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Chapter 1

Introduction

Formal verification is intended to use formal methods of mathematics in or-
der to prove or disprove correctness of a component of some computer system
with respect to its specification. The correctness of all components of a system,
however, does not directly imply the correctness of the whole system. The inter-
action of the system components’ specifications may become a tough challenge,
especially if different levels of abstraction are involved. The goal of the pervasive
system verification is the formal verification of the entire computer system as a
whole. This includes hardware verification, verification of compiler, operating
system, and applications on the source code level and developing a model which
reflects the interaction between those levels.

In the frame of the Verisoft project [21], which aims at the pervasive formal
verification of an entire computer system, the so called academic system was
built and large parts of it were successfully verified. This system consists of
hardware (32-bit RISC processor with the DLX instruction set and devices [20])
on top of which runs a micro kernel [9], a simple operating system [4], and
applications. The top-level software of this system is implemented in the C-
like language C0 [12]. Specifications and proofs in the Verisoft project are
done in several abstraction levels (Fig. 1.1) and results are then transferred
from the higher levels to the lower ones with the help of meta theorems [1, 18].
The interactive prover Isabelle/HOL [19] is used in the frame of the project to
formalize proofs and definitions.

In order to be able to argue about correctness of the programs on the source
code level, one needs to show that a generated binary is correctly compiled with
respect to its C0 program. Correctness of a simple non-optimizing compiler of
the C0 language in the scope of pervasive system verification has been shown
in [12]. The goal of this thesis is to integrate garbage collection routines to the
C0 compiler and establish its correctness with respect to new specification.

1.1 Goals and the Strategy

The C0 language allows dynamic memory allocation with the use of the new
operator. However, for safety reasons it does not allow to free the allocated
memory manually. Thus, memory usage of C0 programs without special memory
management is not optimal. Integration of a garbage collector into the compiler
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VAMP Assembly
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Figure 1.1: Semantic layers in Verisoft

can solve this problem.
Garbage collection, as a form of automatic memory management strategy, is

a routine, which attempts to reclaim blocks of memory that will never be used
by the application again. A garbage collector (GC) is able to distinguish such
unused parts of memory and return them to the free memory. This process is
completely invisible for the user program and allows to avoid dangers, hidden
in the manual memory deallocation and explicit pointer handling.

GC itself is nothing else than a set of C0 procedures together with special
data structures, stored in the global memory of the C0 program. These data
structures (GC interface) contain information related to stack frames and data
types of the program and form a communication interface, which is used by
the garbage collector to obtain all the information it needs for correct memory
deallocation.

By correct garbage collection we understand the following:

• memory blocks occupied by unreachable variables are freed (or marked to
be free). Unreachable variables are the variables which cannot be accessed
from the program by some pointer path;

• memory blocks occupied by reachable variables keep the data they contain;

• pointers in the program point to the same variables that they have pointed
to before garbage collection.

The goal of this work is an integration of the garbage collection specification
into the compiling specification of a simple, non-optimizing C0 compiler from
[12] and proving correctness of the compiler with GC. Note, that in this thesis
we deal only with the compiling specification of a compiler and do not address
the issue of generating a trustworthy executable version of the compiler.

The specification of the garbage collector routine was done by E.Petrova
in the Hoare logic environment for Isabelle/HOL [18]. Correctness of the C0
implementation of the garbage collector in the Hoare logic approach has also
been shown. At the Hoare logic level the hardware memory is considered as a set
of arrays of natural numbers and the program is not aware of the memory layout
of the assembly machine. The compiler specification and verification, however,
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has been done at the level of the small-step semantics. Thus, the garbage
collection specification from the Hoare logic level (which is built upon big-step
semantics) has to be transformed to the small-step semantics or directly to the
assembly level. In the frame of this thesis we perform this transfer manually in
paper-and-pencil manner. It could be done formally with the help of a meta-
theorem, but this is presently still very hard to do [1].

In order to integrate GC into the compiling specification of the C0 compiler
we have to:

• specify new transition function for the case of dynamic memory allocation
at the C0 level,

• change the code generation algorithm of the compiler for the case of dy-
namic memory allocation,

• add the global variables of the GC to the list of program global variables,

• specify the result of the GC routine execution based on the Hoare logic
specification done by E.Petrova at the machine level.

In order to prove correctness of the compiler with the integrated GC we need
to:

• provide several new assumptions on the compiler and user program (re-
strictions),

• define a new consistency relation, which preserves properties used by GC
(e.g. that node headers contain correct data),

• show that the step-by-step simulation relation still holds.

The major effort is to prove the step-by-step simulation theorem for the case
of dynamic memory allocation. The garbage collector works directly with the
memory of the hardware machine. It moves memory blocks in the heap memory
from one place to another and changes the values of the pointers, which point
to the heap. After all these operations pointers to the heap point to the same
heap nodes as they did before and all program variables keep their old values.
Thus, on the C0 level execution of the memory allocation statement with and
without GC is almost the same.

1.2 Restrictions

For correct garbage collection the following restrictions have to be put on the
compiler:

• no pointers to the heap in the list of GC global variables. The GC interface
consists of variables located in the global memory just after the global
variables of the program. During garbage collection, values of pointers to
the heap located in the program global memory are changed. The values
of the pointers located in the GC part of the global memory, however,
cannot be changed by the garbage collector since this part of the memory
is not ”seen” by GC. If the GC would store pointers in the global memory,
they could have wrong values after GC. However, our GC implementation
does not store such pointers;
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• all variables are initialized by default. In the compiler specification from
[12] local variables are not automatically initialized by the compiler. How-
ever, the interface of the copying garbage collector, used in the frame of
this thesis, has no information whether a variable has already been initial-
ized or not. Uninitialized variables contain arbitrary data and uninitialized
pointers my cause GC to see heap nodes which do not exist. Thus we have
to require that all variables are initialized automatically;

• if in the program there is a pointer to the heap, it should point to the
top-level variable (i.e. pointers to the element of an array or a structure
on the heap are not allowed). The restriction is introduced due to chosen
implementation of the GC algorithm.

1.3 Outline

The rest of the paper is organized in chapters:

• In Chapter 2 we briefly describe the formal semantics of the C0 language
and the VAMP assembly semantics. We also introduce the simulation
theorem, which is used to establish a connection between C0 and assembly
levels in the compiler specification.

• In Chapter 3 we give the formal specification of a simple, copying garbage
collector on the Hoare logic level. We also provide correctness criteria and
describe the structure and some basic properties of GC interface.

• In Chapter 4 we integrate the garbage collector into the compiler. At first
we give the memory layout for the program generated with the C0 compiler
with the garbage collector. Then, we specify GC interface data structures
inside small-step semantics and define a new transition function for the
memory allocation statement. We continue with the extended simulation
relation, where we add properties necessary for correct garbage collection.
As a next step we define the low-level correctness of the code, generated
with the new compiler based on the Hoare logic correctness from Chapter
3. Finally, we show high level correctness for the compiling specification
of the compiler with GC.

• We conclude in Chapter 5 with summary and future work.
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Chapter 2

Basics

In this chapter we introduce some notation and describe basic concepts which
are used in the remainder part of the thesis. These concepts were developed
by D.Leinenbach and W.J.Paul in the frame of the Verisoft project. More
information about definitions and descriptions given in this chapter can be found
in [12].

2.1 Notation

The set of boolean values is denoted by B, the set of integer numbers by Z, the set
of all natural numbers (including zero) by N, the set of identifiers by S. By Zw

and Nw we denote sets of integer and natural numbers which can be represented
with w bits, i.e. Zw = {−2w−1, . . . , 2w−1 − 1} and Nw = {0, . . . , 2w − 1}. The
notation

⌈n⌉d = ⌈n/d⌉ · d

denotes the smallest multiple m of d such that m is greater than or equal to n
(meaningful for d > 0).

Integer division is denoted by a
b
, unsigned modulo operation by a modu b.

The predicate a | b checks whether a divides b.
Record component c of a record r is accessed by r.c and updated with the

value v by r[c := v]. A new record may also be composed on the fly by writing
[c1 = v1, c2 = v2, . . . , cn = vn].

Logical implications of the form (a∧ b) ⇒ c are denoted by an inference rule

a b

c
.

We use inference rules for definitions of predicates. Note, that everything which
is not covered by rules explicitly does by default not fulfill the predicate.

In definitions and lemmas we often omit quantifiers ∀ and ∃ for free variables
to keep formulas concise. For example, the definition

a · i = b i ∈ Z

a | b

should be read: for all a and b, a divides b if there exists i ∈ Z, s.t. a · i = b.
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We use ∃̂ to denote existence of the unique entity. Hilbert’s choice operator
is denoted by ε . The expression ε x. P (x) returns an arbitrary value of x, s.t.
the property P (x) is satisfied. By ε̂ we denote the unique Hilbert’s choice, i.e.
ε̂ y. P (y) returns some value of y, such that P (y) is satisfied and for all z not
equal to y the property P (z) does not hold.

Intervals of natural numbers are denoted as ranges. A range (a : b) contains
all numbers i, s.t. a ≤ i ≤ b. Notation i ∈ (a : b) means a ≤ i ≤ b and notation
b ⊆ a - that range b is completely contained in range a. A pair of values a and b
is denoted as (a, b). We use fst :: (t1, t2) → t1 and snd :: (t1, t2) → t2 to extract
first and second component of the pair respectively. Sometimes we also denote
ranges by pairs of start address and length. Such ranges are called disjoint iff

r1 ≍ r2 = (fst(r1) ≥ fst(r2) + snd(r2) ∨ fst(r2) ≥ fst(r1) + snd(r1)).

The predicate bij :: (t1 → t2) → B tests whether an input function is bijective.

Abstract data types. Abstract data types are used to formalize terms which
are built recursively by a set of so-called constructors. The abstract data type
for lists whose elements are of type t is denoted by type t list with two con-
structors nil :: list and cons :: Z × list → list.

t list = nil | cons(t, t list)

In order to find out whether specific constructor was used to build some element
of an abstract data type we use a recognizer. For example recognizer is nil(l)
is a predicate which returns true iff l is built using the nil constructor.

In the specification of the compiler from [12] partial functions are widely
used. They are simulated by the option type t option.

t option = None | Some(x),

where the constructor None models an undefined value and Some(x) a defined
value x :: t. We use abbreviation t⊥ for t option and ⌊x⌋ for Some(x). In order
to convert a value y of an option type back to a base type we use a function
the :: t option → t.

the(y) =

{

x if y = ⌊x⌋

undef if y = None
.

Lists. We abbreviate the empty list nil by [ ] and cons(h, t) by h#t. To create
a list on the fly we use notation [a1, a2, . . . , an]. Functions hd :: t list → t and
tl :: t list → t list compute head and tail of the list respectively. Function l[p, n]
returns n elements of the list l starting from position p. The length of list l is
computed with |l|.

Function map :: (t1 → t2)× t1 list → t2 list maps function f :: t1 → t2 on a
list of type t1 list

map(f, [ ]) = [ ]

map(f, h#tl) = f(h)#map(f, tl)

The set of all elements of list l is denoted by {l}. Access to the i−th element
of the list l is denoted by l!i and is defined only if i < |l|. If we use l!i in
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lemmas and proofs we automatically assume i < |l|. By l[i := v] we denote
update of the i−th element of the list l with the value v. Notations a ∈ l and
a /∈ l are used to state that a is or is not an element of the list l. The predicate
distinct(l) checks whether the elements of the list l are pairwise distinct and
the function replicate(n, a) generates a list consisting of n copies of element a.
Concatenation of two lists l1 and l2 is denoted by l1◦ l2. Concatenation of n lists
- by [l1, l2, . . . , ln]. Function concat :: t list list → t list performs concatenation
of an array of lists into one list. We overload the addition operator to add a
single number to every element of the list.

op + :: N list × N → N list

[ ] + d = [ ]

(h#tl) + d = (h + d)#(tl + d)

We define the function map-of :: (t1, t2) list× t1 → t2⊥ which finds the first
element of the list of pairs, whose first component equals the second parameter
of the function and returns the second component of this element.

map-of ([ ], x) = None

map-of ((a, b)#t, x) =

{

⌊b⌋ if a = x

map-of (t, x) else

2.2 The C0 Programming Language

There exists a large variety of programming languages nowadays. Some of them
have limited functionality. The scope of others is almost unlimited. Variety
of language features makes the language more flexible and ease the program
development process. Yet, they also make axiomatization and creation of the
language model more complex or even impossible.

One of such widely used languages is ANSI C. However, because of the
complex semantics of the C language the use of all C features encourages an
error prone programming style. Thus, it is much easier to verify applications
on the source code written in a safe and secure programming language similar
to Pascal [13]. Such a language was developed by Leinenbach and Paul in the
frame of the Verisoft project and is called the C0 programming language [12].

The simplicity of C0 allows to construct a formal model of the language and
use it in the verification processes. More over, C0 shares with ANSI C a lot of
features and syntax details.

2.2.1 Language Restrictions

The C0 programming language is a restricted version of the ANSI C language.
Specification of C0 can be found in [13, 17]. Below is a sketch of the major
restrictions :

• no pointer arithmetic;

• no function pointers;

• all functions must return a value, functions cannot return void ;
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• the last statement in a function is the return statement and it is the only
return statement in the function;

• initialization of a variable during declaration is not possible;

• no declarations of variables after the first statement of a function (all
declarations should be located in the very beginning of the function);

• function calls and side-effects inside expressions are prohibited;

• no pointers to local variables;

• the size of arrays must be statically fixed at the compile time;

• no void pointers, all the pointers should be typed.

2.2.2 Type System and Statements

The type system of C0 is limited to four basic ANSI C types (int, unsigned int,
char, bool) and 3 complex types (array, pointer, and structure).

In the C0 language there are six basic types of statements: assignment,
conditional, procedure call, loop, return, and allocation of dynamic memory.
Additional information on the C0 language can be found in [16].

2.3 Formal C0 Small Step Semantics

2.3.1 Types and Type Name Environment

In C0 there are four basic types, a structure type, an array type, and a pointer
type. We represent C0 types formally by the abstract data type ty.

ty = BoolT | IntT | CharT | UnsignedT

| StrT (S × ty list)

| ArrT (N × ty)

| PtrT (S) | NullT

To support self-referencing pointers (e.g. in structures for list elements which
contain a pointer to list elements) we introduce a level of indirection for pointers.
They do not point directly to a type but to a type name. Type names are
mapped to their types using so-called type-name environment :

tenv = (S, ty) list

2.3.2 Statements

In the C0 small-step semantics we model statements by the data type stmt.
Statements are tagged with identifier sid, which is used to determine where the
statement was originally placed in the program rest (we omit these identifiers if
they are not explicitly used ).
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stmt = Skip

| Comp(stmt, stmt)

| Ass(expr, expr, sid)

| PAlloc(expr, S, sid)

| SCall (S, S, expr list, sid)

| Return(expr, sid)

| Ifte(expr, stmt, stmt, sid)

| Loop(expr, stmt, sid)

| Asm(asm list, sid)

| XCall (S, expr list, expr list, sid)

The first two statements are called structural statements. Skip is an empty
statement and Comp(stmt,stmt) is a sequential composition of two statements.
Assignment is represented by Ass(expr1, expr2). PAlloc(e, tn) stands for dy-
namic memory allocation of an instance of the type tn. The pointer to the newly
allocated memory will be assigned to e. Function calls to a function f are repre-
sented by SCall (vn, f, [e1, . . . , en]), where e1, . . . , en are passed parameters and
vn is the variable where the return value of the function will be stored. Return
statements with return expression e are represented by Return(e). Ifte(e, s1, s2)
stands for conditional execution, Loop(e, s1) - for a while loop. A call to a se-
quence of inline assembly instructions a is modeled by Asm(a).

The so-called XCAlls [12] are used in order to change the additional extended
state component, which was introduced to the C0 model in order to make it pos-
sible to deal with inline assembly code accessing devices. XCall (f, [e1, . . . , en], [p1, . . . , pn])
represents the XCall f with input parameters p1, . . . , pn and left expressions
e1, . . . , en (the parts of the C0 state that can be changed by the XCall). In the
C0 semantics the effect of the XCall is defined axiomatically.

2.3.3 Function Table

A function table contains information about all functions in a C0 program. A
single function p is modeled by the record funcT with four components:

• p.body :: stmt: the body of the function,

• p.params :: (S × ty) list: parameters of the function,

• p.rtype :: ty: the return type of the function,

• p.lvars :: (S × ty) list: the list of local variables of the function.

A function table is modeled by the type functableT = (S × funcT ) list,
where each pair contains a function name and a record of type funcT .

2.3.4 Configuration of the C0 Small-Step Semantics

In the small-step semantics configuration of the C0 program stores information
about the current state of the program; it consists of the memory configuration
and the program rest. The memory configuration stores information about the
variables and program rest contains statements which still have to be executed.
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top level g−varable

Arrt(m × Arrt(n × Intt))
Intt

Arrt(n × Intt)

g

gvararr(gvararr(g, i), j)gvararr(g, i)

i j

Figure 2.1: Structure of a g-variable of an array type.

Generalized Variables

Program variables are modeled by so-called g-variables. We distinguish local,
global, and heap g-variables. Global and local g-variables are identified by
their name (and the frame number for local g-variables). Heap g-variables are
identified by their position in the corresponding symbol table. G-variables are
represented by the following data type.

gvar = gvargm(S)

| gvarlm(N, S)

| gvarhm(N)

| gvararr(gvar, N)

| gvarstr(gvar, S)

The inductive case defines g-variables for structure and array access. If g is
a g-variable of structure type then gvarstr(g, n) is also a g-variable, representing
structure component with the name n. If g is a g-variable of array type then
the i-th array element gvararr(g, i) is also a g-variable. Note, that a g-variable
with the simplest type has the most complicated structure (Fig. 2.1).

We call r the root of g-variable g iff it is the highest ancestor of g. The
function rootg :: gvar 7→ gvar computes the root of a given g-variable.

rootg(gvargm(x)) = gvargm(x)

rootg(gvarlm(i, x)) = gvarlm(i, x)

rootg(gvarhm(i)) = gvarhm(i)

rootg(gvararr(g, i)) = rootg(g)

rootg(gvarstr(g, c)) = rootg(g)

The set subg :: gvar 7→ gvar contains all sub variables of a given g-variable.
Initially, the set contains the g-variable itself.

g ∈ subg(g)

For the cases of an array and a structure the set is constructed in the following
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way.

h ∈ subg(g)

gvararr(h, i) ∈ subg(g)

h ∈ subg(g)

gvarstr(h, c) ∈ subg(g)

Memory Frames

We use a memory model in the style of [15], which stores the memory content as
a mapping from addresses (natural numbers) to memory cells. A single memory
cell stores the value of a variable of an elementary type.

mcellC0 = Int(Z) | Nat(N) | Char(Z) | Bool(B) | Ptr(gvar ∪ {⊥})

Consecutive sequences of memory cells can store values of aggregate types.
Each memory frame contains not only memory content, but also list of vari-

ables of the frame together with their types and keeps track of the set of variables
which are already initialized. We use the record mframe to represent memory
frame m.

• m.ct :: N 7→ mcellC0: The content of the memory frame. Technically infi-
nite. In the compiler without GC this mapping is used only for addresses
smaller than the size of the memory (which can increase dynamically for
the heap memory). However, in the presence of the GC the size of all
variables really located in the heap memory might be smaller then size of
variables located in the heap memory frame (variables are never removed
from the memory frame). This mapping is defined only for variables,
which are currently present in the heap memory.

• m.st :: (S × ty) list: A list of all variables of the memory frame together
with their types (so called symbol table of the frame)

• m.init :: S set: The set of variables which are already initialized. Our ver-
sion of GC cannot distinguish initialized variables from uninitialized ones.
Thus, we require that compiler never leaves any variables uninitialized and
this set always contains all g-variables of the program.

The base address of a variable x in a symbol table is zero if x is the first
variable in the symbol table. Otherwise, it is defined inductively as the sum of
the size of the first variable and the base address of x in the tail of the symbol
table. The function bav :: (S × ty) list× S 7→ N⊥ computes the base address of
a variable.

The type of a variable x in the symbol table st is computed by the function
typev :: (S × ty) list × S 7→ ty⊥.

Memory Configuration

The memory configuration of the C0 small-step semantics consists of three parts:
a memory frame for the global variables, a memory frame for the heap variables,
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and a list of memory frames and return destinations for the local variables.
It stores information about the variables of a C0 program and their values.
Formally memory configuration mc consists of three components.

• mc.gm :: mframe: The memory frame for the global variables.

• mc.lm :: (mframe× gvar) list: Stack of local memories. Memory frames
store values of local variables and g-variables store return destinations
of stack frames (after execution of the procedure, return value will be
assigned to its return destination g-variable).

• mc.hm :: mframe: The memory frame for nameless heap variables.

Local memory frames are abbreviated in the following way.

lmtop(mc) = mc.lm!(|mc.lm| − 1)

lmi(mc) = mc.lm!i

For the symbol tables of the global memory, of the local memory frames,
and of the heap memory we will use the following abbreviations.

gst(mc) = mc.gm.st

lsttop(mc) = lmtop(mc).st

lsti(mc) = lmi(mc).st

hst(mc) = mc.hm.st

Symbol Configuration

Frequently in this thesis it is sufficient to have only the symbol tables of all
memory frames available. Thus, we introduce a record type symbolconf for the
symbol configuration of a program.

• sc.gst :: (S × ty) list: The symbol table of the global memory frame.

• sc.lst :: (S × ty) list list: A list of symbol tables for the stack of local
memories.

• sc.hst :: (S × ty) list: The symbol table of the heap memory frame.

We refer to the symbol configuration of the memory frame mc by sc(mc). For
every local memory frame there exists a corresponding function in the function
table ft. Symbol tables of the local frame and the corresponding function in ft
are equal. The function stblf(ft, i) returns a symbol table of the i− th function
in ft.

Program Rest and Program Configuration

The program rest contains program statements which still have to be executed.
It is initialized with the body of the main function and can shrink or grow
during execution of the program. Formally we represent the program rest by a
C0 statement of type stmt.

A configuration c of the C0 small-step semantics is formalized by the record
confC0:

• c.mem :: memconf : The memory configuration of the program.

• c.prog :: stmt: The program rest.
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Some Functions on G-Variables

Let te be a type name environment and sc a symbol configuration. For simplicity
reasons we will often omit constant parameters like te and sc if their meaning is
clear from the context. Note, that symbol configuration and type environment
remain constant during program execution

The type of a g-variable is obtained by means of inductive function tyg ::
symbolconf × gvarT 7→ ty. For the base case we get the type directly from the
corresponding symbol table.

tyg(sc, gvargm(x)) = typev(sc.gst, x)

tyg(sc, gvarlm(i, x)) = typev(sc.lst!i, x)

tyg(sc, gvarhm(i)) = snd(sc.hst!i)

For the case of an array and a structure we use the following definitions.

tyg(sc, gvararr(g, i)) =

{

t if tyg(g) = ArrT (n, t),

undef otherwise

tyg(sc, gvarstr(g, x)) =

{

the(map-of (c, x)) if tyg(g) = StrT (c),

undef otherwise

The predicate elemg(sc, g) returns true iff a g-variable g is of a simple
type. We also use predicates ptrgvar(sc, g), arrgvar(sc, g), strgvar(sc, g) to check
whether g is of a pointer, an array, or a structure type respectively.

ptrgvar(sc, g) = ∃vn. tyg(sc, g) = PtrT (vn)

arrgvar(sc, g) = ∃t n. tyg(sc, g) = ArrT (n, t)

strgvar(sc, g) = ∃scl. tyg(sc, g) = StrT (scl)

We define the memory name of a g-variable by the type memname. A
memory name is either gm for the global memory, hm for the heap memory, or
lm(i) for i−th frame of the local memory. Function memg :: gvar 7→ memname
returns the memory name of a g-variable.

We distinguish named g-variables (global or local) and nameless g-variables
(heap).

namedg(g) = (memg(g) = gm ∨ ∃i.memg(g) = lm(i))

The base address of a g-variable is obtained by means of the function bag ::
symbolconf × gvarT 7→ N. For global and local top-level g-variables it calls
function bav. For the case of a top level g-variable gvarhm(i) it returns the sum
of sizes of all g-variables in the heap symbol table with indices smaller than i.
For the array access gvararr(g, i) it returns bag(g) + i · sizet(t) if g is of array
type. For gvarstr(g, x) it returns bag(g)+ the(bav(scl, x)) if tyg(g) = StrT (scl).

The value of a g-variable g is defined by

valueg(mc, g) = mcmemg(g)[bag(sc(mc), g), sizet(tyg(sc(mc), g))],

where mc is a memory configuration and memg(g) is memory name of g (i.e.
gm, hm, or lm(i)). Function mcn[a, l] reads the content of the memory with
name n in the range from a to a + l − 1.

16



2.3.5 Execution of C0 Programs

Execution of a C0 program starts from the initial configuration of the program.
Values of global and heap variables are initialized with default values.

For updating the memory of a C0 configuration we use function

memupd :: memconf × gvar × (N 7→ mcellC0) 7→ memconf⊥,

which updates g-variable g with value v :: N 7→ mcellC0. Partial updates
of uninitialized variables are not allowed in C0. In the compiler with GC we
require all g-variables to be initialized by default. Therefore, the memory update
operation is always successful. Execution of a C0 program is modeled by the
transition function of the C0 small-step semantics, which maps the current C0
configuration to its successor configuration or to None (in the case of an error).

δC0 :: tenv × functableT × confC0 7→ confC0⊥

The transition function is defined by induction on the program rest. If pro-
gram rest consists of a compound Comp(s1, s2) statement, transition function
is applied recursively to statement s1. Otherwise, the program rest consists
of a single indivisible statement and we apply δC0 to this statement without
recursion.

In this thesis we focus on the heap memory allocation statement. Semantics
of this statement for the compiler with GC is given in Section 4.3.

2.3.6 Valid C0 Configurations

Not every possible C0 configuration, which could be built according to the defi-
nition from Section 2.3.4, is reasonable. I.e., every reasonable C0 configuration
should satisfy a number of rules, which are built based upon language semantics.

Definition 2.1 (Valid type). We call basic type t valid iff it belongs to a set of
basic types. Pointer type is valid iff the type name is defined in the type name
environment. Structure type is valid iff the list of components is not empty and
all component names are pairwise distinct and components are of valid type.
Array types are valid if they are not empty and the element type itself is a valid
type.

t ∈ {BoolT , IntT , CharT , UnsignedT , NullT}

validty(te, t)

tn ∈ map(fst, te)

validty(te, P trT (tn))

scl 6= [ ] distinct(map(fst, scl)) ∀sc ∈ scl. validty(te, snd(sc))

validty(te, StrT (scl))

0 < n validty(te, t)

validty(te, ArrT (n, t))

Definition 2.2 (Valid type name environment). Type name environment
te is valid iff all type names in it are pairwise distinct and types are valid.

distinct(map(fst, te)) ∀(tn, t) ∈ te. validty(te, t)

te ∈ validtenv
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Definition 2.3 (Valid symbol table). Symbol table st is valid iff all types of
all variables in it are valid and variable names are pairwise distinct.

distinct(map(fst, st)) ∀(vn, t) ∈ st. validty(te, t)

st ∈ validst(te)

Configurations which satisfy all validity rules are called valid configurations.
In a valid configuration all symbol tables and the type environment are valid
and a number of other properties hold. Function

conf√ :: tenv × functableT 7→ confC0 set

defines the set of all possible valid C0 configurations. The formal definition for
conf√ can be found in [12].

The set of valid g-variables is computed by the function gvars√(sc). A top-
level named g-variable is valid iff its name is present in the global or local symbol
tables of the symbol configuration sc. A top-level heap g-variable gvarhm(i) is
valid iff i < |sc.hst|. For an element of an array gvararr(g, i) we require that the
parent g-variable g is of an array type ArrT (n, t) and is itself a valid g-variable
and the index of an element i is less than n. For the structure component
gvarstr(g, cn) we require that the parent g-variable g is of type StrT (scl), that
the component name is defined in the structure and g is itself a valid g-variable.

2.4 VAMP Assembly Semantics

The target language of the verified C0 compiler is the assembly language of the
microprocessor VAMP. The VAMP is a formally verified DLX-like processor
[2, 3, 7, 8] based on the proofs from [14] and [11]. Correctness of the VAMP
assembly model with respect to the VAMP Instruction Set Architecture (ISA)
level for user programs has been shown by A.Tsyban. In this section we describe
only the memory model of the assembly semantics and omit the ISA model.

2.4.1 Memory Model

Memory cells of the VAMP assembly semantics are modeled axiomatically with
the type mcellasm, functions cell2int :: mcellasm → Z, int2cell :: Z → mcellasm,
and the following axioms:

cell2int(int2cell(m)) = m

int2cell(cell2int(i)) = i

Data from a single memory cell is read as an integer number. Registers
in the VAMP assembly model also store data as integers. In the frame of
this thesis, however, we often want to interpret register and memory values as
natural numbers. For this purpose we use conversion functions i2n :: Z → N

and n2i :: N → Z, which simulate numerically the conversion from integers to
bit vectors and then to naturals and vice versa.
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i2n(i) =

{

i + 232 if i < 0

i otherwise

n2i(n) =

{

n − 232 if 231 ≤ n < 232

n otherwise

Note, that these conversions make sense only if the converted number is in
the range of 32-bit numbers. In the VAMP assembly model we require, that all
numbers stored in the memory of assembly machine and in registers are in the
range of 32-bit integers. For the functions given above the following properties
follow from the definitions:

−231 ≤ i < 231 =⇒ n2i(i2n(i)) = i

i2n(n2i(n)) = n

2.4.2 Configuration

A configuration of the VAMP assembly semantics is modeled with the record
d :: confasm, which consists of the following components:

• program counters: d.dpc :: B32, d.pcp :: B32,

• register files for general purpose and special purpose registers d.grp ::
Z32 list, d.spr :: Z32 list,

• word addressed memory: d.mm :: N → mcellasm.

Note, that for registers we use types with bounded domains and therefore do
not need to implicitly restrict their values. In Isabelle/HOL, however, we have
to consider these additional restrictions.

The set of valid VAMP configurations is defined by the predicate confasm
√ ::

confasm → B:

|d.gpr| = 32 |d.spr| = 32 ∀a. − 231 ≤ cell2int(d.mm(a)) < 231

confasm
√(d)

.

We use predicates unchngdmem(m, m′, a, b) and memchngdmem(m, m′, a, l)
to state that assembly memory in range (a, b) is not changed and that memory
is changed only in the range (a, a + l) respectively. Function readdata(m, a, l)
reads the content of l consecutive memory cells from memory m starting at word
address a. We use one more notation for memory read function:

m[b, l] = readdata(m,
b

4
, l).

Transition function δasm :: confasm → confasm is defined in the following
way:

δasm(d) = exec(d, currinstr(d))

where exec :: confasm × instr → confasm is a function which executes single
VAMP assembly instructions and currinstr :: confasm → instr calculates the
next instruction to be executed in configuration d.
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2.4.3 Execution of Assembly Code

Verification of the compiler specification is done by induction on the program
rest on C0 level. On every step one single C0 statement is executed. However,
for a single C0 statement there is a number of VAMP assembly instructions that
are generated. Eventually, execution of these command will result in some new
assembly configuration d′. We use the predicate

d
t,dest

−−−−−−−−−→
rangec,rangea

d′

to state that the VAMP assembly machine started in configuration d reaches
in t steps a configuration d′ with d′.dpc = dest and d′.pcp = d′.dpc + 4 using
rangec and rangea as code range and address range, respectively. Moreover, in
the predicate we require that the code stays unchanged and that no interrupt
generating events occur.

By the predicate asmpre(d, rangec, il) we denote the preconditions for as-
sembly execution, where rangec is the code range and il is a list of assembly
instructions. The predicate requires that d is a valid VAMP assembly configu-
ration, that dpc is a multiple of four, that pcp points to the next instruction,
that the instruction list il is stored in the memory of d starting at address d.dpc,
that il is completely located within the code range, and that the code range fits
into 32-bit addresses.

2.5 Simulation Theorem

Simulation theorem is the top level correctness theorem for the compiling spec-
ification of the C0 compiler. In this section we give only an overview of the
simulation relation and do not provide the formal proof of the simulation theo-
rem.

2.5.1 Simulation Relation

The simulation relation plays the role of the compiler correctness criteria. The
compiler correctness proof ensures that the compiled code preserves the simu-
lation relation between the C0 and the assembly machine and thus shows the
same behavior as the original C0 program. In the compiler without garbage
collection the simulation is defined via the predicate consis, which connects a
C0 configuration c with an assembly configuration d. The predicate requires the
variables of the C0 program to be stored correctly in the assembly memory and
the control flow of the C0 program to be properly represented in the assembly
machine. We give the formal definition of the consistency relation for the com-
piler with GC in Sec. 4.4. Here we give some basic definitions which are used
in the simulation relation of the old compiler.

Reachable G-Variables

Reachability of g-variables is one of the key concepts in the compiler correctness
definition. We require only for reachable g-variables that their data is stored
correctly in the assembly memory of the machine.
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Below we give another definition for a pointer g-variable. In the compiler
without GC a pointer g-variable can have not only a pointer type, but also
can be of the type NullT . The garbage collector, however, does not consider
variables of the NullT type to be pointers and treats them the same way as
integer or natural g-variables (because their values are fixed to the null pointer).
Nevertheless, our goal was to change the existing simulation relation as little
as possible (keep old consistency criteria almost unchanged, while adding new
relations concerning the garbage collector). Thus, we left the pointer definition
in the simulation relation unchanged, while proving the correctness separately
for the normal pointers and NullT pointers.

Definition 2.4 (Pointer g-variables). Let te be a type name environment,
sc a symbol configuration, and g a g-variable. We define the pointer g-variable
in the following way.

is gvarp(sc, g) = (ptrgvar(sc, g) ∨ tyg(sc, g) = NullT )

Definition 2.5 (Reachable nameless g-variables). We introduce the pred-
icate reachablenameless

g :: memconf → gvar set, which defines the set of reach-
able g-variables in the heap memory. In the base case heap g-variable g is
reachable if there exists some named g-variable x, which points to g.

x ∈ gvars√(sc(mc))

namedg(x) is gvarp(sc(mc), x) initializedg(mc, x)

g ∈ gvars√(sc(mc)) ¬namedg(g) valueg(mc, x) = Ptr(g)

g ∈ reachablenameless
g (mc)

The induction case distinguishes two cases: when g is reachable via some other
reachable nameless g-variable, or when g is a sub g-variable of a reachable
nameless g-variable.

h ∈ reachablenameless
g (mc) is gvarp(sc(mc), h) initializedg(mc, h)

g ∈ gvars√(sc(mc)) ¬namedg(g) valueg(mc, h) = Ptr(g)

g ∈ reachablenameless
g (mc)

h ∈ reachablenameless
g (mc) g ∈ subg(h) g ∈ gvars√(sc(mc))

g ∈ reachablenameless
g (mc)

Definition 2.6 (Reachable g-variables). We call a g-variable reachable, if
it belongs either to a set of reachable nameless g-variables or is a valid named
g-variable. Formally we define

g ∈ reachablenameless
g (mc)

g ∈ reachableg(mc)

g ∈ gvars√(sc(mc)) namedg(g)

g ∈ reachableg(mc)
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Allocation Function

The simulation relation consis which we define in Sec. 4.4 is parameterized with
the allocation function alloc :: gvar → (N × N), which maps a g-variable to a
tuple of natural numbers. The first number represents the allocated address
and the second - the allocated size of the g-variable. For global variables these
numbers are constant during program execution; for local variables they are
constant during local procedure execution. For heap variables we have to keep
track of their actual position in the heap. The allocated address of heap variables
may change with every execution of the memory allocation statement. The
return values of the allocation function are fixed with the help of the simulation
relation.

Structure of the Simulation Relation

Here we give the basic structure of the compiler simulation relation. The central
statement of the simulation relation is that all reachable g-variables of the C0
configuration are properly stored at their allocated address in the assembly
configuration. In order to make the compiler correctness statement inductive,
however, we need a number of other properties to be added to the simulation
relation. For example we require that the compiled code has not been changed
and that all stack frames are properly represented. Integration of a garbage
collector to the compiler also adds a number of properties to the simulation
relation.

The top level definition of the simulation relation consis of the compiler
without GC contains three predicates:

• consiscode: code consistency. Requires that the compiled code is stored
at address progbase in the assembly configuration;

• consisc: control consistency. Requires that the program counters of the
assembly machine point to the start address of the code which has been
generated for the first statement of the current program rest and that
return addresses of all stack frames are correct;

• consisd: data consistency. States that reachable g-variables are correctly
stored in the assembly machine, some auxiliary information about stack
and heap is stored correctly, and the allocation function for named g-
variables is correct. This is the central statement of the simulation relation
and showing that data consistency holds on the induction step is the major
challenge in the frame of this thesis.

We give the formal definition for data consistency and introduce additional
(garbage collector) top-level predicate to the simulation relation in Sec. 4.4. We
do not focus on code and control consistency, since the proof of these predicates
is largely based on the low-level garbage collection correctness, which is not
covered in the thesis.

2.5.2 Simulation Theorem

The formal statement of the simulation theorem is quite complex and we do
not present it here. Generally speaking, the simulation theorem states that for
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every step of a C0 program the assembly machine executing the compiled code
will reach an equivalent state, i.e. the state where the simulation relation consis
holds.

The proof of the theorem is done by induction on the step number i of the
C0 machine. For the base case i = 0 we have to show that the initialization code
of the compiler correctly sets up an assembly configuration which is consistent
with the initial C0 configuration. For the induction step we perform a case
distinction on the next statement in the program rest. With the presence of the
GC, the basic structure and the proof methodology of the simulation theorem
has not changed. The only statement whose treatment has changed significantly
is the dynamic memory allocation statement (PAlloc).
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Chapter 3

Garbage Collector

In this chapter we provide specification for the copying garbage collector and
data structures of the GC interface. Implementation of GC interface data struc-
tures was developed by M.A. Hillebrand and D. Leinenbach and formal speci-
ficaion of the data structures was done in the frame of this thesis (Sec. 4.2).
Specification on the Hoare logic [5, 10, 17] level was developed by E.Petrova.

The copying garbage collection algorithm was proposed by C. J. Cheney
in 1970 [6]. For this algorithm the heap of the program is divided into two
disjoint parts: to-space and from-space. In every moment only from-space is
observed and considered as a heap by the program. During garbage collection all
reachable nodes are copied from the from-space to the to-space in BFS-fashion
and the spaces are switched (from-space becomes to-space and vice versa).

3.1 GC Interface

GC interface is a set of variables and data structures located in the global mem-
ory of the program. The data structures are initialized by the compiler during
the program compilation and remain constant during the program execution.
Global memories of the program and the garbage collector do not overlap and
the program does not access GC interface.

3.1.1 Data Structures Specification

For correct execution of the garbage collection routine GC needs to distinguish
reachable nodes from unreachable ones and to know the location of the reachable
nodes in the heap memory. The required information is obtained with the help
of two implementation tables: the type table and the pointer table. Those tables
contain static information about all pointers in the global and local memories
of the program. In the type table we store allocated sizes of types and frames
and number of pointers present in a type or a memory frame. In the pointer
table we store displacements of pointers from memory frames and types.

A single element tt of the type table represents either a type from the pro-
gram type environment or a memory frame (global or local). It is modeled with
the record tytt with three components:
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• tt.st :: N: start index of the respective sub-array of tt in the pointer table.
If there are no pointers in the type or in the frame, then the value of tt.st
is undefined,

• tt.num :: N: the length of the respective sub-array of tt in the pointer
table. Is equal to the number of pointers in the type or in the frame,

• tt.asz :: N: allocated size of the type or of the frame in words.

An element pp of the pointer table represents a single pointer. It is modeled
with the record typp with two components:

• pp.woff :: N: displacement of the pointer inside the memory frame or
inside the memory allocated for the type (depending on whether the re-
spective element tt of the type table represents a frame or a type) in
words,

• pp.idxty :: N: index of the type of the pointer in the type table. This
field is not used in the garbage collection routine. It is only used on the
initialization stage, when type and pointer tables are being constructed.
The construction of TT and PP tables is not covered in this theses.

Note, that here and below displacements and allocated sizes of types and
memory frames are given in words. In this model of the garbage collector we
require that variables are correctly aligned in the memory. Thus, all allocated
sizes and displacements are divisible by the word length (four bytes).

Type and pointer tables are modeled as lists of tytt and typp elements re-
spectively.

TTtype = tytt list

PPtype = typp list

Later on in this thesis we denote instances of the types TTtype and PPtype

by TT and PP . We also use notation PPi and TTj instead of PP !i and TT !j.
The first element of the TT table represents global memory frame. The next

|ft| elements represent local frames from the function table ft :: functableT .
The last |te| elements of the TT table represent types from the type-name
environment te :: tenv (Fig. 3.1). Garbage collection is meaningful only if the
function table is not empty (at least function main is present there) and the type
environment is not empty (if type environment is empty, there are no pointers
in the program, the heap memory is not used and garbage collector is never
called).

3.1.2 GC Constants

In this section we define several data entities, which are considered as constants
by the garbage collector. Some of these entities are program dependent and are
fixed by the compiler on the initialization stage.

Definition 3.1 (Frame header offsets). The garbage collector stores some
data in the frame header of local memory frames. The displacement of the field
in the frame header of the local frame, which keeps the index of the frame in
the TT table (a link to the TT table) is represented by the constant offTT :: N
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Figure 3.1: Structure of the TT and PP tables, where k = |ft| and m = |te|.

. I.e. local frame l with the allocated word base address baw stores this link at
address baw + offTT . The displacement of the field in the header which keeps
the start address of the previous stack frame (previous stack pointer) is denoted
by offpsp :: N. In the frame of this thesis we use the following definition.

offpsp = 2

offTT = 4

Definition 3.2 (Node header size). If the program is translated by compiler
with the garbage collector each node on the heap has a header which stores
information used by GC routines for correct garbage collection (Sec. 3.2.3). We
represent the size of this header in words by the constant AUXsize :: N. In the
frame of this thesis we define

AUXsize = 2.

Definition 3.3 (Number of functions). We represent the number of func-
tions in the program, including the main function, by the constant numf :: N.
For the function table ft we define

numf = |ft| + 1

The value of the null pointer in memory is defined by the constant NPtr = 0.
Below is the list of other constants used by GC. We instantiate these con-

stants in Sect. 4.2.

• HHS :: N - size of the half heap of the program memory in words; the
size of the whole heap memory is defined as HS = 2 · HHS,

• MW :: N - size of a word in bytes (fix it with 4 later in the thesis),

• LMS :: N - size of the local memory stack in words,

• GMS :: N - size of the global memory in words,

• FHS :: N - size of the local frame header in words.
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3.1.3 Properties of GC Interface

In order for GC to perform correctly several properties of GC interface should
hold. These properties were formulated by E.Petrova and are included in the
precondition of the GC routine specification in Sec. 3.2.

Definition 3.4 (Pointers inside frame). For every pointer from the PP table
offset woff should be less than the allocated size of the frame where this pointer
is located.

inframeptrs(TT, PP ) = ∀i j. j ∈ (TTi.st : TTi.st + TTi.num− 1) ∧

i < |TT | −→ PPi.woff < TTj.asz

Definition 3.5 (Size is positive). Allocated size of all types and frames in
the TT table cannot be negative. Moreover, for local frames and types it should
be greater than zero.

asizepos(TT, PP ) = ∀i. i = 0 −→ TTi.asz ≥ 0 ∧

i ∈ (1 : |TT | − 1) −→ TTi.asz > 0

Definition 3.6 (Link to pointer table is correct). The sub-array of pointers
describing an element of the TT table has to fit in the PP table.

plinkinside(TT, PP ) = ∀i. i < |TT | −→ TTi.st + TTi.num ≤ |PP |

Definition 3.7 (No pointers in frame header). The offset of the first pointer
located in the local memory, as well as the allocated size of the local memory
frame, should be greater than offTT .

woff ge(TT, PP ) = ∀i. i ∈ (1 : numf − 1) −→

(TTi.num > 0 −→ PPTTi.st.woff > offTT ) ∧

(TTi.num = 0 −→ TTi.asz > offTT )

Definition 3.8 (Offsets are ordered). Offsets of pointers from one type or
one memory frame are ordered.

woff ord(TT, PP ) = ∀i j k. i < |TT | ∧ j ∈ (TTi.st : TTi.st + TTi.num− 1) ∧

k ∈ (TTi.st : TTi.st + TTi.num − 1) ∧ k < j

−→ PPk.woff < PPj .woff

Definition 3.9 (Correct interface). Now we combine the above properties
of the GC interface into one predicate. Additionally, we require that length of
the TT table is greater than the number of functions in the program, i.e. that
at least one type is present in the type environment.

inframeptrs(TT, PP ) asizepos(TT, PP )

plinkinside(TT, PP ) woff ge(TT, PP )

woff ord(TT, PP ) |TT | > numf

correctgci(TT, PP )

The above property follows from the interface construction. We present
the implementation model for the type and pointer tables and prove predicate
correctgci in Sec. 4.2.
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3.2 GC Specification

In this section we present the specification of the C0 heap memory allocation
procedure with garbage collection done by E.Petrova. This specification de-
scribes the behavior of a simple copying garbage collector. In the frame of this
thesis we do not fix the exact implementation of the garbage collector and the
use of any routine satisfying the given specification is appropriate.

3.2.1 Basics

The allocated address of the heap in bytes is denoted by abaseheap :: N. We use
f :: B to denote which half of the heap is currently utilized by the program. If
f = False then program is using the first part of the heap (from abaseheap to
abaseheap + HHS ·MW ). Otherwise the second part of the heap is used (from
abaseheap + HHS ·MW to abaseheap + HS ·MW ). The part of the heap used
by the program is from-space. The remainder part is to-space.

Definition 3.10 (Points to heap). We distinguish a pointer to the heap from
other pointers with the help of the predicate p2h :: N × N → B.

p2h(a) = abaseheap ≤ a < abaseheap + HS · MW

Definition 3.11 (Half heap start). Displacement of the currently used half
of the heap with respect to heap base address is calculated by the function
stidx :: B → N.

stidx(f) =

{

HHS if f

0 otherwise

Definition 3.12 (Index in half heap). To test whether some heap index hi
belongs to the from- or to-space we use the following predicates.

infrom(f, hi) =

{

hi ∈ (HHS : HS − 1) if f

hi < HHS otherwise

into(f, hi) =

{

hi < HHS if f

hi ∈ (HHS : HS − 1) otherwise

We also define predicate intol to test whether a number belongs to the to-
space including the border-index.

intol(f, hi) =

{

hi ≤ HHS if f

hi ∈ (HHS : HS) otherwise

The garbage collector routine considers local, global, and heap memories of
the compiled program as arrays of natural numbers. In order to distinguish a
memory cell from other natural numbers in the frame of this thesis we introduce
type mcellt.

mcellt = N

We also use type memt to represent local, global, and heap memories of the
program.

memt = mcellt list
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3.2.2 Abstract Stack

Definition 3.13 (Displacement of the frame). Local memory LM consists
of local memory frames. The displacement of the local frame in the local memory
LM is computed from the information stored in TT table. Function displframe ::
TTtype × memt × N → N is defined by induction on the ordinal number of the
frame in the local memory stack. Function fidTT :: TTtype × memt × N → N

returns a link to the TT table stored in the local memory frame (we define the
function later in this section). For the induction case the displacement of the
(i + 1)− th frame is calculated as the sum of the displacement of the i−the
frame and the allocated size of the i−th frame.

displframe(TT,LM , 0) = 0

displframe(TT,LM , i + 1) = displframe(TT,LM , i) +

TTfidTT (TT,LM ,i).asz

The memory cell in the local memory LM with displacement

displframe(TT,LM , i) + offTT

stores a link to the TT table for the i−th memory frame. Note, that every mem-
ory frame in the program memory stack has a respective function in the function
table ft. Thus, for every frame a link to a corresponding record in the TT table
can be provided. The value of this link is denoted by fidTT (TT,LM , i).

fidTT (TT,LM , i) = LM !(displframe(TT,LM , i) + offTT )

In an analogous way we use function fidPSP (TT,LM , i) to get the value of the
previous stack pointer.

fidPSP (TT,LM , i) = LM !(displframe(TT,LM , i) + offPSP )

We model the stack of the local memories of the program with help of the
list of displacements of memory frames inside local memory:

stack :: N list.

To establish the connection between stack and local memory LM we introduce
an abstraction relation Stack, which fixes the following properties:

• stack contains at least one frame,

• the displacement of the last frame fits into |LM |,

• the program stack pointer points to the last frame from the stack,

• stack!i contains the displacement of the i-th frame from the local memory
stack,

• the previous stack pointer of the i−th frame points to the (i−1)−th frame.
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Definition 3.14 (Stack). Here and below, ss and sp are stack start address
and program stack pointer, respectively. We define predicate Stack :: TTtype ×
N × N × memt × (N list) → B in the following way:

|stack| > 0

displframe(TT,LM , |stack|) ≤ |LM |

sp = ss + (displframe(TT,LM , |stack| − 1)) · MW

∀i < |stack|. stack!i = displframe(TT,LM , i) ∧

fidTT (TT,LM , i) ∈ (1 : numf − 1) ∧

(i > 0 −→ fidPSP (TT,LM , i) = ss + stack!(i − 1) · MW )

Stack(TT, ss, sp,LM , stack)

3.2.3 Abstract Heap

Analogously to Def. 3.13 we define the displacement of a node in the heap
memory HM .

Definition 3.15 (Displacement of a node). Function displnode :: TTtype ×
memt×N×N → N is defined by induction on the ordinal number of the node in
the heap memory. Analogously to the frame displacement definition, function
fidTT :: TTtype × memt × N → N returns a link to the TT table stored in the
node header. The size of the node header is not included into the allocated size
of the node and we have to add it explicitly. Offset st denotes the start index
of the current half of the heap (either 0 or HHS).

displnode(TT,HM , st, 0) = st

displnode(TT,HM , st, i + 1) = displnode(TT,HM , i) + AUXsize

+TTnidTT (TT,HM ,i).asz

The link to the TT table for the i−th node is obtained by the function
nidTT .

nidTT (TT,HM , i) = HM !displnode(TT,HM , i)

The second word in the node header is called the forward pointer. It is used
by the garbage collector implementation to store some auxiliary information
during execution of the GC routines. The function nidfwd(TT,HM , i) obtains
the forward pointer.

nidfwd(TT,HM , i) = HM !(displnode(TT,HM , i) + 1)

The program heap is modeled with the help of the list of displacements of nodes
inside the heap memory (Fig. 3.2), which we call an abstract heap. Here and
below in this thesis we denote the abstract heap by

xs :: N list.

The connection between abstract heap xs and the heap memory HM is estab-
lished by the abstract relation HalfHeap.

Definition 3.16 (HalfHeap). Let nhi :: N be the last index in the heap
memory used by the program. We require that the i−th element in the abstract
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Figure 3.2: Single node in the program and abstract heap.

heap xs contains the displacement of the i−th node in the heap memory HM ,
the TT link of the i−th node points to some element in the type table, and
the forward pointer in the node points to some address inside the heap memory
(technical requirement of the used GC implementation). Moreover, we require
that nhi equals the displacement of the last node plus the size of the node and
this address lies in the to-space of the heap memory. Formally, we define the
predicate HalfHeap :: TTtype × memt × B × N × (N list) → B in the following
way:

nhi = displnode(TT,HM , stidx(f), |xs|)

intol(f, nhi)

∀i < |xs|. xs!i = displnode(TT,HM , stidx(f), i) ∧

nidTT (TT,HM , i) ∈ (1 : |TT | − 1) ∧

nidfwd(TT,HM , i) ≤ |HM |

HalfHeap(TT,HM , f, nhi, xs)

3.2.4 Roots and Reachable Nodes

The garbage collector uses information from the PP table to find all reachable
variables in the program. Pointers located in the local or global memory are
called root pointers or roots. GC reads displacements of the root pointers
directly from the PP table. After that, if a pointer in roots points to some
heap node n, GC finds a link to the TT table stored in the node header of
n. From the TT table GC gets access to all pointers of node n and performs
the next step of pointer traversal. If some pointer points to a global variable v
(pointers to local variables are not supported by C0 language), then GC does
not need to handle it explicitly since all pointers in v are already present in the
roots set.

In this section and later in this thesis we omit constant parameters TT and
PP in the definitions.

Definition 3.17 (Pointer offsets extraction). Function ptrsoff (i) extracts
displacements of all pointers for the i−th element of the TT table.

ptrsoff (i) = map(off , PP [TTi.st, TTi.num])
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Definition 3.18 (Pointer content extraction). The content of pointers for
the i−th element of the TT table from memory M is extracted by the function
ptrscnt(M, i, st). Extraction is performed starting from the memory index st
(e.g. st can be equal to the start index of some local frame inside the local
memory LM ) and is based on the pointer offsets information.

ptrscnt(M, i, st) = map((λx. M [st, |M | − st]!x), ptrsoff (i))

Definition 3.19 (Global roots). We define function rootsgm :: TTtype ×
PPtype × memt → N list which extracts the content of the global roots from
the memory.

rootsgm(GM ) = ptrscnt(GM , 0, 0)

Definition 3.20 (Local roots). Function rootslmi(TT, PP,LM , st) extracts
content of the roots of a single memory frame with displacement st.

rootslmi(LM , st) = ptrscnt(LM ,LM !(st + offTT ), st)

The content of the roots of the whole local memory stack is obtained by the
function rootslm(LM , stack).

rootslm(LM , stack) = concat(map(λi. rootslmi(LM , stack!i), (0 : |stack|−1))

Later on in this thesis we denote the set of program roots by rootsm.

rootsm = rootsgm(GM ) ◦ rootslm(LM , stack)

Definition 3.21 (Content of heap pointers). The following function ex-
tracts the content of pointers for the node i in the abstract heap xs.

ncntptrs(HM , i, xs) = ptrscnt(HM ,HM !(xs!i), xs!i + AUXsize)

Definition 3.22 (Address node). The predicate nodeaddr(xs, a, i) states that
address a is the start address of the node i in xs.

i < |xs| a = abaseheap + (xs!i + AUXsize) · MW

nodeaddr(xs, a, i)

Definition 3.23 (Node edge). Predicate edgenode states that there exists a
pointer in the node i which points to the node j.

a ∈ set(ncntptrs(HM , i, xs)) p2h(a) nodeaddr(xs, a, i)

edgenode(HM , xs, i, j)

Now we can define the set of all reachable heap nodes in the program.

Definition 3.24 (Reachable nodes). The set of reachable nodes is defined
inductively. For the base case node n is reachable iff some pointer from the list
of roots points to n.

x ∈ roots p2h(x) nodeaddr(xs, x, n)

n ∈ RN(HM , roots, xs)

For the induction case node with index j is reachable iff there exists some node
i which contains a pointer to node j.

i ∈ RN(HM , roots, xs) edgenode(HM , xs, i, j)

j ∈ RN(HM , roots, xs)
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Figure 3.3: Abstract heap before and after garbage collection.

Definition 3.25 (Roots). We use predicates

Roots(roots, xs)

heap Roots(HM , xs)

to denote that every pointer to the heap points to some node from the abstract
heap xs, i.e. there are no pointers to fields of structures or elements of the array.
The first predicate establishes the given above property for pointers in roots.
The second one for all pointers to the heap located in the heap nodes. We omit
formal definition of these predicates here.

3.2.5 Isomorphism

After garbage collection the non-pointer content of the local and global memories
is not changed. The non-pointer content of a reachable heap node also remains
unchanged, but the node itself is moved to a new place. We denote the abstract
heap after garbage collection by xs′. The order of the nodes in the new heap
in general differs from the order of the nodes in the initial one. This happens
because the garbage collection algorithm is not intended to preserve order of
the nodes on the heap. The new order is defined with the help of a bijective
permutation function F . If some node with index i in the abstract heap is
reachable, then after garbage collection this node has index F (i) on the heap
xs′ (Fig. 3.3). In this section we define the isomorhpism relation on the heap
which describes the impact of the garbage collection to the heap and to the
roots.

We introduce two functions which extract some content for the i−th element
of the TT table from the memory M starting from the offset st.

nhptrscnt(M, i, st) :: mcellt list

noptrscnt(M, i, st) :: mcellt list

The first one extracts pointers which do not point to the heap. The second
extracts the whole content from st to TTi.asz except pointers. The formal
definition of these function involves filtering and is analogues to Def. 3.18. We
omit it here.

Definition 3.26 (Content extraction). The following two functions extract
pointers which do not point to the heap and the non-pointer content from the
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node i respectively.

ncntnhptrs(HM , i, xs) = nhptrscnt(HM ,HM !(xs!i), xs!i + AUXsize)

ncntnoptrs(HM , i, xs) = noptrscnt(HM ,HM !(xs!i), xs!i + AUXsize)

We define analogous functions for the global and local memory frames.

gmcntnhptrs(GM ) = nhptrscnt(GM , 0, 0)

gmcntnoptrs(GM ) = noptrscnt(GM , 0, 0)

lmicntnhptrs(LM , st) = nhptrscnt(LM ,LM !(st + offTT ), st)

lmicntnoptrs(LM , st) = noptrscnt(LM ,LM !(st + offTT ), st)

The functions which perform the given above extractions for the whole local
memory LM are defined as follows.

lmcntnhptrs(LM , stack) =

concat(map(λi. lmicntnhptrs(LM , stack!i), (0 : |stack| − 1))

lmcntnoptrs(LM , stack) =

concat(map(λi. lmicntnoptrs(LM , stack!i), (0 : |stack| − 1))

Now we have all we need to establish equality of the node content before
and after garbage collection. Here and below by HM ′,LM ′,GM ′, xs′, f ′, etc.
we denote memories and other entities after garbage collection is performed.
Note, that some entities, e.g. abstract stack stack, remain unchanged during
garbage collection.

Definition 3.27 (Node content equality). The following predicate estab-
lishes content equality of the heap nodes before and after garbage collection
(everything except pointers to the heap remains unchanged).

∀i ∈RN(HM , roots, xs). HM !(xs!i) = HM ′!(xs!i) ∧

ncntnhptrs(HM , i, xs) = ncntnhptrs(HM , F (i), xs′) ∧

ncntnoptrs(HM , i, xs) = ncntnoptrs(HM , F (i), xs′)

contenteq(TT, PP, heapbase, roots,HM ,HM ′, xs, xs′, F )

Definition 3.28 (Reachable equality). Let roots′ be the set of program roots
after garbage collection. One of the basic properties of the garbage collector
ensures that the set of the reachable nodes remains unchanged during garbage
collection. I.e. if some node i is reachable before garbage collection, then node
F (i) is reachable after it. Formally we define it in the following way.

RN(HM ′, roots′, xs′) =

map(F, RN(HM , roots, xs))

reachableeq(roots, roots′,HM ,HM ′, xs, xs′, F )

Isomorphism on the set of the program roots is defined by the predicate

isomorphroots(roots, roots
′, xs, xs′, F ).
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It requires that every pointer in roots which points to some heap node before
garbage collection points to the same heap node (w.r.t. F ) after garbage collec-
tion. Predicate

isomoprhheap(roots, roots
′,HM ,HM ′, xs, xs′, F )

establishes an analogues property for pointers to the heap located in reachable
heap nodes. We do not give formal definition for the given above predicates in
this thesis.

Definition 3.29 (Isomorph). We combine the given above isomorphism def-
initions in one predicate. Generally speaking, this predicate describes the per-
mutation function F , which defines the order of the nodes on the heap after
garbage collection (Fig. 3.4).

contenteq(roots,HM ,HM ′, xs, xs′, F )

reachableeq(roots, roots
′,HM ,HM ′, xs, xs′, F )

isomorphroots(roots, roots
′, xs, xs′, F )

isomoprhheap(roots, roots
′,HM ,HM ′, xs, xs′, F )

Isomorph(roots, roots′ ,HM ,HM ′, xs, xs′, F )

3.2.6 Garbage Collection

First we define the predicate which establishes the equality of the content of
local and global memories after garbage collection.

Definition 3.30 (Memories equality). Everything in local and global mem-
ories except pointers to the heap is not changed.

gmcntnoptrs(GM ) = gmcntnoptrs(GM ′)

gmcntnhptrs(GM ) = gmcntnhptrs(GM ′)

lmcntnhptrs(LM , stack) = lmcntnhptrs(LM ′, stack)

lmcntnhptrs(LM , stack) = lmcntnhptrs(LM ′, stack)

memconteq(GM ,GM ′,LM ,LM ′, stack)

From these definitions we can also derive the equality of local frame headers.
However, for simplicity reasons, we introduce a separate predicate which states
the mentioned property.
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Definition 3.31 (Stable frame headers).

∀ i < |stack|. LM [stack!i, FHS] = LM ′[stack!i, FHS]

fheadersstable(LM ,LM ′, stack)

Let us denote the set of memory components of the program by mσ.

mσ = {GM ,LM ,HM }

Further, we denote the set of variables of the GC interface, which are not
changed during garbage collection by infσ

infσ = {TT, PP, ss, sp, heapbase},

where ss is the start address of the stack of local memories and sp is a current
program stack pointer.

Now we can define the result of the garbage collection routine. The sketch of
the heap memory transformation is shown on Fig. 3.5. After garbage collection
the following properties hold:

• lengths of the memories remain unchanged,

• all pointers in roots and in the reachable heap nodes point to some element
in the new abstract heap xs′ (Def. 3.25),

• the abstract heap xs′ is connected to the new heap memory HM ′ via the
HalfHeap predicate (Def. 3.16),

• the abstract stack stack is connected to the new local memory LM ′ via
the Stack predicate (Def. 3.14),

• function F is a bijection and isomorphic relation on the heap holds with
respect to F (Def. 3.29),

• all nodes in the new heap are reachable,

• to-space and from-space are switched,

• the content of local and global memories which does not contain pointers
to the heap remains unchanged (Def. 3.30),

• the content of local frame headers remains unchanged (Def. 3.31),

• forward pointers in the heap nodes do not point to to-space (technical
requirement for the used implementation of the garbage collector).

Definition 3.32 (GC result). Let xs and stack be the abstract heap and the
stack of the program respectively . Further, let nhi :: nat be the value of the
pointer to the next free heap location (next heap index pointer) and F :: N → N

be a permutation relation. By roots′m we denote the set of program roots
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Figure 3.5: Heap memory before and after garbage collection.

after garbage collection, i.e. roots′m = rootsgm(GM ′) ◦ rootslm(LM ′, stack).
We define the result of the GC execution in the following predicate.

|HM | = |HM ′| |LM | = |LM ′| |GM | = |GM ′|

Roots(rootsgm(GM ′), xs′) Roots(rootslm(GM ′, stack), xs′)

heap Roots(HM ′, xs′)

HalfHeap(TT,HM ′, f ′, nhi′, xs′) Stack(TT, ss, sp,LM ′, stack)

bij(F ) Isomorph(rootsm, roots′m,HM ,HM ′, xs, xs′, F )

RN(HM ′, roots′m, xs′) = (0 : |xs′| − 1) f ′ = (¬f)

memconteq(GM ,GM ′,LM ,LM ′, stack) fheadersstable(LM ,LM ′, stack)

∀i < |xs′|. ¬into(f
′, nidfwd(TT,HM ′, i))

gc performed(infσ, mσ, m′
σ, nhi, nhi′, f, f ′, stack, xs, xs′, F )

3.2.7 Memory Allocation

In this Section we formalize the result of the redefined memory allocation pro-
cedure (new function). We distinguish three cases:

• there is enough memory on the heap for allocation of the new variable and
no garbage collection is needed,

• before garbage collection there is not enough memory on the heap, but
after the call of GC routine the freed space is enough for the allocation of
the new variable,

• even after garbage collection there is not enough heap space for the new
heap variable allocation.

The GC routine is called in the second and the third cases. Thus, garbage
collection is performed even if the new heap variable cannot be allocated after
its run.
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Precondition

Here we define the precondition for the correct execution of the garbage collec-
tion and redefined memory allocation routines.

Definition 3.33 (Collect garbage precondition). The precondition for the
garbage collection routine is defined in the following way.

Roots(rootsgm(GM ), xs) Roots(rootslm(LM , stack), xs)

heap Roots(heapbase,HM , xs) HalfHeap(TT,HM , f, nhi, xs)

Stack(TT, ss, sp,LM , stack) ∀i < |xs|. ¬into(f, nidfwd(TT,HM , i))

collectpre(infσ, mσ, nhi, f, xs, stack)

Definition 3.34 (Memory allocation precondition). Precondition for the
redefined new function includes predicates defined in Def. 3.33 and Def. 3.9.
Additionally, we set requirements on the valid ranges of some addresses and
lengths of the memories. We require that the size of the first frame in the TT
table equals the size of the GM memory and the last local frame is located
inside LM memory. Type and pointer tables need (|TT | · 3 + |PP | · 2) · MW
bytes in the global memory for storage. We want stack start ss to be greater or
equal than the interface data storage size. Let asz :: nat be the size of the new
variable in words, tid be the index of the type of the new variable (i.e. variable
to be allocated) in the TT table. Formally we define the memory allocation
precondition in the following way.

correctgci(TT, PP ) collectpre(infσ, mσ, nhi, f, xs, stack)

(asz + AUXsize) ∈ N32 tid < |TT | TTtid
.asz = asz

(abaseheap + HS · MW ) ∈ N32 ss + LM · MW ≤ abaseheap ss ≤ sp

|GM | = GMS |LM | = LMS |HM | = HS MW | ss MW | sp

TT0.asz = |GM |
(sp − ss)

4
+ TTfidTT (TT,LM ,|stack|−1).asz ≤ |LM |

(|TT | · 3 + |PP | · 2) · MW ≤ ss

newpre(infσ, mσ, nhi, f, asz, tid, xs, stack)

Postcondition

The result of the call of the modified new procedure in the case of memory
allocation without garbage collection is expressed in a predicate

allocpost(infσ, mσ, m′
σ, f, nhi, nhi′, xs, asz, res, tid).

In this case local and global memories remain unchanged, and the next heap
index pointer is increased by the size of the new variable (asz). The region
in the heap memory which corresponds to the newly allocated variable is filled
with zeros. The link to the TT table tid is written to the header of the new
node. The remaining part of the heap is unchanged. The resulting pointer res
equals the start address of the new allocated node, i.e.

res = heapbase + (nhi + AUXsize) · MW.

We do not focus on the case of memory allocation without garbage collection in
this thesis and omit formal definition of the above predicate.
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Definition 3.35 (Unsuccessful gc). In the case of unsuccessful garbage col-
lection the new heap variable cannot be allocated and we return a null pointer
as the result of memory allocation.

gc performed(infσ, mσ, m′
σ, nhi, nhi′, f, f ′, stack, xs, xs′, F )

res = NPtr

gc failure(infσ, mσ, m′
σ, nhi, nhi′, f, f ′, stack, xs, xs′, F, res)

Definition 3.36 (Successful gc). In case of a successful garbage collection the
new heap variable is allocated. We denote the state of memory M and variable
a after allocation of the new heap node by M ′′ and a′′. Thus, we distinguish
three states: the initial one, the state after garbage collection is performed,
and the state when the new variable is allocated. The value of the next heap
index pointer nhi′′ is increased by the size of the new variable (asz). The new
heap memory region is filled with zeroes and the address of the new variable is
assigned to res. Additionally, we require that all relations included in Def. 3.32
also hold for the new memories and new abstract heap xs′′. Let tid be a link
to the TT table for the new heap variable. We define the result of successful
garbage collection in the following way.

gc performed(infσ, mσ, m′
σ, nhi, nhi′, f, f ′, stack, xs, xs′, F )

res = heapbase + (nhi + AUXsize) · MW

H ′′[(nhi + AUXsize), asz] = replicate(asz, 0) H ′′!nhi′ = tid

ncnteq(HM ′,HM ′′, xs′) xs′′ = xs′ ◦ [nhi′] nhi′′ = nhi + asz + AUXsize

Roots(rootsgm(GM ′′), xs′′) Roots(rootslm(GM ′′, stack), xs′′)

heap Roots(HM ′′, xs′′) HalfHeap(HM ′′, f ′, nhi′′, xs′′)

Isomorph(rootsm, roots′′m,HM ,HM ′′, xs, xs′′, F )

RN(HM ′, roots′, xs′) = (0 : |xs′| − 1)

LM ′′ = LM ′ GM ′′ = GM ′ |HM ′′| = |HM ′|

∀i < |xs′′|. ¬into(f
′, nidfwd(TT,HM ′′, i))

gc ok(infσ, mσ, m′
σ, m′′

σ, nhi, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, F, asz, ti, res)

Definition 3.37 (Size of the nodes). In order to distinguish cases when
garbage collection is or is not successful we define the following predicate, which
calculates the size of all reachable nodes on the heap.

rnodessize(TT, PP, heapbase,HM , roots, xs) =
∑

i∈RN(TT,PP,heapbase ,HM ,roots,xs)

TTnidTT (HM ,xs,i).asz + AUXsize

Definition 3.38 (Memory allocation postcondition). Now we can define
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the postcondition of the memory allocation routine.

nhi + AUXsize + asz ≤ stidx(f) + HHS −→ xs′′ = xs ◦ [nhi] ∧ f ′ = f ∧

allocpost(infσ, mσ, m′′
σ, f, nhi, nhi′′, xs, asz, res, tid)

nhi + AUXsize + asz > stidx(f) + HHS ∧

rnodessize(TT, PP, heapbase,HM , roots, xs) + AUXsize + asz ≤ HHS −→

gc ok(infσ, mσ, m′
σ, m′′

σ, nhi, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, F, asz, ti, res)

rnodessize(TT, PP, heapbase,HM , roots, xs) + AUXsize + asz > HHS −→

gc failure(infσ, mσ, m′′
σ, nhi, nhi′′, f, f ′, stack, xs, xs′, F, res)

newpost(infσ, mσ, m′
σ, m′′

σ, nhi, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, asz, ti, res)

Correctness criteria

Correctness criteria for the redefined memory allocation routine is expressed in
Theorem 3.1.

Theorem 3.1 (Correct garbage collection). Let mσ represent the program
memories before execution of the new procedure and m′′

σ represent memories
after execution of the procedure. Further, let nhi, nhi′′ be values of the program
next heap index pointers, f and f ′ denote the half heap used by the program
before and after procedure execution. Then, the following relation holds.

newpre(infσ, mσ, nhi, f, asz, tid, xs, stack) =⇒

∃xs′ xs′′ nhi′ m′
σ .

newpost(infσ, mσ, m′
σ, m′′

σ, nhi, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, asz, ti, res)

Proof. The lemma has been proven in the Hoare logic environment by E. Petrova
for a particular implementation of GC. We do not provide the proof in the frame
of this thesis.
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Chapter 4

Compiler with a Garbage
Collector

In this chapter we consider the formal specification and verification of a simple
compiler with garbage collector. The basic definitions and concepts about the
compiler are taken from [12]. We mainly focus on the integration of the garbage
collector into the compiler and do not provide the full compiler specification
here.

The garbage collector is nothing else than a set of procedures together with
some specific variables located in the global memory of the program. During
compilation, these procedures are compiled in the same way as regular pro-
gram functions and are added to the program’s function table. Variables of
the garbage collector are placed in the global memory just after regular global
variables of the program. Assembly code, generated for the memory allocation
statement, is replaced with a function call to the main GC routine.

4.1 Memory Layout

The memory layout for the program generated by the C0 compiler with the
garbage collector is inherited from the memory layout of the original compiler.
It consists of four major areas: the part with the program code, global memory
frame, stack of local memories, and the heap. The basic memory layout is
depicted on Fig. 4.1.

The program code part of the memory starts from the address progbase,
which is a parameter of the compiler and remains constant during compilation.
The size of the program code is computed with the function csizeprog(te, gst, ft),
which calculates the size of all functions from the function list (including the
main function) and the size of the initialization code in words. Behind the
program code there is an unused space of size bubblecode, which is reserved for
later use.

The global memory frame starts at the address abasegm(te, ft, gst(m)), which
is calculated in the following way.

abasegm(te, ft, gst) = progbase + 4 · csizeprog(te, gst, ft) + 4 · bubblecode

41



addresses grow
 this direction

frame header

local frame

frame header

local frame 0

free stack area

unused half heap

used heap

free heap

code

global memory
frame program global memory

GC global memory

local stack

half heap currently

used by the program

|m.lm| − 1

i2n(gpr!rhtop)

abaseheap

abaseheap + asizemax
heap

abaseheap + asizemax
hheap

abaselm(te, ft, gst(m), 0)

abaselm(te, ft, gst(m), |m.lm| − 1)

progbase

abasegm(te, ft, gst(m))

abasegm(te, ft, gst(m))

+asizest(gstp(m), 0)

bubblecode

bubblegm

Figure 4.1: Memory layout of the compiler with GC.
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We divide the global memory into two parts: one containing the program’s
global variables and one for the global variables of the GC. From the compiler
view all variables located in the program or GC part of the global memory are
treated equally. Thus, we have to require that a user program does not change
the GC part of the global memory.

Formally, we divide the symbol table for the global memory frame gst (Sec.
2.3.4) into two parts:

• gstp(gst) :: (S × ty) list represents variables located in the program part
of the global memory,

• gstgc(gst) :: (S × ty) list represents variables of the GC interface.

Let gcilength be a constant, denoting the number of variables belonging to
the GC interface and gst be the symbol table of the global memory frame. Then
we define

gstp(gst) = gst[0, |gst| − gcilength]

gstgc(gst) = gst[|gst| − gcilength, gcilength]

For the program symbol configuration sc and memory m we also use the
following notation.

sc.gstp = gstp(sc.gst)

sc.gstgc = gstgc(sc.gst)

gstp(m) = gstp(gst(m))

gstgc(m) = gstgc(gst(m))

Behind the global memory a free space of the size bubblegm follows. The
local memory stack starts at the address abaselm(te, ft, gst(m), 0). We give the
formal definition for this predicate later in this section. Each local memory
frame starts with the frame header, which occupies five words (in the original
compiler without GC the frame header occupies 3 words). The meaning of these
fields is given in Table 4.1. The program heap starts at the address abaseheap

(another input parameter to the compiler). The local stack grows from the
bottom up and its size is limited (only) by the start address of the heap. In the
compiler with the garbage collector the heap is divided into two parts of the
equal size. All variables are allocated only in one half of the heap, the second
stays inactive until the next garbage collection is performed. The size of the
active half of the heap is bounded by the constant asizemax

hheap. The size of the
whole heap equals

asizemax
heap = asizemax

hheap · 2.

The used part of the heap is composed of the set of heap nodes. By a heap
node we understand a top-level heap g-variable together with its node header.

The base address of the global memory, the first unused address on the heap,
and the base address of the current stack frame are stored by the compiler in
the registers rsbase, rhtop, rlframe, respectively.
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Table 4.1: Frame Header Layout
Offset Field Name Field Meaning

0 return address address, where to jump after execution of
the function is finished

4 return destination address, where to store the result of the
function

8 previous stack pointer start address of the previous stack frame
12 frame size allocated size of the frame
16 TT link stores the index of the corresponding en-

try in the TT table of the GC

4.1.1 Allocated Size

We define the function which calculates the number of bytes needed to store an
instance of the type in the target machine, i.e. the allocated size of a type.

The function algn :: ty → N calculates alignment of a type in the memory.
This function was introduced to the compiler specification in order to enable
compatibility with the memory layout, where some basic types occupy a single
byte. In our model, however, all simple types occupy one word and, thus, are
automatically aligned. Alignment of any valid type in the compiler specification
with GC equals four.

The function asizet :: ty → N calculates the allocated size of a type in bytes.
For all simple types the allocated size equals four. For an array and a structure
the allocated size is defined in the following way.

asizet(ArrT (n, t)) = n · ⌈asizet(t)⌉algn(t)

asizet(Strt(scl)) = displv(0, scl, fst(last(scl))) + asizet(snd(last(scl)))

For the structure case the allocated size is calculated as the sum of the
displacement of the last component and its allocated size. Function

displv :: N × (S × ty) list× S → N

calculates recursively the displacement of a component (a structure component
or a variable from the symbol table) starting from some initial displacement
(first parameter to the function). Note, that functions displv and asizet are
defined simultaneously and recursively call each other. For details see [12].

The size of a symbol table (local or global) is calculated by the function
asizest :: (S × ty) list × N → N simply as the sum of the allocated size of
the last variable and its displacement. The second parameter of the function
denotes the size of the frame header (0 for a global frame and 20 for a local
frame), i.e. initial displacement of the first variable in the frame.

The allocated size of a memory is computed in the following way. Let hs be
the frame header size of the memory m.

asizemem ::mframe × N → N

asizemem(m, hs) =asizest(m.st, hs)

The given above function calculates the allocated size of the local or global
memory frames. Computing the allocated size of the heap is more complex.
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Due to the garbage collection unreachable heap nodes are (sometimes) removed
from the heap. The heap symbol table at the C0 small-step layer, however,
remains unchanged during garbage collection, i.e. variables are never removed
from the symbol table. Thus, we need to distinguish the g-variables present in
the heap memory of the assembly machine from others. We call such variables
alive and introduce a predicate which tests whether a g-variable is alive.

aliveT = gvar → B

alive ::aliveT

The compiler specification from [12] does not allow to define the alive pred-
icate based on the C0 configuration. Thus, we keep it as a parameter to the
simulation relation just like we do with the allocation function (Sec. 2.5).

Definition 4.1 (The set of alive variables). Let hst be the heap symbol
table and alive be the alive function. We define the set of indices of alive
top-level heap variables.

aliveidx(hst, alive) = {i ∈ N | i < |hst| ∧ alive(gvarhm(i))}

Definition 4.2 (Allocated size of the heap). The allocated size of the heap
equals the sum of sizes of all alive heap variables and their headers.

asizealive
heap (sc, alive) =
∑

i ∈ aliveidx(sc.hst, alive). 4 · AUXsize + ⌈asizet(snd(sc.hst!i))⌉4

Lemma 4.1 (Allocated size of the heap is a multiple of four). Let sc be
the program symbol configuration. The allocated size of the heap is a multiple
of four.

4 | asizealive
heap (sc, alive)

Proof. The proof follows directly from the definition.

4.1.2 Displacements of Variables and G-Variables

The displacement of an element of an array is defined as the displacement of
the array plus the allocated size of the preceding array elements. For the dis-
placement of a part of a structure we use the function displv from the previous
section.

Definition 4.3 (Displacement of a g-variable). The function displg ::
symbolconf × gvar → N computes the displacement of some g-variable with
respect to its root g-variable.

displg(sc, gvargm(x)) = 0

displg(sc, gvarlm(i, x)) = 0

displg(sc, gvarhm(i)) = 0

displg(sc, gvararr(g, i)) = displg(sc, g) + i · asizet(tyg(sc, gvararr(g, i)))

For the structure case let type tyg(sc, gvarstr(g, cn)) be some structure StrT (scl).

displg(sc, gvarstr(g, cn)) = displg(sc, g) + displv(0, scl, cn)
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Displacement of the top-level variable with the name n in the symbol table
sc with the frame header size hs is computed by the function displv(hs, sc, n).
Note, that only named variables’ displacements can be computed in the men-
tioned way. For the heap variables we do not compute displacements in the
symbol table at all.

4.1.3 Base Address

Definition 4.4 (Base address of the local frame). We define the base
address of a local memory frame by induction on the ordinal number of the
frame in the local memory stack. Let te be a type name environment, ft be a
function table, and sc the current symbol configuration.

abaselm(te, ft, sc, 0) =abasegm(te, ft, sc.gst) + ⌈asizest(sc.gst, 0)⌉4

+ 4 · bubblegm

abaselm(te, ft, sc, i + 1) =abaselm(te, ft, sc, i) + ⌈asizest(sc.lst!i, 20)⌉4

For simplicity reasons we use notation abaselm(te, ft, sc.gst) for the base
address of the first local memory frame abaselm(te, ft, sc, 0).

Now we can define the allocated base address of the named g-variables in
the memory. Here and below, we sometimes skip constant parameters te and
ft in the definitions.

Definition 4.5 (Base address of g-variables). The allocated base address of
a g-variable g is defined by case distinction on the location of the root g-variable
of g.

abaseg(sc, gvargm(x)) =abasegm(te, ft, sc.gst) + displv(0, sc.gst, x)

abaseg(sc, gvarlm(i, x)) =abaselm(te, ft, sc, i) + displv(20, sc.lst!i, x)

abaseg(sc, gvararr(g, i)) =abaseg(sc, g) + i · asizet(tyg(sc, gvararr(g, i)))

For the structure case let tyg(sc, gvarstr(g, cn)) be equal StrT (scl).

abaseg(sc, gvararr(g, i)) =abaseg(sc, g) + displv(0, scl, cn)

4.1.4 GC Constants

We instantiate the constants introduced in Sec. 3.1. The size of a word is fixed
to 4.

MW = 4

The size of the local frame header FHS equals 5 words (Tab. 4.1).

FHS = 5

The size of the half heap HHS equals aszemax
hheap divided by the word length. By

the size of the local memory stack LMS we understand the maximal possible
size of the stack (remains constant during the program execution). The size of
the global memory frame is also constant and is equal to the size of the symbol
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table of the global frame. Let te be a type name environment, ft be function
table, and sc the current symbol configuration.

HHS =
asizemax

hheap

4

LM S =
(abaseheap − abaselm(te, ft, sc.gst))

4
GM S = ⌈asizest(sc.gst, 0)⌉4

4.1.5 Assembly Memory: Arrays Representation

On the Hoare logic level, memory is represented as a set of arrays of natural
numbers (Sec. 3.2). On the assembly level, however, we have a single mapping
d.mm :: N → mcellasm. Thus, we have to divide this single machine memory
into parts, corresponding to global, local, and heap memories of the program.
Moreover, the global memory is represented by two arrays: one for the program
global memory (seen by the garbage collector as GM array) and one for the GC
global memory (which is not processed by the GC explicitly). Additionally, we
have an array for the code part of the assembly memory, which is not accessed
by GC and is not changed during garbage collection. Note, that in spite of the
fact that the GC part of the global memory is not processed by the garbage
collector explicitly, it is still changed during garbage collection. This occurs,
because some of the variables in the GC interface are not constant and are
changed every time when the garbage collector is called.

Definition 4.6 (Memories extraction). We present the set of functions
which extract certain portions of memory cells from the assembly memory:
gmp

m, gmgc
m , codem, lmm, hmm. All the functions, with the exception of codem,

return arrays of natural numbers and are of type

confasm × symbolconf × tenv × functableT → N list.

For the code extraction we do not need to convert memory cells to natural
numbers since this part remains completely unchanged during garbage collection
and memory allocation.

codem :: confasm × symbolconf × tenv × functableT → Z list

We define the extraction functions in the following way.

gmp
m(d, sc) =map(i2n, d.mm[abasegm(te, ft, sc.gst), asizest(sc.gstp, 0)])

gmgc
m(d, sc) =map(i2n, d.mm[abasegm(te, ft, sc.gst)

+asizest(sc.gstp, 0), asizest(sc.gstgc, 0)])

codem(d, sc) =d.mm[progbase, 4 · csizeprog(te, sc.gst, ft)]

lmm(d, sc) =map(i2n, d.mm[abaselm(te, ft, sc.gst),

abaseheap − abaselm(te, ft, sc.gst)])

hmm(d) =d.mm[abaseheap, asizemax
heap]

Definition 4.7 (Local memory extraction). The part of the memory con-
taining the i−th local memory frame is extracted by the function lmim(d, sc, i).

lmim(d, sc, i) = map(i2n, d.mm[abaselm(te, ft, sc.gst, i), asizest(sc.lst!i, 20)])
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Definition 4.8 (Heap g-variable extraction). Let alloc be the current g-
variable allocation function. We define the function hmgm(d, g, alloc), which
extracts that part of the heap memory which contains g-variable g.

hmgm(d, g, alloc) = map(i2n, d.mm[fst(alloc(g)), snd(alloc(g))])

In the remaining part of the thesis we use the following notation for memory
extractions.

GM d = gmp
m(d, sc)

GCM d = gmgc
m(d, sc)

LM d = lmm(d, sc)

HM d = hmm(d)

Now, we define functions which extract some values from frame and node
headers.

Definition 4.9 (TT link for frames). The following function extracts the
index of the i-th local frame in the TT table from the frame header.

readfid(d, sc, i) = i2n(d.mm(abaselm(te, ft, sc.gst, i) + offTT · 4))

Note that the order of the local frames in the type table is defined by the
order of respective functions in the function table ft. Thus, if the index of the
i-th local frame in the TT table is j then the respective function has index j−1
in ft. We obtain this index by the function readfnum

readfnum(d, sc, i) = readfid(d, sc, i) − 1

Definition 4.10 (TT link for a node). Let alloc be the current g-variable
allocation function. The following function extracts a TT link for a top-level
g-variable g from the node header. This link is stored at the beginning of the
node header. The allocation function applied to g returns the start address of
the content of the node. Thus, we have to subtract the size of the node header
from the returned value to get address where the TT link is stored.

readnid(d, g, alloc) = i2n(d.mm(alloc(g)− AUXsize · 4))

From the TT link we can easily get the index of the type of the node (type
of the root g-variable) in the type environment te. The function readtid returns
this index.

readtid(d, g, alloc) = readnid(d, g, alloc)− numf

4.2 GC Interface

On the C0 level GC interface (Sec. 3.1) is nothing else than a set of variables
located at the end of the global memory of the program.
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4.2.1 GC Variables

The value of the constant gcilength depends on the implementation of the GC
and is not fixed in the frame of this thesis. However, we require that all variables
described in this section are present in the global symbol table. This gives a
lower bound on the value of gcilength. The garbage collector implementation
used in the frame of the thesis requires the following variables to be present in
the GC part of the global memory:

• gcgm :: N: pointer to the global memory of the program. C0 semantics
supports pointers to g-variables only. Thus, we use natural type N to
model pointers to some memory regions located in the GC interface. Note,
that use of natural numbers instead of pointers here also allows us to
distinguish ”real” pointers, which are considered by the garbage collector,
from ”fake” pointers, which point to some memory regions and do not
produce any reachable heap nodes;

• gcheap :: N: pointer to the program heap;

• gcstack :: N: pointer to the stack of local memories of the program;

• gcTT :: TTtype: type table;

• gcPP :: PPtype: pointer table;

• gcf :: B: from-space indicator (flag);

• gcnhi :: N: value of the next heap index pointer of the program. Our im-
plementation of the GC reads the next heap index from the global memory
rather than directly from the next heap index register of the assembly ma-
chine. Thus, we have to keep next heap index values in memory and in
the register consistent.

First we define functions which test whether some g-variable with index i in
the GC global memory of the program symbol table sc is one of the GC vari-
ables. The functions test whether the name of the g-variable in the symbol table
matches the searched variable name. Since variable names in the global memory
are unique, there can be only one index i which satisfies the requirement.

is gmptr(sc, te, i) = (fst(sc.gstgc!i) = ”gci gm”)

is heapptr(sc, te, i) = (fst(sc.gstgc!i) = ”gci heap”)

is stackptr(sc, te, i) = (fst(sc.gstgc!i) = ”gci stack”)

is TT (sc, te, i) = (fst(sc.gstgc!i) = ”gci TT ”)

is PP (sc, te, i) = (fst(sc.gstgc!i) = ”gci PP”)

is f(sc, te, i) = (fst(sc.gstgc!i) = ”gci f”)

is nhi(sc, te, i) = (fst(sc.gstgc!i) = ”gci nhi”)

Now we define functions of the type (symbolconf × tenv → gvarT ) which
return g-variables belonging to the GC interface from the global symbol table
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of the program.

gvgm(sc, te) = sc.gstgc!(ε i. is gmptr(sc, te, i))

gvheap(sc, te) = sc.gstgc!(ε i. is heapptr(sc, te, i))

gvstack(sc, te) = sc.gstgc!(ε i. is stackptr(sc, te, i))

gvTT (sc, te) = sc.gstgc!(ε i. is TT (sc, te, i))

gvPP (sc, te) = sc.gstgc!(ε i. is PP (sc, te, i))

gvf (sc, te) = sc.gstgc!(ε i. is f(sc, te, i))

gvnhi(sc, te) = sc.gstgc!(ε i. is nhi(sc, te, i))

However, an entity of the type gvarT does not immediately give us the
value of the variable. Thus, we define a set of functions which read values of
GC variables from the memory. Such a function for the global memory pointer
is given below.

valgm :: memconf × tenv × functableT → N

valgm(mc) = i2n(cell2int(valueg(mc, gvgm(sc(mc), te))!0))

For the case of TT and PP arrays, entities of type TTtype and PPtype are
constructed inductively, i.e. every single value from the tables is read separately
and then the values are combined into variables of the mentioned types.

In the remainder part of the thesis we use the following notation for the
values of GC variables in the C0 configuration c.

TT = valTT (c.mc)

PP = valPP (c.mc)

nhic = valnhi(c.mc)

Type and pointer tables remain constant during garbage collection and memory
allocation. Thus, by TT and PP we understand their values in the initial
configuration c.

4.2.2 Program Pointers

Here we give definitions used in the formalization of the type and pointer tables
of the GC interface in the next section. We define functions, which extract
displacements of pointers in words from a type or a symbol table and count the
number of pointers.

By the displacement of a pointer inside some complex type t we understand
the displacement of the pointer variable in the variable of type t allocated in
some memory m. The displacement is computed as the sum of the allocated sizes
of all types before the respective pointer type in the structure of the complex
type t. For example in a type

t = Str([(n1, IntT ), (n2, ArrT (m × BoolT )), (n3, P trT (n4))])

the displacement of the only pointer with the type PtrT (n4) is computed as the
sum of the allocated sizes of an integer and m boolean variables. Note, that a
complex type may contain several instances of the type PtrT (n4) with different
displacements.
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Definition 4.11 (Displacements of pointers in a type). The function
ptrst :: ty → N list extracts pointer displacements from a single type. A
variable of the NullT type is considered as a non-pointer variable. For the base
case we define

ptrst(PtrT (tn)) = [0]

ptrst(t) = [ ],

where t ∈ {BoolT , IntT , CharT , UnsignedT , NullT}.
For an array we extract displacements from the type of a single element and

add the allocated size of the preceding part of the array.

ptrst(ArrT (n, t)) = concat(map(λx. ptrst(t) + x ·
asizet(t)

4
, (0 : n − 1)))

For the structure case we define an additional function ptrsstr :: N × (S ×
ty) list → N list, which extracts pointers from a list of structure components.
In this function we use an additional parameter i :: N, which accumulates the
size of all components before the current one in the structure.

ptrsstr(i, [ ]) = [ ]

ptrsstr(i, (cn, t)#xs) = (ptrst(t) + i) ◦ ptrsstr(i +
asizet(t)

4
, xs)

ptrst(StrT (cts)) = ptrsstr(0, cts)

Definition 4.12 (Displacements of pointers in a symbol table). We de-
fine the function, which extracts pointer displacements from a symbol table st
of some memory frame with the frame header size hs. For this purpose we use
the function ptrsstr to extract pointers from a list of components of a symbol
table.

ptrsst(st, hs) = ptrsstr(
hs

4
, st)

Arrays of pointers, which are produced by the functions ptrsst(st, hs) and
ptrst(t) are called pointer displacement arrays of symbol table st and type t,
respectively.

Definition 4.13 (Number of pointers in a type). The function cptrst ::
ty → N calculates number of pointers in a type. Analogously, the function
cptrsst :: (S × ty) list → N calculates number of pointers in a symbol table of
the memory frame.

cptrst(t) = |ptrst(t)|

cptrsst(st) = |ptrsst(st, 0)|

Below we give some basic properties of the ptrst and ptrsst functions.

Lemma 4.2 (Number of pointers in an array). The number of pointers in
a type ArrT (n, t) is equal to the number of pointers in a type t times length of
the array.

|ptrst(ArrT (n, t))| = n · |ptrst(t)|
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Proof. We omit the simple proof of this lemma here.

Now we give several properties on the pointer displacement arrays of a given
type or a symbol table. Note, that here and below access of an element in the
list xs!i is valid iff condition i < xs holds.

Lemma 4.3 (Pointer displacement less size of type). Displacement of a
pointer in a type t is less than the allocated size of the type.

∀j. validty(te, t) =⇒ ptrst(t)!j <
asizet(t)

4

Proof. This lemma is proved by induction on the type t. The proof in Isabelle
is somewhat complicated, since we have to deal with the mutual recursion in
the definition of ptrsstr and formulate separate condition for the structure case,
but nevertheless straightforward.

Lemma 4.4 (Pointer displacement less size of symbol table). Displace-
ment of a pointer in a symbol table st is less than allocated size of the symbol
table.

∀j. st ∈ validst(te) ∧ hs | 4 =⇒ ptrsst(st, hs)!j <
asizest(st, hs)

4

Proof. The proof is done by the structural induction on the symbol table st.
The base case is trivial. For the induction step we have st = (n1, t1)#xs.

Case (j < cptrst(t1)). We use Lemma 4.3 to conclude the goal.

Case (j ≥ cptrst(t1)). Use induction hypothesis, definitions of asizest, and
ptrsstr functions to conclude the proof. The correctness follows from the fact
that the allocated size of the symbol table equals the sum of the allocated sizes
of all variables present in the symbol table.

Lemma 4.5 (Ordered pointer displacements). Displacements of pointers
in a type t are ordered, i.e. displacement with index i is less then displacement
with index j if i is less than j.

∀i j. validty(te, t) ∧ i < j =⇒ ptrst(t)!i < ptrst(t)!j

Proof. This lemma is proved by induction on the type t. The correctness follows
from the inductive construction of ptrst.

Lemma 4.6 (Ordered pointer displacements). Displacements of pointers
in a symbol table st are ordered.

∀i j. st ∈ validst(te) ∧ hs | 4 ∧ i < j =⇒ ptrsst(st, hs)!i < ptrsst(st, hs)!j

Proof. The proof is done by structural induction over the symbol table st. We
use Lemma 4.5 and properties of the ptrsst recursive construction to conclude
the goal on the induction step.
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Now we present a set of lemmas, which connect displacements in complex
types with displacements in the respective sub-types of the complex types. We
use these lemmas in the proofs in Sec. 4.2.3.

By the following lemma we establish a connection between some pointer
displacement in an array and in a single element of the array.

Lemma 4.7 (Single element - array). Displacement of a pointer in an array
of the type ArrT (n, t) equals displacement of a pointer in a type t plus the sum
of the allocated sizes of all elements before the one, where the pointer is located.
Let p be the the index of some pointer displacement in the ptrst(ArrT (n, t))
array, k be the number of elements in the array before the one where the pointer
is located, and j be displacement of the pointer inside an element of the array.

p = k · cptrst(t) + j ∧ j < cptrst(t) ∧ p < cptrst(ArrT (n, t))

=⇒ ptrst(ArrT (n, t))!p = ptrst(t)!j + k ·
asizet(t)

4

Proof. The proof is simple and follows directly from the definition of the ptrst

and properties of concat function.

Lemma 4.8 (Array - single element). For every pointer displacement with
index p in the array type ArrT (n, t), which is equal to the size of k array elements
plus some displacement m less than the size of a single element, there exists a
respective displacement with index j in a single element of the array and this
displacement is equal to m. This lemma is the the opposite direction for Lemma
4.7.

ptrst(ArrT (n, t))!p = m + k ·
asizet(t)

4
∧ m <

asizet(t)

4
∧ validty(te, t)

=⇒ ∃j. m = ptrst(t)!j ∧ p = k · cptrst(t) + j

Proof. From p < |ptrst(ArrT (n, t))| we use Lemma 4.2 to find i and k1, s.t.

p = k1 · cptrst(t) + i ∧ k1 < n ∧ i < cptrst(t).

We instantiate the existential quantifier in the goal with i and assume k1 = k.
We conclude the goal by applying Lemma 4.7. The subgoal k1 = k is shown by
contradiction analyzing cases k1 < k and k1 > k.

Lemma 4.9 (Structure component - structure). Displacement with index
p of a pointer in a structure of the type StrT (cts) equals displacement with index
j of a pointer in a component of the structure, where this pointer is located,
plus allocated size of all components before this one in the structure.

cts = ct ◦ [(n, t)] ◦ xs ∧ p = cptrsstr(ct) + j ∧ j < cptrst(t)

=⇒ ptrst(StrT (cts))!p = ptrst(t)!j + asizet(StrT (ct))

Proof. The proof is done by induction on the list of structure components cts.
The correctness follows from the properties of the ptrst and ptrsstr functions.
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Lemma 4.10 (Structure - structure component). For every pointer dis-
placement with index p in the structure type StrT (cts) there exists a respective
displacement with index j in some structure component. This lemma is the
opposite direction for Lemma 4.9.

cts = ct ◦ [(n, t)] ◦ xs ∧ ptrst(StrT (cts))!p = asizet(StrT (ct)) + m

∧ m < cptrst(t) ∧ validty(te, t)

=⇒ ∃j. m = ptrst(t)!j ∧ p = ptrsstr(ct) + j

Proof. The proof is analogues to Lemma 4.8 and we omit it here.

Lemma 4.11 (Symbol table - type displacements). For every pointer
displacement with index k in type t there exists a respective displacement with
index m in the ptrsst(st, hs) array of a symbol table st containing type t.

c ∈ conf√(te, ft) ∧ st ∈ validst(te) ∧ hs | 4 ∧ st!i = (n, t) ∧ k < cptrst(t)

=⇒ ∃m. ptrsst(st, hs)!m = cptrst(t)!k +
displv(hs, st, n)

4

Proof. The lemma is proven by induction on the symbol table st. The base case
is trivial. In the induction step st = (n1, t1)#xs.

Case (i = 0). We instantiate the existential quantifier with k and using defini-
tion of ptrsst derive the goal.

Case (i 6= 0). We use the induction hypothesis for the (i − 1)-th element of xs
and the frame header size hs + asizet(t1). We get

∃m1. ptrsst(xs, hs+asizet(t1))!m1 = cptrst(t)!k+
displv(hs + asizet(t1), xs, n)

4
.

We instantiate the existential quantifier with m1 + cptrst(t1) and derive

ptrsst((n1, t1)#xs, hs)!(m1 + cptrst(t1))

= (ptrst(t1) +
hs

4
) ◦ ptrsst(xs, hs + asizet(t1))!(cptrst(t1) + m1) Def. 4.12

= ptrsst(xs, hs + asizet(t1))!m1

= cptrst(t)!k +
displv(hs + asizet(t1), xs, n)

4
Ind. hyp.

= cptrst(t)!k +
displv(hs, (n1, t1)#xs, n)

4
Def. of displv

4.2.3 Displacements: Types vs. G-Variables

In order to be able to argue about program g-variables using information about
pointer displacements in some type we need to connect displacement of a pointer
in a type with the displacement of a respective pointer in the allocated top-level
g-variable (or a symbol table). Though the connection seems to be obvious, it
is not easy to establish it formally. Recursion is used both in the definition of
the g-variable and the type of a g-variable. The direction in which recursion
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is performed, however, is opposite. (Sec. 2.3.4 and Fig. 2.1). This creates
additional difficulties in the induction proofs.

The following lemma connects the displacement of some pointer g-variable
in its root with the displacement in ptrst array of the type of the root g-variable.

Lemma 4.12 (G-variable - type displacement). For every displacement
of a pointer g-variable x (w.r.t. its root g-variable) there exists a respective
displacement in the pointer displacement array of the root g-variable of x.

c ∈ conf√(te, ft) ∧ x ∈ gvars√(sc) ∧ ptrgvar(x)

=⇒ ∃m. ptrst(tyg(sc, rootg(x)))!m =
displg(sc, x)

4

Proof. The proof of the lemma is done by structural induction on x. We prove
an auxiliary lemma to make the induction proof possible (Lemma 4.13).

Lemma 4.13. For every displacement of a pointer g-variable x (w.r.t. its root
g-variable) there exists a respective displacement in the pointer displacement
array of the root g-variable of x. Moreover, if x is an array or a structure, for
every displacement with index k in the pointer displacement array of the type
of x there exists a respective displacement in the pointer displacement array of
the root g-variable of x.

c ∈ conf√(te, ft) ∧ x ∈ gvars√(sc) =⇒

(ptrgvar(x) −→ ∃m. ptrst(tyg(sc, rootg(x)))!m =
displg(sc, x)

4
) ∧

(arrgvar(x) ∨ strgvar(x) −→ ∃m. ptrst(tyg(sc, rootg(x)))!m

= ptrst(tyg(sc, x))!k +
displg(sc, x)

4
)

Proof. The proof is done by induction on x. In the base case x is a top-level
g-variable and rootg(x) = x. It follows to displg(sc, x) = 0 and we conclude the
goal. In the induction step x is either an element of the array g or a structure
component of the structure g. We perform a case split on the type of x.

Case (x = gvararr(g, i)). The first conjunct of the goal is proved with the help
of the second conjunct in the induction hypothesis with g in place of x. We get

∀k. ∃m. ptrst(tyg(sc, rootg(g)))!m = ptrst(tyg(sc, g))!k +
displg(sc, g)

4

Both x and g have the same root g-variable, i.e. rootg(g) = rootg(x). Moreover, x
is a pointer g-variable, thus its displacement is present in array ptrst(tyg(sc, g))
at the position i. We derive

∃m. ptrst(tyg(sc, rootg(x)))!m

= ptrst(tyg(sc, g))!(i · cptrst(tyg(sc, x))) +
displg(sc, g)

4
Ind. hyp.

= ptrst(tyg(sc, x))!0 + i · asizet(tyg(sc, x)) +
displg(sc, g)

4
Lemma. 4.7

= 0 + i · asizet(tyg(sc, x)) +
displg(sc, g)

4
x is a pointer

=
displg(sc, x)

4
Def. of displg
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In the second conjunct we have a case when x is itself an array or a structure.
To prove it we also use the second conjunct from the induction hypothesis. We
instantiate the universal quantifier with i · cptrst(tyg(sc, x)) + k and derive

∃m. ptrst(tyg(sc, rootg(x)))!m =

ptrst(tyg(sc, g))!(i · cptrst(tyg(sc, x)) + k) +
displg(sc, g)

4
Ind. hyp.

= ptrst(tyg(sc, x))!k + i · asizet(tyg(sc, x)) +
displg(sc, g)

4
Lemma 4.7

= ptrst(tyg(sc, x))!k +
displg(sc, x)

4
Def. of displg

Case (x = gvarstr(g, i)). The proof is analogues to the first case. We use
Lemma 4.9 in place of Lemma 4.7 and find structure components sc and xs which
fulfill the equality scl = sc◦ [(n, t)]◦xs where [(n, t)] is the structure component
of the g-variable x in the structure g with the type tyg(sc, g) = StrT (scl). The
universal quantifier is instantiated with cptrsst(ct) + k.

Lemma 4.12 states that if there exists some pointer g-variable x, then its
displacement is present in the pointer displacement array of the type of the root
g-variable of x. We also need to formulate the other direction of this lemma.
I.e. for every displacement in the ptrst array there exists a respective pointer
g-variable. The proof of the lemma (Lemma 4.16) is a bit tricky and requires
an auxiliary Lemma 4.14.

Lemma 4.14. Let some pointer displacement d, belonging to array ptrst of
the root g-variable, be in allocation range of the g-variable x. Then in the
pointer displacement array of the type of x there exists an element equal to the
difference between d and displacement of x (w.r.t. to its root g-variable).

c ∈ conf√(te, ft) ∧ x ∈ gvars√(sc) ∧ d ∈ ptrst(tyg(sc, rootg(x)))

d −
displg(sc, x)

4
<

asizet(tyg(sc, x))

4

=⇒ d −
displg(sc, x)

4
∈ ptrst(tyg(sc, x))

Proof. The proof is done by the structural induction on x. In the base case
rootg(x) = x and the proof is trivial.

For the induction step we have two cases.

Case (x = gvararr(g, i)). We use the induction hypothesis for displacement d
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and derive

d −
displg(sc, g)

4
∈ ptrst(tyg(sc, g)) Ind. hyp.

≡ d −
displg(sc, x)

4
+ i ·

asizet(t)

4
∈ ptrst(tyg(sc, g)) Def. of displg

≡ ∃m. ptrst(tyg(sc, g))!m = d −
displg(sc, x)

4
+ i ·

asizet(t)

4

≡ ∃j. d −
displg(sc, x)

4
= ptrst(tyg(sc, x))!j Lemma 4.8

≡ d −
displg(sc, x)

4
∈ ptrst(tyg(sc, x))

Case (x = gvarstr(g, i)). The proof is very similar to the first case with Lemma
4.10 in place of Lemma 4.8.

Lemma 4.15 (Zero displacement). If the pointer displacement array of an
elementary g-variable g contains only a single zero element then g is a pointer.

elemg(g) ∧ ptrst(tyg(sc, g)) = [0] =⇒ ptrgvar(g)

Proof. The proof follows directly from the definition of ptrst.

Lemma 4.16 (Type - g-variable displacement). If the displacement of an
elementary g-variable x is present in the ptrst array of the root g-variable then
x is a pointer. Note, that this lemma does not hold for complex g-variables,
because a complex g-variable can have the same displacement as the pointer
sub g-variable.

c ∈ conf√(te, ft) ∧ x ∈ gvars√(sc) ∧ elemg(g)

∧
displg(sc, x)

4
∈ ptrst(tyg(sc, rootg(x)))

=⇒ ptrgvar(x)

Proof. We use Lemma 4.14 with d =
displg(sc,x)

4 and get

0 ∈ ptrst(tyg(sc, x))

Finally we apply Lemma 4.15 and use the fact, that the ptrst array of an
elementary g-variable contains at most one element.

Now we formulate analogous lemmas to Lemma 4.12 and Lemma 4.16 for
the ptrsst function. We omit the detailed proof of these lemmas here. Let sc be
the program symbol configuration and st be some symbol table from the symbol
configuration containing g-variable x.

Lemma 4.17 (G-variable - symbol table displacement). For every dis-
placement of a pointer g-variable x there exists a respective displacement with
index m in the displacement array of the symbol table containing x.

c ∈ conf√(te, ft) ∧ x ∈ gvars√(sc) ∧ ptrgvar(x) ∧ fs | 4

∧ st ∈ validst(te) ∧ st!i = (fst(rootg(x)), tyg(sc, rootg(x)))

=⇒ ∃m. ptrsst(st, hs)!m =
displg(sc, x) + displv(hs, sc, fst(rootg(x)))

4
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Proof. The proof of this lemma requires application of Lemmas 4.12 and Lemma
4.11.

Lemma 4.18 (Symbol table - g-variable displacement). If the displace-
ment of an elementary g-variable x (w.r.t. to the start of the symbol table) is
present in the ptrsst array of the symbol table containing x, then x is a pointer.

c ∈ conf√(te, ft) ∧ x ∈ gvars√(sc) ∧ elemg(g) ∧ fs | 4

∧ st ∈ validst(te) ∧ st!i = (fst(rootg(x)), tyg(sc, rootg(x)))

∧
displg(sc, x)

4
+ displv(hs, sc, fst(rootg(x))) ∈ ptrsst(st, hs)

=⇒ ptrgvar(x)

Proof. The proof of this lemma requires application of Lemma 4.16 and the
connection between ptrsst and ptrst arrays. We omit the proof here.

4.2.4 Data Structures Formalization

In order to prove correctness of the compiler, we need to argue about the struc-
ture of the TT and PP tables introduced in Sec. 3.1. In this section we develop
a formal model of these tables based on the information from the function ta-
ble, symbol table of the global memory frame, and the type environment of the
program.

Correctness Criteria

Definition 4.14 (Length of the pointer table). The length of the pointer
table can be computed from the given type table. We define the function which
adds values of all fields num in the TT table.

lengthPP (TT ) =

|TT |−1
∑

i=0

TTi.num

Definition 4.15 (Start of the TT element in the PP table). The function
startPP :: TTtype ×N → N computes the start index of the i−th TT element in
the pointer table.

startPP (TT, i) = lengthPP (TT [0, i])

The following definitions state that type and pointer tables contain correct
information about a single memory frame. Let hs :: N be the frame header size.
Further, let st :: (S × ty) list be the symbol table of the i−th memory frame in
table TT .

Definition 4.16 (Correct TT data for a frame). We require that field asz
of a TT record is equal to the allocated size of the frame in words, field num
contains the number of pointers in a frame and field st is equal to the start
index of the corresponding part of the PP table.

TTi.asz =
⌈asizest(st, hs)⌉4

4
TTi.num = cptrsst(st)

(TTi.num > 0 −→ TTi.st = startPP (TT, i))

frameTT
√(i, st, TT, PP, hs)
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Definition 4.17 (Correct PP data for a frame). We require that the k-th
record in the respective part of the PP table equals the k-th pointer displace-
ment in the i−th frame.

∀k < cptrsst(st). PPTTi.st+k.woff = ptrsst(st, hs)!k

framePP
√(i, st, TT, PP, hs)

Now we use Def. 4.16 and Def. 4.17 to obtain the interface specification for
the local and global memory frames.

Definition 4.18 (Correct global frame). Let gst :: (S × ty) list be the
symbol table of the global memory frame in the current program configuration.

frameTT
√(0, gst, TT, PP, 0) framePP

√(0, gst, TT, PP, 0)

frameg
√(gst, TT, PP )

Definition 4.19 (Correct local frames). We require that frameTT
√ and

framePP
√ properties hold for symbol tables of all functions from the program

function table ft.

∀i < |ft|. frameTT
√(i, stblf(ft, i), TT, PP, 20)

framePP
√(i, stblf(ft, i), TT, PP, 20)

frames
√(ft, TT, PP )

In an analogues way we define the correctness criteria for the parts of type
and pointer tables corresponding to the program type environment te.

Definition 4.20 (Correct TT data for a type). Let i be the index of the
type t in the type table TT .

TTi.asz =
⌈asizet(t)⌉4

4
TTi.num = cptrst(t)

(TTi.num > 0 −→ TTi.st = startPP (TT, i))

typeTT
√(i, t, TT, PP )

Definition 4.21 (Correct PP data for a type). Let i be the index of the
type t in the type table TT . We require that the k-th record in the respective
part of the array PP equals the k-th pointer displacement in the type t.

∀k < cptrst(t). PPTTi.st+k.woff = ptrst(t)!k

typePP
√(i, t, TT, PP )

Definition 4.22 (Correct type environment). The number of frames in the
program equals |ft|+ 1. We require that the next |te| elements of the array TT
fulfil correctness criteria for the types.

∀i < |te|. typeTT
√(i + |ft| + 1, snd(te!i), TT, PP )

typePP
√(i + |ft| + 1, snd(te!i), TT, PP )

typete
√(te, ft, TT, PP )
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Finally, we combine Def. 4.18, Def. 4.19, and Def. 4.22 into one predicate.

Definition 4.23 (Correct GC interface). For the global symbol table gst
correct GC interface is defined in the following way.

frameg
√(gst, TT, PP ) frames

√(ft, TT, PP ) typete
√(te, ft, TT, PP )

|TT | = |ft| + |te| + 1 |PP | = lengthPP (TT )

gci√(te, ft, gst, TT, PP )

Note, that all input parameters to the predicate gci√ are fixed during pro-
gram compilation and are not changed during program execution.

Correct Interface Proof

In this section we use the correctness criteria from Def. 4.23 to derive predicate
correctgci (Def. 3.9) from Sec. 3.1.

Lemma 4.19 (Correct interface).

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst, TT, PP ) ∧ te 6= [ ]

=⇒ correctgci(TT, PP )

Proof. We divide this lemma into 5 sub-lemmas (one for each predicate in
correctgci(TT, PP )) and prove them separately.

1. inframeptrs(TT, PP ): use Lemma 4.3 and Lemma 4.4 to conclude the
proof;

2. woff ge(TT, PP ): to prove this property we formulate an additional lemma1

which states, that every displacement in ptrsst is greater or equal than
frame header size divided by four;

3. plinkinside(TT, PP ): correctness follows from the definition of function
startPP and the fact that |PP | = lengthPP (TT );

4. asizepos(TT, PP ): from the valid configuration and definitions of allo-
cated size from Sec. 4.1.1 we derive that allocated size of a type or a local
frame is greater than zero and allocated size of the global frame is greater
or equal zero;

5. woff ord(TT, PP ): use Lemma 4.5 and Lemma 4.6 to conclude the prop-
erty.

The last conjunct in correctgci is |TT | > numf , i.e. |TT | > |ft|+1. This follows
directly from the definition of gci√(te, ft, gst, TT, PP ).

Note, that we require the type environment to contain at least one element. If
the type environment is empty, then the program does not contain any pointers,
the heap is always empty and heap memory allocation is never performed.

1Lemma frame header size le ptrs displ stbl
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4.3 Transition Function

In this section we define the new C0 transition function for the compiler with
the garbage collector. We are interested only in the heap memory allocation (i.e.
execution of the PAlloc statement), since definition for transition function for
all other C0 statements is identical to the definition in the original compiler [12].

4.3.1 Memory Allocation

In order to distinguish the case when there is not enough heap memory avail-
able in the hardware machine (in the C0 machine heap memory is infinite), we
introduce predicate availheap :: (tenv × memconf × ty) 7→ B. It returns true,
if there is enough heap memory available to allocate a new object of a given
type. We do not interpret availheap inside C0 semantics, i.e. it is an input pa-
rameter to the C0 transition function. Thus, the C0 machine is independent of
the amount of available memory in a concrete machine. Later in this section we
give a concrete instance of this predicate.

The transition function for the new heap memory allocation statement con-
sists of two parts. In the first part we assign new values to the global variables
of the GC and in the second part we perform memory allocation itself. We
introduce an additional transition function to cover the first part of memory
allocation and integrate it into the C0 transition function δC0 (Sec. 2.3.5).

Available heap

Analogously to Def. 4.2 we define the size of all reachable nodes on the heap.

Definition 4.24 (The set of reachable heap variables). Let hst(mc) be
the heap symbol table of the memory configuration mc. We define the set of
indices of the reachable top-level heap variables.

reachidx(mc) = {i ∈ N | i < |hst(mc)| ∧ gvarhm(i) ∈ reachableg(mc)}

Definition 4.25 (Reachable heap size). The size of the reachable part of the
heap equals the sum of sizes of all reachable heap variables and their headers.

asizereachable
heap (mc) =

∑

i∈reachidx(mc)

4 · AUXsize + ⌈asizet(snd(hst(mc)!i))⌉4

Definition 4.26 (Available heap). The predicate availheap(te, mc, t) returns
true iff the size of the reachable heap plus the size of the type t and the size of
the node header fits into the half heap size.

asizereachable
heap (mc) + asizet(t) + AUXsize · 4 ≤ asizemax

hheap

availheap(te, mc, t)

Definition 4.27 (Reachable g-variables alive). The predicate reachalive

holds iff all alive g-variables in the memory configuration mc are reachable.
This property is always satisfied after garbage collection is performed.

reachalive(mc, alive) = ∀g. alive(g) −→ g ∈ reachableg(mc)
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GC Transition Function

Let memupd :: memconf × gvar × (mcellC0 list) 7→ memconf⊥ be a function
which updates a g-variable with a new value (we skip the definition of memupd
function here).

Definition 4.28 (GC variables update). We introduce the function

updategci :: memconf × B × N 7→ memconf

which sets the new values for the variables located in the GC part of the global
memory. Namely, the next heap index and the from-space flag are updated with
nhival :: N and fval :: B respectively. Let mc′ be a memory configuration after
update of the nhi variable, i.e.

mc′ = ⌊memupd(mc, gvarnhi(sc(mc), te), [Nat(nhival)])⌋.

We define the function updategci in the following way.

updategci(mc, fval, nhival) = ⌊memupd(mc′, gvarf (sc(mc), te), [Bool(fval)])⌋

Now we need to calculate the new values of the next heap index and the
from-space flag from the current C0 configuration and the size of the type we
want to allocate. The value of f remains unchanged in the case when the
garbage collection is not performed (i.e. there is enough space for allocation
without garbage collection) and is reversed in all other cases. The value of the
next heap index nhi is changed in one of the following ways:

• is increased by the size of the type we allocate: if there is enough heap
space for allocation without garbage collection;

• is equal to the size of the reachable heap before allocation plus the size of
the type we allocate: if there is not enough heap space for allocation with-
out garbage collection, but enough after garbage collection is performed;

• is equal to the size of the reachable heap before allocation: if there is
not enough heap space for allocation even after garbage collection is per-
formed.

Definition 4.29 (New values of GC variables). Let f = gvarf (sc(mc), te)
be the current from-space indicator and availheap be the predicate which tests
whether a new variable can be allocated on the heap. Functions updf and
updnhi calculate the new values of the next heap index and from-space variables,
respectively. By predicate no gc needed(mc, t, f) let us denote the case when

valnhi(mc) + AUXsize · 4 + asizet(t) ≤ stidx(f) · 4 + asizemax
hheap.

We also use the following notation:

nhi1 = stidx(¬f) · 4 + asizereachable
heap (mc) + AUXsize · 4 + asizet(t)

nhi2 = stidx(¬f) · 4 + asizereachable
heap (mc)
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Update functions are defined in the following way.

updf (mc, t) =

{

f no gc needed(mc, t, f)

¬f otherwise

updnhi(mc, t, availheap) =











nhi + asizet(t) no gc needed(mc, t, f)

nhi1 availheap(te, mc, t)

nhi2 otherwise

Definition 4.30 (GC transition function). Let us denote the value of updf (c.mem, t)
by fval and by nhival the value of updnhi(c.mem, t, availheap). Then we define
the GC delta transition function as an update of the memory configuration of
the C0 machine c with the values fval and nhival. The program rest of the
configuration is not changed.

δgc(te, ft, c, t) = ⌊c [mem := updategci(c.mem, fval, nhival)]⌋ .

C0 transition function

Now we consider the second part of the PAlloc(el, tn) statement - allocation of
the new heap variable. In the case if there is enough heap memory, allocation
of the new variable is done in two steps:

1. Heap memory is extended by new (nameless) variable of the given type;

2. a pointer to the newly allocated variable is created and is assigned to the
left expression el.

In the case if there is not enough heap memory for allocation, we skip the
first step and assign a null pointer in the second. The requirement in both cases
is that the left expression el can be evaluated to some g-variable and that the
type name tn is defined in the type name environment.

Definition 4.31 (Heap extension). We introduce the function extendheap ::
(memconf×ty → B)×memconf×ty 7→ memconf which adds a new initialized
variable to the heap, i.e. performs step 1 of the allocation. Let m be the old
memory configuration and t the type of newly allocated variable. Then we define
the new memory configuration m′ = extendheap(availheap, m, t) in the following
way.

The base address of the new variable equals the abstract size of the old heap

memory of the C0 machine, i.e b =
∑|hst(m)|−1

j=0 sizet(snd(hst(m)!j)). If there
is enough heap memory available, i.e. availheap(te, m, t) = true, the new heap
memory is defined by

hm′ = m.hm

[

st := hst(m) ◦ [(undef, t)]
ct := m.hm.ct([b, sizet(t)] := initval(t)[0, sizet(t)])

]

,

where initval(t) returns some initial value of the given type. Otherwise, if
availheap(te, m, t) = false, we set hm′ = m.hm.

The second step of memory allocation is defined as follows.
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Definition 4.32 (Memory allocation). Let p be a pointer, which points to
the newly allocated variable, i.e.

p =

{

Ptr(gvarhm(|hst(c.mem)|)) if availheap(te, c.mem, t)

Ptr(⊥) otherwise

Let c̄ be a C0 configuration with the updated values of GC variables, i.e. c̄ =
δgc(te, ft, c, t).The new memory configuration mc′ is defined in the following
way.

⌊mc′⌋ = memupd(extendheap(availheap, c̄.mem, t), g, [p]).

Let the program rest of the C0 configuration consists of a statement for
allocation of new heap memory, i.e. c.prog = PAlloc(el, tn), where tn is type
name of the type t. The new C0 configuration is defined in the following way.

δC0(te, ft, c) =

⌊

c

[

prog := Skip
mem := mc′

]⌋

.

4.3.2 Extended Alive Function

During garbage collection unreachable variables are removed from the heap. Af-
ter memory allocation (if it is successful) another reachable top-level g-variable
is added to the heap. In both cases we have to change the current alive function.
The possible changes to the alive function are:

• the new alive function returns true for the new heap variable and does
not change its value for old variables: if allocation is successful without
garbage collection;

• the new alive function returns true only for the new heap variable and all
variables reachable in the old configuration: if there is not enough heap
space for allocation without garbage collection but enough after garbage
collection is performed;

• the new alive function returns true only for variables reachable in the old
configuration: if there is not enough heap space for allocation even after
garbage collection is performed.

To model these situations we introduce two functions.

alivegc :: memconf → aliveT

alivext :: memconf × aliveT × N → aliveT

The first one reflects the impact of the garbage collection on the alive function.
The second - extends the current alive function with the new heap variable
(heap extension occurs only if allocation is successful).

Definition 4.33 (Alive function after GC). After the garbage collection
all reachable nameless g-variables are alive. Unreachable variables are removed
from the heap.

alivegc(mc)(g) = g ∈ reachablenameless
g (mc)
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Definition 4.34 (Extended alive function). Let i be the index of the newly
allocated heap variable in the heap symbol table.

alivext(mc, alive, i)(g) =

{

true g = gvarhm(i)

alive(g) otherwise

In case of successful garbage collection (when the variable is allocated after
it) we need to apply alivegc and alivext functions consequently to get the new
alive function function.

4.3.3 Extended Allocation Function

Analogously to the alive function we have to distinguish three different updates
of the allocation function alloc:

• if the memory is allocated with the garbage collector then alloc is just
extended with the new heap g-variable;

• if the garbage collection is performed but the variable is not allocated,
then the second component of the allocation function for reachable heap
g-variables remains unchanged and the first component is assigned some
new value, which denotes the new position of the g-variable on the heap;

• if the garbage collection is performed and a new variable allocated, then
both described changes are applied to alloc function.

In order to define the new allocation function formally we introduce a func-
tion which computes the displacement of some top-level g-variable in the new
heap of the assembly machine (after garbage collection is performed). In order
to find out the position of some heap node in the new heap memory, we need
to find a position of the respective node in the abstract heap xs and apply the
permutation function F (Sec. 3.2.5), which defines the order of the nodes af-
ter garbage collection. This gives us the position of the i−th node in the new
abstract heap xs′ and the new displacement of the node in the heap is equal
to xs′!F (i). The new abstract heap xs′ and the permutation relation F are
obtained from the postcondition of the heap allocation routine (Sec. 3.2.6).

First, we introduce a function which finds the element in the abstract heap
which corresponds to some heap g-variable.

Definition 4.35 (G-variable in the abstract heap). Let xs be the pro-
gram abstract heap and alloc be the program allocation function. The function
gvarhid(xs, alloc, g) finds an element in xs with the same displacement as dis-
placement of rootg(g). Note, that in the abstract heap we store displacement
of a node (i.e. top level g-variable with the header). The allocation function
alloc, however, returns address of a g-variable without node header, i.e. address
of the first node content word. Thus, we have to subtract AUXsize from the
displacement of the top-level g-variable in order to get the displacement of the
heap node.

gvarhid(xs, alloc, g) = ε̂ i. xs!i =
fst(alloc(rootg(g))) − abaseheap

4
− AUXsize
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Definition 4.36 (G-variable in the new heap). Let xs and xs′ be abstract
heaps before and after garbage collection respectively and F be a permutation
function. The function displgc computes the displacement of the root g-variable
rootg(g) in the heap after garbage collection is performed.

displgc(xs, xs′, alloc, F )(g) = xs′!F (gvarhid(xs, alloc, g)) + AUXsize

Definition 4.37 (Allocation function after GC). In order to keep GC
specific parameters (xs and F ) out of the top-level specification we introduce
the function dgc :: gvar → N as an input parameter. This function returns the
displacement of a g-variable in the new heap. Later on we instantiate it with
displgc(xs, xs′, alloc, F ). Let alloc be the allocation function before garbage
collection. We define the allocation function after GC in the following way.

allocgc(sc, alloc, dgc)(g) =
{

alloc(g) namedg(g)

(abaseheap + dgc(g) · 4 + displg(sc, g), asizet(tyg(sc, g))) otherwise

Now we extend the allocation function with an entry for the new heap vari-
able which contains its allocated base address and size.

Definition 4.38 (Extended allocation function). Let i be the index of the
newly allocated heap variable in the heap symbol table and b the allocated
base address of the new heap variable in the heap memory. Let alloc be the
allocation function before the variable allocation (i.e. after execution of the last
C0 statement or after garbage collection). Then, we define the new allocation
function in the following way.

allocxt(sc, alloc, i, b)(g) =
{

(b + displg(sc, g), asizet(tyg(sc, g))) rootg(g) = gvarhm(i)

alloc(g) otherwise

In case of successful garbage collection (when the variable is allocated after
it) we need to apply allocgc and allocxt functions consequently to get the new
allocation function.

4.4 Simulation Relation

In this section we give the formal definition for the modified simulation rela-
tion of the compiler simulation theorem (Sec. 2.5). The simulation relation
presented here is a modified and extended version of the relation from [12]. In
the frame of the thesis we want to keep the structure of the original simulation
relation unchanged as much as possible in order to reuse lemmas and proofs
done in [12]. Thus, we leave all three basic predicates (code consistency, control
consistency, data consistency) unchanged with the exception of the small change
in the register consistency relation (part of the data consistency) and add a new
predicate for the garbage collector consistency (GC consistency). In the global
sense, however, this might not be the best solution, because some conditions
in the GC consistency predicate are the modified versions of conditions in data
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consistency. Thus, applying more changes to the data consistency might make
the structure of the GC consistency predicate simpler.

In the compiler with the garbage collector the consistency relation consis
has four new parameters:

• alive :: aliveT : the heap alive function, which distinguishes variables
currently present in the heap memory from the deleted ones;

• f :: B: from-space flag. Indicates which part of the heap is currently in
use by the program;

• xs :: N list: abstract heap of the program. Contains displacements of
nodes inside the heap memory;

• stack :: N list: abstract stack of the program. Contains displacements of
memory frames inside local memory.

All four introduced entities are initialized with some values at the first step
of execution of the C0 machine and are then extended and modified on every
step of the machine execution.

The only indispensable parameter here is the alive function. All the other
parameters, in principal, can be removed from the simulation relation. We
keep them for simplicity reasons due to the Hoare logic definition of the GC
result (Chapter 3). The from-space flag f is stored in the GC part of the
global memory and can be obtained from there. The abstractions xs and stack
are nothing else than lists of displacements of some entities in the memory of
the assembly machine, and can be constructed on every step of the C0 machine
execution with the help of other parameters of the simulation relation. However,
these manipulations would make the proofs much harder, while not making the
specification much simpler.

We start from the top-level definition and then go down in order to show
the structure of the relation before we present its formal definition. The overall
structure of the simulation relation is depicted on Fig. 4.2.

Definition 4.39 (Consistency). Let te be a type name environment, ft a
function table, c a C0 configuration, d a configuration of the VAMP assembly
machine, alloc an allocation function, alive an alive function, and f be the from-
space indicator. We say that c and d are consistent if they fulfill the predicate
consis which requires code consistency, control consistency, data consistency,
and GC consistency.

consiscode(te, ft, c, d) consisd(te, ft, c, alloc, alive, f, d)

consisc(te, ft, c, d) consisgc(te, ft, c, alloc, alive, f, d, xs, stack)

consis(te, ft, c, alloc, d, alive, f, xs, stack)

Code consistency requires that the compiled code is stored at the address
progbase in the assembly configuration. Control consistency specifies values of
program counters and return address of stack frames. The latter requirement
is formally defined with the predicate consisra(te, ft, c, d). We do not give the
formal definitions for code and control consistencies here, but focus on the data
and GC consistency relations instead.
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Figure 4.2: Overall structure of the simulation relation.

4.4.1 Data Consistency

Below we define data consistency using several auxiliary definitions.

Allocation Consistency. Here we fix properties of the allocation function.
We require that the second component of the allocation function returns the
allocated size of a g-variable and the first component returns the base address
of a named g-variable. We cannot fix the absolute position of the heap g-variable
in the memory, instead we require that variables are allocated above heap base,
sub g-variables are properly placed relatively to their root g-variables, and that
nameless g-variables with different roots do not overlap in the assembly memory.
The last condition is not automatically fulfiled with the presence of the garbage
collector, since it does not argue about node headers (in the compiler without
GC heap nodes do not have headers). The predicate nodesnovlp, which is defined
later, fixes the problem.

Definition 4.40 (Named allocation consistency). Predicate consisnamed
alloc

tests whether a given allocation function contains the correct data for named
g-variables.

∀g ∈ gvars√(sc(c.mem)). namedg(g) −→

fst(alloc(g)) = abaseg(sc(c.mem), g) ∧

snd(alloc(g)) = asizet(tyg(sc(c.mem), g))

consisnamed
alloc (te, ft, c, alloc)

Definition 4.41 (Heap allocation consistency). The following predicate
tests whether a given allocation function returns the correct data for nameless
g-variables. Additionally, we require that the end of the top most local frame is
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below the heap base and that the root nameless g-variables are properly aligned.

abaselm(te, ft, sc(c.mem), |c.mem.lm|) ≤ abaseheap

∀g ∈ gvars√(sc(c.mem)). ¬namedg(g) −→

snd(alloc(g)) = asizet(tyg(sc(c.mem), g))

∀g′ ∈ reachablenameless
g (c.mem).

fst(alloc(g′)) = fst(alloc(rootg(g
′))) + displg(sc(c.mem), g′)

∧ algn(tyg(sc(c.mem), rootg(g′))) | fst(alloc(rootg(g
′)))

∧ abaseheap ≤ fst(alloc(g′))

∧ ∀h ∈ reachablenameless
g (c.mem).

rootg(g′) 6= rootg(h) −→ alloc(g′) ≍ alloc(h)

consisheap
alloc(te, ft, c, alloc)

With the presence of a garbage collector we want to have a more accurate
bound on the position of heap g-variables in the assembly memory. Depending
on the current value of the from-space indicator f , all heap g-variables are
located in one half of the heap or the other. This bound in fixed in the predicate
gc consisaheap.

Definition 4.42 (Allocation consistency). We combine the two previous
definitions into one predicate

consisnamed
alloc (te, ft, c, alloc) consisheap

alloc(te, ft, c, alloc)

consisalloc(te, ft, c, alloc)

Value Consistency. Value consistency requires that values of reachable non-
pointer g-variables are correctly stored in the memory of the assembly machine.
The predicate consisg

v(mc, alloc, d, g) sets the following property on a reachable,
non-pointer, elementary g-variable g (for other g-variables it returns true):

vmatch(valueg(mc, g)(0), cell2int(d.mm(
fst(alloc(g))

4
))).

The predicate vmatch :: mcellC0 × Z → B tests whether its input parameters
contain equivalent values.

Definition 4.43 (Value consistency). A C0 configuration c is value consis-
tent with the assembly configuration d in the context of allocation function alloc
iff all g-variables in c are value consistent (the test for reachability and pointer
g-variables occurs inside predicate consisg

v ).

consisv(c, alloc, d) = ∀g. consisg
v(c.mem, alloc, d, g)

Pointer Consistency. Pointer consistency states that the values of reachable
pointer g-variables are properly represented in the assembly configuration. Anal-
ogously to value consistency, the predicate consisg

p(mc, alloc, d, g) tests whether
the following property holds for a reachable, pointer g-variable g (for other
g-variables it returns true):

vmatchptr(alloc, g, cell2int(d.mm(
fst(alloc(g))

4
))).
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The predicate vmatchptr(alloc, p, vasm) with a pointer p to a g-variable g returns
true iff the assembly value of the pointer (interpreted as a natural number)
equals the allocated base address of g.

Definition 4.44 (Pointer consistency). A C0 configuration c is pointer con-
sistent with the assembly configuration d in the context of allocation function
alloc iff all g-variables in c are pointer consistent.

consisp(c, alloc, d) = ∀g. consisg
p(c.mem, alloc, d, g)

Register Consistency. Register consistency argues about the content of cer-
tain special registers of the assembly machine. It requires, that registers rsbase,
rlframe, and rhtop have values according to their intended meaning, that no
reachable nameless g-variables are allocated above the top most heap address
rhtop, and that the value of rhtop is properly aligned. In order to formulate the
correct value of the rhtop register we have to use the alive function. We require
that the value of rhtop is equal to the start of the currently used half heap plus
the size of all alive variables on the heap.

Definition 4.45 (Register consistency). Formally we define register consis-
tency in the following way.

4 | d.gpr!rhtop

i2n(d.gpr!rsbase) = abasegm(te, ft, gst(c.mem))

i2n(d.gpr!rlframe) = abaselm(te, ft, sc(c.mem), |c.mem.lm| − 1)

i2n(d.gpr!rhtop) = abaseheap + stisx(f) · 4 + asizealive
heap (sc(c.mem), alive)

∀g ∈ reachablenameless
g (c.mem). fst(alloc(g)) + snd(alloc(g)) ≤ i2n(d.gpr!rhtop)

consisr(te, ft, c, alloc, d, alive, f)

Frame Header Consistency. Frame header consistency requires the values
in the frame headers of the local frames to be consistent with their intended
meaning. Here, we set the values only for the return destination and the previous
stack pointer. The value of the return address is fixed in the control consistency
and the value of the link to the pointer table is fixed in the GC consistency. The
predicate consisfh(te, ft, c, alloc, d) requires for the i-th local frame (excluding
0-th frame) the following properties to hold:

fhpsp(te, ft, sc(c.mem), d.mm, i) = abaselm(te, ft, sc(c.mem), i − 1)

fhrd(te, ft, sc(c.mem), d.mm, i) = fst(alloc(snd(c.mem.lm!i)))

The functions fhpsp and fhrd read from the assembly memory values of the
previous stack pointer and the return destination from the frame header.

Data Consistency. We combine the given above definitions into one predi-
cate.

Definition 4.46 (Data consistency). The following predicate checks whether
c and d are data consistent with respect to allocation function alloc, alive func-

70



tion alive, and from-space indicator f .

consisalloc(te, ft, c, alloc) consisv(c, alloc, d) consisp(c, alloc, d)

consisr(te, ft, c, alloc, d, alive, f) consisfh(te, ft, c, alloc, d)

consisd(te, ft, c, alloc, d, alive, f)

4.4.2 GC Consistency

GC consistency states properties of the configuration which are necessary for
correct execution of the garbage collector routine and correct memory alloca-
tion of the new heap variable. We define the relation using several auxiliary
definitions.

Abstractions Consistency. Abstractions consistency states a number of
properties for the abstract heap xs and the abstract stack stack.

For the abstract stack we simply require that every element of the stack
contains the displacement of the respective frame in the local memory stack
c.mem.lm and that the length of the stack equals the length of the local stack.

Definition 4.47 (Abstract stack consistency).

∀l < |stack|. stack!l =
abaselm(te, ft, sc(c.mem), l) − abaselm(te, ft, sc(c.mem))

4
|stack| = |c.mem.lm|

gc consisastack(te, ft, c, stack)

For the abstract heap xs we require the following properties:

• for every alive node from the heap symbol table hst(c.mem) there exists
a respective unique element in xs;

• for every element in the abstract heap xs there exists a respective unique
alive node in the heap symbol table;

• the relation HalfHeap (Def. 3.16) holds for xs and heap memory HM d of
the assembly machine d;

• forward pointers of all nodes on the heap point to the from-space.

Definition 4.48 (Abstract heap consistency). Formally we define abstract
heap consistency in the following way.

∀i < |hst(c.mem)|. alive(gvarhm(i)) −→

∃̂j < |xs|. xs!j =
fst(alloc(gvarhm(i))) − abaseheap

4
− AUXsize

∀j < |xs|. ∃̂i < |hst(c.mem)|. alive(gvarhm(i))

∧ xs!j =
fst(alloc(gvarhm(i))) − abaseheap

4
− AUXsize

HalfHeap(TT,HM d, f, nhic, xs) ∀i < |xs|. ¬into(f, nidfwd(TT,HM d, i))

gc consisaheap(te, ft, c, alloc, alive, f, xs, d)
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Definition 4.49 (Abstractions consistency). We combine the given above
two definitions into abstractions consistency.

gc consisastack(te, ft, c, stack) gc consisaheap(te, ft, c, alloc, alive, f, xs, d)

gc consisa(te, ft, c, alloc, alive, f, xs, stack, d)

Headers Consistency. Here, we set some requirements on the frame and
node headers. Note, that some properties of the heap nodes are already covered
in the abstractions consistency. In the headers consistency we focus on the value
of the TT link stored in the headers. Additionally we formulate the full version
of the last condition in Def. 4.41, i.e. we state that nameless g-variables with
different roots and their headers do not overlap in the assembly memory.

Definition 4.50 (Node headers consistency). We require that the value
of the TT index of the i-th node is greater than the number of frames in the
program, but less than the number of functions plus the number of types in
the type environment. The index of the type of a g-variable in te (obtained
by readtid function) points to the type of this g-variable (the type of the heap
node). Formally we define the relation in the following way.

∀i < |hst(c.mem)|. alive(gvarhm(i)) −→

readnid(d, gvarhm(i), alloc) ∈ (numf : numf + |te| − 1)

∧ snd(te!readtid(d, gvarhm(i), alloc)) = tyg(sc(c.mem), gvarhm(i))

gc consisnh(te, ft, c, alloc, alive, d)

Definition 4.51 (Node headers do not overlap). We formulate the property
only for top-level heap g-variables. We require that all root, valid, alive g-
variables (i.e. unreachable, but alive g-variables are also considered) together
with their headers do not overlap. To simplify the definition we introduce a
new predicate ≍n, which checks whether two ranges extended by the size n are
disjoint.

r1 ≍n r2 = (fst(r1) − n ≥ fst(r2) + snd(r2) ∨ fst(r2) − n ≥ fst(r1) + snd(r1))

Formally, we define the main predicate in the following way.

∀g ∈ gvars√(sc).∀h ∈ gvars√(sc). ¬namedg(g) ∧ ¬namedg(h)

∧ alive(g) ∧ alive(h) ∧ rootg(g) = g ∧ rooth(h) = h −→

alloc(g′) ≍8 alloc(h)

nodesnovlp(sc, alloc, alive)

Definition 4.52 (Frame headers consistency). We require that the value
of the TT index of the l-th frame is greater than zero and less or equal than the
number of functions in the program configuration. The index of the function
in the function table ft (obtained by readfnum(d, sc, l)) points to the function
which corresponds to the frame l, i.e. to the function with the same symbol
table as the symbol table of l.

∀l < |c.mem.lm|. readfid(d, sc(c.mem), l) ∈ (1 : |ft|)

∧ stblf(ft, readfnum(d, sc(c.mem), l)) = c.mem.lm!l.st

gc consisfh(te, ft, c, alloc, alive, d)

72



Definition 4.53 (Headers consistency). We combine the given above three
definitions into one predicate.

gc consisnh(te, ft, c, alloc, alive, d)

nodesnovlp(sc(c.mem), alloc, alive) gc consisfh(te, ft, c, alloc, alive, d)

gc consish(te, ft, c, alloc, alive, d)

Extended Heap Consistency. Here we define the position of a heap g-
variable in the assembly heap memory. In the compiler without garbage collector
this position is fixed with the predicate consisheap

alloc. Now we have to set a tighter
bound: depending on the value of f , a reachable g-variable is located in one
half of the heap or the other.

Definition 4.54 (Extended heap consistency). Depending on the value of
the from-space indicator f , g-variable g is allocated either in one half of the
heap or the other.

∀g ∈ reachablenameless
g (c.mem).

abaseheap + (AUXsize + stidx(f)) · 4 ≤ fst(alloc(g)) ∧

fst(alloc(g)) + snd(alloc(g)) ≤ abaseheap + (AUXsize + stidx(f) + HHS) · 4

gc consisheap(te, c, alloc, f)

Alive Consistency. Here we set some basic properties on the heap alive
function.

Definition 4.55 (Alive sub g-variables). If some g-variable g is alive then
its root g-variable rootg(g) is also alive. Analogously, the property holds in the
opposite direction.

∀g ∈ gvars√(sc). alive(rootg(g)) ∧ ¬namedg(g) −→ alive(g)

∀g ∈ gvars√(sc). alive(g) ∧ ¬namedg(g) −→ alive(rootg(g))

gc alivesub(sc, alive)

Definition 4.56 (Reachable g-variables are alive). This is the main prop-
erty of the alive function. If some nameless g-variable is reachable, then it is
alive (i.e. present in the heap memory of the assembly machine).

∀g ∈ reachablenameless
g (c.mc). alive(g)

gc alivereach(c, alive)

Lemma 4.20 (Reachable heap equals alive heap). If both gc alivereach

and reachalive predicates hold at the same time, then sizes of reachable and
alive heaps are equal. I.e. in this case the heap contains only reachable alive
nodes.

gc alivereach(c, alive) ∧ reachalive(c.mc, alive)

=⇒ asizereachable
heap (c.mc, alive) = asizealive

heap (sc(c.mc), alive)

Proof. We omit the (simple) proof of this lemma here.
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Definition 4.57 (Allocation function for alive g-variables). If some g-
variable g is alive, then fst(alloc(g)) is divisible by four and is greater than
abaseheap plus the size of the node header. For reachable g-variables these prop-
erties can be derived from the heap allocation consistency (Def. 4.41). However,
we want them to hold not only for reachable nameless g-variables, but for all
heap g-variables currently present on the heap.

∀g ∈ gvars√(sc). alive(g) ∧ ¬namedg(g) −→

fst(alloc(g)) | 4 ∧ fst(alloc(g)) ≥ abaseheap + AUXsize · 4

gc alivealloc(sc, alloc, alive)

Definition 4.58 (Alive consistency). We combine the given above properties
into one predicate.

gc alivesub(sc(c.mem), alive)

gc alivereach(c, alive) gc alivealloc(sc(c.mem), alloc, alive)

gc consisalive(c, alloc, alive)

GC Interface Consistency. In the GC interface consistency we define cor-
rect values of the variables located in the global memory of the garbage collector.
First, we require that each of the nine GC variables defined in Sec. 4.2 is present
in the symbol table of the global memory. The predicate

gc varsstbl(sc, te)

states the property formally (we do not give the definition here).

Definition 4.59 (GC interface consistency). We fix the values of GC vari-
ables in the C0 configuration c and assembly configuration d with the from-space
indicator f . First, we require that all GC variables are present in the global
symbol table of the program. Then we require that values of the global memory
pointer, stack pointer, and heap pointer are equal to abasegm, abaselm, and
abaseheap, respectively. The value of the next heap index is fixed with the help
of the rhtop register and the values of type and pointer tables are restricted by
the means of gci√ predicate (Sec. 4.2.4).

gc varsstbl(sc(c.mem), te)

valgm(c.mem) = abasegm(te, ft, gst(c.mem))

valheap(c.mem) = valheap st(c.mem) = abaseheap

valstack(c.mem) = valstack st(c.mem) = abaselm(te, ft, gst(c.mem))

valf (c.mem) = f abaseheap + 4 · valnhi(c.mem) = i2n(d.gpr!rhtop)

gci√(te, ft, gst(c.mem), valTT (c.mem), valPP (c.mem))

gc consisv(c, te, ft, f, d)

GC Assumptions. We define two additional predicates which represent some
basic assumptions on the program introduced with the integration of the garbage
collector to the compiler. These properties are required by the simple garbage
collector used in the frame of this thesis.
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Definition 4.60 (Heap pointers assumption). If some pointer g-variable x
points to the heap, then it should point to the heap node (top-level g-variable).
Pointers to sub-variables (e.g. element of the array or a structure component)
on the heap are not allowed.

∀x ∈ reachableg(mc). ∀g. ptrgvar(sc(mc), x) ∧ ¬namedg(g)

∧ valueg(mc, x) = Ptr(g) −→ rootg(g) = g

gc assumeptrs(mc)

We require that the GC interface does not contain any pointers to g-variables.
Actually, we need this assumption to hold only for heap pointers, since these
pointers located in the GC part of the global memory may have wrong val-
ues after garbage collection is performed (the garbage collector doesn’t ”see”
pointers located in the GC part of the global memory and cannot handle them
correctly). However, since the presence of pointers to variables in the GC global
memory is not essential (and usually is not needed) in the implementation of
a simple copying garbage collector, we decided to put a restriction on all GC
pointers (both pointers to the heap and not to the heap). As mentioned before,
pointers to memory addresses are not allowed in the C0 language and we use
natural numbers to model them.

Definition 4.61 (No pointers in GC interface). Formally we define the
described property in the following way.

∀g ∈ reachableg(mc). rootg(g) = gvargm(x) ∧

ptrgvar(sc(mc), g) −→ ∀i. fst(gstgc(gst(mc))!i) 6= x

gc assumegm(mc)

GC Consistency. Now we have all we need to define GC consistency relation

Definition 4.62 (GC consistency). Let c and d be C0 and VAMP assembly
configurations respectively. Let alloc be the current allocation function and
alive the current alive function of the program. Further, let f be a from-space
indicator, xs be an abstract heap, and stack be an abstract stack respectively.
We define GC consistency formally in the following way.

gc consisheap(te, c, alloc, f) gc consish(te, ft, c, alloc, alive, d)

gc consisalive(c, alloc, alive) gc consisa(te, ft, c, alloc, alive, f, xs, stack, d)

gc consisv(c, te, ft, f, d) gc assumeptrs(c.mem) gc assumegm(c.mem)

consisgc(te, ft, c, alloc, alive, f, d, xs, stack)

4.5 Low-Level Correctness

The low-level correctness deals with the code generation algorithm of the com-
piler. It guarantees, that execution of the compiled code on the VAMP assembly
machine starting from some configuration d will eventually result in a configura-
tion d′ with a number of fixed properties. In the high-level correctness proof we
use the low-level correctness lemma in order to show that the simulation relation
holds for configuration d′ and c′, where c′ is the resulting C0 configuration after
execution of the C0 transition function for the compiled statement.
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Code generation algorithms for most statements in the compiler with and
without garbage collector are identical. The only difference are statements
PAlloc and SCall. For the dynamic memory allocation in place of a simple
memory allocation code (present in the compiler without GC [12]) we now have
a function call to the garbage collector routine. Note, that depending on imple-
mentation we also might need to add assembly code which sets the new value
for the rhtop register here. For the statement SCall the code generation algo-
rithm is extended with the code which fills the new frame header fields with
correct data. In this paper we focus only on the correctness of the memory
allocation statement. The proof of other statements, as well as changing of the
code generation algorithm for a function call, remains as future work.

In this section we formulate low level correctness for the memory allocation
statement. In order to do that we manually transform Theorem 3.1 from the
Hoare logic to the assembly level. The correspondence between Theorem 3.1 and
the resulting low-level correctness lemma is rather straightforward. However,
the formal proof of this correspondence is not possible inside small step or Hoare
logic semantics. It requires the use of a meta-theorem and remains as future
work. Note also, that we do not explicitly define the code generation algorithm
for the memory allocation statement, but we rather specify the result of the
execution of the generated code on the VAMP assembly machine.

In this section by stackst we understand the allocated address of the stack
computed in the C0 configuration c, by sp - the value of the stack pointer in
the initial VAMP configuration d.

stackst = abaselm(te, ft, gst(c.mem)) sp = d.gpr!rhtop

The g-variables gvarf (sc(c.mem), te) and gvarnhi(sc(c.mem), te) are de-
noted by gf and gnhi respectively. Displacements of these g-variables in the
GC part of the global memory are denoted by df and dnhi. Let sc and gst
be the program symbol configuration sc(c.mem) and the global symbol table
gst(c.mem) respectively.

df =
abaseg(sc, gf ) − (abasegm(te, ft, gst) + asizest(gstp(gst), 0))

4

dnhi =
abaseg(sc, gnhi) − (abasegm(te, ft, gst) + asizest(gstp(gst), 0))

4

The set infσ is instantiated in the following way.

infσ = {TT, PP, stackst, sp, abaseheap}

Remember, that by TT and PP we understand the values of type and pointer
tables in the configuration c and by nhic the value of the next heap index variable
in the GC interface.

4.5.1 Unsuccessful GC

We start from the case, when even after garbage collection is performed there
is not enough heap space for allocation of a new variable. In Lemma 3.1 this
case is covered with the predicate

gc failure(infσ, mσ, m′
σ, nhic, nhi′, f, f ′, stack, xs, xs′, F, res).
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Figure 4.3: Integration of GC specification into small step semantics: unsuc-
cessful garbage collection.

Let alloc be the program allocation function before execution of the PAlloc
statement. By alloc′ we denote the modified allocation function as described in
Sec. 4.3.3.

alloc′ = allocgc(sc(c.mem), alloc, displgc(xs, xs′, alloc, F ))

We denote three states of the VAMP assembly machine: d - state before
execution of PAlloc statement, d′ - state after garbage collection is performed
and values of the GC global variables changed, and d′′ - state after a null value
is assigned to a pointer. Integration of the Hoare logic specification into small
step semantics for the case of unsuccessful GC is shown in Fig. 4.3.

We require the following properties to hold for the configurations d′ and d′′:

• execution of the memory allocation routine starting from configuration d
eventually finishes after t cycles in the configuration d′′;

• the value of the program counter dpc in d′′ is equal to the value of dpc in
d increased by the size of the generated code sizecode

gc (the size of the code
generated by the compiler for the memory allocation statement)

• the predicate gc failure holds for memories in configurations d and d′;

• the new values of the next heap index and the from-space indicator are
correctly stored in the GC part of the global memory of the machine d′;

• the code memory region remains unchanged in d′;

• a new value of the top of the heap is assigned to the rhtop register of the
machine d′;

• registers rsbase, rlframe, and the interrupt register rjal are unchanged in
configuration d′. Note, that we assume that execution of garbage collection
routines does not produce any interrupts;
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• all special general purpose registers are unchanged between d′ and d′′;

• memory of the configuration d′′ equals memory of d′, where the result
pointer is updated with the null value. Note, that the result pointer might
be located on the heap and, thus, be moved to another location;

• special purpose registers are unchanged between d and d′′.

Definition 4.63 (Result of unsuccessful GC). The predicate failuregc

denotes the result of the execution of the compiled code on the VAMP assembly
machine for the memory allocation statement in the case of unsuccessful garbage
collection. Let mσ be the set of initial memories {GM d,LM d,HM d} and m′

σ

be the set of memories after garbage collection is performed. Input parameters
for the predicate are: C0 configuration c, assembly configuration d, allocation
function alloc, from-space indicator f , abstract heap xs and abstract stack
stack, pointer g-variable gptr (where the address of the allocated variable has to
be stored), and the set of initial memories. Output parameters are: assembly
configurations d′ and d′′, new from-space indicator f ′, new abstract heap xs′,
and permutation function F . The function b2n :: B → N converts a boolean
value to a natural value (either 1 or 0). We define the GC result in the following
way.

∃t. d
t,d′′.dpc

−−−−−−−−−→
rangec,rangea

d′′ d′′.dpc = d.dpc + 4 · sizegc
code

gc failure(infσ, mσ, m′
σ, nhic, nhi′, f, f ′, stack, xs, xs′, F, res)

GCM d′

= GCM d[df := b2n(f ′), dnhi := nhi′]

codem(d, sc, te, ft) = codem(d′, sc, te, ft)

i2n(d′.gpr!rhtop) = abaseheap + 4 · nhi′

∀r ∈ [rsbase, rlframe, rjal]. d′.gpr!r = d.gpr!r

∀r ∈ [rsbase, rlframe, rjal, rhtop]. d′′.gpr!r = d′.gpr!r d′′.spr = d.spr

d.mm′′ = d.mm′
[

fst(alloc′(gptr))

4
:= int2cell(n2i(res))

]

failuregc(c, d, d′, d′′, alloc, f, f ′, xs, xs′, stack, gptr, F )

4.5.2 Successful GC

The case of successful garbage collection in Lemma 3.1 is covered with the
predicate

gc ok(infσ, mσ, m′
σ, m′′

σ, nhic, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, F, asz, ti, res)

In this case we denote 4 states of the VAMP assembly machine: d - state
before execution of PAlloc statement, d′ - state after garbage collection is per-
formed and values of the GC global variables changed, d′′ - state after the newly
allocated variable on the heap is filled with zeroes, and d′′′ - state after a value
is assigned to a pointer. Integration of the Hoare logic specification into small
step semantics for the case of successful GC is shown on Fig. 4.4.

We require the following properties to hold for configurations d′, d′′, and d′′′:
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Figure 4.4: Integration of GC specification into small step semantics: successful
garbage collection.

• execution of the memory allocation routine starting from configuration d
eventually finishes after t cycles in the configuration d′′′;

• the value of the program counter dpc in d′′′ is equal to the value of dpc in
d increased by the size of the generated code;

• the predicate gc ok holds for memories in configurations d, d′ and d′′;

• the new values of the next heap index and the from-space indicator are
correctly stored in the GC part of the global memory of the machine d′′;

• code memory region remains unchanged in d′′;

• a new value of the top of the heap is assigned to the rhtop register of the
machine d′′;

• registers rsbase, rlframe, and the interrupt register rjal are unchanged in
configuration d′′;

• all special general purpose registers are unchanged between d′′ and d′′′;

• memory of the configuration d′′′ equals memory of d′′, where the result
pointer is updated with the new value. Note, that the result pointer might
be located on the heap and, thus, be moved to another location;

• special purpose registers are unchanged between d and d′′′.

Definition 4.64 (Result of successful GC). The predicate successgc denotes
the result of the execution of the compiled code on the VAMP assembly machine
for the memory allocation statement in case of successful garbage collection.
Let mσ be the set of initial memories {GM d,LM d,HM d}, m′

σ be the set of

memories after garbage collection is performed, i.e. {GM d′

,LM d′

,HM d′

}, and

79



m′′
σ be the set of memories after the new heap variable is initialized with zeroes.

Input parameters for the predicate are the same as in Def. 4.63 plus the size of
the variable we want to allocate (asz) and index of the type in the type name
environment (tid). Output parameters are: assembly configurations d′, d′′, and
d′′′, new from-space indicator f ′, new abstract heaps xs′ and xs′′ (heap after
garbage collection and initializing new variable, respectively), and permutation
function F .

∃t. d
t,d′′′.dpc

−−−−−−−−−→
rangec,rangea

d′′′ d′′′.dpc = d.dpc + 4 · sizegc
code

gc ok(infσ, mσ, m′
σ, m′′

σ, nhic, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, F, asz, ti, res)

GCM d′′

= GCM d′

= GCM d[df := b2n(f ′), dnhi := nhi′]

codem(d, sc, te, ft) = codem(d′′, sc, te, ft)

i2n(d′′.gpr!rhtop) = abaseheap + 4 · nhi′′

∀r ∈ [rsbase, rlframe, rjal]. d′′.gpr!r = d.gpr!r

∀r ∈ [rsbase, rlframe, rjal, rhtop]. d′′′.gpr!r = d′′.gpr!r d′′′.spr = d.spr

d.mm′′′ = d.mm′′
[

fst(alloc′(gptr))

4
:= int2cell(n2i(res))

]

successgc(c, d, d′, d′′, d′′′, alloc, f, f ′, xs, xs′, xs′′, stack, tid, asz, gptr, F )

4.5.3 Allocation Without GC

In the case when there is enough heap space for allocation of a new variable
in the currently used half of the heap, garbage collection is not performed. In
Lemma 3.1 this case is covered with the predicate

allocpost(infσ, mσ, m′
σ, f, nhic, nhi′, xs, asz, res, tid).

The result of this case is very similar to the original memory allocation
statement in the compiler without garbage collector. The only difference is that
we have to update the next heap index variable in the GC interface with the
new value. Analogously to the previous cases we distinguish three states: d -
state before execution of PAlloc statement, d′ - state after we update the value
of the next heap index variable and fill the newly allocated variable with zeroes,
d′′ - state after a value is assigned to a pointer.

Definition 4.65 (Result of allocation without GC). Predicate allocno gc

denotes the result of the execution of the compiled code on the VAMP assem-
bly machine for the memory allocation statement in case of allocation without
garbage collection. We require that allocpost predicate holds, that the next heap
index variable is correctly updated with the new value, the result pointer is up-
dated with the address of the new variable, and the heap top register is updated
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with the new heap top value.

∃t. d
t,d′′.dpc

−−−−−−−−−→
rangec,rangea

d′′ d′′.dpc = d.dpc + 4 · sizegc
code

allocpost(infσ, mσ, m′
σ, f, nhic, nhi′, xs, asz, res, tid)

GCM d′

= GCM d[dnhi := nhi′]

d.mm′′ = d.mm′
[

fst(alloc′(gptr))

4
:= int2cell(n2i(res))

]

i2n(d′′.gpr!rhtop) = abaseheap + 4 · nhi′

∀r ∈ [rsbase, rlframe, rjal]. d′′.gpr!r = d.gpr!r d′′.spr = d.spr

allocno gc(c, d, d′, d′′, alloc, f, xs, stack, tid, asz, gptr)

4.5.4 Precondition

Precondition to Lemma 3.1 is expressed with the predicate

newpre(infσ, mσ, nhic, f, asz, tid, xs, stack)

from Def. 3.33. In the next lemma we derive the above predicate from the
simulation relation.

Lemma 4.21 (Allocation precondition ). Let t be the type of the heap
variable we want to allocate, tid be the index of this type in the type name
environment. Further, let t be a valid type and the size of the type be in
a range of 32-bit numbers, the maximal address on the heap be also in the
range of 32-bit numbers. By mσ we denote the set of memories of the assembly
machine d. Then the following lemma holds.

c ∈ conf√(te, ft) ∧ consis(c, alloc, d, alive, f, xs, stack)

∧ snd(tenv!tid) = t ∧ validty(te, t)

∧ (asizety(t) + 4 · AUXsize) ∈ N32 ∧ (abaseheap + asizemax
heap) ∈ N32

=⇒ newpre(infσ, mσ, nhic, f,
asizety(t)

4
, tid, xs, stack)

Proof. First we use Lemma 4.19 to conclude correctgci(TT, PP ). In order to
show that predicate Roots holds for local and global roots we need to show
that every heap pointer in the roots array points to some node in the abstract
heap. To do so we first find a respective pointer g-variable g in the local or
global memory of the C0 program. Then we use pointer consistency to show
that g points to another g-variable x. Finally we use abstractions consistency
(Def. 4.49) to show that g points to the node with the index gvarhid(xs, alloc, x)
(Def. 4.35). For the heap pointers in the memory HM d we proceed in analogues
way and derive the predicate heap Roots(HM d, xs).

All the other conjuncts in newpre predicate follow from the preconditions to
the lemma and from the GC interface consistency (Def. 4.2.4).

4.5.5 Correctness Lemmas

Now we formulate the low-level correctness lemmas. We formulate three lemmas,
one for each of the possible cases.
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Lemma 4.22 (Low-level correctness: successful GC). Let s be the first
statement in the program rest of the configuration c (and be a memory allocation
statement) and tn be the name of the type t in the type name environment te.
The function leval(te, mc, e) calculates the g-variable corresponding to the left
expression of the C0 statement (in our case it is a result pointer). Note, that we
calculate the result pointer after we perform an update of the GC variables in the
C0 memory. Further, let codegc be the code, generated by the compiler for the
memory allocation statement, asz be the allocated size of the type t in words,
and c′ be C0 memory configuration after GC variables are updated with new val-
ues. Successful garbage collection occurs iff the predicate no gc needed(mc, t, f)
from Def. 4.29 does not hold and the predicate availheap(te, mc, t) from the Def.
4.26 holds. We formulate the first low level correctness lemma in the following
way.

asmpre(d, rangec, codegc) ∧ newpre(infσ, mσ, nhic, f, asz, tid, xs, stack)

∧ s = PAlloc(e, tn) ∧ ⌊c′⌋ = δgc(c, t) ∧ gptr = leval(te, c′.mem, e)

∧ ¬no gc needed(c.mem, t, f) ∧ availheap(te, c.mem, t)

=⇒ ∃d′, d′′, d′′′, f ′, xs′, xs′′, F.

successgc(c, d, d′, d′′, d′′′, alloc, f, f ′, xs, xs′, xs′′, stack, tid, asz, gptr, F )

Lemma 4.23 (Low-level correctness: unsuccessful GC). Let us assume
the same parameters as in Lemma 4.22. Unsuccessful GC occurs iff both pred-
icates no gc needed(mc, t, f) and availheap(te, mc, t) do not hold.

asmpre(d, rangec, codegc) ∧ newpre(infσ, mσ, nhic, f, asz, tid, xs, stack)

∧ s = PAlloc(e, tn) ∧ ⌊c′⌋ = δgc(c, t) ∧ gptr = leval(te, c′.mem, e)

∧ ¬no gc needed(c.mem, t, f) ∧ ¬availheap(te, c.mem, t)

=⇒ ∃d′, d′′, f ′, xs′, F. failuregc(c, d, d′, d′′, alloc, f, f ′, xs, xs′, stack, gptr, F )

Lemma 4.24 (Low-level correctness: no GC). Let us assume the same
parameters as in Lemma 4.22. No garbage collection is done in the case when
there is enough heap memory for a variable allocation in the free part of the
currently used half of the heap. In this case the predicate no gc needed(mc, t, f)
holds.

asmpre(d, rangec, codegc) ∧ newpre(infσ, mσ, nhic, f, asz, tid, xs, stack)

∧ s = PAlloc(e, tn) ∧ ⌊c′⌋ = δgc(c, t) ∧ gptr = leval(te, c′.mem, e)

∧ no gc needed(c.mem, t, f)

=⇒ ∃d′, d′′. allocno gc(c, d, d′, d′′, alloc, f, xs, stack, tid, asz, gptr)

In the frame of the thesis we do not prove the above three lemmas. However,
in the next section we present some ideas about how the formal proof of the low
level correctness can be obtained.

4.5.6 Low-Level Correctness Proof

In the thesis we do not present a formal proof of the low-level compiler cor-
rectness for memory allocation statement. The statements of the low-level
correctness lemmas are obtained by manual transformation of the Hoare logic

82



correctness directly to the assembly level. However, in order for the compiler
correctness to be complete, a formal proof of the low-level correctness would be
required. The task is non trivial. Below we present some ideas about the way
how low-level correctness can be formally shown.

Generally speaking, our goal is to show that execution of the assembly code
compiled for the PAlloc statement starting from assembly configuration d will
result in some assembly configuration d′ (d′′, d′′′), which satisfies the conditions
stated in Def. 4.63, Def. 4.64, and Def. 4.65. Normally, one would provide
the exact code generated for the statement and would show that execution of
this code results in d′ with the desired properties. That’s how the low level
correctness of the assembly code for all other C0 statements is shown [12]. In
our case, however, we want to use the results of the GC correctness on the Hoare
logic level (Sec. 3). Thus, the approach from [12] is not directly applicable here.

A different solution of the problem is to show compiler correctness for C0
programs without PAlloc statement. Then we could replace all PAlloc state-
ments in the C0 program with a function call to the GC routine (the GC routine
itself does not contain any PAlloc statements), compile this code, and obtain the
corresponding configuration d′. The major problem here is that the GC routine
operates with arrays of natural numbers (LM , HM , GM), which are considered
to be regular C0 variables by the routine, but practically are aliases for portions
of VAMP assembly memory, which are also accessible via normal C0 variables.
Thus, we cannot use the regular compiler correctness theorem to argue about
properties of these variables. We need a special compiler correctness theorem,
which takes care of those aliased arrays.

Basically, we would proceed in the following way (Fig. 4.5):

1. use a meta theorem to bring results of the GC routine execution (Theorem
3.1) from the Hoare logic to the small-step semantics level [1,18]. Aliased
arrays remain regular C0 variables here;

2. show correctness of the compiler for C0 programs without memory alloca-
tion statement. We do not access or use aliased variables in the program
outside the GC routine, so we can use a regular compiler correctness the-
orem [12];

3. in the C0 source code program, which has to be compiled, replace all
occurrences of the statement PAlloc with a function call to the GC routine
together with some inline assembly code (which updates the value of the
register rhtop). Use results from (1) to get C0 configuration c∗ with a
number of properties obtained from the Hoare logic GC specification (Fig.
4.5).

4. define a special compiler simulation relation which takes care of aliased
variables. Show compiler correctness with the new simulation relation
for the program without memory allocation statement. Note, that all
global variables used by GC routines are allocated in the GCM part of
the assembly memory and cannot be accessed through aliased arrays. The
only memory region which can be accessed through both C0 variables
and aliased array is the local memory frame corresponding to one of the
procedures included in the GC routine. However, this local frame (or
several local frames) is located on the top of the memory stack and is
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Figure 4.5: Computations of the C0 and assembly programs without and with
the presence of GC.

not actually modified by the GC routine. Thus, aliasing is done in a
”friendly” way, i.e. in one part of the program (the normal C0) *only*
the ”normal” C0 variables are used and in the other (the garbage collector
implementation) *only* the arrays are used.

5. use the special compiler correctness theorem from (4) to show that exe-
cution of compiled code from (3) results in desired configuration d′ (with
the help of the new simulation theorem we can transfer required properties
from C0 configuration c∗ to assembly configuration d′) (Fig. 4.5).

Step (4) of the suggested algorithm is the most time consuming, because
special compiler correctness has to be shown for every C0 statement (except
PAlloc). The low-level correctness proof remains as a possible future work.

4.6 High-Level Correctness

The high-level correctness deals with the program simulation relation. Our goal
is to show that the low-level behavior of the assembly code achieves consistency.

We start from the formulation of the high-level correctness theorem for the
memory allocation statement and then proceed with its proof. The major effort
is to show that data and GC consistencies hold after execution of the PAlloc
statement.
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Lemma 4.25 (Data and GC consistency). Let s be the first statement in
the program rest of the configuration c, tn be the name of the type t in the type
name environment te, sizegc

code be the size of the assembly code generated for
the statement PAlloc. Further, let c′ be C0 memory configuration after PAlloc
is executed. The function availmem checks whether the maximal possible heap
address fits into the program address space bounded by the address addrmax.
The set xltblprog denotes the set of translatable C0 programs (i.e. programs
where all expressions can be evaluated and there are enough free registers for
statements’ execution). The function #rettop(s2l(c.prog)) calculates the num-
ber of return statements in the program rest c.prog. We state that execution
of the compiled code for the statement PAlloc on the assembly machine will
eventually result in a configuration d′, which is GC and data consistent with
the new C0 configuration c′.

c ∈ conf√(te, ft) ∧ consis(c, alloc, d, alive, f, xs, stack)

∧ s = PAlloc(e, tn) ∧ (te, ft, gst(c.mem)) ∈ xltblprog ∧ ⌊c′⌋ = δC0(c, t)

∧ abaseheap + asizemax
heap < addrmax ≤ 232 ∧ availmem(addrmax, te, ft, c)

∧ #rettop(s2l(c.prog)) + 1 = |c.mem.lm| ∧ asmpre(d, rangec, codegc)

∧ (asizety(t) + 4 · AUXsize) ∈ N32

∧ snd(tenv!tid) = t ∧ validty(te, t)

=⇒ ∃t, d′, alloc′, alive′, xs′, f ′. d
t,d′.dpc

−−−−−−−−−→
rangec,rangea

d′

∧ consisd(te, ft, c′, alloc′, d′, alive′, f ′)

∧ consisra(te, ft, c′, d′)

∧ consisgc(te, ft, c′, alloc′, alive′, f ′, d′, xs′, stack)

∧ d.spr′ = d.spr ∧ d′′.dpc = d.dpc + 4 · sizegc
code

Proof. The proof is divided into three cases: successful GC, unsuccessful GC
and no GC. Here we give the proof of the most complicated case - successful
garbage collection. Condition for the case is

¬no gc needed(c.mem, t, f) ∧ availheap(te, c.mem, t).

In order to prove the goal, we model the execution of the memory allocation
statement and construct assembly configurations d′, d′′, and d′′′ as in Sec. 4.5.2.
For this purpose we use Lemma 4.22 which gives us predicates

successgc(c, d, d′, d′′, d′′′, alloc, f, f ′, xs, xs′, xs′′, stack, tid, asz, gptr, F )

gc ok(infσ, mσ, m′
σ, m′′

σ, nhic, nhi′, nhi′′, f, f ′, stack, xs, xs′, xs′′, F, asz, ti, res)

We distinguish four C0 configurations: c - configuration before execution
of PAlloc statement, c′ - configuration after GC variables are updated, c′′ -
configuration after the heap is extended with the new variable, and c′′′ - the
final configuration (where the pointer value is assigned to the result pointer).
To establish the connection between C0 and assembly configurations on different
stages of the memory allocation we distinguish allocation functions alloc′ and
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Figure 4.6: Proof strategy for the memory allocation statement.

alloc′′ and alive functions alive′ and alive′′.

alloc′ = allocgc(sc(c.mem), alloc, displgc(xs, xs′, alloc, F ))

alloc′′ = allocxs(sc(c.mem), allocgc, |hst(c.mem)|, abaseheap + 4 · nhi′)

alive′ = alivegc(c.mem)

alive′′ = alivexs(c.mem, alivegc, |hst(c.mem)|)

We prove different parts of the simulation relation in different stages of
memory allocation. The proof process is shown on Fig. 4.6

In the frame of the thesis it is impossible to present the full formal correctness
proof for the memory allocation statement (it required more than 580 lemmas
with about 40.000 proof steps in Isabelle). Here we briefly describe all stages of
the proof process and later in this section focus on the most interesting aspects.

1. Initial stage. Consistency relation holds, next statement in the program
rest of the configuration c is the memory allocation statement.

2. Garbage collection on the assembly machine has been performed, values
of the global GC variables are changed on the assembly level, but remain
unchanged on the C0 level. Abstract heap xs′ represents the heap after
garbage collection has been performed. Most parts of the simulation re-
lation (Def. 4.4) hold for c and d′ in the context of alloc′, alive′, f ′, and
xs′. Value consistency (Def. 4.43) holds for all variables except the ones
located in the GC part of the global memory. The proof of the value
consistency is shown in Sec. 4.6.3. Pointer consistency (Def. 4.44) holds
for all g-variables, since GC interface does not contain any pointers to
variables. The proof of pointer and (heap) data consistencies at this stage
is not trivial, since we have to build a bridge between g-variables in the
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C0 configuration c and new values of pointers in the assembly memory d′,
which is specified by the gc ok predicate (Def. 3.36). Another non-trivial
proof is required for the heap allocation consistency (Def. 4.41) and ex-
tended heap consistency (Def. 4.54). The new allocation function alloc′

uses permutation relation F to define the new order of the nodes on the
heap. To prove heap allocation consistency, we first have to argue about
reachable nodes and show that if g is a reachable g-variable, then the in-
dex gvarhid(xs, alloc, g) belongs to a set RN(HM , roots, xs) (proof in Sec.
4.6.1). Then we have to show that isomorphism holds on the indices of
g-variables in the heaps xs and xs′, i.e.

F (gvarhid(xs, alloc, g)) = gvarhid(xs′, alloc′, g).

After that we can use gc ok to find the new location of the g-variable on
the heap and prove the properties of the allocation function alloc′. How-
ever, the proof of reachability and isomorphism itself requires some prop-
erties stated in heap allocation and extended heap allocation consistencies.
Thus, we have to introduce weaker versions of these predicates and prove
them first. We also introduce a stronger version of the reachablenameless

g

predicate to make the induction proofs simpler. Proof of the isomorphism
is done together with the pointer consistency in one lemma and is shown
in Sec. 4.6.2. The proof of the heap allocation consistency is given in Sec.
4.6.4.

Register consistency (Def. 4.45) does not hold at this stage since we specify
the new value of the rhtop register only in the configuration d′′. However,
in order to be able to show register consistency on later stages, we have
to formulate the part of the relation concerning reachable nameless g-
variables and prove it on this stage (in place of the register rhtop we use
index nhi′ ). Analogously, GC interface consistency does not fully hold
since it also uses the value of rhtop.

3. At this stage we update values of GC variables at the C0 level (values at
the assembly level were updated on the previous stage). All parts of the
simulation relation which hold at the stage 2 are shown for the new C0
configuration c′. Now we can also show value consistency for all variables.
At this stage we also prove a property, that the set of reachable g-variables
remains unchanged, i.e.

reachableg(c.mem) = reachableg(c
′.mem).

We still do not set the new value of rhtop register and cannot show register
consistency and GC interface consistency.

4. We initialize the allocated memory with zero values. The heap at the C0
level is not yet extended and the set of reachable variables remains un-
changed. Because the heap is not extended, allocation and alive functions
are also not changed. However, the abstract heap xs′′ (which represents

the heap assembly memory HM d′′

) is already extended with the new heap
variable, i.e. xs′′ = xs′ ◦ [nhi′]. Thus, abstract heap consistency does
not hold at this stage. The rhtop register is updated with the new value
(abaseheap + 4 · nhi′) and we can now show register and GC interface
consistency.
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5. We extend the heap memory of the C0 machine c′ with the new vari-
able. All the simulation relations except pointer and value consistency
are derived from the previous stage. Since we update allocation and alive
functions with alive′′ and alloc′′, abstractions consistency also holds at
this stage. Pointer and value consistencies are proved in a similar man-
ner as in [12], i.e. they are shown only for old C0 variables (for which
rootg(g) 6= gvarhm(|hst(c′′.mem)| − 1)).

6. At this stage we update the value of the result pointer at the C0 and as-
sembly levels. The proof of GC consistency is divided into two parts: first
we show that it holds after assembly memory update (it is true since we do
not change any data in the frame or node headers during pointer update),
then we extend it for the C0 pointer update (during C0 pointer update
we do not change any variables in GC interface, thus GC consistency still
holds).

For the data consistency we proceed in the following way. At first we
show that pointer and value consistencies hold for the newly allocated g-
variable. Then we show that for all g-variables – except the result pointer
– assembly and C0 memories are unchanged. Thus, value and pointer
consistency still hold for all g-variables except the result pointer. The
memory cell for the pointer is filled with the allocated address of the new
heap variable, thus data and pointer consistencies also hold for the result
pointer. The new heap g-variable is allocated below the value stored in
the d′′′.gpr(rhtop) register (which is equal to nhi′′) and register consistency
holds. Frame header consistency holds, because we do not change data
in the headers of the frames. Finally, allocation consistency cannot be
affected by the C0 or assembly variable update and, obviously, holds.

Theorem 4.1 (High-level correctness). Assume the same preconditions as
in Lemma 4.25. The function csizes(te, ft, gst, f) calculates the size of the gen-
erated assembly code for the first statement in the program rest. We state that
execution of the compiled code for the statement PAlloc on the assembly ma-
chine will eventually result in a configuration d′, which is completely consistent
with the next C0 configuration c′.

c ∈ conf√(te, ft) ∧ consis(c, alloc, d, alive, f, xs, stack)

∧ s = PAlloc(e, tn) ∧ (te, ft, gst(c.mem)) ∈ xltblprog ∧ ⌊c′⌋ = δC0(c, t)

∧ abaseheap + asizemax
heap < addrmax ≤ 232 ∧ availmem(addrmax, te, ft, c)

∧ #rettop(s2l(c.prog)) + 1 = |c.mem.lm| ∧ asmpre(d, rangec, codegc)

∧ (asizety(t) + 4 · AUXsize) ∈ N32

∧ snd(tenv!tid) = t ∧ validty(te, t)

∧ the(csizes(te, ft, gst(c.mem), f)) = sizegc
code

=⇒ ∃t, d′, alloc′, alive′, xs′, f ′. d
t,d′.dpc

−−−−−−−−−→
rangec,rangea

d′

∧ consis(te, ft, c, alloc, d, alive, f, xs, stack)

∧ d.spr′ = d.spr
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Proof. To conclude the goal we use Lemma 4.25 and the proof of control con-
sistency from [12] (Theorem 10.5) extended for the new simulation relation.
2

4.6.1 Reachable nodes

The set of reachable heap g-variables at the C0 level is denoted with the set
reachablenameless

g (c.mem). On the Hoare logic level the set of reachable heap

nodes is denoted by RN(HM d, roots, xs), where roots is the set of pointers
located in global and local memories of the C0 program, constructed with the
help of type and pointer tables from the GC interface. In order to show that
some heap g-variable g, which is reachable before garbage collection, is reachable
after it too, we need to establish the connection between g and the corresponding
node in the set RN . We establish this connection with the help of the function
gvarhid(xs, alloc, g) (Def. 4.35).

In order to be able to use the following lemma in the proof of the allocation
consistency, we introduce a weaker predicate for the heap allocation consistency.

consisnamed
alloc (te, ft, c, alloc) consiswheap

alloc (te, ft, c, alloc)

consisweak
alloc (te, ft, c, alloc)

The definition of the predicate consiswheap
alloc (te, ft, c, alloc) is the same as the

original heap allocation consistency definition (Def. 4.41) with the last condition
(overlapping g-variables) removed. Without the last conjunct, we can show heap
allocation consistency without arguing about position of the node on the heap
after GC. Thus, we can use these properties to show isomorphism for g-variables,
which then will be used to show the last conjunct in consisheap

alloc. In a similar
way we introduce a weaker version of the extended allocation consistency (Def.
4.54).

gc consisweak
aheap(te, c, alloc, f)

Lemma 4.26 (Reachable g-variable in RN). Let g be a reachable heap
g-variable. Further, let roots denote the set of pointers in the global and local
memories of the program, i.e.

roots = rootsgm(TT, PP,GM d) ◦ rootslm(TT, PP,LM d, stack)

Then the index of the corresponding heap node obtained with gvarhid(xs, alloc, g)
is present in the set of reachable nodes.

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst(c.mem), TT, PP )

∧ consisweak
alloc (te, ft, c, alloc) ∧ consisp(c, alloc, d)

∧ gc consisweak
aheap(te, c, alloc, f) ∧ gc consisa(te, ft, c, stack)

∧ gc consisfh(te, ft, c, alloc, alive, d) ∧ gc alivereach(c, alive)

∧ gc assumegm(c.mem) ∧ g ∈ reachablenameless
g (c.mem)

=⇒ gvarhid(xs, alloc, g) ∈ RN(TT, PP,HM d, roots, xs)

2
Lemma: control consistency no return gc
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Proof. We prove the lemma by induction according to the definition of reachable
nameless g-variables (Def. 2.5).

Case (Base case). In this case g is reachable directly from some pointer g-
variable x located in the global or local memory. We find the displacement
i of g-variable x in its memory frame Md and show that the value of this
pointer belongs to the program roots: Md!i ∈ roots. Then we show that Md!i
points to the heap and that it points exactly to the heap node with index
gvarhid(xs, alloc, g). Then by Def. 3.24 we conclude the goal.

Case (Induction step). In this case g is reachable via some heap g-variable x.
Here two situations are possible. In the first case, g is a sub-variable of x. Then
gvarhid(xs, alloc, g) = gvarhid(xs, alloc, x) and by the induction hypothesis we
conclude the proof. In the other case x is a reachable nameless g-variable and
by the induction hypothesis we get

gvarhid(xs, alloc, x) ∈ RN(TT, PP,HM d, roots, xs).

From the inductive case in Def. 3.24 we need to show that the predicate

edgenode(HM d, xs, gvarhid(xs, alloc, x), gvarhid(xs, alloc, g))

holds. For this purpose we find displacement i of the g-variable x in the as-
sembly memory corresponding to the node rootg(x) obtained by the predicate
hmgm(d, rootg(x), alloc). Then we show that hmgm(d, rootg(x), alloc)!i points
to a heap node with index gvarhid(xs, alloc, g) and belongs to extracted set of
node pointers ncntptrs(HM d, gvarhid(xs, alloc, x), xs). This concludes the proof
according to Def. 3.23.

Now we formulate the other direction of Lemma 4.26. First we prove an
auxiliary lemma, which constructs a pointer g-variable from some value in the
roots set. Here we provide such lemma only for the case of a pointer located in
the global memory (other cases are also considered in Isabelle/HOL proofs).

Lemma 4.27 (Pointer g-variable existence). If some value a belongs to the
set of global roots, then there exists a corresponding pointer g-variable g with
displacement k in the global memory GM d of the assembler configuration d.

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst(c.mem), TT, PP )

∧ consisalloc(te, ft, c, alloc) ∧ gc assumegm(c.mem)

∧ gc alivealloc(sc(c.mem), alloc, alive) ∧ rootsgm(TT, PP,GM d)!i = a

=⇒ ∃g k. ptrgvar(sc(c.mem), g) ∧ g ∈ gvars√(sc(c.mem)) ∧

memg(g) = gm ∧ GM d!k = a ∧

fst(alloc(g)) = abasegm(te, ft, gst(c.mem)) + 4 · k

Proof. To prove this lemma we first show, that for every displacement inside the
global memory frame there exists a valid elementary g-variable (this follows from
the g-variable construction and from the way, how we define the base address of
global g-variables). Then, by the construction of rootsgm(TT, PP,GM d) (Def.
3.19) we know that for every root there exists some offset k in the ptrsoff (TT, PP, 0)
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array. From gci√ we can easily derive that k is less than the allocated size of the
global memory frame. Thus, we can construct an elementary global g-variable
g with the displacement k. From Def. 3.19 and Def. 3.18 we conclude that
GM d!k = a. We use Lemma 4.18 to show that g is a pointer g-variable and
conclude the proof.

Lemma 4.28 (G-variable in RN is reachable). Let d and c be the VAMP
assembly and the C0 configurations respectively, xs be the current abstract heap
and stack be the abstract program stack. Let roots denote the set of pointers
in the global and local memories of the program as in Lemma 4.26. If the index
gvarhid(xs, alloc, g) of some alive valid nameless g-variable g is present in the
set of reachable nodes, then g is a reachable g-variable.

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst(c.mem), TT, PP )

∧ consisweak
alloc (te, ft, c, alloc) ∧ consisp(c, alloc, d)

∧ gc consisweak
aheap(te, c, alloc, f) ∧ gc consisfh(te, ft, c, alloc, alive, d)

∧ gc consisa(te, ft, c, alloc, alive, f, xs, stack, d)

∧ gc assumegm(c.mem) ∧ gc consisalive(c, alloc, alive)

∧ gvarhid(xs, alloc, g) ∈ RN(TT, PP,HM d, roots, xs)

∧ g ∈ gvars√(sc(c.mem)) ∧ alive(g)

=⇒ g ∈ reachablenameless
g (c.mem)

Proof. We prove the lemma by induction according to Def. 3.24.

Case (Induction base). In this case there exists some address a ∈ roots, that
points to the heap node gvarhid(xs, alloc, g). Depending on the position in the
array roots, a either belongs to a set of global or local roots. Let us consider
the case a ∈ rootsgm(TT, PP,GM d) (the second case is proven analogously).
By Lemma 4.27 we obtain a respective pointer g-variable x with displacement
k and value a. By definition of a pointer g-variable we find some g′, such that
x = Ptr(g′). Since a is a heap address, g′ is a nameless g-variable. Moreover,
both g and g′ are top-level (root) g-variables, since pointers to the heap may
point only to root g-variables (gc assumegm). It remains to show that g = g′,
i.e. x points exactly to the g-variable g. To prove this we first show that g′ is a
reachable and alive g-variable. Since x points to g′ and the value of x is equal
to a, a is equal to the allocation address of g′. At the same time a points to the
heap node gvarhid(xs, alloc, g). We get

a = fst(alloc(g′))

= abaseheap + (xs!(gvarhid(xs, alloc, g′)) − AUXsize) · 4

= abaseheap + (xs!(gvarhid(xs, alloc, g)) − AUXsize) · 4

From HalfHeap (Def. 4.48 and Def.
refdef:HalfHeap) we know that xs is distinct, thus gvarhid(xs, alloc, g′) = gvarhid(xs, alloc, g).
But according to gc consisaheap (Def. 4.48) for every element in the abstract
heap xs there exists exactly one top-level heap g-variable. Thus, g = g′ and we
conclude the proof.

Case (Induction step).
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Figure 4.7: G-variable, node and an abstract heap: before and after garbage
collection.

In this case there exists another node j which is reachable and which contains
a pointer to the node gvarhid(xs, alloc, g). For a node j we find a corresponding
top-level heap g-variable x, s.t. j = gvarhid(xs, alloc, x). By the induction
hypothesis x is reachable. Moreover, we know that the array

ncntptrs(HM d, gvarhid(xs, alloc, x), xs)

contains a pointer to the node gvarhid(xs, alloc, g). We need to show that there
exists a corresponding nameless pointer g-variable x′ with rootg(x′) = x and
x′ = Ptr(g). We proceed with the proof in the same way as in the induction
base case and conclude the goal.

4.6.2 Isomorphism and pointer consistency

The following lemma plays a crucial role in the proof of the simulation relation
after the garbage collection is performed. Basically, it establishes the connection
between a ”node” concept, used in the GC specification on the Hoare logic
level and the ”g-variable” concept used on the C0 level. When we prove some
property for a heap g-variable g after garbage collection is performed, we have
to find a respective node in the abstract heap xs, then find the new position of
this node in the abstract heap xs′, derive the property for the node from the
Hoare logic specification and then transform it to the property of a C0 variable
(Fig. 4.7). Lemma 4.29 establishes a connection between positions of the node
corresponding to the g-variable g in abstract heaps xs and xs′. Using this
connection we can derive all the properties we need after the garbage collection
is performed (from the Hoare logic specification (Sec. 3.2.6)).

The proof of the lemma is done by induction on the number of steps required
to get a heap g-variable g starting from some named pointer g-variable. Note,
that according to definition of reachablenameless

g if some g-variables is reachable
in i steps, then it is also reachable in i + k, k ∈ N steps, since the relation
g ∈ subg(g) always holds. To remove this ambiguity we introduce a stronger
predicate

reachablesteps
g (mem, i, x, g),
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which returns true iff a heap g-variable g is reachable exactly in i steps without
self-looping (i.e. g ∈ subg(g) cannot produce an additional edge in the reacha-
bility path), and the last variable in the path before g is x. This means that
x is a pointer g-variable (local or global) and points to g. Note, that g might
also be reachable in i + k or i− k steps, but this will require two different paths
containing (some) different variables in it.

Lemma 4.29 (Isomorphism and pointer consistency). Let d and d′ be
VAMP assembly machine states before and after garbage collection, respectively.
Further, let alloc′ be an allocation function after GC. Let the simulation relation
hold in the initial state and partially hold in the state after GC. Then for every
reachable g-variable g the isomorphism permutation relation F being applied to
the initial index of g in the abstract heap xs returns the new index of g in xs′.
Moreover, the g-variable x which points to g is pointer consistent.

c ∈ conf√(te, ft) ∧ consisweak
alloc (te, ft, c, alloc)

∧ consisgc(te, ft, c, alloc, alive, f, d, xs, stack) ∧ consisp(c, alloc, d)

∧ consisalloc(te, ft, c, alloc′) ∧ gc consisweak
aheap(te, c, alloc′, f ′)

∧ gc consisa(te, ft, c, alloc′, alive′, f ′, xs′, stack, d′)

∧ gc consisfh(te, ft, c, alloc′, alive′, d′) ∧ gc alivereach(c, alive′)

∧ gc alivealloc(sc(c.mem), alloc′, alive′)

∧ gc performed(infσ, mσ, m′
σ, nhic, nhi′, f, f ′, stack, xs, xs′, F )

∧ reachablesteps
g (c.mem, i, x, g)

=⇒ consisg
p(c.mem, alloc′, d′, x) ∧

F (gvarhid(xs, alloc, g)) = gvarhid(xs′, alloc′, g)

Proof. Let roots denote the set of pointers in the global and local memories
of the program as in Lemma 4.26 and roots′ denote the same set after the
garbage collection. We prove the lemma by induction on the number of steps
in a reachability path.

Case (j = 0). In this case g is reachable directly from pointer g-variable x
located in global or local memory. We find the displacement i of g-variable x
in its memory frame Md and show that the value of this pointer belongs to
the program roots: Md!i ∈ roots. We use the predicate isomorphroots from
Isomorph (Def. 3.29) to show that x points after garbage collection to the same
heap node as it pointed before. After some computations this concludes the
second conjunct of the goal. From the definition of alloc′ and using properties
from gc performed we derive

fst(alloc′(g)) = abaseheap + (xs′!F (gvarhid(xs, alloc, g)) + AUXsize) · 4

= abaseheap + (xs′!gvarhid(xs′, alloc′, g) + AUXsize) · 4

= Md′

!i = i2n(cell2int(d′.mm(
fst(alloc(g))

4
)))

From this follows that x contains the correct allocation address of g and is
pointer consistent. The third step of the derivation is not trivial and requires
some additional steps, involving finding the element in roots and roots′ arrays,
which corresponds to pointer x, and different properties from Isomorph and
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Roots predicates. We do not give the detailed derivation here, since it would
require a number of additional definitions and several auxiliary lemmas.

Case (j → j + 1). In this case g is reachable via heap g-variable x. Here
two situations are possible. In the first case g is a sub-variable of x. Then
gvarhid(xs, alloc, g) = gvarhid(xs, alloc, x) and by the induction hypothesis we
conclude the proof. In the other case x is a reachable nameless g-variable and
by the induction hypothesis we get

F (gvarhid(xs, alloc, x)) = gvarhid(xs′, alloc′, x)

We find displacement i of the pointer g-variable x in the assembly memory corre-
sponding to the node rootg(x) obtained by the predicate hmgm(d, rootg(x), alloc).
Analogously to the base case, we find displacement i of the g-variable x in the
heap memory corresponding to the node of x and use parts of the gc performed
predicate to derive

hmgm(d′, rootg(x), alloc′)!i = abaseheap+(xs′!gvarhid(xs′, alloc′, g)+AUXsize)·4,

and, thus, to conclude pointer consistency of x. We use pointer consistency of
x and Isomorph predicate to show the second conjunct of the goal.

4.6.3 Value consistency

In order to show value consistency for the named program variables we simply
show that the assembly values of these variables have not changed after garbage
collection. The following lemma establishes value equivalence for global non-
pointer g-variables.

Lemma 4.30 (Values unchanged: global variables). Assume the same
parameters as in Lemma 4.29. After garbage collection assembly values for
elementary global non-pointer g-variables remain unchanged.

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst(c.mem), TT, PP )

∧ consis(te, ft, c, alloc, d, alive, f, xs, stack)

∧ gc performed(infσ, mσ, m′
σ, nhic, nhi′, f, f ′, stack, xs, xs′, F )

∧ g ∈ gvars√(sc(c.mem)) ∧ memg(g) = gm

∧ elemg(sc(c.mem), g) ∧ ¬ptrgvar(sc(c.mem), g)

=⇒ d′.mm(fst(alloc′(g))) = d.mm(fst(alloc(g)))

Proof. The allocation function for named variables after GC remains the same,
i.e. alloc′(g) = alloc(g). From gc performed we derive the equality of non-
pointer global memory regions.

gmcntnoptrs(GM d) = gmcntnoptrs(GM d′

) (4.1)

We find the displacement i of g in the global memory GM .

GM d!i = d.mm(fst(alloc(g))) and GM d′

!i = d.mm(fst(alloc(g′)))(4.2)
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From definition of gmcntnoptrs and (4.1) we get

i < TT0.asz ∧ i /∈ ptrsoff (TT, PP, 0) −→ GM d!i = GM d′

!i. (4.3)

The first conjunct in the precondition of (4.3) follows from gci√. To conclude
the second conjunct we use Lemma 4.17 and gci√.

To show value consistency for nameless variables we formulate an analogues
lemma. The proof of the lemma, however, is more complicated and requires the
node isomorphism property from Lemma 4.29.

Lemma 4.31 (Values unchanged: nameless variables). Let d and d′ be
VAMP assembly machine states before and after garbage collection respectively,
and alloc′ be an allocation function after GC. Let the simulation relation hold in
the initial state and partially hold in the state after GC. After garbage collection
assembly values for elementary heap non-pointer g-variable remain unchanged
(with respect to a new allocation function).

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst(c.mem), TT, PP )

∧ consis(te, ft, c, alloc, d, alive, f, xs, stack)

∧ gc performed(infσ, mσ, m′
σ, nhic, nhi′, f, f ′, stack, xs, xs′, F )

∧ consisalloc(te, ft, c, alloc′) ∧ gc consisweak
aheap(te, c, alloc′, f ′)

∧ gc consisa(te, ft, c, alloc′, alive′, f ′, xs′, stack, d′)

∧ gc consish(te, ft, c, alloc′, alive′, d′) ∧ gc consisalive(c, alloc′, alive′)

∧ g ∈ gvarsnameless√ (sc(c.mem)) ∧ elemg(sc(c.mem), g) ∧ ¬ptrgvar(sc(c.mem), g)

=⇒ d′.mm(fst(alloc′(g))) = d.mm(fst(alloc(g)))

Proof. The pointer g-variable g is located in the node gvarhid(xs, alloc, g). Us-
ing Lemma 4.29 and gc performed we derive the equality of non-pointer parts
of the heap node before and after garbage collection.

ncntnoptrs(HM d, gvarhid(xs, alloc, g), xs)

= ncntnoptrs(HM d′

, F (gvarhid(xs, alloc, g)), xs′) From gc performed

= ncntnoptrs(HM d′

, gvarhid(xs′, alloc′, g), xs′) Lemma 4.29

Let k be the displacement of the pointer g in the node gvarhid(xs, alloc, g)
and nid be the index of the node in the TT table, i.e. nid = readnid(d, g, alloc).
We calculate the displacement i of g in the ncntnoptrs array of the node in the
following way.

i = |map(λx. x /∈ ptrsoff (TT, PP, nid), (0 : k − 1))|

Using gc performed we can derive that nid doesn’t change its value after
garbage collection and the position of the pointer in the node also remains
unchanged. We proceed with the following derivation.
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d.mm(fst(alloc(g)))

= hmgm(d, rootg(g), alloc)!k Def. hmgm

= ncntnoptrs(HM d, gvarhid(xs, alloc, g), xs)!i Def. hmgm, ncntnoptrs

= ncntnoptrs(HM d′

, gvarhid(xs′, alloc′, g), xs′)!i

= hmgm(d′, rootg(g), alloc′)!k Def. hmgm, ncntnoptrs

= d′.mm(fst(alloc′(g))) Def. hmgm

This concludes the goal.

4.6.4 Allocation consistency

The proof of the named allocation consistency is rather trivial and we do not
show it here. The proof of heap allocation consistency is done in Lemma 4.32.

Lemma 4.32 (Heap allocation consistency). Let d and d′ be VAMP assem-
bly machine states before and after garbage collection, respectively. Further, let
alloc′ be an allocation function after GC. Let the simulation relation hold in
the initial state and partially hold in the state after GC. The heap allocation
consistency holds for configuration c and new allocation function alloc′.

c ∈ conf√(te, ft) ∧ gci√(te, ft, gst(c.mem), TT, PP )

∧ consis(te, ft, c, alloc, d, alive, f, xs, stack)

∧ gc performed(infσ, mσ, m′
σ, nhic, nhi′, f, f ′, stack, xs, xs′, F )

∧ consisalloc(te, ft, c, alloc′) ∧ gc consisweak
aheap(te, c, alloc′, f ′)

∧ gc consisa(te, ft, c, alloc′, alive′, f ′, xs′, stack, d′)

∧ gc consish(te, ft, c, alloc′, alive′, d′) ∧ gc consisalive(c, alloc′, alive′)

=⇒ consisheap
alloc(te, ft, c, alloc′)

Proof. We proceed in the following proof steps.

• From the definition of the function alloc′ we show consiswheap
alloc (te, ft, c, alloc′).

This step is rather simple and we do not show it here. It remains to
show the last statement from heap allocation consistency, i.e. that heap
g-variables do not overlap.

• From the definition of the function alloc′ and from gc performed we show
that gc consisweak

aheap(te, c, alloc′, f ′) holds. Again, the step is simple and
we do not give details about it here.

• For reachable nameless g-variables x and g we have to show the following
property.

rootg(x) 6= rootg(h) −→ alloc′(g) ≍ alloc′(h)

We unfold the definition of alloc′ and get the following goal. By sc we
understand the symbol configuration of the memory c.mem.

(displgc(xs, xs′, alloc, F )(g) · 4 + displg(sc, g), asizet(tyg(sc, g)))

≍ (displgc(xs, xs′, alloc, F )(x) · 4 + displg(sc, x), asizet(tyg(sc, x))
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Since the allocation region of a g-variable is completely contained in the
allocated region of its root g-variable, we can claim a stronger goal. Let
g′ = rootg(g) and x′ = rootg(x). Then our goal is

(displgc(xs, xs′, alloc, F )(g′) · 4, asizet(tyg(sc, g
′)))

≍ (displgc(xs, xs′, alloc, F )(x′) · 4, asizet(tyg(sc, x
′)).

From the correctness of GC interface we know that the size of the type
is stored in the respective element of the TT table. The index of this
element is stored in the first word of the node header and is obtained by
readnid(d, g′, alloc) function. From the properties of the abstract stacks
xs and xs′ (Def. 4.47), definition of alloc′, and the fact that node headers
are not changed during garbage collection we derive the following.

asizet(tyg(sc, g
′)) = TTreadnid(d,g′,alloc).asz

= TTHMd!(xs!gvarhid(xs,alloc,g′)).asz

= TTHMd′

!(xs′!gvarhid(xs′,alloc′,g′)).asz

Unfolding displgc and applying Lemma 4.29 we get the following goal.

(xs′!gvarhid(xs′, alloc′, g′), TTHMd′

!(xs′!gvarhid(xs′,alloc′,g′)).asz)

≍ (xs′!gvarhid(xs′, alloc′, x′), TTHMd′

!(xs′!gvarhid(xs′,alloc′,x′)).asz)

Using definitions of HalfHeap (Def. 3.16) and displnode (Def. 3.15) we show
(by induction) that for all HM , f , nhi, xs the following property holds3.

HalfHeap(TT, HM, f, nhi, xs) ∧ i 6= j

=⇒ (xs!i, TTHM !(xs!i).asz) ≍ (xs!j, TTHM !(xs!j).asz)

We conclude the goal using HalfHeap(TT,HM d′

, f ′, nhi′, xs′) and the above
property .

3
Lemma HalfHeap range not overlap aux
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Chapter 5

Summary and Future Work

In this thesis we have presented the formal verification of a simple, non-optimizing
compiler from [12] with the integrated garbage collector; this includes the formal
specification of the garbage collector routines on the Hoare logic level done by
E.Petrova. The work was done in the context of pervasive system verification
in the frame of the Verisoft project [21]. The results of verification have been
formalized in the interactive theorem prover Isabelle/HOL (Table 5.1).

We used the garbage collector specification for a simple copying garbage
collector and formally defined the impact of the GC routine on the memory
of the assembly machine. We have also given the formal specification for the
interface of the garbage collector and modeled it on the small step-semantics
level.

As the next step we have updated the specification for the compiler and
have given an extended simulation relation, which includes program properties
needed for correct garbage collection. We have discovered a missing require-
ment for the C0 semantics in presence of the garbage collector, namely that
all g-variables are automatically initialized. We proved the correctness of the
compiling specification by the induction on the number of the steps in a C0
computation. In the induction step we performed a case distinction by the type
of the next C0 statement to be executed. In the thesis we considered the most
interesting and complicated case - memory allocation statement. We have in-
troduced several intermediate assembly and C0 configurations for the case and
have shown, that simulation relation partially holds for intermediate configu-
rations and fully holds for the final configurations. The proof of all other C0
statements, as well as the proof of the base case, does not differ much from the
proof of the original compiler without garbage collector. However, these proofs
remain as a future work.

Another interesting direction of future work is the formal transfer of the
correctness criteria from the Hoare logic to the assembly level (Sec. 4.5.6).

To the best of our knowledge, our work is the first compiler correctness
result for a compiler with an integrated garbage collector done in the context
of pervasive system verification.
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Table 5.1: Verification summary in Isabelle/HOL

Theory name # Lemmas # Commands

GC interface + properties 68 5292
Reachability + isomorphism 20 5107
Auxiliary properties 240 7994
Consistency 245 21336
Total ∼ 580 ∼ 40000
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Appendix A

Mapping to Lemmas in
Isabelle/HOL

This section gives a mapping from lemmas and theorems in this thesis to the
corresponding formal proofs in the Isabelle/HOL theories.

Name Page Name in Isabelle
Theorem 3.1 40 correct gc

Lemma 4.1 45 asize heap alive dvd 4

Lemma 4.2 51 length ptrs displ t Arr

Lemma 4.3 52 ptrs displ t less asize type

Lemma 4.4 52 ptrs displ stbl less asize symboltable

Lemma 4.5 52 ptrs displ t ordered

Lemma 4.6 52 ptrs displ stbl ordered

Lemma 4.7 53 nth ptrs displ t Arr

Lemma 4.8 53 displ t Arr nth index exists

Lemma 4.9 53 nth ptrs displ t Struct

Lemma 4.10 54 displ t Struct nth index exists

Lemma 4.11 54 ptrs displ t plus displ var in ptrs displ stbl

Lemma 4.12 55 gvar displ in ptrs displt
Lemma 4.13 55 gvar displ in ptrs displ t aux

Lemma 4.14 56 displ of pointer in set ptrs displ t aux

Lemma 4.15 57 ptrs displ t zero is Ptr

Lemma 4.16 57 elementary gvar in ptrs displ t is Ptr

Lemma 4.17 57 gvar displ in ptrs displ stbl

Lemma 4.18 58 gvar displ in ptrs displ stbl is Ptr

Lemma 4.19 60 gci correct interface

Lemma 4.20 73 asize heap reachable eq alive

Lemma 4.21 81 consistent impl PAlloc pre gc

Lemma 4.22 82 gc palloc code correct

Lemma 4.23 82 gc palloc code correct

Lemma 4.24 82 gc palloc code correct

Lemma 4.25 84 gc palloc correct aux not enough heap,
gc palloc correct aux enough heap gc needed,
gc palloc correct aux enough heap no gc needed
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Name Page Name in Isabelle
Theorem 4.1 88 gc palloc correct not enough heap ,

gc palloc correct enough heap gc needed,
gc palloc correct enough heap no gc needed

Lemma 4.26 89 reachable gvar in RN

Lemma 4.27 90 gm cnt ptrs pointer gvar exists

Lemma 4.28 91 gvar in RN reachable nameless gvars

Lemma 4.29 93 isomorph reachable heap nodes aux

Lemma 4.30 94 gc mm d not ptrs gm eq

Lemma 4.31 95 gc heap not ptrs eq

Lemma 4.32 96 gc update alloc heap heap consistent invariant
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Glossary

AUXsize size of the node header, 26
FHS size of the local frame header in words, 26
GCMd shortcut for gmgc

m(d, sc) function, 48
GMd shortcut for gmp

m(d, sc) function, 48
HH size of the heap memory, 26
HHS size of the half heap memory, 26
HMd shortcut for hmm(d) function, 48
Isomorph memories isomorphism (predicate), 35
LMd shortcut for lmm(d, sc) function, 48
MW size of the word in bytes, 26
PP pointer table (GC interface), 50
RN set of reachable nodes, 32
Roots states some properties for global and local roots,

33
Stack abstraction relation for the abstract stack of the

program, 29
TT type table (GC interface), 50
δC0 C0 transition function, 17
δgc GC C0 transition function, 63
GMS size of the global memory in words, 26
HalfHeap abstraction relation for the abstract heap, 30
LMS size of the local memory stack in words, 26
offpsp PSP field displacement in the frame header, 25
offTT TT link displacement in the frame header, 25
ptrsoff extracts displacements of pointers for some ele-

ment of TT table, 31
woff ge no pointers in frame header (predicate), 27
woff ord offsets are ordered (predicate), 27
abaseg allocated base address of a g-variable, 46
abasegm allocation base for global memory, 41
abaselm allocated address of the local frame, 46
algn calculates alignment of a type in the memory,

43
aliveT type for alive function, 44
alivegc computes alive function after GC, 64
aliveidx set of alive variables, 45
alivext computes alive function after new heap variable

allocation, 64
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allocgc computes allocation function after GC, 66
allocgc computes allocation function after new variable

allocation, 66
allocno gc result of allocation without GC (assembly), 80
allocpost result of allocation without garbage collection

(Hoare logic), 38
arrgvar checks whether g-variable is an array, 16
asizealive

heap allocated size of the (alive) heap, 45

asizereachable
heap size of the reachable part of the heap, 61

asizemem computes allocated size of the memory, 44
asizepos allocated size is positive (predicate), 27
asizet calculates the allocated size of a type in bytes,

44
availheap available heap, 61
codem extracts code assembly memory, 47
collectpre collect garbage precondition (Hoare logic), 38
consis consistency relation (predicate), 67
consisp pointer consistency (predicate), 70
consisr register consistency (predicate), 70
consisv value consistency (predicate), 69
consisalloc allocation consistency (predicate), 69

consisheap
alloc heap allocation consistency (predicate), 68

consisnamed
alloc named allocation consistency (predicate), 68

consisd data consistency (predicate), 70
consisfh frame header consistency (predicate), 70
consisgc GC consistency (predicate), 75
contenteq node content equality (predicate), 34
correctgci correct interface (predicate), 27
cptrsst calculates number of pointers in a structure, 51
cptrst calculates number of pointers in a type, 51
displg displacement of a g-variable, 45
displv calculates displacement of a component in struc-

ture, 44
displframe computes displacement of the memory frame in

the local memory stack, 29
displgc calculates displacement of a g-variable after GC,

65
displnode computes displacement of the node in the heap

memory, 30
edgenode tests whether there exists an edge between two

nodes, 32
elemg returns true iff a g-variable is of simple type, 16
extendheap extends C0 heap with new variable, 63
failuregc result of unsuccessful GC (assembly), 78
fheadersstable stable frame headers (predicate), 35
fidPSP obtains PSP stored in the frame header of the

memory frame, 29
fidTT obtains TT link stored in the frame header of

the memory frame, 29
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framePP
√ correct PP data for a frame (predicate), 59

frameTT
√ correct TT data for a frame (predicate), 58

frameg
√ correct PP and TT data for a global frame

(predicate), 59
frames

√ correct PP and TT data for a local frames
(predicate), 59

gc alivealloc properties of allocation function for alive g-
variables (predicate), 73

gc alivereach reachable g-variables are alive (predicate), 73
gc alivesub alive sub g-variables (predicate), 73
gc assumegm no pointers in GC interface assumption (predi-

cate), 75
gc assumeptrs heap pointers assumption (predicate), 74
gc consisaheap abstract heap consistency (predicate), 71
gc consisalive alive consistency (predicate), 74
gc consisastack abstract stack consistency (predicate), 71
gc consisa abstractions consistency (predicate), 71
gc consisfh frame headers consistency (predicate), 72
gc consisheap extended heap consistency (predicate), 73
gc consish headers consistency (predicate), 72
gc consisnh node headers consistency (predicate), 72
gc consisv GC interface consistency (predicate), 74
gc failure result of unsuccessful garbage collection (Hoare

logic), 38
gc ok result of successful garbage collection (Hoare

logic), 39
gc performed result of the GC execution (Hoare logic), 36
gci√ correct GC interface (predicate), 59
gmgc

m extracts GC part of the global assembly mem-
ory, 47

gmp
m extracts program part of the global assembly

memory, 47
gmcntnhptrs extracts pointers not to the heap from the global

memory, 34
gmcntnoptrs extracts non-pointer content from the global

memory, 34
gstgc returns GC part of the global memory symbol

table, 43
gstp returns the program part of the global memory

symbol table, 43
gvgm returns pointer to the global memory from the

global symbol table (g-variable), 49
gvarhid returns index of the respective node in the ab-

stract heap for a g-variable, 65
heap Roots states some properties for pointers located on

the heap, 33
hmm extracts heap assembly memory, 47
hmgm extracts memory for some heap g-variable from

the assembly memory, 47
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infrom tests whether heap index belongs to from-space,
28

intol tests whether heap index belongs to to-space in-
cluding border-index, 28

into tests whether heap index belongs to to-space, 28
infσ the set of variables, which are not changed dur-

ing garbage collection, 36
inframeptrs pointers inside frame (predicate), 27
is gmptr tests whether some g-variable from the global

symbol table is pointer to the global memory,
49

is gvarp function to determine pointer g-variable, 21
lengthPP computes length of the pointer table, 58
lmm extracts local memory part of the assembly

memory, 47
lmcntnhptrs extracts pointers not to the heap from the local

memory stack, 34
lmcntnoptrs extracts non-pointer content from the local

memory stack, 34
lmim extracts memory for some local memory frame

from the assembly memory, 47
mσ the set of memory components of the program,

36
mcellC0 type for a C0 memory cell, 14
mcellt type for memory cells inside Hoare logic seman-

tics, 28
memt type for memories inside Hoare logic semantics,

28
memconteq memories equality (predicate), 35
memupd updates the memory of C0 configuration, 17
namedg checks whether g-variable is named, 16
ncntnhptrs extracts pointers not to the heap from some

heap node, 33
ncntnoptrs extracts non-pointer content from some heap

node, 33
ncntptrs extracts content of node pointers, 32
newpost memory allocation postcondition (Hoare logic),

39
newpre memory allocation precondition (Hoare logic),

38
nhic notation for the value of the next heap index in

configuration c, 50
nhptrscnt extracts pointers not to the heap, 33
nidTT obtains TT link stored in the node header, 30
nidfwd obtains forward pointer stored in the node

header, 30
nodeaddr tests whether some address points to the start

of the node, 32
nodesnovlp node headers not overlap (predicate), 72
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noptrscnt extracts non-pointer content, 33
numf number of function in the C0 program, 26
p2h tests whether pointer points to the heap, 28
plinkinside link to pointer table is correct (predicate), 27
ptrgvar checks whether g-variable is a pointer, 16
ptrscnt extracts content of pointers for some element of

TT table, 32
ptrsstr extracts pointer displacements from a list of

structure components, 51
ptrsst extracts pointer displacements from a symbol

table, 51
ptrst extracts pointer displacements from a single

type, 50
rhtop heap top register, 43
rlframe register for the address of the current stack

frame, 43
rsbase register for the start allocated of the global

memory, 43
reachalive reachable g-variables alive (predicate), 61
reachidx set of reachable heap variables, 61
reachableg set of reachable g-variables, 21
reachablenameless

g set of reachable nameless g-variables, 21
reachableeq reachable nodes equality (predicate), 34
readfid extracts TT link from the header of the local

frame, 48
readfnum computes the position of the local frame in the

function table, 48
readnid extracts TT link from the header of some heap

node, 48
readtid computes the index of the node type in the type

environment, 48
rnodessize allocated size of the reachable nodes, 39
rootg computes the root of a g-variable, 13
rootsgm extracts content of global roots, 32
rootslmi extracts content of the roots fo a local memory

frame, 32
rootslm extracts content of local roots, 32
stidx displacement of the used half of the heap in

words, 28
stack abstract stack of the program, 29
startPP computes the start index of the TT element in

the pointer table, 58
strgvar checks whether g-variable is a structure, 16
subg computes the set of sub g-variables, 14
successgc result of successful GC (assembly), 79
tyg computes the type of a g-variable, 16
typePP

√ correct PP data for a type (predicate), 59
typeTT

√ correct TT data for a type (predicate), 59
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typete
√ correct TT and PP data for a type name envi-

ronment (predicate), 59
updf calculates the value of from-space indicator after

GC, 62
updnhi calculates the value of next heap index after GC,

62
updategci updates values of GC variables in the global

memory, 62
valgm returns pointer to the global memory from the

global symbol table (value), 50
validst set of valid symbol tables, 17
validtenv set of valid type name environments, 17
validty function to determine valid types, 17
valueg calculates the value of a g-variable, 16
xs abstract heap, 30
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