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Abstract. We describe a gate level design of a FlexRay-like bus interface. An
electronic control unit (ECU) is obtained by integrating this interface into the de-
sign of the verified VAMP processor. We get a time triggered distributed real-time
system by connecting several such ECU’s via a common bus. We define a pro-
gramming model for such a system at the instruction set architecture (ISA) level
and prove that it is correctly implemented at the gate level. The proof combines
theories of processor correctness, communication systems, program correctness
and realistic worst-case execution time (WCET) analysis into a single unified
mathematical theory.

1 Introduction

1.1 Pervasive Verification and Unified Theory

The results of this paper were obtained under the German Verisoft project that aims at
the development of tools and methods for the pervasive formal verification of computer
systems. Pervasive correctness theorems argue simultaneously about the correctness of
several system components like: Processors, I/O devices and programs. For real-time
systems the correctness proofs are also based on the fact that certain computations are
performed within certain time bounds.

Here we consider a distributed real-time system. In the pervasive correctness proof
of this system we combine theories of processor correctness, communication systems,
program correctness and realistic worst-case execution time (WCET) analysis [Abs06]
into a single unified mathematical theory in the following sense:

Concepts shared between theories must not only be defined using the same formal-
ism (this can be done easily using e.g. set theory) they must be defined literally in
the same way in all theories concerned. Hardware correctness proofs of processors,
I/O-devices and networks must use the same hardware- and the same instruction set
architecture (ISA)1 model. Correctness proofs of communicating assembler programs
must use literally the same ISA model, too.

� Work partially funded by the International Max Planck Research School for Computer Sci-
ence (IMPRS) and the German Federal Ministry of Education and Research (BMBF) in the
framework of the Verisoft project under grant 01 IS C38.

1 In a nutshell the ISA is an assembler semantic with interrupts visible, i.e. syntactic sugar for
the machine language.
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Fig. 1. Electronic Control Units

WCET analysis done for hardware models with real-time timers must clearly be
based on cycle counts of the hardware. Yet in a pervasive theory of real-time sys-
tems this execution time analysis must be formally combined with program correctness
proofs based on the ISA model, where caches are invisible and hence argumentation
about the exact cycle count is impossible.

1.2 System Overview

The distributed real-time system considered here is very similar to systems used in
the automotive industry: A fixed number p of electronic control units ECUv for v ∈
{0, . . . , p − 1} are connected via a FlexRay-like bus; applications run with a fixed
schedule under an OSEKtime-like [OSE06] real-time operating system.

FlexRay is a communication protocol for safety critical real-time automotive ap-
plications, which has been developed by the FlexRay Consortium [Fle06]. It is a static
time division multiplexing network protocol that supports clock synchronization. In this
paper we do not deal with fault tolerance regarding the inter ECU communication.

The hardware of each ECU is clocked by an oscillator with a nominal clock period
of say τref . For all v the individual clock period τv of ECUv is allowed to deviate from
the nominal period by δ = 0.15%:

| τv − τref | ≤ τref · δ

This limitation can be easily achieved by current technology.
With Δ = 2δ/(1 − δ) we easily bound for all u and v the relative deviation of

individual clock periods among each other by:

| τv − τu | ≤ τv · Δ

The assembler programmer sees such a system mostly at the ISA level. An ECU
configuration dv = (dv.p, dv.f), see Fig. 1, is a pair consisting of a DLX processor
configuration dv.p, as defined in [DHP05], and a configuration of a FlexRay-like inter-
face (f-interface) dv.f .

From an interface configuration dv.f it is easy to define two user-visible buffers:
A send buffer sb(dv) and a receive buffer rb(dv). Each buffer is capable of holding a
message of � bytes.

In the distributed system all communications and computations proceed in rounds r
where r ∈ N. As depicted in Fig. 2 each round is divided into an even2 number of
slots s where s ∈ {0, . . . , ns − 1}. The tuple (r, s) refers to slot s in round r.

2 In Sect. 4.1 we will argue why an even number of slots is required.
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Fig. 2. Slots and Rounds

On each ECU, boundaries between slots are determined by local timer interrupts
every T hardware cycles. At the beginning of each round, the local timers are synchro-
nized.

Given a slot (r, s) we define the predecessor (r, s) − 1 and the successor (r, s) + 1
according to the lexicographical order of slots. We denote by dv(r, s) the first and by
ev(r, s) the last ISA configuration of ECUv during slot (r, s).

ECUs communicate according to a fixed schedule that is identical for each round:
The function send specifies for all rounds r the ECU that owns the bus during slot (r, s):

send : {0, . . . , ns − 1} → {0, . . . , p − 1}

During slot (r, s) the content of the send buffer of ECUsend(s) at the end of the
previous round (r, s) − 1 is broadcast to the receive buffers of all units ECUu and
becomes visible there at the beginning of the next round (r, s) + 1:

∀u, r, s : sb(esend(s)((r, s) − 1)) = rb(du((r, s) + 1)).

1.3 Results

We present the following results:

1. We describe a gate level design of a FlexRay-like bus interface and elaborate the
sketchy correctness proof from [BBG+05] in a distributed hardware model (Theo-
rem 1). To the best of our knowledge this is the first detailed gate level correctness
proof of an I/O device.

2. An ECU is obtained by integrating the f-interface into the verified VAMP proces-
sor [BJK+03, DHP05]. We develop an ISA model for such an ECU. This model
is necessarily nondeterministic, because f-interfaces contain timers that interrupt
the processor every say T hardware cycles; but cache misses (and hence hardware
cycles) are invisible at the ISA level. We then prove the correctness of its hardware
implementation (Theorem 2). To the best of our knowledge this is the first hardware
correctness proof for a processor together with a device capable of generating timer
interrupts.

3. Combining the first two results we obtain a correctness proof for the hardware
of an entire distributed real-time system (Theorem 3). Again, to the best of our
knowledge no such proof has been presented in the literature before.
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4. The last result (Theorem 4) is technical. We show how pervasive correctness proofs
for local ISA computations with timer interrupts (which are nondeterministic) and
the underlying hardware can be obtained from i) conventional correctness proofs
for ISA programs that cannot be interrupted ii) hardware correctness theorems and
iii) WCET analysis.

2 Overview and Related Work

Consider a situation, where a sending ECU puts a bit on the bus and this bit is sampled
into registers of receiving ECUs. Then, due to the clock drift between ECUs, we cannot
guarantee that the set up and hold times of the receiving registers are obeyed at all clock
edges. This problem occurs whenever computers without a common clock exchange
data. It is solved by serial interfaces using a nontrivial protocol. Section 3 deals with the
hardware correctness proof of a serial interface as prescribed by the FlexRay standard.

The main arguments have already been published in [BBG+05], so we only summa-
rize the results. We cannot completely argue on the digital levels. Certain lemmas con-
cerning the data transmission on the bus argue about continuous time. Formal proofs
for these arguments have already been obtained [Sch06]. Beautiful automatic correct-
ness proofs for abstract versions of protocols for serial interfaces using k-induction are
reported in [BP06]. It would be highly desirable to use results of this nature as lemmas
in overall correctness proofs for serial interface hardware. However, this would require
to formally justify the abstractions being used in [BP06] within a hardware model with
set-up and hold times.

In Sect. 4 we deal with f-interfaces that are constructed with the help of serial inter-
faces. The interfaces have local timers that are synchronized at the start of each round.
Using arguments from classical clock synchronization [WL88] we derive conditions on
the number of cycles T of each slot, such that for all slots (r, s) the following holds:
The send buffer of the sending unit ECUsend(s) can be broadcast to the receive buffers
of all units in a transmission window, when according to their local timers all ECUs
are in slot (r, s). This section provides the crucial arguments of lemmas sketched with-
out proof in [BBG+05]. Detailed hardware constructions and proofs for the results of
Sects. 3 and 4 can be found in the lecture notes [Pau05].

The ISA processor configuration is sketched in Sect. 5. Furthermore the semantics
of the processor’s DLX instruction set are defined by specifying the next state functions
of the processor. Details regarding this function are to be found in [HP96, MP00]. Here
we focus on the semantics of load / store instructions and on the interrupt mechanism.

In Sect. 6 we introduce an ISA model of a processor together with a f-interface. The
next state function of the processor gets two new arguments. One of them is the input
sampled by the device on the bus. The second new argument is an oracle input for the
ISA computation of the ECU indicating whether a timer interrupt is generated or not. At
first sight this looks odd because after all the ECU hardware is completely deterministic.
But here we are not looking at the hardware, we are only looking at its ISA model. As
pointed out above, in the ISA model, cache hits and misses are not visible. Hence the
occurrence of timer interrupts is inherently nondeterministic at the ISA level.
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In Sect. 7 we show the hardware correctness theorems: The hardware of the entire
distributed system simulates the ISA model for a particular choice of the oracle inputs
(the latter is specified in Sect. 6.2). We first review the concept of scheduling functions
and proof strategies from [SH98, MP00, BJK+03, DHP05]. The scheduling functions
enable us to determine the interrupted ISA instructions in a straightforward way. This
determines the oracle inputs and thus resolves the nondeterminism present in the pure
ISA model.

Section 8 starts with fairly plain computation theory for uninterrupted ISA computa-
tions as well as for hardware computations. In particular we formally define the run time
and the result of such computations. The definition of run times of hardware computa-
tions is again based on the scheduling functions. Then we formally combine the results
of WCET analysis, of program correctness proofs for uninterrupted ISA computations
and of the hardware correctness proofs into a single result: At the end of slots, the
post conditions for memories and registers (but not for program counters) stated for the
uninterrupted local ISA computation also hold for their counter parts in the hardware
configuration.

3 Serial Interface

In this section we deal with the implementation and the correctness proof of a serial
interface as prescribed by the FlexRay standard.

3.1 Hardware Model with Continuous Time

In the standard digital hardware model a computation proceeds in cycles i. The hard-
ware configuration of ECUv during cycle i of ECUv is denoted by hi

v.
Configurations h have components h.R where R is a register content or the content

of a memory. Circuits compute signals S from register contents or memory contents.
The value of such a signal S is therefore –in well designed hardware– a function S(h)
of the hardware configuration.

We denote the clock enable signal, which triggers the update of registers R, by Rce.
Then Rce(hi) is the value of the clock enable of register R in cycle i.

The problems solved by serial interfaces can by their very nature not be treated in
the standard digital hardware model with a single digital clock clk. Nevertheless, we
can describe each ECUv in a standard digital hardware model having its own hardware
configuration hv .
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In order to argue about a 1-bit sender register S of a sending unit ECUv that is
transmitting data via the FlexRay-like bus (fbus) to a 1-bit receiver register R of a
receiving ECU, as depicted in Fig. 3, we have to extend the digital model.

For the 1-bit registers –and only for these registers– connected to the fbus we extend
the hardware model such that we can deal with the concepts of propagation delay (tpd),
set-up time (ts), hold time (th) and metastability of registers from hardware data sheets.
In the extended model used near the fbus we therefore consider time to be a real valued
variable t. The clock edge ev(i) starting cycle i on ECUv is defined by

ev(i) = cv + i · τv (1)

for some offset cv < τv . In this continuous time model the content of the sender regis-
ter S at time t is denoted by S(t).

Now we have enough machinery to define in the continuous time model the output
of a sender register Sv on ECUv during cycle i of ECUv, i.e. for t ∈ (ev(i), ev(i+1)].
If in cycle i−1 the digital clock enable Sce(hi−1

v ) signal was off, we see the old digital
value hi−1

v .S of the register during the whole cycle. If the update enable signal was
on, then during some propagation delay tpd < τv − ts we cannot predict what we see,
which is denoted by Ω. When the tpd has passed, we see the new digital value of the
register, which is given by the digital input Sdin(hi−1

v ) during the previous cycle (see
Fig. 4):

Sv(t) =

⎧
⎪⎨

⎪⎩

hi−1
v .S ¬Sce(hi−1

v )
Ω Sce(hi−1

v ) ∧ t ≤ ev(i) + tpd

Sdin(hi−1
v ) Sce(hi−1

v ) ∧ t > ev(i) + tpd

The fbus is an open collector bus modeled for all time t by:

fbus(t) =
∧

v

Sv(t)

Now consider a receiver register Ru on ECUu whose clock enable is continuously
turned on; thus the register always samples from the fbus . In order to define the new
digital value hj

u.R of register R during cycle j on ECUu we have to consider the value
of the fbus(t) in the time interval (eu(j) − ts, eu(j) + th), i.e. from the clock edge
minus the set-up time until the clock edge plus the hold time. If during that time the
fbus has a constant digital value x, the register samples that value:

∃x ∈ {0, 1} ∀t ∈ (eu(j) − ts, eu(j) + th) : fbus(t) = x → hj
u.R = fbus(eu(j))
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Otherwise we define hj
u.R = Ω. Thus we still have to argue how to deal with un-

known values Ω as input to digital hardware. We use the output of register R only as
input to a second register R̂ whose clock enable is always turned on, too. If Ω is clocked
into R̂ we assume that R̂ has an unknown but digital value:

hj
u.R = Ω → hj+1

u .R̂ ∈ {0, 1}

Indeed, in industrial systems the counterpart of register R̂ exists. The probability that
R becomes metastable for an entire cycle and that this causes R̂ to become metastable
too is for practical purposes zero. This is exactly what has been formalized above.

Note that the above model uses different but fixed individual clock periods τv . There
is no problem to extend the model to deal with jitter. Let τv(i) denote the length of
cycle i on ECUv, then we require for all v and i:

τv(i) ∈ [τref · (1 − δ), τref · (1 + δ)]

The time ev(i) of the i-th clock edge on ECUj is then defined as:

ev(i) =

{
cv i = 0
ev(i − 1) + τv(i − 1) otherwise

This does not complicate the subsequent theory significantly.

3.2 Continuous Time Lemmas for the Bus

Consider a pair of ECUs, where ECUs is the sender and ECUr is a receiver in a
given slot. Let i be a sender cycle such that Sce(hi−1

s ) = 1, i.e. the output of S is
not guaranteed to stay constant at time es(i). This change can only affect the value
of register R of ECUr in cycle j if it occurs before the sampling edge er(j) plus the
hold time th: es(i) < er(j) + th. Figure 5 shows a situation where due to a hold
time violation we have es(i) > er(j). The first cycle that is possibly being affected is
denoted by:

cyr,s(i) = min{j | es(i) < er(j) + th}
In what follows we assume that all ECUs other than the sender unit ECUs put the

‘idle’ value 1 on the bus (hence fbus(t) = Ss(t) for all t under consideration) and
we consider only one receiving unit ECUr. Because the indices r and s are fixed we
simply write cy(i) instead of cyr,s(i).
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There are two essential lemmas whose proof hinges on the continuous time model.
The first lemma considers a situation, where we activate the clock enable Sce of the
sender ECU in cycle i − 1 but not in the following seven cycles3. In the digital model
we then have hi

s.S = . . . = hi+7
s .S and in the continuous time model we observe

x = fbus(t) = Ss(t) = hi
s.S for all t ∈ [es(i) + tpd, es(i + 8)]. We claim that x is

correctly sampled in at least six consecutive cycles.

Lemma 1 (Correct Sampling Interval). Let the clock enable signal of the S register
be turned on in cycle i − 1, i.e. Sce(hi−1

s ) = 1 and let the same signal be turned off in
the next seven cycles, i.e. Sce(hj

s) = 0 for j ∈ {i, . . . , i + 6} then:

hcy(i)+k
r .R = hi

s.S for k ∈ {1, . . . , 6}

The second lemma simply bounds the clock drift. It essentially states that within 300
cycles clocks cannot drift by more than one cycle; this is shown using δ ≤ 0.15%.

Lemma 2 (Bounded Clock Drift). The clock drift in the interval m ∈ {1, . . . , 300} is
bounded by:

cy(i) + m − 1 ≤ cy(i + m) ≤ cy(i) + m + 1

Detailed proofs of very similar lemmas are to be found in [Pau05, BBG+05, Sch06].

3.3 Serial Interface Construction and Correctness

For natural numbers n and bits y we denote by yn the string in which bit y is replicated
n times, e.g. 04 = 0000. For strings x[0 : k − 1] consisting of k bits x[i] we denote by
8 · x the string obtained by repeating each bit eight times:

8 · x = x[0]8 · · ·x[k − 1]8

Our serial interface transmits messages m[0 : � − 1] consisting of � bytes m[i] from
a send buffer sb of the sending ECU to a receive buffer rb of the receiving ECU.

The following protocol is used for transmission (see Fig. 6). A frame f(m) is created
from a message m by inserting falling edges between the bytes and adding some bits at
the start and the end of the frame:

f(m) = 0110m[0] · · ·10m[� − 1]01

3 This particular interval of 8 cycles is taken from the FlexRay standard [Fle06].
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In f(m) we call the first zero the transmission start sequence (TSS ), the first one the
frame start sequence (FSS ), the last zero the frame end sequence (FES ) and the last
one the transmission end sequence (TES ). The two bits producing a falling edge before
each byte are called the byte start sequence (BS0 ,BS1 ).

The sending ECU broadcasts 8 · f(m) over the fbus . For each bit of the frame the
update-enable signal is on for 1 cycle and then off for 7 cycles. All serial interfaces that
are not actively transmitting put by construction the idle value (the bit 1) on the bus.

Figure 7 shows a simplified view of the hardware involved in the transmission of a
message. On the sender side, there is an automaton keeping track of which bit of the
frame is currently being transmitted. This automaton inserts the additional protocol bits
around the message bytes. Hardware for sending each bit eight times and for addressing
the send buffer is not shown.

On the receiver side there is the automaton from Fig. 6 trying to keep track of which
bit of the frame is currently being transmitted (the automaton on the sender side is very
similar). That it does so successfully requires proof.

The bits sampled in register R̂ are processed in the following way. The voted bit v is
computed by applying a majority vote to the last five sampled bits. These bits are given
by the R̂ register and a 4-bit shift register as depicted in Fig. 8.

R

R̂

fbus

5-major

4 shift

v

Fig. 8. Receiver Logic
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According to Lemma 1 for each bit of the frame a sequence of at least six bits is cor-
rectly sampled. The filtering essentially maintains this property. If the receiver succeeds
to sample that sequence roughly in the middle, he wins. For this purpose the receiver
has a modulo-8 counter trying to keep track of which of the eight identical copies of a
frame bit is currently being transmitted. When the counter value equals four the strobe
signal is turned on (see Fig. 9). For frame decoding the voted bit is sampled with this
strobe signal. The automaton trying to keep track of the protocol is also clocked with
the strobe signal.

Clocks are drifting, hence the hardware has to perform a low level synchronization.
The counter is reset by a sync signal in two situations: At the beginning of a trans-
mission or at an expected falling edge during the byte start sequence. Abbreviating
signals s(hi

r) with si we write:

synci = (idlei ∨ BS1 i) ∧ (¬vi ∧ vi−1)

The crucial part of the correctness proof is a lemma arguing simultaneously about
three statements by induction over the receiver cycles:

1. The state of the automaton keeps track of the transmitted frame bit.
2. The sync signal is activated at the corresponding falling edge of the voted bit v

between BS1 and BS0 .
3. Sequences of identical bit are sampled roughly in the middle.

We sketch the proof of this lemma. Statement 1 is clearly true in the idle state.
From statement 1 follows that the automaton expects the falling edges of the voted
signal exactly when the sender generates them. Thus the counter is well synchronized
after these falling edges. This shows statement 2. Immediately after synchronization
the receiver samples roughly in the middle. There is a synchronization roughly every 80
sender cycles. By Lemma 2 and because 80 < 300, the sampling point can wander by at
most one bit between activations of the sync signal. This is good enough to stay within
the correctly sampled six copies. This shows statement 3. If transmitted frame bits are
correctly sampled, then the automaton keeps track of them. This shows statement 1.

Let t0 be the time (not the cycle) when the start signal of the sender is activated.
Let t1 be the time, when all automata have reached the idle state again and all write
accesses to the receive buffer have completed. Let the number of ‘transmission cycles’
be defined by:

tc = 45 + 80 · �

Intuitively, the product 80 · � in the definition of tc comes from the fact that each byte
produces 10 frame bits and each of these is transmitted 8 times. The four bits added at
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the start and the end of the frame contribute 4 · 8 = 32. The remaining 13 cycles are
caused by delays in the receiver logic, in particular by delay in the shift register before
the majority voter. The correctness of message transmission is stated as follows:

Lemma 3 (Correct Message Transfer With Time Bound). Messages are correctly
transmitted, and the transmission does not last longer than tc sender cycles:

rb(t1) = sb(t0)
t1 − t0 ≤ tc · τs

4 FlexRay-Like Interfaces and Clock Synchronization

In this section we outline the implementation and the correctness proof of FlexRay-like
interfaces (f-interfaces).

4.1 Hardware Components

Recall that we denote hardware configurations of ECUv by hv. If the index v of the
ECU does not matter, we drop it. The hardware configuration is split into a processor
configuration h.p and an interface configuration h.f . In addition to the registers of the
serial interface, the essential components of the hardware configuration h.f of our (non
fault tolerant) f-interface are

– double buffers h.f.sb(par) and h.f.rb(par), where par ∈ {0, 1}, implementing
the user-visible send and receive buffers,

– the flipflops of a somewhat non trivial timer h.f.timer,
– configuration registers.

The organization of the hardware timer h.f.timer is depicted in Fig. 10. The low-
order bits h.f.timer.cy count the cycles of a slot. Unless the timer is synchronized,
slots have locally T cycles, thus the low-order bits are part of a modulo-T counter. The
high-order bits h.f.timer.s count the slot index s of the current slot (r, s) modulo ns.
The timer is initialized with the value (ns − 1, T − 1).

The timers on all ECUs but ECUsend(0) stall when reaching the maximum value
(ns−1, T−1) and wait for synchronization. The timer on ECUsend(0) always continues
counting. Details regarding the synchronization mechanism are given in Sect. 4.2.
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The overflow signal ovf (h) between the low-order and the high-order bits of the
counter can essentially serve as the timer interrupt signal ti(h) generated by the inter-
face hardware4:

ti(hi) = ovf (hi) ∧ ¬ovf (hi−1)

The low-order bit of the slot counter keeps track of the parity of the current slot and
is called the hardware parity signal:

par(h) = h.f.timer.s[0]

In general the fbus side of the interface sees the two buffers h.f.sb(par(h)) and
h.f.rb(par(h)). Messages are always transmitted between these buffers. The processor
on the other hand writes to h.f.sb(¬par(h)) and reads from h.f.rb(¬par(h)). This
does not work at boundaries of rounds unless the number of slots ns is even.

The configuration registers are written immediately after reset / power-up. They con-
tain in particular the locally relevant portions of the scheduling function. Thus if ECUv

is (locally) in a slot with slot index s and send(s) = v then ECUv transmits the con-
tent of the send buffer h.f.sb(par(h)) via the fbus during some transmission interval
[ts(r, s), te(r, s)].

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r, s), then transmission is successful by Lemma 3. The clock synchronization al-
gorithm together with an appropriate choice of the transmission interval guarantees
exactly that.

4.2 Clock Synchronization

The idea of clock synchronization is easily explained: Imagine one slot is one hour and
one round is one day. Assume different clocks drift by up to drift = 5 minutes per day.
ECUs synchronize to the first bit of the message transmission due between midnight
and 1 o’clock. Assume adjusting the clocks at the receiving ECUs takes up to adj = 1
minute. Then the maximal deviation during 1 day is off = drift + adj = 6 minutes.
ECUsend(s), which is the sender in hour s, is on the safe side if it starts transmitting
from s o’clock plus off minutes until off minutes before s + 1 o’clock, i.e. somewhen
in between s : 06 o’clock and s + 1 : 54 o’clock.

At midnight life becomes slightly tricky: ECUsend(0) waits until it can be sure that
everybody believes that midnight is over and hence nobody is transmitting, i.e. until its
local time 0 : 06. Then it starts sending. All other ECUs are waiting for the broadcast
message and adjust their clocks to midnight + off = 0 : 06 once they detect the first
falling bit. Since that might take the receiving ECUs up to 1 minute it might be 0 : 07
o’clock on the sender when it is 0 : 06 o’clock at the receiver; thus after synchronization
the clocks differ by at most adj = 1 minute.

We formalize this idea in the following way: Assume without loss of generality
that send(0) = 0. All ECUs but ECU0 synchronize to the transmission start se-
quence (TSS ) of the first message of ECU0. When ECU’s waiting for synchronization

4 In general one needs to keep an interrupt signal active until it is cleared by software; the extra
hardware is simple.
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(d.f.timer = (ns − 1, T − 1)) receive this TSS , they advance their local slot counter
to 0 and their cycle counter to off . Analysis of the algorithm implies that for all v 	= 0,
ECUv is waiting for synchronization, when ECU0 starts message transmission in any
slot (r, 0).

First we define the start times αv(r, s) of slot (r, s) on ECUv . This is the start time
of the first cycle t in round r when the timer in the previous cycle had the value:

ht−1.f.timer = ((s − 1 mod ns), T − 1)

These are the cycles immediately after the local timer interrupts. For every round r,
we also define the cycles βv(r) when the synchronization is completed on ECUv. For-
mally this is defined as the first cycle β > αv(r, 0) such that the local timer has value:

hβ.f.timer = (0, off )

Timing analysis of the synchronization process in the complete hardware design
shows that for all v and y adjustment of the local timer of ECUv to value (0, off )
is completed within an adjustment time ad = 15 · τy after α0(r, 0):

β0(r) = α0(r, 0) + off · τ0
βv(r) ≤ β0(r) + 15 · τy

For s ≥ 1 no synchronization takes place and the start of new slots is only determined
by the progress of the local timer:

αv(r, s) =

{
βv(r) + (T − off ) · τv s = 1
αv(r, s − 1) + T · τv s > 1

ECU0 synchronizes the other ECUs. Thus the start of slot (r, 0) on ECU0 depends
only on the progress of the local counter:

α0(r, 0) = α0(r − 1, ns − 1) + T · τ0

An easy induction on s bounds the difference between start times of the same slot on
different ECUs:

αx(r, s) − αv(r, s) ≤ 15 · τv + (s · T − off ) · (τx − τv)
≤ 15 · τv + (ns · T · Δ · τv)
= τv · (15 + (ns · T · Δ))
= τv · off

(2)
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Fig. 12. Schedules

Thus we have off = ad + drift with ad = 15 and drift = ns · T · Δ.
Transmission is started in slots (r, s) by ECUsend(s) when the local cycle count

is off . Thus the transmission start time is:

ts(r, s) = αsend(s)(r, s) + off · τsend(s)

By Lemma 3 the transmission ends at time:

te(r, s) = ts(r, s) + tc · τsend(s)
= αsend(s)(r, s) + (off + tc) · τsend(s)

The transmission interval [ts(r, s), te(r, s)] must be contained in the time interval,
when all ECUs are in slot (r, s), as depicted in Fig. 12.

Lemma 4 (No Bus Contention). For all indices v and u of ECUs:

αv(r, s) ≤ ts(r, s)
te(r, s) ≤ αu((r, s) + 1)

Proof. The first inequality holds because of (2). Let x = send(s):

αv(r, s) ≤ αx(r, s) + τx · off
= ts(r, s)

The second inequality determines the minimal size of T :

te(r, s) ≤ αx(r, s) + (off + tc) · τx

≤ αu(r, s) + off · τu + (off + tc) · (1 + Δ) · τu

≤ αu((r, s) + 1)
= αu(r, s) + T · τu

Further calculations are necessary at the borders between rounds. Details can be
found in [Pau05]. ��

From the local start times of slots αv(r, s) we calculate the numbers of local start cycles
tv(r, s) using (1)

αv(r, s) = cv + tv(r, s) · τv
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and then solving for tv(r, s). Trivially the number uv(r, s) of the locally last cycle on
ECUv is:

uv(r, s) = tv((r, s) + 1) − 1

Consider slot (r, s). Lemma 3 and Lemma 4 then imply that the value of the send
buffer of ECUsend(s) on the network side (par = s mod 2) at the start of slot (r, s) is
copied to all receive buffers on the network side by the end of that slot.

Theorem 1 (Message Transfer With Cycles). Let x = send(s). Then for all v:

htx(r,s)
x .f.sb(s mod 2) = huv(r,s)

v .f.rb(s mod 2)

This theorem talks only about digital hardware and hardware cycles. Thus we have
shown the correctness of data transmission via the bus and we are back in the digital
world.

5 Specifying an Instruction Set Architecture

In this section we sketch the DLX instruction set architecture (ISA).

5.1 Configurations and Auxiliary Concepts

Processor configurations d have the following components:

– d.R ∈ {0, 1}32: The current value of register R. For this paper, the relevant reg-
isters are: The program counter pc, the delayed PC dpc (which is used to specify
the delayed branch mechanism detailed in [MP00]), the general purpose registers
gpr[x] with x ∈ {0, 1}5, the status register sr (it contains the mask bits for the
interrupts) as well as a exception cause register eca (to be explained later on).

– The byte addressable memory d.m : {0, 1}32 → {0, 1}8. The content of the mem-
ory at byte address a is given by d.m(a).

For addresses a, memories m, and natural numbers x we denote by mx(a) the con-
catenation of the memory bytes from address a to address a + x − 1 in little-endian
order:

mx(a) = m(a + x − 1) . . .m(a)

The instruction executed in configuration d is the memory word addressed by the
delayed PC:

I(d) = d.m4(d.dpc)

The six high-order bits of the instruction word constitute the opcode:

opc(d) = I(d)[31 : 26]

Instruction decoding can easily be formalized by predicates on I(d). In some cases it
suffices to inspect the opcode only. The current instruction is for instance a ‘load word’
(lw) instruction if the opcode (opc) equals 100011:

lw(d) ⇔ opc(d) = 100011
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Fig. 13. Instruction Types

DLX instructions come in three instruction types as shown in Fig. 13. The type of an
instruction defines how the bits of the instruction outside the opcode are interpreted. The
occurrence of an register-type (R-type) instruction, e.g. a add or a subtract instruction,
is for instance specified by:

rtype(d) ⇔ opc(d) = 000000

Definitions of immediate-constant-type (I-type) instructions and jump-type (J-type)
instructions are slightly more complex.

Depending on the instruction type, certain fields have different positions within the
instruction. For the register ‘destination’ operand (RD) we have for instance:

RD(d) =

{
I(d)[20 : 16] itype(d)
I(d)[15 : 11] otherwise

The effective address (ea) of load / store operations is computed as the sum of the
content of the register addressed by the RS1 field d.gpr(RS1(d)) and the immediate
field imm(d) = I(d)[15 : 0]. The addition is performed modulo 232 using two’s com-
plement arithmetic. Formally, the sign extension of the immediate constant is defined
by:

sxt(imm(d)) = imm(d)[15]16imm(d)

This turns the immediate constant into a 32-bit constant while preserving the value
as a two’s complement number. It is like adding leading zeros to a natural number.
Denoting ordinary binary addition modulo 232 by +32 we define:

ea(d) = d.gpr(RS1(d)) +32 sxt(imm(d))

This works because n bit two’s complement numbers and n bit binary numbers have
the same value modulo 2n. For details see e.g. Sect. 2 of [MP00].

5.2 Basic Instruction Set

With the above few preliminary definitions in place we easily specify the next config-
uration d′, i.e. the configuration after execution of I(d). This obviously formalizes the
instruction set. In the definition of d′ we split cases depending on the instruction to be
executed. As an example we specify the next configuration for a load word instruction.
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The main effect of a load word instruction is that the general purpose register ad-
dressed by the RD field is updated with the memory word addressed by the effective
address ea:

d′.gpr(RD(d)) = d.m4(ea(d))

The PC is incremented by four in 32-bit binary arithmetic and the old PC is copied
into the delayed PC:

d′.pc = d.pc +32 03010
d′.dpc = d.pc

This part of the definition is identical for all instructions except control instructions.
One also must specify what is not changed:

d′.m = d.m
d′.gpr(x) = d.gpr(x) for x 	= RD(d)

d′.sr = d.sr
d′.eca = d.eca

The main effect of store word instructions is that the general purpose register content
addressed by RD is copied into the memory word addressed by ea:

d′.m4(ea(d)) = d.gpr(RD(d))

Completing this definition for all instructions, we get the definition of a DLX next
state function:

d′ = δD(d)

5.3 Interrupts

Interrupts are triggered by interrupt event signals that might be internally generated
(like illegal instruction, misalignment, or overflow) or externally generated (like reset
and timer interrupt). Interrupts are numbered with indices j ∈ {0, . . . , 31}. We classify
the set of these indices in two ways:

1. maskable / not maskable. The set of indices of maskable interrupts is denoted by M .
2. external / internal. The set of indices of external interrupts is called E.

We denote external event signals by eev[j] with j ∈ E and we denote internal event
signals by iev[j] with j /∈ E. We gather the external event signals into a vector eev and
the internal event signals into a vector iev.

Formally these signals must be treated in a very different way. Whether an internal
event signal iev[j] is activated in configuration d is determined only by the configura-
tion. For instance if we use j = 1 for the illegal instruction interrupt and LI ⊂ {0, 1}32

is the set of bit patterns for which d′ is defined if I(d) ∈ LI , then:

iev(d)[1] ⇔ I(d) /∈ LI

Thus the vector of internal event signals is a function iev(d) of the current processor
configuration d. In contrast, external interrupts are external inputs for the next state
function. We therefore get a new next state function:

d′ = δD(d, eev)
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The cause vector ca of all event signals is a function of the processor configuration d
and the external input eev:

ca(d, eev)[j] =

{
eev[j] j ∈ E

iev(d)[j] otherwise

The masked cause vector mca is computed from ca with the help of the interrupt
mask stored in the status register: If interrupt j is maskable and sr[j] = 0, it is masked
out:

mca(d, eev)[j] =

{
ca(d, eev)[j] ∧ d.sr[j] j ∈ M

ca(d, eev)[j] otherwise

If any one of the masked cause bits is on, the jump to interrupt service routine (JISR)
bit is turned on:

JISR(d, eev) =
∨

j

mca(d, eev)[j]

If this occurs, many things happen. We mention only a few: The PCs are forced to
point to the start addresses of the interrupt service routine (ISR). We assume it starts at
the (binary) address 0:

d′.dpc = 032

d′.pc = 03010

All maskable interrupts are masked:

d′.sr = 032

The masked cause register is saved into the exception cause register:

d′.eca = mca(d, eev)

For a complete definition see Chap. 5 of [MP00].

6 ISA of Processors with f-Interfaces

In this section we integrate our f-interface into the ISA model of the processor.

6.1 I/O Ports and Message Buffers

As already mentioned earlier an ISA configuration d of a processor with an f-interface
is a pair (d.p, d.f), where d.p is a processor configuration as described in the previous
section. It has registers d.p.R and a memory d.p.m. The range of the function m is
however restricted to a subset A ⊂ {0, 1}32 of the entire address range:

d.p.m : A → {0, 1}8

Identifying bit strings a with their value if they are interpreted as a binary number,
we define A to be in the range of addresses below a certain address D:

A = {a | a < D}
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Addresses from address D on are called I/O ports. They are reserved for I/O devices.
Every device dv is assigned a base address ba(dv) in the range of I/O ports (see Fig. 14):

ba(dv) ∈ {D, . . . , 232 − 1}

Here we only consider a single device and a single base address ba.
When a processor accesses a device with K I/O ports, then for k = �log K� the

device configuration (here d.f ) must contain a memory:

d.f.m : {0, 1}k → {0, 1}8

In our case the memory of the device contains the send buffer, the receive buffer
–each with � bytes where � is a multiple of 4– and say c configuration registers. Thus

K = 2 · � + 4 · c

We use the first � bytes of this memory for the send buffer, the next � bytes for the
receive buffer and the remaining bytes for the configuration registers. We formalize this
by defining for all indices of message bytes y ∈ {0, . . . , � − 1}:

sb(d)(y) = d.f.m(y)
rb(d)(y) = d.f.m(� + y)

The semantics of accesses of the processor to the I/O ports are simply defined by a
slight change of the semantics of lw and sw instructions. If the effective address5 lies
in the address range assigned to the device in the memory map, i.e. if

ea(d.p) = ba + x with 0 ≤ x ≤ K − 4

the essential effect of a load word instruction is

d′.p.gpr(RD(d.p)) = d.f.m4(x)

and the essential effect of a store word instruction is:

d′.f.m4(x) = d.p.gpr(RD(d.p))
5 We require the effective address be word aligned.
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6.2 Timer Interrupt and I/O

So far we have covered a single processor with a device but we have not considered
timer interrupts. The consequences for integrating those in the processor construc-
tion and processor correctness proofs have already been outlined (e.g. for a hard-disk)
in [HIP05]. In the remainder of this section we extend these results with timer interrupts
generated by an f-interface.

As pointed out earlier, at the ISA level the timer interrupt must be treated as an
oracle input dti. Furthermore we have to deal with external data input dfin from the
f-interface. Thus –ignoring reset– the next state function for the device has on the ISA
level the format:

d′ = δD(d, dti, dfin)

If we denote by dtii and dfini the oracle input and the input from the fbus for the i-th
executed instruction, then we get computations d0, d1, . . . by defining (straight from the
automata theory textbooks):

di+1 = δD(di, dtii, dfini)

In our distributed system we have configurations dv from many ECUs. Within this
programming model we now introduce names, e.g. jv(r, s), for certain indices of local
instructions on ECUv .

Intuitively, the timer interrupts the instruction executed in the local configuration
d

jv(r,s)
v of ECUv, and this locally ends slot (r, s).

Based on these indices we can define some more useful concepts purely within the
ISA model:

– iv(r, s) = jv((r, s) − 1) + 1: The index of the first local instruction in slot (r, s)
– dv(r, s) = d

iv(r,s)
v : The first local ISA configuration in slot (r, s)

– ev(r, s) = d
jv(r,s)
v : The last local ISA configuration in slot (r, s)

We can even define the sequence dti(r, s) of oracle timer inputs dtii where i ∈
{iv(r, s), . . . , jv(r, s)}. It has the form

dti(r, s) = 1a0b1

where the timer interrupt is cleared by software instruction iv(r, s)+a−1 and a+b+1 =
jv(r, s) − iv(r, s) + 1 is the number of local instructions in slot (r, s).

Indeed we can complete, without any effort, the entire ISA programming model. The
effect of an interrupt on the processor configuration has been defined in the previous
section, thus we get for instance:

dv(r, s).dpc = 032

dv(r, s).pc = 03010

Also for the transition from ev(r, s) to dv((r, s) + 1) and only for this transition we
use the external input:

dfinjv(r,s) ∈ {0, 1}8·�
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Thus we assume that it consists of an entire message and we copy that message into
the user-visible receive buffer:

rb(dv((r, s) + 1)) = dfinjv(r,s)

Of course we also know what this message is supposed to be: The content of the
user-visible send buffer of ECUsend(s) at the end of slot (r, s) − 1:

dfinjv(r,s) = sb(esend(s)((r, s) − 1)

Thus

rb(dv((r, s) + 1)) = sb(esend(s)((r, s) − 1)) (3)

This completes the user-visible ISA model. And with Theorem 1 we essentially al-
ready completed the hardware correctness proof of the implementation of (3). The non-
determinism is completely encapsulated in the numbers jv(r, s) as it should be, at least
if the local computations are fast enough. All we need to do is to justify the model by a
hardware correctness theorem and to identify the conditions under which it can be used.

7 Hardware Correctness

In this section we outline a hardware correctness proof that establishes a relationship
between an ISA configuration and a hardware configuration.

7.1 Scheduling Functions

The processor correctness proofs considered here hinge on the concept of schedul-
ing functions s. The hardware of pipelined processors consists of many stages k, e.g.
fetch stage, issue stage, reservation stations, reorder buffer, write back stage, etc. (see
Fig. 17). Stages can be full or empty due to pipeline bubbles. The hardware keeps track
of this with the help of full bits fullk for each stage as defined in [MP00]. Recall that
fullk(ht) is the value of the full bit in cycle t. We use the shorthand full tk. Note that the
fetch state is always full, i.e. ∀t : full t0 = 1.

For hardware cycles t and stages k that are full during cycle t, i.e. such that full tk
holds, the value s(k, t) of the scheduling function is the index i of the instruction that
is in stage k during cycle t. If the stage is not full, it is the index of the instruction that
was in stage k in the last cycle before t when the stage was full. Initially s(0, 0) = 0
holds.

The formal definition of scheduling functions uses an extremely simple idea: Imag-
ine that the hardware has registers that can hold integers of arbitrary size. Augment
each stage with such a register and store in it the index of the instruction currently
being executed in that stage. These indices are computed exactly as the tags in a Toma-
sulo scheduler. The only difference is that they have unbounded size because we want
to count up to arbitrarily large indices. In real hardware this is not possible and not
necessary. In an abstract mathematical model there is no problem to do this.
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Each stage k of the processors under consideration has an update enable signal uek.
Stage k gets new data in cycle t if the update enable signal uek was on in cycle t − 1.
We fetch instructions in order and hence define for the instruction fetch stage IF :

s(IF , t) =

{
s(IF , t − 1) + 1 uet−1

IF

s(IF , t − 1) otherwise

In general, a stage k can get data belonging to a new instruction from one or more
stages k′. Examples where more than one predecessor stage k′ exists for a stage k are
i) cycles in the data path of a floating point unit performing iterative division or ii) the
producer registers feeding on the common data bus of a Tomasulo scheduler. In this
situation we must define for each stage k a predicate trans(k′, k, t) indicating that in
cycle t data are transmitted from stage k′ to stage k. In the example of Fig. 15 we use
the select signal sel of the multiplexer and define:

trans(k′, k, t) = uet
k ∧ sel t

If trans(k′, k, t − 1) holds for some k′, then we set s(k, t) = s(k′, t − 1) for that k′.
Otherwise s(k, t) = s(k, t − 1).

7.2 Simple Simulation Relations

For ECUs we first consider a ‘naive’ simulation relation sim(d, h) between ISA con-
figurations d and hardware configurations h. We require that the user-visible registers R
have identical values:

h.p.R = d.p.R

Furthermore we require that the send and receive buffers on the processor side (in-
dexed in the hardware by ¬par(h)) of the hardware have the same value as the user-
visible buffers. Thus, we require for all indices y ∈ {0, . . . , � − 1} of message bytes:

h.f.sb(¬par(h))(y) = sb(d)(y)
h.f.rb(¬par(h))(y) = rb(d)(y)

For the addresses a in the processor we would like to make a similar definition,
but this does not work, because the user-visible processor memory is simulated in the
hardware by a memory system consisting e.g. of an instruction cache icache, a data
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cache dcache and a user main memory mainm. Thus there is a quite nontrivial function
m(h.p) : A → {0, 1}8 specifying the memory simulated by the memory system. We
can define this functions in the following way: Imagine you apply in configuration h at
the memory interface (either at the icache or at the dcache) address a. Considering a hit
in the instruction cache, i.e. ihit(h.p, a) = 1, the icache would return icache(h.p, a).
Similarly, considering a hit in the data cache dhit(h.p, a) = 1 the dcache would return
dcache(h.p, a). Then we can define6:

m(h.p)(a) =

⎧
⎪⎨

⎪⎩

icache(h.p, a) ihit(h.p, a)
dcache(h.p, a) dhit(h.p, a)
h.p.mainm(a) otherwise

Using this definition we can require in the simulation relation for all addresses not
being I/O ports, i.e. a ∈ A:

m(h.p)(a) = d.p.m(a)

In a pipelined machine this simulation relation almost never holds, because in one
cycle different hardware stages k usually hold data from different ISA configurations;
after all this is the very idea of pipelining. There is however an important exception:
When the pipe is drained, i.e. all hardware stages except the instruction fetch stage are
empty:

drained(h) ⇔ ∀k : k 	= IF → full tk = 0

This happens to be the case after interrupts, in particular initially after reset and at
the boundaries between slots when a timer interrupt is being generated.

7.3 Processor Correctness Theorem

Figure 17 shows in simplified form the stages of a processor with out of order processing
and a Tomasulo scheduler.

Each user-visible register d.R of the processor has a counter part h.R belonging
to the stage in the hardware specified by stage(R). If the processor would have only

6 In the processors under consideration the caches snoop on each other; data of address a is only
in at most one cache [Bey05, BJK+03].
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registers R and no memory, we could show by induction over t for all cycles t and
stages k:

If k = stage(R), then the value ht.p.R of the hardware register R in cycle t is
the value ds(k,t).p.R of the ISA register R for the instruction scheduled in stage k in
cycle t:

ht.p.R = ds(k,t).p.R

For the memory we have to consider the memory unit of the processor consisting
of two stages mem and mem1. Stage mem contains hardware for the computation of
the effective address. The memory m(ht.p) that is simulated by the memory hierarchy
of the hardware in cycle t, is identical with the ISA memory ds(mem1,t).p.m for the
instruction scheduled in stage mem1 in cycle t:

m(ht.p) = ds(mem1,t).p.m

In the hardware the send and receive buffers are ‘parallel’ to the memory system, so
we can reuse the scheduling functions. For the copy of the buffers on the processors
side we get:

ht.f.sb(¬par(ht)) = sb(ds(mem1,t))
ht.f.rb(¬par(ht)) = rb(ds(mem1,t))

We summarize this by stating for all ECUs the correctness statement for the pro-
cessor and the processor side of the interface for slot (r, s). It is proven by induction
over the cycles of the slot. Recall from Sect. 4.2 that we know already the start cycles
tv(r, s) for all ECUs. The statement of the theorem is identical for all ECUv. Thus we
drop the subscript v.

The theorem assumes that at the start of a slot the pipe is drained (e.g. by the timer
interrupt that ended the previous slot) and that the simulation relation holds between the
first hardware configuration h(r, s) = ht(r,s) and the first ISA configuration d(r, s) =
di(r,s) of the slot.
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Theorem 2 (Hardware Correctness for One Slot). Assume that drained(h(r, s))
and sim(d(r, s), h(r, s)) holds. Then for all t ∈ {t(r, s), . . . , t((r, s) + 1) − 1}, for
all stages k and for all registers R with stage(R) = k:

ht.p.R = ds(k,t).p.R

m(ht.p) = ds(mem1,t).p.m

ht.f.sb(¬par(ht)) = sb(ds(mem1,t))
ht.f.rb(¬par(ht)) = rb(ds(mem1,t))

The theorem is proven by induction over the cycles of the slot. Using the above theorem
we can show:

Theorem 3 (Hardware Correctness for System)

∀(r, s), v : drained(hv(r, s)) ∧ sim(dv(r, s), hv(r, s))

Theorem 3 is proven by induction over the slots (r, s) using additional assumptions
about registers not visible at the ISA level. In order to argue about the boundaries be-
tween two slots Theorem 2 and Lemma 4 must be applied on the last cycle of the
previous slot.

7.4 The Interrupted Instruction

To support precise interrupts the cause signals of internal as well as of external inter-
rupts are sampled in the write back stage (WB). The instruction interrupted by an active
cause signal in cycle t is therefore the instruction scheduled in the writeback stage dur-
ing cycle t. Thus the index j(r, s) of the interrupted instruction, which resolves the
nondeterminism and makes the proof work, is:

j(r, s) = s(WB , t(r, s))

For detailed processor correctness proofs dealing with sequences of internal and ex-
ternal interrupts (but without devices) see [Bey05, Dal06].

8 Pervasive Correctness Proofs

Finally, we show how pervasive correctness proofs for computations with timer in-
terrupts can be obtained from i) correctness proofs for ISA programs that cannot be
interrupted ii) hardware correctness theorems and iii) WCET analysis. As one would
expect, the arguments are reasonably simple, but the entire formalism of the last sec-
tions is needed in order to formulate them.

We consider only programs of the form7:

{P; a : jump a; a+4 : NOP }

The program does the useful work in portion P and then waits in the idle loop for the
timer interrupt. P initially has to clear and then to unmask the timer interrupt, which is
masked when P is started (see Sect. 6.2).

7 Note that we have a byte addressable memory and that in an ISA with delayed branch the idle
loop has two instructions.
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8.1 Computation Theory

We have to distinguish carefully between the transition function δD(d, dti, fdin) of the
interruptible ISA computation and the transition function δU (d) of the non interruptible
ISA computation, which we define as follows:

δU (d) = δD(d, 0, ∗)

Observe that this definition permits the non interruptible computation to clear the
timer interrupt bit by software. Non interruptible computations starting from configura-
tion d are obtained by iterated application of δU :

δi
U (d) =

{
d i = 0
δU (δi−1

U (d)) otherwise

For the ISA computation

d(r, s) = di(r,s), di(r,s)+1, . . . , dj(r,s) = e(r, s)

that has been constructed in Theorem 2 we get:

Lemma 5. For all instructions in a given slot, i.e. t ∈ [0 : (j(r, s) − i(r, s))]:

di(r,s)+t = δt
U (d(r, s))

This lemma holds due to the definition of j(r, s) and the fact that the timer is masked
initially such that the instructions of the interruptible computation are not interrupted.

We define the ISA run time TU (d, a), i.e. the time until the idle loop is reached,
simply as the smallest i such that δi

U fetches an instruction from address a:

TU (d, a) = min{i | δi
U (d).p.dpc = a}

Furthermore we define the result of the non interruptible ISA computation as:

resU (d, a) = δ
TU (d,a)
U (d)

Correctness proofs for non interruptible computations can be obtained by classical
program correctness proofs. They usually have the form d ∈ E → resU (d, a) ∈ Q or,
written as a Hoare triple {E}P{Q}.

We assume that the definition of Q does not involve the PC and the delayed PC.
Because the idle loop only changes the PC and the delayed PC of the ISA computation
we can infer on the ISA level that property Q continues to hold while we execute the
idle loop:

∀i ≥ TU (d, a) : δi
U (d) ∈ Q

8.2 Pervasive Correctness

Assume sim(d, h) holds. Then the ISA configuration d can be decoded from the hard-
ware configuration by a function:

d = decode(h)
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Clearly, in order to apply the correctness statement {E}P{Q} to a local computation
in slot (r, s), we have to show for the first ISA configuration in the slot:

d(r, s) ∈ E

In order to apply the processor correctness theorem the simulation relation must hold
initially:

sim(d(r, s), h(r, s))

Now consider the last hardware configuration g(r, s) = ht((r,s)+1)−1 of the slot. We
want to conclude

Theorem 4. The decoded configuration obeys the postcondition Q:

decode(g(r, s)) ∈ Q

This only works if portion P is executed fast enough on the pipelined processor
hardware.

8.3 Worst-Case Execution Time

We consider the set H(E) of all hardware configurations h encoding an ISA configura-
tion d ∈ E:

H(E) = {h | decode(h) ∈ E}
While the decoding is unique, the encoding is definitely not. Portions of the ISA

memory can be kept in the caches in various ways.
For a hardware configuration h = h0 we define the hardware run time TH(h, a)

until a fetch from address a as the smallest number of cycles such that in cycle t an
instruction, which has been fetched in an earlier cycle t′ < t from address a, is in the
write back stage WB . Using scheduling functions this definition is formalized as:

TH(h, a) = min{t | ∃t′ : s(WB , t) = s(IF , t′) ∧ ht′
.dpc = a}

Thus for ISA configurations satisfying E we define the worst-case execution time
WCET (E, a) as the largest hardware runtime TH(h, a) of a hardware configuration
encoding a configuration in E:

WCET (E, a) = max{TH(h, a) | h ∈ H(E)}

As pointed out earlier such estimates can be obtained from (sound!) industrial tools
based on the concept of abstract interpretation [Abs06]. AbsInt’s WCET analyzer does
not calculate the “real” worst-case execution time WCET (E, a), but an upper bound
WCET ′(E, a) ≥ WCET (E, a). Nevertheless this is sufficient for correctness since
WCET ′(E, a) ≤ T − off ⇒ WCET (E, a) ≤ T − off . Assume we have:

WCET (E, a) ≤ T − off

Within slot (r, s) we look at the ISA configuration d(r, s) = di(r,s) and a local compu-
tation starting in hardware configuration h(r, s) = ht(r,s). Considering the computation
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after hardware run time many cycles TH(h(r, s), a) < T − off we can conclude that
the computation is not interrupted and the instruction in the write back stage (at the end
of the computation) is the first instruction being fetched from a. By the definition of the
ISA run time this is exactly instruction i(r, s) + TU (d(r, s), a), thus:

s(WB , t(r, s) + TH(h(r, s), a)) = i(r, s) + TU (d(r, s), a)

Let h′ = ht(r,s)+TH(h(r,s),a) be the hardware configuration in this cycle and let
d′ = di(r,s)+TU (d(r,s),a) = resU (d(r, s), a) be the ISA configuration of the instruction
in the write back stage.

In this situation the pipe is almost drained. It contains nothing but instructions from
the idle loop. Thus the processor correctness theorem sim(d′, h′) holds for all com-
ponents of the configuration but the PC and the delayed PC. Therefore we weaken the
simulation relation sim to a relation dsim by dropping the requirement that the PCs
and delayed PCs should match:

dsim(d′, h′)

Until the end of the slot in cycle t(r, s) + T and instruction j(r, s), only instructions
from the idle loops are executed. They do not affect the dsim relation, hence:

dsim(e(r, s), g(r, s))

Since resU (d(r, s), a) ∈ Q and Q does not depend on the program counters we
have e(r, s) ∈ Q. We derive that decode(g(r, s)) coincides with e(r, s) except for the
program counters. And again, because this does not affect the membership in Q, we get
the desired Theorem 4.
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