
Completing the Automated Verification of a Small
Hypervisor -

Assembler Code Verification?

Wolfgang Paul, Sabine Schmaltz, and Andrey Shadrin

Saarland University, Germany
{wjp,sabine,shavez}(at)wjpserver.cs.uni-saarland.de

Abstract. In [1] the almost complete formal verification of a small hypervisor
with the automated C code verifier VCC [2] was reported: the correctness of the
C portions of the hypervisor and of the guest simulation was established; the
verification of the assembler portions of the code was left as future work. Suit-
able methodology for the verification of Macro Assembler programs in VCC was
given without soundness proof in [3]. A joint semantics of C + Macro Assembler
necessary for such a soundness proof was introduced in [4]. In this paper i) we
observe that for two instructions (that manipulate stack pointers) of the hyper-
visor code the C + Macro Assembler semantics does not suffice; therefore we
extend it to C + Macro Assembler + assembler, ii) we argue the soundness of
the methodology from [3] with respect to this new semantics, iii) we apply the
methodology from [3] to formally verify the Macro Assembler + assembler por-
tions of the hypervisor from [1], completing the formal verification of the small
hypervisor in the automated tool VCC.

1 Introduction

Kernels and Hypervisors: kernels and hypervisors for an instruction-set-architecture
(ISA) M run on processors with ISA M and have basically two roles

– the simulation/virtualization of multiple guests or user virtual machines of ISA M

– the provision of services for the users via system calls (e.g. inter process commu-
nication)

The salient difference between kernels and hypervisors is that under kernels guests only
run in user mode, whereas under hypervisors guests are also allowed to run in system
mode. Thus, hypervisors must implement two levels of address translations (either sup-
ported by hardware features like nested page tables or in software using shadow page
tables), whereas kernels must only realize one such level.

? Work partially funded by the German Federal Ministry of Education and Research (BMBF)
in the framework of the Verisoft XT project under grant 01 IS 07 008. Authors in alphabetic
order.

Kernel and hypervisor verification comes in 3 flavours:

– Verification of the C code alone.

A famous example is seL4 [5]. Because kernels and hypervisors cannot be writ-
ten exclusively in C such a proof is necessarily incomplete, but we will see shortly
that closing this gap is not hard.

– Complete verification at the assembler level.

Examples are the pioneering work on KIT [6] and the current effort in the FLINT
project [7]. Complete code coverage can be reached in this way, but, due to the
exclusive use of assembler language, productivity is an issue.

– Verification of both the C portion and the non C portion based on a joint semantics
of C + inline assembler [8, 9] or C + Assembler functions.

As already shown in [10] C portions and non-C portions of a kernel can be ver-
ified separately and the correctness proofs can then be joined into a single proof
in a sound way. The same could be done to cover the non C portions of seL4. In
an interactive prover like Isabelle, which is used in [9] and [5], formal work can
directly follow the paper and pencil mathematics. A small extra effort is needed if
we want to perform such work in an automated C code verifier like VCC.

For work applying formal methods specifically to hypervisors consider the Nova micro-
hypervisor [11], the recent MinVisor verification effort [12], or the partial verification
of the Microsoft Hyper-V hypervisor [13].

The baby hypervisor [1] virtualizes a number of simplified VAMP [14, 15] (called baby
VAMP, see Fig. 2) guest processors (partitions) on a sequential baby VAMP host pro-
cessor. The baby VAMP ISA is a simplified DLX-ISA (which is basically MIPS). The
simplified VAMP architecture this work is based on does not offer any kind of virtu-
alization support. Privileged instructions of guests (running in system mode) cannot
be executed natively on the host. Instead, any potentially problematic instruction (e.g.
write to the page-tables, change of page-table origin) causes an interrupt on the host
machine and is subsequently virtualized by the baby hypervisor (see Fig. 3).

The baby hypervisor guarantees memory separation of guests by setting up an ad-
dress translation from guest physical addresses to host physical addresses by defining
a host page table [16] for each guest. A host page table is composed with the respective
guest page table (if the guest itself is running in user mode) by the baby hypervisor
to form a shadow page table that provides the direct translation from guest virtual ad-
dresses to host physical addresses. Then, running the host processor in user mode with
the page table origin pointing to the shadow page table is sufficient to correctly virtual-
ize the guest – as long as the guest does not perform changes to its own page table. To
detect this case, the baby hypervisor marks those pages containing the guest page table
as read only in the shadow page table. In case of a write access to the guest page table,

baby hypervisor specification

guest guest

current guest

guest

host

registers

memory

registers registers

memory

memory

registers

memory

11 nngmemPCB gmemPCB

...

...

Fig. 1: Baby hypervisor overview

baby VAMP

program counter (pc)

memory (m)

general purpose register file (gpr)

special purpose register file (spr)

byte−addressable

Fig. 2: Overview of the baby VAMP
model

a page-fault interrupt occurs, which allows the baby hypervisor to correctly virtualize
the guest updating its page table.

As illustrated in Fig. 1, guest machines virtualized by the baby hypervisor are
represented by memory regions (data structures of the baby hypervisor implementa-
tion) of the host machine. Process-control-blocks (PCBs) correspond to register con-
tents of not-currently-running guests. At the beginning of the interrupt handler of the
baby hypervisor, guest registers are saved to their corresponding PCB, the function
hv_dispatch() is called to virtualize the instruction causing the interrupt, and, at
the end of the handler, guest registers are restored to the host machine registers.

Specifying assembler portions of code in a C verifier: C is a universal language, hence
it can simulate any other language. In [1], in order to verify the correctness of the baby
hypervisor, a baby VAMP interpreter is implemented in C. For the verification, the
execution of hardware steps of the host processor that directly emulate guest steps are
replaced by calls of the interpreter (which is implemented in such a way that it performs
a single step of the baby VAMP model, i.e. executes a single machine instruction). The
data structures of the interpreter are the obvious ones: i) hardware memory, which is
fortunately already part of the C memory model of VCC and ii) processor registers,
which are stored in a struct in a straightforward way. Based on this and a specification
of the effects of process save and restore, the authors of [1] succeed to prove process
separation of the guests. We are left with the problem to verify process save and restore
in VCC and to integrate this proof with the existing formal proofs in a sound way.
Consider that in the context of system verification, the notion of soundness encompasses
that the resulting integrated formal model forms a sound abstraction of the physical
machine’s execution.

Verifying Macro Assembler in C: Theoretically, one could now try to prove properties of
assembler programs in VCC by proving the properties for the interpreter running the re-

sulting machine code programs. The expected bad news is that this turned out to be inef-
ficient. The good news is that modern hypervisors tend to use Macro Assembler instead
of assembler. The control operations of Macro Assembler (stack operations, conditional
jumps to labels) fit C much better than the (unstructured) jump and branch instructions
of assembler language. This in turn permits to perform a semantics-preserving transla-
tion of Macro Assembler code to C code. That this works in an extremely efficient way
was shown in [3]. Indeed, in [17], the author reports about the (isolated) verification of
all Macro Assembler portions of the Microsoft hypervisor Hyper-V. Thus, it seems that
we are left with i) the task to formally verify the Macro Assembler portions of the small
hypervisor from [1], ii) the task to integrate this into the formal proof reported in [1],
and iii) to show that this is sound relative to a joint semantics of C + Macro Assembler
presented in [4]. We achieve the first two tasks by extending the VCC proof of [1], and
we provide a pencil-and-paper proof for the third task.

The last two instructions: It turns out that two instructions of the hypervisor code are
not compatible with the chosen Macro Assembler semantics: in our Macro Assembler,
there is a built-in abstract notion of the stack. The corresponding stack pointer registers
are not visible anymore on Macro Assembler level; they belong to the implementation.
In order for the C + Macro Assembler code of the baby hypervisor to run properly
when an interrupt is triggered on the host machine, however, they must be set up with
appropriate values so that the stack abstraction for C + Macro Assembler is established.
The good news is that this is done without using control instructions of the ISA, thus, the
method from [3] can still be used. The moderately bad news is that in the end soundness
has to be argued relative to a joint semantics of 3 languages: C + Macro Assembler +
assembler.

Outline In Section 2, we introduce a rather high-level stack-based assembler language
that we call Macro Assembler (MASM, not to be confused with Microsoft’s MASM) and
merge it with a very low-level intermediate language for C, C-IL, yielding an integrated
semantics of C-IL and MASM – which is amenable to verification with VCC. In order to
justify that the integration of semantics is done correctly, we state compiler correctness
simulation relations for the two languages as pencil-and-paper theory in Section 3.

Since the MASM semantics defined before in [4] is only applicable when the stack
pointers have been set up correctly, we remedy this shortcoming by extending MASM
semantics in a simple way suited specifically to the situation occuring in the baby hy-
pervisor in Section 4. Having achieved full coverage of the baby hypervisor code with
our stack-based semantics, we proceed by translating the MASM code portions to C
code according to the Vx86-approach in Section 5 – using VCC to verify correctness of
the translated code. We conclude with a brief discussion of the verification experience.

All details of theories presented in this paper can be found in [18].

2 Models of Computation

2.1 Macro Assembler – A Stack-Based Assembler Language

In [1], it is stated that the assembler code verification approach to be used for verifica-
tion of the missing assembler portions should be the same that has already been used

(C)

...

compiler

simulation

relation

system mode user mode

save_guest

hv_dispatch

restore_guest
(Assembler) (Assembler)

...

...host machine ...

baby hypervisor
implementation

baby hypervisor

specification

(current guest)

...

...

......

user mode

jisr
......

rfe

relation

simulation

relation

guest guest

simulation

Fig. 3: Overview of baby hypervisor execution

in the Verisoft project [8, 15]: Correctness of assembler code execution is argued step-
by-step on Instruction-Set-Architecture (ISA) level. Overall correctness in combination
with the baby hypervisor C code is to be established by applying a compiler correctness
specification that relates ISA and C configurations.

The assumption in [1] is that it would be quite simple to use the baby VAMP in-
terpreter from [1] to verify the assembler code portions of the baby hypervisor by per-
forming steps until the code has been executed. However, while this approach works
decently in an interactive prover, this does not work so nicely in an automated prover.
Running the baby VAMP interpreter for more than a few specific consecutive steps
easily leads to huge verification times.

With the tool Vx86 [3] it has been demonstrated that VCC can efficiently be used to
verify (isolated) non-interruptible x86 Microsoft Macro Assembler code – by translat-
ing Macro Assembler to C which is verified with VCC. Non-interruptability can safely
be assumed for the baby hypervisor code, thus, we decided to follow this approach.
In order to formally argue soundness, we need an assembler code execution model for
which simulation with a C code execution model is simple to establish. In this light
comes our custom high-level stack-based assembler language we call Macro Assembler
in the following brief summary.

Macro Assembler is a language with the following features: Jumps are expressed
as (different flavors of) gotos to locations in functions, function calls and return are al-
ways made with the call and ret macros, and the memory region that holds the stack is
abstracted to an abstract stack component (a list of stack frames) on which all stack ac-
cesses are performed. The first two choices restrict the applicability of MASM-semantics
to well-structured assembler code. For baby VAMP, the following instructions are im-
plemented as macros: call, ret, push, pop. A macro is simply a shorthand for a sequence
of assembler instructions.

Configuration A Macro-Assembler configuration

c = (c.M, c.regs, c.s) ∈ confMASM

consists of a byte-addressable memoryM : B8k → B8 (where k is the number of bytes
in a machine word and B ≡ {0, 1}), a component regs : R → B8k that maps register

MASM

C−IL MX

Registers

Context Stack

...Stack

Memory

Memory

Memory

Stack

MASM Context

C−IL Context

C−IL Context

MASM Context

(active)

Fig. 4: Integrated semantics of C-
IL and Macro Assembler with al-
ternating execution contexts

dummy (4 words)

ra
pbp

frame header

High Memory

Low Memory

STACK_BASE_ADR

lifo

saved
register area

ra
pbp

...

paramnpar−1

param4

...

dummy (4 words)

ra
pbp

Function
Args

Local Vars

Caller Save
Regs

Return Destination

Callee Save
Regs

TemporariesTemporaries

Stack

Frame

...

Stack

Frame

Stack

Frame

asm

C−IL

Fig. 5: MX-semantics stack layout

names to their values, and an abstract stack s : frame∗MASM. Each frame

s[i] = (p, loc, saved, pars, lifo)

contains the name p of the assembler function we are executing in, the location loc
of the next instruction to be executed in p’s function body, a component saved that
is used to store values of callee-save registers specified by a so-called uses list of the
function, a component pars that represents the parameter region of the stack frame, and
a component lifo that represents the part of the stack where data can be pushed and
popped to/from. For a detailed description of Macro Assembler semantics, see [18].

2.2 Integrated Semantics – Merging C Intermediate Language and Macro
Assembler

In our verification effort, we are particularly interested in the correct interaction be-
tween assembler and C at function call boundaries. (Note that in contrast to the Verisoft
project, we do not have inline assembler code here, but assembler functions calling C

functions and vice versa.) Thus, we define an integrated semantics of a simple C in-
termediate language and Macro Assembler which allows function calls between those
languages to occur according to the compiler’s calling conventions.

In order to describe this integrated semantics, we first give a very short overview of
the features of our C intermediate language C-IL. C-IL is a very simple language that
only provides the following program statements: assignment, goto, if-not-goto, function
call, procedure call, and corresponding return statements. Goto statements specify des-
tination labels. Pointer arithmetic on local variables and the global memory is allowed.
There is no inherent notion of a heap in C-IL.

C-IL Configuration A C-IL configuration

c = (M, s) ∈ confC-IL

consists of a global, byte-addressable memory M : B8k → B8 and a stack s ∈
frame∗C-IL which is a list of C-IL-frames. Similar to MASM, a frame contains control
information in form of location and function name – further, it contains a local mem-
ory that maps local variable and parameter names to their values as well as a return
destination field for passing return parameters.

Integrated Semantics In [4], we provide a more detailed report on the integrated se-
mantics – a defining feature of which is its call stack of alternating C-IL and MASM
execution contexts (see Fig. 4). Exploiting that both semantics use the same byte-
addressable memory, we obtain a joint semantics in a straightforward way by explicitly
modeling the compiler calling conventions and by calling the remaining parts of a C-IL-
or MASM-configuration an execution context for the respective language.

Configuration A mixed semantics (MX-) configuration

c = (M, ac, sc) ∈ confMX

consists of a byte-addressable memoryM : B8k → B, an active execution context ac ∈
contextC-IL∪contextMASM, and a list of inactive execution contexts sc ∈ (contextinactive

C-IL ∪
contextinactive

MASM)∗ which, in practice, is alternating between C-IL and MASM.
Here, an inactive execution context always contains information on the state of

callee-save registers, which, before returning from MASM to C-IL, must be restored
in order to guarantee that execution of compiled C-IL code will proceed correctly – or,
respectively, the state of callee-save registers which will be restored automatically by
the compiled C-IL code when returning from C-IL to MASM.

3 Compiler Correctness Specification

We assume a compiler correctness specification in the spirit of the C0 compiler [19]
from the Verisoft project. We state a consistency relation that we expect to hold at
certain points between a baby VAMP ISA- and a MX-computation (Figs. 6, 7).

ISA−Assembler
Program p

MX

Registers

MemoryMemory

Stack

stack

code(p)

Fig. 6: Mapping abstract configuration to
physical machine configuration by com-
piler consistency relation

consis consis

casm c ' asm

c c '

Fig. 7: Maintaining a compiler consis-
tency relation between ISA- and MX-
computation

Definition 1 (Code consistency). The code region of the physical baby VAMP machine
d is occupied by the compiled code of program p.

consiscode(p, d) ≡ d.mlen(code(p))(codebase) = code(p)

where code(p) denotes the compiled code of program p represented as a byte-string,
len returns the length of such a string, mn(a) denotes reading a byte-string of length n
starting at address a from byte-addressable memorym and codebase denotes the address
in memory where the code resides.

Definition 2 (Memory consistency). The global memory content of the MX-machine
c is equal to that of the physical baby VAMP machine d except for the stack and code
region.

consismem(c, d) ≡ ∀a ∈ B32 \ coderegion \ stackregion : c.M(a) = d.m(a)

Definition 3 (Stack consistency). The stack component of the MX-machine c is repre-
sented correctly in registers and stack region of the baby VAMP machine d.

consisstack(c, d, p) ≡ d.mlen(flattenstack(c))
(STACK_BASE_ADR) = flattenstack(c)

∧ consisregs(c, d, p)

where flattenstack denotes a function that, given a MX-configuration returns a list of
bytes that represent the stack in the physical machine according to the compiler defini-
tions and consisregs specifies that all machine registers have the values expected for the
given abstract stack configuration of c. These can only be defined when additional in-
formation about the compiler is given: E.g. in order to compute the return address field
of a stack frame, we need to know the address in the compiled code where execution
must continue after the function call returns. The calling conventions detail where pa-
rameters are passed (e.g. in registers and on the stack), while the C-IL-compiler defines
the order of local variables on the stack (and whether they are cached in registers for
faster access). For an exemplary stack layout of our integrated semantics, see Fig. 5.

Definition 4 (Compiler consistency). An MX-configuration c and a baby VAMP con-
figuration d are considered to be consistent with respect to a program p iff code consis-
tency, memory consistency and stack consistency are fulfilled.

consis(c, d, p) ≡ consiscode(p, d) ∧ consismem(c, d) ∧ consisstack(c, d, p)

Definition 5 (Optimizing compiler specification). The compiler relates MX compu-
tations (ci) and baby VAMP ISA computations (di) via two step functions s, t : N→ N
with the meaning that, for all i, MX-configuration cs(i) and ISA-configuration dt(i) are
consistent

∀i : consis(cs(i), dt(i))

in such a way that the step function s(i) at least describes those states from the com-
putation (ci) which are about to perform an externally visible action or where such
an action has been performed in the previous step. Further, both s and t are strictly
monotonically increasing.

In our current sequential setting without devices, the only externally visible action pos-
sible is an external function call. From the viewpoint of C-IL-semantics, calls to MASM
functions are external, and vice versa.

For a well-structured example of a simulation proof for compiler correctness of a
multi-pass optimizing compiler, see [20]. In the compiler specification sketched in the
thesis of A. Shadrin [18], we expect compiler consistency to hold additionally at the
beginning and at the end of function bodies, which – while restricting the extent of
compiler optimization – simplifies the inductive proof significantly.

4 Extending the Semantics for Stack Pointer Setup

While we saw that the formalism of Macro Assembler is nicely suited to serve as a
basis for justification of a translation-based assembler verification approach, it became
obvious that the restrictions of Macro Assembler as described so far prevents the use of
Macro Assembler for some parts of the baby hypervisor code. In fact, Macro Assembler
semantics is a sound abstraction for execution of all but the first 46 assembler instruc-
tions of the baby hypervisor code – the last two of those 46 set up the stack pointer
registers in order to establish the stack abstraction of Macro Assembler (see Fig. 8).
Before those two instructions that set up the stack pointers occur, the stack pointers are
uninitialized and we cannot establish compiler consistency for the preceeding Macro
Assembler execution.

The root of the problem In order to run the MX-machine (which makes use of a rather
high-level stack abstraction), we need to establish the stack abstraction correctly on the
physical machine in the first place. In order to apply our compiler correctness specifica-
tion, we need to establish initial compiler consistency, of which stack consistency is one
part. The first part of the baby hypervisor’s interrupt handler implementation actually
has to set up the stack abstraction for the baby hypervisor code to run by writing the

(MASM)

implementation

save_guest
(MASM)

(Assembler)

baby hypervisor

set up stack
pointers

restore_guest

...
rfe

......

...... ...

...

hv_dispatch
(C)

jisr
host machine

compiler

simulation

relation

Fig. 8: The semantics stack applied to the baby hypervisor’s interrupt service routine
after introduction of the first Macro Assembler version

stack pointer registers of the baby VAMP machine (see Fig. 8). The stack abstraction of
the original Macro Assembler semantics, however, abstracts the stack pointers away.

While we could have proven the correctness of the assembler instructions up to
the initialization of stack pointers using the baby VAMP ISA model in an interactive
prover (which would have been bearable after rewriting the assembler code to perform
stack initialization much earlier), we instead looked at the problem from the other side:
What changes do we need to make to Macro Assembler semantics in order to "lift"
these instructions to the Macro Assembler formalism so that we can verify their cor-
rectness with VCC? Considering the baby hypervisor implementation closely, we are
in a situation where the stack pointers are always set up in the same way: by writing the
stack base address STACK_BASE_ADR of the baby hypervisor to both stack pointer
registers, effectively resulting in an empty initial stack configuration (i.e. there are nei-
ther parameters nor saved register values nor temporaries that can be popped from the
stack). This is the case since a baby hypervisor execution context is always created by
an interrupt, then the baby hypervisor performs emulation of a guest step and then the
execution context perishes by giving up control to the guest.

Our proposed solution For the situation in question, a simple band-aid is to just extend
Macro Assembler semantics in such a way that there are two execution modes:

– abstractStack: The existing one with stack abstraction (stack pointer registers are
hidden), and

– noStack: a mode without stack (stack pointer registers are accessible while function
calls and stack operations are prohibited).

Defining the transitions between execution modes for this case is simple: When ex-
ecuting in noStack-mode, writing STACK_BASE_ADR to both stack pointer registers
immediately results in an equivalent configuration in abstractStack-mode with empty
stack content, whereas accessing the stack pointers in abstractStack-mode while the
stack content is empty leads to an equivalent noStack-mode configuration (see Fig. 9).

With these definitions, we achieve full code coverage on the baby hypervisor with
the resulting improved MX-semantics. While the chosen solution is rather specific, its
simplicity raises the question whether there are more cases in which we can lift as-
sembler instructions incompatible with stack abstraction to the Macro Assembler-level

(empty temporaries)

write STACK_BASE_ADR

to stack pointer registers

access stack pointer registers

MASM−abstractStackMASM−noStack

Registers

MemoryMemory

Registers

Stack
temporaries

(empty)
control control

Fig. 9: Switching between mode without abstract stack and mode with abstract stack

under certain conditions. We think that the stack switch operation present in thread
switch implementations (substituting the stack pointers of the physical machine with
the stack pointers associated with the next thread to run) is such a candidate, which
will enable the sound verification of the code of thread switch implementations using
automated C verifiers.

5 Assembler Verification Approach

For the assembler code verification of the baby hypervisor, we follow the general idea
used in Vx86 [3]: Assembler code is translated to C code which is verified using VCC.
Since there is very little assembler code in the baby hypervisor, we do not implement
a tool that performs the translation (e.g., like Vx86) – instead, we formally define the
translation rules and translate the code by hand according to the rules. We state this
translation using Macro Assembler and C-IL semantics in [18].

The translation, in general, works as follows: we model the complete MASM state
in C-IL using global variables and translate each MASM-instruction to one or several
C-IL-statements. Recall that a MASM-configuration contains three main parts: the byte-
addressable memory, a register component, and a stack of MASM-frames which each
consist of control information, saved registers, parameters, and a component lifo of
temporaried pushed to the stack. The byte-addressable memory is represented by C-
IL’s own byte-addressable memory. For register content, we introduce global variables
gpr and spr as arrays of 32-bit integer values of appropriate size. Control information
is translated implicitly, by preserving the structure of function calls and jumps of the
MASM-program during the translation. We model each of the stack components saved,
pars and lifo by a corresponding global 32-bit integer array variable and a 32-bit un-
signed integer variable that counts the number of elements occupied in the array. For an
example of representing MASM-state, see Fig. 10.

Translation We define a function τMX2IL : ProgMX → ProgC-IL which, given a pro-
gram πMX of the integrated semantics returns a C-IL program πC-IL = τMX2IL(πMX).
MASM-functions are translated to C-IL-functions; every MASM instruction of πMX is
translated to one or several C-IL statements while C-IL statements of πMX are simply
preserved in πC-IL.

ab

g
h

a

c

f

e

C-IL

i
j

k
l
m

n
o
q

r

n o q rn o q r

n o q ri j k l m

n o q ra b c d e n o qf g h

d

a lifo element

a saved element

i

a pars element

0-th stack frame

top stack frame

0
1
2

0
1
2

0
1
2

MX machine abstract stack

lifohyb

cnt lifo

cnt saved
saved hyb

parshyb

cnt pars

0 cnt pars−10

00 cnt saved−1

00 cnt lifo−1

MASM

MASM

MASM

Fig. 10: Example of representing a Macro Assembler stack using C data structures

Consider the translation of the push-instruction:

push r ⇒ lifohyb[cntlifo] = gpr[r]; cntlifo = cntlifo + 1

In MASM semantics, the push-instruction simply appends the value of register r to
the lifo-component (which is modeled as a list in MASM-semantics and as an array
with a counter in the translated program). Other examples are the translation of the
sw-instruction or the add-instruction below:

sw rd rs1 imm ⇒ ∗((int ∗)(gpr[rs1] + imm)) = gpr[rd]

add rd rs1 rs2 ⇒ gpr[rd] = gpr[rs1] + gpr[rs2]]

Here, rd, rs1, rs2 are register indexes, and imm is a 16-bit immediate-constant – and
sw is a store word instruction that stores the register content of register rd at offset
imm of the memory address in register rs1, while add is an instruction that adds the
values of registers rs1 and rs2, storing the result in rd.

Soundness A soundness proof for this approach is given by proving a simulation be-
tween the MX-execution of the original program πMX and the C-IL program πC-IL that
results from the translation. The simulation relation and a pencil-and-paper proof are
given in [18].

To achieve a clear separation between the original C-IL-code and the translated
MASM-code, we place the data structures that model MASM-state at memory addresses
which do not occur in the baby VAMP, i.e. addresses above 232. We call this memory
region hybrid memory, since it is neither memory of the physical machine (which is
covered by our compiler correctness specification) nor ghost state (VCC prevents in-
formation flow from ghost state to implementation state). Thus, the translation itself
does not affect the execution of the original C-IL code parts. The actual proof is a case
distinction on the step made in the MX-model: due to the way the translation is set up,
correctness of pure C-IL steps is quite simple to show, while inter-language and pure
MASM-steps have to explicitly preserve the simulation relation between the translated
and the original program.

In order to formally transfer properties proven with VCC on the verified C code
to the MX-execution we still lack a proof of property transfer from VCC C to C-IL.
However, this gap should be straight-forward to close as soon as a formal model of
VCC C is established.

The main advantage of how we implement this approach over how it has been done
in the case of Vx86 is that we have a formal semantics for Macro Assembler that is
quite similar to the C intermediate language (for which we also have formal semantics)
we translate to. In [3], the closest formal basis for assembler code execution is given
by the x86-64 instruction-set-architecture model developed by U. Degenbaev [21] – the
authors apply the Microsoft Macro Assembler compiler to generate x86-64 code which
is then translated to C. A monolithic simulation proof for this approach appears to be
quite complex due to the big formal gap between the ISA model and the C seman-
tics – thus, we deliberately chose Macro Assembler semantics as an abstraction of the
ISA assembler code execution model in such a way that Macro Assembler semantics is
structurally very similar to C-IL semantics.

6 Results & Future Work

Code Verification The practical part of this work extends the code verification of the
baby hypervisor by proving the central interrupt service routine correct – following its
implementation in Macro Assembler (consisting of 99 instructions, most of them mem-
ory accesses to store/restore register values to/from the corresponding PCB). Transla-
tion of the MASM code results in approximately 200 additional C code tokens – the
remainder of the baby hypervisor implementation consists of about 2500 tokens. For
verification, an additional number of 500 annotation tokens were needed. Originally,
about 7700 annotation tokens were present. With the formal models we have now, we
believe that the actual code verification effort comes down to about one person week. It
is quite obvious, that, from a practical verification engineering point of view, complet-
ing the baby hypervisor code verification was a minor effort compared to what already
had been done. Our main contribution is the justification of this code verification.

Using the verification block feature of VCC, it was possible to keep verification
times quite low (e.g. 41,48 seconds for the restore_guest function, 75,68 seconds
for the save_guest function). This feature allows to split the verification of large C
functions into blocks with individual pre- and postconditions. The total proof checking

time of the completed baby hypervisor codebase is 4571 seconds (approx. 1 1
4 hours) on

a single core of a 2.4 GHz Intel Core Duo machine.

Future work Possible extensions to this work include the generalization of calling con-
ventions between Macro Assembler and C-IL. It appears desirable to have a semantic
framework that can support many different compilers. For this, it could also be interest-
ing to replace C-IL by a more mainstream intermediate language or a different flavor of
C semantics. Similarly, Macro Assembler could be improved and generalized.

A work in progress deals with lifting the stack switch operation occuring in thread
switch implementations to the Macro Assembler level. Extending the high-level seman-
tics with a notion of active and inactive stacks (which is justified by a simulation with
the ISA implementation layer), it should be possible to prove in an automated verifier
that a given thread switch implementation based on switching stack pointers is correct.

7 Summary

In this work, we used an integrated semantics of Macro Assembler, a high-level assem-
bler language, and C-IL, a simple C intermediate language, to give a pencil-and-paper
justification of a translation-based assembler verification approach in the spirit of Vx86
[3]. In contrast to the original work, the translation is expressed rigorously based on
formal semantics. We solved the problem of stack pointer setup by lifting a part of the
ISA assembler semantics to our improved Macro Assembler semantics which we used
as starting point for the translation of Macro Assembler code to C-IL code. The baby hy-
pervisor implementation was completed by implementing the central interrupt service
routine in Macro Assembler code, which was subsequently translated to C and verified
with VCC – completing the formal verification of the baby hypervisor.

References

1. Alkassar, E., Hillebrand, M., Paul, W., Petrova, E.: Automated verification of a small hyper-
visor. In: Third International Conference on Verified Software: Theories, Tools, and Experi-
ments (VSTTE’10). Volume 6217 of LNCS., Springer (2010) 40–54

2. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M., eds.: International Conference on Theorem Proving
in Higher Order Logics (TPHOLs-09), August 17-20, Munich, Germany. Volume 5674 of
LNCS, LNCS., Springer (2009) 23–42

3. Maus, S., Moskal, M., Schulte, W.: Vx86: x86 assembler simulated in C powered by auto-
mated theorem proving. In: AMAST. (2008) 284–298

4. Schmaltz, S., Shadrin, A.: Integrated semantics of intermediate-language C and macro-
assembler for pervasive formal verification of operating systems and hypervisors from
VerisoftXT. In Joshi, R., Müller, P., Podelski, A., eds.: Verified Software: Theories, Tools,
Experiments. Volume 7152 of LNCS. Springer Berlin / Heidelberg (2012) 18–33

5. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: For-
mal verification of an OS kernel. In: Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, USA, ACM (2009) 207–220

6. Bevier, W.R.: Kit and the Short Stack. J. Autom. Reasoning 5(4) (1989) 519–530
7. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hardware in-

terrupts and preemptive threads. In: 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’08), New York, NY, USA, ACM (2008)

8. Verisoft Consortium: The Verisoft Project. (http://www.verisoft.de/)
9. Alkassar, E., Paul, W.J., Starostin, A., Tsyban, A.: Pervasive verification of an OS micro-

kernel: inline assembly, memory consumption, concurrent devices. In: Proceedings of the
Third international conference on Verified software: theories, tools, experiments. VSTTE’10,
Berlin, Heidelberg, Springer-Verlag (2010) 71–85

10. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating
system kernels. In Hurd, J., Melham, T.F., eds.: 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2005). Volume 3603., Springer (2005) 1–16

11. Tews, H., Weber, T., Völp, M., Poll, E., Eekelen, M., Rossum, P.: Nova micro-hypervisor
verification formal, machine-checked verification of one module of the kernel source code
(Robin deliverable d.13). (http://robin.tudos.org/) (2008)

12. Dahlin, M., Johnson, R., Krug, R.B., McCoyd, M., Young, W.D.: Toward the verification of
a simple hypervisor. In Hardin, D., Schmaltz, J., eds.: ACL2. Volume 70 of EPTCS. (2011)

13. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V hypervisor with VCC. In:
16th International Symposium on Formal Methods (FM 2009). Volume 5850 of LNCS.,
Eindhoven, the Netherlands, Springer (2009) 806–809

14. Tverdyshev, S.: Formal Verification of Gate-Level Computer Systems. PhD thesis, Saarland
University, Computer Science Department (2009)

15. Tsyban, A.: Formal Verification of a Framework for Microkernel Programmes. PhD thesis,
Saarland University, Computer Science Department (2009)

16. Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W.: Verifying shadow page
table algorithms. In: Formal Methods in Computer Aided Design (FMCAD) 2010, Lugano,
Switzerland, IEEE (2010) 267–270

17. Maus, S.: Verification of Hypervisor Subroutines written in Assembler. PhD thesis, Freiburg
University, Computer Science Department (2011)

18. Shadrin, A.: Mixed Low- and High Level Programming Language Semantics and Automated
Verification of a Small Hypervisor. PhD thesis, Saarland University, Computer Science De-
partment (to appear 2012)

19. Leinenbach, D.: Compiler Verification in the Context of Pervasive System Verification. PhD
thesis, Saarland University, Computer Science Department (2007)

20. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7)
(2009) 107–115

21. Degenbaev, U.: Formal Specification of the x86 Instruction Set Architecture. PhD thesis,
Saarland University, Computer Science Department (2011)

