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super-pipelining which at least allows the computation of a 16-bit addition (which has
12 combinational gate delays in our model) in a single cycle [GV95]. Note that inthe
deeply pipelined Pentium 4 a 16-bit addition can be computed even with double the
core frequency [HSU+01].

Extreme super-pipelining as done in this thesis is considered in previous work that
studies the optimum pipeline depth of a processor [KS86][HJF+02][SC02][HP02].
Usually these studies are based on an existing processor. They compute the combi-
national work to be done per instruction from the cycles needed and the stage depth
of the processor. The cycles needed for other frequencies is then simplycomputed by
dividing the combinational work by the corresponding stage depth. They do not take
into account that the combinational work may depend on the stage depth, e.g.,if for-
warding of RAM ports becomes necessary (see section 2.6.1). The optimalstage depth
is obtained by simulating a benchmark suite for different processor frequencies. None
of the studies details the effects on the logic if the cycle time is reduced or assumes a
lower bound for the stage depth. We now discuss the cited work in some more detail.

An initial study on the optimum pipeline depth of a processor was done by Kunkel
and Smith [KS86]. Their work is based on a CRAY-1S supercomputer build from
discrete ECL gates. Kunkel and Smith assume that interlocking (i.e., stalling) must be
computed in one cycle and that central RAM blocks must be accessed in onecycle.
These bounds can be overcome using the techniques used in this thesis. Limitations to
the minimum stage depth are noted in [KS86] but are later ignored in the simulations.
They conclude that the maximum performance is achieved with a stage depth of8 ECL
gate levels for scalar code (4 levels for vector code).

Hrishikesh et. al. [HJF+02] studied the optimum stage depth of an Alpha 21264
with large register files and large cache. They assume that the instruction wakeup and
instruction select logic are critical circuits that bound the stage depth. In order to allow
lower stage depths Hrishikesh et. al. propose to pipeline these circuits by dividing
the issue window in multiple stages. They do not discuss the consequences of this
pipelining to the correctness of the logic, e.g., if an instruction moves from onestage
to the next. Using these pipelined circuits and assuming that all other circuits can be
perfectly pipelined into arbitrary stages Hrishikesh et. al. conclude the optimum stage
depth to be 6 FO43for integer benchmarks and 4 FO4 for floating point benchmarks.

Sprangle and Carmean [SC02] measured the performance losss for some critical
loops (ALU, branch prediction, cache accesses) if the loops are increased by one cycle.
They model the performance loss for a loop withm additional cycles to be(1 − s)m.
The total performance is computed as product of the losses for the loops.This model
matches their simulations. They derive that the performance of a Pentium 4 proces-
sor can be improved by 35 to 90% through implementing deeper pipelines and larger
caches. Sprangle and Carmean assume that all circuits can be pipelined arbitrarily.
They address the problem of forwarding in order to pipeline RAM accesses but do
not handle pipelining of the forwarding itself and do not include forwarding in their
simulations.

Hartstein and Puzak [HP02] developed an analytical formula for the performance
of a S/390 processor in dependence of the stage depth. The optimum stagedepth is
found by equating the derivation function to zero. Yet the formula uses some processor

3Fan-out-of-four (FO4) is defined as the delay of an inverter that drives four inverters of the same size.
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and benchmark dependent constants which are hard to determine. Also theformula
assumes that processor logic can be uniformly divided into an arbitrary number of
stages.

Recent studies [HP03] [SBG+02] also take power consumption into account. Since
low stage depths dramatically increase the power consumption due to the large amount
of necessary latches this generally leads to a larger optimum pipeline depth. Since the
power consumption depends in first order on the cost of processor, this can be included
in our model by not just optimizing the performance of the processor but a quality met-
ric

Quality =
1

Performance1−q · Costq

for a q ∈ [0; 1] as proposed by Grün [Grü94].

To the author’s best knowledge the theoretical limits of super-pipelining andthe
minimum stage depth as presented in this thesis have not yet been studied. Alsothe
consequences to the logic if even the forwarding circuits are pipelined hasnot yet been
discussed.



Chapter 8

Summary

In this thesis the basic techniques needed for super-pipelining of processors were de-
scribed. These techniques comprise the insertion of buffer circuits to splitthe stall
trees and the pipelining of RAM blocks. In order to pipeline RAM blocks it is neces-
sary to forward the data written by succeeding writes to ongoing read accesses. The
forwarding circuits presented in this thesis even allow to reduce the cycle time below
the time needed for forwarding data by pipelining the forwarding circuit itself, which
introduces two-dimensional pipelining.

Using these techniques the DLXπ+, an out-of-order processor with multiple vari-
able parameters including the cycle time was presented. The cycle time of the DLXπ+

can be reduced to down to five gate delays, with restrictions even down to four gate
delays. Formulas were developed that compute the cost and the number of pipeline
stages based on the cycle time. Correctness proofs were given for the parts that differ
significantly from the DLX presented in [Krö99]. In particular for every RAM block it
was proven that the forwarding circuits deliver the correct data needed for the overall
correctness of the Tomasulo algorithm.

8.1 Future Work

Using the formulas presented in this thesis it is possible to compute the variables de-
scribing the pipelining of the DLXπ+ in dependence of the parameters. The next step
would be to write a simulator for the DLXπ+. This simulator could use instruction
traces of a benchmark suite in order to compute the average time per instruction(TPI)
of the DLXπ+ configured to different cycle times, ROB sizes, etc. for this benchmark
suite. This would allow to examine the parameters of the DLXπ+ that deliver the best
TPI values. In particular the optimal cycle time for the DLXπ+ could be determined.

Apart from super-pipelining the number of active instructions in a processor can
be increased by issuing multiple instructions in one cycle (super-scalar processors).
The DLXπ+ only supports issuing of one instruction per cycle. A super-scalar DLX is
presented in [Hil00], methods to reduce the cycles time of the central circuits of super-
scalar processors can be found, e.g., in [PJS97]. An expansion of the DLXπ+ could
combine multi-issuing and super-pipelining to investigate the advantages of the differ-
ent approaches.

Modern processors are able to execute multiple threads at the same time. This al-
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lows for better utilization of the resources. Using multi-threading in a super-pipelined
processor could decrease the optimum cycle time since useful work can bedone while
an instruction waits for data.

The DLXπ+ uses a rather simple branch prediction scheme. The performance im-
pact of the branch prediction increases if the cycle time is reduced, since this increases
the number of cycles needed for the roll-back of a mispredicted branch. Hence, in-
creasing the hit-rate of the branch prediction would be worthwhile. Also the roll-back
could be improved, such that the mispredicted instruction do not need to retirebefore
the succeeding instructions from the corrected branch target can be decoded.

The cost and delay calculations of the DLXπ+ are based on a rather simple gate
model that does not take fanout and wiring into account. Since the stall signals of the
DLXπ+ have a large fanout, a gate model that includes fanout, e.g. the logical effort
model [SSH99], could have significant impact on the bounds of the cycle time. In
order to investigate the impact, the delay calculations of the DLXπ+ could be adopted
for the logical effort model.



Appendix A

Instruction set architecture

A.1 Instructions

In this section the instructions which are supported by the processor are summarized.
All instructions which do not handle special registers or the program counter. are di-
rectly taken from the MIPS 32000 instruction set[KH92]. Since the processor does
not support delayed branch, the control flow change instructions arealtered accord-
ingly. Special register and interrupt handling are based on the DLX implementation
by Müller and Paul [MP00].

The instructions of the processor are presented in the tables A.1 to A.7, ordered
by the type of functional unit they use. If the bits[31 : 26] of the instruction indicate
an floating point instruction, but the rest of the instruction matches none of the follow-
ing opcodes, theuFOP (unimplemented floating point operation) interrupt is raised.
Otherwise if the instruction matches none of the following opcodes, theill (illegal
instruction) interrupt is raised. In this case the instruction is not sent to an functional
unit but the valid bit of the ROB entry is set.

The instructions have up to four parameters: the destination register addressD,
the two operand addressesOP1 andOP2, and an immediate constantimm. For the
description of the instructions, the following abbreviations are used for theregister
files:

GD := GPR[D] FD := FPR[D] SD := SPR[D]

GOP1 := GPR[OP1] FOP1 := FPR[OP1] SOP1 := SPR[OP1]

GOP2 := GPR[OP2] FOP2 := FPR[OP2] SOP2 := SPR[OP2]

Gi := GPR[i] Si := SPR[i]

The following abbreviation is used to describe a memory location of variable width (if
the memory is seen as an one-dimensional array):

M(addr, d) := M [8 · (addr + d) − 1 : 8 · addr]

The memory is usually addressed by the sum of the operand 1 and the immediate
constant. This sum is abbreviated byea. For the description of the instructionlwl,
lwr, swl, andswr (load / store word left / right), the base addressba and the offset
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IR[31:26] Instr. Group Effect

100000 lb

Load

[GD] = [M(ea, 1)]
100001 lh [GD] = [M(ea, 2)]
100011 lw [GD] = [M(ea, 4)]
100100 lbu 〈GD〉 = 〈M(ea, 1)〉
100101 lhu 〈GD〉 = 〈M(ea, 2)〉

100010 lwl
LoadLR

GD = M(ba, oa + 1), GD[23 − 8 · oa : 0]
100110 lwr GD = GD[31 : 8 · (4 − oa)], M(ea, 4 − oa)

110001 lwc1 LoadFP [FD] = [M(ea, 4)]

101000 sb
Store

M(ea, 1) = GOP2[7 : 0]
101001 sh M(ea, 2) = GOP2[15 : 0]
101011 sw M(ea, 4) = GOP2

101010 swl
StoreLR

M(ba, oa + 1) = GOP2[31 : 8 · (3 − oa)]
101110 swr M(ea, 4 − oa) = GOP2[8 · (4 − oa) − 1 : 0]

111001 swc1 StoreFP M(ea, 4) = FOP2

Table A.1: Memory instructions

addressoa are used:

ea := [GOP1] + [imm]

ba := ⌊ea/4⌋

oa := ea mod 4

A.2 Encoding

The table A.8 shows the encoding of the instructions parametersD, OP1, OP2, and
imm. The parametersD, OP1, andOP2 have always width 5 bit. The width of the
immediate constantimm depends on the width of theimm field in the encoding.
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IR[31:26] Instr. Group Effect

001000 addi

AluI

[GD] = [GOP1] + [imm]
001001 addiu 〈GD〉 = 〈GOP1〉 + 〈imm〉
001010 slti GD = ([GOP1] < [imm])?0311 : 032

001011 sltiu GD = (〈GOP1〉 < 〈imm〉)?0311 : 032

001100 andi GD = GOP1 ∧ (016, imm)
001101 ori GD = GOP1 ∨ (016, imm)
001110 xori GD = GOP1 ⊕ (016, imm)
001111 lui GD = (imm, 016)

111111 trap Trap trap = 1, eData = [imm]

IR[31 : 26] = 000000

IR[5:0] Instr. Group Effect

000000 sll
ShiftI

GD = GOP2 << 〈imm〉
000010 srl GD = GOP2 >> 〈imm〉
000011 sra GD = GOP2 >> 〈imm〉 (arith.)
000100 sllv

Shift
GD = GOP2 << 〈GOP1[4 : 0]〉

000110 srlv GD = GOP2 >> 〈GOP1[4 : 0]〉
000111 srav GD = GOP2 >> 〈GOP1[4 : 0]〉 (arith.)
100000 add

Alu

[GD] = [GOP1] + [GOP2]
100001 addu 〈GD〉 = 〈GOP1〉 + 〈GOP2〉
100010 sub [GD] = [GOP1] − [GOP2]
100011 subu 〈GD〉 = 〈GOP1〉 − 〈GOP2〉
100100 and GD = GOP1 ∧ GOP2

100101 or GD = GOP1 ∨ GOP2

100110 xor GD = GOP1 ⊕ GOP2

100111 nor GD = GOP1 ∨ GOP2

101010 slt GD = ([GOP1] < [GOP2])?0
311 : 032

101011 sltu GD = (〈GOP1〉 < 〈GOP2〉)?0
311 : 032

IR[31 : 26] = 010001

IR[25:21] Instr. Group Effect

00000 movef2i
Move2I

GD = FOP2

00010 moves2i GD = SOP2

00100 movei2f
MoveI2

FD = GOP2

00110 movei2s SD = GOP2

Table A.2: Integer ALU instructions
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IR[31 : 26] = 000000

IR[5:0] Instr. Group Effect

011000 mult
Mult

[S9, S8] = [GOP1] ∗ [GOP2]
011001 multu 〈S9, S8〉 = 〈GOP1〉 ∗ 〈GOP2〉

011010 div
Div

[S8] = [GOP1]/[GOP2]
[S9] = [GOP1] mod [GOP2]

011011 divu
〈S8〉 = 〈GOP1〉/〈GOP2〉
〈S9〉 = 〈GOP1〉 mod 〈GOP2〉

Table A.3: Integer multiplicative instructions

IR[31 : 26] = 010001

IR[21] IR[5:0] Instr. Group Effect

0 000000 fadd.s

FAdd

[[FD]] = [[FOP1]] + [[FOP2]]
0 000001 fsub.s [[FD]] = [[FOP1]] − [[FOP2]]
1 000000 fadd.d [[FD+]] = [[FOP+

1 ]] + [[FOP+
2 ]]

1 000001 fsub.d [[FD+]] = [[FOP+
1 ]] − [[FOP+

2 ]]

Table A.4: Floating point additive instructions

IR[31 : 26] = 010001

IR[21] IR[5:0] Instr. Group Effect

0 000010 fmul.s

FMul

[[FD]] = [[FOP1]] ∗ [[FOP2]]
0 000011 fdiv.s [[FD]] = [[FOP1]]/[[FOP2]]
1 000010 fmul.d [[FD+]] = [[FOP+

1 ]] ∗ [[FOP+
2 ]]

1 000011 fdiv.d [[FD+]] = [[FOP+
1 ]]/[[FOP+

2 ]]

Table A.5: Floating point multiplicative instructions

IR[31 : 26] = 010001

IR[23:21] IR[5:0] Instr. Group Effect

000 11c[3:0] fcomp.s
FComp

S7 = ([[FOP1]]op[[FOP2]])?1 : 0
001 11c[3:0] fcomp.d S7 = ([[FOP+

1 ]]op[[FOP+
2 ]])?1 : 0

000 000101 fabs.s

FMisc

[[FD]] = |[[FOP1]]|
000 000110 fmov.s [[FD]] = [[FOP1]]
000 000111 fneg.s [[FD]] = −[[FOP1]]
001 000101 fabs.d [[FD+]] = |[[FOP+

1 ]]|
001 000110 fmov.d [[FD+]] = [[FOP+

1 ]]
001 000111 fneg.d [[FD+]] = −[[FOP+

1 ]]

001 100000 fcvt.s.d
FCvt.S

[[FD]] = [[FOP+
1 ]]

100 100000 fcvt.s.w [[FD]] = [FOP1]

000 100001 fcvt.d.s
FCvt.D

[[FD+]] = [[FOP1]]
001 100001 fcvt.d.d [[FD+]] = [[FOP+

1 ]]
100 100001 fcvt.d.w [[FD+]] = [FOP1]

000 100100 fcvt.w.s
FCvt.W

[FD] = [[FOP1]]
001 100100 fcvt.w.d [FD] = [[FOP+

1 ]]

Table A.6: Floating miscellaneous instructions
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IR[31:26] Instr. Group Effect

000100 beq
Branch

[PC]+ = ([GOP1] = [GOP2])?[imm] : 4
000101 bne [PC]+ = ([GOP1] 6= [GOP2])?[imm] : 4

000110 blez
BranchZ

[PC]+ = ([GOP1] ≤ 0)?[imm] : 4
000111 bgtz [PC]+ = ([GOP1] > 0)?[imm] : 4

000010 j Jump [PC]+ = [imm]

000010 jal JumpAL
[PC]+ = [imm]
[G31] = [PC] + 4

111111 rfe RFE
[PC] = [S2]
[S0] = [S1]

IR[31 : 26] = 000000

IR[5:0] Instr. Group Effect

001000 jr JumpR [PC]+ = [GOP1]

001001 jalr JumpALR
[PC]+ = [GOP1]
[GD] = [PC] + 4

IR[31 : 26] = 000001

IR[20:16] Instr. Group Effect

00000 bltz
BranchZ

[PC]+ = ([GOP1] < 0)?[imm] : 4
00001 bgez [PC]+ = ([GOP1] ≥ 0)?[imm] : 4

10000 bltzal
BranchZAL

[PC]+ = ([GOP1] < 0)?[imm] : 4
[G31] = [PC] + 4

10001 bgezal
[PC]+ = ([GOP1] ≥ 0)?[imm] : 4
[G31] = [PC] + 4

IR[31 : 26] = 010001 ∧ IR[25 : 21] = 01000

IR[20:16] Instr. Group Effect

00000 BC1F
BC1

[PC]+ = ([S7] = 0)?[imm] : 4
00001 BC1T [PC]+ = ([S7] = 1)?[imm] : 4

Table A.7: Control flow change instructions
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Group [31:26] [25:21] [20:16] [15:11] [10:6] [5:0]

Shift 000000 OP1 OP2 D
00011*
0001*0

ShiftI 000000 OP2 D imm
00001*
0000*0

Alu 000000 OP1 OP2 D
100***
10101*

AluI 001*** OP1 D imm

MoveF2I 010001 00000 D OP2

MoveS2I 010001 00010 D OP2

MoveI2F 010001 00100 OP2 D

MoveI2S 010001 00110 OP2 D

trap 111110 imm

Mult 000000 OP1 OP2 01100*
Div 000000 OP1 OP2 01101*

Load
100*0*

OP1 D imm
1000*1

LoadLR 100*10 OP1 OP2/D imm

LoadFP 110001 OP1 D imm

Store
1010**

OP1 OP2 imm
101110

StoreFP 111001 OP1 OP2 imm

Branch 00010* OP1 OP2 imm

BranchZ
00011*

OP1 imm
000001 0000*

BranchZAL 000001 OP1 1000* imm

Jump 000010 imm

JumpAL 000011 imm

JumpR 000000 OP1 001000
JumpALR 000000 OP1 D 001001
BC1 010001 01000 0000* imm

rfe 111111

FAddSub 010001 1000* OP1 OP2 D 00000*

FMulDiv 010001 1000* OP1 OP2 D 00001*

FComp 010001 1000* OP1 OP2 11****

FMisc 010001 1000* OP2 D
0001*1
00011*

FCvt.W 010001 1000* OP2 D 100100

FCvt.S 010001
10001

OP2 D 100000
10100

FCvt.D 010001
1000*

OP2 D 100001
10100

Table A.8: Instruction set architecture encoding
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Emulation of a MIPS R3000

Apart from interrupt handling, the ISA of the DLXπ+differs in the following points
from the MIPS R3000 processor ISA [KH92]:

• The DLXπ+does not support delayed branch. The semantic of branch instruc-
tions are altered accordingly.

• The DLXπ+does not have a co-processor 0 (memory management unit). CP0
instructions cause an illegal instruction interrupt.

• All special registers (including floating point special registers and the registers
HI and LO) are combined in the special register file. Instructions accessing
special registers must be emulated by the instructionsmoves2i respectively
movei2s.

• The floating point special register is divided into the special registerSR (floating
point mask),RM (rounding mode),IEEEf (floating point flags), andFCC
(floating point condition code). Instructions accessing the floating point special
register are assumed to access the special registerIEEEf .

The MIPS R3000 instructions which cannot be mapped directly are emulated as
summarized in table B.1.

MIPS instruction DLXπ+instruction

syscall,break trap
cfc1,mflo,mflo moves2i(OP1 = 6, 8, 9)

ctc1,mtlo,mthi movei2s(D = 6, 8, 9)

mfc1 movef2i
mtc1 movei2f
bc0,cfc0,mfc0,mtc0,tlbr,tlbwi,tlbwr,tlbp not implemented

Table B.1: Translation of MIPS R3000 instructions
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Appendix C

Additional Circuits

In this chapter all additional circuits needed for the design of the DLXπ+are described.

C.1 Basic Circuits

C.1.1 Design

Figure C.1 depicts the design of a half-unary find-last-one circuit. Note that the circuit
computes additionally to the find-last-one outputflo an outputzero which indicates
that all input signals are zero. Forn = 1 the design of the circuit is simple. Forn > 1
the circuit is build from two half-unary find-last-one sub-circuits with only half of the
input bits. One circuit uses the upper half of the input bits, the other the lower half.
The zero output is active if both zero outputs of the sub-circuit are active. If the lower
parts of the inputs contains a one (i.e., the zero output of the lower part is not active,
the outputflo of the upper part must be forced to zero.

C.1.2 Cost and Delay

This section lists the formulas for the cost and delay of the basic circuits usedin this
thesis.

HFLO(⌈n/2⌉)

in[n − 1 : ⌊n/2⌋]

n > 1 n = 1
in[⌊n/2⌋ − 1 : 0]

HFLO(⌊n/2⌋)
flozero

in

1
zero flo

floflo[⌈n/2⌉ − 1 : 0] zerozero flo[n − 1 : ⌈n/2⌉]

Figure C.1: Design of a half-unary find-last-one circuit
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Find-Last-One / Find-First-One

D(FLO(n)) ≤ ⌈log n⌉ · DAND,

C(FLO(n)) ≤











0 if n ≤ 1

C(FLO(⌈n/2⌉)) + C(FLO(⌊n/2⌋))

+(⌈n/2⌉ + 1) · CAND

if n > 1
,

D(FFO(n)) ≤ D(FLO(n)),

C(FFO(n)) ≤ C(FLO(n)),

D(HFLO(n)) ≤ D(FLO(n)),

C(HFLO(n)) ≤ C(FLO(n)),

Decoder / Encoder

D(Dec(n)) ≤ ⌈log n⌉ · DAND,

C(Dec(n)) ≤

{

0 if n ≤ 1

C(Dec(⌈n/2⌉)) + C(Dec(⌊n/2⌋)) + 2n · CAND if n > 1
,

D(HDec(n)) ≤ n · max{DAND, DOR},

C(HDec(n)) ≤

{

0 if n ≤ 1

C(HDec(n − 1) + 2n−1 · (CAND + COR) if n > 1
,

D(Enc(n)) ≤

{

0 if n ≤ 1

D(Enc(⌈n/2⌉)) + DMUX if n > 1
,

C(Enc(n)) ≤











0 if n ≤ 1

C(Enc(⌈n/2⌉)) + C(Enc(⌊n/2⌋))

+CAND + (⌊n/2⌋) · CMUX

if n > 1
.

Parallel Prefix

D(PP-FUNC(D(FUNC), n)) ≤ ⌈log n⌉ · D(FUNC),

C(PP-FUNC(C(FUNC), n)) ≤























0 if n ≤ 1

C(PP-FUNC(⌈n/2⌉))

+C(PP-FUNC(⌊n/2⌋))

+(n − 1) · C(FUNC) if n > 1

,

D(PP-AND(n)) ≤ D(PP-FUNC(DAND, n)),

C(PP-AND(n)) ≤ C(PP-FUNC(CAND, n)),

D(PP-OR(n)) ≤ D(PP-FUNC(DOR, n)),

C(PP-OR(n)) ≤ C(PP-FUNC(COR, n)),
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Incrementer / Adder

D(Inc(n))

{

0 if n ≤ 1

≤ D(PP-AND(n − 1)) + DXOR if n > 1
,

C(Inc(n)) ≤ C(PP-AND(n − 1)) + (n − 1) · CXOR,

D(Add(n)) ≤ DXOR + D(PP-FUNC(DMUX , n − 1)) + max{DMUX , DXOR},

C(Add(n)) ≤ C(PP-FUNC(CMUX , n)) + 2 · n · CXOR.

Trees

D(FUNC-Tree(D(FUNC), n)) ≤ ⌈log n⌉ · D(FUNC),

C(FUNC-Tree(C(FUNC), n)) ≤ (n − 1) · C(FUNC),

D(AND-Tree(n)) ≤ D(FUNC-Tree(DAND, n)),

C(AND-Tree(n)) ≤ C(FUNC-Tree(DAND, n)),

D(OR-Tree(n)) ≤ D(FUNC-Tree(DOR, n)),

C(OR-Tree(n)) ≤ C(FUNC-Tree(DOR, n)).

Checks

D(EQ(n)) ≤ DXOR + D(AND-Tree(n)),

C(EQ(n)) ≤ n · CXOR + C(AND-Tree(n)),

D(Zero(n)) ≤ D(OR-Tree(n)),

C(Zero(n)) ≤ C(OR-Tree(n)).

Selection Circuit

D(Sel(n)) ≤ DAND + D(OR-Tree(n)),

C(Sel(n)) ≤ n · CAND + C(OR-Tree(n)),

C.2 Instruction Decode

The instructions are decoded by the two circuitsDestCmp andDecode. The circuit
DestCmp computes the busD.⋆ which contains all signals regarding the destination
address. Since these signals are needed to update the producer tables,they are consid-
ered timing critical. The circuitDestCmp is therefore delay optimized. The remaining
control signals are computed by the circuitDecode.
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C.2.1 Decode

This section only describes the control signals which are needed by the decode phase.
The computation of the control signals used by the functional units is described in the
together with the functional units.

The main purpose of the circuitDecode is to compute the following busses:
FUtmp.{IAlu, IMul, Mem, BCU, FAdd, FMul, FMisc}, OP1.{gpr, fpr, spr},
andOP2.{gpr, fpr, spr}. These busses define which FU should be used by an in-
struction and from which register file the operands have to be taken. At most one of
a signal of a bus may be active. If none of the signalsOP1.⋆ or OP2.⋆ is active, an
immediate constant is used as operand.

The computation of the control signals is based on the division of the instructions
into instruction groups. The instruction group of a instruction is defined in table A.8
along with the encoding for the group. Table C.1 shows for each instructiongroup
which control signal must be active.

The circuitDecode computes for each instruction to which instruction group it
belongs. The control signals are computed as or of the instruction groupsin which the
signal is active. The last column of the table C.1 defines for which group additional
control signals needed in the decode phase have to be valid.

If an instruction is a floating point instruction (i.e.,IR[31 : 25] = 0100011), but
belongs to no group, the signalFUunimp must be activated. If the instruction is
not a floating point instruction and belongs to no group, the signal illegal instruction
interruptill must be activated.

If the branch prediction assumes that an instruction is an control flow instruction
(indicated byIFQ.pb), the instruction has to be sent to the branch checking unit in
any case. Hence, the signalFU.BCU has to be active and the remaining signals of
the busFU.⋆ must be 0. IfIFQ.pb is not active, the value ofFUtmp.⋆ can be used
to computeFU.⋆.

If the instruction is not an control flow instruction, the signalfpb is activated
to indicate an falsely predicted branch. If an instruction is a branch instruction but
IFQ.pb is not active, the signalnpb (not-predicted branch) is activated. The signals
fpb andnpb are needed by the BCU. It follows:

FU.BCU = FUtmp.BCU ∨ IFQ.pb

FU.⋆ = FUtmp. ⋆ ∧ IFQ.pb

fpb = IFQ.pb ∧ FUtmp.BCU

npb = IFQ.pb ∧ FUtmp.BCU

The operands may only be double precision values, if the instruction is an floating
point instruction. For floating point instructions double precision operands are indi-
cated by the bitIR[21]. If the first operand is an immediate constant, the constant is
always determined by the bitsIR[10 : 6]. The immediate constant for operand 2 is the
address of the instruction if an instruction memory interrupt occurred, otherwise the
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Group FUtmp. OP1. OP2.

Alu

IAlu

gpr gpr
AluI gpr
Shift gpr gpr
ShiftI gpr
MoveS2F fpr
MoveF2S gpr
MoveS2I spr
MoveI2S gpr
Trap trap

Mult
IMul

gpr gpr
Div gpr gpr

Load

Mem

gpr
LoadLR gpr gpr
LoadFP gpr
Store gpr gpr
StoreFP gpr fpr storeFP

Branch

BCU

gpr gpr
BranchZ gpr
BranchZAL gpr
Jump
JumpAL
JumpR gpr
JumpALR gpr
BC1 spr
RFE spr spr rfe

FAdd FAdd fpr fpr

FMul FMul fpr fpr

FComp

FMisc

fpr fpr
FMisc fpr
FCvt.W fpr
FCvt.S fpr
FCvt.D fpr

Table C.1: Active control signals

sign extended bitsIR[15 : 0].

OP1,2.dbl = IR[21],

OP1.imm = IR[10 : 6],

OP2.imm =

{

fPC if Ipf ∨ Imal

IR[15]16IR[15 : 0] if Ipf ∧ Imal
.

The only instructions that explicitly read or write the special registerIEEEf are
moves2i respectivelymovei2s. These instruction access the registerIEEEf if the
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Variable Meaning Value

λmax length of longest monomial in table A.8 17
λsum accumulated length of all monomials in table A.8 395
νmax maximum number of monomials per group in table A.82
νsum number of monomials in table A.8 41
γ number of groups in table C.1 32
βmax maximum frequency of a control signal in table C.1 15
βsum accumulated frequency of all control signals in table C.170
ω number of output signals in table C.1 16

Table C.2: Variables of the Decode Computation

bits IR[15 : 11] encode the number of this register (6):

readIEEEf = MoveS2I ∧ IR[15 : 11] = 00110

writeIEEEf = MoveI2S ∧ IR[15 : 11] = 00110

Cost and delay of the circuitDecode can be computed using the variables from
table C.2 derived from the tables A.8 and C.1:

C(Decode) ≤ (λsum − νsum) · CAND + (νsum − γ + βsum − ω) · COR

+ (12 + 8 + 7) · CAND + COR + 32 · CMUX

≤ 381 · CAND + 64 · COR + 32 · CMUX

D(Decode) ≤ ⌈log λmax⌉ · DAND + ⌈log(νmax · βmax)⌉ · DOR + DAND

≤ 6 · DAND + 5 · DOR

C.2.2 Destination computation

The computation of the signalsD.{gpr, fpr, spr}, D.addr, andD.dbl can be derived
from Table C.3. To avoid unnecessarily many stages of forwarding in the decode sub-
phaseD1 the delay of the circuitDestCmp should be minimized.

The computation of the signals can be simplified using the fact, that the illegal
instruction signalill causes an abort interrupt. Thus the value of the write signals
may be arbitrary for illegal instructions. For the implementationD.R.impl.write of a
write signalD.R.write of a register fileR it suffices if the following equation holds:

D.R.write ≤ D.R.impl.write ≤ DR.R.write ∨ ill

The other signals for the register fileR D.R.⋆ (excluding the write signal) need only
to have correct values if the write signal is active. This simplifies the conditionfor the
implementation of these signalsD.R.impl.⋆ as follows:

D.R.impl.⋆ =

{

D.R.⋆ if D.R.write = 1

⋆ else

For the sake of simplicity the implementation of the above signals and their defin-
ition will be identified. Figures C.2 to C.2 show the parts of the circuitDestCmp for
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Group D. D.addr D.dbl

MoveI2F

fpr

IR[20 : 16]
0

LoadFP
FCvt.W

IR[10 : 6]

FCvt.S
FAddSub

IR[21]FMulDiv
FMisc
FCvt.D 1

AluI

gpr

IR[20 : 16]

0

MoveF2I
MoveS2I
Load
LoadLR
Alu

IR[15 : 11]
Shift
ShiftI
JumpALR
BranchZAL

11111
JumpAL

Mult

spr

01000 1
Div
MoveI2S IR[15 : 11]

0rfe 00000
FComp 00111

Table C.3: Destination registers

GPR, FPR, and SPR. Cost and delay of the circuit are:

D(DestCmp) ≤ max{2 · DOR, 2 · DAND, DMUX} + 2 · DOR

C(DestCmp) ≤ 58 · CAND + 16 · COR + 27 · CMUX
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D.GPR.write

1

0

=000

=000000IR[31 : 26]

IR[31 : 29]

IR[20 : 16]

IR[15 : 11]
D.GPR.addr

IR[31 : 26] =000000

IR[0]

IR[4]

IR[3]

IR[5]

IR[31 : 29]

IR[31 : 29] =100

=001

IR[31, 29, 28, 26]

IR[30, 25 : 23]

=0001

=1000

IR[27]

IR[30]

IR[20]

Figure C.2: Destination computation for GPR

IR[31]

IR[25]

IR[20 : 16]

IR[10 : 6]

IR[0]

IR[21]

IR[5]

D.FPR.dbl

D.FPR.addr

IR[30 : 26] =10001

IR[25 : 21]

IR[4]

IR[5]

IR[25]

IR[31]

D.FPR.write

=00100

0

1

0

1

Figure C.3: Destination computation for FPR

D.SPR.write

0

1

0

1

0

1

IR[25]

IR[15 : 11]

00111

00000

01000

IR[30]

IR[31]

IR[31]

D.SPR.addr

IR[31 : 26] =000000 D.SPR.dbl

0

1

IR[31 : 26] =000000

IR[31 : 26]

IR[31 : 26]

=111111

=010001

IR[25]

IR[23]

IR[22]

IR[5]
IR[4]

Figure C.4: Destination computation for SPR



Appendix D

Functional Units

The pipelining of the functional units is straightforward. The functional units used
by the DLXπ+are only listed for completeness and to compute the costs and number
of cycles for the computations. The design of the integer multiplicative unit andthe
floating point units is not detailed here as it lies beyond the scope of this thesis.

D.1 Integer ALU

Figure D.1 depicts an overview of the integer ALU. It consists of an arithmeticunit
AU, a shift unitSU, and a logic unitLU.

TheAU is detailed in figure D.2. It performs additions, subtractions and test opera-
tions. TheAU consists of an 32 bit adder and some glue logic to compute subtractions
and the correct negative and overflow signals. Cost and delay of the arithmetic unit
are:

D(AU) ≤ D(Add(32)) + 2 · DXOR,

C(AU) ≤ C(Add(32)) + 36 · CXOR + 2 · CAND.

TheSU (see figure D.3) uses a cyclic shifter to compute right and left shifts. The
shift amount for right shifts in computed by an incrementer. A mask replacesthe most
significant bits by zero of the sign bit for arithmetic shifts. Cost and delay ofthe shift

031

ovf

add

shift

log

OP1 OP2

result

SU
sumovf neg

AU LU

10

10 10

Figure D.1: Integer ALU
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cout

OP1

unsigned

test

OP2

test

sumovfneg

Add(32)

[31]

[31]
[31]

Figure D.2: Arithmetic unit

Out

sr

[32]
sra

5

0

Inc

1 0

CLS

1 0

Flip

1 0

HDec

OP2 OP1[4 : 0]

Figure D.3: Shift unit

unit are computed as:

D(SU) ≤ 7 · DMUX ,

C(SU) ≤ C(Inc(5)) + 229 · DMUX + CAND.

TheLU (see figure D.4) computes logic operations on the operands depending on
the opcode. It also copies the second operand to the output for trap instructions. Cost
and delay of the logic unit are:

D(LU) ≤ DXOR + D(Sel(5)),

C(LU) ≤ 64 · CAND + 32 · COR + 32 · CXOR + 32 · CNOR + 32 · C(Sel(5)).

Let eRS2 be the number of entries of the integer ALU reservation station and let
D(FU(eRS2))

+ be the additional delay to the integer ALU from the reservation station.
Let n be the number of functional units and lettL be computed as in section 4.4. Then
the delay of the integer ALU and the delay of the stall input from the completion phase
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OP1

trap

[15 : 0]

OP2

016

01

Sel lop

Out

Figure D.4: Logic unit

are:

D(IALU) ≤ D(FU(eRS2))
+ + max{D(AU), D(SU), D(LU)} + 2 · DMUX ,

D(IALU.stallIn) ≤

{

DAND + D(FLO(min{tL, n})) + DMUX if tL > 2

DAND + DOR if tL = 2
.

Let the variablebIALU be one if a buffer circuit needs to be added to the integer
ALU. This is the case if the following equation does not hold (similar to the BCU, see
section 6.5.2):

δ ≥ max{D(AND-Tree(⌈D(ALU)/δ⌉ + 1)), D(IAlu.stallIn)} + DAND

+

{

2 · DAND if eRS1 = 1

2 · DAND + DMUX if eRS1 > 1

Hence, the number of cyclescIALU and the cost of the integer ALU can be approxi-
mated by:

cIALU = ⌈(D(ALU) + bIALU · DMUX)/δ⌉,

C(IALU) ≤ C(AU) + C(SU) + C(LU) + 96 · DMUX + CAND + COR

+ (cALU − 1) · ⌈(65 + 8 + 34 + lROB)/2⌉ · CREG.

D.2 Integer Multiplicative Unit

Figure D.5 depicts the integer multiplicative unit. The first part of the unit distrib-
utes the instructions to either the multiplication of the division part of the unit. It also
computes the booth recoding for the multiplier. The second part of the integermulti-
plicative unit consists of a Wallace tree for the multiplication and a SRT based divide
circuit (see, e.g., [HOH97]. In the last part the carry-save respectively carry-borrow
result of divisions or multiplications is compressed using a 64 bit adder. Thedesign of
the divider circuit is not detailed here. It is assumed that it has the same delay as the
Wallace tree and computes 4 result digits. Thus, it has to be used 8 times to get the 32
bit quotient and remainder.

The delay of the distribution part is given by the cost and the delay of the booth
recoding (see [MP00] for the formulas) and the additional delay introduced by the
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to Completion

Wallace
Tree

OP1 OP2

Distribute

Divide

Compress

Figure D.5: Integer multiplicative unit

integer multiplicative reservation station. LeteRS3 be the number of entries of the
reservation station andD(FU(eRS3)) be the additional cost. Then:

C(Distribute) ≤ 16 · (2 · CXOR + CNOR) + 33 · (3 · CNAND + CXOR),

D(Distribute) ≤ D(FU(eRS3)) + DXOR + DNOR + 2 · DAND + DXOR.

The delay and cost of a Wallace Tree with 32 bits can also be derived fromthe formulas
in [MP00]:

C(WallaceTree) ≤ (35 · 14 + 2 · 2 · 16) · C(Add(1)),

D(WallaceTree) ≤ 2 · 3 · D(Add(1)).

The cost of the divider are approximated by the cost of 4 32 bit carry-save adders and
a 64 bit shifter.

C(Divide) ≤ 4 · 32 · C(Add(1)) + 64 · (CMUX + CREG).

The circuitCompress in the last part of the unit also selects between the outputs of
the wallace tree and the divider circuit. Therefore, cost and delay of thiscircuit are
approximated by:

D(Compress) ≤ DMUX + D(Add(64),

C(Compress) ≤ 64 · CMUX + C(Add(64).

Buffer circuits are added to the first stages of the circuitCompress andDistribute
if necessary. Let the variablebIMul3 be one if a buffer circuit is inserted into the
circuit Compress, andbIMul1 be one if a buffer circuit is inserted into the circuit
Distribute. Let IMul.stallIn be the stall input of the integer multiplicative unit from
the completion phase. Then the delay of the stall output to the reservation station
(design not detailed here) is assumed to be:

D(IMul.stallOut) ≤ max{max{D(AND-Tree(⌈D(Compress)/δ⌉)),

D(IMul.stallIn)}, D(AND-Tree(⌈D(WallaceTree)/δ⌉))}

+ DAND + DOR + DMUX + DAND.
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If the equation

δ ≥ D(IMul.stallOut) +

{

2 · DAND if eRS1 = 1

2 · DAND + DMUX if eRS1 > 1

does not holdbIMul3 is set to one. This reduces the requirement to:

δ ≥ D(AND-Tree(⌈D(WallaceTree)/δ⌉) + 2) + DOR

+

{

2 · DAND if eRS1 = 1

2 · DAND + DMUX if eRS1 > 1

If this equation does not holdbIMul1 is also set to one. Then all requirements are
assumed to hold forδ ≥ 5. Let cIMul1, cIMul2, cIMul3 be the number of cycles
needed for the circuitsDistribute, WallaceTree, andCompress. It holds:

cIMul1 = ⌈(D(Distribute) + bIMul1 · DMUX)/δ⌉,

cIMul2 = ⌈D(Multiply)/δ⌉,

cIMul3 = ⌈(D(Compress) + bIMul3 · DMUX)/δ⌉,

C(IMul) ≤ C(Distribute) + C(Divide) + C(WallaceTree) + C(Compress)

+ (cIMul1 + cIMul2 + cIMul3) · ⌈(65 + 8 + 34)/2⌉ · CREG.

D.3 Floating Point Units

The delay of the additive and multiplicative floating point unit are from [Sei03]. The
delay of the miscellaneous floating point unit is computed by synthesis using Syn-
ergy [Cad97] from the Verilog source [Lei02] of the corresponding unit from [Jac02].
The additive and the miscellaneous floating point units have straight pipelines. Let
eRS4 and eRS6 be the number of entries of the reservation stations for the additive
and miscellaneous floating point units and letD(FU(eRS4)) andD(FU(eRS6)) be the
additional delay introduced by the reservation stations. The delay of the additive and
miscellaneous floating point units is approximated by:

D(FPAdd) ≤ D(FU(eRS4))
+ + 114,

D(FPMisc) ≤ D(FU(eRS6))
+ + 30.

A buffer circuit is inserted into the first stage of the additive and miscellaneous
floating point unit if the requirements for the stall input of the corresponding reser-
vation stations do not hold. This is assumed to suffice for the miscellaneous floating
point unit and a stage depthδ = 5. However a second buffer circuit has to be inserted
into the additive floating point unit if the following equation does not hold:

δ ≥ max{D(FPAdd.stallIn), D(AND-Tree(⌈D(FPAdd)/δ⌉ + 1))} + DAND.

Let bFPAdd andbFPMisc be the number of buffers inserted into the respective floating
point units. Then the number of cyclescFPAdd andcFPMisc are approximated by:

cFPAdd = ⌈(D(FPAdd) + bFPAdd · DMUX)/δ⌉,

cFPMisc = ⌈(D(FPMisc) + bFPMisc · DMUX)/δ⌉.
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to Complete
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OP2OP1

Figure D.6: Floating point multiplicative unit

An overview of the multiplicative floating point unit is depicted in figure D.6. The
first part of the unitUnpack unpacks the operands. The approximation circuit for the
reciprocalApprox is only needed by divisions. The third part of the unit is the actual
multiplier circuit Multiply. While multiplication use this circuit only once, divisions
need to use the circuit 5 times for single precision and 7 times for double precision.
The last two multiplications of the divisions are independent and can be started in
two succeeding cycles. The last part of the unitRound rounds the result. LeteRS5

be the number of entries of the multiplicative floating point reservation station and
let D(FU(eRS5)) be the additional delay for the functional unit from the reservation
stations. Then the delays of the circuits are as follows [Sei03]:

D(Unpack) ≤ D(FU(eRS5)) + 29,

D(Approx) ≤ 38,

D(Multiply) ≤ 67,

D(Round) ≤ 34.

The delay of the stall output (design not detailed here) if no buffer circuits are
inserted is:

D(stallOut) ≤ max{D(FPMul.stallIn), D(AND-Tree(⌈34/δ⌉ + ⌈67/δ⌉ + 1))}

+ DAND + DOR + DAND + DMUX + DAND.

If this does not fulfill the requirements of the stall input of the reservation station, a
buffer circuit in inserted into the first stage of the circuitMultiply. This reduces the
delay of the stall output to:

D(stallOut) ≤ max{DAND + DOR, D(AND-Tree(⌈38/δ⌉))}

DAND + DMUX + DAND.

If this also does not fulfill the requirements another buffer circuit is inserted into the
first stage of the circuitUnpack. Let cFPMul1, cFPMul2, cFPMul3, andcFPMul4 be
the number of cycles needed for the circuitsUnpack, Approx, Multiply, andRound.
Let the variablesbMul1 and bMul3 indicated if buffer circuits are inserted into the
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circuitsUnpack andMultiply. Then:

cFPMul1 = ⌈(D(Unpack) + bFPMul1 · DMUX)/δ⌉,

cFPMul2 = ⌈D(Approx/δ⌉,

cFPMul3 = ⌈(D(Multiply) + bFPMul3 · DMUX)/δ⌉,

cFPMul4 = ⌈D(Round/δ⌉,

The cost of the floating point circuits are approximated by the cost of the corre-
sponding floating point units from [Lei99]. The number of inputs of the floating point
units is146 + lROB, the number of outputs is70 + lROB. Then the costs of the units
are approximated by:

D(FPAdd) ≤ 23735 + (cFPAdd − 1) · (108 + lROB) · CREG,

D(FPMisc) ≤ 15926 + (cFPMisc − 1) · (108 + lROB) · CREG,

D(FPMul) ≤ 47557 + (cFPMul1 + cFPMul2 + cFPMul3 + cFPMul4 − 4)

· (108 + lROB) · CREG.

D.4 Memory Unit

This section describes the circuits shift for storeSh4S and shift for loadSh4L used
by the memory unit.

D.4.1 Shift for Store

The shift for store circuitSh4S mainly computes the effective address of the memory
access and shifts the store data to the right position. The design of circuitSh4S is
straightforward except for the load / store word left / right instructions.Table D.1
shows the mapping of the source bytes to the destination bytes for these instructions in
dependence of the bits 0 to 1 of the effective address. The bold numbers for the load
instructions are the bytes of the destination register (which is also operand two), that
may not be changed.

The data cache can replace a bytei only with the bytei of the word loaded from
the memory. Thus, the operand two has to be shifted before the cache access in a way
that the bytes which must not be replace are in the positions that are not written. The
circuit Sh4L then shifts the bytes at the final position. Table D.2 shows the result of
the data cache, if the bytes to be preserved are shifted at the positions thatare not
overwritten.

For default store instructions, the bytes to be written have to be shifted〈ea[1 : 0]〉
bytes to the left. This also holds for store word right and load word right instructions.
If cyclic shifters are used it suffices to pre-shift the data by one byte for load word left
and store word left instruction.

Figure D.7 shows the circuitSh4S. Apart from the effective addressea and the
busdata it computes the busub⋆ that indicates which bytes are used, and the data
misaligned interruptDmal. The circuit uses multiple control signals which can be
derived from the opcode and are not assumed to be timing critical. The signals lwl
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dest. byte
3 2 1 0

3 3 2 1 0
2 3 2 1
1 3 2

〈e
a
[1

:
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〉

0 3

SWL

dest. byte
3 2 1 0

3 0
2 1 0
1 2 1 0

〈e
a
[1

:
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〉

0 3 2 1 0

SWR

dest. byte
3 2 1 0

3 3 2 1 0
2 2 1 0 0
1 1 0 1 0

〈e
a
[1

:
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〉

0 0 2 1 0

LWL

dest. byte
3 2 1 0

0 3 2 1 3
1 3 2 3 2
2 3 3 2 1

〈e
a
[1

:
0]
〉

3 3 2 1 0

LWR

Table D.1: Mapping of source bytes to destination bytes

mem byte
3 2 1 0

3 3 2 1 0
2 0 2 1 0
1 1 0 1 0

〈e
a
[1

:
0]
〉

0 2 1 0 0

LWL

mem byte
3 2 1 0

3 3 3 2 1
2 3 2 3 2
1 3 2 1 3

〈e
a
[1

:
0]
〉

0 3 2 1 0

LWR

Table D.2: Result of the data cache access for load word left / right instructions

andswl indicate a load respectively store word left instruction. If the signalslwlr
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lwl

swl

[1] [1]

1

0

Figure D.7: Shift for Store
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is active, the instruction is a store / load word left / right instruction. Otherwise the
signalshw andw indicate a half-word respectivelyword wide access.

For standard accesses the computation of the busub⋆ based on the signalsea[1 : 0],
hw, andw is straight-forward. For load / store word left / right instructions the bus
can be computed with half-decoders. The interruptDmal must be active if the bit
ea[0] is active and the instruction is a half-word or word-wide access or the biteq[1]
is active for a word-wide access. The the data misaligned interruptDmal is active the
instruction must not be sent to the data cache but to the circuitSh4L. Hence:

DCache.full = full ∧ Dmal,

Sh4L.full = full ∧ Dmal.

Note that only the lowest order bits of the effective addressea are used by the other
circuits. The delay and cost of the circuitSh4S are (including the computation of the
control signals):

D(Sh4S) ≤ max{D(Add(32)), D(Add(2)) + D(HDec(2)) + 2 · DMUX},

C(Sh4S) ≤ C(Add(32)) + 2 · C(Dec(2)) + C(HDec(2))

+ 104 · CMUX + 11 · COR + 10 · CAND.

D.4.2 Shift for Load

The shift for load circuitSh4L mainly receives the result from the data cache, shifts
the bytes to be read to the right, and does a sign extension if necessary. The arbiter
circuit to the memory unit which selects the source of the next data to be completed is
described in the section 5.7 of the memory unit. Figure D.8 shows the reset of the shift
for load circuit.

The upper part of the circuit computes the result (including sign extension) for
standard read accesses. If the instruction is a load word left or load word right, the
word must be shifted from the position in table D.2 to the position in table D.1. This
can be done using a cyclic shifter and an incrementer. If an interrupt occurred, the
memory unit must return the effective address as result.

Note that the control signals are not critical as they can be computed during shift
for store. Then the delay and cost of the circuitSh4L (including the computation of
the control signals) are:

D(Sh4L) ≤ 4 · DMUX ,

C(Sh4L) ≤ C(Inc(2)) + C(Dec(2)) + C(Sel(4))

+ 186 · CMUX + 3 · DOR + DAND.
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unsigned

dataIn[31, 23, 15, 7]

ea[1]

dataIn[31 : 24] dataIn[15 : 8]

ea[1]

ea[0]

hw

hw

w
w

ldata[15 : 8]ldata[31 : 16]

8dataIn[31 : 16] 816

sext

Sel
Dec

1 0

0 11 0

1 0

1 0

ea[1]

dataIn[31 : 0]

ea[0]

16

ldata[7 : 0]

1
0

Inc

0 1

0 1

CRS
ea[1 : 0]

dataIn

dataOut

Dpf

Dmal

lwl

lwr

ea

ldata

Figure D.8: Shift for Load



Appendix E

Cost and Delay

This appendix lists the variables of the DLXπ+ in dependence of the parameters listed
in table E.1. In order to reduce the number of dimensions only three parameters are
assumed to be variable: the cycle time, the ROB size and the number of entries per
reservation station. For all other parameters reasonable default valuesare chosen.

The other parameters are set as follows: The DLXπ+has only one functional unit
per type. The data and the instruction cache are both 4-way set associative, 16K large
and have both 32 byte wide cache-lines. The update queue of the data cache is has 4
entries, the read queue has 8 entries. The BTB is 4-way set associativeand has 256
entries. The cache fetches 8 instructions perIFCLK cycle.

Note that for a stage depthδ of 5 it is not possible to build an update queue or read
queue with more than two entries. Forδ = 6 the read queue may have at most four
entries. In these cases the number of entries of the queues are set to the maximum
possible value.

The cycle time is between 10 and 100 gate delays (i.e.,5 ≤ δ ≤ 95). The ROB

Variable Description Default

τ :=δ + 5 cycle time of the DLXπ+ 10 − 100

LROB :=2lROB # lines of the reorder buffer 32 − 128

ni # FU’s of typei (0 ≤ i ≤ 6) 1

eRSi
# entries of the RSs of typei (0 ≤ i ≤ 6) 2 − 8

LDC :=2lDC # lines of the data cache 128

SDC :=2sDC # bytes of the cache-lines of the data cache 32

KDC :=2kDC associativity of the data cache 4

eUQ # entries of the update queue 4

eRQ # entries of the read queue 8

LIC :=2lIC # lines of the instr. cache 128

SIC :=2sIC # bytes of the cache-lines of the instr. cache 32

KIC :=2kDC associativity of the instruction cache 4

LBTB :=2lBTB # lines of the branch target buffer 64

KBTB:=2kBTB associativity of the branch target buffer 4

FS :=2fs # instructions fetched per cycle 8

Table E.1: Parameters of the DLXπ+
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has between 32 and 128 lines. The reservation stations have between 2 and 8 entries.
For simplicity all reservation stations have the same number of entries. Note thatfor
δ ∈ {5, 6} the all reservation stations except the memory and the branch checking
reservation station may have at most two respectively four entries. For thememory
and branch checking reservation station, the allowed number of entries is even less.
Therefore, for theses reservation stations also the results for only oneentry is given.
No results are given if the number of reservation station is larger than the maximum
possible number.

Tables E.2 and E.3 list the variables of the DLXπ+ in dependence of the three free
parameters. If the variables do not change if one of the parameters is increased, the
line respectively column is omitted. Tables E.4 and E.5 list the overall cost of the
DLXπ+ in dependence of the three free parameters.
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τ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27 29 33 34 35 37 41 49 50 67 77 eRS⋆ LROB

m 5 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 * *
cIF 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1 1 2 1 1 * *
cD1 7 6 5 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 * *
cD2 6 5 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 * 32
cD2 9 8 7 6 5 5 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 * 64
cD2 15 12 11 9 8 8 7 6 6 6 5 5 5 4 4 4 3 3 3 3 3 2 2 2 2 1 * 128
cI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cI 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 *
cI na 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 *
cI na na 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 *
cT 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * *

cU2DM 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cU2DM na 4 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 *
cU2DM na na 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 *
cU2DM na na na 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 *
cU2DI 4 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 *
cU2DI na 4 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 *
cU2DI na na 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 *
cU2DF 5 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 *
cU2DF na 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 *
cU2DF na na 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 *
cU2DB 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cU2DB na na na 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 *

cAT 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * *
cC 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * *

cC2R 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * *
cRet2 7 6 5 5 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 * *

Table
E

.2:Variables
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D
LXπ
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(part1)



212
C

ostand
D

elay

τ 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 33 34 35 38 39 43 45 46 47 48 62 65 72 eRS⋆

cSh4S 3 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
cSh4S na 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
cSh4S na na 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
cSh4S na na na 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
cHC 12 10 9 8 7 6 6 5 5 5 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 *

cM2W 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cM2R 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cM2Q 4 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cSh4L 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cIALU 4 3 3 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *
cIMul1 2 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
cIMul1 na 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
cIMul1 na na 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
cIMul2 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cIMul3 4 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cFPAdd 23 18 15 14 12 11 9 9 9 8 7 6 6 6 5 5 5 5 4 4 4 4 4 3 3 3 3 2 2 2 2 2 1 1 *

cFPMul1 6 5 4 4 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 2
cFPMul1 na 5 4 4 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 4
cFPMul1 na na 4 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 8
cFPMul2 8 7 6 5 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 *
cFPMul3 14 12 10 9 8 7 7 6 6 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 *
cFPMul4 7 5 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 *
cFPMisc 5 4 3 3 2 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 *

cBCU 5 3 3 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 *

Table
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10 11 12 13 14 15 16 17 18 19 20 eRS⋆ LROB

2748823 2428247 2247879 2067335 1899064 1784354 1748697 1649984 1637588 1563675 1447715 2 32
2820714 2503079 2319473 2123671 1936419 1830683 1783910 1685063 1672439 1607267 1479595 2 64
2971889 2633813 2445418 2227592 2030252 1920692 1870585 1760683 1744375 1678605 1550465 2 128

na 2599696 2402933 2217131 2002000 1887290 1851633 1742998 1742062 1651431 1555667 4 32
na 2667841 2477693 2276523 2041597 1935861 1889088 1780209 1779257 1697045 1589943 4 64
na 2788361 2606804 2383500 2137672 2028112 1978005 1857961 1853537 1770405 1663209 4 128
na na 2775631 2551181 2342078 2093720 2058503 1929120 1928184 1860937 1731273 8 32
na na 2846436 2617345 2388535 2146783 2100450 1970595 1969643 1911247 1769593 8 64
na na 2967405 2731094 2491470 2243526 2193859 2052611 2048187 1989303 1846903 8 128

21 22 23 24 25 26 27 28 29 30 31 eRS⋆ LROB

1445719 1427559 1365538 1289197 1349252 1348348 1348348 1347444 1345292 1344820 1344820 2 32
1477599 1459407 1397386 1321037 1381084 1380172 1369087 1368175 1365999 1365519 1365519 2 64
1545013 1526789 1453850 1377493 1437532 1436612 1433156 1432236 1419113 1418625 1418625 2 128
1486615 1468919 1406434 1330093 1390148 1389244 1389244 1388340 1386972 1385716 1385716 4 32
1519703 1501983 1439490 1363141 1423188 1422276 1411191 1410279 1408895 1407623 1407623 4 64
1588325 1570581 1497162 1420805 1480844 1479924 1476468 1475548 1463225 1461937 1461937 4 128
1702613 1550805 1488784 1411979 1472034 1472034 1471130 1470226 1468858 1468386 1467602 8 32
1740493 1586285 1524264 1447443 1507490 1507490 1495493 1494581 1493197 1492717 1491925 8 64
1813907 1657299 1584360 1507523 1567562 1567562 1563186 1562266 1549943 1549455 1548655 8 128

Table
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32 33 34 35 37 38 39 41 43 45 46 eRS⋆ LROB

1342495 1331144 1198225 1195777 1194133 1193229 1192325 1192325 1191421 1190517 1189613 2 32
1362985 1360961 1228042 1225562 1223918 1223006 1222094 1222094 1221182 1220270 1219358 2 64
1415884 1413844 1280925 1278405 1273305 1272385 1271465 1260547 1259627 1258707 1257787 2 128
1383391 1372040 1239121 1236673 1235029 1234125 1233221 1233221 1232317 1231413 1231413 4 32
1405089 1403065 1270146 1267666 1266022 1265110 1264198 1264198 1263286 1262374 1262374 4 64
1459196 1457156 1324237 1321717 1316617 1315697 1314777 1303859 1302939 1302019 1302019 4 128
1465277 1453926 1321007 1318559 1316915 1316011 1315107 1315107 1314203 1313299 1313299 8 32
1489391 1487367 1354448 1351968 1350324 1349412 1348500 1348500 1347588 1346676 1346676 8 64
1545914 1543874 1410955 1408435 1403335 1402415 1401495 1390577 1389657 1388737 1388737 8 128

47 48 49 50 62 65 67 69 72 77 eRS⋆ LROB

1189613 1189613 1189613 1251634 1185290 1184386 1122365 1122365 1121461 1121461 2 32
1219358 1219358 1208272 1270293 1203949 1203037 1141016 1141016 1140104 1140104 2 64
1257787 1257787 1257787 1319808 1253464 1252544 1190523 1187067 1186147 1175224 2 128
1230509 1230509 1230509 1292530 1226186 1225282 1163261 1163261 1162357 1162357 4 32
1261462 1261462 1250376 1312397 1246053 1245141 1183120 1183120 1182208 1182208 4 64
1301099 1301099 1301099 1363120 1296776 1295856 1233835 1230379 1229459 1218536 4 128
1313299 1312395 1312395 1374416 1308072 1307168 1245147 1245147 1244243 1244243 8 32
1346676 1345764 1334678 1396699 1330355 1329443 1267422 1267422 1266510 1266510 8 64
1388737 1387817 1387817 1449838 1383494 1382574 1320553 1317097 1316177 1305254 8 128

Table
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tion (paul), Universiẗat des Saarlandes, Computer Science Department,
Saarbr̈ucken, 1994.

[GV95] Bernard Goossens and Duc Thang Vu. Further pipelining and multi-
threading to improve risc processor speed. a proposed architecture and
simulation results. InProceedings of the 3rd International Conference of
Parallel Computing Technologies, pages 326–340, September 1995.

[GV96] Bernard Goossens and Duc Thang Vu. Multithreading to improve cycle
width and cpi in superpipelined superscalar processors. InProceedings
of the International Symposium on Parallel Architectures, Algorithms and
Networks, pages 36–42, June 1996.

[HHM99] M. Horowitz, R. Ho, and K. Mai. The future of wires. InInvited Workshop
Paper for SRC Conference, May 1999.

[Hil95] Mark Hill. SPEC92 Traces for MIPS R3000 processors. University of
Wisconsin, Madison, 1995.
ftp://tracebase.nmsu.edu/pub/tracebase4/r3000/.

[Hil00] Mark A. Hillebrand. Design and evaluation of a superscalar risc processor.
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