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Abstract. In these lecture notes we outline for the first time in a single place
a correctness proof for a distributed real time system from the gate level to the
computational model of a CASE tool.

1 Introduction and Overview

The mission of the German Verisoft project [The05a] is (i) to develop tools and meth-
ods permitting the pervasive formal verification of entire computer systems including
hardware, system software, communication systems and applications (ii) to demonstrate
these methods and tools with examples of industrial complexity. In the automotive sub-
project the following distributed real time system is considered. The hardware consists
of ECU’s connected by a FlexRay [Fle] like bus. The ECU’s comprise a VAMP pro-
cessor [BJK+03,DHP05] and a FlexRay like interface. System software is a C0 com-
piler [LPP05] and an OSEKtime [OSE01b] like operating system OLOS [Kna05] real-
ized as a dialect of the generic operating system kernel CVM [GHLP05]. Applications
are compiled C0 programs communicating via an FTCom [OSE01a] like data structure.
They are generated by a variant of the AutoFocus CASE tool; the computational model
underlying this tool is a variant of communication automata. A pervasive correctness
proof for this system was presented in the lectures of the second author at the sum-
mer school on ’Software System Reliability and Security’ 2006 in Marktoberdorf. This
survey paper contains the lecture notes.

In Section 2 we outline the specification of a DLX instruction set [HP96,MP00]
including the handling of interrupts.

Using the VAMP processor [BJK+03] as an example we explain in Section 3 how
the hardware design of complex processors with internal and external interrupts is veri-
fied. The resulting correctness proofs are based on the scheduling functions from [SH98,MP00].

Section 4 deals with a generic device theory. We show how to specify devices and
how these specifications can be integrated into the instruction set architecture of a pro-
cessor.

In Section 5 we extend our VAMP processor with memory management units (MMUs).
This gives hardware support for multi processing operating system kernels and for vir-
tual machine simulation [DHP05]1.
? Work partially funded by the German Federal Ministry of Education and Research (BMBF) in

the framework of the Verisoft project under grant 01 IS C38.
1 In real time systems one has of course to run virtual machine simulations in a restricted way

such that no page faults occur.
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In Section 6 we survey a formal correctness proof for a compiler from the C0 pro-
gramming language [LPP05,?,?] to the DLX instruction set. In a nutshell C0 is PAS-
CAL [HW73] with C syntax.

In Section 7 we extend the C0 language. We permit portions of in line assembler
code and call the resulting language C0A. Using the allocation function of the compiler
from Section 6 we can define the semantics of C0A programs in a natural way.

In Section 8 we describe the semantics of the generic operating system kernel CVM
(communicating virtual machines) [GHLP05]. The programmer sees a so called abstract
kernel and a set of user processes. The user processes are virtual DLX machines. The
abstract kernel is a C0 program; it can make use of certain so called CVM primitives
which allow to transport data between the kernel and the user processes. The semantics
of these primitives can be specified in the parallel user model.

The implementation of a CVM kernel requires to link some extra code to the abstract
kernel as described in Section 9. This results in a so called concrete kernel. The concrete
kernel contains necessarily in line assembler code, because machine registers and user
processes are simply not visible in C0 variables alone. The correctness proof hinges
on the virtual machine simulation from Section 3, the compiler correctness proof form
Section 4 and on the in line assembler semantics from Section 5.

Next we would like to instantiate the abstract CVM kernel with a concrete OSEK-
time like operating system kernel called OLOS [Kna05]. User processes running under
OLOS will be C0 programs communicating via FTCom like message buffers with the
local operating system and with processes running on remote processors. While the ma-
chinery available at the end of Section 9 permits effortlessly to define the application
programmers model, for a pervasive correctness proof of the entire distributed system
we lack an important ingredient: a correctness proof for a FlexRay like communication
system between processors. Providing that ingredient takes us TODO more sections:

Because the ECUs are running with local oscillators of almost but not exactly equal
clock frequency, one cannot guarantee that set up and hold times of registers are re-
spected when one transmits data between ECUs. In such situations one uses serial inter-
faces; in Section 11 we review a correctness proof for a serial interface from [BBG+05].

In Section 12 we construct I/O devices called f-interfaces, consisting among other
things of message buffers, serial interfaces, and local timers. An ECU will consist of
a processor together with such an interface. In time triggered protocols like FlexRay,
communication between ECUs is in fixed time slots, in the simplest case via a single
bus. In each time slot one ECU is allowed to broadcast one of its message buffers and the
other ECU’s must remain quiet. This only works, if local timers on the ECUs are kept
roughly synchronized. The implementation and correctness proof of a non fault tolerant
clock synchronization algorithm - built on top of the serial interfaces of Section 11
- is therefore part of Section 12. Extension of this section to the fault tolerant case
is future work and has two parts: (i) clock synchronization in the fault tolerant case;
this is an extremely well studied problem [Sch87,Rus94] (ii) a startup algorithm for
the fault tolerant case. In view of results reported in [SK06], this might require some
modifications in the start up algorithm from the FlexRay standard.

In Section 13 we use techniques from [HIP05] to integrate the f-interfaces with the
ISA (instruction set architecture) model of the processor. Due to the (external) timer
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interrupts we run into a problem which is both surprising and not so easy to overcome:
timer interrupts occur in fixed time intervals. It is trivial to determine on the hardware
level, in which cycle such an interrupt occurs. We have to define on the ISA level the
corresponding instruction which gets interrupted. This can inherently not be done on
the ISA level alone: the execution time of an instruction depends on cache hits and
cache misses, but the memory hierarchy is invisible on the ISA level. On the pure ISA
level we end up with a nondeterministic model of computation. The nondeterminism is
formalized by oracle inputs indicating for each instruction, whether it is interrupted by
a timer interrupt or not.

In Section 13 we revisit processor correctness proofs, this time with an f-interface as
I/O device. The oracle inputs are determined as a byproduct of the processor correctness
proof. This is intuitively plausible: if one is allowed to look inside the hardware at the
register transfer language (RTL) level, then the occurrence of timer interrupts becomes
deterministic. Technically we achieve this with the help of the scheduling functions
introduced in Section 3.

In Section 14 we show how to combine classical program correctness proofs (on the
ISA level), worst case execution time (WCET) analysis on the RTL level and hardware
correctness proofs into pervasive correctness proofs for real time system from the gate
level to the ISA level. The results of Sections 11 to 14 are from [KP06].

In Section ?? we define the distributed OLOS model (D-OLOS) from [Kna05]: a
multi processing real time operating system OLOS is running on every ECU of the
distributed system. User processes are compiled C0 programs. Using operating sys-
tem calls they can communicate among each other by accessing an FTCom like data
structure on their local ECU. A pervasive correctness proof for the implementation of
D-OLOS outlined in section 16 hinges on the correctness of the CVM implementation
from Section 8, the compiler correctness from Section 6 and the results from Section 14.

Optional: In Section ?? we introduce the automat theorec computational model of a
CASE tool called AutoFocus Task Model (AFTM). Based on results from [?] we show
in section 18 we show how to simulate this model by D-OLOS.

2 Specifying an Instruction Set Architecture (ISA)

2.1 Notation

For bit strings a = a[n− 1 : 0] ∈ {0, 1}n we denote by

〈a〉 =
n∑

i=0

ai · 2i

the natural number with binary representation a. For numbers x ∈ {0, . . . , 2n − 1} the
binary representation of x of length n is the bit string binn(x) ∈ {0, 1}n satisfying:

〈binn(x)〉 = x

The n bit binary addition function +n : {0, 1}n × {0, 1}n → {0, 1}n is defineded by:

a +n b = binn(〈a〉+ 〈b〉 mod 2n)
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For bits x and natural numbers n we define xn as the string obtained by concatenating
x exactly n times with itself

xn = x ◦ . . . ◦ x

2.2 Configurations and Auxiliary Concepts

We outline how the DLX instruction set architecture (ISA) is formally specified. Pro-
cessor configurations d have the following components:

1. d.R ∈ {0, 1}32 stores the current value of register R. For this paper, the most
relevant registers are: the program counter pc, the delayed PC2 dpc, the general
purpose registers gpr[x] with x ∈ {0, 1}5 and the status register sr containing the
mask bits for the interrupts.

2. The byte addressable memory d.m : A → {0, 1}8 where the set of addresses
A ⊂ {0, 1}32 usually has the form A = {a | 〈a〉 ≤ d.b} for some maximal
available memory byte address d.b. The content of the memory at byte address a is
given by d.m(a).

The maximal available address d.b does not change during an ISA computation.
Therefore it is rather treated as a parameter of the model than as a component of a
configuration. We will later partition memory into pages of 4K bytes. We assume that
d.b is a multiple of some page size:

d.b = d.ptl · 4K

where d.ptl is a mnemonic for the last index of page tables introduced later. For ad-
dresses a, memories m, and natural numbers x we denote by mx(a) the concatenation
of the memory bytes from address a to address a + x− 1 in little endian order:

mx(a) = m(a + x− 1) ◦ . . . ◦m(a)

The instruction executed in configuration d, denoted by I(d), is the memory word
addressed by the delayed PC:

I(d) = d.m4(d.dpc)

The six high order bits of the instruction word constitute the opcode (opc):

opc(d) = I(d)[31 : 26]

Instruction decoding can easily be formalized by predicates on I(d). In some cases
it suffices to inspect the opcode only. The current instruction is for instance a ‘load
word’ (lw) instruction if the opcode equals 100011:

lw(d) ↔ opc(d) = 100011

DLX instructions come in three instruction types as shown in Figure 1. The type of
an instruction defines how the bits of the instruction outside the opcode are interpreted.
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opc RS1 RS2 RD SA function

opc pc offset

opc RS1 RD

0  6 11162126

I -type

R -type

J -type

imm

Fig. 1. Instruction Types

The occurrence of an R-type instructions, e.g. a add or a subtract instruction, is for
instance specified by

rtype(d) ↔ opc(d) = 000000

Definitions of I-type and J-type instructions are slightly more complex. Depending
on the instruction type, certain fields have different positions within the instruction. For
the register ‘destination’ operand (RD) we have for instance

RD(d) =

{
I(d)[20 : 16] itype(d)
I(d)[15 : 11] otherwise

The effective address (ea) of load / store operations is computed as the sum of
(i) the content of the register addressed by the RS1 field d.gpr(RS1(d)) and (ii) the
immediate field imm(d) = I(d)[15 : 0]. The addition is performed modulo 232 with
two’s complement arithmetic. Formally, we define the sign extension of the immediate
constant as:

sxt(imm(d)) = imm(d)[15]16 ◦ imm(d)

This turns the immediate constant into a 32-bit constant while preserving the value
as a two’s complement number. It is like adding leading zeros to a natural number. The
effective address is defined as:

ea(d) = d.gpr(RS1(d)) +32 sxt(imm(d))

This definition is possible since n bit two’s complement numbers and n bit binary
numbers have the same value modulo 2n. For details see e.g. Chapter 2 of [MP00].

2.3 Basic Instruction Set

With the above few preliminary definitions in place we specify the next configuration d′,
i.e. the configuration after execution of I(d). This obviously formalizes the instruction
set.

In the definition of d′ we split cases depending on the instruction to be executed. As
an example we specify the next configuration for a load word instruction.

2 The delayed PC is used to specify the delayed branch mechanism detailed in [MP00].
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The main effect of a load word instruction is that the general purpose register ad-
dressed by the RD field is updated with the memory word addressed by the effective
address ea:

d′.gpr(RD(d)) = d.m4(ea(d))

The PC is incremented by four in 32-bit binary arithmetic and the old PC is copied
into the delayed PC:

d′.pc = d.pc +32 bin32(4)
d′.dpc = d.pc

This part of the definition is identical for all instructions except control instructions.
Components which are not changed have to be specified, too:

d′.m = d.m
d′.gpr(x) = d.gpr(x) for x 6= RD(d)
d′.sr = d.sr

The main effect of store word instructions is that the general purpose register content
addressed by RD is copied into the memory word addressed by ea

d′.m4(ea(d)) = d.gpr(RD(d))

Completing this definition for all instructions results in the the definition of a DLX
next state function:

d′ = δD(d)

2.4 Dealing with Interrupts

Interrupts are triggered by interrupt event signals which might be internally generated
(like illegal instruction, misalignment, and overflow) or externally generated (like reset
and timer interrupt). Interrupts are numbered using indices j ∈ {0, . . . , 31}. We classify
the set of these indices in two ways:

1. maskable / not maskable. The set of indices of maskable interrupts is denoted by M
2. external / internal. The set of indices of external interrupts is called E.

We denote external event signals by eev[j] with j ∈ E and we denote internal event
signals by iev[j] with j /∈ E. We gather the external event signals into a vector eev and
the internal event signals into a vector iev.

Formally these signals must be treated in a very different way. Whether an inter-
nal event signal iev[j] is activated in configuration d is determined only by the con-
figuration. For instance if we use the j = 1 for the illegal instruction interrupt and
LI ⊂ {0, 1}32 is the set of bit patterns for which d′ is defined if I(d) ∈ LI , then

iev(d)[1] ↔ I(d) /∈ LI

Thus the vector of internal event signals is a function iev(d) of the current processor
configuration d. In contrast, external interrupts are external inputs for the next state
function. We therefore get a new next state function

d′ = δD(d, eev)
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The cause vector ca of all event signals is a function of the processor configuration d
and the external input eev:

ca(d, eev)[j] =

{
eev[j] j ∈ E

iev(d) otherwise

The masked cause vector mca is computed from ca with the help of the interrupt
mask stored in the status register: if interrupt j is maskable and sr[j] = 0, j is masked
out:

mca(d, eev)[j] =

{
ca(d, eev)[j] ∧ d.sr[j] j ∈ M

ca(d, eev) otherwise

If any one of the masked cause bits is on, the JISR (jump to interrupt service routine)
bit is turned on

JISR(d, eev) =
∨
j

mca(d, eev[j])

If this occurs, many things happen. We mention only a few: The PCs are forced
to point to the start addresses of the interrupt service routine. We assume it starts at
(binary) address 0:

d′.dpc = bin32(0)
d′.pc = bin32(4)

All maskable interrupts are masked and the masked cause register is saved into a
new exception cause register

d′.sr = 032

d′.eca = mca(d, eev)

Because many interrupt lines can become active simultaneously it is important to
know the smallest index of an active bit of mca. This index is called the interrupt
level and specifies the interrupts of highest priority which is also the one which will be
serviced immediately.

il(d, eev) = min{j : mca(d, eev)[j] = 1}

Auxiliary data for the intended interrupt handler is stored in an exception data regis-
ter edata. We only specify the new content for the case of trap instructions. In the DLX
instruction set the trap instruction has J-type format with opcode 111110 and an j. We
give the trap instruction interrupt event line 5:

iev(d)[5] ↔ opc(d) = 111110

If this event line is active and no line with hogher priority is active, then a trap
interrupt occurs

trap(d, eev) ↔ il(d, eev) = 5

In case of a trap interrupt, the sign extended (26 bit) immediate constant is saved in
the exception data register

trap(d, eev) → d′.edata = imm(d)[25]6imm(d)

For a complete definition see Chapter 5 of [MP00].
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3 Processor Correctness

3.1 Hardware Model

The processor hardware is specified in a hardware model. A hardware configurations h
consists of n bit registers h.R ∈ {0, 1}n and (a × d)-RAMs h.r : {0, 1}a → {0, 1}d.
Registers and RAMs are connected by Boolean circuits with the usual semantics from
switching theory. We denote the value of a signal s in configuration h by s(h). The hard-
ware transition function δh depends on a reset signal and other external inputs ein. It
maps a hardware configuration h to the hardware configuration h′ = δH(h, reset, ein)
after the next clock cycle. One defines for a register R with clock enable signal Rce and
input Rin

h′.R =

{
Rin(h) Rce(h) = 1
h.R otherwise

For a RAM r with address signal addr, data input din and write signal w one defines

h′.r(x) =

{
Din(h) x = addr(h) ∧ w(h)
h.r(x) otherwise

Hardware computations are defined in the usual way as sequences of configurations
h0, h1, . . .. A superscript t in this model is always read as ’during cycle t’. Hardware
computations must satisfy for all cycles t:

ht+1 = δ(ht, resett, eint)

Processor correctness theorems state, that hardware defined in this model simulates
in some sense an ISA next state function δD as defined in the previous sections.

3.2 Scheduling Functions

The processor correctness proofs considered here hinge on the concept of scheduling
functions s. The hardware of pipelined processors consists of many stages k, e.g. fetch
stage, issue stage, reservation stations, reorder buffer, write back stage, etc. (see Fig-
ure 4). Stages can be full or empty due to pipeline bubbles. The hardware keeps track
of this with the help of full bits fullk for each stage as defined in [MP00]. Recall that
fullk(ht) is the value of the full bit in cycle t. We will use the shorthand fulltk.

For hardware cycles t and stages k which are full during cycle t, i.e. such that fulltk
holds, the value s(k, t) of the scheduling function is the index i of the instruction which
is in stage k during cycle t. If the stage is not full, it is the index of the instruction which
was in stage k in the last cycle before t, when stage k was full. Initially s(k, 0) = 0 for
all stages k.

The formal definition of scheduling functions uses an extremely simple idea: imag-
ine that the hardware has registers which can hold integers of arbitrary size. Augment
each stage with such a register and store in it the index of the instruction currently
executed in that stage. These indices are computed exactly as the tags in a Tomasulo
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Fig. 2. Scheduling Functions

scheduler. The only difference is that they have unbounded size because we want to
count up to arbitrarily large indices. In real hardware this is not possible and not neces-
sary. In an abstract mathematical model there is no problem to do this.

Each stage k of the processors under consideration has an update enable signal uek.
Stage k gets new data in cycle t if the update enable signal uek was on in cycle t − 1.
We fetch instructions in order and hence define for the instruction fetch stage IF :

s(IF, t) =

{
s(IF, t− 1) + 1 uet−1

IF

s(IF, t− 1) otherwise

In general, a stage k can get data belonging to a new instruction from one or more
stages k′. Examples where more than one predecessor stage k′ exists for a stage k are:
(i) cycles in the data path of a floating point unit performing iterative division or (ii) the
producer registers feeding on the common data bus of a Tomasulo scheduler. In this
situation one must define for each stage k′ a predicate trans(k, k′, t) indicating that in
cycle t data are transmitted from stage k′ to stage k. In the example of Figure 2 we use
the select signal sel of the multiplexer and define

trans(k, k′, t) = uet
k ∧ selt

If trans(k, k′, t − 1) holds for some k′, then one sets s(k, t) = s(k′, t − 1) for
that k′. Otherwise s(k, t) = s(k, t− 1).

3.3 Naive Simulation Relations

For ECUs we first consider a ’naive’ simulation relation sim(d, h) between ISA con-
figurations d and hardware configurations h. We require that the user visible processor
registers R have identical values

h.R = d.R

For the addresses a in the processor we would like to make a similar definition,
but this does not work, because the user visible processor memory is simulated in the
hardware by a memory system consisting e.g. of an instruction cache icache, a data
cache dcache and a user main memory mainm. Thus there is a quite nontrivial function
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instruction
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Fig. 3. Memory System

m(h) : A → {0, 1}8 specifying the memory simulated by the memory system. One can
define this functions in the following way: imagine you apply in configuration h at the
memory interface (either at the icache or at the dcache) address a. Considering a hit
in the instruction cache, i.e. ihit(h.p, a) = 1, the icache would return icache(h.p, a).
Similarly, considering a hit in the data cache dhit(h.p, a) = 1 the dcache would return
dcache(h.p, a). Then one can define3:

m(h)(a) =


icache(h, a) ihit(h, a)
dcache(h, a) dhit(h, a)
h.mainm(a) otherwise

Using this definition we require in the simulation relation for all addresses a ∈ A:

m(h)(a) = d.m(a)

In a pipelined machine this simulation relation almost never holds, because in one
cycle different hardware stages k usually hold data from different ISA configurations;
after all this is the very idea of pipelining. There is however an important exception:
when the pipe is drained, i.e. all hardware stages except the instruction fetch stage are
empty.

drained(h) ↔ ∀k : k 6= IF → fulltk = 0

This happens to be the case after interrupts, in particular initially after reset.

3.4 Basic Hardware Correctness Theorem

To begin with we ignore the external interrupts event signals (which brings us formally
back to ISA computations defined by di+1 = δD(di)). Figure 4 shows in simplified
form the stages of a processor with out of order processing and a Tomasulo scheduler

Each user visible register d.R of the processor has a counter part h.R belonging to
some stage k = stage(R) of the hardware. If the processor would have only registers R
and no memory, one could show by induction over t for all cycles t and stages k:

If k = stage(R), then the value ht.R of the hardware register R in cycle t is the
value ds(k,t).R of the ISA register R for the instruction scheduled in stage k in cycle t.

ht.R = ds(k,t).R
3 In the processors under consideration the caches snoop on each other; data of address a is only

in at most one cache [Bey05,BJK+03]
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Fig. 4. Processor Pipeline

For the memory one has to consider the memory unit of the processor consisting
of two stages mem and mem1. Stage mem contains hardware for the computation of
the effective address. The memory m(ht) which is simulated by the memory hierarchy
of the hardware in cycle t, is identical with the ISA memory ds(mem1,t).m for the
instruction scheduled in stage mem1 in cycle t.

m(ht) = ds(mem1,t).m

We summarize this by stating a basic processor correctness theorem. It assumes that
initially the pipe is drained and that the simulation relation between the first hardware
configuration h0 and the first ISA configuration d0 holds.

Theorem 1 (Processor Correctness). Assume drained(h0) and sim(d0, h0) holds.
Then for all t, for all stages k and for all registers R with stage(R) = k:

ht.R = ds(k,t).R
m(ht) = ds(mem1,t).m

Such theorems are proven by induction over t. For complex processors this requires
hundreds of pages of paper and pencil proofs. For details see [MP00]. For a formal
correctness proof see e.g. [Bey05,BJK+03].

3.5 Dealing with External Interrupts

External interrupts complicate things only very slightly. The hardware now has external
inputs heev which we call the hardware interrupt event signals. Their value in hardware
cycle t is heevt. We have to construct from them a sequence eevi of external ISA
interrupt event signals such that the hardware simulates an ISA computation satisfying
di+1 = δD(di, eevi). In order to support precise interrupts (for details see [MP00],
Chapter 5) processor hardware usually samples interrupt event signals in the write back
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stage WB. Because the write back stage is the last stage in the pipeline it cannot be
stalled. Thus for every instruction i there is exactly one cycle t = WB(i) such that
s(WB, t) = i ∧ fulltWB . The external ISA event signal observed by instruction i is
therefore

eevi = heevWB(i)

Note that a hardware event signal heevt does not become visible to the ISA computa-
tion, if the write back stage in cycle t is empty. With this new definition of the ISA com-
putation the processor correctness theorem 1 still holds. More details regarding a formal
processor correctness proof dealing with external interrupts are given in [Bey05,Dal06].

4 Device Theory

4.1 Device Configurations

This section basically covers the device independent part of [HIP05]. In memory mapped
I/O processors communicate with devices by read and write accesses to certain ad-
dresses x called I/O ports. In our treatment these addresses will be above the addresses
in the processor memory: if b is the largest address in the processors memory, then
x > b. For a hardware designer integrating a device with a processor a device therefore
better should look in many respects like an ordinary RAM. However, a device has in
general more state than is visible in the I/O ports. Thus configurations of devices f with
N I/O ports have the following components

– a port RAM f.m. We assume that the device is word addressable and provides P
bytes of port RAM f.m : {0, 1}p → {0, 1}8 with p = dlog P e − 2.

– ’internal’ state f.Z

Hardware devices take inputs from and produce output to the processor side and
to the outside world. Inputs from the processor side are like inputs for the RAM and
consist of: data in din, address addr and write signal w. Outputs to the processor side
are data out dout (like in a RAM) and an external hardware interrupt event signal heev.
Inputs fdin from and outputs fdout to the outside world are device dependent: network
devices have inputs and outputs, monitors produce only outputs, keyboards take only
inputs, disks neither produce outputs nor consume inputs.

I/O ports can be roughly divided in three categories: (i) control ports are only written
from the processor side, (ii) status ports are only read by the processor side and (iii) data
ports can be written or read both from the processor side and from the device side. Thus
one must deal with the classical synchronization issues of shared memory. We postu-
late, that for each word address addr of the device there is a device specific hardware
predicate hquiet(f, addr) acting like a semaphore. It indicates that the 4 ports belong-
ing to that address are presently not being accessed from the device side and hence it
is safe to access them from the processor side like ordinary RAM. Making the device
configuration f a component h.f of the hardware configuration we define for reading
out the port RAM

fdout(h) = h.f.m(addr(h))
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At quiet addresses the port RAM behaves like a RAM accessible only by the pro-
cessor side.

∀x : hquiet(h.f, x) ⇒ h′.f.m(x) =

{
din(h) x = addr(h) ∧ fw(d)
h.f.m(x) otherwise

When a data port is not quiet, it can be read or modified by the device side in a device
specific way. The effect of writing a port which is not quiet from the processor side is
left undefined. The processor side usually learns about changes in the quiet predicate
either by an interrupt from the device either by (i) writing to a command register or
(ii) by an interrupt from the device or (iii) by polling a status register. Here we will not
consider polling4.

4.2 Integrating Devices

Integration of a device into a memory system is an exercise in hardware design. The
device is placed at some base address ba into the processors (byte addressable) memory
space. An address decoder decides on read or write accesses whether the device is
addressed by a load word or store word instruction (ea ∈ {ba, . . . , ba + P − 1}). If the
base address is a multiple of the page size 4K and if the device occupies exactly one
page of memory, then the address decoder simply performs the test

ba[31 : 12] =? ea[31 : 12]

If device f is accessed by a store word instruction, then write signal fw is activated.
If the device is accessed by a load word instruction, then the output enable signal of a
driver between dout and some bus in the processors memory system is enabled. More-
over the cache system must be designed in a way that it does not cache accesses to I/O
ports.

4.3 ISA Model with Devices

The assembler programmer then sees a system as shown in Figure 5. It is a distributed
system because the non quiet ports of the device can change in a device specific way
while the processor is working. Configurations have the form e = (e.d, e.f) where e.d
is an ISA processor configuration and e.f is the device state. Component e.f might
have the same form as the state from the hardware model or it might be more abstract.
In the assembler model the programmer should have some means to keep track of the
quiet status of ports. Thus, the hardware predicate hquiet(h.f, addr) needs a device
specific assembler level counter part quiet(e.f, addr).

As we have argued in the introduction, in an assembler level model for a processor
with a device the occurrence of external interrupts is inherently nondeterministic. We

4 A reader experienced in hardware design will observe that our devices are unusually fast: they
update a port in a single cycle of the processor hardware. Devices are usually slower and have a
busy signal indicating that a read or write access is in progress. Extending the above definitions
in this way poses no big difficulties.
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Fig. 5. Memory Mapped IO

model this nondeterminism here by an oracle input eev, which is used in the next state
computation for the processor component e′.d as explained in Section 3.5. In the case
of accesses to the I/O ports the next processor state will also depend on the device state,
thus we will define for an extension of the old next state function δD:

e′.d = δD(e.d, e.f, eev)

The extension concerns load word instructions whose effective address is an I/O
port and of course the occurrence of interrupts:

¬JISR(e.d, eev) ∧ lw(e.d) ∧ ea(e.d) = ba + 4 · addr ∧ quiet(e.f, addr) ⇒
e′.d.gpr(RD(e.d)) = d.f.m(addr)

Moreover we can specify in a device independent way, that quiet portions of the port
RAM behave like processor memory; they are only changed by store word instructions:

∀x : quiet(e.f, x) ∧ ¬JISR(e.d, eev) ⇒

e′.f.m(x) =

{
e.d.gpr(RD(e.d)) sw(e.d) ∧ ea(e.d) = ba + 4 · x
e.f.m(x) otherwise

The remaining portions of the definition of e′.f are device specific.

4.4 Hardware Correctness Theorem with Devices

In order to be able to use existing hardware correctness proofs for processors alone,
we split the hardware h into a processor component h.p and a device component h.f .
Using the machinery already in place the extensions to the hardware correctness proof
are remarkably easy as long as computations only access quiet I/O ports and the quiet
predicate is stable for all ports. If we place in the hardware the devices port RAM
parallel to the normal memory system, then we can use the same scheduling functions
which work for the memory. We get a new induction hypothesis of the form

ht.p.R = es(k,t).d.R
m(ht.p) = es(mem1,t).d.m
ht.f.m = es(mem1,t).f.m
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An external interrupt from the device will need device specific arguments. The hard-
ware correctness proof works with the oracle inputs eevi obtained from the hardware
event signal heev into an ISA event signal eevt by the translation from Section 3.5.

eevi = heevWB(i)

5 Memory Management

5.1 Address Translation, Physical Machines and Virtual Machines

Physical machines consist of a processor operating on physical memory and on swap
memory. Configurations d of physical machines have components d.R for processor
registers R, d.m for the physical memory, and d.sm for the swap memory. The physical
machine has several special purpose registers not present in virtual machines, e.g. the
mode register mode, the page table origin pto, and the page table length ptl.

In system mode, i.e. if d.mode = 0, the physical machine operates like the basic
processor model from Section 2 with extra registers. In user mode, i.e. if d.mode = 1,
the physical machine emulates the basic processor model from Section 2 using the page
table for address translation. The simulated machine is called a virtual machine, and
addresses generated by the virtual machines are called virtual addresses. We keep the
notation d for configurations of the physical machine and we denote configurations of
the virtual machine by vm. We split virtual addresses va into a page index va.px =
va[31 : 12] and into a byte index va.bx = va[11 : 0]. Thus pages size is 212 = 4K
bytes.

In user mode accesses to memory addresses va are subject to address translation:
they either cause a page fault or are redirected to the translated physical memory address
pma(d, va). The result of address translation depends on the contents of the page table,
a region of the physical memory starting at address d.pto · 4K with d.ptl + 1 entries of
four bytes width5.

Page table entries have a length of four bytes. The page table entry address for
virtual address va is defined as ptea(d, va) = d.pto · 4K +4 · va.px and the page table
entry of va is defined as pte(d, va) = d.m4(ptea(d, va)). For our purposes a page
table entry consists of two components as shown in Figure 6: the physical page index
ppx(d, va) = pte(d, va)[31 : 12] and the valid bit v(d, va) = pte(d, va)[11].

On user mode memory access to address va, a page fault signals if the page index
exceeds the page table length, va.px > d.ptl or if the page table entry is not valid,

5 The ’+1’ in this definition is awkward. It dates back to very old architectures. Because page
table length is usually is a power of two it saves a bit in the page table length register

ppx [19:0] v ...

0111231

Fig. 6. Page Table Entry
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v(d, va) = 0. On page fault the page fault handler, an interrupt service routine, is
invoked.

Without a page fault, the access is performed on the (translated) physical memory
address pma(d, va) defined as the concatenation of the physical page index and the
byte index,

pma(d, va) = ppx(d, va) ◦ va.bx

Notice that the complete definition of a physical machine model involves the spec-
ification of the effect of a page fault handler. In pervasive system verification there is a
model between the physical machine and the hardware: a processor with a disk, as an
I/O device. In this model one can show that swap memory is a proper abstracting by
proving the correctness of the page fault handler. For details see [HIP05]. The real time
systems under consideration here have no disks and are programmed such that page
faults do not occur; thus the omission of these details will not hurt us later.

5.2 Virtual Memory Simulation

A physical machine with appropriate page fault handlers can simulate virtual machines.
For a simple page fault handler, virtual memory is stored on the swap memory of the
physical machine and the physical memory acts as a write back cache. In addition to
the architecturally defined physical memory address pma(d, va), the page fault handler
maintains a swap memory address function sma(d, va). On page faults that do not
violate the page table length check, the handler selects a physical memory page to evict
and loads the missing page from the swap memory.

As in Section 2 we denote by b the maximal byte address accessible by the virtual
machine. We use a simulation relation B(vm, d) to indicate that a (user mode) phys-
ical machine configuration d encodes virtual machine configuration vm. Essentially,
B(vm, d) is the conjunction of the following two conditions:

1. For each of the b/(4K) pages of virtual memory there is a page table entry in the
physical machine, b/(4K) = d.ptl.
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2. The content of virtual memory byte va is stored in physical memory at address
pma(d, va) if the corresponding valid bit is on; otherwise it is stored in swap mem-
ory.

vm.m(va) =

{
d.m(pma(d, va)) v(d, va)
d.sm(sma(d, va)) otherwise

Thus the physical memory serves as a write back cache for the swap memory.

The simulation theorem for a single virtual machine has the following form:

Theorem 2. For all computations of the virtual machine (vm0, vm1, . . . ) there is a
computation of the physical machine (d0, d1, . . . ) and there are step numbers for the
physical machine (s(0), s(1), . . . ) such that for all i we have B(vmi, ds(i)).

Thus step i of the virtual machine is simulated after step s(i) of the physical ma-
chine. Even for simple handlers, the proof is not completely obvious since a single user
mode instruction can cause two page faults. To avoid deadlock and guarantee forward
progress, the page fault handler must not swap out the page that was swapped in during
the last execution of the page fault handler. For details see [Hil05].

5.3 Synchronization Conditions

If the hardware implementation of a physical machine is pipelined or if it executes
instructions out of order execution then an instruction I(di) that is in the memory stage
may modify a later instruction I(dj) for j > i after it has been fetched, constituting a
read after write (RAW) hazard. It may (i) overwrite the instruction itself, (ii) overwrite
its page table entry, or (iii) change the mode.

In such situations instruction fetch (in particular translated fetch implemented by
a memory management unit) would not work correctly. Of course it is possible to de-
tect such data dependencies in hardware and to roll back the computation if necessary.
Alternatively, the software to be run on the processor must adhere to certain software
synchronization conventions. Let iaddr(dj) denote the address of instruction I(dj),
possibly translated. If I(di) writes to address iaddr(dj), then an intermediate instruc-
tion I(dk) for i < k < j must drain the pipe. The same must hold if dj is in user mode
and I(di) writes to ptea(dj , dj .dpc). Finally, mode can only be changed to user mode
by an rfe (return from exception) instruction (and the hardware guarantees that rfe
instructions drain the pipe).

These conditions are hypotheses in the hardware correctness theorem in [DHP05].
It is be easy to show that they hold for the kernels constructed in Section 9.

6 Compilation

6.1 C0 Semantics

We summarize results from [LPP05]. Recall that C0 is roughly PASCAL with C syntax.
Eventually we want to consider several programs running under an operating system.
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The computations of these programs are interleaved. Therefore our compiler correct-
ness statement is based on a small steps / structured operational semantics [NN99,Win93].

In C0 types are elementary (bool , int , . . . ), pointer types, or aggregate (array or
struct). A type is called simple if it is an elementary type or a pointer type. We define
the (abstract) size of types for simple types t by size(t) = 1, for arrays by size(t[n]) =
n·size(t), and for structures by size(struct{n1 : t1, . . . , ns : ts}) =

∑
i size(ti). Values

of variables with simple type are called simple values. Variables of aggregate type have
aggregate values, which are represented as a flat sequence of simple values.

6.2 C0 Machine Configuration

A C0 machine configuration c has the following components:

1. The program rest c.pr, which is a sequence of C0 statements that still need to be
executed. In [NN99] the program rest is called code component of the configura-
tion.

2. The recursion depth c.rd.
3. The local memory stack c.lms. It maps numbers i ≤ c.rd to memory frames (de-

fined below). The global memory is c.lms(0). We denote the top local memory
frame of a configuration c by top(c) = c.lms(c.rd).

4. A heap memory c.hm. This is also a memory frame.

Parameters of the configuration which do not change during a computation are

– The type table c.tt containing information about types used in the program.
– The function table c.ft containing information about the functions of a program.

It maps function names f to pairs c.ft(f) = (c.ft(f).ty, c.ft(f).body) where
c.ft(f).ty specifies the types of the arguments, the local variables, and the result
of the function, whereas c.ft(f).body specifies the function body.

Memory frames. We use a relatively explicit, low level memory model in the style of
[Nor98]. Memory frames m have the following components:

1. the number m.n of variables in m (for local memory frames this also includes the
parameters of the corresponding function definition),

2. a function m.name mapping variable numbers i ∈ [0 : m.n − 1] to their names
(not used for variables on the heap),

3. a function m.ty mapping variable numbers to their type. This permits to define the
size of a memory frame msize(m) as the number of simple values stored in it,
namely: msize(m) =

∑m.n−1
i=0 size(m.ty(i)).

4. a content function m.ct mapping indices 0 ≤ i < msize(m) to simple values.

A variable v of configuration c is a pair v = (m, i) where m is a memory frame of
c and i < m.n is the number of the variable in the frame. The type of a variable (m, i)
is defined by ty((m, i)) = m.ty(i).

Subvariables S = (m, i)s are formed from variables (m, i) by appending a selector
s = (s1, . . . , st), where each component of a selector has the form si = [j] for selecting
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array element number j or the form si = .n for selecting the struct component with
name n. If the selector s is consistent with the type of (m, i), then S = (m, i)s is a
subvariable of (m, i). Selectors are allowed to be empty.

In C0, pointers p may point to subvariables (m, i)s in the global memory or on the
heap. The value of such pointers simply has the form (m, i)s. Component m.ct stores
the current values va(c, (m, i)s) of the simple subvariables (m, i)s in canonical order.
Values of aggregate variables x are represented in m.ct in the obvious way by sequences
of simple values starting from the abstract base address ba(x) of variable x.

With the help of visibility rules and bindings we easily extend the definition of va ,
ty , and ba from variables and subvariables to expressions e.

6.3 C0 Machine Computation

Due to space restrictions we cannot give the full definition of the (small-step) transition
function δC mapping C0 configurations c to their successor configuration c′ = δC(c).
As an example we give a partial definition of the function call semantics.

Assume the program rest in configuration c begins with a call of function f with pa-
rameters e1, . . . , en assigning the function’s result to variable v, formally c.pr = (v =
f(e1, . . . , en); r). In the new program rest, the call statement is replaced by the body of
function f taken from the function table, c′.pr = (c.ft(f).body; r) and the recursion
depth is incremented c′.rd = c.rd + 1. Furthermore, the values of all parameters ei are
stored in the new top local memory frame top(c′) by updating its content function at
the corresponding positions: top(c′).ctsize(ty(c,ei))(ba(c, ei)) = va(c, ei).

6.4 Compiler Correctness Theorem

The compiler correctness statement (for programs to be run on physical or virtual ma-
chines) depends on a simulation relation consis(aba)(c, d) between configurations c of
C0 machines and configurations d of ISA machines which run the compiled program.
The relation is parameterized by a function aba which maps subvariables S of the C0
machine to their allocated base addresses aba(c, S) in the ISA machine. The allocation
function may change during a computation (i) if the recursion depth and thus the set of
local variables change due to calls and returns or (ii) if reachable variables are moved
on the heap during garbage collection (not yet implemented).

Notice however, that in the first case only the range of the allocation function is
changed: for C0 configurations c and local or (sub) global variables x the allocated
base address aba(x, c) depends only on c.

Simulation Relation. The simulation relation consists essentially of five conditions:

1. Value consistency v − consis(aba)(c, d): This condition states that reachable el-
ementary subvariables x have the same value in the C0 machine and in the ISA
machine. Let asize(x) be the number of bytes needed to store a value of type
ty(x). Then we require d.masize(x)(aba(c, x)) = va(c, x).
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2. Pointer consistency p − consis(aba)(c, d): This predicate requires for reachable
pointer variables p, which point to a subvariable y, that the value stored at the
allocated address of variable p in the ISA machine is the allocated base address of
y, i.e. d.m4(aba(c, p)) = aba(c, y). This induces a subgraph isomorphism between
the reachable portions of the heaps of the C0 and the ISA machine.

3. Control consistency c − consis(c, d): This condition states that the delayed PC of
the physical machine (used to fetch instructions) points to the start of the translated
code of the program rest c.pr of the C0 machine. We denote by head(r) the first
statement of statement sequence r and we denote by caddr(s) the address of the
first assembler instruction which is generated for statement s. We require d.dpc =
caddr(head(c.pr)) and d.pc = d.dpc + 4.6

4. Code consistency code − consis(c, d): This condition requires that the compiled
code of the C0 program is stored in the physical machine d beginning at the code
start address cstart. Thus it requires that the compiled code is not changed during
the computation of the physical machine. We thereby forbid self modifying code.

5. Stack consistency s− consis(,̧d): this is a technical condition about stack pointers,
heap pointers etc. which does not play an important role here.

Theorem 3. For every C0 machine computation (c0, c1, . . . ) there is a computation of
the physical machine (d0, d1, . . . ), step numbers (s(0), s(1), . . . ), and a sequence of
allocation functions (aba0, aba1, . . . ) such that for all steps i the C0 machine and the
physical machine are consistent consis(abai)(ci, ds(i)).

A formal proof of this statement for a non optimizing compiler specified in Isabelle-
HOL [?] (roughly speaking: in ML) is completed and will be reported in [?]. There is an
implementation of the same compilation algorithm written in C0. A formal proof that
the C0 implementation simulates the ML implementation is also completed and will be
reported in [?]. In order to solve the bootstrap problem [The00] the C0 version of the
compiler was translated by an existing compiler into DLX code. That the target DLX
code simulates the source code will be shown using translation validation. This is work
in progress.

7 Inline Assembler Code Semantics

Recall that processor registers, I/O ports and user processes are not visible in the C
variables of an operating system kernel written in C. Hence we must necessarily permit
in our language sequences u of in line assembler instructions (we do not distinguish
here between assembler and machine language). We extend C0 by statements of the
form asm(u) and call the resulting language C0A. In C0A the use of inline assembler
code is restricted: (i) only a certain subset of DLX instructions is allowed (e.g. no load
or store of bytes or half words, only relative jumps), (ii) the target address of store word
instructions must be outside the code and data regions of the C0A program or it must be
equal to the allocated base address of a subvariable of the C0A program with type int
or unsigned int (this implies that inline assembler code cannot change the stack layout

6 For optimizing compilers this condition has in general to be weakened.
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Fig. 8. Execution of Inline Assembler Code

of the C0A program), (iii) certain registers (e.g. the stack pointer) must not be changed,
(iv) the last assembler instruction in u must not be a jump or branch instruction, (v) the
execution of u must terminate, (vi) the target of jump and branch instructions must not
be outside the code of u, and (vii) the execution of u must not generate misalignment
or illegal instruction interrupts. + termination

depends on dIn order to argue about the correctness of C0A programs we must define the se-
mantics of the newly introduced statements. Because a store word instruction of in line
assembler code can overwrite a C variable x - for instance when a processor register
is stored into a process control block - we have to specify the effect of that store in-
struction on the value of x the C0 configuration. This is easily done with the help of the
allocated base address functions aba of the previous section (and impossible without
them).

Thus consider a C0A configuration c with program rest c.pr = asm(u); r. When
we enter the in line assembler portion, then the entire physical machine configuration d
becomes visible. In this situation we make d an input parameter for the C0A transition
function δC0A

. As pointed out above, another necessary parameter is an allocated base
address function aba. Finally the in line assembler code will also produce a new DLX
configuration d′. Thus we will define (c′, d′) = δC0A

(aba)(c, d). In all situations where
we apply this definition we will have consis(aba)(c, d).

The execution of u leads to a physical machine computation (d = d̂0, d̂1, . . . , d̂t =
d′) with d̂t.dpc = caddr(head(r)) and d̂t.pc = d̂t.dpc + 4 by the restrictions on
inline assembler. We construct a corresponding sequence (ĉ0, . . . , ĉt) of intermediate
C0 machine configurations reflecting successively the possible updates of the C0 vari-
ables by the assembler instructions (see Figure 8). We set ĉ0 = c except for deleting
the in line assembler portion asm(u) from the program rest: ĉ0.pr = r. Let j < t.
If predicate sw(d̂j) holds the instruction executed in configuration d̂j writes the value
v = d̂j .gpr(RD(d̂j)) to the word at address ea(d̂j) by the definitions of Section 2. If
this effective address is equal to the allocated base address of a C0 variable x, then we
update the corresponding variable in configuration ĉj+1 such that va(ĉj+1, x) = v.

sw(d̂j) ∧ (ea(d̂j) = aba(c, x) → va(ĉj+1, x) = d̂j .gpr(RD(d̂j))

Finally the result of the C0A transition function is defined by c′ = ĉt and d′ = d̂t.
This definition keeps configurations consistent:

Lemma 1. If the program rest of c starts with an inline assembler statement we have:

consis(aba)(c, d) ⇒ consis(aba)(δC0A
(aba)(c′, d′))
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8 Communicating Virtual Machines (CVM)

8.1 CVM Semantics

We introduce communicating virtual machines (CVM), a model of computation for a
generic abstract operating system kernel interacting with a fixed number of user pro-
cesses. While the CVM is running, the kernel can only be interrupted by reset. Kernels
with this property are called non-preemptive7. CVM uses the C0 language semantics
to model computations of the (abstract) kernel and virtual machines to model compu-
tations of user processes. It is a pseudo-parallel model in the sense that in every step of
computation either the kernel or one user process can make progress.

From a kernel implementor’s point of view, CVM encapsulates the low-level func-
tionality of a microkernel and provides access to it as a library of functions, the so-called
CVM primitives. Accordingly, the abstract kernel may be ‘linked’ with the implementa-
tion of these primitives to produce the concrete kernel, a C0A program, that may be run
on the target machine. This construction and its correctness will be treated in Section 9.

In the following sections we define CVM configurations, CVM computations, and
show how abstract kernels implement system calls as regular C0 function calls.

8.2 CVM Configuration

A CVM configuration cvm has the following components:

– User processes are modeled by virtual machine configurations cvm.vm(u) having
indices u ∈ {1, . . . , P} (and P fixed, e.g. P = 128).

– Each user process has an individual page table ’lengths’ cvm.vm(u).ptl. The mem-
ory available to a virtual machine can be increased or decreased dynamically.

– A C0 machine configuration cvm.c represents the so-called abstract kernel. We
require the kernel configuration, in particular its initial configuration, be in a certain
form:
1. Certain functions f ∈ CVMP , the CVM primitives, must be declared only,

thus their body must be empty. Its arguments and effects are described below.
2. In addition to the cvm primitives a special function called kdispatch must be

declared. It takes two integer arguments and returns an integer. An invocation of
the kdispatch function as being an initial program rest must eventually result
in a function call of the CVM primitive v = start(e), which passes control to
the user processes determined by the current value va(cvm.c, e) of expression
e.

– The component cvm.cp denotes the current process: cvm.cp = 0 means that the
kernel is running while cvm.cp = u > 0 means that user process u is running.

– cvm.f denotes the state of one8 external device capable of interrupting user pro-
cesses with an ISA interrupt signal eev.

7 Premptive kernels require to deal with nested interrupts. A theory of nested interrupts is out-
lined in Chapter 5 of [MP00].

8 Dealing with more devices is not necessary here; it is not much more difficult.
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8.3 CVM Computation

In every step of a CVM computation a new CVM configuration is computed from an
old configuration cvm, an oracle input eev, and from the a device specific external input
fdin:

cvm′ = δCV M (cvm, eev, fdin)

The external input only affects the device state cvm′.f . Updates of this state are device
specific and are not treated here.

User computation. If the current process u = cvm.cp in configuration cvm is non-zero
then user process vm(u) does a step.

cvm′.vm(u) = δD(cvm.vm(u))

If no interrupt occurred, i.e. ¬JISR(cvm.vm(u), eev) then user process vm(u) keeps
running:

cvm′.cp = u

Otherwise execution of the abstract kernel starts. Recall from Section 2.4 on inter-
rupt semantics, that in case of an interrupt the masked cause register is saved into the
exception cause register eca and that certain data necessary for handling the exception
is stored in register edata. The kernels entry point is the function kdispatch that is
called with the saved exception cause register cvm.vm(u).eca and the saved exception
data register cvm.vm(u).edata as parameters.

We set the current process component and the kernel’s recursion depth to zero:

cvm′.cp = 0
cvm′.c.rd = 0
cvm′.c.pr = kdispatch(cvm.vm(u).eca, cvm.vm(u).edata)

Kernel computation. Initially (after power-up) and after an interrupt, as seen above, the
kernel starts execution with a call of the function kdispatch. User process execution
continues when the kernel calls the CVM primitive start.

If we have cvm.cp = 0 and the kernel’s program rest does not start with a call to a
CVM primitive, a regular C0 semantics step is performed:

cvm′.c = δC(cvm.c)

Otherwise, we have cvm.cp = 0 and cvm.c.pr = (v = f(e1, . . . , en); r) for a CVM
primitive f , an integer variable v and integer expressions e1 to en. Although the im-
plementation of the CVM primitives involves in line assembler code, their semantics
can be specified in the pseudo parallel CVM model by the effect they have on the user
processes vm(u) and on the device f .

Below we describe a few selected CVM primitives. We ignore any preconditions or
border cases; these are straightforward to specify and resolve.
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– start(e) hands control over to the user process specified by the current value of
expression e:

cvm′.cp = va(cvm.c, e)

By this definition, the kernel stops execution and is restarted again on the next
interrupt (with a fresh program rest as described before).

– alloc(u, x) increases the memory size of user process U = va(cvm.c, u) by X =
va(cvm.c, x) pages:

cvm′.vm(U).ptl = cvm.vm(U).ptl + X

The new pages are cleared:

∀y ∈ [cvm.vm(U).ptl : cvm.vm(U).ptl + 4K − 1] : cvm′.vm(U).m(y) = 08

– A primitive free(u, x) which frees X pages of user process U is defined in a
similar way.

– copy(u1, a1, u2, a2, d) copies memory regions between user processes U1 = va(cvm.c, u1)
and U2 = va(cvmc, u2). Start addresses in process U1 resp. U2 are A1 = va(cvm.c, a1)
resp. A2 = va(cvm.c, a2). The number of bytes copied is D = va(cvm.c, d):

cvm′.vm(U2).mD(A2) = cvm.vm(U1).mD(A1)

– Primitives copying data between user processes and I/O ports and between C vari-
ables of the kernel and I/O ports are defined in a similar way.

– e = getgpr(r, u) reads general purpose register R = va(cvm.c, r) of user process
U = va(cvm.c, u) and assigns it to the (sub)variable specified by expression e:

va(cvm′.c, e) = cvm.vm(U).gpr(R)

As described below, this primitive is used to read parameters of system calls.
– setgpr(r, u, e) writes the current value of expression e into general purpose register

R of process U :
cvm′.vm(U).gpr(R) = va(cvm.c, e)

This primitive is used to set return values of system calls.

8.4 Binary Interface of Kernels

Before we deal with the implementation of CVM and a proof for its correctness, we
show how to build a kernel by appropriately specializing the generic abstract kernel of
CVM.

The obvious means for a user process to make a system call is to use the trap in-
struction which causes an internal interrupt. If the kernel provides k trap handlers, then
the user can specify the to be invoked handler using the immediate constant i within the
trap instruction, where i ∈ [0 : k− 1]. We define a so called kernel call definition func-
tion kcd mapping immediate constants i ∈ [0 : k− 1] to names of functions declared in
the abstract kernel. Thus kcd(i) is simply the name of the C function (including CVM
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primitives) handling trap(i). For each i, let np(i) < 20 be the number of parameters
of function kcd(i)9. We require the user to pass the parameters for function kcd(i) in
general purpose registers gpr[1 : n(i)]. Together with the specification of the functions
kcd(i) this is the entire binary interface definition.

Implementation by specialization of the abstract CVM kernel is completely straight
forward. First of all the kernel maintains a variable cu keeping track of the user pro-
cess which is currently running or which has been running before the kernel started
execution:

cvm.cp > 0 ⇒ va(cvm.c, cu) = cvm.cp

Assume cvm.cp = u > 0 and user vm(u) executes the trap instruction with pa-
rameter i, i.e. trap(cvm.vm(u), i). Assume that the trap instruction activates internal
event line iev(5), like described in Section 3.5, and that no interrupts with higher prior-
ity (lower index) are activated simultaneously. Then the masked cause vector 026105 is
saved into the exception cause register eca[31 : 0] and index i is saved into the exception
data register edata:

cvm′.vm(u).eca = 026105

cvm′.vm(u).edata = i

According to the CVM semantics the abstract kernel starts running with the function
call kdispatch(eca, edata) where eca = 026105 and edata = i. By a case split on eca
the handler concludes that a trap instruction needs to be handled. Hence the handler
invokes the function call f(e1, . . . , enp(i)), where f = kcd(i) using the parameters
computed by the assignment ei = getgpr(i, cu).

Let cvmd be the CVM configuration immediately after execution of the call of kcd
above. Then one easily derives from the semantics of CVM and C0:

Lemma 2 (Intended Handler Called with the Intended Parameters).

cvmd.rd = cvm′.rd + 1 = 1
cvmd.c.pr = ft(f).body; r for some r

top(cvmd).ct(j) = cvm.vm(u).gpr(j) for all j ∈ [1 : np(i)]

This lemma formalizes the idea that an interrupt is something like a function call of the
handler. Comparing with the C0 semantics in Section 6.1 we see that the trap instruction
indeed formally causes a function call of the handler. The function call is however re-
mote, because it is executed by a process (the abstract kernel) different from the calling
process (virtual machine vm(u)).

9 CVM Implementation and Correctness

9.1 Concrete kernel and Linking

So far we have talked about the abstract kernel, but we have argued mathematically only
about its configurations c. Now we also argue about its source code, which we denote
by sak. We describe how to obtain the source code sck of the so called concrete kernel

9 Assume for simplicity they are of type integer.
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by linking sak with the source code of some CVM implementation scvm by some link
operator ld:

sck = ld(sak, scvm)

Note that sak is a pure C0 program, whereas scvm and sck are C0A programs.
The function table of the linked program sck is constructed from the function tables of
the input programs. For functions present in both programs, defined functions (with a
non-empty body) take precedence over declared functions (without a body). We do not
formally define the ld operator here; it may only be applied under various restrictions
concerning the input programs, e.g. the names of global variables of both programs
must be distinct, function signatures must match, and no function may be defined in
both input programs.

We require that the abstract kernel sak defines kdispatch and declares all CVM
primitives while the CVM implementation scvm defines the primitives and declares
kdispatch.

In analogy to the consis relation of the compiler correctness proof we define a
relation kconsis(kalloc)(c, cc) stating that abstract kernel configuration c is coded by
concrete kernel configuration cc. Function kalloc maps subvariables x of abstract kernel
configuration c to subvariables kalloc(x) of concrete kernel configuration cc.

Linking is less complex than compilation. The definition of kconsis has only three
parts:

1. e− kconsis(kalloc)(c, cc): All reachable elementary (sub) variables x of abstract
kernel configuration c and the values of x in the concrete kernel coincide:

va(c, x) = va(cc, x)

2. kalloc is a graph isomorphism between the reachable portions of the heaps. For all
reachable pointer variables p of abstract kernel configuration c (pointing to subvari-
able p′):

(va(c, p) = p′) ⇒ va(cc, kalloc(p)) = kalloc(p′)

3. c−kconsis: The program rest of the concrete kernel is a prefix of the program rest
of the abstract kernel. For technical reason there is a particular suffix r containing
’dangling returns’. This suffix is cleared when the kernel is started the next time
(see Section 8.3).

cc.pr = c.pr; r

9.2 Data Structures

The CVM implementation maintains data structures for the simulation of the virtual
machines, i.e. for the support of multiprocessing. These include:

1. An array of process control blocks pcb[u] for the kernel (u = 0) and the user
processes (u > 0). Process control blocks are structs with components pcb[u].R for
every processor register R of the physical machine.
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2. A single integer array ptarray on the heap holds the page tables of all user pro-
cesses in the order of the process numbers u. The function ptbase(u) defines the
start index of the page table for process u:

ptbase(u) =
∑
j<u

(pcb[j].ptl + 1)

Because the C array ptarry is indexed by words and not by bytes we define the
page table entry for virtual address va and process u as:

pte(u, va) = ptarray[ptbase(u) + va.px]

Notice that we have faked here pointer arithmetic on the page table array, but for-
mally we just barely managed to dance around it. Physical page address and valid
bit are defined by C expressions.

pma(u, va) = pte(u, va)[31 : 12] ◦ va.bx
v(u, va) = pte(u, va)[11]

Swap memory addresses sma(u, va) are computed by C function in an analogous
way. We require that the compiler computes the allocated base address of array
ptarray as a multiple of the page size 4K.

3. Data structures (in the simplest case doubly-linked lists) for the management of
physical and swap memory (including victim selection for page faults).

4. The variable cup keeping track of the current user process thus encoding the cvm.cp
component (unless the kernel is running).

9.3 Entering System Mode after an Interrupt

When the concrete kernel enters system mode, its program rest is initialized with init1; init2.
In all cases except reset, the first part init1 will (i) write all processor registers R to the
process control block pcb[cup].R of the process cup that was interrupted while it was
running and (ii) restore the registers of the kernel from process control block pcb[0].

In the second part init2, the CVM implementation detects whether the interrupt
was due to a page fault or for other causes. Page faults are handled silently without
calling the abstract kernel (cf. below). For other interrupts, we call kdispatch with the
parameters already obtained from the C variables pcb[cup].

kdispatch(pcb[cup].eca, pcb[cup].edata)

9.4 Leaving System Mode

User mode is entered again by a call of start(cup). It is implemented using inline
assembler. We write the physical processor registers to pcb[0] in order to save the con-
crete kernel state. Then we restore the physical processor registers for process cup from
pcb[cup] and execute an rfe instruction (return from exception).



28

9.5 Page Fault Handler

The page fault handler maintains a simulation relation B as described in Section 5.2.
With correct page fault handlers, user mode steps in the physical machine without in-
terrupts simulate steps of a virtual machine. Note that a single user mode instruction
can produce up to two page faults: one during instruction fetch and one during a load or
store operation. In order to prevent even more page faults one must not choose the page
most recently swapped in as the victim page to be swapped out (as is possible with pure
random selection of the victim page).

To reason about multiple user processes u, we have to slightly modify and extend
the B relation. Let u be an index of a user process/virtual machine. Let vm be a config-
uration of a virtual machine and let d be a configuration of the physical DLX machine
on which the compiled concrete kernel and the user processes eventually are running.
We define predicate B(u)(cvm, d) stating that the configuration cvm.vm(u) of user
process u is coded by by configuration d.

1. Processor registers of vm(u) are stored in the physical processor registers, if pro-
cess u is running; otherwise they are stored in the process control blocks:

cvm.vm(u).gpr(r) =

{
d.gpr(r) cvm.cp = u

va(cvm.c, pcb(u).gpr(r)) otherwise

2. the memory content vm(u)(a) are stored in the physical memory at the physical
memory address, if the valid bit of virtual address a is 1, otherwise it is stored in
swap memory at the swap memory address:

cvm.vm[u].m(a) =

{
d.m(va(cvm.c, pma(u, a)) va(cvm.c, v(u, a)) = 1
d.sm(va(cvm.c, sma(u, a)) otherwise

9.6 Implementation of the CVM Primitives

The implementation of CVM primitives like e = getgpr(u, r) and e = setgpr(u, r, e′)
is straightforward:

va(cvm.c, e) = pcb[u].gpr(r)
pcb[u].gpr(r) = va(cvm.c, e′)

For the CVM primitives alloc and free the page table length of the process has to
be increased or decreased and - we have chosen a very simple implementation - lots of
page table entries in ptarry above the portion of the modified user process have to me
moved around in the page table array. Various other data structures concerning memory
management have to be adjusted as well. Such operations are closely interconnected
with the page fault handler. Since the page tables are accessible as a C0 data structure,
inline assembler is only required to clear newly allocated physical pages. Similarly,
the copy implementation requires assembler code to copy pages of physical memory
between user processes.
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9.7 CVM Correctness Theorem

The correctness proof of the cvm deals simultaneously with comptations in three com-
putational models:

1. the top model CVM consisting of a C0 machine and several virtual machines; con-
figurations are denoted by cvm.

2. an intermediate model for the C0A computation of the concrete kernel; configura-
tions are denoted by cc

3. the bottom model consisting of a physical machine; configurations are denoted by
d

Theorem 4. Consider an input sequence of external interrupts (eev0, eev1, . . .) and
a cvm computation (cvm0, cvm1, . . .) defined with this input sequence. Then there
exists (i) a concrete kernel computation (cc0, cc1, . . .), (ii) a physical machine com-
putation (d0, d1, . . .), (iii) two sequences of allocation functions (aba0, aba1, . . . and
kalloc0, kalloc1, . . .) and (iv) two sequences of step numbers (s0, s1, . . . and t0, t1, . . .)
such that:

1. The abstract kernel component cvmi.c of the CVM computation after i steps is
coded by the concrete kernel configuration ccs(i) after s(i) steps:

kconsis(kalloci)(ci, ccs(i))

2. The concrete kernel configuration ccs(i) after s(i) steps is coded configuration dt(i)

of the physical machine after t(i) instructions. Recall that on the physical machine
the compiled concrete kernel is executed:

consis(abai)(ccs(i), dt(i))

3. the user machines cvmi.vm(u) after i steps of the CVM computation are coded by
configuration dt(i) of the physical machine after t(i) instructions.

B(u)(cvmi, dt(i))

The correctness theorem is proven by induction over the steps i of the CVM compu-
tations. Depending on the current process number cvmi.cp and the interrupts occurring,
the proof uses compiler correctness (see Section 6.4), the correctness of memory man-
agement mechanisms (see Section 5.2), and detailed arguments about in line assembler
code using C0A semantics (see Section 7).
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10 Parallel Hardware Overview

So far we only have considered systems with a single processor and a device. In what
follows we construct particular hardware devices serving as interfaces to a FlexRay
like bus or short: fbus. The devices will be called FlexRay like interfaces or short: f-
interfaces. A processor together with a device will be called an electronic control unit
(ECU).

We will consider p electronic control units ECUv , where v ∈ {0, . . . , p − 1},
which are communicating over a common fbus. At the ISA level, an ECU configuration
ecuv = (ecuv.d, ecuv.f), see Figure 9, therefore is a pair consisting of a processor
configuration ecuv.d, and a configuration ecuv.f of an f-interface.

From an interface configuration ecuv.f we define two user visible buffers: A send
buffer sb(ecuv) and a receive buffer rb(ecuv). Each buffer is capable of holding a mes-
sage of ` bytes.

In the distributed system all communications and computations proceed in rounds r
where r ∈ N. As depicted in Figure 10 each round is divided into an (even) number
of slots s where s ∈ {0, . . . , ns − 1}. The tuple (r, s) refers to slot s in round r. On
each ECU, boundaries between slots will be determined by local timer interrupts every
T hardware cycles. At the beginning of each round the local timers are synchronized.

Given a slot (r, s) we define the predecessor (r, s)− 1 and the successor (r, s) + 1
according to the lexicographical order of slots. We denote by dv(r, s) the first and by
ev(r, s) the last ISA configuration of ECUv during slot (r, s).

ECUs of the system communicate according to a fixed schedule which is identical
for each round: The function send() specifies for all rounds r the electronic control unit
ECU which owns the bus during slot (r, s):

send : {0, . . . , ns− 1} → {0, . . . , p− 1}

During slot (r, s) the content of the send buffer of ECUsend(s) at the end of the
previous round (r, s) − 1 is broadcast to the receive buffers of all units ECUu and
becomes visible there at the beginning of the next round (r, s) + 1:

∀u, r, s : sb(esend(s)((r, s)− 1)) = rb(du((r, s) + 1))
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In Sections 11 to 14 we will outline the proof of a hardware correctness theorem
for the entire distributed system justifying this programming model. This theorem es-
tablishes for each ECUv at the start of each slot (r, s) the naive simulation relation
sim from Section 3.4 between the ISA configuration dv(r, s) before the execution of
the first instruction of the slot and the corresponding hardware configuration hv(r, s)
during the first hardware cycle of the slot:

sim(dv(r, s), hv(r, s))

11 Serial Interface

The hardware of each ECU is clocked by an oscillator with a nominal clock period of
say τref , but for all v the individual clock periods τv of ECUv is allowed to deviate
from the nominal period by δ = 0.15%:

| τv − τref | ≤ τref · δ

With ∆ = 2δ/(1 − δ) one easily bounds for all u and v the relative deviation of
individual clock periods among each other by | τv − τu | ≤ τv ·∆.

Consider a situation, where a sending ECU puts data on the bus and these data are
sampled into registers of receiving ECUs. Then, due to the clock drift between ECUs,
one cannot guarantee that the set up and hold times of the receiving registers are obeyed
at all clock edges. This problem occurs whenever computers without a common clock
exchange data. It is solved by serial interfaces using a nontrivial protocol. Therefore we
first need a hardware correctness proof of a serial interface as prescribed by the FlexRay
standard.

11.1 Hardware Model with Continuous Time

The problems solved by serial interfaces can by their very nature not be treated in the
standard digital hardware model with a single digital clock clk. Nevertheless, we can
describe each ECUv in a standard digital hardware model having its own hardware
configuration hv .

In order to argue about a sender register S of a sending ECU that is transmitting
data via the fbus to a receiver register R of a receiving ECU, as depicted in Figure 11,
we have to extend the digital model.



32

e(i)

Sdin

S Ω x

tpd

x

Fig. 12. Sender Register

For the registers –and only for the registers– connected to the fbus we extend the
hardware model such that we can deal with the concepts of propagation delay (tpd), set-
up time (ts), hold time (th) and metastability of registers from hardware data sheets. In
the extended model used near the fbus we therefore consider time to be a real valued
variable t. The date of the clock edge ev(i) which starts cycle i on ECUv is defined by

ev(i) = cv + i · τv (1)

for some offset cv < τv . In this continuous time model the content of the a sender
register S at time t is denoted by S(t).

We now have enough machinery to define in the continuous time model the output
of a sender register Sv on ECUv during cycle i of ECUv , i.e. for t ∈ (ev(i), ev(i+1)].
If in cycle i − 1 the digital clock enable Sce(hi−1

v ) signal was off, we see during the
whole cycle the old digital value hi−1

v .S of the register. If the update enable signal was
on, then during the propagation delay tpd we cannot predict what we see, which we
denote by Ω. When the propagation delay has passed, we see the new digital value of
the register, which is equal to the digital input Sdin(hi−1

v ) during the previous cycle
(see Figure 12).

Sv(t) =


hi−1

v .S ¬Sce(hi−1
v )

Ω Sce(hi−1
v ) ∧ t ≤ ev(i) + tpd

Sdin(hi−1
v ) Sce(hi−1

v ) ∧ t > ev(i) + tpd

The fbus is an open collector bus modeled for all t by:

fbus(t) =
∧
v

Sv(t)

Now consider a receiver register Ru on ECUu whose clock enable is continuously
turned on; thus the register always samples from the fbus. In order to define the new
digital value hj

u.R of register R during cycle j on ECUu we have to consider the value
of the fbus(t) in the time interval (eu(j) − ts, eu(j) + th), i.e. from the clock edge
minus the set-up time until the clock edge plus the hold time. If during that time the
fbus has a constant digital value x, the register samples that value:

∃x ∈ {0, 1} ∀t ∈ (eu(j)− ts, eu(j) + th) : fbus(t) = x ⇒ hj
u.R = fbus(eu(j))
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Otherwise we define hj
u.R = Ω.

Thus we still have to argue how to deal with unknown values Ω as input to digital
hardware. We will use the output of register R only as input to a second register R̂
whose clock enable is always turned on, too. If Ω is clocked into R̂ we assume that R̂
has an unknown but digital value:

hj
u.R = Ω ⇒ hj+1

u .R̂ ∈ {0, 1}

Indeed, in real systems the counterpart of register R̂ exists. The probability that R
becomes metastable for an entire cycle and that this causes R̂ to become metastable too
is for practical purposes zero. This is exactly what has been formalized above. Note that
our model uses different but fixed individual clock periods τv .

There is no problem to extend the model to deal with jitter. Let τv(i) denote the
length of cycle i on ECUv , then we require for all v and i:

τv(i) ∈ [τref · (1− δ), τref · (1 + δ)]

The time ev(i) of the i-th clock edge on ECUj is then defined as:

ev(i) =

{
cv i = 0
ev(i− 1) + τv(i− 1) otherwise

This does not complicate the subsequent theory significantly.

11.2 Continuous Time Lemmas for the Bus

Consider a pair of ECUs, where ECUs is the sender and ECUr is a receiver in a
given slot. Let i be a sender cycle such that Sce(hi−1

s ) = 1, i.e. the output of S is
not guaranteed to stay constant at time es(i). This change can only affect the value
of register R of ECUr in cycle j if it occurs before the sampling edge er(j) plus the
hold time th, i.e. es(i) < er(j) + th. Figure 13 shows a situation where due to a hold
time violation we have es(i) > er(j). The first cycle which can possibly be affected is
denoted by:

cyr,s(i) = min{j | es(i) < er(j) + th}
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In what follows we assume that all ECUs other than the sender unit ECUs put
the value 1 on the bus (hence fbus(t) = Ss(t) for all t under consideration) and we
consider only one receiving unit ECUr. Because the indices r and s are fixed we simply
write cy(i) instead of cyr,s(i).

There are two essential lemmas whose proof hinges on the continuous time model.
The first lemma considers a situation, where we activate the clock enable Sce of the
sender ECU in cycle i − 1 but not in the following seven cycles. In the digital model
we then have hi

s.S = . . . = hi+7
s .S and in the continuous time model we observe

x = fbus(t) = Sv(t) = hi
s.S for all t ∈ [es(i) + tpd, es(i + 8)]. We claim that x is

correctly sampled in at least six consecutive cycles

Lemma 3 (Correct Sampling Interval). Let the clock enable signal of the S register
be turned on in cycle i− 1, i.e. Sce(hi−1

s ) = 1 and let the same signal be turned off in
the next seven cycles, i.e. Sce(hj

s) = 0 for j ∈ {i, . . . , i + 6} then:

hcy(i)+k
r .R = hi

s.S for k ∈ {1, . . . , 6}

The second lemma simply bounds the clock drift. It essentially states that within
300 cycles clocks cannot drift by more than one cycle; this is shown using δ ≤ 0.15%.

Lemma 4 (Bounded Clock Drift). The clock drift in the interval m ∈ {1, . . . , 300} is
bounded by:

cy(i) + m− 1 ≤ cy(i + m) ≤ cy(i) + m + 1

Detailed proofs of very similar lemmas are to be found in [?,BBG+05], a formal
proof is reported in [?].

11.3 Serial Interface Construction and Correctness

Recall that for natural numbers n and bits y we denote by yn the string in which bit y
is replicated n times, e.g. 04 = 0000. For strings x[0 : k − 1] consisting of k bits x[i]
we denote by 8 · x the string obtained by repeating each bit eight times:

8 · x = x[0]8 · · ·x[k − 1]8

Our serial interface transmits messages m[0 : `− 1] consisting of ` bytes m[i] from
a send buffer sb of the sending ECU to a receive buffer rb of the receiving ECU.
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The following protocol is used for transmission (see Figure 14). One creates from
message m a frame f(m) by inserting falling edges between the bytes and adding some
bits at the start and the end of the frame:

f(m) = 0110m[0] · · · 10m[`− 1]01

In f(m) one calls the first zero the transmission start sequence (TSS), the first one
the frame start sequence (FSS), the last zero the frame end sequence (FES) and the
last one the transmission end sequence (TES). The two bits producing a falling edge
before each byte are called the byte start sequence (BS0, BS1). The sending ECU
broadcasts 8 · f(m) over the fbus.

Figure 15 shows a simplified view on the hardware involved in the transmission of
a message. On the sender side, there is an automaton keeping track which bit of the
frame is currently being transmitted. This automaton inserts the additional protocol bits
around the message bytes. Hardware for sending each bit eight times and for addressing
the send buffer is not shown.

On the receiver side there is the automaton from Figure 14 (the automaton on the
sender side is very similar) trying to keep track which bit of the frame is currently
transmitted. That it does so successfully requires proof.

The bits sampled in register R̂ are processed in the following way. The voted bit v is
computed by applying a majority vote to the last five sampled bits. These bits are given
by the R̂ register and a 4-bit shift register as depicted in Figure 16.

According to Lemma 3 for each bit of the frame a sequence of at least six bits
is correctly sampled. The filtering essentially maintains this property. If the receiver
succeeds to sample that sequence roughly in the middle, he wins. For this purpose the
receiver has a modulo-8 counter trying to keep track which of the eight identical copies
of a frame bit is currently transmitted (see Figure 17). When the counter value equals
four a strobe bit is produced. For frame decoding the voted bit is sampled with the
strobed bit. The automaton trying to keep track of the protocol is also clocked with this
strobe bit.

Clocks are drifting, hence the hardware has to perform a low level synchronization.
The counter is reset by a sync signal in two situations: at the beginning of a transmission
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or at an expected falling edge during the byte start sequence. Abbreviating signals s(hi
r)

with si we write
synci = (idlei ∨BS0i) ∧ (¬vi ∧ vi−1)

The crucial part of the correctness proof is a lemma where one proves simultane-
ously three statements by induction over the receiver cycles:

1. the state of the automaton keeps track of the transmitted frame bit.
2. the sync signal is activated at the corresponding falling edge of the voted bit be-

tween BS0 and BS1
3. sequences of identical bit are sampled roughly in the middle.

We sketch the proof of this lemma. Statement 1 is clearly true in the idle state.
From statement 1 follows that the automaton expects the falling edges of the voted
signal exactly when the sender generates them. Thus the counter is well synchronized
after these falling edges. This shows statement 2. Immediately after synchronization
the receiver samples roughly in the middle. There is a synchronization roughly every 80
sender cycles. By Lemma 4 and because 80 < 300, the sampling point can wander by at
most one bit between activations of the sync signal. This is good enough to stay within
the correctly sampled six copies. This shows statement 3. If transmitted frame bits are
correctly sampled, then the automaton keeps track of them. This shows statement 1.
A formal proof of such a lemma in an abstract model obtained largely by automatic
methods is reported in [?], a formal proof of the lemma in our hardware model with all
gates and registers is reported in [?].

Let t0 be the time (not the cycle) when the start signal of the sender is activated.
Let t1 be the time, when all automata have reached the idle state again and all write
accesses to the receive buffer have completed. Let

tc = 45 + 80 · `
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be the number of ‘transmission cycles’. The correctness of message transmission is
stated as follows:

Lemma 5 (Correct Message Transfer With Time Bound). Messages are correctly
transmitted, and the transmission does not last longer than tc sender cycles:

1. rb(t1) = sb(t0)
2. t1 − t0 ≤ tc · τs

Intuitively, the product 80 · ` in the definition of tc comes from the fact that each
byte produces 10 frame bits and each of these is transmitted 8 times. The four bits added
at the start and the end of the frame contribute 4 · 8 = 32. The remaining 13 cycles are
caused by delays in the receiver logic, in particular by delay in the shift register before
the majority voter.

12 FlexRay Like Interfaces and Clock Synchronization

Using the serial interfaces from the last section we can proceed to construct the hard-
ware of entire f-interfaces. The results from this section were first reported in [lecture
notes, wilhelm paper]

12.1 Hardware Components

Recall that we denote hardware configurations of ECUv by hv . If the index v of the
ECU does not matter, we drop it. The hardware configuration is split into a processor
configuration h.p and an interface configuration h.f . In addition to the registers of the
serial interface, the essential components of the hardware configuration h.f of our (non
fault tolerant) FlexRay like interface are

1. double buffers h.f.sb(par) and h.f.rb(par), where par ∈ {0, 1}, implementing
the user visible send and receive buffers,

2. the registers of a somewhat non trivial timer h.f.timer,
3. configuration registers.
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Fig. 18. Hardware Timer

The construction of the hardware timer h.f.timer is sketched in Figure 18. The
low order bits h.f.timer.cy count the cycles of a slot. Unless the timer is synchronized,
slots have locally T cycles, thus the low order bits are part of a modulo-T counter. The
high order bits h.f.timer.s count the slot index s of the current slot (r, s) modulo ns.
The timer is initialized with the value (ns− 1, T − 1).

The timers on all ECUs but ECUsend(0) stall when reaching the maximum value
(ns−1, T−1) and wait for synchronization. The timer on ECUsend(0) always continues
counting. Details regarding the synchronization mechanism are given in Section 12.2.

The overflow signal ovf(h) between the low order and the high order bits of the
counter can essentially serve as the timer interrupt signal ti(h) generated by the inter-
face hardware10:

ti(hi) = ovf(hi) ∧ ¬ovf(hi−1)

The low order bit of the slot counter keeps track of the parity of the current slot and
is called the hardware parity signal:

par(h) = h.f.timer.s[0]

In general the fbus side of the interface will see the copies h.f.sb(par(h)) and
h.f.rb(par(h)). Messages are always transmitted between these copies of the buffers.
The processor on the other hand writes to h.f.sb(¬par(h)) and reads from h.f.rb(¬par(h)).
This does not work at boundaries of rounds unless the number of slots ns is even.

The configuration registers are written immediately after reset / power-up. They
contain in particular the locally relevant portions of the scheduling function. Thus if
ECUv is (locally) in a slot with slot index s and send(s) = v then ECUv will transmit
the content of the send buffer h.f.sb(par(h)) via the fbus during some transmission
interval [ts(r, s), te(r, s)]. A serial interface which is not actively transmitting during
slot (r, s) puts by construction the idle value (the bit 1) on the bus.

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r, s), then transmission will be successful by Lemma 5. The clock synchronization
algorithm together with an appropriate choice of the transmission interval will guaran-
tee exactly that.

10 In general one needs to keep an interrupt signal active until it is cleared by software; the extra
hardware is simple.
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12.2 Clock Synchronization

The idea of clock synchronization is easily explained: Imagine one slot is one hour and
one round is one day. Assume different clocks drift by up to drift = 5 minutes per day.
ECUs synchronize to the first bit of the message transmission due between midnight
and 1 o’clock. Assume adjusting the clocks at the receiving ECUs takes up to adj = 1
minute. Then the maximal deviation during 1 day is off = drift + adj = 6 minutes.
ECUsend(s), which is the sender in hour s, is on the safe side if it starts transmitting
from s o’clock plus off minutes until off minutes before s+1 o’clock, i.e. somewhen
in between s : 06 o’clock and s + 1 : 54 o’clock.

At midnight life becomes slightly tricky: ECUsend(0) waits until it can be sure that
everybody believes that midnight is over and hence nobody is transmitting, i.e. until its
local time 0 : 06. Then it starts sending. All other ECUs are waiting for the broadcast
message and adjust their clocks to midnight + off = 0 : 06 once they detect the first
falling bit. Since that might take the receiving ECUs up to 1 minute it might be 0 : 07
o’clock on the sender when it is 0 : 06 o’clock at the receiver; thus after synchronization
the clocks differ by at most adj = 1 minute.

We formalize this idea in the following way: Assume without loss of generality
that send(0) = 0. All ECUs but ECU0 synchronize to the transmission start se-
quence (TSS) of the first message of ECU0. When ECU’s waiting for synchronization
(d.f.timer = (ns−1, T−1)) receive this TSS, they advance their local slot counter to 0
and their cycle counter to off . Analysis of the algorithm will imply that for all v 6= 0,
ECUv will be waiting for synchronization, when ECU0 starts message transmission in
any slot (r, 0).

First we define the start times αv(r, s) of slot (r, s) on ECUv . This is the start time
of the first cycle t in round r when the timer in the previous cycle had the value:

ht−1.f.timer = ((s− 1 mod ns), T − 1)

This are the cycles immediately after the local timer interrupts. For every round r,
we also define the cycles βv(r) when the synchronization is completed on ECUv . For-
mally this is defined as the first cycle β > αv(r, 0) such that the local timer has value

hβ .f.timer = (0, off)

Timing analysis of the synchronization process in the complete hardware design
shows that for all v and y adjustment of the local timer of ECUv to value (0, off) is
completed within an adjustment time ad = 15 · τy after α0(r, 0)

β0(r) = α0(r, 0) + off · τ0

βv(r) ≤ β0(r) + 15 · τy

For s ≥ 1 no synchronization takes place and the start of new slots is only deter-
mined by the progress of the local timer:

αv(r, s) =

{
βv(r) + (T − off) · τv s = 1
αv(r, s− 1) + T · τv s ≥ 2
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Fig. 19. Schedules

ECU0 synchronizes the other ECUs. Thus the start of slot (r, 0) on ECU0 depends
only on the progress of the local counter:

α0(r, 0) = α0(r − 1, ns− 1) + T · τ0

An easy induction on s bounds the difference between start times of the same slot
on different ECUs:

αx(r, s)− αv(r, s) ≤ 15 · τv + (s · T − off) · (τx − τv)
≤ 15 · τv + (ns · T ·∆ · τv)
= τv · (15 + (ns · T ·∆))
= τv · off

(2)

Thus we have off = ad + drift with ad = 15 and drift = ns · T ·∆.
Transmission is started in slots (r, s) by ECUsend(s) when the local cycle count

is off . Thus the transmission start time is

ts(r, s) = αsend(s)(r, s) + off · τsend(s)

By Lemma 5 the transmission ends at time

te(r, s) = ts(r, s) + tc · τsend(s)

= αsend(s)(r, s) + (off + tc) · τsend(s)

The transmission interval [ts(r, s), te(r, s)] must be contained in the time interval,
when all ECUs are in slot (r, s), as depicted in Figure 19. Thus we need for all indices v
and u of ECUs:

Lemma 6 (No Bus Contention).

αx(r, s) ≤ ts(r, s)
te(r, s) ≤ αu((r, s) + 1)
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The first inequality holds because of (2). Let v = send(s):

αx(r, s) ≤ αv + τv · off
= ts(r, s)

The second inequality determines the minimal size of T :

te(r, s) ≤ αv(r, s) + (off + tc) · τv

≤ αu(r, s) + off · τu + (off + tc) · (1 + ∆) · τu

≤ αu((r, s) + 1)
= αu(r, s) + T · τu

Further calculations are necessary at the borders between rounds. Details can be
found in [?].

From the local start times of slots αv(r, s) we get to numbers of local start cycles
tv(r, s) using Equation 1.

αv(r, s) = cv + tv(r, s) · τv

and then solving for tv(r, s). Trivially the number uv(r, s) of the locally last cycle on
ECUv is

uv(r, s) = tv((r, s) + 1)− 1

Consider slot (r, s) and let v = send(s). Lemma 5 and Lemma 6 then imply that
the value of the send buffer of ECUv on the network side (par = s mod 2) at the start
of slot (r, s) is copied to the all receive buffers on the network side by the end of that
slot

Lemma 7 (Message Transfer With Cycles). Let v = send(s). Then for all u:

htv(r,s)
v .f.sb(s mod 2) = huv(r,s)

u .f.rb(s mod 2)

This lemma talks only about digital hardware and hardware cycles. Thus we have
shown the correctness of data transmission via the bus and we are back in the digital
world.

13 Integrating f-Interfaces into the ISA

In Section 2 we have developed an ISA model for processors with devices. So far we
have collected many device specific results for ECUs connected by an fbus. Thus there
is not terribly much left to be done in order to integrate f-Interfaces into the ISA.

13.1 Specifying Port RAM

If a processor accesses a device with K I/O ports, then for k = dlog Ke − 2 the device
configuration (here ecu.f ) must contain a memory

ecu.f.m : {0, 1}k → {0, 1}8
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In our case the memory of the device contains the send buffer, the receive buffer
–each with ` bytes– and say c configuration registers. Thus we have

K = 2 · ` + 4 · c

We use the first ` bytes of this memory for the send buffer, the next ` bytes for the
receive buffer and the remaining bytes for the configuration registers. We formalize this
by defining for all indices of message bytes y ∈ {0, . . . , `− 1}:

sb(d)(y) = d.f.m(y)
rb(d)(y) = d.f.m(` + y)

In the absence of timer interrupts the ports are quiet. Thus, as long as no timer
interrupt occurs, we can use for the ECU the generic ISA model from Section 2.

13.2 Timer Interrupt and I/O

As pointed out earlier, at the ISA level the timer interrupt must betreated as an or-
acle input eev. Furthermore we have to deal with external data input fdin from the
f-interface. Thus –ignoring reset– the next state function for the device has on the ISA
level the format

ecu′ = δD(ecu, eev, fdin)

If we denote by eevi and fdini the oracle input and the input from the fbus for the
i-th executed instruction, then we get computations ecu0, ecu1, . . . by defining (again
straight from the automata theory textbooks):

ecui+1 = δD(ecui, eevi, fdini)

In our distributed system we have configurations ecuv from many ECUs. Within
this programming model we now introduce names jv(r, s) for certain indices of local
instructions on ECUv . Intuitively, the timer interrupts the instruction executed in lo-
cal configuration d

jv(r,s)
v of ECUv , and this locally ends slot (r, s). By the results of

Section 3, this is the instruction scheduled in the write back stage WB in the last cycle
uv(r, s) (defined in Section 12.2) of slot (r, s) on ECUv .

j(r, s) = s(WB,uv(r, s)) (3)

Note that in every cycle an instruction is scheduled in every stage. Nevertheless, due
to pipeline bubbles, the write back stage might be empty in cycle uv(r, s). In this situ-
ation the scheduling functions, by construction, indicates the next instruction to arrive
which is not there presently. We require interrupt event signals be only cleared by soft-
ware, hence the hardware interrupt signal will stay active in cycles following uv(r, s).
Thus Equation 3 also holds in this case.

This was the crucial step to get from the cycle level to the instruction level. Purely
within the ISA model we continue to define:

1. iv(r, s) = jv((r, s)− 1) + 1: the index of the first local instruction in slot (r, s)
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2. dv(r, s) = ecu
iv(r,s)
v : the first local ISA configuration in slot (r, s)

3. ev(r, s) = ecu
jv(r,s)
v the last local ISA configuration in slot (r, s)

We can even define the sequence eev(r, s) of oracle timer inputs eevi where i ∈
{iv(r, s), . . . , jv(r, s)}. It has the form

eev(r, s) = 1a0b1

where the timer interrupt is cleared by software instruction iv(r, s)+a−1 and a+b+1 =
jv(r, s)− iv(r, s) + 1 is the number of local instructions in slot (r, s).

Indeed we can complete, without any effort, the entire ISA programming model.
The effect of an interrupt on the processor configuration has been defined in the previous
section, thus we get for instance

ecuv(r, s).d.dpc = 032

ecuv(r, s).d.pc = 03010

Also for the transition from ev(r, s) to dv((r, s) + 1) and only for this transition we
use the external input

fdinjv(r,s) ∈ {0, 1}8·`

Thus we assume that it consists of an entire message and we copy that message into
the user visible receive buffer

rb(ecuv((r, s) + 1)) = fdinjv(r,s)

Of course we also know what this message should be: the content of the user visible
send buffer of ECUsend(s) at the end of slot (r, s)− 1:

fdinjv(r,s) = sb(ecusend(s)((r, s)− 1)

Thus

Theorem 5.

rb(ecuv((r, s) + 1)) = sb(evusend(s)((r, s)− 1))

This completes the user visible ISA model. And with Lemma 7 we essentially al-
ready completed the hardware correctness proof of the implementation of (??). The
nondeterminism is completely encapsulated in the numbers jv(r, s) as it should be, at
least if the local computations are fast enough. All we need to do is to justify the model
by a hardware correctness theorem and to identify the conditions under which it can be
used.

13.3 Hardware Correctness of the Parallel System

For a single slot (r, s), and a single processor with an f-interface, the generic hardware
correctness statement from Section 4.4 translates into Theorem 6 below. It is proven
by induction over the cycles of the slot. Recall from Sect. 12.2 that we know already
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the start cycles tv(r, s) for all ECUs. The statement of the theorem is identical for all
ECUv . Thus we drop the subscript v.

The theorem assumes that at the start of the theorem the pipe is drained and that the
simulation relation between the first hardware configuration h(r, s) = ht(r,s) and the
first ISA configuration d(r, s) = di(r,s) of the slot holds.

Theorem 6 (Hardware Correctness for One Slot). Let the pipeline of the processor
be drained (drained(h(r, s)) and let the simulation relation hold at the beginning of a
round, i.e. sim(d(r, s), h(r, s)).

Then for all t ∈ {t(r, s), . . . , t((r, s)+1)−1}, for all stages k and for all registers R
with stage(R) = k:

ht.p.R = ecus(k,t).p.R
m(ht.p) = ecus(mem1,t).p.m

ht.f.sb(¬par(ht)) = sb(ecus(mem1,t))
ht.f.rb(¬par(ht)) = rb(ecus(mem1,t))

Then we can show

Theorem 7 (Hardware Correctness for System).

∀(r, s), v : drained(hv(r, s)) ∧ sim(dv(r, s), hv(r, s))

Theorem 7 is proven by induction over the slots (r, s). In order to argue about the
boundaries between two slots Theorem 6 and Lemma 6 must be applied on the last
cycle of the previous slot.

14 Pervasive Correctness Proofs

Next, we show how pervasive correctness proofs for computations with timer interrupts
can be obtained from (i) correctness proofs for ISA programs which cannot be inter-
rupted (ii) hardware correctness theorems and (iii) worst case execution time (WCET)
analysis. As one would expect, the arguments are reasonably simple, but the entire for-
malism of the last sections is needed in order to formulate them.

We consider only programs of the form11:

{
: P;

a : jump a;
a+4 : NOP;

}

The program does the useful work in portion P and then waits in the idle loop for
the timer interrupt. P initially has to clear and then to unmask the timer interrupt, which
is masked when P is started (see Sect. 13.2).
11 Note that we have an byte addressable memory and that in an ISA with delayed branch the

idle loop has two instructions.
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14.1 Computation Theory

We have to distinguish carefully between the transition function δD(ecu, eev, fdin)
of the interruptible ISA computation and the transition function δu(ecu) of the non
interruptible ISA computation, which we define as follows:

δu(ecu) = δD(ecu, 0, ∗)

Observe that this definition permits the non interruptible computation to clear the
timer interrupt bit by software. Non interruptible computations starting from configura-
tion ecu are obtained by iterated application of δu:

δi
u(ecu) =

{
ecu i = 0
δu(δi−1

u (ecu)) otherwise

For the ISA computation

d(r, s) = ecui(r,s), ecui(r,s)+1, . . . , ecuj(r,s) = e(r, s)

which has been constructed in the hardware correctness theorem we get

Lemma 8. For all t such that 0 ≤ t ≤ j(r, s)− i(r, s):

ecui(r,s)+t = δt
u(d(r, s))

This lemma holds due to the definition of j(r, s) and the fact that the timer is masked
initially such that the instructions of the interruptible computation are not interrupted.

We define the ISA run time12 Tu(ecu, a) simply as the smallest i such that δi
u fetches

an instruction from address a:

Tu(ecu, a) = min{i | δi
u(ecu).p.dpc = a}

Furthermore we define the result of the non interruptible ISA computation as

resu(ecu, a) = δTu(ecu,a)
u (ecu)

Correctness proofs for non interruptible computations can of course be obtained by
classical program correctness proofs. They usually have the form d ∈ E → resu(d, a) ∈
Q or, written as a Hoare triple {E}P{Q}.

We assume that the definition of Q does not involve the PC and the delayed PC.
Because the idle loop only changes the PC and the delayed PC of the ISA computation
we can infer on the ISA level that property Q continues to hold while we execute the
idle loop:

∀i ≥ Tu(ecu, a) : δi
u(ecu) ∈ Q

12 This is the time until the idle loop is reached
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14.2 Pervasive Correctness

Assume sim(ecu, h) holds. Then the ISA configuration ecu can be decoded from the
hardware configuration by a function:

ecu = decode(h)

Clearly, in order to apply the correctness statement {E}P{Q} to a local computa-
tion in slot (r, s), we have to show for the first ISA configuration in the slot:

d(r, s) ∈ E

In order to apply the processor correctness theorem the simulation relation must
hold initially:

sim(d(r, s), h(r, s))

Now consider the last hardware configuration U(r, s) = ht((r,s)+1)−1 of the slot.
We want to conclude

Theorem 8. The decoded configuration obeys the postcondition Q:

decode(u(r, s)) ∈ Q

This only works if portion P is executed fast enough on the pipelined processor
hardware.

14.3 Worst Case Execution Time

We consider the set H(E) of all hardware configurations h encoding an ISA configura-
tion d ∈ E:

H(E) = {h | dec(h) ∈ E}

While the decoding is unique, the encoding is definitely not. Portions of the ISA
memory can be kept in the caches in various ways.

For a hardware configuration h = h0 we define the hardware run time TH(h, a)
until a fetch from address a as the smallest number of cycles such that in cycle t an
instruction, which has been fetched in an earlier cycle t′ < t from address a, is in the
write back stage WB. Using scheduling functions this definition is formalized as

TH(h, a) = min{t | ∃t′ : s(WB, t) = s(IF, t′) ∧ ht′ .dpc = a}

Thus for ISA configurations satisfying E we define the worst case execution time
WCET (E, a) as the largest hardware runtime TH(h, a) of a hardware configuration
encoding a configuration in E:

WCET (E, a) = max{TH(h, a) | h ∈ H(E)}

As pointed out earlier such estimates can be obtained from (sound!) industrial tools
based on the concept of abstract interpretation [?]. Assume we have

WCET (E, a) ≤ T − off
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Now consider a local computation within slot (r, s) starting in hardware configura-
tion h(r, s) = ht(r,s) and in ISA configuration d(r, s) = ecui(r,s). If this computation
is run for hardware run time many cycles TH(h(r, s), a) < T − off , then the com-
putation is not interrupted and the instruction in the write back stage (at the end of the
computation) is the first instruction being fetched from a. By the definition of the ISA
run time this is exactly instruction i(r, s) + Tu(d(r, s), a), thus we conclude:

s(WB, t(r, s) + TH(h(r, s), a)) = i(r, s) + Tu(d(r, s), a)

Let h′ = ht(r,s)+TH(h(r,s),a) be the hardware configuration in this cycle and let
d′ = di(r,s)+Tu(d(r,s),a) = resu(d(r, s), a) be the ISA configuration of the instruction
in the write back stage.

In this situation the pipe is almost drained. It contains nothing but instructions from
the idle loop. Thus the processor correctness theorem sim(ecu′, h′) holds for all com-
ponents of the configuration but the PC and the delayed PC. Therefore we weaken the
simulation relation sim to a relation dsim by dropping the requirement that the PCs
and delayed PCs should match:

dsim(ecu′, h′)

Until the end of the slot in cycle t(r, s)+T and instruction j(r, s), only instructions
from the idle loops are executed. They do not affect the dsim relation, hence

dsim(j(r, s), U(r, s))

Since resu(d(r, s), a) ∈ Q and Q does not depend on the program counters we
have j(r, s) ∈ Q. We derive that decode(U(r, s)) coincides with j(r, s) except for the
program counters. And again, because this does not affect the membership in Q, we get
the desired theorem.

15 The Distributed OSEKTime Like Operating System D-OLOS

15.1 D-OLOS Configuration

As in the previous sections we consider p electronic control units ECUi, where i ∈ [0 :
p − 1]. On each ECUi there are ni user processes vm(i, j), where j ∈ [0 : ni − 1],
running under the real time operating system OLOS. These user programs are compiled
C0 programs. We denote the source program for vm(i, j) by C(i, j).

On each ECUi application programs C(i, j) can access via system calls a set of
messages buffers MB(i)(k). Messages come in nm many different types. For k ∈
[0 : nm − 1] messages of type k are stored in message buffers MB(i)(k). Thus each
ECUi is capable of storing one message of each type in its message buffers MB(i)(k).
These message buffers are the direct counterparts of the FTCom buffers in OSEK.
However we do not support fault tolerance, yet. Messages between different ECU’s are
exchanged via an fbus using f-interfaces. The drivers for these interfaces are part of
OLOS.
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As before time is divided into rounds r each consisting of a fixed number ns of slots
s, The scheduling of all applications C(i, j) as well as the inter ECU communication
procedure via the fbus is identical in each round r and only depends on the slot index s.
From the standpoint of a C0 application programmer a D-OLOS configuration dolos
representing the global state of the distributed has the following components:

– dolos.C(i, j) is the configuration of an abstract C0 machine representing applica-
tion program C(i, j) for i ∈ [0 : p− 1] and j ∈ [0 : ni − 1].

– dolos.MB(i)(k) is the k-th message in the message buffer of ECUi.
– The index of the current slot is given by dolos.s.
– dolos.bus holds the message value of the message currently being broadcast.

15.2 Scheduling and Communication

For slots (r, s) we denote by D(r, s) resp. E(r, s) the D-OLOS configuration at the
start resp. at the end of slot (r, s). The message on the bus is constant during each slot
(r, s). Thus it equals D(r, s).bus.

Scheduling of applications and communication between message buffers on dif-
ferent ECUs is identical for all rounds r and depends only on the slot index s. It is
determined by three functions.

– The scheduling of all applications is defined by the global scheduling function run
with run(i, s) ∈ [0 : ni − 1]. For all i and s this function returns the index of the
application being executed in slots (r, s) on ECUi. Thus application C(i, run(i, s)
is running on ECUi during slots (r, s). The state of applications, which are not
running, does not change during a slot

j 6= run(i, s) → E(r, s).C(i, j) = D(r, s).C(i, j)

– As before functions send with send(s) ∈ [0 : p − 1] gives the index of the ECU
sending during slots (r, s).

– Function mtype with mtype(s) ∈ [0 : nm − 1] gives the type of the message
transmitted over the fbus during slots (r, s). The message bus(r, s) is the content
of message buffer with index mtype(s) of ECUsend(s) at the end of the previous
slot

bus(r, s) = E((r, s)− 1).MB(send(s),mtype(s))

At the start of the next slot, message bus(r, s) is copied into all message buffers
with index mtype(s)

∀i : D((r, s) + 1).MB(i, mtype(s)) = D(r, s).bus

15.3 Local Computation

For each ECUi and slot (r, s) we have to define the effect of the application C(i, run(i, s)
on the corresponding C0 configuration dolos.C(i, run(i, s)) and on the local message
buffers dolos.MB(i)(k). We define a local configuration lc as a pair with the following
components
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1. a C0 configuration lc.c of a local application
2. a set of local message buffers lc.M(k) with k ∈ [0 : nm− 1].

and a local transition function lc′ = δLC(lc). The C0 programs running under the
local operating system (OLOS) can read and write MB(k) using two system-calls:

1. ttsend(k,msg): The execution of this function results in copying the value of the
C0 sub-variable with identifier msg into MB(k). Let MSG = va(lc.c, msg) and
K = va(lc.c, k) be current values of msg and k. Then

lc.c.pr = ttsend(k,msg); r → lc′.M(K) = MSG ∧ lc′.c.pr = r

2. ttrec(k, msg): At invocation of this function the C0 sub-variable having the iden-
tifier msg is updated with the value of MB(k). Let K = va(lc.c, k). Then

lc.c.pr = ttrec(k, msg); r → va(lc′.c,msg) = M(K) ∧ lc′.c.pr = r

OLOS offers a third call named ttex. An application invoking this system-call indi-
cates that it has completed its computation for the current slot and wants to return the
control back to the operating system. The execution of system call ttex on the local
configuration is like a NOOP:

lc′.c.pr = ttex; r → lc′.pr = r

If the program rest does not start with one of the system calls, then an ordinary C0
instruction is executed and the message buffers stays unchanged:

lc′ = δC(lc.c, lc.M)

We define run tim (measured in C instructions) and result of a local computation in
the usual way

TC(lc) = min{t : ∃r : δt
LC(lc).pr = ttex; r}

resLC(lc) = δ
TC(lc)
LC (lc)

and complete the definition of the D-OLOS semantics with the help of the result of
local computations. Let j = run(i, s). Then

(E(r, s).C(i, j), E(r, s).MB(i)) = resLCD(r, s).C(i, j), D(r, s).MB(i)

Let us consider a situation where the application code is wrapped by a while-loop
and that ttExFinished() is invoked only once as the last statement of the loop body:

while(true) { “Application Code′′ ; ttExFinished() }

In this case we enforce the application code to be executed once each time the appli-
cation is scheduled. Intuitively, from the applications programmers point of view, the
ttExFinished() system-call does nothing but to wait till the application is scheduled
again.
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16 D-OLOS Implementation

Consider any ECU . We implement the local version OLOS of D-OLOS by specializ-
ing the abstract kernel of CVM. The only device of CVM is an f-interface. The ISA
programs of the user virtual machines are obtained by compiling the local application
programs. Among others the abstract kernel uses the following variables and constants

– constant own of the kernel stores the index of the local ECU.
– C0 implementations of the functions run, send and type
– An integer variable s keeps track of the current slot.
– The content of local message buffers are stored in an array M [0 : nm − 1] of

messages

16.1 Invariants

Let cvm = (cvm(0), . . . , cvm(p−1)) be a sequence of CVM configurations. On cvmi

we will make use of ni user virtual machines, one for each application on ECUi. An
obvious simulation relation osim(aba)(dolos, cvm) is parameterized by a sequence
aba of allocation functions aba(i, j). For each ECUi we require:

1. the kernel keeps track of the D-OLOS slot

va(cvm(i).c, s) = dolos.s

2. The application scheduled by D-OLOS is running

cvm(i).cp = run(i, dolos.s)

3. the user processes of CVM encode the applications of D-OLOS

∀j < ni : consis(aba(i, j))(dolos.C(i, j), cvm(i).vm(j))

4. the content of the message buffers of D-OLOS are stored in the corresponding
variables of the abstract kernel

∀k : va(cvm(i),MB[k]) = dolos.MB(i)(k)

For arguments at slot boundaries we need to define for ECU indices i and slots (r, s)
the first CVM configuration dcvm(i)(r, s) and the last CVM configuration ecvm(i)(r, s)
of cvm(i) in slot (r, s). Slot boundaries are defined by timer interrupts.

Because the CVM primitive wait is interruptible by timer interrupts, one has to ex-
tend the sequence eev(i)t of oracle interrupt event signals also for the situation, when
the current process of CVM is the abstract kernel, i.e. a C0 program, and the program
rest starts with wait; for a simulation theorem one then has - as in section x - to con-
struct a sequence eev(i)t such that the simulation theorem works. Because the ker-
nel computation gets stuck if the program rest starts with the wait primitive one then
can easily show: if user processes on ECUi are not interrupted during slot (r, s) then
dcvm(i)(r, s) is the first configuration in slot (r, s) such that cvm(i).c.pr = wait; r′

for some r. The first configuration after the timer interrupt is defined in a similar way
as the cvm configuration after a trap instruction in subsection y.

At slot boundaries we then can define two more ’communication’ invariants:
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1. If i = send(s), then the send buffer sb(ecvm(i)((r, s)−1.f)) on ECUi at the end
of the previous slot is the message on dolos.bus during slot (r, s)

i = send(s) → sb(ecvm(i)((r, s)− 1.f)) = D(r, s).bus

2. The receive buffer rb(dcvm(i)(r, s) on every ECUi at the beginning of slot (r, s)
is the message on dolos.bus during the previous slot

∀i : rb(dcvm(i)(r, s)) = D((r, s)− 1).bus

16.2 Construction of the Abstract OLOS Kernel

Assume that all invariants hold for slot (r, s)−1. We construct the abstract OLOS kernel
such that they are maintained during slot (r, s). One round of a CVM computation on
an ECU proceeds in three phases as shown in figure x. In phases 1 and 3 the kernel runs;
in phase 2 a user process runs and makes system calls. The following happens in phase
1.

1. the kernel runs. It increments s. Then part 1 of osim holds.
2. a driver using variants of the copy primitives of CVM copies the local receive buffer

into variable MB(type(own, s − 1)). This implies that part 4 of osim holds after
phase 1.

3. The next process to be started is computed by cup = run(own, s) and the CVM
primitive start(cup) is executed. This implies that part 2 of osim holds after
phase 1.

During phase 2 we only have to worry about the running process. It is easy to im-
plement the handlers for system calls ttsend and ttrec with the help of variants of the
CVM copy primitive such that parts 3 and 4 of osim hold.

Phase 2 ends by a system call ttex of the application returning control to the kernel
again. The kernel determines whether its ECU is the sender in the next slot

send(s + 1) = own?

If this is the case it copies the content of variable MB(mtype(s + 1)) into the local
send buffer. This implies part 1 of the communication invariant. In any case the kernel
then executes the wait primitive and idles waiting for the end of the round.

Worst case execution time analysis for an ECU must consider all assembler pro-
grams runnig on the ECU: the compiled concrete kernel as well as the compiled user
programs. Address a from subsection .. is the address, where the compiled concrete
kernel starts waiting for the timer interrupt.

Theorem 4 then implies part 2 of the communication invariant.

17 The Auto Focus Task Model (AFTM)

17.1 Configurations

AFTM is a computational model for a restricted version of the AutoFocus CASE tool
[]. The restrictions were aimed at making the implementation of AFTM by D-OLOS
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efficient. As many high level CASE tools AFTM programs can be modeled by a certain
number M of communicating ’task’ automata T (i). For technical reasons we one adds
a automaton T (M + 1) which always generates output. We number the automata with
indices i ∈ [1 : M + 1]. Each automaton with index i has nip(i) input ports IP (i, j)
with j ∈ [0 : nip(i) − 1] as well as nop(i) output ports OP (i, j) with j ∈ [0 :
nop(i)−1]. A function src (for source) specifies for each input port OP (i, j) the index
(i′, j′) = src(i, j) of the output port such that OP (i′, j′) is connected to IP (i, j). An
AFTM configuration aftm has the following components:

1. aftm.S(i): the state of the i’th task automaton. It is split into subcomponents i)
a control component aftm.S(i).con and ii) data components aftm.S(i).x, which
are later stored in a set V of C0 variables. Each automaton has a control state called
idle.

2. aftm.IP (i, j): the current value of input port IP (i, j).
3. aftm.OP (i, j): the current value of output port IP (i, j) Input and output ports

can hold non empty values or a special empty value ε.

Initially (in configuration aftm0) all automata are in idle state and all ports are empty.
Indices i of tasks are partitioned into three classes: indices of AND-tasks, OR tasks and
the special ’environment’ automaton T (M + 1).

[1 : M + 1] = Tand ] Tor ] {M + 1}

17.2 Local and Global Next State computation

One defines when a task i is runnable in configuration aftm by a predicate runnable(aftm, i).
Definition:

1. the environment task is always runnable:

∀aftm : runnable(aftm,M + 1)

2. OR-tasks are runnable if one of their inputs are non empty:

i ∈ Tor ⇒ runnable(aftm, i) ⇔ ∃j : aftm.IP (i, j) 6= ε

3. AND-tasks are runable. if all their inputs are non empty

i ∈ Tand ⇒ runnable(aftm, i) ⇔ ∀j : aftm.IP (i, j) 6= ε

For AFTM configurations aftm we define the configuration aftm′ after the next
AFTM step. AFTM computations are then defined in the usual way by

aftmr+1 = (aftmr)′

In AFTM, each step consists of two phases. In the first phase all runnable tasks make
locally a number of micro steps until their control reaches the idle state again. In the
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second phase values of non empty output ports are copied into the connected input ports
and all output ports are cleared. 13 Formalization of this model is straight forward.

Assume local computation is specified by a ’local autofocus’ transition function
δLAF mapping states S and a vector IP of input port contents to states T ′ and a vector
of output port contents OP ′

(S′, OP ′) = δLAF (T,OP )

The local run time TLAF (aftm, i)- in automata steps - of runnable task t in configura-
tion aftm is defined as

TLAF (aftm, i) = min{t : δt
LAF (aftm.S(i), aftm.IP (i)).S.con = idle}

and the result of this local computation is

resLAF (aftm, i) = δ
TAF (aftm,i)
LAF (aftm.S(i), aftm.IP (i))

We define the configuration aftm” after the local computations by:

1. for runnable tasks state and output ports are determined by the result of local com-
putations. Input ports are cleared runnable(aftm, i) →

(aftm”.T (i), aftm”.OP (i)) = resLAF (aftm, i)∧
∀j : aftm.IP (i)(j) = ε

2. state and output ports of non runnable tasks don’t change. Input ports are not cleared
and (thus can continue to accumulate inputs for AND tasks in the communication
phase). 6 runnable(aftm, i) →

(aftm”.T (i), aftm”.OP (i)) = (aftm.T (i), aft.OP (i))∧
∀j : aftm”.IP (i, j) = aftm.IP (i, j)

In the communication phase non empty contents of output ports are copied into
connected input ports. Let src(i, j) = (i′j′). Then

aftm′.IP (i, j) =

{
aftm”.OP (i′, j′) ifaftm”.OP (i′, j′) 6= ε

aftm.IP (i, j) otherwise

All output ports are cleared

∀i, j : aftm′.OP (i, j) = ε

Local state does not change during the communication phase

∀i : aftm”.T (i) = aftm′.T (i)

13 An easy exercise shows that this model is equivalent to the model described in [].
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18 Simulation of AFTM by D-OLOS

18.1 C0 Code Generation for Local Computation

We define a local configuration T of a task automaton TA as a triple with the following
components: i) state T.S, content of input ports T.IP [0 : nip − 1] and iii) content of
output ports T.OP [0 : nop− 1].

In order to implement a single task automaton TA as a process in OLOS, we first
need a C0 program prog(TA) which simulates local runs of the automaton in the fol-
lowing sense:

I/O: Inputs are read from a C array IP [0 : nip− 1] and outputs are written to another
C-array OP [0 : nop−1]. Access to these arrays is restricted to assignments of the form
e = IP [e′] for input and O[e′] = e for output operations; here e and e′ are expressions.
This restriction makes it later easy to replace these assignments by Operating system
calls like ttrec(e, e′); the replacement will however be very slightly more involved.

Data: each data component S.x of the state has its counter part in a C variables with
the name x.

Simulation Relation: recall that for C0 configurations c and expressions e we denote
by va(c, e) the value of expression e in configuration c. A trivial simulation relation
afsim(T, c) between T and c is established by requiring for all i and x

T.OP [i] = va(c,OP [i])
T.IP [i] = va(c, IP [i])

T.x = va(c, x)

Specification of the local program: Program prog(TA) is specified by the following
requirement: assume afsim(T, c) holds. Moreover assume that both the automaton and
the C machine are in their initial states; for the C machine this means that the program
rest is the body of the main function, formally to be found in the function table FT at
argument main, component body of the C-configuration.

T.con = idle
c.pr = FT (main).body

Then we simply require that the simulation relation holds for the results of the compu-
tations

sim(resC(c), resLAF (T ))

There are several ways to produce the program prog(TA) from the task automaton
TA. One can generate the program by hand or by a translation tool. Also, one can do
the correctness proof by hand or one can get it by an automatic translation validation
tool. For a program generated by a a verified program generation tool, one would of
course need no further correctness proof. But to the best of our knowledge no such tool
exists yet. Note that in any case we are dealing so far with plain C code verification
only.
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18.2 Deployment

We will simulate each step of AFTM by one round consisting of ns slots of D-OLOS.
Thus, we will be interested to relate aftmr with D(r, 0). In order to deploy an AFTM
machine on a COA machine we have to specify several things:

Task deployment for each AFTM task T (i) we have to specify the CO application
C(i, j) which simulates the task. Let p be the number of ECUs and N the maximum
number of task executable on an ECU. Then this will be done with an injective task
deployment function

depl : [[1 : M + 1] → [0 : p− 1]× [0 : N − 1]

Application Scheduling for every ECU number i and for every slot s we have to specify
the CO application run(i, s) running on ECU(i) during slot s:

run : [0 : p− 1]× [0 : ns− 1] → [0 : N − 1]

This defines for each task T (k) and round r a slot start(k) < ns, such that task T (k)
is simulated in slot start(k) of the round: if depl(k) = (i, j) then

start(k) = s ↔ run(i, s) = j

Output Port Broadcasting Recall that for each AFTM task T (i) we denote by nip(i)
resp. nop(i) the number output ports resp. input ports of task T (i). The set of all indices
of output ports is denoted by

OP =
⋃
i

{i} × [0 : nop(i)− 1]

We denote by N the cardinality of this set. For each pair of indices (i, j) ∈ OP
specifying output port j of task i we specify a function

broad : OP → [0 : ns− 1]

During each round r we plan to broadcast (aftmr)”.OP (i, j) ( i.e. the content of
port OP (i, j) after the local computation phase of macro step r )in slot broad(i, j) of
the half round.

We require in each round, that any output port OP (i, j) of task i is only broadcast
after the task has run:

∀i, j : broad(i, j) > start(i)

Obviously we need ns ≥ N+1. This is the only restriction we impose on schedules.
Schedules will tend to be shorter if tasks with many output ports are scheduled earlier
than tasks with few output ports.
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18.3 Mapping Output Ports on Message Buffer Entries

We reuse function broad to map the output ports OP (i, j) with their two dimen-
sional index structure to the D-OLOS message buffers MB(k) with their one dimen-
sional index structure. Thus, contents of output port OP (i, j) will be stored in elements
MB[broad(i, j)]. Equivalently: output ports broadcast in slot s are stored on each ECU
in message buffers MB(s).

18.4 Invariants

At the slot boundaries we maintain four invariants between the AFTM configurations
aftmr, (aftmr)” and the corresponding D-OLOS configuration D(r, s). For all slots
(r, s), for all indices (i, j of output ports OP (i, j) and for all indices e of ECUs:

1. consider an output port OP (i, j) and the message buffers MB(broad(i, j)) re-
served for storing values of port OP (i, j). Before or while OP (i, j) is scheduled
for broadcast, the message buffers contain the value of OP (i, j) before the local
computation phase of step r. Afterwards they have the value after the local compu-
tation phase. There is however an exception. On the ECUe where task i is deployed
(formally: e is the first component of depl(i)) the new values are already in the local
message buffers after the task has been simulated:

D(r, s)(e).MB(broad(i, j)) ={
(aftmr+1)”.OP (i, j) s > broad(i, j) ∨ s > start(i) ∧ e = depl(i)[1]
(aftmr)”.OP (i, j) otherwise

2. Consider a data component aftm(i).S.x of task i and the C0 variable x of the
application C(depl(i)) where task i is simulated. Until the task is scheduled for
simulation, the value of the variable is the value of x before the step r. Otherwise
it is the value after step r which is the same as the value before the next step:

va(D(r, s).C(depl(i)), x) =

{
aftmr(i).S.x start(i) ≤ s

aftmr+1(i).S.X otherwise

3. The invariants given so far do not suffice to infer the input buffers aftm(i).IP (i, j)
from the message buffers for slots s = start(i). Let (i′, j′) = src(i, j) and assume
that broad(i′, j′) < start(i). Then the output port value (aftmr)”.OP (i′, j′)
needed for the computation of input port value aftmr(i).IP (i, j) is already over-
written in the message buffers. Therefor we save in the previous round the endan-
gered value (aftmr)”.OP (i′, j′) into a ’shadow message buffer’ variable SMB(i′, j′)
of the application. We define a predicate q(i′, j′) stating that a shadow message
buffer is needed for OP (i′, j′) by:

q(i′, j′) ↔ broad(i′, j′) < start(i)

and require

q(i′, j′) → va(D(r, s).C(depl(i)), SMB(i′, j′) = (aftmr)”.OP (i′, j′)

Initially the shadow buffers must be set to ε
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4. finally we must track the accumulation of values in the input ports IP (i, j) of AND
tasks. This is done in array elements I[j] of application C(depl(i)). Even if task i
is not runnable in step r the simulation must update array I . We require

va(D(r, s).C(depl(i)), I(j)) =

{
(aftmr−1)”.IP (i, j) s ≤ start(i)
(aftmr)”.IP (i, j) otherwise

18.5 Construction of D-OLOS Applications

When application C(depl(i) is started in slot (r, start(i)), we first simulate the com-
munication phase at the end of the previous slot.

Communication phase: The input port values aftmr(i).IP (i, j) at the start of step r
are computed in C0 array IP . Let k(i, j) = broad(src(i, j)) be the index of message
buffers, where values of the output port OP (src(i, j)) connected to IP (i, j) are stored.
Then for each j the new values of IP (j) is computed as follows. The current content
of message buffer MB(k(i, j)) is accessed with a ttrec system call. If q(i, j) = 0 it is
directly stored in IP (j) by the system call

ttrec(k(i, j), IP (j))

Otherwise shadow register SMB(i, j) is copied into IP (j) and then MB(k(i, j))
is copied into the shadow register:

IP (j) = SMB(i, j); ttrec(k(i, j), SMB(i, j))

In the C0 configurations c after execution of these pieces of code we conclude from
the invariants for the previous slot:

va(c, IP (j)) = aftmr.IP (i, j)

and that invariant 3 holds. Next, we clear all entries OP (j) in the C0 array of output
values. For configurations c after this code holds

va(c,OP (j)) = aftmr.OP (i, j)

Local computation Next we test wether task i is runnable; if so we run program
prog(T (i)). For configurations c after execution of this piece of code we conclude that
invariant 2 holds and that array OP holds the values of the output ports OP (i, j) after
the local computation phase

va(c,OP (j)) = (aftmr)”.OP (i, j)

For runnable tasks we clear the input array IP , for non runnable tasks, the input
array stays unchanged. From this we conclude invariant 4.
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Updating the message buffers Using the ttsend system call the new values of the output
ports are copied into their message buffers

ttsend(broad(i, j), OP (j))

After this invariant 1 holds.
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