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Individual synthetic
benchmarks and partial
decompilation

In this paper we propose the following new approach for the construction of
synthetic benchmarks: i) collect traces 7" on the system bus by monitoring
hardware. ii) construct high level language programs P which generate the
same workload as the traces 7. iii) construct the synthetic benchmark from
the programs P, Steps i) and iii) are straightforward. We present an algorithm
for step ii) and report experimental results which are encouraging. This opens
the way to the automatic construction of personal synthetic benchmarks.

Benchmarks are models of workload. In particular synthetic benchmarks
are programmed statistics about the relative frequency of language con-
structs in certain programs. Computer architects optimize their machines
in order to perform well on certain benchmarks. Buyers frequently base
their decisions on benchmark performance, although it is not clear how
well their own workload is represented by the benchmarks [1-3].

A buyer who knows enough about the behaviour of his programs can
easily construct and run a synthetic benchmark which represents his own
workload. Gathering such statistics is unfortunately not a trivial matter.
From hardware monitors one can immediately obtain statistics about the
machine instructions executed, but this is of little value if one wants to
test a machine with a different instruction set. Instrumenting source code
yields the desired data, but this approach may be impractical for a variety
of reasons: source code may not be accessible, or the penalty in run time
may not be acceptable.

In this paper we present a method for transforming a trace 7', obtained by
a hardware monitor, into a high level language program P which produces
the same workload as trace T'. This is done by a process we call partial
decompilation. It is similar to decompilation [4, 5], but, however, easier
because semantics do not have to be preserved.

We will only describe partial decompilation from a particular RISC in-
struction set to C. In the next section we justify this. Then we describe
the method and heuristics we have used. Finally we report experimental
data. In section 10 we discuss limitations of this approach and possible
future work.

This work was partially supported by BMFT project PARANUSS.
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Programming languages and machine languages

Computer programming is clearly dominated by imperative programming
languages. The object oriented programming languages can be consid-
ered as extensions to imperative programming languages. C, Fortran, and
Pascal are typical representatives for imperative programming languages
and are based on common constructs as demonstrated in Figure 1.

Property
predefined data types

userdefined data types

arithmetic-logical
operators

iteration

branching

functions, procedures

C Fortrn Pascal

(unsigned) char, char, integer«1/2/4,  char, integer,

(unsigned) int, realx4/8, complex, real,
(unsigned) long, logical boolean
float, double

vector, struct vector (dim) array, record

+)—)*s/s%, "I") —y %, /: +a ":*1/’ diV, mod,
<2,<$>,5,2,  Itgtle ge,eqne, <>, <>,=,<>,
==,!1=&, ", |, and, xor, or, not, and, or, not,

L, “(unary) ~(unary) “(unary)

for, while, do ... label while, repeat — until
while — do for

if — else, if — then — else, if — then - else,

switch — case, goto  goto case, goto

function function, subroutine function, procedure

Figure 1. Common
constructs of imperative

programming languages.

The algorithm for partial decompilation presented later, will essentially
assume that the trace T' is generated by a compiled program from any
imperative language. The algorithm will try to construct a C program
which produces the same workload. Thus it has heuristics for recognizing
the kinds of constructs from the first column in Figure 1. If all heuristics
fail, C permits to closely mimic assembler instructions as a last resort.
One construct the present algorithm fails to treat correctly is the visibility
of variables in Pascal. We will return to this point in section 10.

Most of the commercially successfull processor architectures mirror the
common constructs of imperative programming languages. As a selection
of those processors we copsider the set P = {MOTOROLA 68040,
SPARC, MIPS, INTEL 80486, INTEL i860}. In [6] the authors observe
that the RISC processors SPARC, MIPS, i860, and M88000 all have
similar instruction sets. They proceed to define an instruction set DLX
which captures the common features of these instruction sets.

In this paper we assume that the instructions in trace T' are DLX in-
structions. In DLX memory is addressable by bytes. All instructions are
4 bytes long. Register 0 is always 0. There is a special set of floating-
point registers and there are special registers for status (sr) and the stack
pointer (sp). There are four classes of instructions, namely i) loads, ii)
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stores, iii) arithmetic/logical instructions and iv) branches. We call in-
structions of types i) to iii) computational. Loads and stores move 1, 2,
4 or 8 bytes between CPU registers and memory locations. There is a
single addressing mode: register + constant. There is no load immedi-
ate instruction. Arithmetic/logical operations have 2 operands. They are
between registers only, but they may have one immediate operand (thus
load immediates can be simulated). They include compare instructions
which change the content of the status register. Conditional branches de-
pend on the content of the status register. Procedure calls are supported
by special jump and link instructions.

The problem to partially decompile traces 7' coming from a complex
instruction set is easily reduced to the problem to decompile from DLX:
replace each instruction in T by a short equivalent sequence of DLX
instructions, then partially decompile the resulting sequence T".

Our experiments are based on the SPARC instruction set.

Code generation, object code and traces
DLX and similar instruction sets allow the straightforward translation of
high level language constructs:

— Simple and complex data objects of high level languages are mapped
to memory locations.

— Mapping data to memory locations requires additional operations
for memory management and addressing operations. The instructions
SLL, SRL, ADD, and the data transfer instructions meet that require-
ment.

~ Simple logic and arithmetic operations of high level languages corre-
spond to the identical DLX instructions.

— High level language branches and loops may be realized using the
(conditional) jump instructions of DLX.

— Function calls are carried out using jump and link instructions.
Earlier studies on decompilers ([4, 5]) always refer to object code. A trace
drawn from a running program differs from object code because some
parts of the program may never be executed while others may be executed
repeatedly. For each machine instruction monitored we assume that the
following triple t = (C'A(t), C(t), DA(t)) is recorded: the code address
C'A(¢) from which the instruction is fetched, the code C(t) executed (a
DLX instruction) and the (possibly empty) data address D A(t) accessed
in case C(?) is a load or store operation. A trace T then is simply a
sequence of such triples ¢. Different triples with identical code address
come from repeated execution of the same instruction I in the object
code. For triples ¢ and ¢’ we write ¢ < ¢/ if ¢ occurs befor ¢ in the trace.
For each code address b we denote by C'(b) the instruction stored at
address b.

System load and user load
In our experimental work we have to take into account that a workload
is separated into system load and user load. System load consists of
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the operating system processes. Given a Unix system, the system load
is easily distinguished from the user load. Unix systems strictly separate
user and system address space. Furthermore Unix defines a clear interface
between user and system processes: system calls. Looking at the DLX
instruction set, system calls may be carried out by the TRAP instruction,
the RFE instruction returns to the user process. Thus the fraction of the
trace representing the system load may easily be recognized and isolated.
User load is then the remaining part of the trace. In the next 4 sections
we present a method for decompiling the portion of the trace which
corresponds to user load.

Program graphs and loops

From trace T' we generate a program graph G = (V| F). The nodes
V of G are the different code addresses occuring in T'. We include an
edge from a to a’ if at some place in trace T a triple with code address
a’ immediately follows a triple with code address a. Such an edge also
indicates that in the object code one can branch from a to a’. For real
machines which pipeline the execution of instructions, this definition is
more complicated due to delay slots.

Strongly connected components of graph G correspond almost, but not
exactly to the outermost loops of the object code respectively the source
code. Suppose the same function is called from code addresses b and c.
Then we have in G a directed path from b to ¢ + 4, i.e. to the return
address belonging to the call from code address c. This is easily fixed:
for each node a such that C(a) is a jump and link instruction delete all
edges which start in a and add the edge (a,a + 4). If E’ is the new set
of edges, then outermost loops correspond directly to strongly connected
components of the graph (V, E').

Breaking the outermost loops of strongly connected components in ap-
propriate places and searching for strongly connected components in the
remaining components permits to identify nested loops.

Basic data structures
The next three sections describe the central portion of our algorithm. The
algorithm processes the triples ¢ in the order of their occurrence in trace
T'. While doing so it maintains several data structures:
Functions. In order to keep track of the nesting of function calls and of
return addresses we maintain two stacks and two numbers:

— A nesting depth s of function calls. Initially s = 0,

— The number n of function calls observerd so far. Initially » = 0.

— A “function” stack F and

— A stack R of return addresses.

Whenever we process a triple ¢ such that C(¢) is a jump and link instruc-
tion we have identified the call of a function. This function has nesting
depth s + 1, its body starts at address CA(t + 1) and after return from
this function the instruction stored at code address CA(t) + 4 will be
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executed. (Again, we ignore delay slots.) We increment s and n. Then
we push the triple ¢ = (CA(t 4 1), », s) on the function stack. We push
CA(t) + 4 on the stack R.
Whenever we process a triple ¢ such that CA(t) = top(R), we have
identified the return from a function. We pop F and R and we decrement
s (but not n).
If ¢ = (CA(t+1),n, s) is a triple on the function stack, then C A(t 4 1)
specifies the (start address of the) function, n specifies the instance of that
function and s specifies the nesting depth of the currently observed call.
We order the entries of the function stack F by their third components,
i.e. smaller entries have smaller nesting depth. For entries g = (f,n,s)
of the function stack we use the notation f = f(g), n = n(g) and
s = s(g).
Last changes of locations. We maintain 2 pair of mappings lastca() and
lastf(). Whenever a triple t = (C'A(t), C(t), DA(t)) modifies a reg-
ister or a memory location [ then lastca(l) is updated to CA(t) and
lastf(l) is updated to top(F). If I is a memory location, then C() is
necessarily a store instruction, otherwise C(t) is necessarily a load or an
arithmetic/logical instruction.
Straight line segments. Let b be a code address, respectively a node of the
computation graph. We call b computational if C(}) is a computational
instruction. A straight line segment is a sequence (a1, ..., ¢maz) of code
addresses such that

1 a; is a computational instruction for all ¢;

2 neither a3 — 4 nor amgz + 4 are computational;

3a;=a;_1+4forall:>0.
We partition the computational nodes into straight line segments in the
order of their occurrence in the trace. Note that straight line segments
are not necessarily basic blocks, because interior nodes of straight line
segments can be destinations of branch instructions. It is easy to maintain
the start end end points of the straight line segments already found in a
dictionary like data structure.
With the help of this data structure and function lastca() one computes a
function lasts(l) = the straight line segment which contains code address
lastca(l), i.e. the straight line segment in which location I was modified
last.
In the central loop of our algorithm we will process straight line segments
in the order in which they appear in the trace. When a straight line
segment appears a second time, we only update the above data structures.
Identifiers and expressions. Let b be a code address respectively a node
in the computation graph. We associate with each such address b and
with each straight line segment A an identifier I(A, ). Some of these
identifiers will later be turned into simple variables or into components
of complex variables.

If code address b belongs to straight line segment A, then I(A, b) serves
simply as a temporary variable which holds the value computed by in-
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struction C(b) during execution of straight line segment A. But there are

four occasions, where we use during execution of straight line segment

A a value I(A’, %) which was computed by instruction C'(') during

execution of straight line segment A’. Let ¢ = (f,n,s) = TOP(F) at

the time we process A and let ¢’ = (f/,n’,s') = TOP(F) at the time

we process A’

1 Segment A accesses a global variable which was computed by seg-
ment A’.

2 function f' called function f and segment A accesses an actual pa-
rameter computed by function f’. In this case J(A’, b’) will eventually
become a formal parameter of f. '

3 function f called function f’ and I(A’, b’} is the value returned from
f' to f.In this case I{A’, ") will eventually become the name of the
called function f’.

4 n = n'. Straight line segment A accesses a value computed by a
previous segment A’ during the actual function instance.

We will compute for each code address b and some segments A a triple

(e(A,b), type(A,d), class(A, b)) where

I e(A,b) is an expression from the following set Ex: all constants and
all identifiers J( A, b) are in Ex. If el and e2 are in Ex and op is an
arithmetic/logical operation of DLX, then op(el,e2) is in Ex. The
expressions e( A, b) serve four purposes:

— to construct right hand sides of assignment statements (such a
statement is generated for every store instruction);

to construct conditions in i f-statements and loops;

to form actual parameters in function calls;

(in case instruction C(b) belongs to an address computation) to

determine storage classes of variables.

2 type(A,b) € {char, unsigned char, short, unsigned short, int, un-
signed int, long, unsigned long, float, double} approximates the type
of I(A,b).

3 class(A,b) € {constant, local, global, register, local array, global
array, by local pointer, by global pointer} approximates the storage
class of I(A,b) or of the complex variable of which I(A,b) is a
component. We use the notation Gl = {global, global array, by
global pointer}.

The central loop
For each triple ¢ of the trace, such that C(¢) is a computational instruction
belonging to a straight line segment A which was not processed before,
we simultaneously do three additional things:
1 We construct for A a computation dag G(A) in a fairly straight forward
way.
2 We inspect the sources of this dag and identify global variables, pa-
rameters and returned values of functions.
3 We construct e( A, b), type(A, b) and class(A, b) for the nodes b € A.
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Construction of computation dags G(A). We assume that triple ¢ is being
processed and that a (possibly empty) initial segment of A has already
been processed. Let V' respectively E be the set of nodes respectively
edges of the dag G(A) constructed so far (initially V = E = empty).
The code address C' A(t) is included into V.

If C(t) is a load instruction and ¢ = lastca(DA(t)) is defined, then c is
included in V' (it may or may not already be in V') and the edge (¢, C(t))
is included into E.

If C(%) is a store instruction, which writes into memory from register r,
then ¢ = lastca(r) is included into V' and edge (¢, C(t)) is included into
E. If we have the trace of a complete run of a program, then ¢ usuaily
is defined.

If C(¢) is a computational instruction which applies an operator op to
registers r and r’ then ¢ = lastca(r) and ¢’ = lastca(r') are included
into V and the edges (¢, C(t)) and (¢, C(%)) are included into E. If
the second operand is an immediate value, then only ¢ and (¢, C(t)) are
included into V respectively F.

Identification of parameters and returned values of functions

Whenever we include into V' a node ¢ = lastca(D A(t)) or ¢ = lastca(r),
which does not belong to the current straight line segment, we are ac-
cessing a value, which was computed earlier by the instruction stored at
code address c. Essentially we want to determine if in the decompiled
program we want to introduce a new identifier for the value stored at
location ¢ (formally e(A,c) = I{A,c)) or if we want to reuse the old
identifier (formally e(A,c) = I(A’, c), where A’ is defined below)).
Let I = D A(t) respectively I = r be the location which is accessed, let
g = (f',n',s") = lastf(l) be TOP(F) at the time when that location
| was modified last and let A’ = lasts(1) be the straight line segment in
which I was modified last. Then A’ belongs to function f’ and e(A’, 1),
type(A’, 1) and class(A’, ) are all defined because of the order in which
we process straight line segments. We abbreviate with ¢ = (f, n, s) the
current top(F'). There are several cases:

1 If class(A’, ¢) € Gl then I(A’, c) is a global variable. We do not use
a new variable and set e(A4,c) = I(A4’,c), type(4, ¢) = type(4’, ¢)
and class(A, ¢) = class(4’, ¢).

2 If class(A’,c) € Gl and s’ < s, then the current value of I was
computed in a function instance of smaller nesting depth. The current
content of location ! was put on the stack or into register r during
segment A’ and is now an actual parameter of the current function
instance (2. We create a local parameter I( A, ¢). In the corresponding
call of function f in the body of f the actual parameter is I(A’, ¢) if
| is a memory location and e(A’, c) if  is a register. We set (A, ¢) =
I(A,c), type(A,c) = type(A’, ¢) and class(A4, ¢) = local.

3 If class(A’,c) ¢ Gl and s’ > s then the current value of ! was
computed in a function instance of larger nesting depth. Hence it
is the value returned by f’ to the current function f. We create a
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synonym I(A, c) for the name of the function f (i.e. eventually in

the decompiled program I( A4, c) is replaced by a call of function f”).

In the body of function f' we use in the return statement I(A’, c)

if 1 is a memory location and expression e(A’, c) if I is a register.

We set e(A, c) = I(A,c), type(4, c) = type(A4’, c) and class(4, ¢) =

class(A’, ¢).

4 If n = n’ then the current content of location ! was computed in the
current function instance. We do not use a new identifier (A, ¢). We
set type(A, ¢) = type(A’, c) and class(A, c¢) = class(A’,c). If l is a
memory location we set e(A4, c) = I(A’,¢), if | is a register we set
e(A,c) = e(4,c).

Computation of expressions, classes and types for nodes in the current straight
line segment. Let b = CA(t). There are 3 cases:

1 Loads. If there is no edge (¢, b) in E, then lastca(DA(%)) is not de-
fined and we have found a new variable or a component of a complex
variable. If we have the trace of a complete run of some program then
triple ¢ accesses input data. Formally we set e(A,b) = I(A,b) and
we determine type(A, b) and class(A, b) with the heuristics from the
next section.

If there is an edge (¢, b) we simply set e(A, b) = e(A, ¢), type( A, b)

= type(A4, c) and class(A4, &) = register.

2 Arithmetic/logical instructions. Suppose instruction C(¢) computes
op(r, 8) and writes the result into register I. If and r and s are both
registers we set e¢(A,b) = op(e(A,r),e(A,s)) and we determine
type( A, b) by the heuristics of the next section.

A few special cases arise from the way in which DLX simulates load

immediate instructions. If s is constant we set e( A4, b) = op(e(A, r), 3).

If moreover e(A,r) is constant, then we infer type(A,b) = double

if 1 is a floating-point register with an even number, floar if [ is a

floating-point register with an odd number and int otherwise. If g is

an immediate value and e(A, r) is not constant we temporarily infer
for s type int and then we infer type( A, b) with the heuristics of the
next section.

In all cases we set class(A, b) = register.

3 Stores. If instruction C(2) stores the content of register r into memory
location | = D A(t) several cases arise:

— lastca(1) is not defined or lastf(I) # the actual TOP(F'). Then
we use the new identifier J(A,b), we set e(A,b) = I(A,b),
type(A, b) = type(A, r) and we determine the class(A, &) by the
heuristics of section 8. In the decompiled program we generate
the assignment statement I{A, b) = e(A,r).

— ¢ = lastca(l) is defined and lastf(I) = the acmal TOP(F).
Then there was a write to this memory location in the actual func-
tion instance. Let A’ = lasts(l) = the segment where this write
occured. Then we reuse the identifier 7(A’, c). We set e(A, b) =
I(A’, ). In the decompiled program we generate the assignment
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statement 1A', c) = e(A,r). We do however update the type of
the reused variable I(A’, ¢) with the type of the present content
of r: let ¢” = lastca(r) be the address of the instruction which
changed register r last and let A” = lasis(r). Then we update
type(A’, c) = type(A”, c”). In this way we propagate type infor-
mation gained during the processing of computatlonal instructions
back to (some of) the variables.
Dedicated registers get the obvios special treatment: e(A, Register0) =
0,e(A, sp) = sp,e(A, sr) = sr for all segments A.
In our experimental work we have used a radically simplified version of
this algorithm in order to save space and computation time. We jumped
over all straight line segments processed before and did not update func-
tions lastca() and lastcf() in the process. One can construct examples
where this produces undesired results. Nevertheless even this procedure
gave very satisfactory results (see the section on experimental results).
Two further complications arise if one considers traces which do not
come from complete runs of a program:

1 The nesting depth s can become negative. The easy way out here is
to process the the.trace only up to this point.

2 Now very often lastca(l) and lastf(l) are undefined although there
were writes to location I before the trace was taken. In particular there
are reads from registers r without previous writes. In this situation
one has to use variables not only for memory locations but also for
registers. In [7] these variables are called pseudovariables.

Heuristics for type and class of variables

We first review how code generated by compilers accesses variables with
various types and storage classes. Then we point out how we generate
expressions e’() which describe address computations. Finally we state
the heuristics we use.

Memory segmentation and memory access. A compiler usually maps a con-
tiguous address space into four segments:

1 The code segment holding a program’s instructions. The code segment
is accessed via the program counter pc.

2 The data segment holding global data, i.e. data accessible from all
functions of a program. Variables in the data segment are either ac-
cessed using a constant address or using a basepointer/offset combl-
nation.

3 The stack segment holding local data for every active function call.
Local variables are usually addressed via a stackpointer/offset com-
bination.

4 The heap segment holding variables that are dynamically allocated
during the runtime of a program. Since heap variable addresses are
not known when compiling a program, they must be accessed using
some intermediate variables: pointer variables. The addresses of heap
variables are assigned to pointer variables when those addresses are
determined by a memory aliocating function.
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Local variables may also be addressed using a stackpointer/offset combi-
nation. Since framepointer and stackpointer are basically identical — the
calling function’s stackpointer is often the called function’s framepointer
— we do not distinguish framepointer and stackpointer.

Arrays and structs.

Arrays and structs are collections of variables. All components of an array
have the same type. Structs have typically (but not always) components
of different types. Structs and arrays are accessed in a similar way in
memory. An address specifying the collections start address is used as a
base. Components of the collection are accessed by adding an offset to
the base. We call a variable a complex variable if it is accessed using a
base. We call it simple if it is not complex.

Recall that we use storage classes from the set {constant, local, global,
register, local array, global array, by local pointer, by global pointer}.
Local variables are simple variables on the stack, global variables are sim-
ple variables in the data segment. Local array specifies complex variables
in the stack segment, global array complex variables in the data segment.
Local pointers specify complex variables in the heap segment, that are
accessed via a local base. Global pointers access complex heap variables
accessed via a global base. We do not distinguish between arrays and
structs yet.

Expressions for address calculations. In order to infer the storage class of
variables we have to consider the address calculations which are per-
formed by the addressing mode register + constant of DLX. While a
triple ¢ is processed in the central loop the obvious extra nodes and
edges which come from these address calculations have to be included
into the dag G(A):

if a load or store instruction & = C(¢) uses address computation r -+
k where r is a register and k is a constant we include the node ¢ =
lastca(r) into V and the edge (c,b) into a new set E’ of edges which
come from address calculations. For ¢ we determine I( A, b), e( A, b) etc.
as above. The address used by instruction C(2) is desribed by ¢'(b) =
e(A,c) + k.

Determining the variable type. The type of data loaded from memory is
inferred from the type of the load operation:

Load operation Variable type
load byte (unsigned) (unsigned) char
load halfword (unsigned)  (unsigned) short
load word int

load float float

load double double

In our experimental work which is based on the SPARC instruction set,
we infer for load immediate instructions the type int if < 32 bits were

loaded and double otherwise.
We infer the type ¢ of the result of an arithmetic logical operation op in
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the following way:
If op is a single (double) precision floating-point operation then ¢ =float
(double). If op is not a floating-point operation and both operands have
the same inferred typt ¢/, we infer ¢t = ¢'.
If the operands have different inferred types t1, ¢2 we have to resolve the
inconsistency. If one of the operands ts constant and the other one is not,
we infer ¢ = the type of the non constant operand, i.e. we do not place
high confidence in the inferred type of constants. Otherwise we infer ¢ =
the shorter one of the types %1, $2.
This heuristic for resolving inconsistencies performed in our experiments
better than the opposite pattern, i.e. the longer type dominates the shorter
one. A reason for that may be the 32-bit architecture of the processors
€ P. A compiler will - for efficiency reasons — try to use a typical word
length for the given architecture. According to the C language this is
the type int. On the other side a programmer may use short and long
types. Since we aim at generating C constructs close to the original code
underlying the trace, we choose the variable type that conforms more to
the programmer than to the architecture.
If an inconsistency was resolved, the effect is propagated to some extent
backward by the mechanism described in the previous section (stores),
for example if X = XopZ was computed and we inferred the type of X
incorrectly during the load of X. Clearly, we place higher confidence in
types inferred from loads and arithmetic/logical operations than in types
inferred from loads alone.
Determining the storage class. In order to determine storage classes, we
analyze the addressing computations. The storage classes local, global,
register are easily recognized:

— local variables are accessed using [ fp + const] or [sp + const).

— global variables are accessed using [const] or [bp + const].
All variables that do not fit in the given pattern must therefore be local
array, global array, by local pointer or by global pointer. The distinction
in local and global depends on the base address. The distinction in pointer
and array depends on the variable being located in the heap or the stack
segment respectively.

local array by local pointer global array by global pointer
3p + const [sp + const] const/bp + const [const]/[bp + const]

We do not try to determine storage classes more precisely, i.e. to dis-
tinguish matrices, vectors, and structs. The reason is that there is not a
unique addressing of elements of those structures. For a matrix for ex-
ample one can easily think of two or three ways of addressing a matrix
element.

We try to distinguish base and offset in an addressing expression with
the following heuristic: that variable is a base that is not shifted left by a
power of two. Leftshift is the typical operation for computing an offset.
An index has to be adjusted to the accessed variable type. Since the
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word length of every variable type is a power of two, leftshift is used to
do the adjustment. This heuristic allows to isolate bases for all complex
variables that do not access a variable of type char. It also works for
packed strings of characters.

Now we also can identify pointers. They are simply variables which are
used as a base address.

Data address leveling. While we construct the program graph, we collect
lists of data addresses D AL(b) for every code address b such that C(b)
is a LOAD or STORE instruction. If such an instruction C'(b) has been
executed several times, then list DAL(b) contains all data addresses
accessed by that single instruction.

So far only single variables and components of complex variables have
been considered. We now collect all variables that are accessed using the
same base into complex variables.

The resulting complex variables are tested or common subsets of their
corresponding address lists. That way complex variables which are ac-
cessed in different instructions by different bases are identified. The com-
plex variables are then classified as scalars, vectors, and structs.

1 A scalar is accessed if the complete data address list contains the
same data address at all positions.

2 A vector is accessed if there is a constant difference between two
adjacent address list elements. Since a vector may be accessed several
times, the difference between two adjacent list element has not always
to be constant.

3 A struct is recognized when variables of the different variable types
are addressed using the same base.

If the above heuristics for determining a variable’s storage class fail,
we decompile (in desperation) by translating the address computation
explicitely into C.

Experimental results
In order to verify the method for decompiling, traces of different programs
have been generated on a machine of the SPARC architecture. The traces
have been partially decompiled and the result has been compared with
the original program.
The test included different loops of the Livermore Kemels ({8]) written
in Fortran and C and compiled using different levels of optimization.
Furthermore a trace of the Dhrystone benchmark ([9]) translated using a
C compiler has been partially decompiled.

Decompiling a trace of e.g. kernel 1 of the Livermore Loops — an inner
product of two vectors — the loop controlling the product generation has
been found exactly. All variables used and all operators were generated
correctly. Vectors could be distinguished from scalars.
When partially decompiling a trace of the same loop written in Fortran
and compiled with the highest level of optimization the following opti-
mization were found:

— The loop was unrolled.

Kopie von subito e.V., geliefert fir Campusbibliothek fur Informatik und Mathematik (SLS05X00002)



70 Contributions

SUPERCOMPUTER 1993 #56/57

— The unrolled loop was executed at half the repetitions (as might be
expected, when loop unrolling is used.)

— Scalars were held only in registers.
When partially decompiling a matrix multiplication (kernel 21 of the
Livermore loops) the decompilation result still corresponded very closely
to the original, i.e. the matrices accessed were identified by their bases, the
three loops controlling the matrix multiplication were correctly identified.
The Dhrystone benchmark consists of a set of 14 functions calling each
other. All function calls have been correctly identified. Only functions that
are usually included by shared libraries (strcmp, strcpy e.g.) were
hard to recognize, because of the administration overhead of a shared
library system. Most variables of Dhrystone were correctly identified.
Only matrix variables were not correctly found because only two elements
of that matrix were accessed and therefore a meaningful address list was
lacking.

Conclusion and further work

The algorithm which we have presented uses a straightforward approach
to the problem of inverting the function of a compiler. At the technical
level however the algorithm is involved and one has to get many details
and heuristics simultaneously correct. We have little hope to simplify the
algorithm substantially. After all it must handle at least as many different
cases as there are constructs in imperative programming languages.

In the few cases where we tested our algorithm, it even preserved se-
mantics. In general we do not expect this to be the case, but we expect
workload to be preserved fairly well. In our examples all statistics on
which the Dhrystone benchmark is based were preserved as long as no
highly optimizing compiler was used. Unnecessary work eliminated by
a highly optimizing compiler can of course not be reintroduced by the
decompiler.

We can presently not present more experimental data because the result of
the partial decompilation as described here (and as implemented so far) is
only a fragment of a correct C-program. It does for instance neither have
declarations nor initial values of variables. Thus the result of the partial
decompilation has presently to be inspected by a tedious manual process.
We intend to produce a postprocessor in the spirit of [10] which produces
complete decompiled C-programs and then to run more extensive tests.

So far our results suggest, that personal synthetic benchmarks can be
constructed automatically from data monitored on the CPU bus. Such
benchmarks at least have a known relation to the own workload as op-
posed to synthetic benchmarks based on the workload of others. There
are four limitations to this approach, one of them inherent:

1 Work eliminated by an optimizing compiler can in general not be
recovered (there is for instance no way to reconstruct eliminated dead
code).

2 Certain constructs from Pascal do not occur in C. If a compiled Pascal
program follows pointers in order to find a global parameter then the
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present decompiler will fail to recognize this, and one can construct
cases, where wrong workload is produced. But one is not forced to
decompile to a single language only.

Decompiling cannot be done in real time and completely tracing big
runs of programs is completely impractical. If workload stays reason-
ably uniform over time, then this can be overcome by tracing and
decompiling parts of runs at random times.

On new processor chips with on chip cache one cannot monitor the
CPU bus any more. This difficulty can at least in priciple be over-
come by the manufacturer of the chip. Also for processor architectures
which are around for a long time (e.g. SPARC) one can easily find
machines, whose processors do not have on chip cache. On these
machines one can collect the traces.
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