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1. Introduction

Szveral nonlinear lower bounds for the runtiﬁe of cartain classes of sorting algorithms
are known [1, 61 . They all apply to algoritims which treat the numbers to be sorted
as. samething “atomic", i.e. whole numbers can be compared or transported, but "no
arithmetic on the numbers" is perfurmed; i.e. it i5 for instance not allowed to break
the binary representation of numbers into parts and to perform computations with the
fragments of ithe numbers. On the other hand at least two fast sorting algorithms make
use of exactly such methods £1, 41 . In this papar - we exhibit a class 9f\5qrtﬁng_a]gu~
rithms where the rastriction of "no ‘arithmetic an nuibers” is partially removed and
_prove a nonlinear lower bound for the runtime of these algorithms.

For natural nhmbérs i et bin (1) denote the binary representation of 1. We will
consider the following sarting problem to be solved by multitape Turing machines:
Input: strings of the form .bin (1)) # bin (iz}'ﬁ ... % bin (im) .

Qutput: bin (jl} £ ... 4 bin {jm} where

(3ys-evady) 15 permutation of (il'f'f’1m)
and h < ... ::'jm‘

For strings w we denote by lul the length of w . A Turing machine is t (n)-time
bounded if for all inputs of length n the machine stops after at most T (n} steps.
1t easily Follows from (6] that any wachine which solves the sarting probiem by rear-
ranging the strings bin (ij) is @ {n leg n)-time bounded .
Alsa if any o {n Tog n)-time bounded Turing machine solves this‘prob1em, then appa-
rently at some point of the computation it must putl the sorted sequence in 2 magic
way out of a black hat. Below we will make the notion of magic precise {as making num-
bers-appear Trom a place on a tape where they apparently are not) -and prove that with-
~out magic @ (n log n) steps are required'fnr sorting. :

2. Kolmogorov-complexity-

The folluwing definitions are basically due to Kolmagorov £51 .

Fix an encoding of 1-tape Turing machines into tﬂ,rl}* such that no encoding of one
machine is the prefix of an encoding of same pther machine. An easy way to achieve this
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is the following. Let M. be a machine, u the usual encoding and let v be the image
of bin ([ul) under the homomorphism which maps © to 00 and 1 ta 10. Encode M
into v 11 u . Denutg by Mx a machine with encoding x . Let U he a universal Tur-
ing machine which given an input z first determines x and v such that z = xv ,
where x' % an encoding of a Turing machine; then U simulates M, an input v,

For we 0, 11 Tet

C(w) = min {lzl : U given z prints w}
z s called the complexity of w . Clearly C (w) < lwl +0 (1) (take z = X where
- X is the encoding of a machine which does nothing). Also for all n there exist
(many) W such that C {w) = Iwl ; this is established by a simple counting argument.

A sequence (w'|i € IN, wi e {0, D7) s called random if C (wi) =gq (i) . Weil-
lustrate these concepts by proving a theorem due to Hennie [3] .

a2

Fact:

If M dis a 1-tape Turing machine which accepts the language {w ﬂlw' wlwe 0, 1}*)
then M is a (n2)-time bounded™.

Proof:
If w+w' , then no crossfng sequence generated in the middie third of w #le W
. 1
equals a crossing sequence in the middle third of w‘r%lw l.w' by the usual argu-
ment.

Let £ be the a]phaﬁet of M. Fix some 1-1 homomorphism - h from 5 to {0, 1}*
tet M' be a machine which given an input v enumerates a11 we€ {0, 1}* , simla-
tes M an input w %IW|,W and tests if h'l(v) accurs as a crossing sequence,
When that hdppens M' outputs w . Let x be the encoding of M' and CS any cros-
sing sequence generated by M on input w #lwi w , then U given xh{CS) prints w .
Hence € (w) < Ixl + 0 (ICS[) , or ICSI =aq (C (w)) . Thus if (wi|i e NN} isa
random sequence, then for any wl all the i/3 crossing sequences generated in the’

P . _ ‘
middle third of W’ #]w ! W' have length g (i) . . o
. * .
For u, v € {0, 1} fet

C{utv) = min [tz] : U given z ¢ v prints y} and

I {ulv) Tul - € {ulv) .

t oy _ denotes the'string # ... 4 (i-times)
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¢ (ulv) 1is called the complexity of u given v,
I {ulv}. dis called the information about u din v .

3. The complexity of sorting without magic

Let £ {(n) be an easily computable function in the sense that bin (£ {n)) can be

computed from " im0 (n) steps by same 2-tape Turing machine: Moreover let

nI/Z logn < £ (n} < n°, forsome a<1..
Let b (n) =1/ n/E{(n)> . Then

£(n) = w (6% () tog'm)* ' (3.1

log b (n) = a (logn) . ' (3.2)

Rather than studying sorting directly we study machines which solve .the following
"2 {n)-matrix transposition problem" :

Input: wé€ {0, 11"

Qutput: if b (n) "is not an integer then output w ; .
if b.(n) is an integer and

- £
W = Wll...Wlb(n}...Wh{n)l...wb(n)b'(n) F w'ij £ {0, 1} {n) 1

then output Wi w21"‘wb(n)1f"wlb(n) wzb(n)“'wb(n)b(n)

on the same squares where the input was.
(Transposition of a matrix which is stored row by row).

Clearly any sorting algorithm can be turned into a not muchk siower transposition
algorithm: . T . . :

For a11 1 and J replace Wis by bin {7+ {j-1) b (n))} Wiy separate the
binary numbers by markers; sort; remove the markers and the additional leading bits
[41 . ) ' -

In order to keep the following calculations simple we consider only  1-tape k-head
machines with alphabet {0, 1} . Thus let M- be such a machine which is £{n)-time
bounded and which performs matrix transposition. In what follows we write b for

b {n) and £ for £ (n} . For inputs of length n divide the tape into blocks of

PF) = w(an))  iF g (n) = o (£(N)

L,
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b -£ cells each {b + £ s the length of a row of the matrix), such that the input
gceupies b consecutive blocks. Number the blocks with the integers such that the in-

put occupies blocks 1 to b . DBivide the time M spends inte time intervals of

£ b consecutive steps each. Number them from 1 to T < fe(n)/ (2 b}]

Add a time interval 0 which corresponds to the time hefore the computation. Let

Bi(t) dencte the content of the block with number 1 at the end of the interval t .

Let I (t)} be the set of the numbers of the blocks visited in time interval t . Then

I(ty<2k forall t. ‘

We say M performs magic if for some weg {wll,...,wbb} and some t € (1,...,T}

T L(uB(t) = T I (w[B(t - 1)) + &b
ieI{ty - iel(t)
that_means after time interval t there is a 1ot more information about w in the
single hlocks which vere visited than there was before (observe £/b > nlfg) .

Theorem: : . o .

If M dues not perform magic then ¢ (n)>c-nlogn for almost all n such that
b (n} s an integer and some positive constant ¢ .

The proof follows the pattern of [6] . We assume that all heads are originally on the
first bit of the input. Thus M can reach only blocks Si with |1 <7 . For
1l «T, je{l,....b1 and t <7 1et

As8) = x I'(ulB.(t))/L
R . wEBj(T) :

that is intuitively the "number® of words w “present™ in Bi(t} which will finally

be in block j . Of course there may be half words, quarter words etc. present.

Lemma 1:

For almost-all n such that b s an integer there exist {many) inputs.

W = Wj.owy such that (3.3) and {3.4) holg:
A%j(o) = 2 for all 7  apd j {3.3)
b
T Tuig) <2 (b+2) forant Be (o, 3P, (3.1

) wE{wll,...,wbb}



Praof:

We estimate the numbér of jinputs W such that (3.3) ar (3.4) does not hold. If
{3.3) does not hold for W then for some T and J

£ L(wB(0) > 22 .

wEBj(T) . .
" Hence
bl (£ - C(w]Bi(O)) > 2 £
weB . (T) :
J .
ar

I T{w|B(0)) < £ (b -2)
weB o (T) 1

Thereare b + 1. ways to choose i and b ways to cheose J such that '(3.3}
does not hold because Aij(ﬂ) >2 . If (3.3) does not hold for i and j then
there is a sequence of strings z = (Zl""’zb) with - & Izil < £(b - 2) such that
ij output of U given Zﬁ#wil"'"ib fﬂr.aTT p € {l,...b}
There ara at most '

zﬂ(b—z) (&'h)b

such sequences z . For each i, J and z there are Zﬁb(b'l)' ways to specify the
vords wpq’ 9.+ 3 i.e. the words which wiTl Tinally be in blocks with numbers = i.

If i # b + 1 there are mareover ZE ways to specify wij - Thus the totail
number of inputs W such that (3.3) does nat hold is bounded by

. 2 '
(b+1) b zﬂ(b-Z) + h]ogﬁb . 2£b1—£b+£

< -g"~€ + blogn + log-b{b+1) _ o) by (3.1)

If {3.4}) does not hold for W , then for some B € {0, l}ﬂb.i

. T I (w]B) =& (b+1)
WE{wll""’wbb}

Hence ' T (L~ CwlB)) > £ (b+1)
. v
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or
5 o(u|g) < bEL - L(b+1)
w .

bi

There are 2 Ways to choose B . There are at most

’
o0 - E(b+1) | b sequences of strings

2 = (Zygseeazy) SUCh that T l1zg5l < b%2 - 2(b + 1)

B together with the séquence of strings z specifies all vy 5 namely Wi T output
of U given zijitB.Thus the number of inputs W that do not satisfy (3.4) is at
most o ' ’

GbL | o = 2{b41) + b%1ogn

2
_ gh-b+bleon _ o0y by (3.1) . : o

Choose input W such that (3.3) and (3.4) hald.

For t = T let

b
R{t) = iE-T J_El A;3(t) Tog Aslt) -

Then 'Aij(o) < 2 forall i and j . Thus X{0} <2{2T +1) b .

On the other hand let W' be a machine which given input

bin{i) § bin(3) # vy-- v, (v; € (0,'1}) prints V4.5 .-Let x be an encodirg

of M' . Then U given input x bin ({(i - 1) L} bin (i)  By(T)  prints wy, .
Thus : : :

In

¢ (v}|sj{r)) 2logn + 0(1)  for all weBy(T)

Thus for all WE Bj(T) :

c (wlBj(T)} 2 Jogn + 01} or

A

I ufBy(T)) = £-2Togn- (1)

I\
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Thus ' o
i b. (1 N 1og£nn+ om): a (b).
Hence K(T) =2 £ A (T) log A..(T)
i JJd - N
= ba(b) log o (b)
= a (b% Tog ) by (3.2) .
We prove 7
Lemma 2: K'_{t) - .‘K {(t-1) < 0(b) - for all fc‘e'tl,...;n
This implies of course -
T 2 (K(T) - K(0)) / ob)
= 0 (6% logn - (4T + 2) b)/b)
2 B{bloan - (4T +2)) for some D aﬁfl large n.

Hence  T(1+4D) > Db logn , and the theorem Follows..
It remains to prove Lemma 2 : '

Rt} - K(t - 1) = = (A;(t) Tog A (t) - Ajj{t = 1) Tog A(t - 1))
J ‘ 4 o

T
feI{t)
= I[(. z

3 iel(t)
Aggiti2l C Ayl

A-]j'(t)) Tog %E?(t) Aij(t)}

Agz(t = 1)

: o 1
A (t - 1)) ]
(1‘E%(t) _‘J( 1) Tos { g¢ ex(t)

‘because the -function flx) = x Tog x {f(0} :=0) 1s negative in .[0, 1] )
onotene in [1, =) and convex in [0, @)

Because no magic is performed the following is true for all J and all we BJ.(T)

' . < I {w|B.{t - 1)+ £/b .
e VB =t (e - 1)
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Thus
15&) hraled = el () Aastt)
A2l
- %- EoT (ulBy(e))

z
WeB (T)  dei(t)

1A
=]

b ( = I(w]Bi(t-- 1)+ 2/b)
weB((T) ieI(t) .

oz At -1) & 1
jereey M

Therefore K{t} - K{t - 1) < £ 5(J) where

J
S() = (T Aylt-3)+1)log (T Ay(t-1)+ 1) '
i€l(t) iel{)
1 '
- b A..{t -1) Tog { 5+ X AL {t - 1))
qelt) 9 ey
Mow for all Jj such that

EooAlt-1) < : L (3.5)

ier(t)
we find S(j) <0 (1) as #{x) =x logx - is bounded in [0, 1]

- we find for all j with

|

Using log {x +1}) < Togx +

T A{t-1) > 1 : . . (3.6)
ier(g) "

(5 Bat-1)+1) Tog { £ A(t-1)+1)
ferfty M : ier(gy M

= K A'ij(t -~ 1) {leg {1 E

At -1) +1
JeI(t) ci{t) 13t Y+

+

 A{t-1)+1
er(g) M



333

thus

St = 1+ (2+70g(ZK) T Aslt-1) .

€I(t)

Finally for some positive constant E

K(t) - K(t - 1) £oOSGE) + v S{j)

£ ) ‘
(3.5) -(3.6)
. ! . b ( l)
< 0(b) + £ & r A..lt -
j=1  derqry M
. -b
= 0f{b} + E £ z T 1 (w]Bi(t)j/Ji
' TEI(t) d=1 weB,(T) _
= o + £ o x L (u]B(t))
iel{t) “E{wll"“’whh} _
< 0(b) + %- T L(b+1) by (3.8)
" El{t) |
= 0(b) + ZKE(b+.1) = 0 (b) .
This proves Lemmz 2 and the theorem. - - W "oa

We conclude by indicating how magic can be performed for two numbers

u = u u and v = Vyeee¥y (ui, vy €140, 11) = Form

1+
W= Wp..wp, by Wy = UV, omod 2 (1eicf)

If u and v are appropriately chosen, then

I (ulw) and I {ulv) are bothclose to 0 , however I (u|wv) 1is close to 2



334

4.

[11

a1

[3]

[4]

5]

[&]

References

A. Aho, J. Hopcroft, J. (1 Tman:

G._Chaitin:

F. ‘Hennie:

J. Hopcroft, W. Paul, L Valiant:

A. Kolmogorov:

H.J. StoB:

" The design and.analysis of computer

algorithms,
Addison-WesTey, 1974.

.A theory of program size formally

identical to information theory,-
IBM Yorktown, Heights, preprint, 1974,

One-tape off-line Turing machine
computations, )
Information and Centrol, 8, 553-578, 1965,

On time versus space and re]ated_proﬁ]ems,
16th IEEE-FOCS, 57-64, 1975.

Three approaches to the quantitive
definition of infaormation,

Problems of Information Transmission, 1,
1-7, 1965. ’ ’

Rangierkomplexitét ven Permutationen,
Acta Informatica, 2, 80-96, 1973,



