
INTEGRATION, the VLSI journal 32 (2002) 5–40

To Booth or not to Booth

Wolfgang J. Paula,*, Peter-Michael Seidelb

aComputer Science Department, University of the Saarland, 66041 Saarbruecken, Germany
bComputer Science and Engineering Department, Southern Methodist University, Dallas TX 75275, USA

Abstract

Booth Recoding is a commonly used technique to recode one of the operands in binary multiplication. In
this way the implementation of a multipliers’ adder tree can be improved in both cost and delay. The
improvement due to Booth Recoding is said to be due to improvements in the layout of the adder tree
especially regarding the lengths of wire connections and thus cannot be analyzed with a simple gate model.
Although conventional VLSI models consider wires in layouts, they usually neglect wires when modeling
the delay. To make the layout improvements due to Booth recoding tractable in a technology-independent
way, we introduce a VLSI model that also considers wire delays and constant factors. Based on this model
we consider the layouts of binary multipliers in a parametric analysis providing answers to the question
whether to use Booth Recoding or not.
We formalize and prove the folklore theorems that Booth recoding improves the cost and cycle time

of ‘standard’ multipliers by certain constant factors. We also analyze the number of full adders in certain
4
2
-trees.
r 2002 Elsevier Science B.V. All rights reserved.

Keywords: Multiplier design; Booth recoding; VLSI model; Layout analysis; Delay and area complexity; Wire effects

1. Introduction

Addition trees are the central part in the design of fixed point multipliers. They produce from a
sequence of partial products a carry-save representation of the final product [1–8]. Booth recoding
[9–13] is a classical method which cuts down the number of partial products in an addition tree by
a factor of 2 or 3 at the expense of a more complex generation of partial products.
In general, VLSI designers tend to implement Booth recoding, and a widely accepted rule of

thumb says, that Booth recoding improves both the cost and the speed of multipliers by some
constant factor around 1

4
: In [9,10,14–16], however, the usefulness of Booth recoding is challenged

*Corresponding author.

E-mail addresses: wjp@cs.uni-sb.de (W.J. Paul), seidel@seas.smu.edu (P.-M. Seidel).

0167-9260/02/$ - see front matter r 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 9 2 6 0 (0 2) 0 0 0 4 0 - 8

altogether. Finally, in [15] an ambitious case study of around 1000 concrete designs was
performed, and for some technologies with small wire delays the fastest multipliers turned out not
to use Booth recoding.
In spite of the obvious importance of the concept the (potential) benefits of Booth recoding

have apparently received no theoretical treatment yet. This is probably due to the following facts:

* The standard models of circuit complexity [17] and VLSI complexity [18,19] are only trusted to
be exact up to constant factors.

* The standard theoretical VLSI model ignores wire delays.
* Conway/Mead style rules [20,21] do consider wire delays, but do not invite paper and pencil
analysis due to their level of detail.

* Trivial addition trees with linear circuit depth have nice and regular layouts. But Wallace trees
[2,6,7] and even 4

2
-trees [3,4,22,23] have more irregular layouts. In the published literature, these

layouts tend not to be specified at a level of detail which permits, say, to read off the length of
wires readily.

In this paper, we introduce a VLSI model which accounts—in a hopefully meaningful way—for
constant factors as well as wire delays and which is at the same time simple enough to permit the
analysis of large circuits. The model depends on a parameter n which specifies the influence of
the wire delays. In this model, we study two standard designs of partial product generation and
addition trees: the simple linear depth construction and a carefully chosen variant of 42-trees. We
show that Booth encoding improves for all reasonable values of n both the delay and the area of
the resulting VLSI layouts by constant factors between 26% and 50% minus low-order terms
which depend on n and the length n of the operands. For practical operand length in the range
8pnp64 we specify the gain exactly.
The paper is organized in the following way. In Section 2, we review Booth recoding as

explained in [10,24]. Section 3 provides a combinatorial lemma which will subsequently permit to
count the number of full adders in certain 4

2
-trees. In Section 4, we analyze the circuit complexity

of Booth recoding. In Section 5, we introduce the VLSI model. The detailed circuit model from
[25] is combined with a linear delay model for nets of wires. Section 6 contains the specification
and analysis of layouts. The layouts for 4

2
-trees follow partly a suggestion from [26]. In Section 7,

the savings due to Booth recoding are evaluated. We analyze both the asymptotical behavior and
the situation for practical n: We conclude in Section 8 and list some further work.

2. Preliminaries

For a ¼ a½n � 1 : 0� ¼ ða½n � 1�;y; a½0�ÞAf0; 1gn we denote by

/aS ¼
Xn�1
i¼0

a½i�2i

the number represented by a; if we interpret it as a binary number. Conversely, for pAf0;y; 2n � 1g
we denote the n-bit binary representation of p by binnðpÞ: For xAf0; 1gn and sAf0; 1g we define

x"s ¼ ðx½n � 1�"s;y;x½0�"sÞ:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–406

An ðn;mÞ-multiplier is a circuit with n inputs a ¼ a½n � 1 : 0�; m inputs b ¼ b½m � 1 : 0� and n þ m

outputs p ¼ p½n þ m � 1 : 0� such that /aS/bS ¼ /pS holds.

2.1. Multiplication

For jAf0;y;m � 1g and k; hAf1;y;mg we define the partial sums

Sj;k ¼
Xjþk�1

t¼j

/aSb½t�2t

¼ /aS/b½ j þ k � 1 : j�S2j

pð2n � 1Þð2k � 1Þ2j

o2nþkþj:

Then, we have

Sj;1 ¼ /aSb½ j�2j;

Sj;kþh ¼ Sj;k þ Sjþk;h

and

/aS/bS ¼ S0;m

¼ S0;m�1 þ Sm�1;1:

Because Sj;k is a multiple of 2
j it has a binary representation with j trailing zeros. Because Sj;k is

smaller than 2jþnþk it has a binary representation of length n þ j þ k (see Fig. 1).

2.2. Booth recoding

In the simplest form of Booth recoding (called Booth-2 recoding or Booth recoding radix 4)
the multiplicator is recoded as suggested in Fig. 2. With b½m þ 1� ¼ b½m� ¼ b½�1� ¼ 0 and
m0 ¼ Jðm þ 1Þ=2n one writes

/bS ¼ 2/bS�/bS ¼
Xm0�1

j¼0

B2j4
j;

where

B2j ¼ 2b½2j� þ b½2j � 1� � 2b½2j þ 1� � b½2j�

¼ �2b½2j þ 1� þ b½2j� þ b½2j � 1�:

000 0
0000 0
0

S

n+k j

j,k

Fig. 1. Sj;k in carry–save representation.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 7

The numbers B2jAf�2;�1; 0; 1; 2g are called Booth digits and we define their sign bits s2j by

s2j ¼
0 if B2jX0;

1 if B2jo0:

(

With

C2j ¼ /aSB2jAf�2nþ1 þ 2;y; 2nþ1 � 2g;

D2j ¼ /aSjB2j jAf0;y; 2nþ1 � 2g;

d2j ¼ binnþ1ðD2jÞ;

the product can be computed from the sums

/aS/bS ¼
Xm0�1

j¼0

/aSB2j4
j

¼
Xm0�1

j¼0

C2j4
j

¼
Xm0�1

j¼0

s2jD2j4
j:

In order to avoid negative numbers C2j one sums the positive E2j instead

E2j ¼ C2j þ 3 2nþ1; e2j ¼ binnþ3ðE2jÞ;

E0 ¼ C0 þ 4 2nþ1; e0 ¼ binnþ4ðE0Þ:

This is illustrated in Fig. 3. The additional terms sum to

2nþ1 1þ 3
Xm0�1

j¼0

4 j

 !
¼ 2nþ1 1þ 3

4m0
� 1
3

� �

¼ 2nþ1þ2m0
:

Because 2m0 > m these terms are congruent to zero modulo 2nþm: Thus

/aS/bS �
Xm0�1

j¼0

E2j4
j mod 2nþm:

Bm Bm-2 Bi B2 B0

0b

bb

b

b bb

b b bb

b

b

b

0

01

1

i-1i

i

i+1

i+1

m

m m-1

m-1

i-1

0

2

-

Fig. 2. Booth digits B2j :

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–408

With respect to the standard subtraction algorithm for binary numbers, the e2j can be computed
by

/e2jS ¼ /1s2j; d2j"s2jSþ s2j;

/e0S ¼ /s0s0s0; d0"s0Sþ s0:

Based on these equations, the computation of the numbers

F2j ¼ E2j � s2j;

f2j ¼ binnþ3ðF2jÞ;

f0 ¼ binnþ4ðF0Þ

is easy, namely

f2j ¼ ð1s2j; d2j"s2jÞ;

f0 ¼ ðs0s0s0; d0"s0Þ:

11

11

11

11

< a > B0-+

-+

-+

-+
E :2m’-2

4E :

2E :

0E :

1

0

0

0

0

0

0

0

0 0 0 0

0

0 0

00

0

< a > B2

d =4

< a > B

d =

d =

d =
2m’-2 2m’-2

< a > B4

2

Fig. 3. Summation of the E2j :

1

1

g
g
g

g

0

2

4

2m 2m’

s

s s s

s s

d s

2m2m’’ 2m’
dd

0s

0

0

0

s
0

s

2

2m-2m’m’

Fig. 4. Partial product construction.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 9

Instead of adding the sign bits s2j to the numbers F2j one incorporates them at the proper position
into the representation of F2jþ2 as suggested in Fig. 4. The last sign bit does not create a problem
because B2m0�2 is always nonnegative. Formally, let

g2j ¼ ðf2j; 0s2j�2ÞAf0; 1gnþ5;

g0 ¼ ðf2j; 00ÞAf0; 1gnþ6:

Then

/g2jS ¼ 4/f2jSþ s2j�2

and hence we get the product by

/aS/bS ¼
Xm0�1

j¼0

E2j4
j ¼

Xm0�1

j¼0

/g2jS4 j�1

with the g2j as partial products. We define

S0
2j;2k ¼

Xjþk�1

t¼j

/g2tS4t�1:

Then, we have analogously to the nonBooth case

S0
2j;2 ¼ /g2jS4 j�1;

S0
2j;2ðkþhÞ ¼ S0

2j;2k þ S0
2ðjþkÞ;2h:

One can easily show, that S0
2j;2k is a multiple of 2

2j�2 and S0
2j;2ko2

nþ2jþ2kþ2: Therefore,
at most n þ 2k þ 4 nonzero positions are necessary to represent S0

2j;2k in both carry-save or binary
form.

3. A combinatorial lemma

Let T be a complete binary tree with depth m: We number the levels c from the leaves to the
root from 0 to m: Each leaf u has a weight W ðuÞ: For some natural number k we have
W ðvÞAfk; k þ 1g for all leaves and the weights are non-decreasing from left to right. Let m
be the sum of the weights of the leaves. For m ¼ 4; m ¼ 53 and k ¼ 3 the leaves could,
for example, have the weights 3333333333344444: For each subtree t of T we define W ðtÞ ¼P

ðW ðuÞÞ where u ranges over all leaves of t: For each interior node v of T we define LðvÞ (resp.
RðvÞÞ as the weight of the subtree rooted in the left (resp. right) son of v:We are interested in the
sums

Hc ¼
X

Level c

LðvÞ;

where v ranges over all nodes of level c and in

H ¼
Xm�1
c¼0

Hc:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4010

We show

Lemma 1. HpðmmÞ=2:

Proof. By induction on the levels of T one shows that in each level weights are nondecreasing
from left to right and their sum is m: Hence

2Hc p
X

Level c

LðvÞ þ
X

Level c

RðvÞ

¼
X

Level c

W ðvÞ

¼ m

and the lemma follows. &

In the above estimate we have replaced each weight LðvÞ by the arithmetic mean of LðvÞ and
RðvÞ hereby overestimating LðvÞ by

hðvÞ ¼ ðLðvÞ þ RðvÞÞ=2� LðvÞ

¼ ðRðvÞ � LðvÞÞ=2Þ:

For each node v in level c the 2c leaves of the subtree rooted in v form a continuous subsequence
of the leaves of T : Hence, all nodes in level c except at most one have weights in fk2c; ðk þ 1Þ2cg:
Therefore, in each level c there is at most one node vc such that hðvcÞa0:We set hðcÞ ¼ hðvcÞ; if it
exists. Otherwise, we set hðcÞ ¼ 0: It follows that

H ¼ ðmmÞ=2�
Xm�1
c¼0

hðcÞ:

In the above example, we have h0 ¼ 1
2; h1 ¼ 1

2; h2 ¼ 3
2; h3 ¼ 5

2 and H ¼ 101: For m ¼ 3; m ¼ 27
and weights 33333444 we have h0 ¼ 1

2
; h1 ¼ 1

2
; h2 ¼ 3

2
and H ¼ 38:

4. Gates

In this section, we use a simple gate model [25] to analyze delay and cost of the multiplication
circuits considering only the influence of gates. This model does not consider fanout restrictions or
wire effects. The delay is the maximum gate delay of all paths from input bits a½i� and b½ j� to
output bits p½k�: The cost is computed as the cumulative cost of all gates used. For this purpose the

Fig. 5. Motorola technology parameters.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 11

basic gate delays and costs can be extracted from any design system. We will consider the
Motorola technology [27] (Fig. 5), but the reader might choose his favorite technology in our
parametrical analysis.

4.1. Partial product generation

4.1.1. NonBooth
One has to compute and shift the binary representations of the numbers

/aSb½ j� ¼ /a½n � 1�4b½ j�;y; a½0�4b½ j�S:

The nm AND-gates have a cost of 2nm: As they are used in parallel, they have a total delay of 2.

4.1.2. Booth
The binary representations of the numbers S0

2j;2 must be computed (see Fig. 4). These are

g2j ¼ ð1s2j; d2j"s2j; 0s2j�2Þ;

g0 ¼ ðs0s0s0; d0"s0; 00Þ;

shifted by 2j � 2 bit positions.
The d2j ¼ binnþ1ð/aSjB2j jÞ are easily determined from B2j and a by

d2j ¼

ð0;y; 0Þ if B2j ¼ 0;

ð0; aÞ if jB2j j ¼ 1;

ða; 0Þ if jB2j j ¼ 2:

8><
>:

For this computation two signals indicating jB2j j ¼ 1 and jB2j j ¼ 2 are necessary. We denote these
by

b12j ¼
1 if jB2j j ¼ 1;

0 otherwise;

(
b22j ¼

1 if jB2j j ¼ 2;

0 otherwise

(

and calculate them by the Booth decoder logic BD from Fig. 6(b), that can be developed from
Fig. 6(a). Such a Booth decoder has cost CBD ¼ 11 and delay DBD ¼ 3:

Fig. 6. (a) Booth digit signals, (b) Booth decoder and (c) selection logic.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4012

The selection logic SL from Fig. 6(c) directs either a½i� or a½i þ 1� or 0 to position ½i þ 1� of d2j
and the inversion depending on s2j yields g2j½i þ 3�: In the first 2 (3 for rightmost partial product)
and last 2 bit positions this logic is replaced by the simple signal of a sign bit, its inverse, a zero or
a one. The selection logic has cost CSL ¼ 10 and delay DSL ¼ 4:
As m0 booth decoders are necessary, the decoding logic costs m0CBD ¼ 11m0: The selection logic

occurs for each partial product ðn þ 1Þ-times. Therefore, the selection logics have altogether a
cost of

m0ðn þ 1ÞCSL ¼ 10m0ðn þ 1Þ:

4.2. Redundant partial product addition

We study two standard constructions for the reduction of the partial products to a carry-save
representation of the product: plain multiplication arrays and 4

2
-trees. Each construction uses k-bit

carry-save adders (k-CSA, 3
2
-adders) [3–5]. They are composed of k full adders working in parallel

and hence they have cost kCFA and delay DFA: Cascading two k-CSAs one constructs a k-bit
4
2
-adder, i.e. a circuit with 4k inputs a½k � 1 : 0�; b½k � 1 : 0�; c½k � 1 : 0�; d½k � 1 : 0� and 2ðk þ 1Þ
outputs s½k : 0�; t½k : 0� such that

/aSþ/bSþ/cSþ/dS � /sSþ/tSmod 2nþ1

holds. The k-bit 4
2
-adders constructed in this way have cost 2kCFA and delay 2DFA: We consider full

adder implementations with cost CFA ¼ 14 and delay DFA ¼ 6: There are optimized implement-
ations of 4

2
-adders like described in [23], we do not use them in this analysis to keep the presentation

simple.
In order to introduce techniques of analysis we review quite formally the construction of

standard multiplication arrays [3,21]. A carry-save representation of S0;3 can be computed by a
single n-CSA (see Fig. 7(a)). Exploiting

S0;t ¼ S0;t�1 þ St�1;1;

one can compute a carry-save representation of S0;t from a carry-save representation of S0;t�1 and
the binary representation of St�1;1 by an n-CSA. This works because both S0;t�1 and St�1;1 can be
represented with n þ t � 1 bits and because the binary representation of St�1;1 has t � 1 trailing
zeros (see Fig. 7(c)). The m � 2 many n-CSAs which are cascaded this way have cost nðm � 2ÞCFA

and delay ðm � 2ÞDFA: The combined cost and delay for (nonBooth) partial product generation
and the multiplication array are

CArray ¼ nðm � 2ÞCFA þ nmCAND

¼ 16nm � 28n;

DArray ¼ ðm � 2ÞDFA þ DAND

¼ 6m � 10:

With Booth recoding one has only to sum the m0 (representations of) partial products g2j: Each
partial product has length n0 ¼ n þ 5 except g0 which has n0 þ 1 bits. Arguing with the sums S0

0;2t
in place of the sums S0;t one shows that ðm0 � 2Þ many ðn0Þ-CSAs suffice to sum the partial

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 13

products in a multiplication array with Booth-2 recoding. Taking into account the partial product
generation one obtains cost and delay

C0
Array ¼ ðn0Þðm0 � 2ÞCFA þ ðn þ 1Þm0CSL þ m0CBD

¼ 24nm0 þ 91m0 � 28n � 140;

D0
Array ¼ ðm0 � 2ÞDFA þ DSL þ DBD

¼ 6m0 � 5:

For n ¼ m ¼ 53 (double precision) we get

C0
Array=CArray ¼ 35457=43460 ¼ 81:6%;

D0
Array=DArray ¼ 157=308 ¼ 50:9%:

(d)(c)

(a) (b)

Si,3

n n

n+1

n+1 n+1

n nn

0 0 0 0
000 0

0 0
0 0

n+1 n+1

n nn

n-bit CSA

n+1 n+1

n nn

n

000 0 0 0
000 0 0 0

Si,1
Si+1,1
Si+2,1

Si,1
S

n+1n+1

0,tS 0
0

000
00 0

0
00

00
00

00
00

00
00

0

Si,k+h

00

0 0 0 0 0

00

n-bit CSA

2 in+1

0 0 0
00 0

0 0
0 0

n-bit CSA

0 0
0

0 0 0 0 0
0
00

n 2

000 0 0
000 0 0

000 0 0 0
000 0 0 0i+1,1

Si+2,1

0 0
0

0 0 0 0 0 0
0
00

n 2 i

i

i3

Si,4

Si,3
Si+3,1

0 0
0000

n+1

n t-1 h

0 0 0
00

00000000

S0,t-1
St-1,1

n-bit CSA

t-1

S
S i+k,h

i,k

k i

ik

n+h n+h

n+h n+h n+h n+h

(n+h)-bit 4/2-adder

n+h

n

0

Fig. 7. Partial compression of (a) Si;3; (b) Si;4; (c) S0;t from a carry–save representation of S0;t�1 and St�1;1; and (d)
Si;kþh from carry–save representations of Si;k and Siþk;h:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4014

For n ¼ m ¼ 24 (single precision) we get

C0
Array=CArray ¼ 8139=8544 ¼ 95:2%

D0
Array=DArray ¼ 73=134 ¼ 54:5%:

Asymptotically, C0
Array=CArray tends to

12
16
¼ 75% and D0

Array=DArray tends to
3
6
¼ 50%:

Thus, if multiplication arrays would yield the best known multipliers the case for Booth
recoding would be easy and convincing (and hardly worth a paper).

4.3. Analysis 4
2
-trees

The situation changes in two respects when we consider addition trees with logarithmic delay
like Wallace trees [2,6,7] or 4

2
-trees [1,3,4,22,23]. First, counting gates in such a tree becomes a

somewhat nontrivial problem. Second, Booth recoding only yields a marginal saving in time.

4.3.1. NonBooth

We construct a specific family of 4
2
-trees which happens to be accessible to analysis. The nodes

of the tree are either 3
2
-adders or 4

2
-adders. The representations of the m partial products

S0;1;y;Sm�1;1 will be fed into the leaves of the tree from right to left. Let M ¼ 2Jlog mn be the
smallest power of two greater or equal to m: Let m ¼ logðM=4Þ ¼ JlogðmÞn� 2:We will construct
the entire addition tree T by two parts as shown in Fig. 8.
The lower regular part is a complete binary tree of depth m� 1 consisting entirely of 4

2
-adders. It

has M=8 many 4
2
-adders as leaves. For the top level of the tree we distinguish two cases. If

3M=4pmpM; we use a ¼ m � 3M=4 many 4
2
-adders and M=4� a many 3

2
-adders. We arrange

the 3
2
-adders of the top level of the tree at the left of the 4

2
-adders.

If M=2omo3M=4 we use in the top level only b ¼ m � M=2 many 3
2
-adders (and we feed

m � 3b representations of partial products directly into the lower part). We arrange the 3
2
-adders

at the right end of the tree. For m ¼ 24 we have mX24; and use 8 3
2
-adders as leaves. For m ¼ 53

we have mX48; and we use 11 3
2
-adders and 5 4

2
-adders as leaves. We only analyze the first case

explicitly.

Sm-3,3

S
m-1,1

S
m-2,1

m-3,1
S

S

S

S4a+4,3

4a+2,1

4a+1,1

4a,1
S S

S

S4a,4

4a-1,1
S

4a-2,1

4a-3,1

4a-4,1
S S

S

0,1
S

S4a,4

3,1
S

2,1

1,1

(M/4-a)-times

complete 4:2 adder tree

a-times

Fig. 8. Adder tree construction.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 15

If all 3
2
- and 4

2
-5adders in the tree would consist of exactly n resp. 2n full adders, then the tree

would have a total of

F ¼ nðm � 2Þ

full adders, because every 3
2
-adder reduces the number of partial products by 1 and every 4

2
-adder

reduces the number of partial products by 2. It remains to estimate the number of excess full
adders in the tree.
Every leaf in the tree which is a 3

2
-adder computes a sum Si;3: Thus, n full adders suffice (see

Fig. 7(a)). A leaf of the tree which is a 4
2
-adder computes a sum Si;4: It can be simplified as shown

in Fig. 7(b) such that 2n full adders suffice. Thus, in the top level of the tree there are no excess full
adders.
Each 4

2
-adder u in the lower portion of the tree performs a computation of the form

Si;kþh ¼ Si;k þ Siþk;h;

where a carry-save representation of Si;k is provided by the right son of u and Siþk;h is provided by
the left son of u: By the results of Section 3 we are in the situation of Fig. 7(d). Hence node u has
2h excess full adders.
Referring to Section 3 we label each leaf u of the tree with the number of partial products it

sums, i.e. withW ðuÞ ¼ 3 if u is a 3
2
-adder and withW ðuÞ ¼ 4 if it is a 4

2
-adder, then h ¼ LðuÞ and for

the number E ¼ 2H of excess full adders in the tree we have

E ¼ ðmmÞ � 2
Xm�1
c¼0

hc

p ðmmÞ:

This implies, that the 4
2
-trees constructed above have nm þ oðnmÞ full adders.

The proof only depends on the fact that for each interior node u the left son of u sums
less partial products than the right son of u: Hence, it applies to many other balanced
addition trees. One hardly dares to state or prove such a folklore result because it is ‘obviously’
known. Unfortunately, we have not been able to locate it in the literature and we need
it later.
With partial product generation we get cost and delay

CTree ¼ ðnðm � 2Þ þ EÞCFA þ nmCAND

¼ 16nm þ oðnmÞ;

DTree ¼ 2ðmþ 1ÞDFA þ DAND

¼ 12mþ 14

¼ 12JlogðmÞn� 10:

4.3.2. Booth
Let M 0 ¼ 2Jlog m0n the smallest power of two greater or equal m0 and let m0 ¼ logðM 0=4Þ: For

mAf24; 53g we have 34M
0pm0oM 0:We proceed as above and only analyze this case. The standard

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4016

length of 3
2
-adders and 4

2
-adders is now n0 ¼ n þ 5 bits; longer operands require excess full adders.

Let E0 be the number of excess full adders.
Considering the sums S0 instead of the sums S one shows that the top level of the tree has no

excess full adders. LetH 0 be the sum of labels of left sons in the resulting tree and for all c let h0
c be

the correction term for level c: Because with Booth recoding successive partial products are shifted
by 2 positions, we now have

E0 ¼ 4H 0

and we get

E0 ¼ 2ðm0m0Þ � 4
X

ch0c

p 2ðm0m0Þ:

Taking into account the partial product generation one obtains cost and delay

C0
Tree ¼ ðn0ðm0 � 2Þ þ E0ÞCFA þ ðn þ 1Þm0CSL þ m0CBD

¼ 24nm0 þ oðnm0Þ;

D0
Tree ¼ 2ðm0 þ 1ÞDFA þ DBD þ DSL

¼ 12ðm0 þ 1Þ þ 7:

For n ¼ m ¼ 53 we get

C0
Tree=CTree ¼ 37305=46288 ¼ 80:6%;

D0
Tree=DTree ¼ 55=62 ¼ 88:7%

and for n ¼ m ¼ 24 we get

C0
Tree=CTree ¼ 8531=9552 ¼ 89:3%;

D0
Tree=DTree ¼ 43=50 ¼ 86:0%:

Asymptotically, C0
Tree=CTree tends again to

12
16 ¼ 75%: Unless m is a power of two, we have m ¼

m0 þ 1 and DTree � D0
Tree ¼ 7: Hence, D0

Tree=DTree tends to one as n grows large.
This contradicts the common opinion that Booth recoding saves a constant fraction of the

delay (independent of n). We try to resolve this contradiction in the next section by considering
layouts.

5. VLSI model

In the circuit complexity model we could only show, that a constant fraction of the cost is saved
by Booth recoding. In order to explain, why Booth recoding also saves a constant fraction of the
run time we have to consider wire delays in VLSI layouts.
The layouts that we consider consist of simple rectangular circuits S; connected by nets N: For

circuits S; we denote by bðSÞ the breadth, hðSÞ the height, CðSÞ the gate count and DðSÞ the
combinatorial delay of S:We do not consider different delays for different inputs and outputs of

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 17

the same simple circuit in order to keep the analysis simple. We require

bðSÞhðSÞ ¼ CðSÞ;

i.e. area equals gate count and

hðSÞ=2pbðSÞp2hðSÞ;

i.e. layouts of simple circuits are not too slim or too flat. In order to keep drawings simple we will
place pins quite liberally at the borders of the circuits. Input pins are at one side of the rectangle,
output pins are at the opposite side.
Nets consist of horizontal and vertical lines (wires). They must have a minimal distance d from

each other and from circuits. Thus, a wire channel for t lines has width ðt þ 1Þd: The size jN j of a
net N is the sum of the length of the lines that constitute the net.
We define the delay of a circuit S driving a net N as

TIMEðS;NÞ ¼ DðSÞ þ njN j:

The parameter n weights the influence of wire delay on the total delay. If n ¼ 0 only gate delays
count. For a square inverter NOT with CðSÞ ¼ 1 we have bðNOTÞ ¼ hðNOTÞ ¼ 1: Suppose we
connect the output of such a gate with a single wire N of length hðNOTÞ ¼ 1 and we have nX1:
Then

njN jX1 ¼ DðNOTÞ;

i.e. a wire which is as long as the gate contributes to the delay as much as the propagation delay of
the gate or more. This does not seem reasonable. Therefore, we restrict the range of n to the
interval ½0; 1�:We do not restrict the fanout of circuits, but within limits the parameter n can also
be used to model fanout restrictions.
We will consider only four types of simple circuits S; namely AND gates, full adders FA; Booth

decoders BD and the selection logic SL: We will use two geometries for the selection logic.
The geometries from Fig. 9(a) happen to make the layouts of addition trees particularly
simple. We place the pins of the full adder and the other basic circuits as specified in Fig. 9(b).1

The exact position of the input pins of AND gates and the selection logic contributes only

Fig. 9. (a) Table of basic circuit geometries; (b) shapes of basic circuits.

1Strictly speaking we use three layouts for the selection logic. Two of the layouts only differ in the position of the

output pin.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4018

marginally to the run time of addition trees and will not be considered in the analysis. We will use
d ¼ 0:1:

6. Layouts and their analysis

First, we specify and analyze the layout of a plain 4
2
-tree T with M=4 leaves where partial

products are generated with simple AND gates. The tree T has depth m ¼ logðM=4Þ as well as m
levels of interior nodes. The number of interior nodes isM=4� 1: This will then be compared with
the layout of a tree T 0 with M 0=4 leaves where partial products are generated by circuits SL
controlled by Booth decoders BD:
All our layouts will consist of a matrix of full adders plus extra circuits and wires. Every node in

the tree is either a 3
2
-adder and occupies one row of the matrix or it is a 4

2
-adder and occupies 2

consecutive rows of the matrix. Every bit position occupies a column of the matrix. Between
neighboring full adders of the same row we leave a wire channel of appropriate width. Inputs a½i�
are fed into the layout at the top with indices increasing from right to left. Inputs b½ j� are fed into
the layout from the left with indices increasing from top to bottom. Outputs are produced at the
right border and at the bottom of the layout. Let Tl (resp. Tr) be the subtree rooted in the
left (resp. right) son of a node v: Then, we layout Tr on top of Tl: This is followed by a row for
v (see Fig. 10). Between the layouts of the two subtrees we leave space for one wire. This space
will be filled with boxes4/2a specified below. It only remains to specify where to place the extra
circuits and how to layout the wires. For tree T it suffices to specify the three types of boxes in
Fig. 11(a)–(c):

* Box3: this is one full adder which is part of a leaf v of the tree with weight L ¼ 3: The whole 3
2
-

adder v has as inputs 3 bits of b which are routed in the b-channel b½2 : 0�: Every bit a½i� is
needed in three consecutive bit positions of v; then it is routed to the next leaf down the tree
and one position to the left. Thus, 3 lines of an a-channel a½2 : 0� suffice to accommodate the
a-inputs for v: For all leaves v and all i we feed input a½i� into a-channel a½imod 3�: Before a½i�
can be fed into the channel, bit a½i � 3� has to be removed and routed down to the next leaf of
the tree. This—unfortunately—consumes horizontally distance 2d:

* Box4: this is one pair of full adders which is part of a leaf v of the tree with weight L ¼ 4: The
whole 4

2
-adder v has as inputs 4 bits of b which are routed in the b-channel b½2 : 0� of the first 3

2
-

adder and in one b-channel of the second 3
2
-adder. Similarly, 4 a-channels are used. Each signal

a½i� is fed into 3 full adders of consecutive bit positions in the first 3
2
-adder level and then into

compression
partial product

of right subtree

(4-2 adder)inner node v

compression
partial product

of left subtree

wire
channels

ρ

λΤ

Τ

Fig. 10. Recursive partition of the tree layout.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 19

a
i

a
i-3

a
i

a
i+1

w
ir

e
ch

an
ne

l

w
ir

e
ch

an
ne

l
w

ir
e

ch
an

ne
l

w
ir

e
ch

an
ne

l

2ld(M/4) 2ld(M/4)

full adder

full adder

Box4/2 b)

Box4/2 a)

a
i-2

a
i-3

a
i

a
i+1

Box3

w
ir

e
ch

an
ne

l

w
ir

e
ch

an
ne

l

2ld(M/4) 2ld(M/4)

full adder

b-channel[2:0]
a-channel[2:0]

a
i+1

Box4

b-channel[2:0]
a-channel[2:0]

w
ir

e
ch

an
ne

l

w
ir

e
ch

an
ne

l

a-channel
b-channel

2ld(M/4) 2ld(M/4)

w
ir

e
ch

an
ne

l

w
ir

e
ch

an
ne

l

a
i-4

full adder

full adder

(a) (c)

(b)

Fig. 11. Basic boxes for non-booth multiplier construction.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4020

one full adder in the next bit position of the second 3
2
-adder. After that a½i� is routed down to the

next leaf of the tree.
* Box4=2: This is strictly speaking a pair of boxes which is part of an interior node v of the tree
with subtrees Tr and Tl: Box4/2a is inserted between the layout of Tr and Tl: Box4/2b is added
at the bottom of the layout of Tl: The box consumes two wires in each vertical wire channel,
one for a carry output and one for the sum output of one full adder of the root of Tr:We place
the sum lines in the left and the carry lines in the right half the wire channel. It will not matter in
the analysis where we place them exactly.

All boxes have the same width bðboxÞ: Because each level of interior nodes contributes 2 lines to
the global wire channel,

bðboxÞ ¼ bðFAÞ þ ðmþ 3Þd:

Box4/2a is placed on top of the b-channel of the rightmost leaf of Tl: Thus, it contributes only d to
the height, and we have

hðbox4=2Þ ¼ 2hðFAÞ þ 7d;

hðbox3Þ ¼ hðFAÞ þ hðANDÞ þ 7d;

hðbox4Þ ¼ 2hðFAÞ þ 2hðANDÞ þ 11d:

The height of the whole layout is

hðTÞ ¼ ðM=4� 1Þhðbox4=2Þ þ ðM=4Þhðbox3Þ þ aðhðbox4Þ � hðbox3ÞÞ:

For the size of the nets a½i� we consider

* The horizontal extension mbðboxÞ:
* The vertical extension. This extends from the very top of the layout to the leftmost leaf. Below
the leftmost leaf we have m many boxes4/2b.

* The m connections from the a-channels to the AND gates, each of length up to 3d:

Thus, for the largest ones of the nets a½i� we have

ja½i�j ¼ mbðboxÞ þ hðTÞ � mðhðbox4=2Þ � dÞ � hðFAÞ � hðANDÞ þ 3md:

For mpn the size of the nets b½i� is dominated by the size of the nets a½i�: The carry in box4 travels
horizontally over a full box minus 2

3
of a full adder. Thus, we have

jcarry4j ¼ bðboxÞ � 2bðFAÞ=3þ hðANDÞ þ 4d:

Next we determine the accumulated delay from a leaf to the root which follows in each box4/2 the
following path: sum bit in Tr—first full adder in v—carry output—second full adder in the box to
the left—sum bit of that adder. We estimate the accumulated length of the wires separately:

* All wires connected to carry outputs:

Carry4=2 ¼ mðbðboxÞ � 2bðFAÞ=3þ 3dÞ:

* All wires connected to sum outputs not counting vertical displacement in the global
wire channels. In the wire channels every one of the distances 2kd occurs exactly

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 21

once

Sum4=2 ¼ mð4bðFAÞ=3þ 4dÞ þ
Xm
k¼1

2kd

¼ mð4bðFAÞ=3þ 4dÞ þ dðm2 þ mÞ:

* Total vertical displacement of the wires connected to sum outputs in the wire channels; from
the bottom of rightmost leaf (a box4 if m ¼ 53) to the very bottom of the layout not counting
the boxes4/2 on the path:

Channel ¼ hðTÞ � hðbox4Þ � logðM=4Þhðbox4=2Þ:

The competing paths from the carry output of Tr to the second full adder are faster than the path
considered above for realistic values of n:
We now imagine that all a- and b-inputs are the outputs of drivers whose propagation delay we

ignore. Then the total delay of the tree equals

TIMETreeðn; nÞ ¼ DAND þ 2DFAð1þ mÞ þ nðja½i�j þ jcarry4j þ Carry4=2 þ Sum4=2 þ ChannelÞ:

Exactly along the same lines one specifies and analyzes the layout of the addition tree T 0 with
Booth recoding. The tree hasM 0=4 leaves and depth m0 ¼ logðM 0=4Þ: One uses the boxes specified
in Fig. 12(a)–(c). The selection logic becomes more complex and has to be placed in two rows in
order not to exceed the Full adder width. For this organization in Box40 an additional horizontal
input wire must be routed around the full adder. Also the channel width changes a bit and
becomes m0d:

bðbox0Þ ¼ bðFAÞ þ m0dþ 4d:

This change of width is the only change for the Box4=20; its height stays the same. In the
other two boxes there must be 5 input wires per selection logic. In Box30 the top selection
logic is rotated in order not to waste area. From the figures one obtains the following
equations:

hðbox4=20Þ ¼ 2hðFAÞ þ 7d;

hðbox30Þ ¼ hðFAÞ þ hðSLÞ þ bðSLÞ þ 17d;

hðbox40Þ ¼ 2hðFAÞ þ 2hðSLÞ þ 26d:

Most of the other equations only change slightly:

hðT 0Þ ¼ ðM 0=4� 1Þhðbox4=20Þ þ ðM 0=4Þhðbox30Þ þ a0ðhðbox40Þ � hðbox30ÞÞ;

ja0½i�j ¼ m0bðbox0Þ þ hðT 0Þ � m0ðhðbox4=20 � dÞ � hðFAÞ � hðSLÞ þ 4m0d;

jcarry40j ¼ bðbox0Þ � 2bðFAÞ=3þ 3d;

Carry0
4=2 ¼ m0ðbðbox0Þ � 2bðFAÞ=3þ 3dÞ;

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4022

i+1
a a

i

w
ir

e
ch

an
ne

l
w

ir
e

ch
an

ne
l

2ld(M/4)

full adder

full adder

w
ir

e
ch

an
ne

l
w

ir
e

ch
an

ne
l

2ld(M/4)

Box4/2 booth b)

Box4/2 booth a)

3 3

33

3

3

a
i+1

a
i

6

6

a
i-7

3 3

3 3

a
i

2ld(N/4)

w
ir

e
ch

an
ne

l

2

a
i+1

2ld(N/4)

w
ir

e
ch

an
ne

l

Selection
logic

Selection
logic

(b)

(c)

(a)

w
ir

e
ch

an
ne

l

w
ir

e
ch

an
ne

l

a
i-4

2ld(N/4) 2ld(N/4)

booth-channel[11:6]

a-channel[7:4]

4

4

booth-channel[5:0]

a-channel[3:0]

Box 4 booth

a
i-3

a
i-8

Full Adder

Full Adder

i-1

a
i-5

booth-channel[2:0]
a-channel[1:0]

6
booth-channel[8:3]

a-channel[5:2]

a
i-2

a
i-6

4

a

Box 3 booth

Full AdderSelection
logic

Selection
logic

Selection
logic

Selection
logic

logic
Selection

Fig. 12. Basic boxes for booth multiplier construction.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 23

Sum0
4=2 ¼ m0ð4bðFAÞ=3þ 4dÞ þ

Xm0
k¼1

2kd;

¼ m0ð4bðFAÞ=3þ 4dÞ þ dðm02 þ m0Þ;

Channel0 ¼ hðT 0Þ � hðbox40Þ � logðM 0=4Þhðbox4=20Þ:

Additionally, to these wires we must consider the wire between one selection logic output in the
upper row and the full-adder input in Box40:

jsum40j ¼ hðSLÞ þ bðSLÞ=2þ 12d:

Also the nets b0½i� can become important. Their delay in sequence to the Booth decoder
delay has to compete against the nets a0½i� and it depends on the constant n which one is
slower. Therefore, we have to consider the length of the longest jb0½i�j: It has to reach n0 bit
positions and for each connection in the worst case it crosses all the 9 other selection logic
wires.

jb0½i�j ¼ n0ðbðbox0Þ þ 10dÞ:

12

14

16

18

20

22

0 0.2 0.4 0.6 0.8 1

TreeTree

total TIME savings
by Booth recoding

1-TIME’ /TIME [%] for n=m=53

ag

bg

aw

bw

with a-net influence

with b-net and BD influence

v

Fig. 13. Relative TIME improvement by Booth recoding for n ¼ m ¼ 53:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4024

With this we can evaluate the delay of the tree T 0:

TIME0
Treeðn; nÞ ¼DSL þ 2DFAð1þ m0Þ

þ n max ja0½i�j; jb0ðiÞj þ
DBD

n

� �
þ jsum40j þ jcarry40j þ Carry0

4=2

�

þSum0
4=2 þ Channel0

�
:

In Fig. 13 the relative improvement ðTIMETree � TIME0
TreeÞ=TIMETree is plotted for n ¼ m ¼

53 as a function of n: This figure is surprisingly complex and counter intuitive. In particular we see
gains due to Booth recoding decrease with increasing n; i.e. with slower wires. For small values of n
until nE0:1 the delay of the Booth decoder DBD ¼ 3 plus the delay of the b-nets is larger than the
delay of the a-nets. For small n we have

TIME0
TreeE55þ 537n;

whereas for large n we have
TIME0

TreeE52þ 614n:

We always have
TIMETree ¼ 62þ 710n:

This explains why the graph has two branches. For n ¼ 0 only gate delays count and we
have

TIME0
Tree=TIMETreeE55=62E89%:

This explains why the branch for the b-nets starts around 100%� 89% ¼ 11%: It remains
to explain why the branch for the a-nets is falling with n: For n ¼ 0 the branch starts at
1� 52

62
E100%� 84% ¼ 16%: For large n the savings are dominated by wire delays and approach

1� ð52þ 614Þ=ð62þ 710ÞE14%o16%: Thus, the branch falls because the wire delays have not
fallen much due to Booth recoding. The reason for this is the geometry of our particular layouts
which are quite wide and not very high: Denote by wireðTÞ resp. wireðT 0Þ the wire delays for T and
T 0: Then, we have for n ¼ 1:

wireðT 0ÞEwðT 0Þ=2þ 2hðT 0Þ;

because a-nets travel horizontally over half the layout and vertically over almost the full layout;
the longest paths from the leaves to the root travel vertically over almost the full layout whereas
horizontal displacement is logarithmic. We have

wðTÞEwðT 0ÞE2nwðboxÞE2n5:7

If we would use as leaves only 4
2
-adders, then the tree T would have n=4 leaves each of height

hðbox4=2ÞE9:9 and around n=4 interior nodes, each of height hðbox4=2ÞE6:7: Thus,
hðTÞEðn=4Þð9:9þ 6:7Þ ¼ 4:15n: Similarly, we have hðT 0ÞEðn=8Þðhðbox04Þ þ hðbox4=2ÞEðn=8Þ
ð17:5þ 6:7Þ ¼ 3:025n: For n ¼ 53 we get wireðT 0ÞE623 and wireðTÞE742:
Note that we have hðTÞ=wðTÞE1

3
and hðTÞ=wðT 0ÞE1

4
: If we make the layouts more square,2 say

by doubling h and halving w; then the savings due to Booth recoding increase but the layouts

2This is common practice.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 25

become slower!. This incidentally shows, that the common practice of making the layouts of
addition trees roughly square is not always a good idea.

7. Evaluations

In this section, we evaluate the savings due to Booth recoding for a wide range of n and also
analyze the asymptotical behaviour. The evaluations are presented in two parts: In the first part
the gate model from Section 4 is considered, in the second part we consider the layout model from
Section 6. To be able to compare the four different designs for every particular n; on the one hand
layouts had to be analyzed also for the multiplication arrays. On the other hand, the delay, cost
and area formulae of the multiplication tree designs had to be extended for the cases where
M=2pmo3=4M: These extensions have been done following the presented designs in a
straightforward way.
We do not only focus on the savings in cost, area and delay, but we consider the more general

quality metrics, the InverseGateQuality (IGQ) and the InverseLayoutQuality (ILQ), that are
defined below:

Definition 2. Depending on a quality paramater 0pqp1; we define the InverseGateQuality (IGQ)
of a design X ; that has the cost CX ðn;mÞ and the delay DX ðn;mÞ; by

IGQX ðn; qÞ ¼ CX ðn; nÞ
qDX ðn; nÞ

ð1�qÞ:

Note, that we get the delay by IGQX ðn; 0Þ ¼ DX ðn; nÞ and the cost by IGQX ðn; 1Þ ¼ CX ðn; nÞ:
Because the delay DX ðn; nÞ of a design X is the inverse of the performance of the design PX ðn; nÞ ¼
1=DX ðn; nÞ; for q ¼ 1

2
the IGQ metric relates to cost-performance ratio:

IGQX ðn; 0:5Þ ¼
ffi
CX ðn; nÞDX ðn; nÞ

p
¼

ffi
CX ðn; nÞ=PX ðn; nÞ

p
:

Definition 3. We define the IGQ of the best among our designs, that do not use Booth recoding by

bestIGQðn; qÞ ¼ minðIGQArrayðn; qÞ; IGQTreeðn; qÞÞ:

Analogously, the IGQ of the best among our designs using Booth recoding is defined by

bestIGQ0ðn; qÞ ¼ minðIGQ0
Arrayðn; qÞ; IGQ0

Treeðn; qÞÞ:

Moreover, we define the relative savings of the IGQ due to Booth recoding:

IGQsaveðn; qÞ ¼ 1� bestIGQ0ðn; qÞ=bestIGQðn; qÞ:

Definition 4. Depending on a quality paramater 0pqp1; we define the InverseLayoutQuality (ILQ)
of a design X ; that requires the area AREAX ðn;mÞ and has the delay TIMEX ðn;m; nÞ; given by

ILQX ðn; n; qÞ ¼ AREAX ðn; nÞ
qTIMEX ðn; n; nÞ

ð1�qÞ:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4026

Note, that we get the TIME metric by ILQX ðn; n; 0Þ and the AREA metric by ILQX ðn; n; 1Þ:
Moreover, for q ¼ 1

2
and q ¼ 2

3
the ILQ metric relates to the metrics commonly known as AT and

AT2; respectively.

Definition 5. We define the ILQ of the best among our designs, that do not use Booth recod-
ing by

bestILQðn; n; qÞ ¼ minðILQArrayðn; n; qÞ; ILQTreeðn; n; qÞÞ:

Accordingly, the ILQ of the best among our designs using Booth recoding is defined by

bestILQ0ðn; n; qÞ ¼ minðILQ0
Arrayðn; n; qÞ; ILQ0

Treeðn; n; qÞÞ:

Moreover, we define the relative savings of the ILQ due to Booth recoding:

ILQsaveðn; n; qÞ ¼ 1� bestILQ0ðn; n; qÞ=bestILQðn; n; qÞ:

7.1. Gate analysis

7.1.1. Asymptotic considerations
The following lemma states, that for large n; the multiplication arrays have the best IGQ for

q ¼ 1; whereas, multiplication trees have the best IGQ for qo1:

Lemma 6. For large n:

bestIGQðn; qÞ ¼
IGQArrayðn; qÞ if q ¼ 1;

IGQTreeðn; qÞ if 0pqo1;

(

bestIGQ0ðn; qÞ ¼
IGQ0

Arrayðn; qÞ if q ¼ 1;

IGQ0
Treeðn; qÞ if 0pqo1:

(

Proof. We separate the proof for the two cases: (a) q ¼ 1; and (b) 0pqo1:
(a) For q ¼ 1; the quality metric becomes the cost metric IGQX ðn; 1Þ ¼ CX ðn; nÞ; so that from

the cost formulae CTreeðn; nÞ ¼ CArrayðn; nÞ þ ECFA and C0
Treeðn; nÞ ¼ C0

Arrayðn; nÞ þ E0CFA the
proof of part (a) of the lemma already follows.
(b) For 0pqo1 and large n; we consider the fraction

IGQArrayðn; qÞ
IGQTreeðn; qÞ

¼
CArrayðn; nÞ

qDArrayðn; nÞ
ð1�qÞ

CTreeðn; nÞ
qDTreeðn; nÞ

ð1�qÞ :

X 1q n

2 logðnÞ
þ o

n

2 logðnÞ

� �� �1�q

X 1:

The same argumentation can be used for the Booth designs, so that also part (b) of the proof is
completed. &

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 27

Theorem 7. For large n; Booth recoding improves the best IGQ by

IGQsaveðn; qÞ ¼ 1�
CFA þ CSL

2ðCFA þ CANDÞ

� �q

7oð1Þ:

Proof. We separate the proof for the two cases: (a) q ¼ 1; and (b) 0pqo1:
(a) For q ¼ 1; it follows from Lemma 6 that for large n

IGQsaveðn; 1Þ ¼ 1� IGQ0
Arrayðn; 1Þ=IGQArrayðn; 1Þ:

Because IGQArrayðn; 1Þ ¼ CArrayðn; nÞ ¼ ðCFA þ CANDÞn2 þ oðn2Þ and

IGQ0
Arrayðn; 1Þ ¼ C0

Arrayðn; nÞ

¼ ðCFA þ CSLÞn
n þ 1
2

� �
þ oðn2Þ

¼
CFA þ CSL

2
n2 þ oðn2Þ;

we get IGQ0
Arrayðn; 1Þ=IGQArrayðn; 1Þ ¼ ðCFA þ CSLÞ=2ðCFA þ CANDÞ7oð1Þ; so that for large n

IGQsaveðn; 1Þ ¼ 1�
CFA þ CSL

2ðCFA þ CANDÞ
7oð1Þ:

(b) For 0pqo1; it follows from Lemma 6 that for large n

IGQsaveðn; qÞ ¼ 1� IGQ0
Treeðn; qÞ=IGQTreeðn; qÞ:

Using IGQ0
Treeðn; qÞ ¼ C0

Treeðn; nÞ
qD0

Treeðn; nÞ
ð1�qÞ and IGQTreeðn; qÞ ¼ CTreeðn; nÞ

qDTreeðn; nÞ
ð1�qÞ; we

get

IGQsaveðn; qÞ ¼ 1�
C0

Treeðn; nÞ
qD0

Treeðn; nÞ
ð1�qÞ

CTreeðn; nÞ
qDTreeðn; nÞ

ð1�qÞ:

Because for large n; D0
Treeðn; nÞ

ð1�qÞ=DTreeðn; nÞ
ð1�qÞ ¼ m0=m7oð1Þ ¼ 17oð1Þ; the equation for

IGQsaveðn; qÞ can be simplified to

IGQsaveðn; qÞ ¼ 1�
C0

Treeðn; nÞ
q

CTreeðn; nÞ
q þ o

C0
Treeðn; nÞ

q

CTreeðn; nÞ
q

� �

¼ 1�
ðCFA þ CSLÞnJðn þ 1Þ=2n

ðCFA þ CANDÞn2

� �q

7oð1Þ

X1�
CFA þ CSL

2ðCFA þ CANDÞ

� �q

7oð1Þ:

This completes the proof of the theorem. &

Corollary 8. Asymptotically, Booth recoding saves 25% of the cost of the partial product generation
and reduction (Theorem 7 with q ¼ 1 and the presented basic circuit designs). The asymptotic relative

IGQ savings are depicted in Fig. 14 as a function of the quality parameter q:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4028

7.1.2. Considerations for practical n

The relative savings of the best IGQ according to the use of Booth Recoding are depicted in
Fig. 15 for 8pnp64 and 0pqp1: This figure shows that Booth recoding is useful in most
practical situations, except for small n and qE1: For q ¼ 1 the savings of the IGQ due to Booth
recoding are analyzed in detail. The following lemma states, that regarding the gate count
(IGQX ðn; 1Þ), Booth recoding is useful, iff n ¼ 13; 15 or nX17:

Lemma 9.

bestIGQ0ðn; 1ÞobestIGQðn; 1Þ3ððn ¼ 13Þ OR ðn ¼ 15Þ OR ðnX17ÞÞ:

Proof. From Lemma 6 we get bestIGQ0ðn; 1Þ ¼ C0
Arrayðn; nÞ and bestIGQðn; 1Þ ¼ CArrayðn; nÞ: We

distinguish two cases: (a) n is even; and (b) n is odd:
(a) If n ¼ m is even, then we can substitute m0 by m0 ¼ n=2þ 1 in C0

Arrayðn; nÞ: The condition
C0

Arrayðn; nÞpCArrayðn; nÞ is then equivalent to n2 � 139
8 n þ 49X0; so that for even n > 0 we get the

q
1

25

20

15

10

5

0

0.2 0.4 0.6 0.8

Fig. 14. Asymptotic relative savings (%) of the best IGQ (regarding gate model) due to Booth recoding as a function of

q: IGQsaveðN; qÞ:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 29

26

24

22

20

18

16

14

12

10

8

6

4

2

0

-2

-4

-6

-8

-10

-12

-14

-16

-18

q
10.90.80.70.60.50.40.30.20.10

m
60

50
40

30
20

10

Fig. 15. Relative savings (%) of the best IGQ (regarding gate model) due to Booth recoding: IGQsaveðn; qÞ:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4030

solution nX16:63; which is equivalent to even nX18: (b) If n ¼ m is odd, then we can substitute
m0 by m0 ¼ n=2þ 1

2 in C0
Arrayðn; nÞ: The condition C0

Arrayðn; nÞpCArrayðn; nÞ is then equivalent
to n2 � 115

8
n þ 189

8
X0; so that for odd n > 0 we get the solution nX12:48; which is equivalent

to odd nX13: Thus, the solutions of part (a) and part (b) combine to the lemma. The situation
of the IGQ savings due to Booth recoding IGQsaveðn; 1Þ is depicted in Fig. 16 for
8pnp20: &

Finally, Fig. 17 depicts which of the 4 different designs should be chosen according to the IGQ
for 0pqp1; 8pnp64 and 10pnp1010:

7.2. Layout analysis

7.2.1. Asymptotic considerations

Lemma 10. With the definition of the condition COAR3ðð0pqo1Þ AND ðna0ÞÞ OR ðq ¼ 1Þ; the
multiplication array designs have the asymptotically best ILQ for ðCOAR ¼ 1Þ: For ðCOAR ¼ 0Þ
the multiplication tree designs have the asymptotically best ILQ, so that for large n

bestILQðn; n; qÞ ¼
ILQArrayðn; n; qÞ if COAR;

ILQTreeðn; n; qÞ otherwise:

(

bestILQ0ðn; n; qÞ ¼
ILQ0

Arrayðn; n; qÞ if COAR;

ILQ0
Treeðn; n; qÞ otherwise:

(

m
21201918171615141312111098

10

0

-10

-20

-30

IGQsave(n,1) [%]

Fig. 16. Relative Savings (%) of the best IGQ due to Booth recoding for q ¼ 1: IGQsaveðn; 1Þ:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 31

Proof. We separate the proof for the two cases: (a) ðn ¼ 0Þ; and (b) ð0onp1Þ:
(a) The proof for ðn ¼ 0Þ is again partitioned into two parts for the cases: (i) ðq ¼ 1Þ; and (ii)

ð0pqo1Þ:

(i) From ðq ¼ 1Þ and

ILQTreeðn; 0; 1Þ ¼ AREATreeðn; nÞ ¼ Oðn2 logðMÞÞ;

ILQ0
Treeðn; 0; 1Þ ¼ AREA0

Treeðn; nÞ ¼ Oðn2 logðMÞÞ;

ILQArrayðn; 0; 1Þ ¼ AREAArrayðn; nÞ ¼ Oðn2Þ;

ILQ0
Arrayðn; 0; 1Þ ¼ AREA0

Arrayðn; nÞ ¼ Oðn
2Þ;

it follows, that for large n

bestILQðn; 0; 1Þ ¼ ILQArrayðn; 0; 1Þ;

bestILQ0ðn; 0; 1Þ ¼ ILQ0
Arrayðn; 0; 1Þ:

Multiplication Array

Multiplication Tree

non-Booth:

Multiplication Tree

Multiplication Array

Booth Recoding:

m

 64

 56

 48

 40

 32

 24

 16

8

q
 10.80.60.4 0.2 0

m

1e+10

1e+08

1e+06

10000

 100

 10

q
 10.80.60.4 0.2 0

Fig. 17. Value ranges of q and n for that the 4 designs have the best IGQ (regarding gate model).

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4032

(ii) For ðn ¼ 0Þ;

ILQArrayðn; 0; qÞ ¼ AREAArrayðn; nÞ
qTIMEArrayðn; n; 0Þ

ð1�qÞ

¼ Yðnðqþ1ÞÞ;

ILQTreeðn; 0; qÞ ¼ AREATreeðn; nÞ
qTIMETreeðn; n; 0Þ

ð1�qÞ

¼ Yðnð2qÞ logðnÞÞ:

Because for 0pqo1:

nðqþ1Þ

nð2qÞ logðnÞ
¼ n1�q=logðnÞ

X 1þ Oð1Þ:

We get for large n

bestILQðn; 0; qÞ ¼ ILQTreeðn; 0; qÞ:

In the same way we can show for 0pqo1; that for large n:

bestILQ0ðn; 0; qÞ ¼ ILQTreeðn; 0; qÞ:

This completes part (a) of the proof.
(b) In the following, we assume for the proof of case (b), that ð0onp1Þ: Because

TIMETreeðn; n; nÞ ¼ Oðn logðnÞÞ; TIME0
Treeðn; n; nÞ ¼ Oðn logðnÞÞ; TIMEArrayðn; n; nÞ ¼ OðnÞ and

TIME0
Arrayðn; n; nÞ ¼ OðnÞ; we get for large n

bestILQðn; n; 0Þ ¼ TIMEArrayðn; n; nÞ; ð1Þ

bestILQ0ðn; n; 0Þ ¼ TIME0
Arrayðn; n; nÞ: ð2Þ

Accordingly, from AREATreeðn; nÞ ¼ Oðn2 logðnÞÞ; AREA0
Treeðn; nÞ ¼ Oðn2 logðnÞÞ; AREAArray

ðn; nÞ ¼ Oðn2Þ and AREA0
Arrayðn; nÞ ¼ Oðn

2Þ; it follows for large n that

bestILQðn; n; 1Þ ¼ AREAArrayðn; nÞ; ð3Þ

bestILQðn; n; 1Þ0 ¼ AREA0
Arrayðn; nÞ: ð4Þ

Because for n > 0; the multiplication arrays have both, the asymptotically smallest AREA and the
asymptotically fastest TIME, we get for large n

bestILQðn; n; qÞ ¼ AREAArrayðn; nÞ
qTIMEArrayðn; n; nÞ

ð1�qÞ

¼ ILQArray;

bestILQ0ðn; n; qÞ ¼ AREA0
Arrayðn; nÞ

qTIME0
Arrayðn; n; nÞ

ð1�qÞ

¼ ILQ0
Array:

This completes case (b) of the proof. &

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 33

Theorem 11. We use the previous definition of the condition COAR3ðð0pqo1Þ
AND ðna0ÞÞ OR ðq ¼ 1Þ: Then, for large n the use of Booth recoding relatively saves the best

ILQ by

45

40

35

q

1
0.8

0.6
0.4

0.2
0

nu

1

0.8

0.6

0.4

0.2

0

30

50

Fig. 18. Asymptotic relative savings (%) of the best ILQ (regarding layout model) due to Booth recoding for 0onp1
and 0pqp1:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4034

ILQsaveðn; n; qÞ ¼
1� 0:641q 11:66nþ 3

13:75nþ 6

� �ð1�qÞ

7oð1Þ if COAR;

1� 0:728q7oð1Þ otherwise:

8><
>:

The asymptotic relative ILQ savings are depicted in Fig. 18 as a function of q and n:

Proof. First, we summarize the TIME and AREA formulae for the different designs:

AREA0
Arrayðn; nÞ ¼ 15:49n

2 þ oðn2Þ;

AREAArrayðn; nÞ ¼ 23:92n2 þ oðn2Þ;

AREA0
Treeðn; nÞ ¼ 1:26n

2 logðMÞ þ oðn2 logðMÞÞ;

AREATreeðn; nÞ ¼ 1:73n2 logðMÞ þ oðn2 logðMÞÞ;

TIME0
Arrayðn; n; nÞ ¼ 11:66nm þ oðnmÞ þ 3m þ oðmÞ;

TIMEArrayðn; n; nÞ ¼ 13:75nm þ oðnmÞ þ 6m þ oðmÞ;

TIME0
Treeðn; n; nÞ ¼ 0:2nn logðMÞ þ oðnn logðMÞ þ 12 logðMÞ þ oðlogðMÞÞ;

TIMETreeðn; n; nÞ ¼ 0:2nn logðMÞ þ oðnn logðMÞ þ 12 logðMÞ þ oðlogðMÞÞ:

ν

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

rel. asymptotic TIME improvement

26

[%] by Booth recoding

Fig. 19. Asymptotic TIME savings due to Booth recoding.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 35

From these equations, we can easily derive

ILQ0
Arrayðn; n; qÞ

ILQArrayðn; n; qÞ
¼

AREA0
Arrayðn; nÞ

q

AREAArrayðn; nÞ
q

TIME0
Arrayðn; n; nÞ

ð1�qÞ

TIMEArrayðn; n; nÞ
ð1�qÞ

¼
15:49

23:92

� �q
11:66nþ 3
13:75nþ 6

� �ð1�qÞ

7oð1Þ

ILQ0
Treeðn; n; qÞ

ILQTreeðn; n; qÞ
¼

AREA0
Treeðn; nÞ

q

AREATreeðn; nÞ
q

TIME0
Treeðn; n; nÞ

ð1�qÞ

TIMETreeðn; n; nÞ
ð1�qÞ

¼
1:26

1:73

� �q

1ð1�qÞ7oð1Þ:

sa
vi

ng
s

[%
]

30

20

10

0

-10

-20

m

 64 56 48 40 32 24 16 8

q

1
 0.8

 0.6
 0.4

 0.2
0

sa
vi

ng
s

in
 [%

]

20

15

10

5

0

m

 64 56 48 40 32 24 16 8

nu

1
 0.8

 0.6
 0.4

 0.2
0

(a) nu=0.05 (b) q=0

Fig. 20. Relative savings (%) of the best ILQ (regarding layout model) due to Booth recoding for (a) 0oqp1;
8pmp64 and n ¼ 0:05; and (b) 0pnp1; 8pmp64 and q ¼ 0:

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4036

Multiplication Array

Multiplication Tree

non-Booth:

Multiplication Tree

Multiplication Array

Booth Recoding:

m

 64

 56

 48

 40

 32

 24

 16

 8

q
 1 0.8 0.6 0.4 0

m

1e+10

1e+08

1e+06

10000

 100

 10

lo
g1

0(
m

)

 80

 70

 60

 50

 40

 30

 20

 10

 4

 0.2

q
 1 0.8 0.6 0.4 0 0.2

q
 1 0.8 0.6 0.4 0 0.2

Fig. 21. Value ranges of q and n for that the 4 designs have the best ILQ (regarding layout model).

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 37

Finally, by the use of Lemma 10, we get, that for large n

ILQsaveðn; n; qÞ ¼
1�

ILQ0
Array

ðn;n;qÞ

ILQArrayðn;n;qÞ
if COAR;

1� ILQ0
Tree

ðn;n;qÞ
ILQTreeðn;n;qÞ

otherwise:

8<
:

¼
1� 0:641q 11:66nþ3

13:75nþ6

� �ð1�qÞ
7oð1Þ if COAR;

1� 0:728q7oð1Þ otherwise:

8<
: &

Corollary 12. From Theorem 11 we can extract the AREA savings (q ¼ 1) for large n:

ILQsaveðn; n; 1Þ ¼ 35:97oð1Þ:

Moreover, we can extract the TIME savings (q ¼ 0) for large n:

ILQsaveðn; n; 0Þ ¼
11:66nþ3
13:75nþ6

� �
7oð1Þ if ðn > 0Þ;

7oð1Þ otherwise:

8<
:

The asymptotic TIME savings are depicted in Fig. 19.

7.2.2. Considerations for practical n
The relative savings of the best ILQ according to the use of Booth recoding are depicted in

Fig. 20(a) for 8pnp64; 0pqp1 and n ¼ 0:05; and in Fig. 20(b) for 8pnp64; q ¼ 0 and 0pnp1:
These figures show that Booth recoding is useful for most practical parameters regarding the ILQ.
Fig. 21 depicts which of the 4 different layouts should be chosen according to the ILQ for

0pqp1 and 8pnp64: Because the best practical ILQ layouts in this range do not seem to
converge to the best asymptotical ILQ layouts from Lemma 10, the choice of the best ILQ layout
is also depicted for a larger range of n with 10pnp1010 and an even larger range of n with
104pnp1080 in Fig. 21.

8. Conclusions

We formally investigate the complexity of Booth recoding for fixed point multiplication. As
main contribution of this investigation we provide a formal version of the folklore theorem, that
Booth recoding saves the delay and the area of the multipliers’ adder tree by constant factors
between 26% and 50%minus low order terms which depend on the length n of the operands and a
parameter n for the wire delay. For the cost analysis we provide a formal version of the folklore
theorem that balanced addition trees in n-bit multipliers have n2 þOðn log nÞ full adders. This
required the combinatorial argument from Section 3. In our investigations we did not only
analyze the costs and delays considering gates, but we also considered layouts including the effects
of wire delays. For practical n in the range 8pnp64 we specify the delay and the area gain due to

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4038

Booth recoding exactly for the proposed designs. Parts of our gate analysis are already used and
referenced by [28].
Our analysis are not only parametrical considering the operand size n; but also the relative delay

of the wires, the costs and delays of basic gates and the geometries of the basic circuits can be
adjusted by parameters, so that the interested reader may choose his favorite technology/
implementation in the analysis. Regarding the wire delay parameter n; we have demonstrated the
surprising effect, that for particular multiplier designs the relative delay savings due to Booth
recoding might decrease as wires become slower. Empirical studies on a limited number of designs
so far have suggested that Booth recoding should be particularly helpful if wires become slow [16].
We have analyzed this effect in some more detail.
Technically, the main contribution of the paper is the VLSI model from Section 5 and the

techniques of analysis of the same section. The detailed yet tractable nature of this model opens
the way for many further investigations. We list just a few

* One can systematically study where drivers should be placed in order to make nets smaller and
hence speed up signal propagation.

* One can analyze hybrid layouts (arrays of small trees) and the layouts of many other
multiplication designs [2,6,8–10,22,23,29–32].

* The layouts of various adder and shifter designs can be analyzed in a quite realistic way.
* It is common practice to ‘fold’ layouts of addition trees into more square layouts. But the
formula

wireðTÞ==E==wðTÞ=2þ 2hðTÞ

suggests that trivial folding of layouts produces slower designs. This clearly needs closer
investigation.

Acknowledgements

For helpful and inspiring discussions the authors thank Michael Bosch and Guy Even.

References

[1] L. Dadda, Some schemes for parallel multipliers, Alta Frequenza 34 (1965) 349–356.

[2] B.C. Drerup, E.E. Swartzlander, Fast multiplier bit-product matrix reduction using bit-ordering and parity

generation, J. VLSI Signal Process. 7 (1994) 249–257.

[3] J. Keller, W.J. Paul, Hardware Design, 2nd Edition, Teubner Verlagsgesellschaft, Stuttgart, Leipzig, 1997.

[4] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall International, Englewood Cliffs, NJ, 1993.

[5] A.R. Omondi, Computer Arithmetic Systems; Algorithms, Architecture and Implementations, Series in Computer

Science, Prentice-Hall International, Englewood Cliffs, NJ, 1994.

[6] N. Takagi, H. Yasuura, S. Yajima, High-speed VLSI multiplication algorithm with a redundant binary addition

tree, IEEE Trans. Comput. C-34 (9) (1985) 217–220.

[7] C.S. Wallace, A suggestion for parallel multipliers, IEEE Trans. Electron. Comput. EC-13 (1964) 14–17.

[8] Z. Wang, A. Jullien, C. Miller, A new design technique for column compression multipliers, IEEE Trans. Comput.

44 (8) (1995) 962–970.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–40 39

[9] H. Al-Twaijry, Area and performance optimized CMOS multipliers, Ph.D. Thesis, Stanford University, August

1997.

[10] G.W. Bewick, Fast multiplication: algorithms and implementation, Ph.D. Thesis, Stanford University, March

1994.

[11] A.D. Booth, A signed binary multiplication technique, Q. J. Mech. Appl. Math. 4 (2) (1951) 236–240.

[12] P.E. Madrid, B. Millar, E.E. Swartzlander, Modified Booth algorithm for high radix multiplication, IEEE

Computer Design Conference, 1992, pp. 118–121.

[13] L.P. Rubinfeld, A proof of the modified Booth’s algorithm for multiplication, IEEE Trans. Comput. (October

1975), pp. 1014–1015.

[14] H. Al-Twaijry, M. Flynn, Multipliers and datapaths, Technical Report CSL-TR-94-654, Stanford University,

December 1994.

[15] H. Al-Twaijry, M. Flynn, Performance/area tradeoffs in Booth multipliers, Technical Report CSL-TR-95-684,

Stanford University, November 1995.

[16] H. Al-Twaijry, M. Flynn, Technology scaling effects on multipliers, Technical Report CSL-TR-96-698, Stanford

University, July 1996.

[17] I. Wegener, The Complexity of Boolean Functions, Wiley, New York, 1987.

[18] C.D. Thompson, Area-time complexity for VLSI. Proceedings of the 11th Annual ACM Symposium on the

Theory of Computing, Vol. 11, 1979, pp. 81–88.

[19] J.D. Ullman, Computational Aspects of VLSI, Computer Science Press, Rockville, MD, 1984.

[20] L.A. Glasser, D.W. Dobberpuhl, The Design And Analysis Of VLSI Circuits, Addison-Wesley, Reading, MA,

1985.

[21] C. Mead, L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.

[22] L. Kuehnel, H. Schmeck, A closer look at VLSI multiplication, INTEGRATION, VLSI J. 6 (1988) 345–359.

[23] R.K. Yu, G.B. Zyner, 167 MHz Radix-4 floating point multiplier, Proceedings of the 12th Symposium on

Computer Arithmetic, Vol. 12, 1995, pp. 149–154.

[24] P. Kornerup, private communication.

[25] S.M. Mueller, W.J. Paul, The Complexity of Simple Computer Architectures, in: Lecture Notes in Computer

Science, Vol. 995, Springer, Berlin, 1995.

[26] J. Vuillemin, A very fast multiplication algorithm for VLSI implementation, INTEGRATION, VLSI J. 1 (1983)

39–52.

[27] C. Nakata, J. Brock, H4C Series: Design Reference Guide, CAD, 0.7 Micron Leff ; Motorola Ltd., 1993,
Preliminary.

[28] S.M. Mueller, W.J. Paul, Computer Architecture—Complexity and Correctness, Springer, Berlin, 2000 ISBN#

3-540-67481-0.

[29] Z.-J. Mou, F. Jutand, Overturned-stairs adder trees and multiplier design, IEEE Trans. Comput. 41 (8) (1992)

940–948.

[30] V.G. Oklobdzija, D. Villeger, S.S. Liu, A method for speed optimized partial product reduction and generation of

fast parallel multipliers using an algorithmic approach, IEEE Trans. Comput. 45 (3) (1996) 294–306.

[31] R.M. Owens, R.S. Bajwa, M.J. Irwin, Reducing the number of counters needed for integer multiplication,

Proceedings 12th Symposium on Computer Arithmetic, Vol. 12, 1995, pp. 38–41.

[32] K.F. Pang, R. Soong, H.-W. Sexton, P.H. Ang, Generation of high speed CMOS multiplier-accumulators,

Proceedings IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1988,

pp. 217–220.

W.J. Paul, P.-M. Seidel / INTEGRATION, the VLSI journal 32 (2002) 5–4040

	To Booth or not to Booth
	Introduction
	Preliminaries
	Multiplication
	Booth recoding

	A combinatorial lemma
	Gates
	Partial product generation
	NonBooth
	Booth

	Redundant partial product addition
	Analysis 42-trees
	NonBooth
	Booth

	VLSI model
	Layouts and their analysis
	Evaluations
	Gate analysis
	Asymptotic considerations
	Considerations for practical n

	Layout analysis
	Asymptotic considerations
	Considerations for practical n

	Conclusions
	Acknowledgements
	References

