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Zwei Menschen in meiner Nähe verdanke ich sehr viel, ich weiß nicht, ob
ich ohne sie diese Arbeit zu Ende gebracht hätte. Mark und Dirk, ich danke
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Abstract

This thesis is split into two parts. In the first one, we will present a formal spec-
ification of Communicating Virtual Machines (CVM), a hardware-abstracting
programming framework for microkernel implementers.

In the second part, we present the sketch of a simulation theorem between the
CVM model and the hardware, represented by an integrated processor/device
model. For parts of the CVM model, namely the microkernel, certain correctness
properties are formalized and verified.

This work is part of the Verisoft project. Verisoft aims at the pervasive
formal verification of integrated computer systems. This means that correctness
properties from the top layers of such systems are transferred down to the lowest
level, the hardware, where they have to be discharged. Following this procedure
guarantees that we have not made too strong assumptions on the top layers.

To specify CVM, we integrate several computational models, for example for
devices, assembly language, and a C-like programming language called C0. In
the verification part, we also use fundamental results from the Verisoft project,
for example a correctness theorem for a non-optimizing C0 compiler.

The major part of the results presented in this thesis has been formalized
and verified in the interactive theorem prover Isabelle/HOL.

Kurzzusammenfassung

Die vorliegende Arbeit befasst sich im ersten Teil mit der formalen Spezifika-
tion von Communicating Virtual Machines (CVM), einer von der Hardware
abstrahierenden Programmierumgebung für Mikrokernel Implementierer.

Im zweiten Teil wird der Entwurf eines Simulationstheorems zwischen dem
CVM Model und der Hardware, realisiert durch ein integriertes Prozessor-
/Gerätemodell, präsentiert. Für einen Teil des CVM Modells, den Mikrokernel,
werden diverse Korrektheitseigenschaften formalisiert und verifiziert.

Die vorliegende Arbeit ist im Rahmen des Verisoft Projekts entstanden.
Verisoft zielt auf die durchgängige formale Verifikation von integrierten Compu-
tersystemen ab. Das bedeutet, dass Korrektheitsaussagen und -eigenschaften
von den obersten Schichten solcher Systeme bis auf die unterste Schicht der
Hardware heruntergebrochen und entlastet werden müssen. So ist gewährleistet,
dass keine zu starken Annahmen auf den oberen Ebenen gemacht worden sind.

Zur Spezifikation von CVM werden diverse Berechnungsmodelle integriert,
unter anderem für Geräte, Assembler und eine C-ähnliche Programmiersprache
namens C0. Bei der Verifikation werden ebenfalls grundlegende Ergebnisse
aus Verisoft verwendet, beispielsweise ein Korrektheitssatz für einen nicht-
optimierenden C0 Compiler.

Der größte Teil der Resultate, die in dieser Arbeit vorgestellt werden, sind im
interaktiven Theorembeweiser Isabelle/HOL formalisiert und verifiziert worden.
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Extended Abstract

Operating systems are crucial components in nearly every computer system.
They provide plenty of services and functionalities, e.g., managing inter-process
communication, device access, and memory management. Obviously, they play
a key role in the reliability of such systems, and in fact, a considerable share
of hacker attacks target operating system vulnerabilities. Thus, proving a
computer system to be safe and secure requires to prove its operating system
to be safe and secure.

We introduce a computational model called CVM (communicating virtual
machines) that formalizes concurrent user processes interacting with a generic
(abstract) microkernel and devices. To establish interaction, the abstract kernel
features special functions called CVM primitives, which allow to alter process
or device configurations, e.g., by copying data from one process to another. By
linking a CVM implementation to an abstract kernel, we obtain a concrete
kernel (‘personality’). We describe how a whole framework, featuring virtual
memory support, memory management, system calls, user defined interrupts,
etc.—thus providing a trustworthy platform for microkernel programmers—can
be proven correct.

One main result of this thesis are a complete formal definition of the
computational model for CVM, including all of its primitives. Furthermore,
we present a complete definition of abstract linking (to obtain the concrete
kernel) and its pre-requisites. Last but not least, we elaborate on parts of the
overall CVM implementation correctness theorem: we formalize the correctness
relation between the abstract and the concrete kernel and present the formal
proof that this relation is preserved by certain kernel steps. To a very large
extent, this proof has also been formalized in the interactive theorem prover
Isabelle/HOL [NPW02]. The specifications have been fully formalized.

This thesis has been written in the context of the Verisoft project [IP08,
Ver03], which aims at formal and pervasive verification of entire computer
systems. Pervasive stands for the policy that all correctness properties from
the abstract upper layers are transferred down through all the intermediate
layers to the actual hardware—given through an instruction set architecture
with devices—, where they are to be discharged using only a very small set of
well-known axioms.

Due to the nature of such an endeavor, we use results from various sources
in the Verisoft project: the low-level hardware and its correctness [Tve09],
assembler language semantics (partially [Tsy09], partially own work) C0 C-
like programming language semantics and compiler correctness [Lei08], stack
verification and top-level correctness [AHL+09, Alk09, Tsy09].

The results of this thesis contribute to two sub-projects within Verisoft: in the
academic system, representing a vertical cross section of a real general-purpose
computer system, covering all layers from the gate-level hardware description to
communicating concurrent programs, a microkernel named VAMOS uses CVM.
The second sub-project is dedicated to the development of a representative
automotive system stack. Here, a real-time operating system named OLOS
[Kna08] bases on CVM.
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Zusammenfassung

Betriebssysteme gehören zu den essentiellen Komponenten eines jeden Computer-
systems. Sie bieten Mechanismen und Funktionalitäten, die die Kommunikation
zwischen Prozessen, den Zugriff auf Geräte, sowie die Speicherverwaltung regeln.
Es ist daher offensichtlich, dass die Verlässlichkeit eines solchen Computersy-
stems ganz erheblich von der des Betriebssystems abhängt—tatsächlich ist es
so, dass ein beträchtlicher Anteil von Hackerangriffen auf Lücken im Betriebssy-
stem abzielt. Möchte man daher beweisen, dass ein Computersystem sicher und
zuverlässig ist, so muss man diese Eigenschaften auch für das Betriebssystem
zeigen.

Wir führen in dieser Arbeit ein Berechnungsmodell namens CVM (commu-
nicating virtual machines) ein, wo nebenläufige Benutzerprozesse mit einem
generischen (abstrakten) microkernel und Geräten interagieren. Dazu bietet der
abstrakte Kernel spezielle Funktionen namens CVM Primitive an, die von den
Benutzerprozessen aufgerufen werden können um Prozess- oder Gerätekonfi-
gurationen zu verändern—beispielsweise in dem Daten von einem Prozess zu
einem anderen kopiert werden. Indem wir die CVM Implementierung zu einem
abstrakten Kernel linken, erhalten wir einen konkreten Kern (‘personality’).
Wir beschreiben in der vorliegenden Arbeit, wie ein solches Framework mit
Unterstützung für virtuellen Speicher, Speicherverwaltung, etc. als korrekt be-
wiesen werden kann und somit als verlässliche Plattform für die Programmierer
von Mikrokerneln dienen kann.

Ein Hauptergebnis dieser Dissertation ist die komplette formale Definition
des CVM Berechnungsmodells, inklusive aller seiner Primitive. Desweiteren stel-
len wir eine Definition des abstrakten Linkens (zur Konstruktion des konkreten
Kerns) vor, sowie der dazugehörigen Vorbedingungen. Dann verwenden wir diese
Ergebnisse um einen Teil des Theorems zur CVM Implementierungskorrektheit
vorzustellen: wir formalisieren die Korrektheitsrelation zwischen abstraktem
und konkreten Kern und präsentieren den Beweis, dass diese Relation von
gewöhnlichen Kernschritten erhalten wird. Der Beweis ist zum allergrößten Teil
im interaktiven Theorembeweiser Isabelle/HOL [NPW02] formalisiert worden,
die Spezifikationen liegen vollständig formal vor.

Diese Dissertation ist im Rahmen des Verisoft Projekts [IP08, Ver03] ent-
standen. Verisoft zielt auf die formale und durchgängige Verifikation ganzer
Computersysteme ab. Durchgängig heißt dabei, dass all Korrektheitseigenschaf-
ten der abstrakten oberen Schichten eines Systems nach unten bis auf die
eigentliche Hardware herunter gebrochen werden, wo sie dann entlastet werden
unter zu Hilfenahme weniger wohlbekannter Axiome.

Wir verwenden Resultate verschiedener Quellen in Verisoft: die Hardware und
ihre Korrektheit [Tve09], die Semantik der Assemblersprache (teilweise [Tsy09],
teilweise eigene Arbeit), die Semantik der C-ähnlichen Programmiersprache C0
und Compilerkorrektheit [Lei08], sowie Ergebnisse zur Stackverifikation und
ihrer Top-level Korrektheit [AHL+09, Alk09, Tsy09].

Die Resultate dieser Arbeit werden in zwei Teilprojekten in Verisoft ver-
wendet: im akademischen System, das einen vertikalen Querschnitt eines realen
Standard-Computersystems, das alle Ebene umfasst, verwendet eine Mikroker-
nel Implementierung namens VAMOS CVM. Das zweite Teilprojekt ist der
Entwicklung eines representativen Automotive Systems gewidmet. Hier basiert
ein Echtzeit-Betriebssystem namens OLOS [Kna08] auf CVM.
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Programming today is a race between software
engineers stirring to build bigger and better
idiot-proof programs, and the universe trying to
produce bigger and better idiots. So far, the
universe is winning.

Unknown

Chapter 1

Introduction

Contents
1.1 The Context: The Verisoft Academic System . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Computer systems are faulty. We all know that: who has never experienced
the annoyance of a so-called blue screen?

Most of the time, these faults are frustrating, sometimes they are infuriating.
We have to redo some of our recent work (of course because we had not saved
our files regularly), maybe we have to wait a couple of minutes until we can
continue.

Obviously, we know how to repair a faulty system: ‘We turn it off, we pull
the plug, we count to ten, we plug it in, and finally we turn it on again.’, says
Sir Tony Hoare—and he is right, most of the times this works and looking for
the bug, which caused the whole dilemma, would be just a waste of time.

Unfortunately, we can’t use these repair instructions with all computer
systems in the world. Some not, because they don’t have a plug (have you ever
tried to reset a locked-up mobile phone with an integrated battery?), others
because even a second offline would have disastrous consequences—think of
air-crafts, space ships, incubators, pacemakers and so on.

We call such a thing a critical computer system: if human life or health is
at stake, we talk of safety-critical systems, if it is about money or data privacy,
we call it security-critical.

There is a long, sad track of accidents caused by faulty hard- and software:

• In 1982, the CIA slipped a bug into a piece of a Canadian computer
system. This computer system was known to be obtained by the Soviets
to control the trans-Siberian gas pipeline. The Reagan administration was
trying to stop Western Europe from importing Soviet natural gas. The
resulted event has been reported to be the largest non-nuclear explosion
in history [Dav04].

• The Terac-25 [Lev95] was a radiation therapy device that could deliver
two kinds of radiation: either low-intensity electron beam or high-intensity

1
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X-rays. The latter ones were generated by shooting high-power electrons
into a metal target situated between the electron gun and the patient.
Due to a race condition in the operating system of the Therac-25 and the
replacement of the old electromechanical safeties with software control, a
maloperation could lead to the X-ray been fired without the metal target
in place. At least five casualties have been reported in the years 1985 to
1987, not counting the many seriously injured patients.

• Probably the first computer bug of which the world became widely aware
of is the Intel Pentium floating point divide bug from 1993. The Pentium
chip produced faulty results for floating point divisions in a certain range.
At the time Intel became aware of the bug, already 3 to 5 million chips
had been sold. Though only a very few people were actually affected by
the impreciseness, the bug ultimately created costs of $475 million for
Intel [Jan95].

• On June 4, 1996, Ariane 5 flight 501 crashes 40 seconds after launch.
Working code of predecessor Ariane 4 has been reused in Ariane 5. The
bug is in a routine, which converts a 64-bit floating-point number to
a 16-bit signed integer. The problem was that the engines powering
Ariane 5 are much faster, so the floating-point numbers are larger than
before causing an overflow interrupt. Since the soft- and hardware of the
backup system is identical to the primary one, both systems fail. In the
consequence, the rocket is overpowered and starts to disintegrate as the
self-destruct system of the launcher is triggered [Boa96]. The damage has
been estimated with $500 million.

• In 2000, once again a software bug in radiation therapy claimed at least
eight casualties while leaving another 20 with serious overdoses. The
software allowed to place four shielding blocks to protect healthy tissue
from radiation. But doctors in Panama wanted to use five blocks and
discovered a trick to cheat the software by drawing one single large block
with a hole in the middle. Unfortunately the software, which comes from
a U.S. company, gives different answers depending on how the hole is
drawn: in one direction, the correct dose is calculated. but in another
direction the dose is twice as much as it should be. All physicians involved
have been indicted for murder, since they were legally obliged to check
the computer results by hand.

If we have a look around in the world, there are fortunately not too many
really evil things happening due to computer errors. Industry is aware of the
problems that arise from faulty systems and has come up with a bunch of
approaches to minimize the risks:

• One approach is to define the development process and its guidelines as
precisely as possible. This is usually done using natural language and the
results are put together in a so-called standard.

Depending on the application area, a vast number of standards have been
produced, e.g., the Common Criteria for Information Security Evaluation
[The99].
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• Intensive testing is another way to improve the quality of critical systems.
Along with an increasing severance in the case of failure, the testing
becomes more exhaustive.

• Redundancy is still the primary choice for highly critical systems. In
avionic and space industry, most core systems come in triplicate, so that
if one system fails, a spare one takes over.

• Formal methods in specifying and verifying individual parts or modules
of critical systems are becoming more and more familiar tools in industry.
Here, formal methods means paper-and-pencil proofs or computer-aided
verification (CAV) .

All of the above approaches have flaws. When using natural language,
ambiguity comes into play. Besides all of the ‘shoulds’ and ‘coulds’, there is
often plenty of space left for individual interpretation by the reader.

Exhaustive testing is neither an answer. It is helpful for debugging, i.e.,
in finding bugs, but it won’t guarantee their absence. You can compare it to
looking for the needle in the haystack: you have found one, two, three, and so
on, but who tells you that there are none left? And often enough, test developer
and programmer are the same people. So when they develop tests, they have the
‘right’ way to handle their software always in mind. Who would have thought
about an ingenious trick as the one the Panama doctors had come up with?

Formal methods are useful, no doubt. Mathematical precision allows to avoid
the impreciseness of natural language. Computers check or even lead the proofs
that a piece of software or a hardware component is fault-free. Unfortunately,
a system consisting of correct modules is not automatically correct itself: you
have to consider the interfaces and the interplay of the different components:
they might be correct, but do they also fit together?

The Verisoft project [IP08, Ver03] pursues a different strategy, namely to
formal and pervasive verification of entire computer systems. Here, formal
means that all proofs are machine-checked or machine-made using computer-
aided verification systems. Pervasive stands for the policy that all correctness
properties from the abstract upper layers are transferred down through all the
intermediate layers to the actual hardware, where they are to be discharged
using only a very small set of well-known axioms.

This procedure guarantees that the assumptions made are not too strong,
since they have to be justified against the ‘real world’, the hardware1. On
the other side we exclude human shortcoming by having the proofs rigorously
machine-checked.

Hence, the so-verified systems are of extreme quality as required in many
industrial sectors, such as automotive engineering, security, and medical tech-
nology.

1.1 The Context: The Verisoft Academic System

Another goal of Verisoft was the prototypical application of the methodology
to four concrete scenarios, of which three came from the industrial sector. In

1Of course there can still be errors on the lowest level not captured by the proofs, e.g.,
physical damage, external influences, etc.
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Figure 1.1: The Verisoft Academic System

one of these scenarios, a pervasively verified system (the academic system)
for writing, signing, and sending emails had to be constructed. As such, the
academic system represents a vertical cross section of a real general-purpose
computer system, covering all layers from the gate-level hardware description
to communicating concurrent programs. The properties of the academic system
correspond to the required standards for real systems.

The academic system design comprises four layers. At the bottom, we have
the hardware layer which mainly consists of a microprocessor. In order to
interact with the academic system, this processor is realized on a FPGA, which
itself is hooked up to a host PC.

The second lowest level is the one of the system software. Here, we find
the microkernel, on top of which an operating system runs, and the memory
management mechanisms.

Above the system software, we find the networking and communication layer.
Three protocols are part of the academic system in order to realize network
communication and email transfer.

On the topmost layer, the application software is located: a simple email
client, serving as the user interface, and a cryptographic signature module.

Orthogonally to the system stack, we also have a tool layer, which comprises
the compiler to translate the high-level language implementations.

The different implementation layers are shown in Fig. 1.2. We will now
describe the components of the academic system in bottom-up fashion.

Processor Hardware The hardware platform is given by the VAMP (Verified
Architecture Microprocessor) [BJK+06]. The VAMP is a 32-bit RISC CPU
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Figure 1.2: Implementation Layers of the Academic System

with full DLX-instruction set including a set of IEEE-compliant floating point
instructions, delayed PC, address translation, and support for maskable nested
precise interrupts.

The VAMP hardware consists of a 5-stage pipeline with an out-of order
Tomasulo scheduler with reorder buffer [Kro01]. There are five execution units,
the XPU (fix point unit), the MU (Memory Unit), and three FPUs (Floating
Point Units). Instructions have up to six 32-bit source operands and deliver up
to four 32-bit results.

The floating-point units [Jac02] are fully IEEE compliant and support single
and double precision operations as well as denormal numbers and the full set of
IEEE exceptions in hardware. The FPUs are pipelined and the multiplicative
FPU has a cycle in the pipeline structure in order to compute quotients with
Newton-Raphson iteration.

The memory interface of the VAMP consists of two MMUs (Memory Man-
agement Units) that access instruction and data cache, respectively, which in
turn access a physical memory via a bus protocol. The caches [Bey05] support
write-back and are kept consistent with snooping.

A verified version of the VAMP with MMUs in the interactive theorem prover
PVS [OSR92] can be found in [Dal06], basing on results from [Hil05, DHP05].
The results have been repeated in Isabelle/HOL [NPW02] with a much higher
degree of automation by integrating automatic tools [Tve09, TS08, Tve05].

Compiler A compiler has been implemented and formally verified, based on
a small-step semantics for C0, our restricted version of C. The implementation
of the compiler has been done in C0 itself.

The specification of the C0 compiler in Isabelle/HOL and its implementation
in C0 have been completed. There exists a formal proof based on a Hoare logic
for C0 [Sch06, Sch05] that the implementation generates the same assembly
code as the compiler specification [Pet07]. A formal proof that the generated
assembly program simulates the original C0 program has been conducted in
Isabelle/HOL and presented in [Lei08].
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Microkernel and CVM Layer The layer of communicating virtual ma-
chines (CVM) has been introduced for the first time in [GHLP05]. A refined
and improved version can be found in [IT08].

The CVM layer establishes a hardware-independent programming interface
for a microkernel and a virtual computation environment for concurrently
running processes. Some parts of CVM must be implemented in assembler
since C0 lacks—for good reason—low-level programming constructs. The
microkernel, named VAMOS and implemented in C0, is based on the CVM
interface and contains no assembler parts.

This work as well as [Tsy09, ST08] deals with aspects of CVM correctness.
More details about VAMOS can be found in [DDB08, DDWS08].

Operating System The kernel calls of the above microkernel are targeted
for the implementation of a simple operating system (SOS) on top of this. It
offers file I/O, inter-process communication, remote procedure calls and access
to the peripherals as system calls to user processes. A formal specification of
SOS has been presented in [Bog08].

Networking and Communication Protocols To realize network connec-
tivity, a C0 implementation of the standard protocols Internet Protocol (IP, RFC
791 [Inf81a]) , which provides packet-oriented communication, and Transport
Control Protocol (TCP, RFC 793 [Inf81b]), providing reliable connection-based
communication, has been created.

To establish email communication, a mail server implementing the Simple
Mail Transfer Protocol (SMTP, RFC 2821 [Gro01]) has been implemented. It
provides the functionality for sending emails via SMTP (sendmail functionality),
and it receives emails via SMTP and delivers them to the correct recipient/user
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(mail server functionality).

Application Software There are two applications running atop of the simple
operating system. One is a signature module providing the functionality for
cryptographically signing texts (in particular emails) and for checking such
signatures. It uses an asymmetric signature algorithm (RSA-PSS) with an
SHA-1 hash function.

There is a formal specification of the module’s interfaces and of RSA-PSS
(including error handling). RSA-PSS and SHA-1 have been implemented in C0,
and RSA-PSS has also been formally verified [LWB06].

A simple email client is the top-level application, providing the user interface
for the whole academic system. It provides functionality for editing, signing,
and sending emails, as well as receiving, checking the signature of, and reading
emails.

The client, implemented in C0, has been fully formally verified [BHW06].
Work on how to formally define security requirements of user interfaces (such
as the email client) has been published in [BB06b, BB06a, BB04].

User interaction is handled via a standard terminal hooked up to the system
by a serial interface . A formal device and programming model for such a device
has been presented in [AHK+07].

A comprehensive overview of the overall stack verification of the academic
system from the low-level hardware to the level of CVM can be found in
[AHL+09].

1.2 Motivation

In the last forty years, several major projects have been dedicated to operating
system verification (see also Chapter 2). Most of the work has been invested
in the formal specification of operating systems and kernels. Only a very few
projects involved mentionable verification efforts on code-level.

L4.verified/seL4 [KEH+09] and KIT [Bev87] are exemptions. The first one
features a high-performance microkernel, whose implementation seems to be
fully formally verified. Since pervasiveness was not one of the project’s goals,
the trusted base is pretty large (compiler, hardware, assembler code portions).

On the other hand, KIT has been part of the famous CLI stack, which has
been formally and pervasively verified. Here, the kernel functionality measured
by the services it offers is very limited and cannot be compared to a modern
microkernel.

The CVM model presented in this work aims to cover both aspects: its
features are comparable to those of a second generation microkernel and is at
the same time part of the Verisoft pervasive model stack (cf. Fig. 1.3).

Another important aspect we consider in this thesis is modularization and
compositionality. While KIT was still written in assembler for a particular
processor, nowadays microkernels are supposed to target several hardware
platforms. Necessarily, any kernel implementation has to include low-level code
parts. Without proper separation of the hardware-specific code from the other
parts, verification work has to be redone for all target architectures.

For this reason we have encapsulated the hardware-dependent low-level
implementation. A user of our framework can use his own hardware-independent
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kernel implementation (abstract kernel). Furthermore we provide a formal
linking mechanism, which allows a kernel implementer to merge the code parts
and thus obtain a compilable, runnable kernel (concrete kernel).

Implementation correctness for the abstract kernel can then be proven
independently from the rest of the implementation. Since this abstract imple-
mentation can be written completely in our high-level programming language
C0, more sophisticated and powerful code verification tools like [Sch06] can
be used. The verification results of the CVM layer can then be used in an
assume/guarantee style of reasoning.

A considerable part of the overall correctness theorem for CVM deals with
the correctness relation between the abstract and the concrete kernel. For
standard abstract kernel steps, i.e., no kernel calls, the preservation of this
correctness relation has been proven and will be presented in this work (see
Chapter 8). To a very large extent, this proof has been conducted in the
interactive theorem prover Isabelle/HOL [NPW02].

Major parts of the formal theories of Verisoft have been published or are in
the process of publication [HP07]. This work relies on other Verisoft results: the
low-level hardware and its correctness [Tve09], assembler language semantics
[Tsy09], C0 C-like programming language semantics and compiler correctness
[Lei08], stack verification and top-level correctness [AHL+09].

1.3 Outline

In the rest of this chapter, we will introduce some basic notation. In Chapter 2,
we discuss related work.

The remainder of this thesis is split into two parts. The first one is dedicated
to the computational models required to finally define CVM:

• In Chapter 3, we will introduce the C-like programming language C0.
We start with the concrete C0 syntax and proceed then to the formal
representation of C0 programs. In the end of the chapter, we work out
on expression evaluation and the C0 transition function.

• In Chapter 4, a generic framework for devices interacting with a processor
and an (not modeled) environment will be introduced.

• In Chapter 5, we will discuss the underlying hardware. The bottom layer
is given through the instruction set architecture of the so-called VAMP
(Verified Architecture Microprocessor), whose semantics will shortly be
introduced. Subsequently, we will combine this model with the generalized
device model from Chapter 4.

The next abstraction layer is specified by the formal assembler semantics,
the natural machine model for a system level programmer. The definitions
of its data types and transition functions make up for the rest of this
chapter.

• In Chapter 6, we will introduce Communicating Virtual Machines—short:
CVM—, a hardware-abstracting computational model for user processes
interacting with each other and devices via a so-called abstract kernel.
The mechanisms for communication are established by special functions
called primitives, whose semantics will be defined subsequently. Finally,



1.4. Notation 9

we present a concept allowing to build a runnable, compilable and hence
concrete kernel by linking the hardware-dependent parts to it.

In the second part, we will deal with CVM correctness:

• In Chapter 7, we will work out the idea of a CVM correctness theorem,
a simulation theorem between the hardware and CVM. Here, we will
define the necessary abstraction relations between the components and
the hardware. Finally, we will give a sketch of how an overall correctness
theorem could look like.

• In Chapter 8, we will present part of the correctness proof of CVM. In
particular, we show how the abstraction relations between the two kernels
is preserved for non-primitive kernel steps.

We conclude in Chapter 9 with a summary and an outlook on future work.

1.4 Notation

In this section, we introduce the notation necessary to understand the rest of
this thesis.

1.4.1 Basics

We use Σ+ to denote the set of identifiers, for instance variable or type names.
N is the set of the natural numbers, while Z stands for the integers. {i, . . . , j}
denotes the integer interval from i to j for i < j. The Boolean set {True,False}
is abbreviated by B.

Sometimes, we introduce anonymous functions using . For instance, λx, y.x·y
is a function that yields the product of two operands.

fn is the n-time application of a function f with fn(x) = f(fn−1(x)), with
f1(x) = f(x).

We define a finite sequence with n elements of type t formally by a mapping
s : [0 : n − 1] → t. For 0 ≤ i ≤ j < n, s[i : j] denotes the sub sequence
(s[i], . . . , s[j]). Sometimes, we specify a sub sequence by s[i, l], where 0 ≤ i < n
defines the start index and l with i+ l < n the length of the sub sequence.

In particular, we treat bit vectors as sequences of bits. The type of all bit
vectors of length n is denoted by Bn.

Frequently, we will use records in this thesis. We access their components
with the . operator, that is r.c returns the component c of record r. We denote
record updates with r[c0 := this, c1 := that , . . . , ci := 42] where r is a record
and c0, . . . , ci are components of it. We assume that components that are not
explicitly mentioned in a record update stay unchanged. On the fly creation of
a record is written [c0 = this, c1 = that , . . . , ci = 42].

Not surprisingly, predicates are functions from an arbitrary domain into the
Boolean set. A predicate P holds or is valid for an input x, iff P (x) = True.
Shorthand notations for P (x) = True and P (x) = False are P (x) and ¬P (x).

Implications are often given by inference rules . For instance, (A ∧B)⇒ C
is denoted by

A B

C
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We will sometimes use this notation to define predicates. In these cases, we
assume that everything not covered explicitly by inference rules, evaluates to
False.

In places where their necessity is obvious, we will omit universal and/or
existential quantifiers . We say d divides n, iff there exists an i ∈ Z such that
i · d = n and write:

i · d = n i ∈ Z
d | n

Often, we will have to deal with pairs. We define fst : t1 × t2 → t1 and
snd : t1 × t2 → t2 that return the first element or the second element of a pair
respectively.

1.4.2 Abstract Data Types

We use abstract terms to define terms in a structured way. The construction
rules are given by so-called constructors. The set of all terms, which can be
build using the constructors of an abstract data type t is called type t. The
type t is the set of all terms that can be built by using the constructors of an
abstract data type t. Each constructor is a function with a result in the range
of t.

For instance, an abstract data type for lists with elements of type t could
look as follows:

t list = Nil
| Cons(t, t list)

Here, we have two constructors: Nil : t list for the empty list, and Cons :
t× t list → t list for the concatenation of an element and a list.

1.4.3 Partial Functions and Option Type

Isabelle/HOL has no support for partial functions, but there are two ways to
simulate them. First, we can introduce a constant representing the undefined
value. In this thesis, we name this constant undef .

Furthermore, there is the so-called option type. Formally, an option type is
an abstract data type with two constructors.

For a type t we define the corresponding option type as:

t option = None
| Some(t)

Here, None specifies an undefined value and Some(x) a defined value x. For
each option type t there is a function the : t option → t that converts the
argument back to the base type. We define

the(x) =

{
y if x = Some(y)
undef otherwise

For the rest of this thesis, we use t⊥ for t option and bxc for Some(x) as
shorthand notation.
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1.4.4 Lists

We have seen the abstract data type for lists. It is very cumbersome to use the
constructors explicitly—and lists are vastly used in this thesis. For conciseness
we denote the empty list Nil with [ ] and write h#t for Cons(h, t). We can
describe lists explicitly: for instance, [a, b, c] is short for a#b#c#[ ], which is
again pretty printing for Cons(a,Cons(b,Cons(c,Nil))) .

We can apply a function f to all elements of a list by the map function:
map : (t1 → t2)× t1 list → t2 list , which is defined inductively:

map(f, [ ]) = [ ]
map(f, h#t) = f(h)#(map(f, t))

The length of a list is equal to the number of its elements:

| [ ] | = 0
| h#t | = Suc | t |

We need some more auxiliary functions to facilitate list handling: hd :
t list → t returns the first element—the head—of a list, tl : t list → t list the
tail of the list, i.e., the list without its head. :

hd([ ]) = undef
hd(h#t) = h

tl([ ]) = undef
tl(h#t) = t

The append operator @ : t list × t list → t list allows to concatenate two
lists of equal types:

[ ]@l = l

(h#t)@l = h#(t@l)

ith(l, i)—or short: l!i—returns the i-th element of list l . Note that the first
element of a list is its 0-th element. For i ≥| l |, the result is undef . Updating
the n-th element of a list with some value x is denoted by l[n := x].

The function butlast : t list → t list takes a list and returns this list without
its last element We define:

butlast([]) = []
butlast(xs#x) = xs

In some places, we need to flip a pair, that is the first element becomes the
second and vice versa. For this purpose, we define flip : (t1 × t2)→ (t2 × t1)
and set flip(a, b) = (b, a).

The function replicate : N× t→ t list creates a list with as many copies as
specified by the first argument of the functions second argument, e.g.,

replicate(5, a) = [a, a, a, a, a].

.
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Frequently, we have to convert lists into sets . In this case, {l} denotes the
set derived from a list l.

We define an auxiliary function mapof : (t1 × t2) list × t1 → t2⊥, which
works as a pattern matching on lists of pairs . mapof takes two arguments: a
list of pairs to be searched and a pattern to be compared. The second element
of the first pair in l matching the pattern will be returned. If there is no such
element, the result is None.

We define formally:

mapof ([], x) = None

mapof ((a, b)#t), x) =

{
bbc if a = x

mapof (t, x) otherwise

We define a function filter : (t → B) × (t list) → t list , which filters lists
using a predicate as the filter criterion. For a given predicate P , we define
recursively:

filter(P, [ ]) = [ ]

filter(P, x#xs) =

{
x#(filter(P, xs)) if P (x)
filter(P, xs) otherwise

.



I’m not the smartest fellow in the world, but I can
sure pick smart colleagues.

Franklin D. Roosevelt

Chapter 2

Related Work

We start with the related work on operating system verification in Sect. 2.1,
where older work is treated in Sect. 2.1.1 and more recent work in Sect. 2.1.2.
For a brilliant and exhaustive overview on this topic, we strongly recommend
[Kle09].

Work, which is not directly dedicated to operating system verification but
contributing to it, is discussed in Sect. 2.2.

We conclude with the past and on-going work related to microkernel and
operating system verification in Verisoft and its successor Verisoft XT (cf.
Sect. 2.3).

2.1 Operating System Verification

2.1.1 The Early Days

The first major attempts to specify and verify complete operating systems—
PSOS and UCLA Secure Unix—date back to the seventies of the last century.

PSOS—A Provably Secure Operating System The PSOS—provably
secure operating system—project at SRI started in 1973. According to [NF03],
PSOS ‘was designed as a useful general-purpose operating system with demon-
strable security properties’.

The PSOS design and specification principles relies heavily on hierarchi-
cal modeling, where the abstraction objects of each layer were meant to be
implemented by the abstract and primitive objects of lower layers.

This modeling approach was named Hierarchical Development Methodol-
ogy (HDM) and had been developed very early in the project, coming along
with a specification and assertion language SPECIAL [RLNS75, RL77]. Using
SPECIAL, each module in the system had been specified where a layer could
comprise a number of encapsulated modules. Furthermore, SPECIAL was
supporting mapping and abstraction functions between modules on different
layers, a feature that could have been used as a base for implementation proofs
later on.

The design of PSOS seems to be basically complete, though it remains unclear
how much of it has actually been implemented—considering the fact that new
hardware had been involved. According to the project’s final report [NBFR80],

13
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no code proofs had been accomplished but only ‘some simple illustrative proofs
were carried out’. Research on information flow analysis on PSOS went on until
1983 [GM82, GM84].

Nevertheless, the PSOS project has a long-lasting and far-reaching impact.
The experiences made with HDM have led to the development of SRI’s Prototype
Verification System (PVS) [OSR92]. Furthermore, the hierarchical approach to
system modeling and proving was inspiring to the famous CLI stack project
[Moo89, BHMY89] (cf. Sect. 2.1.1).

The PSOS methodology was used in the Ford Aerospace Kernelized Secure
Operating System (KSOS) [BBJ79, MD79, PCH84].

UCLA Secure Unix The UCLA1 Secure Unix had been developed as an
operating system for the DEC PDP-11/45 computer [WKP80]. Though the
term ‘microkernel’ had not been invented at this point in time, this was already
very close to the concepts of modern microkernels, and thus an early attempt in
separating operating system from kernel functionality. The verification efforts
were concentrating on the kernel component.

The security proof for the kernel was split into two part. In a first step, a
four-level specification, ranging from Pascal code at the bottom to the top-level
security criterion, had to be developed. Then, the verification of the system was
completed by proving that these different levels of abstractions were consistent
with each other, more precise: that the state machines simulate each other.

The upper three levels were formulated by means of finite state machines.
The top-level security criterion was supposed to capture the common notion of
data security based on capabilities (cf. Sect. 2.1.1): state components are only
allowed to be modified or referenced if the current process allows for it.

The authors of [WKP80] state, over ninety percent of the UCLA kernel
has been specified—though they think that ‘the task is still too difficult and
expensive for general use’. Yet, the specification work has uncovered already
significant security bugs, which had slipped conventional testing.

An implementation of the kernel in a subset of Pascal has been completed,
of which less than twenty percent have been verified. The authors write that
‘even accomplishing even this much was quite painful’ and recommend to wait
for more effective machine aids in order to complete the task. The choice went
for Pascal, since it was both—relatively—suitable for low-level system software
implementation and it had a clear formal semantics [HW73].

Furthermore, the authors state that ‘the recommended approach to pro-
gram verification—developing the proof before or during software design and
development—is often not practical’ [WKP80, Sect. 4].

Standard Pascal had been extended by the ability to locate variables at
specific memory regions, so that hardware register manipulation could be
realized without in-line assembly parts. Code fragments which were referencing
or manipulating hardware registers where isolated and put in separate functions.
Obviously, the Pascal semantics as described in [HW73] do not capture their
effects. It seems that the pre- and postconditions of these functions have been
added manually in an axiomatic way.

An interesting observation by the authors is the negligence of hardware
finiteness, in particular when dealing with arithmetic and the corresponding

1University of California, Los Angeles
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translation from high-level languages to lower levels. In Verisoft, the same
insight led to the introduction of so-called guards in high-level code verification,
triggering in the case of an arithmetic overflow.

The overall system performance was pretty poor—an order of magnitude
slower than the standard Bell Unix of those days in some cases. This is due to
the use of a nearly non-optimizing compiler (the people in the project wanted
to be able to at least manually check the generated code) and a bad overhead
in process switching.

KIT Probably the first kernel deserving to be called formally verified, is
KIT—Kernel for Isolated Tasks—from the end of the 1980s [Bev87, Bev88,
Bev89a, Bev89b].

Besides process isolation—as implied by the name—KIT offered services
for asynchronous I/O device access, single-word message passing and exception
handling. There was no support for shared memory or virtual memory in the
modern sense, nor did KIT offer dynamic process creation.

KIT has been implemented in an artificial, yet realistic assembly language.
The code size is with 620 lines, out of which are 300 lines of actual instructions,
is very small. No surprise that the kernel is rather primitive compared to
modern microkernels.

The verification has been conducted in the Boyer-Moore theorem prover
Nqthm [BKM95], which was the precursor to the well-known ACL2 prover
[Moo00]. Similar to UCLA Secure Linux (cf. Sect. 2.1.1), the correctness proof
for KIT relies on the correspondence between finite state machines.

The correspondence proof shows that the kernel implements this abstraction
correctly, that is no implementation bugs have been introduced. The underlying
hardware is assumed to be fault-free.

The top-level specification seems to be strong enough to guarantee process
isolation, a property which is described as ‘that a task’s private state can change
only when it is active’ [Bev87, p.4].

2.1.2 Recent Work

The decade after KIT was very quiet regarding projects in operating system
verification. Since the dawn of the new millennium, it seems that the topic has
been revived.

VFiasco The VFiasco project, short for Verified Fiasco, started in 2001.
Fiasco [HH01] is a C++ re-implementation of the high-performance microkernel
L4 [Lie95]. The Fiasco kernel is built with the intention to be used in real-
time systems, so almost all of its code is pre-emptible, that is interruptible
guaranteeing for short reaction times to external interrupts.

The idea of the project is the direct translation of the programming language
C++ into its semantics in the theorem prover PVS [OSR92], thus avoiding the
formalization of C++ syntax there.

VFiasco has not seen any publications since 2005, the last one [HT05] sum-
marizing on the C++ verification approach, which has though been continued
in the Robin project on the Nova Hypervisor [Tew07].

Yet, both projects lack any successes in verifying representative portions of
the implementation.
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EROS/Coyotos Coyotos [SDNM04] is a secure, microkernel-based operating
system that builds on the ideas and experiences of the EROS project [SSF99].
EROS (Extremely Reliable Operating System) is a capability-based second
generation microkernel succeeding KeyKOS [Har85].

In [SW00], a paper-and-pencil formalization with a proof for the security
model have been presented. Yet, this security model was not related to the
actual EROS implementation.

This was part of the successor kernel Coyotos. For this purpose, a new
implementation language called BitC [SS06] has been developed, which is
both powerful enough to implement low-level system software and also eases
verification efforts. This idea is very appealing, since all common implementation
languages for kernel (C, C++, assembly) have significant flaws and insecure
features.

It seems that the Coyotos project makes rapid progress on the design and
implementation of the kernel. Until now, there has been no publications on
verification efforts or on a framework for reasoning on BitC programs.

L4.verified/seL4 The goal of the seL4 (secure embedded L4) project was
the enhancement of Liedtke’s L4 microkernel conception [Lie95] with attention
to security-relevant embedded systems [Elp04].

According to [EKD+07, KEH+09], the project has been successfully con-
cluded by the end of 2007. The result is a C and assembly implementation
(8,700 LOC C, 600 LOC assembly) running on the ARM11 hardware platform,
offering threads, IPC, memory virtualization and interrupt handling and is of
commercially competitive performance.

The design approach of seL4 is very appealing, since it combines aspects of
both OS design and formal verification. The OS design group was using the
programming language Haskell [Jon03] for rapid prototyping and—enhanced
with a hardware simulated—testing with user applications.

Since Haskell is very close to Isabelle/HOL, it is automatically translatable
into the theorem prover and hence available as a low-level formal design for
further verification efforts.

Strongly related to seL4 is the L4.verified project, in which a model stack
above the concrete implementation has been developed. The topmost layer is
an access control model for seL4 [EKE08], which is refined to an operational
model of user-visible kernel operations. The two lower layers are made up by
the Haskell low-level formalization and the actual implementation.

Verification in L4.verified aims at functional correctness, in the sense that
‘the implementation always strictly follows our high-level abstract specification
of kernel behavior’. The refinement proof between the bottom two layers is
conducted within Verisoft’s Hoare-style verification framework [Sch06].

As mentioned above, hardware, compiler, and assembly code belong to the
trusted base. [KEH+09] states that the verification efforts have been completed.

2.2 Other Related Projects

There are a number of projects, which do not explicitly deal with operating
system verification, but are of interest due to their scientific contributions to
the topic.
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FLINT The FLINT project has a special interest in developing the infrastruc-
ture needed to construct large-scale certified system software. In particular, the
enhancement of theorem provers to be more suitable for building large proofs
for system level software is in the focus.

In [FSDG08, FSGD09], the authors present a novel Hoare-logic-like frame-
work for certifying low-level system programs involving both hardware interrupts
and preemptive threads.

In [NYS07], a verification framework named XCAP is introduced and exem-
plarily applied to prove the correctness of context switching code on the Intel
x86 architecture.

AAMP7 The AAMP7 microprocessor of Rockwell Collins, Inc., basically
implements the properties of a separation kernel in hardware. In order to
obtain Common Criteria EAL7 certification [The99] for it, various efforts have
been undertaken [HSY06]. The separation kernel model used is based on
[MWE03, MWE05], the proof work itself is done in ACL2 [Moo00]. A low-level
model is closely related to the actual implementation (processor microcode),
but there is no formal correspondence proof, though the work done surely goes
beyond the requirements of an EAL7 evaluation.

Specification of an Operating System in Focus In [Spi98], a high-level
abstract model for a generic operating system has been formalized in Focus
[BDD+92]. The model covers several main aspects of an operating system,
such as processor management, memory management, process cooperation, and
management.

Specification of the Mach Kernel The term microkernel is reported first
to be used in the context of the Mach kernel [RBF+89] developed at Carnegie-
Mellon in the years from 1985 to 1994.

In [BS93b, BS93a], a formal specification of the kernel is given, though to
the best of our knowledge, no implementation proofs had been conducted.

Linking Unfortunately, there is not much related work on the formalization of
linking (cf. Sect. 6.5.2), in particular not on the level of programming languages
semantics.

As Cardelli says in [Car97]: ‘We suggest that linking and separate compilation
should be seriously taken into account when designing a language and module
system. This sentence may seem a truism, but these issues have been surprisingly
under-emphasized in the technical literature.’

This statement is more than ten years old, but the community still neglects
this topic carelessly.

Some further related work on compilation management for Standard ML
code fragments can be found in [HPLR94]. Recompilation, which is strongly
connected to linking and dependency analysis, and its optimization is addressed
in [Tic86] and [SA93].
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2.3 Verisoft/Verisoft XT Context

The development of CVM has been application-driven. In the Verisoft project,
two microkernels have been developed, which make use of the low-level CVM
implementation.

In the successor project, Verisoft XT, work on operating system verification
has been continued. Here, two commercially available products are subject to
verification: Microsoft’s virtualization platform Hyper-V [Hyp09] and SYSGO’s
microkernel PikeOS [Pik09].

VAMOS VAMOS (Verified Architecture Microkernel Operating System) is a
microkernel implementation, which is used in Verisoft’s academic system (see
Sect. 1.1).

VAMOS provides a process scheduler, an infrastructure for communication
with hardware devices, and message passing between processes. All software
layers are formally specified; refinement relations correlate the adjacent layers
such that eventually all specification layers can be mapped down to our hardware-
processor model. The whole model stack is formalized in the theorem prover
Isabelle/HOL.

For considerable parts of the kernel, correctness proofs have been conducted,
for instance, fairness and implementation correctness of the scheduler have been
shown [DDW09].

Currently, implementation correctness for the inter-process communication
has come close to an end. We expect the results to be published in 2010.

OLOS OLOS (OSEKtime-like Operating System) has been implemented as
a time-triggered microkernel for the Verisoft automotive project. Considerable
parts of OLOS—including the communication layer and bus controller device—
have been formally verified in Isabelle/HOL [ABK08, Kna08, BBG+05, IK05],
with a special attention to the real-time properties of the system [KP07b,
KP07a].

Basing on OLOS, a distributed automotive system has been exemplarily set
up, where the single nodes where interconnected via a real-time bus [KS06]. An
application, developed together with BMW, has been implemented and formally
verified [BGH+06, BKKS05].

2.3.1 Hyper-V

Hyper-V [Hyp09] is a virtualization platform, which allows to run multiple
operating systems at the same time on Intel’s and AMD’s latest x64 hardware,
by providing a transparent interface to the underlying hardware. It is part of
the Windows Server 2008 distribution. Hyper-V comprises about 100KLOC of
C code and another 5KLOC of assembly code.

Besides the sheer complexity of highly optimized, industrial performance
code, Hyper-V itself runs multithreaded in a concurrent setting and has not
been implemented with formal verification in mind.

This makes conventional (sequential) code verification not applicable. A
new tool, VCC, had to be developed [CDH+09] along with the corresponding
methodology [CMST09, MMS08, BLW08]. VCC allows to write verification
conditions directly into the program code (of course in a structured way, so that
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they can easily be removed before compiling), hence assuring the consistency of
specification and implementation by design.

Due to the secrecy necessary when dealing with commercial products, only
a few publications are available to date dealing with details of the actual
verification [LS09].

2.3.2 PikeOS

PikeOS is a microkernel for x86, PowerPC, and ARM hardware platforms
to develop embedded systems in which multiple guest operating systems and
applications can run simultaneously in a secure environment. In particular,
PikeOS realizes partitioning, such that several operating systems can run
isolated on the same processor.

As in the Hyper-V project, verification is done directly on code level using
the VCC tool. The PikeOS team reports on the on-going work in [BBBB09b,
BB09, BBBB09a]
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Software is like entropy. It is difficult to grasp,
weighs nothing, and obeys the second law of
thermodynamics; i.e., it always increases.

Norman R. Augustine
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In this chapter, we are going to introduce the C-like programming language
C0. C0 has been developed in the first Verisoft project and serves as the pro-
gramming language for most of the system level software within the project. A
simple, non-optimizing compiler from C0 to VAMP assembly code (cf. Sect. 5.3)
has been developed and completely formally verified. These proofs are covered
in detail in [Lei08] and [Pet07].

For the rest of this chapter, we will proceed as follows. In Sect. 3.1, we will
introduce the concrete C0 syntax.

In Sect. 3.2, we describe formally the representation of programs for the C0
semantics. C0 configurations keep track of the run-time information during the
execution of such a program . We define these configurations formally in Sect.
3.3.

In Sect. 3.4, we treat the evaluation of C0 expressions . Last but not
least, we complete C0 program execution with the formal definition of the C0
transition function in Sect. refc0semantics::sect::delta.

The semantics of C0 will be used later on in Chapter 6 to model the behavior
of CVM’s abstract kernel .

3.1 An Informal View on C0

C has been developed in the early seventies of the last century. It has been
developed for the implementation of system level software, in particular for
kernel implementation.

Throughout the years, several standards for C have been developed and
published, the latest dating back to 1999 [ISO99]. Based on considerations
regarding formal verification, certain design limitations compared to these
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standards have been applied to C0. For instance, we do not allow side effects
during expression evaluation; this includes function calls as part of expressions,
making the introduction of a particular C0 function call statement necessary
(see Sect. 3.2.3).

C0 features a dedicated type for arrays . Their size has to be fixed at
compile time.

We restrict the use of pointers, which are typed in C0. Pointers must not
point to functions or local variables . There are no void pointers and pointer
arithmetic is forbidden.

We do not allow explicit memory deallocation, like the C free statement.
Instead, we are planning to use a garbage collector that frees unreachable heap
portions periodically. This garbage collector has already been code verified, but
yet not been integrated into the C0 semantics.

Despite all these restrictions, the various efforts in Verisoft have produced
evidence for the usability of C0 in system programming. For instance, two oper-
ating systems, VAMOS [AHL+09] and OLOS [IK05] have been implemented in
C0. In Verisoft’s academic sub-project, a whole system stack including protocol,
driver and application implementations has been developed and formally verified
in large parts.

3.1.1 Types

In C0, we support four basic types:

• Boolean: bool with values in {True,False}

• 32-bit signed integers: int, with values in {−231, . . . , 231 − 1}

• 32-bit unsigned integers: unsigned int, with values in {0, . . . , 232 − 1}

• 8-bit signed integers: char, with values in {−27, . . . , 27 − 1}

We allow arithmetic operations only on 32-bit integers and unsigned integers.
In addition, we define so-called aggregate types:

• For a type t, ∗t denotes a (typed) pointer.

• For a type t and n ∈ N, t[n] denotes an array of (fixed) size n of type t.

• For types t0, . . . , ti−1 and names σ0, . . . , σi−1, struct{σ0 : t0, . . . , σi−1 :
ti−1} denotes a structure with i components.

Note that we do not support unions or bitfields.

3.1.2 Expressions

Variable names and literals are expressions. For an expression e, (e) is an
expression.

If both e and i are expressions, than the array access e[i] is also an expression.
Let σ ∈ Σ+ be a name, and e an expression; then e.σ, that is access of a structure
component, is an expression.

Pointer dereferencing ∗e and application of the ‘address-of’ operator &e are
expressions, too.
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Table 3.1: Unary C0 Operators

Operator Meaning Supported Operand Types Result Type

~ bit-wise nega-
tion

t ∈ {int , unsigned int} t′ = t

! logical negation t ∈ {bool} t′ = t
- unary minus t ∈ {int} t′ = t

int cast to int t ∈ {char , unsigned int , int} t′ = int
unsigned cast to

unsigned int
t ∈ {char , unsigned int , int} t′ =

unsigned int
char cast to char t ∈ {char , unsigned int , int} t′ = char

t is the type of the operand, t′ is the type of the result

For an expression e and a unary operator ⊕1 from table 3.1, ⊕1e is an
expression. For expressions e1, e2 and a binary operator ⊕2 from Table 3.2,
e1 ⊕2 e2 is an expression.

Though pointer arithmetic is prohibited, we allow pointers to sub variables
of aggregate variables.

3.1.3 Statements

Let f denote a function name, e and ei functions, t a type, s and si statements.
Then, C0 offers support for the following statements:

• Assignments: e1 = e2. Unlike standard C, C0 allows to assign array
values.

• Dynamic heap memory allocation: e1 = new(t). As mentioned before,
there is no support for manual deallocation.

• Function calls: e = f(e0, . . . , en−1). The dedicated function call statement
meets the constraints regarding side effects in expression evaluation.

• Return from function call: return e

• While loops: while e s

• For loops: for (e0 = e1; e2; e3 = e4) s

• If statements: if e s0 or if e s0 else s1

Sequences of statements—separated by semicolons—are allowed. In contrast to
C, C0 does not provide support for goto, switch or long jump statements.

Complex Literals

Complex literals comprise literals of aggregate types. They can be used in
atomic assignments to non-elementary variables:

• For complex literals ci of type t, {c0, c1, . . . , cn−1} denotes a complex
literal of the array type t[n].
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Table 3.2: Binary C0 Operators

Operator Meaning Supported Operand Types Result Type

+ addition t1 = t2 ∈ {int , unsigned int} t′ = t1
- subtraction t1 = t2 ∈ {int , unsigned int} t′ = t1
* multiplication t1 = t2 ∈ {int , unsigned int} t′ = t1
/ division t1 = t2 ∈ {unsigned int} t′ = t1
% modulo t1 = t2 ∈ {unsigned int} t′ = t1
| bit-wise or t1 = t2 ∈ {int , unsigned int} t′ = t1
& bit-wise and t1 = t2 ∈ {int , unsigned int} t′ = t1
^ bit-wise exclu-

sive or
t1 = t2 ∈ {int , unsigned int} t′ = t1

<< logical left
shift

t1 ∈ {int , unsigned int},
t2 ∈ {char , int , unsigned int}

t′ = t1

>> logical right
shift

t1 ∈ {int , unsigned int},
t2 ∈ {char , int , unsigned int}

t′ = t1

< less t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

<= less or equal t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

> greater t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

>= greater or
equal

t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

== equal ceq t′ = bool
!= not equal ceq t′ = bool

t1 and t2 are the types of the operands, t′ is the type of the result, the type
condition ceq for equality tests is fulfilled if both types are equal or if one of

them is a pointer and the other the special null pointer type

Table 3.3: Lazy C0 Operators

Operator Meaning Supported Operand Types Result Type

&& logical and t1, t2 ∈ {bool} bool
|| logical or t1, t2 ∈ {bool} bool

t1 and t2 are the types of the operands, t′ is the type of the result



3.2. C0 Programs 27

• For complex literals ci of types ti and component names σi, {.σ0 =
c0, .σ1 = c1, . . . , .σn−1 = cn−1} is a complex literal of the structure type
struct{σ0 : t0, σ1 : t1, . . . , σn−1 : tn−1}.

For an expression e and a complex literal c, the assignment e = c is also a C0
statement. Note, that complex literals are not allowed within expressions.

In-line Assembly

Low-level system software often addresses parts of the underlying hardware—
for instance processor registers— that are not visible in higher programming
languages. For this purpose we have to extend our C0 language with a statement,
which allows to embed assembly code into C0 code.

Let u be a list of assembler instructions; then asm{u} is a C0 statement.
The concrete kernel introduced in Sect. 6.5.1 uses in-line assembly code in

its hardware-dependent low-level parts (see [Tsy09]). In [Alk09], a low-level
device driver makes use of in-line assembly to address a hard disk device.

3.2 C0 Programs

In this section, we will introduce formally the notion of C0 programs . Such a
program is given through a type name environment—a mapping of type names
to types—, its functions, and information about its global variables.

3.2.1 Types and Type Name Environment

C0 offers four basic types: BoolT for Booleans, IntT for signed 32-bit inte-
gers, UnsgndT for 32-bit unsigned integers, and CharT for 8-bit signed inte-
gers. A structure type with n components of types t0, t1, . . . , tn−1 and names
σ0, σ1, . . . , σn−1 is given by StrT ([(σ0, t0), (σ1, t1), . . . , (σn−1, tn−1)]). An array
type with n elements of type t is defined by ArrT (n, t).

C0 supports fully recursive data types. This makes modeling by abstract
data structures a bit harder, since we have to introduce an additional level of
indirection: pointers do not directly give the type, to which they map, but a
type name. Type names are mapped to names via the type name environment.
Thus, a pointer to a type name tn is given by PtrT (tn). The type NullT has
only one element, namely the null pointer literal.

We can now define types formally by the abstract data type below:

ty = BoolT | IntT | UnsgndT | CharT
| StrT ((Σ+ × ty) list)
| ArrT (N, ty)
| PtrT (Σ+) | NullT

Type name environments are defined by tenv : (Σ+ × ty) list.

Definition 3.1 (Elementary Types) A type t is called elementary iff it is
not a structure type or an array type:

?elemT (t) = t ∈ {BoolT , IntT ,UnsgndT ,CharT ,PtrT ,NullT}
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Definition 3.2 (Abstract Size of Types) The abstract size of a type t is
defined inductively:

sizeT (t) =


1 if ?elemT (t)
n · sizeT (t′) if t = ArrT (n, t′)
0 if t = StrT ([])
sizeT (t) + sizeT (StrT (clist)) if t = StrT ((σ, t)#clist)

3.2.2 Expressions and Complex Literals

The building blocks of C0 expressions are literals . We define a corresponding
abstract data type lit providing a constructor for each basic C0 type plus a
literal for null pointers:

lit = Boolean(B) | Int(Z) | Unsgnd(N) | Char(Z) | NullPointer

Expressions are defined inductively with two base cases:

• literal expressions Lit(l) with a literal l ∈ lit and

• variable accesses Var(σ) to global or local variables with name σ ∈ Σ+.

For expressions e, e1, e2, i, a name σ, and an operator op, the inductive cases
of expressions are:

• array access Arr(e, i),

• structure access Str(e, σ),

• addr-of computation AddrOf (e),

• pointer dereferencing Deref (e),

• arithmetic and logical computations UnOp(op, e), BinOp(op, e1, e2), and
LazyBinOp(op, e1, e2).

The abstract data type, which we use for modeling C0 expressions in Isabelle,
is defined as follows:

expr = Lit(lit)
| Var(Σ+)
| Arr(expr , expr)
| Str(expr ,Σ+)
| UnOp(unop, expr)
| BinOp(binop, expr , expr)
| LazyBinOp(lazybinop, expr , expr)
| AddrOf (expr)
| Deref (expr)

The list of supported operators is given in Tables 3.4, 3.5, 3.6, and 3.7.
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Table 3.4: Unary Operators

Operator Meaning

minus unary minus
neg bitwise negation
not logical not

toint conversion to Int
tounsgnd conversion to Unsgnd
tochar conversion to Char

Table 3.5: Binary Operators

Operator Meaning

add addition
sub subtraction

mult multiplication
div division
mod modulo
orb bitwise or

andb bitwise and
xorb bitwise exclusive or
shift l arithmetic left shift
shift r arithmetic right shift

Table 3.6: Comparison Operators

Operator Meaning

compless less
comple less or equal

compgreater greater
compge greater or equal
compeq equal
compneq not equal

Table 3.7: Lazy Binary Operators

Operator Meaning

and l logical and
or l logical or
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Complex Literals

Complex literals are literals for aggregate types, i.e., structures and arrays:

litc = clPrim(lit)
| clArr(litc list)
| clStr((Σ+ × litc) list)

3.2.3 Statements

stmt = Skip
| Comp(stmt , stmt)
| Ass(expr , expr , sid)
| Assc(expr , litc, sid)
| PAlloc(expr ,Σ+, sid)
| SCall(Σ+,Σ+, expr list , sid)
| Return(expr , sid)
| Ifte(expr , stmt , stmt , sid)
| Loop(expr , stmt , sid)
| Asm(asm list , sid)
| XCall(Σ+, expr list , expr list , sid)
| ESCall(Σ+,Σ+, expr list , sid)

All statements but Skip and Comp are uniquely tagged with an identifier
sid ∈ N. These identifiers are mainly needed for the compiler correctness proof
in [Lei08], thus we omit them most of time due to readability.

Skip is the empty statement. We can combine two statements s1 and s2

with the compound statement Comp(s1, s2).
In Isabelle, we actually have only one assignment statement; to achieve a

better readability, we use two versions of assignments: one for complex literals
Assc(eleft , lc) and one for expressions Ass(eleft , eright). We allocate new heap
objects of a type with name tn with the allocation statement PAlloc(eleft , tn);
the newly created pointer will be assigned to the left-hand expression eleft .

Calling a function with name fn is done via the SCall(fn, vn, [e0, . . . , en−1])
statement, with [e0, . . . , en−1] defining a—possibly empty—list of parameters
and vn being the variable name, where the return value will be stored. We
return from a function call with the Return(e) statement, e being the return
expression.

With the statement Ifte(e, sthen, selse), we realize conditional program exe-
cution. If e evaluates to True, execution continues with sthen, otherwise with
selse. Loop statements are modeled by Loop(e, slbody), where slbody is executed
as long as e evaluates to True. Note that there is no special statement for for
loops, since they can be syntactically transformed into semantically equivalent
while loops during pre-processing.

The Asm(u) statement allows to embed assembler code in C0 code, where u
is a list of VAMP assembler instructions (cf. Chapter 5). Note that the execution
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Comp

Ifte Loop

AssLoopComp

SCallAssPAlloc

Figure 3.1: Statement Tree

of u is defined by the VAMP assembler semantics, i.e., it is not covered by the
C0 semantics.

Some C0 programs are not ’complete’, e.g., the abstract kernel introduced in
Sect. 6.5.1. These programs declare functions, but don’t define them, i.e., don’t
specify a function body . We call these functions external and model calls to
them with the ESCall(fn, vn, [e0, . . . , en−1]). In the process of abstract linking,
these external function calls will be replaced as the corresponding function

implementations are added (cf. Sect. 6.5.2).
To make the effects of assembler execution visible at higher levels, we define

the XCall(fn, [e0, . . . , en−1], [p0, . . . , pm−1]) statement : pi are parameters to
the XCall, ei are the return values of it. In [AHL+09], XCalls are used in an
integrated correctness proof for a Verisoft system stack.

Definition 3.3 (Top-level Statement Flattening) A statement tree (see
Fig. 3.1 spanned by Comp statements can be flattened into a list of top-level
statements by the function s2l : stmt → stmt . We define:

s2l(s) =

{
s2l(s1)@s2l(s2) if s = Comp(s1, s2)
s otherwise

Correspondingly, we define s2lnoskip : stmt → stmt , which additionally
removes all Skip statements:

s2lnoskip =


s2lnoskip(s1)@s2lnoskip(s2) if s = Comp(s1, s2)
[ ] if s = Skip
s otherwise

Note, that the flattening only affects the top-level statements, that is inner
statements—like loop bodies—stay untouched (cf. Fig. 3.2).
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Figure 3.2: Flattened Statement Tree

3.2.4 Procedure Table

The procedure table of a C0 program contains the information of all of the
program’s functions. Each function is defined by one procedure descriptor,
which is defined as a record procT of four components:

• p.body ∈ stmt , the function body,

• p.params ∈ (Σ+ × ty) list , the parameters of the function given by pairs
of names and types ,

• p.rtype ∈ ty, the return type, and

• p.lvars ∈ (Σ+ × ty) list , the local variables given by pairs of names and
types.

Note, that for external functions the component p.body just contains a single
Skip statement.

Formally, the procedure table is a list of pairs of function names and their
corresponding descriptors and defined by the type proctableT : (Σ+×procT ) list .

3.3 C0 Small-Step Configurations

C0 small-step configurations keep track of the run-time information during the
execution of a C0 program. They consist of two components:x

1. the memory configuration stores information about the global, local, and
heap variables and their values;

2. the program rest, which holds the statements that haven’t been executed
yet.

3.3.1 Memory Configurations

Memory configurations store information about variables and the corresponding
values. They are organized in memory frames: one frame for each the global
variables and heap variables, and a list of frames and return destinations for
the local variables .
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Figure 3.3: g-Variable Hierarchy

Generalized Variables

Small-step semantics defines variables structurally as so-called generalized vari-
ables or g-variables. g-variables are defined inductively, with three base cases
(global, local, and heap variables) and two inductive cases (structure and array
access).

For vn ∈ Σ+, i, j ∈ N, gvargm(vn) denotes the global variable with name
vn, gvarlm(i, vn) the local variable with name vn in the local memory frame
i, and gvarhm(j) the heap variable with index j. Note that global and local
variables are referenced by their name—and thus called named variables—while
heap variables are nameless and referenced by their index only.

For a name cn ∈ Σ+ and a g-variable g of structure type, the component
gvarstr (g, cn) is a g-variable, too. This is also true for the array element
gvararr (g, i) of a g-variable g of array type at index i ∈ N.

The following abstract data type defines g-variables formally:

gvar = gvargm(Σ+)
| gvarlm(N,Σ+)
| gvarhm(N)
| gvararr (gvar ,N)
| gvarstr (gvar ,Σ+)

Obviously, this definition leads to a hierarchical, tree-like structure of g-
variables (see Fig. 3.3). We will now define several functions that allow to
handle this structure.

Definition 3.4 (Sub g-Variables) All g-variables in a sub-tree with a root
g—including the root itself—are called sub g-variables of g. We define the set
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of sub g-variables for a given g inductively:

g ∈ subg(g)
Base Case

h ∈ subg(g)
gvararr (h, i) ∈ subg(g)

h ∈ subg(g)
gvarstr (h, cn) ∈ subg(g)

Inductive Cases

Definition 3.5 (Parent g-Variable) Correspondingly, we define the func-
tion idparentg : gvar → gvar⊥ to walk up in the hierarchy of g-variables:

parentg(g) =


h if g = gvararr (h, i)
h if g = gvarstr (h, cn)
None otherwise

Definition 3.6 (Root g-Variable) Obviously, application of parentg to a g-
variable g several times would lead us to the first ancestor—the root of the
tree— of g. We call this variable the root g-variable of g and define the function
rootg : gvar → gvar that calculates it formally as follows:

rootg(g) =


rootg(h) if g = gvararr (h, i)
rootg(h) if g = gvarstr (h, cn)
g otherwise

Memory Frames

The C0 small-step semantics uses a flat and rather explicit memory model,
similar to the one in [Nor98], defined by a mapping of of addresses—natural
numbers—to memory cells. In order to store the value of a variable of type t, we
need sizeT (t) many memory cells. This means that the value of an elementary
type variable uses exactly one memory cell. Aggregate type values are stored in
consecutive sequences of memory cells.

Memory cells are formalized by an abstract data type, where we define a
constructor for each of the five elementary types:

mcellT = Int(Z) | Unsgnd(N) | Char(Z) | Bool(B) | Ptr(gvar ∪ {NullPointer})

Note that pointers are represented by a g-variable or the special null pointer
value NullPointer .

In addition to the content of a memory frame, we need to know which
variables have already been initialized. We store this information in a list of
variable names.

Last but not least, each memory frame has a list of its variables—given by
their names—along with their types. Such lists are called symbol tables.

So, each memory frame is specified by a record mf of type mframeT with
the above three components:
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• mf .cont : N→ mcellT , the content of the memory frame ,

• mf .init : Σ+ list , the list of initialized variables, and

• mf .st : (Σ× ty)list , the symbol table of the frame.

Definition 3.7 (Base Addresses of Variables) The base address of a vari-
able is defined recursively over its position in the symbol table. If the variable
is not present in the symbol table or if the symbol table is empty, the base
address is None. In all other cases, we compute recursively: if the variable is
the first entry in the symbol table, then the base address is zero. Otherwise, we
set its base address to the base address in the tail of the list plus the abstract
size of the type at the first entry.

We define bav : (Σ+ × ty) list × Σ+ → N⊥ and set:

bav([], σ) = None

bav((vn, t)#xs, σ) =

{
b0c if σ = vn

sizeT (t)⊕ bav(xs, σ) otherwise

with

i⊕ j =

{
the(i) + the(j) if i 6= None and j 6= None
None otherwise

Definition 3.8 (Type of Variables) The type of a variable in a symbol table
is defined by the second component of the corresponding pair in that symbol
table. Formally, we define typev : (Σ+ × ty) list × Σ+ → ty⊥ with

typev(st, x) = mapof (st, x)

Memory Configuration

As described in the introduction above, a memory configuration consists of
memory frames. We define a configuration m formally by a record memconfT
with components:

• m.gm ∈ mframeT , the global variables’ memory frame.

• m.lm : (mframeT × gvar) list, the stack of local memories. Each memory
frame stands for one stack frame. The second component, a g-variable,
defines, where the return value of the function associated with that frame
will be stored (return destination).

• m.hm ∈ mframeT , the heap variables’ memory frame. Since heap vari-
ables are nameless, the names in the symbol table m.hm.st are not used.
Heap variables are initialized by definition, thus the field m.hm.init is
ignored.

Whenever we extend the stack, we put a new memory frame at the end of
the existing list m.lm. This means, the current stack frame is the last stack
frame in the list, which we abbreviate by toplm(m) = m.lm!(| lm | −1). Thus,
we can keep the index of stack frames and the index of local variables (see Sect.
3.1) invariant during program execution.
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Symbol Configuration

We introduce some auxiliary functions to refer to the symbol tables of the
different memory frames in a readable way:

gst : memconfT → (Σ+ × ty) list
toplst : memconfT → (Σ+ × ty) list

hst : memconfT → (Σ× ty) list

gst(m) = m.gm.st

toplst(m) = toplm(m).st
hst(m) = m.hm.st

Often, we are just interested in the symbol tables of a certain memory
configuration, but not its content. To improve the formalism in these sections,
we define a new record type named symbolconfT , which will store a symbol
configuration, consisting of the three symbol tables . For sc ∈ symbolconfT we
define:

• sc.gst : (Σ+ × ty) list , the symbol table of the global memory frame,

• sc.lst : (Σ+×ty) list list , a list of symbol tables of all local memory frames,
and

• sc.hst : (Σ× ty) list , the heap memory frame symbol table.

For a given memory configuration m, we write short sc(m) to refer to its
symbol configuration.

3.3.2 Program Rest

The program rest stores those statements that haven’t been executed yet. On
initialization, we start with the body of the main function of the C0 program.
Afterward, the program rest grows or shrinks as defined through the execution
of the program. Formally, a program rest pr is just a common C0 statement:
pr ∈ stmt .

3.3.3 C0 Configuration

We can now give a complete formal definition of a configuration c as used in
C0 small-step semantics. Therefore, we introduce a new record type confTC0 ,
which consists of two components

• c.m ∈ memconfT , the memory configuration, and

• c.pr ∈ stmt , the program rest.
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3.4 Expression Evaluation

3.4.1 Address of g-Variables

Definition 3.9 (Type of g-Variables) Similar to Def. 3.8, we define the
type of g-variables typeg : symbolconfT × gvar → ty. For σ ∈ Σ+ and i, j ∈ N
we set the base cases:

typeg(sc, gvargm(σ)) = typev(sc.gst, σ)
typeg(sc, gvarlm(i, σ)) = typev(sc.lst!i, σ)

typeg(sc, gvarhm(j)) = typev(sc.hst, j)

The inductive cases, i.e., array and structure accesses, are defined partially
as follows:

typeg(sc, gvararr (g, i)) =

{
t if typeg(g) = ArrT (t, j)
undef otherwise

typeg(sc, gvarstr (g, x)) =

{
the(mapof (c, x)) if typeg(g) = StrT (c)
undef otherwise

Definition 3.10 (Named and Nameless g-Variables) To determine, if a
variable is in global, local, or heap memory, we introduce the function memg :
gvar → memname:

memg(gvargm(σ)) = gm

memg(gvarlm(i, σ)) = lm(i)
memg(gvarhm(i)) = hm

memg(gvararr (g, i)) = memg(g)
memg(gvarstr (g, σ)) = memg(g)

We distinguish between nameless variables, i.e., heap variables, and named
variables . Thus, we define a predicate ?namedg : gvar → B formally:

memg(g) = gm ∨ (∃i ∈ N : memg(g) = lm(i))
?namedg(g)

Definition 3.11 (Initialized g-Variables) We say, a g-variable x is initial-
ized in a memory configuration m, if its root g-variable is in the set of initialized
variables of the corresponding memory frame. Heap variables are by definition
always initialized.

We set for σ ∈ Σ+, i ∈ N and g ∈ gvar :

?initg(m, gvargm(σ)) = σ ∈ m.gm.init
?initg(m, gvarlm(i, σ)) = σ ∈ m.lm!i.init

?initg(m, gvarhm(i)) = True
?initg(m, gvararr (g, i)) = ?initg(m, g)
?initg(m, gvarstr (g, σ)) = ?initg(m, g)
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Definition 3.12 (Base Address of g-Variables) The base address of a g-
variable is defined by the function bag : symbolconfT × gvar → N. For named
g-variables, we set:

bag(sc, gvargm(σ)) = bav(sc.gst, σ)
bag(sc, gvarlm(i, σ)) = bav(sc.lst!i, σ)

Unfortunately, bav cannot be used with nameless variables. In order to
determine the base address of a heap variable with index i in a symbol table
sc.hst, we sum up the abstract sizes of the types with index less than i:

bag(sc, gvarhm(i)) =


0 if i = 0
i−1∑
j=0

sizeT (snd(sc.hst!j)) otherwise

For array accesses, we define partially:

bag(sc, gvararr (g, i)) =

{
bag(g) + i · sizeT (t) if typeg(g) = ArrT (t, j)
undef otherwise

Dealing with structure accesses is more convenient, since the list of struct
components is of the same type as a symbol table: (Σ+ × ty) list . Thus we can
use bav again in order to compute the offset of a given component σ within a
component list cl :

bag(sc, gvarstr (g, σ)) =

{
bag(sc, g) + the(bav(cl , σ)) if typeg(g) = StrT (cl)
undef otherwise

3.4.2 Value of a g-Variable

Let’s first define a function that allows to read memory cells, the building blocks
of the content of a memory frame.

Definition 3.13 (Memory Content) For a given memory configuration m,
a memory name σ, and i, j ∈ N, we define the content of the memory in the
range from i to j as follows:

mσ[i : j] =


m.gm.ct[i : j] if σ = gm

m.lm!i.ct[i : j] if σ = lm(i)
m.hm.ct[i : j] if σ = hm

Definition 3.14 (Value of a g-Variable) We can now use the above defini-
tion in order to describe formally the value of a g-variable g ∈ gvar in a memory
configuration m ∈ memconfT :

valueg(m, g) = mmemg(g)[bag(sc(m), g), sizeT (typeg(sc(m), g))]

3.4.3 Evaluating Expressions

In this subsection, we will deal with the actual functions for expression evaluation
in C0 small-step semantics. We will only consider those expressions being of
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relevance for the correctness proof in Chapter 8. This means, we won’t look into
the details of literal or operator evaluation, but which are covered in [Lei08].

In Isabelle, the evaluation of an expression returns either None or a so-called
data slice data type. Here, we split up the monolithic Isabelle eval function
into five functions, each returning one of the components of the data slice data
type:

• lval : tenv ×memconfT × expr → gvar⊥ computes the left hand value of
a given expression, that is its address. For expressions with no address,
like literals, lval returns None. This corresponds to the lval component of
a data slice.

• rval : tenv × memconfT × expr → (N → mcellT )⊥ computes the right
hand value of a given expression. For uninitialized expressions, rval
returns None. This corresponds to the data component of a data slice.

• type : tenv × (Σ× ty) list × (Σ× ty) list × expr → ty⊥ returns the type of
an expression. Assuming a type correct memory, this corresponds to the
type component.

• ?init : tenv ×memconfT × expr → B is True for initialized expressions,
otherwise False. initialized is the corresponding component in data slices.

• ?inter : tenv × (Σ × ty) list × (Σ × ty) list × expr → B is True, if the
expression is intermediate—i.e., not a memory object. Data slices have a
corresponding component named intermediate.

Note that not all of the above functions require a memory configuration as
input. Instead, type and init take two symbol tables, one for the global memory,
one for the local memory (usually the latter one is the symbol table of the
topmost stack frame).

Literals

We start with evaluating literal expressions. Regarding initialization, left value
and memory status, we define as follows:

?init(te,m,Lit(l)) = True
?inter(te, gst , lst ,Lit(l)) = True

lval(te,m,Lit(l))) = undef .

We do not define these functions for complex literals.
Regarding type of literals, we define two functions.

Definition 3.15 (Type of Literals) The type of a literal is given through
the function type lit : lit → ty. We set:

type lit(Bool(b)) = BoolT
type lit(Unsgnd(u)) = UnsgndT

type lit(Int(i)) = IntT
type lit(Char(c)) = CharT

type lit(NullPointer) = NullT
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Definition 3.16 (Type of Complex Literals) The type of a complex literal
is given through the function typeclit : litc → ty. We set:

typeclit(clPrim(l)) = type lit(l)
typeclit(clArr(x#xs)) = ArrT (|x#xs|, typeclit(x))

typeclit(clStr(xs)) = StrT (map(typeclit,map(snd , xs)))

Definition 3.17 (Right Value of Literals) We define a function rval lit :
lit → mcellT , which takes a literal and returns its right value. We set:

rval lit(Bool(b)) = Bool(b)
rval lit(Unsgnd(u)) = Nat(u)

rval lit(Int(i)) = Int(i)
rval lit(Char(c)) = Char(c)

rval lit(NullPointer) = Ptr(NullPointer)

Definition 3.18 (Right Value of Complex Literals) We define the func-
tion rvalclit : litc → mcellT list to obtain the right value of complex literals.
We set:

rvalclit(clPrim(l)) = rval lit(l)
rvalclit(clArr([ ])) = [ ]

rvalclit(clArr(x#xs)) = rvalclit(x)@rvalclit(clArr(xs))
rvalclit(clStr([ ])) = [ ]

rvalclit(clStr([x#xs])) = rvalclit(snd(x))@rvalclit(clStr(xs))

Using the above definitions, we can now define the type and value of literal
expressions as follows:

type(te, gst , lst , lit(l)) = btype lit(l)c
rval(te,m, lit(l)) = brval lit(l)c.

Variable Access

Accessing a variable σ means accessing a memory object, thus

?inter(te, gst , lst ,Var(σ)) = False.

C0 supports shadowing. This means that if both gst and lst define a variable
with name σ, we will access the local one. If there is no local variable of that
name, we access the global one. If the variable σ is neither in gst nor in lst , the
evaluation fails. In this case, we set:

?init(te,m,Var(σ)) = False
type(te, gst , lst ,Var(σ)) = None

rval(te,m,Var(σ)) = None
lval(te,m,Var(σ)) = None
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In the other cases, that is σ is either in gst or lst , we set:

type(te, gst , lst ,Var(σ)) =

{
typev(lst, σ) if σ ∈ {map(fst , lst)}
typev(gst, σ) otherwise

for the type and

lval(te,mc,Var(σ)) ={
bgvarlm(| m.lm | −1, σ)c if σ ∈ map(fst , toplst(m))
bgvargm(σ)c otherwise

for the left hand value.
Furthermore, we define the to σ corresponding memory frame mf as

mf =

{
toplm(m) if σ ∈ {map(fst , toplst(m))}
m.gm otherwise

This allows finally to define the two remaining evaluation functions in a
comprehensive way:

?init(te,m,Var(σ)) = σ ∈ mf .init
rval(te,m,Var(σ)) = bmf .ct[bav(mf.st, σ), sizeT (typev(mf .st, σ))]c

Pointer Dereferencing

Pointer dereferencing again means dealing with a memory object, i.e.,

?inter(te, gst , lst ,Deref (e)) = False.

The evaluation of a Deref (e) expression will fail, if certain constraints are
violated. These are:

• the sub expression e has to be of pointer type: type(te, gst , lst , e) =
bPtrT (tn)c,

• the type name tn has to be defined in the type name environment:
mapof (te, tn) = btc;

• the right hand value of e has to be a pointer, but not the null pointer:
rval(te,m, e) = bPtr(p)c ∧ p 6= NullPointer ,

• p must not be a local variable, that is memg(p) ∈ {gm, hm}, and last but
not least,

• e has to be initialized: ?init(te,m, e) = True.

In the case of failure, we set ?init to False and lval , rval , and type to None.
Otherwise, we set the remaining four evaluation functions as follows:

type(te, gst , lst ,Deref (e)) = mapof (te, tn)
?init(te,m,Deref (e)) = ?initg(m, p)

lval(te,m,Deref (e)) = bpc
rval(te,m,Deref (e)) = bvalueg(m, p)c
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Address-Of Operator

The Address-Of operator AddrOf (e) returns the address of a memory object,
which itself is not a memory object, but always initialized:

?inter(te, gst , lst ,AddrOf (e)) = True
?init(te,m,AddrOf (e)) = True

As with pointer dereferencing, applying the Address-Of operator can fail, if
one of the following requirements is not met:

• e has to be a memory object: ?inter(te, gst , lst , e) = False, and

• its left evaluation has to return a g-variable: lval(te,m, e) = bgc, and
finally

• there has to be a type name for the type of e in the type name environment:
mapof (map(flip, te), type(te, gst , lst , e)) = btnc.

If any of these requirements are not met, we set type, lval , and rval to None.
Otherwise, we define:

type(te, gst , lst ,AddrOf (e)) = bPtrT (tn)c
lval(te,m,AddrOf (e)) = undef
rval(te,m,AddrOf (e)) = b[Ptr(g)]c

Array Element Access

The expression for array element access Arr(ea, ei) has two sub expressions:
ea for the array expression and ei for the index expression. An array element
access is a memory object, iff the array expression is a memory object, that is

?inter(te, gst , lst ,Arr(ea, ei)) =?inter(te, gst , lst , ea),

and it is initialized, iff both sub expressions are initialized:

?init(te,m,Arr(ea, ei)) =?init(te,m, ea)∧?init(te,m, ei).

Furthermore, we require

• the array expression can be evaluated, which is lval(te,m, ea) = bgac and
rval(te,m, ea) = bvac;

• the right evaluation of the index expression returns a numerical value, i.e.,

rval(te,m, ei) = bInt(i)c
∨ rval(te,m, ei) = bUnsgnd(i)c
∨ rval(te,m, ei) = bChar(i)c

• that ea is an array with n elements of type t, i.e., type(te, gst , lst , ea) =
bArrT (n, t)c, where
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• the index i is in range: i < n.

If the evaluation of the array element access fails, since one of the above criteria
is not fulfilled, we set type, lval and rval to None.

In all other cases we define

type(te, gst , lst ,Arr(ea, ei)) = btc
lval(te,m,Arr(ea, ei)) = bgvararr (ga, i)c
rval(te,m,Arr(ea, ei)) = bva[i · sizeT (t), sizeT (t)]c

Structure Component Access

Similar to array element accesses, a structure component access Str(e, cn)
consists of two parts: a sub expression for the structure access e and a component
name cn. A structure component access’ initialization and memory object status
is the same as those of the structure access, thus

?inter(te, gst , lst ,Str(e, cn)) = ?inter(te, gst , lst , e)
?init(te,m,Str(e, cn)) = ?init(te,m, e)

The evaluation of Str(e, cn) fails, if one or more of the following constraints
are violated:

• e has to be of structure type, i.e., type(te, gst , lst , e) = bStrT (cl)c, and

• e can be evaluated in the sense that lval(te,m, e) = bgc and rval(te,m, e) =
bvc;

• there is a t such that (cn, t) is in the component list cl of the struct, that
is mapof (cl, cn) = btc.

In the case of failure, we set lval , rval and type to None.
Otherwise we define

type(te, gst , lst ,Str(e, cn)) = btc
lval(te,m,Str(e, cn)) = bgvarstr (g, cn)c
rval(te,m,Str(e, cn)) = bv[bav(cl, cn), sizeT (t)]c

Operators

As mentioned in the introduction to this subsection, we will not fully work out
the details of operator evaluation. More precisely, we do not explicitly take care
of how the right hand value and the result type are obtained—we will use two
uninterpreted functions for this purpose. The details of operator evaluation are
covered in [Lei08].

For unary operators, we define

type⊕1
: unop × ty → ty

value⊕1
: unop ×mcellT⊥ → mcellT⊥

and correspondingly for binary operators

type⊕2
: binop × ty × ty → ty

value⊕2
: binop ×mcellT⊥ ×mcellT⊥ → mcellT⊥
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Unary Operators A unary operator expression is never a memory object,
thus we set

?inter(te, gst , lst ,UnOp(⊕1, e)) = True,

and it is initialized, iff the sub expression e is initialized:

?init(te,m,UnOp(⊕1, e)) =?init(te,m, e).

Successful operator application requires the following conditions to be ful-
filled:

• the sub expression e can be evaluated, that is rval(te,m, e) = bvec, and

• applying the unary operator to ve returns some result: value⊕1
(⊕1, ve) =

bvc.

If one or more of these requirements are not met, we set type, lval , and rval
to None. Else, we set

type(te, gst , lst ,UnOp(⊕1, e)) = btype⊕1
(⊕1, the(type(te, gst , lst , e)))c

lval(te,m,UnOp(⊕1, e)) = undef
rval(te,m,UnOp(⊕1, e)) = b[v]c

Binary and Lazy Operators Similarly, we proceed with binary and lazy
operators. For the rest of this paragraph, we set e = BinOp(⊕2, e1, e2) or
e = LazyBinOp(⊕2, e1, e2). As with unary operators, binary and lazy operator
expressions are never a memory object, that is

?inter(te, gst , lst , e) = True,

and they are initialized, iff both sub expressions are initialized:

?init(te,m, e) =?init(te,m, e1)∧?init(te,m, e2).

Here, the requirements for successful expression evaluation are:

• both sub expressions can be right evaluated, i.e., rval(te,m, e1) = bv1c
and rval(te,m, e2) = bv2c, and

• application of the operator yields some result: value⊕2 (⊕2, v1, v2) = bvc,
and finally

• we can determine some type both for e1 and e2:

type(te, gst , lst , e1) = bt1c
type(te, gst , lst , e2) = bt2c

If expression evaluation fails, we set lval , rval , and type to None. In all
other cases, we set:

type(te, gst , lst , e) = btype⊕2
(⊕2, e1, e2)c

lval(te,m, e) = undef
rval(te,m, e) = b[v]c
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3.5 Execution of C0 Programs

In this section we will treat the execution of C0 programs using the small-
steps semantics. We first start with the definition of initial configurations (cf.
Sect. 3.5.1).

We proceed with a formal definition of memory updates in Sect. 3.5.2, before
we conclude with the definition of the C0 transition function (cf. Sect. 3.5.3)

3.5.1 Initial Configuration

As we have learned in Sect. 3.3.3, a C0 configuration consists of two components:
the memory configuration and the program rest. In this section, we will define,
how these two components are initialized.

Initial Memory

Global and heap variables in C0 are initialized with a default value depending
on their type. Then, we use these initial values to construct the initial memory.

Definition 3.19 (Initial Values) Let initval : ty → mcellT list define the
initial value for a given type. Let tn denote a type name. For the base case we
set:

initval(IntT ) = [Int(0)]
initval(UnsgndT ) = [Unsgnd(0)]

initval(BoolT ) = [Bool(False)]
initval(CharT ) = [Char(0)]

initval(PtrT (tn)) = [Ptr(NullPointer)]
initval(NullT ) = [Ptr(NullPointer)]

Given a type t, a natural number n, and a component name cn, we define for
the inductive case:

initval(ArrT (n, t)) = replicate(n, initval(t))
initval(StrT [ ]) = [ ]

initval(StrT ((cn, t)#xs)) = initval(t)@initval(StrT (xs))

We can now use the function initval to define recursively initst, which takes
a whole symbol table as input and returns a corresponding initialized content
for it:

initst([ ]) = [ ]
initst((vn, t)#xs) = initval(t)@initst(xs)

Definition 3.20 (Initial Memory Frame) Given a symbol table st, we de-
fine an initial memory frame as follows:

initmem(st) =

ct = undef
st = st
init = ∅
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Definition 3.21 Now, we take this wrapper together with the memory content
generator from Def. 3.19 to initialize all variables of a memory frame. Therefore,
we define initvars : mframeT → mframeT and set for a given memory frame
frame:

initvars(frame) =
[
ct = λi.initst(frame.st)!i
init = {map(fst , frame.st)}

]
We have now all the ingredients to define the initial memory of a C0 machine.

For the global memory frame, we take the global variable’s symbol table to
construct the initial content. Since there haven’t been any objects allocated
yet, the heap is empty.

The situation for the stack is a little trickier: we search the procedure table
for the main function of the program. Then we take its parameters and local
variables and use them to construct the initial stack frame of our initial C0
configuration.

Definition 3.22 (Initial Memory Configuration) Let pt be a procedure
table and gst a symbol table for the global variables. An initial memory config-
uration of a C0 program is given through the function initmc : proctableT ×
(Σ+ × ty) list → memconfT⊥.

If mapof (pt, ‘main’) = None, i.e., there is no main function in the program,
we set initm(pt, gst) = None. Otherwise, denote with mp the main function of
the program, which is mapof (pt, ‘main’) = bmpc. Then we set

initm(pt, gst) =

  gm = initvars(initmem(gst))
lm = [(initmem(mp.params@mp.lvars), undef )]

hm = [initmem([])]

 
There is only the second component of an initial C0 machine configuration

missing, the initial program rest. This rest is defined by the body of the
program’s main function after removing the last statement of it. This is in
fact a Return statement and would be the last statement of the program to be
executed. Unfortunately, this would leave the stack in an undefined state. For
this reason, termination of a C0 program is defined in a different way. We will
have a more precise look at this in Sect. 3.5.3.

Definition 3.23 (Removing the Last Statement) We define the function
remlast : stmt → stmt , which replaces the last statement in a tree with Skip.
For an input statement s, we define recursively:

remlast(s) =

{
Comp(s1, remlast(s2)) if s = Comp(s1, s2)
Skip otherwise

Definition 3.24 (Initial C0 Configuration) We will now define the func-
tion initconf : proctableT × (Σ+ × ty) list → cC0⊥. If there is no main function
in the corresponding C0 program, that is mapof (pt, ‘main’) = None, we return
initconf(pt, gst) = None. Else, let mp denote the main procedure of the program:
mp = the(mapof (pt, ‘main’)).

initconf(pt, gst) =
⌊ [

mem = the(initmem(pt, gst))
prog = remlast(mp.body)

] ⌋
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3.5.2 Memory Updates

Statements like SCall , PAlloc, Return, and Ass change the memory config-
uration of a C0 machine. In this section, we are going to define a function
updmm : memconfT × gvar × (N → mcellT ) → memconfT⊥ for memory up-
dates. In Sect. 3.5.3, we will use this function to describe the semantics of the
statements mentioned above.

For the rest of this section, let m denote a memory configuration, g a
g-variable, and v a value. In C0, partial updates of uninitialized variables are
forbidden. This is why we require that the variable to be updated is either
initialized or a root g-variable.

If this is not the case, the memory update returns None:

¬(?init(m, g) ∨ rootg(g) = g)
updmm(m, g, v) = None

Otherwise, we define the memory update semantics by a case distinction on
the root of g. Let b = bag(sc(m), g) denote the base address of g, and s =
sizeT (typeg(sc(m), g)) its size.

For a global root g-variable—rootg(g) = gvargm(σ)—we set

updmm(m, g, v) :=
⌊
m

[
gm.init := gm.init ∪ σ
gm.ct := gm.ct([b, s] := v[0, s])

]⌋
For a local root g-variable—rootg(g) = gvarlm(i, σ)—we set

updmm(m, g, v) :=
⌊
m

[
lm!i.init := lm!i.init ∪ σ
lm!i.ct := lm!i.ct([b, s] := v[0, s])

]⌋
Finally, for a heap root g-variable—rootg(g) = gvarhm(j)—we set

updmm(m, g, v) :=
⌊
m
[
hm.ct := hm.ct([b, s] := v[0, s])

]⌋
Note, that in the latter case we do not care about the init component of the
heap memory frame, since heap variables are by definition always initialized.

3.5.3 C0 Transition Function

The execution of a C0 program is modeled by the small-step semantics transition
function δC0. Parametrized with a type name environment and a procedure
table, δC0 computes for a given configuration c either its successor configuration
c′ or—in the case of a run-time error—None.

δC0 : tenv × proctableT × confTC0 → confTC0⊥

The function is defined by induction over the program rest. If the program
rest is a single statement, we apply the transition function as described in
the paragraphs below. Otherwise—i.e., the program rest is a tree spanned by
compound statements—we apply δC0 recursively.

Skip

A program rest consisting of a single Skip, that is c.prog = Skip, means that
the program has terminated. In C0, termination is modeled by a infinite fix
point loop: δC0(te, pt, c) = bcc.
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Figure 3.4: Execution of Compound Statements with ‘Real’ Statements

Compound Statements

A compound statement Comp(s1, s2) combines two sub trees s1 and s2. Execu-
tion is defined by recursion on the left sub tree.

The execution of that sub tree has finished, when there is only a Skip
statement left, i.e., s1 = Skip. In this case, we go on with the recursive
execution of the right sub tree s2. We define

δC0(te, pt, c) =
bc[prog := s2] if s1 = Skip
bc′[prog := Comp(c′.prog, s2)]c if δC0(te, pt, c[prog := s1]) = bc′c
None otherwise

This means that we always execute the left-most statement in statement tree.
Consumed left sub trees—those that just consist of a Skip statement—are
pruned together with the corresponding compound statement (see Figures 3.4
3.5).

Conditional Statements

Executing a conditional statement Ifte(e, s1, s2) means that there are two
possible new program rests: either s1 or s2, depending on e. There are some
requirements on the expression e for a successful execution:

• e has to be of Boolean type: type(te, gst(c.m), lst(c.m), e) = bBoolT c,

• it is initialized, that is ?init(te, c.m, e) = True, and

• it can be right evaluated, that is rval(te, c.m, e) = bvc.

If one or more of these conditions are violated, execution fails and we set
δC0(te, pt, c) = None. Otherwise, we define for c.prog = Ifte(e, s1, s2):

δC0(te, pt, c) =

{
bc[prog := s1]c if v = True
bc[prog := s2]c otherwise
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Figure 3.5: Execution of Compound Statements with Skip Statements

While Loops

If the program rest consists of a loop, i.e., c.prog = Loop(e, s), there are two
possible program rests: Skip, if e evaluates to False, or Comp(s,Loop(e, s))
otherwise—which means, we execute the loop body s as long as e is True.

Again, execution can fail, if not all of the following requirements on e are
met:

• e has to be of Boolean type: type(te, gst(c.m), lst(c.m), e) = bBoolT c,

• it is initialized, that is ?init(te, c.m, e) = True, and

• it can be right evaluated: rval(te, c.m, e) = bvc.

In the case of failure, we set δC0(te, pt, c) = None, otherwise we define:

δC0(te, pt, c) =

{
bc[prog := Comp(s,Loop(e, s))]c if v = True
bc[prog := Skip]c otherwise

Assignments

Given a program rest c.prog = Ass(eleft, eright) and the following requirements:

• eleft can be left evaluated to some g-variable g:

lval(te, c.m, eleft) = bgc,

• eright is initialized, ?init(te, c.m, eright) = True, and

• can be right evaluated to some value v:

rval(te, c.m, eright) = bvc,

and finally

• the memory update succeeds: updmm(c.m, g, v) = bm′c.

If one or more of the above conditions are violated, we set δC0(te, pt, c) = None.
Otherwise, we define

δC0(te, pt, c) =
⌊
c

[
prog := Skip
m := m′

]⌋
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Aggregate Literals We have already mentioned in Sect. 3.2.3 and 3.5.1,
there is an extra statement for the assignment of aggregate literals: Assc. It
allows to assign complex values in one step of the C0 machine, which is essential
in the equivalence proof of the small-step semantics and the Hoare logic as
defined in [Sch06]. Since this proof is not relevant for our work, we do not get
further into the details of it, but merely describe the semantics of Assc, which
are very similar to those of a ‘normal’ assignment.

For a program rest c.prog = Assc(eleft, al), we require that

• eleft can be left evaluated to some g-variable g, that is

lval(te, c.m, c.m) = bgc;

• the aggregate literal al can be right evaluated to some value v:

rvalal(te, c.m, al) = bvc,

• and finally the memory update is successful: updmm(c.m, g, v) = bm′c.

In the case of failure, we set δC0(te, pt, c) = None, otherwise we define

δC0(te, pt, c) =
⌊
c

[
prog := Skip
m := m′

]⌋
Memory Allocation

Whenever we are to allocate a new object on the heap, we have to make
sure first, that there is enough memory available to do so. Thus, we define
a predicate ?heap : memconfT × ty → B, which determines this for a given
memory configuration and a type. On the semantic level, we leave this predicate
uninterpreted. In a concrete setting as described in [Lei08], parameters like
overall memory size, current heap size, and compiler construction would be part
of such a definition.

For a successful execution of the PAlloc(eleft, tn) statement we require,

• that eleft can be left evaluated to some g-variable g: lval(te, c.m, eleft) =
bgc, and

• that the type name tn is defined in te: mapof (te, tn) = btc.

As before, we set δC0(te, pt, c) = None for the failure case.
If both requirements are met, there are two ways to proceed depending

on the value of ?heap. Assuming that there is enough memory available, we
first extend the heap with a new variable of the specified type and assign the
appropriate initial value to it. In a second step, we create a pointer to this
variable and assign it to the left expression. If there is not enough memory, we
only assign a null pointer to the left expression.

Definition 3.25 (Extending the Heap) We define now a function

extheap : (memconfT × ty → B)×memconfT × ty → memconfT ,

which handles the extension of the heap as described above. Let m denote a
memory configuration and t the type of the variable to be added to the heap.
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The base address of this variable is equal to the overall abstract size of the
whole heap—since it will be appended at its end. Thus we set

b =
|hst(m)|−1∑

i=0

sizeT (snd(hst(m)!j)).

If ?heap(m, t) = True, that is there is enough memory available for a new
variable of type t, we define the new heap memory hm′ by

hm′ = m.hm

[
st := hst(m)@[(undef , t)]
ct := m.hm.ct([b, sizeT (t)] := initval(t)[0, sizeT (t)])

]
In the case of insufficient memory—?heap(m, t) = False—, we just return the
old heap: hm′ = m.hm.

We still have to deal with the second step: assigning either the null pointer
or a pointer to the newly created variable to the left hand expression. We set:

p =

{
Ptr(gvarhm(|hst(c.m)|)) if ?heap(c.m, t) = True
NullPointer otherwise

Since p is initialized by definition (cf. Sect. 3.4) and the requirements
described above are met, the following memory update will not fail and yield a
new memory configuration m′:

updmm(extheap(?heap, c.m, t), g, p) = bm′c.

Finally, we define the resulting configuration by

δC0(te, pt, c) =
⌊
c

[
prog := Skip
m := m′

]⌋
Function Calls

Given a program rest SCall(vn, fn, plist), i.e., a call of the function with name
fn and a list of parameter expressions plist. vn denotes the name of the variable,
where the return value will be stored later on. A function call is realized in
three steps:

1. We start with the extension of the stack by a new frame. The frame’s
symbol table is made up by the function parameters and its local variables.

2. Subsequently, we evaluate the parameter expression list and copy the
results into the new stack frame.

3. In the end, we set the function body as the new program rest.

Definition 3.26 (Parameter Passing) We start by defining the function
copypars : memconfT × (N → mcellT ) list × Σ+ list → memconfT⊥. copypars

takes a list of values and tries to copy them into the topmost stack frame, where
a list of variable names specifies the variables to be updated.

Let vl denote a list of values, pnl a list of parameter names, and m a memory
configuration. We then define copypars(m, vl, pnl) recursively on the value list
vl with the base case

copypars(m, [ ], pnl) = bmc.
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For the recursive case copypars(m, v#vl, pnl), we examine the memory update
with the head of the value list v. If it fails, we set

copypars(m, v#vl, pnl) = None.

Otherwise, there exists a memory configuration m′ with

updmm(m, gvarlm(|m.lm| − 1, hd(pnl)), v) = bm′c

and we set

copypars(m, v#vl, pnl) = copypars(m′, vl, tl(pnl))

For reasons of better readability, we introduce the shorthand notation
stfunc(f), which refers to the symbol table of a function f ∈ procT . This
symbol table consists of the parameters of the function and its local variables:
stfunc(f) = f.params@f.lvars.

Definition 3.27 We will now take the stack extension and the parameter pass-
ing and put them into one function extstack : tenv×memconfT ×Σ+×procT ×
expr list → memconfT⊥. Let extstack(te,m, vn, f, pl) denote an application of
this function.

First, we define the new stack frame mf ′ by

mf ′ =

 st = stfunc(f)
ct = undef
init = ∅


Then we add this new stack frame at the end of the existing stack and obtain a
new intermediate memory configuration mimed:

mimed = m[lm := m.lm@[(mf ′, lval(te,m,Var(vn)))]]

Here, lval(te,m,Var(vn)) determines the g-variable where the return value will
be stored at the end of the function execution.

Now, we take this intermediate memory configuration and copy the parameter
values into it and obtain thereby the extended memory configuration:

extstack(te,m, vn, f, pl) =
copypars(mimed,map(the(rval(te,m)), pl),map(fst , f.params)).

Stack extension can fail for two reasons:

• the left evaluation for the return destinations fails: lval(te,m,Var(vn)) =
None.

• the evaluation of one or more parameter expressions fails: ∃p ∈ {pl} :
rval(te,m, p) = None.

In these cases we set extstack(te,m, vn, f, pl) = None.

We can now define the successor configuration of a function call c.prog =
SCall(vn, fn, pl) by using the definition above and setting the new program rest
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appropriately. Let f denote the called function, i.e., the(mapof (pt, fn)) = f ,
and assume extstack(te,m, vn, pl) = bm′c. Then we define

δC0(te, pt, c) =
⌊
c

[
prog := f.body
m := m′

]⌋
If our assumption fails, that is extstack(te,m, vn, pl) = None, the execution of
the function call fails and we set δC0(te, pt, c) = None.

Returns

The execution of a program rest c.prog = Return(e) can be split into two steps.
First, we evaluate the return expression e and use its value to update the return
destination of the topmost stack frame. Then, we remove this frame from the
stack.

Successful execution has several requirements to be met:

• the return expression can be right evaluated, that is

rval(te, c.m, e) = bvc,

• it is initialized, i.e., ?init(te, c.m, e) = True, and finally

• the memory update of the return destination succeeds:

updmm(c.m, snd(toplm(c.m)), v) = bm′c.

In the failure case, we set again δC0(te, pt, c) = None. Otherwise, we define the
transition function for return statements by

δC0(te, pt, c) =
⌊
c

[
prog := Skip
m := m′[lm := butlast(m′.lm)]

]⌋
External Function Calls

As mentioned in Sect. 3.2.3, external function calls refer to functions that
are just declared, but not defined. In Sect. 6.5.2, the occurrences of external
function calls will be replaced by actual function calls as described further
above. There is not much sense in defining a transition function for external
function calls. Nevertheless for reasons of completeness, we set for a program
rest c.prog = ESCall(vn, fn, plist)

δC0(te, pt, c) = bc [prog := Skip]c

XCalls and In-line Assembler

In-line Assembler We will deal here with in-line assembly code only super-
ficially, since the part of the CVM correctness proof, with which we deal in this
work, relies only on pure C0 small step semantics.

In the early stages of the Verisoft project, we originally considered to
introduce an extra computational model of C with in-line assembler code.
Practical formal verification work within Verisoft’s academic sub-project has
taught us yet that a dual model approach is more feasible. This means, we
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separate the computational model for assembler programs from the one for C0
programs and thus also separate the proof work. Later on, we combine the two
results with each other.

This is possible, because the compiler correctness theorem, as introduced in
[Lei08], relates each C0 configuration to a corresponding configuration of the
assembler machine, thus providing two traces of relating configurations. So,
whenever the program rest consists of an in-line assembler statement, we can
move from this C0 configuration down to the relating assembler configuration.
As we assume termination of in-line assembler portions (for a full list of assump-
tions on in-line assembler and its formalization see [Tsy09]), we can now execute
the whole instruction list provided by the Asm statement. The final assembler
configuration is then used to derive again the related C0 configuration from it.
Note that this might include memory updates of variables of the C0 program.

There are a couple of examples in Verisoft, where this methodology has
been successfully applied. In [Tsy09], correctness for some of the CVM kernel
primitives has been shown. [Sta09] has formally verified a demand paging
algorithm. Finally, [Alk09] has produced a correctness proof for a device driver.

XCalls XCalls are a way to make the results of in-line assembly code visible
on higher levels of the semantic stack, i.e., in the Hoare Logic of [Sch06].
The meaning of each XCall is defined in an axiomatic way. The authors of
[ASS08, AHL+09] have used this methodology in the pervasive verification of
the paging mechanism used in Verisoft’s academic sub-project.
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In our device model [HIP05], we define single devices as finite state transition
systems, that interact on one hand with the processor and on the other hand
with an—not modeled—external environment (cf. Fig. 4.1). The external
environment can, for instance, represent a user typing on a keyboard or a
network, which is connected to a device.

4.1 Device Configurations

In Verisoft, we support the following device types:

• a timer, which can be used, for instance, for scheduling,

• a hard disk,

• an UART serial interface, as it is used to connect terminals for example,

• an automotive bus controller (ABC), which is used in the Automotive
sub-project of Verisoft, and

• a network interface controller (NIC).

Three of the above devices have been formally modeled in Isabelle/HOL: the
hard disk [AH08], the serial interface [AHK+07], and the automotive bus
controller [Kna08, ABK08, IK05] used in the Verisoft automotive sub-project
[BBG+05, ILP05].

The detailed discussion of these devices goes far beyond the scope of this
work and it is not necessary for the further understanding. Each type of device
has its own disjoint state space, which we abbreviate by confTx with x denoting
the device type: x ∈ {timer , hd, uart , abc, nic}. The union of all possible device
states is denoted by confTdev.

55
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Figure 4.1: Devices Interacting with External Environment and Processor

Remark (Isabelle/HOL) In Isabelle/HOL, we model confTdev by an ab-
stract data type with one constructor for each device type.

Let dmax denote the maximal number of devices in a system. Then each
device is associated with an unique identifier in the set {0, . . . , dmax − 1} = D.
The overall generalized device configuration of such a system is then given
through the mapping

confTdevs = D→ confTdev.

The type for a given device state c can be obtained by the mapping typedev

with

typedev(c) = t⇔ c ∈ confT t.

We additionally define a function irqdev : confTdevs ×D→ B. For a given
generalized device configuration cdevs, we say the device with id did is currently
signaling an interrupt, iff irqdev(cdevs, did) = True.

4.2 Device Communication

Device communication is bidirectional with both the processor and the external
environment. For the processor part of communication, the devices are memory
mapped. This means that certain parts of the device, the so-called ports, are
mapped into the memory of the processor. Conventional memory operations
can then be used to communicate with these devices, that is with load and store
operations on the corresponding addresses. In our device model, we restrict the
amount of ports per device to portmax = 210.
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Device Communication on the Upper Layers

On upper-layer computational models, we abstract from assembly instructions
and memory. Plus, we want to work with block operations on devices, that is
we want to read and write chunks of data of size larger than one word. For this
purpose we introduce two new types to allow for modeling the communication
between processor and devices in that way: the memory interface input mifi—
input from the processor to the device—and the memory interface output
Mifo—output from the device to the processor. In CVM, we assume that device
output is a list of integers and thus set Mifo = Z list .

A memory interface input din ∈ mifi is a record type with the following
components:

• rep ∈ B: if rep = True, we will read or write repeatedly from the
same port of the device. Otherwise, we read from or write the words to
consecutive ports starting with the port specified in the port field.

• wr ∈ B: the write flag signals a write operation, iff wr = True and a read
operation else.

• port ∈ {0, . . . , portmax − 1} denotes the port on which we operate in the
case of rep = True; otherwise, it specifies the port with which we start.

• data ∈ Z list : in the case of wr = True, this component holds the data to
be written to the device. In the read case, only the length |data| of the
list matters, since it determines how many words we are going to read
from the device.

Furthermore, the element

mifi ε = (rep = False, wr = False, port = 0, data = [0])

denotes the so-called idle mifi.
In order to abstract from a single device, we extend this type by an extra

field did to determine, for which device the input is meant. We name this new,
extended type Mifi .

Communication with the external environment is again device-specific. So,
there is for each device type t a particular type for the input from the environ-
ment to the device named Eifi t, the external interface input, and a type for the
output from the device to the environment named Eifot, the external interface
output. The union of all possible external inputs and outputs are named Eifi
and Eifo, respectively.

Remark (Isabelle/HOL) In Isabelle/HOL, we model both Eifi and Eifo by
abstract data types with one constructor for each device type.

Device Communication on the ISA Level

On the ISA level, devices are mapped into the memory. A certain address range
is reserved for the devices, so that they can be accessed with conventional load
and store operations.

For memory interface input, the effective address of such an operation can
be used to determine the corresponding device id and port, while the type of
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the operation determines if the write flag is set or not. In the case of a write
operation, we use the natural number representation of the value associated
with this operation for the data field of the device input. Note that on the ISA
level, we do not support block operations.

A detailed definition on how to compute memory interface input for devices
on the ISA level can be found in [Tve09, Alk09].

In addition, memory interface output on this level consists only of a sin-
gle integer value—compared to a list of integers for the upper layer device
communication.

A upper layer memory interface input, which constitutes a block operation,
can easily be translated into a finite sequence of low-level memory inputs.

4.3 Transition Functions

The device model which we introduce here is pseudo-parallel in the sense that
we either do an internal step—the device consumes a processor input—or an
external step—the device consumes an external input, but never both at the
same time. Thus, for each device there is an external and an internal transition
function. Again, we do not look into the details of these transition functions
but merely treat them as uninterpreted functions.

While external steps can only produce external output, internal steps can
result both in external and internal output.

Let t denote a device type with t ∈ {hd, uart, nic, timer, abc}. Then, the
internal transition function for that device is given through

δint
t : mifi × confT t → confT t ×Mifo × Eifot

and the external transition function through

δext
t : Eifi t × confT t → confT t × Eifot.

For CVM again, we want to abstract from single devices and obtain general-
ized transition functions for overall device configurations

δint
devs : Mifi × confTdevs → confTdevs ×Mifo × Eifo

and
δext
devs : (D× Eifi)× confTdevs → confTdevs × Eifo.

With each application of the transition functions, one device makes a step.
Let dinint ∈ Mifi denote an internal device input, cdevs ∈ confTdevs a

generalized overall device configuration. The device, which is supposed to
progress, is given through din int.did . We construct the internal input for a single
device din′int ∈ mifi by throwing away the device identifier did. Additionally,
we identify the device type t = typedev(cdevs(dinint.did)).

Now, we step the device using the appropriate device specific internal
transition function and obtain a new device state, internal output dout int and
external output doutext:

(c′t, dout int, doutext) = δint
t (din′int, cdevs(dinint.did)).
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Finally, we can specify the result of the generalized internal transition function
as

δint
devs(dinint, cdevs) = (cdevs(dinint.did := c′t), dout int, doutext).

This works similar for the generalized external transition function. Let
did ∈ D denote a device id, dinext ∈ Eifi t an external device input and
cdevs ∈ confTdevs a generalized device configuration. We identify the type
of the addressed device by t = typedev(cdevs(did)). Then, we step the device
with the specific external transition function and obtain a new device state and
external output:

(c′t, doutext) = δextt (dinext, cdevs(did)).

The result of the generalized external transition function can then be defined as

δext
devs((did, dinext), cdevs) = (cdevs(did := c′t), doutext).





Engineers now have the ability to formally specify
properties of their hardware design model using an
industry standard, and then verify these properties
in dynamic verification (that is, simulation) or
static verification (that is, formal verification), ...
Prior to IEEE 1850, there were multiple
proprietary ways of specifying properties and
assertions, but not a standard. This meant that
the same specification could not be used across
multiple tools. With a new standard, a single form
of specification can be reused across multiple
processes.

Harry Foster

Chapter 5

VAMP ISA and Assembler

Contents
5.1 VAMP ISA . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Combining ISA and Devices . . . . . . . . . . . . . . . . 64

5.3 Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . 66

User processes are applications running on top of the microkernel. We could
use the C0 small-step semantics as introduced in Chapter 3. Yet, we do not
only want to model well-behaving friendly user processes, but also malevolent
processes. Modeling in C0 would impose programming restrictions that do not
cope with real world scenarios. For instance, a hacker would probably implement
his malicious code directly in assembler to make use of certain exploits. Thus we
restrain from C0 program user process and will instead use assembler machines
to model user processes.

The hardware platform for CVM is given by the Verified Architecture
Microprocessor (VAMP), based on the DLX architecture [HP96] and introduced
in [MP00]. A first VAMP implementation correctness proof has been presented
in [BJK+03, BJK+06]. During the Verisoft project, the VAMP has been
extended by I/O devices and address translation [DHP05].

There are several formal models related to the VAMP architecture. For
each model, there exist two variants, one with device support and one without.
Adjacent layers are related by simulations proofs [Tve09, Tsy09].

The most concrete layer is the gate-level implementation, above which we
have the instruction set architecture (ISA). Here, we already abstract from
the actual hardware layout and define state transitions using the semantics of
the processor’s instruction set. For the correctness proof sketched in Chapter
7, this model of the hardware with devices represents the lowest layer in the
simulation proof.

Yet, data and instructions are still given through bit vectors, resulting in
an inconvenient model for a programmer. For this purpose, we introduce the
VAMP assembly language, which is a slight abstraction of the VAMP ISA.
Here, addresses are represented by natural numbers, and register and memory
contents by integers. We consider this layer to be the programming model
for low-level applications, and user processes will be represented by assembler
machines.
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5.1 VAMP ISA

In this section, we will briefly introduce the instruction set architecture of the
VAMP. Then, we will combine this model with the generalized device model
from Chapter 4. We will omit many details that can be found in [Tve09].

Remark (Isabelle/HOL) The following definitions are based on the formal
definitions in Isabelle. While originally ISA memory was byte addressed (cf.
[MP00]), the Isabelle version of it is word addressed.

5.1.1 Instruction Set Architecture

The VAMP instruction set architecture serves as the specification for the
gate-level implementation. On the other hand, it offers a system software
programmer’s view of the hardware with all details as interrupt handling,
address translation, and execution modes.

ISA Configuration

An ISA configuration cisa is modeled by the record type confTisa with fields:

• pcp ∈ B30, the program counter, and

• dpc ∈ B30, the delayed program counter which specifies the address for
the next instruction fetch (for details on delayed branch mechanism cf.
[MP00]);

• two register files, namely gprs : B5 → B
32, the general purpose register

file and

• the special purpose register file sprs : B5 → B
32;

• a memory mm : B30 → B
32.

Frequently, we refer to the special purpose registers by an acronym denoting
their meaning (cf. Tab. 5.1). For instance, sprs(ptl) denotes the page table
length register sprs(10).

Remark (Isabelle/HOL) Unlike in the hardware, in Isabelle/HOL bit vec-
tors can have variable length. The preservation of the constant length is a
transition invariant that had to be proven.

The VAMP processor offers support for two execution modes. In system
mode, programs have direct access to the memory and have full control over the
hardware via a set of privileged instructions. In user mode, memory access is
subject to address translation and the use of privileged instructions will raise an
exception. The current execution mode is defined by the content of the register
sprs.mode: if it is 0, we are in system mode, otherwise we are in user mode.
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Index Function Name

0 Status Register sr
1 Exception status register esr
2 Exception cause register eca
3 Exception PC epc
4 Exception DPC edpc
5 Exception data edata
6 Rounding mode rm
7 IEEE flags register ieeef
8 Floating point condition code fcc
9 Page table origin pto
10 Page table length ptl
11 Exception mode emode
12 Not used
13 Not used
14 Not used
15 Not used
16 Used to distinguish system and user mode mode

Table 5.1: Special Purpose Registers

ISA Transitions

The transition function for the ISA

δisa : confTisa ×B19 ×B32 → confTisa

takes an ISA configuration cisa, an external interrupt vector eev, and data
dout int provided by the devices, returning the successor configuration c′isa.
Each bit in eev indicates, if the corresponding external interrupt is raised (cf.
Tab. 6.1). Then, we continue with a check, whether cisa together with eev is
causing an interrupt. If so, we proceed with interrupt handling as described
in the next paragraph. Otherwise, we execute the next instruction from the
address the dpc points to and proceed with a case-split on this instruction.

Interrupt Handling We distinguish between internal and external inter-
rupts (cf. Tab. 6.1). Some interrupts are maskable, i.e., their occurrences are
ignored when they are masked. This mechanism is controlled by the status
register sprs(sr), where a 0 bit denotes that this interrupt is disabled. We use
this mechanism for instance to prevent the CVM kernel from interruption as
described in Sect. 6.2.2.

When an unmasked interrupt occurs, the VAMP switches to system mode
and enters the Interrupt Service Routine (ISR), which starts at address 0. The
actual interrupt handling is then controlled by the code starting there. Interrupt
handling ends usually with a rfe (return from exception) privileged instruction,
returning to user mode. Then, execution is continued: in the case of a repeat
interrupt with the instruction that caused the interrupt, in the continue case
with the instruction that follows.
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Address Translation

The VAMP offers a single-level address translation support. Its memory is
divided into chunks of consecutive 4096 = 210 = 1K words called pages . In user
mode, we interpret addresses of load/store operations as virtual addresses , that
is they are subject to address translation.

Address translation is realized using a page table. A page table is a dedicated
memory region in the main memory, which starts at the address specified in the
page table origin register sprs(pto) and has sprs(ptl) + 1—the so-called (page
table length)—many page table entries (PTEs) of word-size.

Let va denote a virtual address. The upper 20 bits px(va) = va[29 : 10] are
called (virtual) page index and are used as an index into the page table. The
lower 10 bit wx(va) = va[9 : 0] are named word index .

For px(va) > sprs(ptl), a page fault interrupt is thrown . Otherwise, we
compute the corresponding page table entry as

pte = mm(sprs(pto) · 210 + px(va)).

This entry is then interpreted as follows:

• the upper 20 bits pte[31 : 12] are the physical page index ppx,

• pte[11] is the valid bit, and

• pte[10] is the protection bit.

If the valid bit is set, read operations on the virtual address are allowed.
Furthermore, if the protection bit is cleared, writes are allowed, too. If these
requirements are met, the access of the virtual address va will be performed
on the physical address pa(va) = [ppx(va);wx(va)]. Otherwise, a page fault
interrupt will be generated.

5.2 Combining ISA and Devices

When moving from gate-level implementation to instruction set architecture, we
basically abstract from timing since we consider instructions and not cycles any
longer. The same instruction can have different run-times, depending on the
state of the gate-level machine. For instance, execution duration of load/store
operations heavily depends on cache content, which is no longer visible at the
instruction set architecture level.

At the gate-level, processor and devices run with the same clock in lock-step.
We make up for this loss of granularity on the ISA level by the introduction of
execution interleaving of devices and processor.

Definition 5.1 (Configuration of ISA and Devices) A combined config-
uration of VAMP ISA with devices is modeled by a record type confTi&d with
two components: proc ∈ confTisa, the VAMP ISA configuration of the processor,
and devs ∈ confTdevs, a generalized device configuration.

For an ISA configuration cisa, we introduce the notion of the effective address
ea(cisa). In the case that the current instruction of this configuration is a load
or store operation, this is the address from which we read or to which we write.
In all other cases it is undefined.
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The predicate ?store(cisa) will return True, if the current instruction of
cisa is a store operation, and False otherwise. Moreover, val(cisa) determines
the integer representation of the value to be stored in case that the current
instruction is a store instruction.

Finally, let DA denote the address range for devices. For an address ad in
this range, did(ad) yields the device id and port(ad) the port encoded by this
address. The detailed definition of the above functions can be found in [Tve09]
and [Alk09].

We can now define the function mifi ISA, which returns the processor’s device
input in a configuration cisa.

mifi ISA(cisa) =
(False,False, port(ea(cisa)), [0]) if ea(cisa) ∈ DA ∧ ¬?store(cisa)
(False,True, port(ea(cisa)), [val(cisa)]) if ea(cisa) ∈ DA ∧ ?store(cisa)
mifi ε otherwise

Furthermore, the function ω(cdevs) computes the external event vector eev
for the processor based on the current device configurations.

The transition function δi&d for the combined ISA and device model has
to distinguish, if the processor or a device are progressing next. Thus, it
additionally takes an oracle, called event, for input, modeled by the option type
(D× Eifi)⊥. It returns a successor configuration and potentially an output to
the external environment.

If an event dinext is equal to None, the processor component makes a step,
otherwise a device makes a step.

If there is neither external device input nor does the processor access a
device, that is dinext = None and ea(cisa) /∈ DA, the processor performs a local
step. In this case, we use the ISA transition function to obtain an update of the
current processor configuration, while there is no output to the environment:

δi&d(ci&d,None) = (δisa(ci&d.proc, ω(ci&d.devs), 032), ci&d.devs, eifoε).

In the case of dinext = None and ea(ci&d.proc) ∈ DA, a processor-device
step is taken. Then, the device input mifi ISA(ci&d.proc), generated by the
processor for the device with id did(ea(ci&d.proc)), is used with the internal
step function for devices:

(devs ′, dout int, doutext) =

δint
devs((did := did(ea(ci&d.proc)),mifi ISA(ci&d.proc)), ci&d.devs).

Then, the processor makes a step using the external event vector and output of
the updated device configuration:

proc′ = δisa(ci&d.proc, ω(devs), dout int).

Finally, the result of a processor-device transition is given through

(proc′, devs ′, doutext).

At last, we consider external device steps, which happen when the event is
some dinext, that is there exists environmental input for a device. In this case,
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we use the external device transition function to update the devices,

(devs ′, doutext) = δext
devs(dinext, ci&d.devs),

while the processor component stays unchanged. So, we obtain

δi&d(ci&d, bdinextc) = (ci&d.proc, devs ′, doutext).

For a whole run, that is several steps of the combined model, we introduce
the n-step transition function

δni&d : confT i&d × (N→ (D× Eifi)⊥)→ confT i&d × Eifo list .

It takes a combined start configuration ci&d and a sequence of events seq as
inputs and returns both the combined configuration after applying the transition
function δi&d n times and the external output generated during the computation.
We set

δ0
i&d(ci&d, seq) = (ci&d, []).

We assume that

(ci&d
′, eifos) = δni&d(ci&d, seq)

and

(ci&d
′′, doutext) = δi&d(ci&d

′, seq(n+ 1))

to define

δn+1
i&d (ci&d, seq) = (ci&d

′′, doutext#eifos).

5.3 Assembler

As mentioned in the introduction to this chapter, there exists a variant of VAMP
assembler with devices, too. Yet in CVM, we use assembler as the programming
model for user processes, which can only communicate with devices indirectly via
the kernel. Thus, we will introduce here the computational model of assembler
without devices.

Compared to the instruction set architecture, the assembly model abstracts
from several machine features:

• We exchange bit vectors in favor of naturals for addresses and integers
for values. Instructions are encoded by an abstract data type Instr .

• Address translation is not visible any longer. This means that any as-
sembler computation either simulates a system mode execution or a user
mode execution with already established memory virtualization.

• Interrupts are not visible any longer.
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5.3.1 Abstracting from Bit Vectors

VAMP ISA uses 32-bit vectors for data and instructions, and 30-bit vectors
for addresses. For the first two ones, we can either interpret these vectors as
binary numbers or as 2’s complement numbers. For the use at assembly level,
we define two functions to convert between bit vectors and naturals/integers:
toint : B32 → Z and tonat : B30 → N with

toint(bv) =


31∑
i=0

bv[i] · 2i if bv[31] = 0

−231 +
30∑
i=0

bv[i] · 2i otherwise

tonat(bv) =
29∑
i=0

bv[i] · 2i

Any program is encoded as data in the main memory, thus given through
integer values. We define a function toinstr : Z→ Instr ∪{undef }. Since not all
integers encode meaningful instructions, toinstr(x) either returns an instruction
in Instr or undef . A detailed introduction of all VAMP instructions can be
found in [MP00, Bey05, Dal06, Tve09].

In the following, we refrain from the explicit use of the above defined
conversion functions, if not needed for understanding.

Definition 5.2 (Assembler Configuration) An assembler configuration is
modeled by the record type confTasm with components:

• pcp ∈ N and dpc ∈ N the two program counters,

• gprs : Z list , the general purpose register file,

• sprs : Z list , the special purpose register file,

• mm : N→ Z, the memory, a mapping from addresses to data.

5.3.2 Assembler Transitions

The VAMP assembler transition function

δasm : confTasm → confTasm

takes a configuration casm and returns its successor configuration casm
′. As for

the VAMP ISA, assembler transitions are defined by a case distinction over the
current instruction, whose location is given by the delayed program counter
of the current configuration casm: toinstr(casm.mm(casm.dpc)). The transition
function is defined explicitly in [Alk09].

A detail worth mentioning are the semantics for the two instructions dealing
with interrupt handling. The trap instruction is used to raise the trap interrupt,
a mechanism which is used in CVM to invoke kernel primitives (see Sect. 6.2.2).
The rfe instruction returns from interrupt handling, from where we proceed as
defined by the interrupt. Both instructions have effects that are not visible at
the assembly level and are therefore modeled by dummy transitions.





There are no significant bugs in our released
software that any significant number of users want
fixed.

Bill Gates (1995)
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Communicating Virtual Machines—short: CVM —are a hardware-abstrac-
ting framework for microkernel programmers [IT08]. With CVM we introduce
a computational model for a fixed number of user processes—modeled by
assembler machines (cf. Chapter 5)—that can interact with each other and with
a fixed number of devices (cf. Chapter 4) via an abstract kernel, modeled by a
C0 machine (cf. Chapter 3).

CVM does not support shared memory—neither between processes nor
between a process and a device—, so all communication is handled by the
abstract kernel. This means that we assume an isolated memory for each user
process (memory separation).

As implied by the term ‘abstract’, this kernel allows to abstract from low-
level details like interrupt handling, memory virtualization, kernel entry and
exit, and the actual implementation of the so-called CVM primitives (see Sect.
6.3).

From the viewpoint of the upper layers in a system stack, a microkernel
programmer can take advantage of these primitives in order to implement
more sophisticated kernel calls and task scheduling. In Verisoft, CVM is the
platform for two microkernels: VAMOS, the kernel of the academic system (cf.
Sect. 1.1), and OLOS, a real-time operating system for automotive systems
[IK05, KP07b, Kna08].

The rest of this chapter is structured in the following way: in Sect. 6.1, we
will make use of the computational models introduced in the chapters before,
in order to define CVM configurations. In Sect. 6.2, we will discuss the CVM
transition function in detail. The formal specification of the CVM primitives is
presented in Sect. 6.3.

In Sect. 6.4, we define the initial CVM configuration and the n-step transition
function for CVM configurations.
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We obtain a concrete kernel by linking the low-level implementations with
the abstract kernel. We introduce a formalism for linking on the level of C0
semantics and use this formalism to describe how to obtain such a concrete
kernel in Sect. 6.5.

6.1 CVM Configuration

A CVM configuration cCVM is formally modeled by a record type confTCVM

consisting of three components:

• the user process component up ∈ upT ,

• the abstract kernel component kern ∈ kernT ,

• and the device component devs ∈ confTdevs.

The user component stores information about all the user processes, the process
that is to be executed next, and the CVM interrupt mask. For a maximal
number of user processes pmax, let P = {1, . . . , pmax} denote the set of process
ids. Then, we model the user component by the record type upT with three
fields:

• procs : P → confTasm, mapping of process ids to assembler machine
configurations encoding these processes;

• cp ∈ P⊥, the current user process field. It is either None or bpidc, with
procs(pid) being the next process to be executed;

• mask ∈ B32, the CVM interrupt mask, identical for all user processes.

Kernel components are modeled by the type kernT , which has components:

• a type name environment tn ∈ tenv,

• a procedure table pt ∈ proctableT

• and the C0 configuration encoding the abstract kernel, kconf ∈ confTC0 .

6.2 Transitions

In CVM, all components take turns in execution, that is either the kernel
progresses, or a user process, or a device. As already introduced in Sect. 5.2,
we use an oracle to determine, whose turn is next.

Hence, a CVM transition δCVM(cCVM, dinext) takes a CVM configuration
cCVM and an external device input dinext as parameters, yielding either a next
state bcCVM

′c or None, if a run-time error has occurred, and potentially a
device output to the environment.

Assuming the first case and depending on dinext and cCVM.up.cp, either one
of the devices, a user process or the abstract kernel make a step:

• If dinext 6= None, i.e., there is some external device input, we compute
the new generalized device configuration and update cCVM with it. In
this case also some device output to the environment might be generated.
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Figure 6.1: CVM Control Flow

• If there is no external device input and the current process identifier
cCVM.up.cp is None, the abstract kernel makes a step;

• Otherwise, the user process cCVM.up.procs(the(cCVM.up.cp)) progresses.

Operating systems provide idle mechanisms for times without user or kernel
computation. This is either realized by an non-terminating idle process or via
a dedicated wait state of the kernel, called kernel wait . As long as there is no
interrupt, the kernel stays in this state. Otherwise, the kernel is re-entered as
described in Sect. 6.2.2.

CVM primitives are functions, which allow to alter the state of the hardware,
of a device, of the kernel, or of a user process. Though their implementation is
not part of the abstract kernel, the effects of primitive execution are part of the
CVM semantics.

In Fig. 6.1, we show the control flow for the kernel and user process case,
respectively. Using this control flow, we we will now present in detail the formal
definition for the CVM transition function

δCVM : confTCVM × (D× Eifi)⊥ → (confTCVM × (D× Eifo) list)⊥

in the above order: first device steps, then kernel steps, and finally user steps.

6.2.1 Device Steps

For an input (cCVM, dinext) with dinext = b(did, eifi)c, we use the generalized
external device transition function and obtain

(devs′, doutext) = δext
devs(the(dinext), cCVM.devs).
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Thus, the next configuration of CVM is given by

δCVM(cCVM, dinext) = b(cCVM[devs := devs′], doutext)c.

6.2.2 Kernel Steps

At first, we will define, how the abstract kernel is started. This happens each
time, when we enter kernel mode, that is after a reset or when an unmasked
interrupt has occurred during user process execution. In both cases, the
abstract kernel main function—the abstract kernel dispatcher—is called, taking
two unsigned integers as arguments: the exception cause and the exception data.
Basically, these two values are taken from the hardware, though the concrete
kernel, which is handling kernel entry, is providing them to the abstract kernel.
This mechanism is described in detail in [Tsy09]. On entering the kernel, we
set the current process identifier to None and zero the interrupt mask:

cCVM.up.cp = None
cCVM.up.mask = 032.

Then, kernel execution can take different paths: when the program rest
starts with a primitive call, we execute this primitive. If the execution of the
kernel has terminated—the program rest is Skip—we leave the kernel and either
switch to kernel wait or to a user process. Otherwise, we proceed by executing
the next C0 statement of the abstract kernel’s program rest.

For better readability, we will use the following abbreviations for the re-
mainder of the section:

• kconf for cCVM.kern.kconf ,

• te for cCVM.kern.te, and

• pt for cCVM.kern.pt.

Starting the Abstract Kernel

We define a function startak : confTC0 × N × N → confTC0 that is used in
starting the abstract kernel. We assume that the abstract kernel’s dispatcher
function is named dispatcher kernel, taking two parameters of type Unsgnd .

In order to capture the kernel start by the means of the C0 small-step
semantics, we assume the existence of a dummy function1 with a single local
variable abs kernel res and two parameters eca and edata, exception cause
and exception data, as provided by the hardware and delivered by the concrete
kernel. Its body merely consists of a function call for the abstract kernel

1We will explain in Sect. 9.3 how to get rid of this artificial construct.
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dispatcher followed by a Return. We denote this body by s and set:

s =
Comp(

SCall(
abs kernel res,

dispatcher kernel,

Var(eca),Var(edata)
),
Return(Lit(Prim(Unsgnd 0))))−

At the starting point of the abstract kernel, we initialize the local memory
stack of the abstract kernel with the corresponding memory frame for this
dummy function. This frame has an undefined memory content and its symbol
table merely contains the variable name and type of abs kernel res. We define
this initial memory frame mf init formally as follows:

mf init = [ ct = undef ,
st = [(abs kernel res,UnsgndT ),

(eca,UnsgndT ),
(edata,UnsgndT )],

init = ∅].

The rest of the memory, that is the kernel heap and kernel global memory, stay
unchanged compared to the point when we left the kernel last time. So, we
obtain an updated memory m′ with

m′ = kconf .m[lm := [mf init, undef ]].

The complete C0 configuration when starting the abstract kernel is then
given through

startak(kconf , eca, edata) = kconf [m := m′, prog := s].

Leaving the Kernel

When execution of the abstract kernel has terminated—kconf .prog = Skip—
we switch from the kernel either to kernel wait or to a user process. This is
determined by the return value of the abstract kernel dispatcher. If the value
of this variable is a valid user process id, i.e.,

pid = valueg(kconf .m, gvarlm(0, abs kernel res)) ∈ P,

we will switch to the corresponding user process cCVM.up.procs(pid), otherwise,
we switch to kernel wait.

Switching to a user process is handled in the following way: Given a process id
pid. Then, we analyze the corresponding user process vm = cCVM.up.procs(pid).
If this user process has memory,2 that is vm.sprs!ptl ≥ 0, we make it the current

2In CVM, a ptl value of −1 by convention says that the process has no memory (cf.
Sect. 5.1.1)—in contrast to regular hardware machines, where this denotes the maximum
memory.
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user process by setting the current process field up′ = cCVM.up[cp := pid ].
Otherwise, a run-time error has occurred and we return None:

δCVM(cCVM, [ ]) =

{
b(cCVM[up := up′], [ ])c if vm.sprs!ptl ≥ 0
None otherwise

.

Note, that the absence of run-time errors for a given abstract kernel is a
correctness criterion the implementer would usually want to prove.

Kernel Wait

Since our kernel is non-preemptive, that is non-interruptible, usually all inter-
rupts are masked during kernel execution. When switching to kernel wait, we
enable the external interrupts, so that the kernel can be ‘woken up’. Then, we
set the program rest to an assembler statement with an empty instruction list:
kconf ′ := kconf [prog := Asm[ ]].

The next state is given through

δCVM(cCVM, [ ]) = b(cCVM.kern[kconf := kconf ′], [ ])c.

In CVM kernel wait, the abstract kernel loops on a single assembler statement
with an empty instruction list until an external interrupt occurs. We do not
model this step using the C0A semantics, but treat it as a special case of the
CVM transition function. Thus, the assembler statement merely serves as an
indicator and since this is the only place in the abstract kernel with an assembler
statement, we can easily use the program rest to determine, if we are in kernel
wait: hd(kconf .prog) = Asm[ ].

If a device interrupt has occurred, i.e.,

?irq =
∨
i∈D

irqdevs(cCVM.devs, i) = 1,

we start the abstract kernel as described above and set

kern′ := startak(kconf , eca, 0).

Note that devices do not generate exception data when raising an interrupt.
Otherwise, we leave the CVM configuration as it is:

δCVM(cCVM, [ ]) =

{
b(cCVM[kern := cCVM.[kern := kern ′], [ ])c if ?irq = 1
b(cCVM, [ ])c otherwise

Kernel Primitive Steps

A user process invokes one of the the primitives using the trap instruction.
On ISA level, this instruction raises the trap interrupt, and its argument—
stored in the special purpose register sprs(edata)—specifies the number of
the corresponding primitive. Since all primitives are numbered uniquely, the
abstract kernel dispatcher uses the edata argument to determine the appropriate
primitive to be executed.

The actual implementation of these functions is part of the concrete kernel
(cf. Sect. 6.5.1). The abstract kernel merely declares these primitives, i.e.
specifies their signature but without implementation.
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Let Prim ⊂ Σ+ denote the set of all primitive function names. For a
p ∈ Prim, an abstract kernel program rest that starts with ESCall(vn, p, plist)
denotes a primitive call. The semantics of each of these primitives is specified by
a function ps, that takes a CVM configuration cCVM and a number of arguments
corresponding to the parameter list plist . It returns either an updated CVM
configuration and possibly some device output to the external environment, or
None in the error case.

In Sect. 6.3, we give a complete definition of all primitive specification
functions. We define:

δ(cCVM, [ ]) = ps(cCVM, plist).

C0 Kernel Steps

If the program rest of the kernel is neither Skip, nor an assembler statement,
nor a CVM primitive call, the next CVM state is given through the standard
C0 transition function. In the error case—δC0(te, pt, kconf ) = None—we set
δCVM(cCVM, [ ]) = None. Else, we have δC0(te, pt, kconf ) = bkconf ′c and define

δCVM(cCVM, [ ]) = b(cCVM[kern := cCVM.kern[kconf := kconf ′]], [ ])c

6.2.3 User Steps

We perform a user step when there is no external input for the devices and
the current process field is not equal to None. We denote this value with
pid = the(cCVM.up.cp) and the user process with vm = cCVM.up.procs(pid).
Moreover we abbreviate the interrupt mask with mask = cCVM.up.mask .

During user execution, either an interrupt occurs or not. In the latter case,
we step the current user process using the assembler transition function as
described in Sect. 5.3. In the interrupt case, we update the current process field
and start the abstract kernel.

Dealing with interrupts at this level is a little tricky, since the assembly
semantics has no notion of them. We define a function mca : confTasm ×
confTdevs ×B32 → B

32 that takes a user process, a device configuration, and a
CVM interrupt mask and returns a bit vector, the so-called interrupt vector
according to Table 6.1. For a user process vm, a device configuration cdevs, we
define mca ′ as follows:

• mca ′[0] = 0, because the reset case is treated differently.

• If the current instruction is undecodable, i.e. toinstr(vm.mm(vm.dpc)) =
undef , or if it is a privileged instruction, we set mca ′[1] = 1.

• For vm.dpc mod 4 6= 0, we have an instruction misalignment, and set
mca ′[2] = 1.

• In the case of data misalignment, we set mca ′[3] = 1.

• We set mca ′[4] = 1, if the delayed PC points to a region outside of the
user process’ memory: vm.dpc ≥ (vm.sprs.PTL+ 1) · 212.

• The attempt to perform a memory operation on an address outside the
user process’ memory results in mca ′[5] = 1.
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• If the dpc points to an arithmetic operation, which would yield an integer
overflow, we set mca ′[6] = 1.

• If the current instruction is a trap instruction, we set mca ′[7] = 1.

• Currently, we do not take care of floating point exceptions and thus set
mca ′[8] to mca ′[12] to 0.

• For the device interrupts, we take the corresponding information from the
CVM device configuration, i.e. for 13 ≤ i ≤ 20, we set:

mca ′[i] = irqdev(cdevs, i− 13).

• The remaining bits are set to 0.

Finally, we apply the mask to mca ′ by bitwise conjunction and obtain for
0 ≤ i ≤ 31:

mca(vm, cdevs,mask)[i] = mca ′[i] ∧mask [i].

Note that if the instruction fetch already fails, i.e. in the cases of instruction
misalignment, undecodable instructions, or a dpc outside the code region—we
ignore the other interrupt causes.

Moreover, we define a predicate JISR : B32 → B and set

JISR(mca) =
31∨
i=0

mca[i].

User Step without Interrupts

In the case of no interrupt, i.e. JISR(mca(vm, cCVM.devs, cCVM.up.mask)) =
0, we use the assembler next state function to obtain the new user process
configuration vm′ := δasm(vm) and denote the updated user component with

up′ = cCVM.up[procs := cCVM.up.procs(pid := vm′)].

Since we continue with the current user process, no other CVM component has
to be updated and we define

δCVM(cCVM, [ ]) = b(cCVM[up := up′], [ ])c.

User Step with Interrupts

If an interrupt has occurred, that is

JISR(mca(vm, cCVM.devs, cCVM.up.mask)) = 1,

we first determine the interrupt level according to Table 6.1 as following:

il = min{j.mca(vm, cCVM.devs, cCVM.up.mask)[j] = 1}.

If il is a continue interrupt, we step the user process and set vm′ = δasm(vm).
Otherwise, we leave the configuration as it is, i.e. vm′ = vm.
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Bit Name Meaning ext? mask? cont?
0 reset Reset yes no no
1 ill Illegal Instruction no no no
2 imal Instruction Misalignment no no no
3 dmal Data Misalignment no no no
4 pff Page Fault on Fetch no no no
5 pfls Page Fault on Load/Store no no no
6 ovf Integer Overflow no yes yes
7 trap Trap Instruction no no yes

8–12 Floating Point Interrupts no yes yes
13–20 Device Interrupts yes yes yes
21–31 not used

Table 6.1: VAMP Interrupts

Additionally, we start the abstract kernel as described in Sect. 6.2.2, pro-
viding parameters eca = mca(vm, cCVM.devs, cCVM.up.mask) and edata as
provided by the hardware. We denote the new kernel configuration with kern′

with

kern′ = cCVM.kern[kconf := startak(cCVM.kern.kconf , eca, edata)]

and the updated user component with up′ with

up′ = cCVM.up

[
procs := cCVM.up.procs(pid := vm′)
cp := None

]
The transition is then given through

δ(cCVM, [ ]) =
⌊(

cCVM

[
up := up′

kern := kern′

]
, [ ]
)⌋

6.3 CVM Primitives

In this section, we will define the specification functions for the CVM primitives.
We will first introduce some auxiliary functions, which will facilitate these
definitions (cf. Sect. 6.3.1).

We have divided the CVM primitives in groups: those dealing with process
management, e.g., the allocation and deallocation of user process memory,
are presented in Sect. 6.3.2 (see Table 6.2). The second group contains these
primitives used for inter-process communication (see Sect. 6.3.3). Device com-
munication will be treated in Sect. 6.3.4. Primitives dealing with the kernel
memory are introduced in Sect. 6.3.5.

Finally, all primitives that do not fit into one of the groups mentioned before
are bundled in Sect. 6.3.6.

6.3.1 Auxiliary Functions

readmm : (N→ Z)×N×N→ Z list takes an assembler memory, a start address
and a length as input. readmm(mm, sa, am) returns the values stored at the
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Name Function

reset resets a user process to initial state
clone clones a user process
alloc allocates new virtual memory for a user process
free frees virtual memory for a user process

copy copies memory from one process to another
GetGPR returns the content of a general purpose register
SetGPR sets the content of a general purpose register
SetMask sets the interrupt mask
GetWord read a single word from user memory
SetWord write a single word into user memory

VirtIOIn allows user processes to read from a device
VirtIOOut allows user processes to write to a device
WordIn as VirtIOIn, but only for one word
WordOut as VirtIOOut , but only for one word

P2Vcopy copies kernel memory to user memory
V2Pcopy copies user memory to kernel memory
PhysIOIn read from a device to kernel memory
PhysIOOut write from kernel memory to user memory
PhysIOInRange as PhysIOIn, but on a range of ports
PhysIOOutRange as PhysIOOut , but on a range of ports

LoadOS load an operating system into memory

Table 6.2: CVM Primitives

addresses from sa to sa+ am− 1 in the memory mm. We define recursively:

readmm(mm, sa, 0) = [ ]
readmm(mm, sa, i+ 1) = readmm(mm, sa, i)@[mm(sa+ i)]

Symmetrically, writemm : (N → Z) × N × Z list → (N → Z) takes
an assembler memory, a start address, and a sequence of integers as input.
writemm(mm, sa, data) returns the updated memory, where the values stored
at addresses sa to sa+ |data|−1 are overwritten with the corresponding values
from data. We define recursively:

writemm(mm, sa, [ ]) = mm

writemm(mm, sa, x#xs) = writemm(mm(sa := x), sa+ 1, xs)

When we copy data from one memory to the other, we will use the function
copymm : (N→ Z)×N× (N→ Z)×N×N→ (N→ Z), which combines the
above two functions. The first memory determines the destination to where
we write and the second memory determines the source from which we read
the data. The other parameters specify the start addresses and the amount of
words to be copied. Let data = readmm(mms, sas, am) denote the data to be
copied. Then the result of an execution of copymm(mmd, sad,mms, sas, am) is
writemm(mmd, sad, data).
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Some primitives deal with devices and can thus produce output to the
external environment. To convert this output to the type specified in the CVM
transition function, we define toeifo : D× Eifo list → (D× Eifo) list and set:

toeifo(did , [ ]) = [ ]
toeifo(did , x#xs) = (did , x)#toeifo(did , xs)

For some primitives, we have to compute the amount of memory in words
used by a single user process. We define the function sizemm : confTasm → N

and set for a given machine vm:

sizemm(vm) = (vm.sprs!PTL+ 1) · 210.

The predicate ?inmem : confTasm ×N→ B takes a virtual machine and an
address as input and returns True, if the address lies within the memory of
that user process and False otherwise. We define

?inmem(vm, ad) =

{
True if ad < sizemm(vm)
False otherwise

.

Primitive calls in the concrete kernel are C0 function calls and returning
from them is realized in the way defined in Sect. 3.5.3 for SCall and Return
statements, respectively. Yet, in the abstract kernel, we deal with external
function calls (ESCall), which are merely modeled by dummy transitions in
the C0 semantics. To make the effects of a primitive call visible in the C0
configuration of the abstract kernel, we thus have to take care explicitly of both
(i) the update of the return destination and (ii) the update of the program rest.

Given an abstract kernel component kern with

hd(kern.kconf .prog) = ESCall(vn, prim, e1, . . . , en)

denoting the call of a primitive with name prim. The corresponding g-variable
for the return destination is then

rd = lval(kern.tn, kern.kconf .m,Var(vn)).

For a return value v, we obtain the updated memory by

m′ = updmm(kern.kconf .m, rd, v).

The program rest of kconf is of the form

kern.kconf .prog = (ESCall(vn, prim, e1, . . . , en))#pr.

The new program rest is then simply given by prog′ := Skip#pr. We combine
these two steps in one function and define

updret(kern, v) = kern
[

kconf := kern.kconf
[

m := m′

prog := prog′

]]
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6.3.2 Process Management

Reset

To reset a user process given by an assembler machine back into its initial state,
we define the primitive

reset : confTCVM ×N→ (confTCVM × (D× Eifo) list)⊥,

which takes a single parameter pid denoting the process id of the process to
be reset.

Resetting a user process means:

• The page table length register PTL is set to −1, i.e. the machine has no
memory.

• The mode register mode is set to 1, that is the machine runs in user mode.

• The dpc and pcp are set to their initial values 0 and 4.

• All other general and special purpose registers are zeroed.

For a primitive call reset(cCVM, pid), we proceed as follows:
Let vm denote the user process to be reset, i.e. vm = cCVM.up.procs(pid).

We denote with gprs′ = map(vm.gprs, λx.0) and sprs′ = map(vm.sprs, λx.0)
the zeroed register files of vm. We can now define the reset virtual machine
vm′ as follows:

vm′ = vm


gprs := gprs′

sprs := sprs′[PTL := −1,mode := 1]
dpc := 0
pcp := 4


Using this, we update the user process component: up′ = cCVM.up[procs :=
cCVM.up.procs(pid := vm′)].

Successful execution of the reset primitive depends on the input value pid.
If pid is not a valid user process id, i.e. pid /∈ P, execution fails and we set
reset(cCVM, pid) = None. Otherwise, we return the new CVM configuration
with an updated kernel and user process component:

reset(cCVM, pid) =
⌊(

cCVM

[
up := up′,
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

Clone

The primitive

clone : confTCVM ×N×N→ (confTCVM × (D× Eifo) list)⊥

takes besides a CVM configuration two process ids as input. The first id
determines the process to be cloned—the cloner—and the second one determines
the process which is replaced by an identical copy of the first one—the clonee.

For a primitive call clone(cCVM, pid1, pid2) we proceed in the following way.
Let cloner = cCVM.up.procs(pid1) denote the cloner process. Now we obtain
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a new user process component up′ by merely overwriting the clonee with the
cloner, i.e.

up′ = cCVM.up[procs := cCVM.up.procs(pid2 := cloner)].

Successful execution of the clone primitive depends on the following require-
ments:

• both process ids have to be valid, i.e pid1 ∈ P and pid2 ∈ P,

• the clonee process has to have no memory, i.e.

(cCVM.up.procs(pid2))!PTL = −1.

• Let TVM denote a constant, which stores the total available virtual
memory in words. Then, the overall amount of memory used after the
cloning must not exceed this value:

pmax∑
i=1

sizemm(cCVM.up.procs(i)) + sizemm(cloner) ≤ TVM .

Violating one or more of these preconditions means execution of the primitive
fails. In this case we set clone(cCVM, pid1, pid2) = None. Otherwise we set

clone(cCVM, pid1, pid2) =
⌊(

cCVM

[
up := up′,
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

Alloc

CVM allows to dynamically allocate more memory for user processes by means
of the alloc : confTCVM ×N ×N → (confTCVM × (D × Eifo) list)⊥ primitive.
alloc takes two arguments: the first one is the id of the user process, of which
the memory is to be enlarged, and the second one is the number of pages by
which that memory is to be extended.

For a primitive call alloc(cCVM, pid, pn) we proceed in the following way.
Let vm = cCVM.up.procs(pid) denote the corresponding user process. At first,
we blank the new part of the process’ memory with zeros. For this purpose, we
compute the first word address in this new part by sa = ((vm.sprs!PTL) + 1) ·
1024. The new memory of the user process is then given through

mm′ := copymm(vm.mm, sa, (λx.0), 0, pn · 1024).

In a second step, we adjust the page table length register to the new value:

sprs′ := vm.sprs(PTL := (vm.sprs!PTL) + pn).

The updated user process is then given through

vm′ := vm

[
sprs := sprs′,
mm := mm′

]
Allocation of new memory will fail, if one of the following conditions is

violated:
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• pid has to be valid, i.e. pid ∈ P, and

• the new memory size after allocation does not exceed the total available
virtual memory:

pmax∑
i=1

sizemm(cCVM.up.procs(i)) + pn · 1024 ≤ TVM .

In the case of failure, we set alloc(cCVM, pid, pn) = None. Otherwise, we define

alloc(cCVM, pid, pn) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pid := vm′)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

Free

The corresponding primitive to alloc for freeing memory is free : confTCVM ×
N×N→ (confTCVM×(D×Eifo) list)⊥. Similarly, free takes two inputs besides
the CVM configuration: the id of the user process, of which the memory is to
be downsized, and the number of pages by which the memory is to be reduced.

Let free(cCVM, pid, pn) denote a primitive call to de-allocate pn pages from
user process vm = cCVM.up.proc(pid). If the process has less memory pages
then pn, we set the page table length register to −1, i.e. vm has no more
memory. Otherwise, we decrease the page table length register by pn:

sprs′ := vm.sprs

[
PTL :=

{
−1 if vm.sprs!PTL < pn

vm.sprs!PTL− pn otherwise

]

We abbreviate the user process with updated register file by vm′ = vm[sprs :=
sprs′].

Execution of free fails, if the process id parameter is not valid, i.e. pid /∈ P.
In this case we set free(cCVM, pid, pn) = None. Otherwise, we define

free(cCVM, pid, pn) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pid := vm′)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

6.3.3 Inter-Process Communication

Copy

Since CVM does not offer support for shared memory, all communication
between user processes has to be made explicitly via the primitive

copy : confTCVM ×N×N×N×N×N→ (confTCVM × (D× Eifo) list)⊥.

The copy(cCVM, pids, pidd, sas, sad, am) primitive takes five arguments besides
the CVM configuration:

• two user process ids, namely pids for the source process and pidd for the
destination process,
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• two start addresses, sas for the source process and sad for the destination
process, and

• the amount of words am to be copied.

With mms = cCVM.up(pids).mm, we denote the source memory and the des-
tination memory with mmd = cCVM.up.procs(pidd).mm. We define the new
destination memory mm′d as

mm′d = copymm(mms, sas,mmd, sad, am)

and denote the user process with the updated memory by vm′d := vmd[mm :=
mm′d].

Execution of the primitive call will fail, if one or more of the following
requirements are not met:

• both process ids have to be valid and not equal:

pids ∈ P ∧ pidd ∈ P ∧ pids 6= pidd;

• both end addresses lie within the memory of their processes:

?inmem(vms, sas + am− 1)∧?inmem(vmd, sad + am− 1).

In the case of failure, we set copy(cCVM, pids, sas, pidd, sad, am) = None. Oth-
erwise, we set

copy(pids, sas, pidd, sad, am) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pidd := vm′d)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

GetGPR

The

GetGPR : confTCVM ×N×N→ (confTCVM × (D× Eifo) list)⊥

primitive can be used to read out a single general purpose register of a user
process. Thus, GetGPR(cCVM, pid, r) takes a process id pid and a register
number r as input. Let val = cCVM.up.procs(pid).gprs!r denote the content
of the register specified. This value will then be used to update the return
destination in the kernel.

Execution of the primitive call will fail, if one or more of the following
conditions are violated:

• pid is a valid process id, i.e. pid ∈ P, and

• r is a valid register number: r < 32.

In the failure case, we set GetGPR(cCVM, pid, r) = None. Otherwise we set

GetGPR(cCVM, pid, r) = b(cCVM[kern := updret(cCVM.kern, val)], [ ])c
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SetGPR

Correspondingly, we define the primitive

SetGPR : confTCVM ×N×N× Z→ (confTCVM × (D× Eifo) list)⊥,

which allows to write a value into a general purpose register of a user process.
SetGPR(cCVM, pid, r, val) takes parameters pid to determine the user process
involved in the call, r to specify the register to be written into, and finally val
for the corresponding value. Let vm = cCVM.up.procs(pid) be the user process.
Then we define the new general purpose register file by

gprs′ = vm.gprs[r := val].

We abbreviate the updated user process with vm′ = vm[gprs := gprs′].
The primitive call must comply with two preconditions. First, pid must

be a valid process id, i.e. pid ∈ P. Moreover, r must be a valid register
number, i.e. r < 32, and −231 ≤ val < 231. In the case of failure, we set
SetGPR(cCVM, pid, r, v) = None. Otherwise, we set

SetGPR(cCVM, pid, r, val) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pid := vm′)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

SetMask

User processes can mask device interrupts, such that their execution won’t be
interrupted. This mechanism is handled via the mask field mask of the user
process component, which can be set using the primitive

SetMask : confTCVM ×N→ (confTCVM × (D× Eifo) list)⊥.

SetMask(cCVM,mask) takes a parameter mask, which defines the new mask
to be set. Since the corresponding field of the CVM user process component
stores a 32-bit number, we first have to convert the natural number into a bit
vector mask ′. There are two requirements on the successful execution of the
primitive.

• The length of the bit string must be 32 bits, i.e. |mask ′| = 32;

• since we only allow processes to mask device interrupts, the lower 13 bits

have to be 0:
12∨
i=0

mask′[i] = 0.

As before, we set SetMask(cCVM,mask) = None in the failure case and otherwise

SetMask(cCVM,mask) =
⌊

(cCVM

[
up := cCVM.up[mask := mask ′],
kern := updret(cCVM.kern, 0)

]
, [ ])
⌋

GetWord

Similar to the GetGPR primitive, the primitive

GetWord : confTCVM ×N×N→ (confTCVM × (D× Eifo) list)⊥
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allows to read a single word from a user process’ memory. The obtained value
is then used to update the return destination of the kernel.

For a primitive call GetWord(cCVM, pid, ad), let cCVM denote a CVM config-
uration, pid a user process id, and ad an address in the memory of this process.
Then we denote the value stored at this address by val and define

val = cCVM.up.proc(pid).mm(ad).

Execution of the primitive call will fail, if one of the following requirements
is not met:

• the process id has to be valid: pid ∈ P, and

• the address has to be in the address range of this process’ memory:
?inmem(cCVM.up.procs(pid), ad) = True.

In the failure case, we define GetWord(cCVM, pid, ad) = None. Otherwise, we
set

GetWord(cCVM, pid, ad) = b(cCVM[kern := updret(cCVM.kern, val)], [ ])c

SetWord

CVM allows to write a single word into the memory of a user process using the
primitive

SetWord : confTCVM ×N×N× Z→ (confTCVM × (D× Eifo) list)⊥.

A call of this primitive SetWord(cCVM, pid, ad, val) takes parameters pid
to specify the user process and ad for the address, where the word val is to
be stored. With mm′, we denote the updated memory of the user process
cCVM.up.procs(pid). We define mm′ = writemm(cCVM.up(pid), ad, val) and
write vm′ = cCVM.up.procs(pid)[mm := mm′] for the virtual machine with the
updated memory.

The above primitive call will fail, if one of the following conditions is violated:

• pid has to denote a valid user process, i.e. pid ∈ P, and

• the address ad has to lie within the address range of the user process’
memory: ?inmem(cCVM.up.procs(pid), ad) = True.

• val has to be in the range of −231 ≤ val < 231.

If execution fails, we define SetWord(cCVM, pid, ad, val) = None. Otherwise,
we set

SetWord(cCVM, pid, ad, val) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pid := vm′)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

6.3.4 User Processes and Devices

In this subsection, we will deal with primitives that establish the communication
between a user process and a device. Naming goes back to the fact that user
processes work with virtual memory.
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VirtIOIn

The CVM primitive

VirtIOIn : confTCVM ×N×N×N×N×N→ (confTCVM × (D×Eifo) list)⊥

can be used by user processes to read data word-wise from a single device port.
A primitive call VirtIOIn(cCVM, did, port, pid, sa, am) takes besides a CVM

configuration the following arguments:

• did specifies the device id and

• port determines the corresponding port of the device, from which we plan
to read.

• pid specifies the process id of the user process and

• sa the start address in its memory where we want to write to.

• Finally, am is the amount of words we are going to read and write,
respectively.

At first, we construct the necessary input dinint ∈ Mifi with

dinint =


rep = True,
wr = False,
port = port ,
data = replicate(am, 0),
did = did


Note, that only the length of the fifth component of the generalized device input
type Mifi matters, since we do not write to the device but merely read from it.
Then, we use this device input in the generic internal step function for devices
and denote with the tuple (devs′, dout int, eifos) the output of the device:

(devs′, dout int, eifos) = δint
devs(dinint, cdevs).

The dout int component of the device output is the data, which we have
read. We write this data into the memory of the specified user process:

vm′ = cCVM.up.procs(pid)[mm := writemm(mm, sa, dout int)]

and set
up′ = cCVM.up[procs := cCVM.up.procs(pid := vm′)].

Successful execution of the primitive call relies on the following requirements:

• pid has to be a valid user process id, i.e. pid ∈ P,

• did has to be a valid device id, i.e. did ∈ D,

• port has to be within the range of valid ports, i.e. port < portmax, and

• sa has to be within the memory of the user process, i.e.

?inmem(cCVM.up.procs(pid), sa).



6.3. CVM Primitives 87

Again, in the failure case, we define VirtIOIn(cCVM, did, port, pid, sa, am) =
None. Otherwise, we set

VirtIOIn(cCVM, did, port, pid, sa, am) =cCVM

 up := up′,
kern := updret(cCVM.kern, 0),
devs := devs′

 , toeifo(did, eifos)


VirtIOOut

The correspondent primitive for user processes to write data to a single device
port is

VirtIOOut : confTCVM×N×N×N×N×N→ (confTCVM× (D×Eifo) list)⊥.

Let VirtIOOut(cCVM, did, port, pid, sa, am) denote a call of the primitive
with these parameters:

• did specifies the device id and

• port determines the corresponding port of the device, to which we plan
to write.

• pid specifies the process id of the user process, and

• sa the start address in its memory from where we want to read.

• Finally, am is the amount of words we are going to read and write,
respectively.

First, we read am many words from the user process’ memory:

data = readmm(cCVM.up.procs(pid).mm, sa, am).

Subsequently, we create the corresponding device input dinint ∈ Mifi using
data:

dinint =


rep = True,
wr = True,
port = port ,
data = data,
did = did


and obtain the device output using the device transition function:

(devs′, dout int, eifos) = δint
devs(dinint, cCVM.devs).

Execution of the primitive call will fail, if one or more of the following
requirements are not met:

• pid has to be a valid user process id, i.e. pid ∈ P,

• did has to be a valid device id, i.e. did ∈ D, and

• port has to be port within the range of valid ports, i.e. port < portmax,
and
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• finally, sa has to be in the memory of the user process:

?inmem(cCVM.up.procs(pid), sa).

In the failure case, we define VirtIOOut(cCVM, did, port, pid, sa, am) = None.
Otherwise, we set

VirtIOOut(cCVM, did, port, pid, sa, am) =⌊(
cCVM

[
kern := updret(cCVM.kern, 0),
devs := devs′

]
, toeifo(did, eifos)

)⌋

WordIn

The

WordIn : confTCVM ×N×N→ (confTCVM × (D× Eifo) list)⊥

primitive reads a single word from a device and uses the value read as the return
value of the function call.

A call of this primitive WordIn(cCVM, did, port) takes a device id did as
input, specifying the device, and a port port from which to read. We use the
device input dinint ∈ Mifi in order to use it in the generalized device transition
function and define

dinint =


rep = False,
wr = False,
port = port ,
data = replicate(1, 0),
did = did

 .

The result of the device transition function is then given through

(devs′, dout int, eifos) = δint
devs(dinint, cCVM.devs).

The following conditions have to be fulfilled for a successful primitive call:

• did has to be a valid device id, i.e. did ∈ D, and

• port has to be port within the range of valid ports, i.e. port < portmax.

Violating one or both of them leads to a run-time error and we define

WordIn(cCVM, did, port) = None.

Otherwise, we set

WordIn(cCVM, did, port) =⌊(
cCVM

[
kern := updret(cCVM.kern, dout int),
devs := devs′

]
, toeifo(did , eifos)

)⌋
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WordOut

Like the primitive in the section before, there is a corresponding one to write a
single word to a device:

WordOut : confTCVM ×N×N×N→ (confTCVM × (D× Eifo) list)⊥.

Let WordOut(cCVM, did, port, val) denote a call of the primitive, where did
specifies the device and port the port to which to write, and val the value to
be written. Then we define the device input dinint by

dinint =


rep = False,
wr = True,
port = port ,
data = [val ],
did = did

 .
We can now use this device input in the device transition function and obtain

(devs′, dout int, eifos) = δint
devs(dinint, cCVM.devs).

The requirements for the successful execution of the primitive call are as
follows:

• did has to be a valid device id, i.e. did ∈ D, and

• port has to be port within the range of valid ports, i.e. port < portmax.

In the failure case, we define WordOut(cCVM, did, port, val) = None. Otherwise,
we set

WordOut(cCVM, did, port, val) =⌊(
cCVM

[
kern := updret(cCVM.kern, 0),
devs := devs′

]
, toeifo(did , eifos)

)⌋
6.3.5 Dealing with Physical Memory

Originally, CVM was not meant to support primitives dealing explicitly with
physical memory. Yet, while developing real-time operating system in Verisoft’s
automotive subproject [IK05, KP07b], it turned out necessary to introduce
primitives that allow to

• copy data from user (virtual) memory into the kernel (physical) memory
and vice versa, and

• copy data from devices into the kernel memory and vice versa.

Since the abstract kernel is given by a C0 machine configuration, the data
transfer between it and user processes and/or devices becomes a little more
tricky. Thus, we will have to introduce some more auxiliary functions that deal
with the necessary data conversion.

First, we define a function mem2int : (N → mcellT ) → Z to convert the
content of an integer memory cell (see Sect. 3.3.1) to an integer value. For a
memory cell mc = Int(i), we set mem2int(mc) = i. Observe, that this function
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only produces meaningful results, if it is applied to memory cells with the
corresponding type stored in them.

Then, we need a function that allows to convert the value of a C0 variable
into a list of integer values as needed in the assembler layer. We name this
function c2i : (N → mcellT ) ×N → Z list , which takes two parameters: the
first one is the memory content to be converted and the second one determines
the size of the type to be converted minus one, We define:

c2i(cont, 0) = [mem2int(cont(0))]

for the base case and for the inductive case

c2i(cont, i+ 1) = c2i(cont, i)@[mem2int(cont(i+ 1))]

Furthermore, we have to convert part of a user process’ memory—i.e. an
list of integers—into a C0 memory content. Thus, we define the function
i2c : Z list → (N→ mcellT ) as follows:

i2c(xs) = λi.

{
Int(xs!i) if i < |xs|
undef otherwise

Due to readability in the following, we will abbreviate for a given CVM
configuration cCVM

• the type name environment cCVM.kern.tn with tn,

• the procedure table cCVM.kern.pt with pt, and

• the actual C0 configuration of the abstract kernel cCVM.kern.kconf with
cC0 .

P2Vcopy

The primitive

P2Vcopy : confTCVM × stmt ×N×N→ (confTCVM × (D× Eifo) list)⊥

allows to copy the value of a variable of the abstract kernel into the memory of
a user process.

A call of this primitive P2Vcopy(cCVM, prim, pid, sa) takes the following
parameters:

• A CVM configuration cCVM,

• prim, the actual C0 statement of this call—i.e. a statement of the form
ESCall(vn, P2Vcopy, plist),

• the user process id pid, specifying the process, and

• sa for the start address in its memory.

We assume that the variable, whose value is to be stored, is located in the
first position of the parameter list of the statement prim, i.e. at plist !0, and
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that it is a pointer to an array with elements of type Int . The value of the
referenced array type variable is then given through

val = the(rval(tn, cC0 .m,Deref (plist !0)))

and the number of its elements is equal to its abstract type size, i.e.

am = sizeT (the(type(tn, toplst(cC0 .m), gst(cC0 .m),Deref (plist !0)))).

Now, we can compute data = c2i(val, am), i.e. the data which we want to
store. We update the corresponding user process’ main memory, where the new
user process configuration is defined as

vm′ = cCVM.up(pid)[mm := writemm(cCVM.up(pid).mm, sa, data].

The execution of this primitive will fail, if one of the following conditions is
violated:

• pid has to be a valid process id, i.e. pid ∈ P, and

• the end address sa+ am− 1 has to be in the memory range of that user
process: ?inmem(cCVM.up(pid), (sa+ am− 1)) = True.

In the failure case, we define P2Vcopy(cCVM, prim, pid, sa) = None. Other-
wise, we set

P2Vcopy(cCVM, prim, pid, sa) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pid := vm′)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

V2Pcopy

The copying of data from user processes to the abstract kernel is handled by
the primitive

V2Pcopy : confTCVM × stmt ×N×N→ (confTCVM × Eifo list)⊥.

Let V2Pcopy(cCVM, prim, pid, sa) denote a call of this primitive with pa-
rameters

• cCVM, a CVM configuration,

• prim, the C0 statement of the call, i.e. a statement of form

ESCall(vn, V2Pcopy, plist),

• a process id pid and a start address sa.

The C0 variable, whose value we want to update, is an integer array, given
through a pointer in position three of the parameter list of prim, i.e. plist !2,
while the first two parameters specify process id and start address. We access
this variable via the left value of the corresponding expression evaluation:

var = the(lval(tn, cC0 .m,Deref (plist !2)))
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and its abstract size by

am = sizeT (the(type(tn, toplst(cC0 .m), gst(cC0 .m),Deref (plist !2)))).

We can now read the data from the user process’ memory

data = readmm(cCVM.up(pid), sa, am)

and convert it into a C0 memory content val = i2c(data). Finally, we update
the abstract kernel’s C0 variable and obtain a new memory

updmm(cC0 .m, var, val) = bm′c.

We denote the new abstract kernel component of the CVM configuration by
kern ′ and define:

kern ′ = cCVM.kern[kconf := cC0 [m := m′]].

There are certain requirements for a successful execution of the primitive:

• pid has to be a valid process id, i.e. pid ∈ P, and

• the end address sa+ am− 1 has to be in the memory range of that user
process: ?inmem(cCVM.up.procs(pid), (sa+ am− 1)) = True.

In the failure case, we define V2Pcopy(cCVM, prim, pid, sa) = None. Otherwise,
we set

V2Pcopy(cCVM, prim, pid, sa) = ⌊
(cCVM

[
kern := updret(kern ′, 0)

]
, [ ])
⌋

PhysIOIn

In order to copy data read from a single device port into a variable of the
abstract kernel, we introduce the primitive

PhysIOIn : confTCVM × stmt ×N×N→ (confTCVM × (D× Eifo) list)⊥.

Let PhysIOIn(cCVM, prim, did, port) denote a call of this primitive with the
following arguments:

• cCVM, a CVM configuration,

• prim, the C0 statement of the call, i.e. a statement of form

ESCall(vn, PhysIOIn, plist),

• a device id did and a port port.

As for the other primitives dealing with physical memory, the amount of data
in words to be copied is determined by the abstract size of the kernel variable,
in which we want to copy the data. We assume that the third parameter of
the actual statement prim—i.e. plist !2—is a pointer expression referencing the
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corresponding variable of integer array type. We refer to this variable via the
result of the corresponding expression left evaluation

var = the(lval(tn, cC0 .m,Deref (plist !2)))

and its abstract size is

am = sizeT (the(type(tn, toplst(cC0 .m), gst(cC0 .m),Deref (plist !2)))).

The abstract size am of this kernel variable determines, how many words
we are going to read from the device. We use this information to build the
appropriate device input

dinint =


rep = True,
wr = False,
port = port ,
data = replicate(am, 0),
did = did


Let (devs′, dout int, eifos) denote the output of the device transition function,

i.e.
(devs′, dout int, eifos) = δint

devs(dinint, cCVM.devs),

where dout int is the data we have read. We now construct the C0 memory
content val = i2c(dout int) and use it to update the kernel memory:

m′ = updmm(cC0 .m, var, val).

We denote the new abstract kernel component of the CVM configuration by
kern ′ and define:

kern ′ = cCVM.kern[kconf := cC0 [m := m′]].

Successful execution of the primitive call depends on the following require-
ments:

• did has to denote a valid device id, that is did ∈ D, and

• port has to be a valid port, i.e. port < portmax.

In the failure case, we define PhysIOIn(cCVM, prim, did, port) = None.
Otherwise, we set

PhysIOIn(cCVM, prim, did, port) =⌊(
cCVM

[
devs := devs′,
kern := updret(kern ′, 0)

]
, toeifo(did , eifos)

)⌋
PhysIOInRange

The primitive

PhysIOInRange : confTCVM × stmt ×N×N→ (confTCVM × Eifo list)⊥

does basically the same as the PhysIOIn primitive, but instead of reading from
a single device port, we read from a range of consecutive ports.

Let PhysIOInRange(cCVM, prim, did, port) denote a call of this primitive
with the following arguments:
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• cCVM, a CVM configuration,

• prim, the C0 statement of the call, i.e. a statement of form

ESCall(vn, PhysIOInRange, plist),

• a device id did and a port port.

As for the other primitives dealing with physical memory, the amount of data
in words to be copied is determined by the abstract size of the kernel variable,
in which we want to copy the data. We require that the third parameter of
the actual statement prim—i.e. plist !2—is a pointer expression referencing the
corresponding variable of integer array type (the first two parameters specify
device id and port). We refer to this variable via the result of the corresponding
expression left evaluation

var = the(lval(tn, cC0 .m,Deref (plist !2)))

and its abstract size is

am = sizeT (the(type(tn, toplst(cC0 .m), gst(cC0 .m),Deref (plist !2)))).

The abstract size am of the kernel variables determines, how many words
we are going to read from the device. We use this information to build the
appropriate device input

dinint =


rep = False,
wr = False,
port = port ,
data = replicate(am, 0),
did = did


Let (devs′, dout int, eifos) denote the output of the device transition function,

i.e.
(devs′, dout int, eifos) = δint

devs(dinint, cCVM.devs),

where dout int is the data we have read. We now construct the C0 memory
content val = i2c(dout int) and use it to update the kernel memory: m′ =
updmm(cC0 .m, var, val). We denote the new abstract kernel component of the
CVM configuration by kern ′ and define:

kern ′ = cCVM.kern[kconf := cC0 [m := m′]].

Successful execution of the primitive call depends on the following require-
ments:

• did has to denote a valid device id, that is did ∈ D, and

• the last port from which we are going to read has still to be a valid port,
i.e. port+ am− 1 < portmax.

In the failure case, we define PhysIOIn(cCVM, prim, did, port) = None.
Otherwise, we set

PhysIOIn(cCVM, prim, did, port) =⌊(
cCVM

[
devs := devs′,
kern := updret(kern ′, 0)

]
, toeifo(did, eifos)

)⌋
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PhysIOOut

Symmetrically to the two primitives defined before, we introduce the primitive

PhysIOOut : confTCVM × stmt ×N×N→ (confTCVM × (D× Eifo) list)⊥,

which will take the value of an abstract kernel variable and write it to one of
the devices. Here, data is written word-wise to a single port.

Let PhysIOOut(cCVM, prim, did, port) denote a call of this primitive with
the following arguments:

• cCVM, a CVM configuration,

• prim, the C0 statement of the call, i.e. a statement of form

ESCall(vn, PhysIOOut, plist),

• a device id did and a port port.

We assume that the variable, whose content we are to copy, is of an integer
array type and that it is given through a pointer at the first position of the
parameter list in prim, i.e. plist !0. Thus, we obtain the value val of this variable
by

val = the(rval(tn, c.m,Deref (plist !0))),

where the corresponding abstract type size defines the numbers of words to
write to the device:

am = sizeT (the(type(tn, toplst(cC0 .m), gst(cC0 .m),Deref (plist !0)))).

We build the appropriate device input

dinint =


rep = True,
wr = True,
port = port ,
data = c2i(val, am),
did = did


and use it in the step function for devices to obtain the output

(devs′, dout int, eifos) = δint
devs(dinint, cCVM.devs).

The execution of the primitive will fail, if one or more of the following
conditions are violated:

• did has to denote a valid device id, that is did ∈ D, and

• port has to be a valid port, i.e. port < portmax.

In the failure case, we define PhysIOOut(cCVM, prim, did, port) = None. Oth-
erwise, we set

PhysIOOut(cCVM, prim, did, port) =⌊(
cCVM

[
devs := devs′,
kern := updret(cCVM.kern, 0)

]
, toeifo(did , eifos)

)⌋
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PhysIOOutRange

As with the PhysIOIn and PhysIOInRange primitive, we define

PhysIOOutRange : confTCVM×stmt×N×N→ (confTCVM×(D×Eifo) list)⊥,

which will take the value of an abstract kernel variable and write it to one of
the devices. Here, data is written word-wise to a range of ports.

Let PhysIOOutRange(cCVM, prim, did, port) denote a call of this primitive
with the following arguments:

• cCVM, a CVM configuration,

• prim, the C0 statement of the call, i.e. a statement of form

ESCall(vn, PhysIOOutRange, plist),

• a device id did and a port port.

We require that the variable whose content we are to copy, is of an integer
array type and that it is given through a pointer at the first position of the
parameter list in prim, i.e. plist !0. Thus, we obtain the value val of this variable
by

val = the(rval(tn, cC0 .m,Deref (plist !0))),

where the corresponding abstract type size defines the numbers of words to
write to the device:

am = sizeT (the(type(tn, toplst(cC0 .m), gst(cC0 .m),Deref (plist !0)))).

We build the appropriate device input

dinint =


rep = True,
wr = True,
port = port ,
data = c2i(val, am),
did = did


and use it in the step function for devices to obtain the output

(devs′, dout int, eifos) = δint
devs(dinint, cCVM.devs).

The execution of the primitive will fail, if one or more of the following
conditions are violated:

• did has to denote a valid device id, that is did ∈ D, and

• the last port, to which we are going to write, has to be a valid port, i.e.
port+ am− 1 < portmax.

In the failure case, we define PhysIOOutRange(cCVM, prim, did, port) = None.
Otherwise, we set

PhysIOOutRange(cCVM, prim, did, port) =⌊(
cCVM

[
devs := devs′,
kern := updret(cCVM.kern, 0)

]
, toeifo(did, eifos)

)⌋
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6.3.6 Special Primitives

LoadOS

Since CVM is conceived as a microkernel programmers framework, it lacks crucial
features most operating systems offer, e.g., scheduling. Thus, microkernels
usually provide a mechanism that allows for loading an operating system after
the kernel itself is running and install it as one of the kernels user processes.
This operating system is then using the microkernel interface, i.e. the primitives,
and its virtualization to realize the services offered to user processes running on
top of the operating system, thus making the microkernel invisible for them.

In CVM, we define for this purpose the primitive

LoadOS : confTCVM ×N×N×N×N→ (confTCVM × (D× Eifo) list)⊥.

A concrete call of this primitive LoadOS (cCVM, am, pid, did, sp) takes the fol-
lowing arguments:

• cCVM, a CVM configuration,

• the number of pages am to load,

• the process id pid to whose memory the operating system will be loaded,

• from device did, and

• starting with page sp.

[Alk09] has formally defined a hard disk model, which relies on the ATA/AT-
API standard. A hard disk configuration in this model is given by a record
type with fields for sectors, buffer, and other components of a hard disk. The
technical details of such a configuration as well as the corresponding transition
function are not required to understand the semantics of the LoadOS primitive.
Most importantly, there exists a word-addressable sector memory, given by the
component sm : N→ Z, which represents the content of the disk.

The relevant part of the device content—the image—starts at list position
sa = sp · 210 and comprises am many words, i.e.

data = readmm(cCVM.devs(did).sm, sa, am).

Now, we copy the image into the destination user process starting at address 0
and obtain a new machine configuration up′ for this process defined as follows:

vm′ = cCVM.up.procs(pid)[mm := writemm(cCVM.up.procs(pid).mm, 0, data)].

Successful execution of the primitive call depends on meeting with the
following requirements:

• pid has to denote a valid process id, i.e. pid ∈ P,

• the last address to which we write has to be within the memory of the
user process: ?inmem(cCVM.up.procs(pid), am · 210), and

• the device did has to be a hard disk, i.e. typedev(cCVM.devs(did)) = hd,
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• which is big enough to hold the image, that is

|cCVM.devs(did).sm| ≥ (sa+ am) · 210 − 1.

In the failure case, we define LoadOS (cCVM, am, pid, did, sp) = None. Oth-
erwise, we set

LoadOS (cCVM, am, pid, did, sp) =⌊(
cCVM

[
up := cCVM.up[procs := cCVM.up.procs(pid := vm′)],
kern := updret(cCVM.kern, 0)

]
, [ ]
)⌋

6.4 Initial CVM Configuration and n-Step Transition
Function

Definition 6.1 (Initial CVM Configuration) To create an initial configu-
ration, we define a function initCVM : c0prog × confTdevs → confTCVM, where
both the abstract kernel program Πabs and the initial device configurations
devs are parameters of the CVM model. Then, we obtain the corresponding
initial CVM configuration c0CVM = initCVM(Πabs, devs) as follows:

• We set the current process field c0CVM.up.cp to None, since we start with
a kernel step.

• The interrupt mask c0CVM .up.mask disables all maskable interrupts but
the one of the timer device.

• The type name environment and procedure table of the kernel component
c0CVM .kern are set to the ones provided by Πabs. The initial configuration
of the abstract kernel is obtained as described in Sect. 3.5.1 with the
difference that we do use the abstract kernel dispatcher function instead
of the main function.

• The device configurations in c0CVM.devs are taken from devs. CVM
assumes an already established memory virtualization. The hard disk,
which is used by the page fault handler (cf. Sect. 6.5.1), is thus not visible
any longer. Instead, we replace this device with a dummy (idle) device.

• The user processes are initialized as described above with the CVM
primitive reset (cf. Sect. 6.3).

Definition 6.2 (n-Step CVM Transition Function) For a whole run, i.e.
several steps of the CVM model, we introduce the n-step transition function

δnCVM : confTCVM × (N→ (D× Eifi)⊥)→ (confTCVM × (D× Eifo) list)⊥.

It takes a start configuration and a sequence of events as inputs and returns the
resulting state after n steps together with the external output generated and
accumulated during the computation. If any of the steps leads to a run-time
error, the whole computation yields None.
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Figure 6.2: CVM Memory Map

6.5 CVM Implementation and Abstract Linking

As we have seen above, the abstract kernel is merely a ‘crippled’ C0 program,
since it lacks all necessary low-level and hardware-dependent implementations.
In order to obtain a compilable—and thus executable—kernel, we have to add
code parts to a given abstract kernel program Πk. We call these code parts the
CVM implementation or short ΠCVM.

In the following subsection, we are going to present the necessary additions.
A convenient way of merging the two programs is abstract linking. We describe
this formalism in the second half of the section.

6.5.1 CVM Implementation

Data Structures

To simulate virtual machines and multi-processing, the CVM implementation
has to maintain certain data structures (cf. Fig. 6.2):

1. In the kernel global memory (or kernel data), we store an array pcb[ ]
of so-called process control blocks (PCBs). For each user processes with
id pid ∈ P, the process control block pcb[pid] is a structure type with
components to store the register files and the program counters of the
corresponding user process.

2. The current process field cCVM.up.cp is stored in a global variable cp of
type UnsgndT , the interrupt mask correspondingly in a global variable
mask of the same type. Unlike cCVM.up.cp, which is set to None, we leave
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the cp variable unchanged on entering system mode3.

3. Certain general purpose registers are used by the compiler to store the
stack and heap pointers [Lei08, LP08]. When we leave kernel execution
and start user execution, the corresponding registers of the kernel are
overwritten and are thus lost, when we re-enter the kernel. This causes
no problem for the stack pointer, since we re-initialize the kernel stack
each time on entering kernel mode. Yet for the heap, we have to keep
track of the already allocated data structures in order not to overwrite
them. Thus, we declare a global variable kheap, in which we store the
end address of the kernel heap when leaving kernel mode, and which we
use to set the appropriate register on entering.

4. We have described the address translation mechanism of the VAMP in
Sect. 5.1. The required page tables for each user process are stored in an
array ptspace[ ] on the heap.

5. Some additional data structures required by the page fault handler to
manage the physical and swap memory.

Entering and Leaving System Mode

Entering system mode basically consists of three steps. Whenever the kernel
starts to execute, we initialize its program rest with the function init. In all
cases but reset, init will take the current user process and store its registers
into the corresponding process control block pcb[cp] (kernel save).

In the next step, the CVM dispatcher cvmdispatch is called with pa-
rameters pcb[cp].eca (exception cause), pcb[cp].edpc (exception dpc), and
pcb[cp].edata (exception data). Since our kernel is non-preemptive and thus
should not be interrupted, we zero the status register of the hardware, i.e. mask
all maskable interrupts.

In case of a page fault interrupt, cvmdispatch will call the page fault
handler. Otherwise, we continue with a call of the abstract kernel dispatcher
abs kernel dispatch with parameters pcb[cp].eca and pcb[cp].edata.

To leave system mode in order to start the user process with id pid ∈ P,
we set cp=i and restore the process’ register files and program counters using
its process control block pcb[pid] (kernel restore). Finally, we leave kernel
execution with a rfe (return from exception) instruction.

Note that a scheduler is not part of the low-level implementation. This
means that the abstract kernel has to provide for an appropriate handling of
timer interrupts.

Page Fault Handler

In Sect. 5.1.1, we have introduced the hardware part of address translation. On
the software side, page faults triggered by the hardware are handled by a piece
of software called page fault handler.

3This is also the reason why do not relate these two values in the CVM correctness
statement during kernel execution (cf. Sect. 7.2.6).
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Whenever a user process step raises such an interrupt, the page fault handler
is invoked. Depending on the actual reason for the interrupt, the page fault
handler

• moves pages from physical to swap memory (if the physical memory is
full),

• copies the accessed page from swap memory into physical memory,

• updates the translation function.

Besides the page faults during user steps, the page fault handler might also
become involved in certain CVM primitives that access user memories, for
instance copy.

Certain data structures are required by the page fault handler in order to
implement these services.

1. The page tables (cf. Sect. 5.1.1) are both shared by the hardware and the
page fault handler.

2. Swap memory is organized in larger chunks of memory of size 220 words,
called big pages. We maintain a big page table to organize these big pages
and to retrieve data from the swap memory.

3. Since the page fault handler is invoked by the kernel, it also has to
access the process control blocks in order to update register values of user
processes (e.g., the page table length register on freeing or allocating of
user memory).

4. Finally, there are several lists for the bookkeeping of free and used pages
in user memory, exclusively used by the page fault handler for instance to
implement page replacement strategies.

The detailed discussion of our page fault handler implementation and correctness
is out of the scope of this work, but is presented in [ASS08, AHL+09, Sta09].

Basically, any implementation that satisfies the virtualization correctness
criteria (cf. Sect. 7.2.1) can be used. The page fault handler we use in Verisoft
is a C0 implementation with small assembler parts used to access the swap
hard disk [Con06].

CVM Primitives Implementation

As we have seen in Sect. 6.3, some of these primitives manipulate just the
registers of a process, that is the process control block of that process in the
implementation.

Others, for instance those primitives that copy memory from one process
to another or between processes and devices, are accessing data, which is not
visible in C0 structures of the kernel—though they might be visible in those of
the corresponding user processes. In these cases, we work with assembler code
in-lined into C0 code using the Asm statement (cf. Sect. 3.2.3).

In [ST08, Tsy09], implementation and code verification of primitives with
in-line assembler code is discussed in detail.
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6.5.2 Abstract Linking

As we have seen in the section before, we have to put together the abstract
kernel program and the CVM implementation to obtain a complete concrete
kernel program, which can be compiled and executed. As we have seen in
Sect. 3.2, a C0 program consists of a type name environment, a procedure table,
and a global symbol table.

We denote the two programs with Πabs = (teabs, ptabs, gstabs) and ΠCVM =
(teCVM, ptCVM, gstCVM), abbreviating the type of a C0 program with c0prog =
tenv × proctableT × (Σ+ × ty) list .

We will now define abstract linking, which is a formal way to combine the
two implementations. In principle, we have do to the following: we merge
the type name environments, tek and teCVM, and the global symbol tables,
gstk and gstCVM, of the two programs. Then, we scan the abstract kernel
implementation for external function calls to CVM primitives and replace them
with ordinary function calls. Finally, we merge the two procedure tables.

Not all programs are linkable in the sense that the linked code is compilable
or even runnable. The preconditions under which abstract linking is possible,
will be introduced in Sect. 7.2.2 when we talk about CVM correctness.

Definition 6.3 (Merging Type Name Environments) Type name envi-
ronments have been introduced in Sect. 3.2 as lists of pairs of a type name and
a type, i.e. tenv : (Σ+ × ty) list . We merge two type name environments by
appending them while taking care not to create redundant list elements.

We define a function link te : tenv × tenv → tenv and set:

link te(ta, [ ]) = ta

link te(ta, x#tb) =

{
link te(ta, tb) if x ∈ ta
link te(x#ta, tb) otherwise

Definition 6.4 (Merging Global Symbol Tables) Information about the
global variables of a program is stored in a symbol table, which is a list
of variable names and their associated type: (Σ+ × ty) list . The function
linkgst : (Σ+ × ty) list × (Σ+ × ty) list → (Σ+ × ty) list merely appends one list
to the other, so we set for two symbol tables gsta and gstb:

linkgst(gsta, gstb) = gsta@gstb.

Procedure Tables

We remember: CVM primitives in the abstract kernel program are declared, but
not defined, that is the corresponding procedure body consists of a single Skip
statement and there are no local variables declared. We call these declared-only
procedures external.

The implementation for this procedures comes from the procedure table
ptCVM of the CVM implementation. On the other hand, there are external
procedures in ΠCVM, whose implementation comes from the abstract kernel—for
instance the abstract kernel dispatcher.

The linking of two procedure tables therefore consists of several steps:
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1. In order to avoid duplicate statement ids, we renumber all non-structural
statements in both procedure tables to regain uniqueness.

2. Then, we split both procedure tables in two parts: one containing the
‘normal’ defined procedures, and one that contains the external ones.

3. The parts with the defined procedures are then simply concatenated.

4. The external procedures are scanned for entries that are defined in the
other program to be linked. These entries will then be removed. We do
this for both programs, respectively.

5. A potential rest of external functions is then appended to the already
linked defined procedures.

6. All function bodies have to be searched for ESCall statements. If the
functions called are now defined, we change the statement to a conventional
SCall statement.

Definition 6.5 (Renumbering) The compiler correctness proof in [Lei08]
requires a unique numbering for all statements in a C0 program. We introduce
a very simple way to achieve this unique numbering for two procedure tables to
be merged: in one procedure table, we multiply all statement ids with 2, hence
obtaining only even numbered statements. In the other procedure table we
multiply all ids with 2 and add 1, which yields only odd numbered statements.

For this purpose, we define two auxiliary functions odd stmt : stmt → stmt
and evenstmt : stmt → stmt , and define recursively:

evenstmt(Skip) = Skip
evenstmt(Comp(s1, s2)) = Comp(evenstmt(s1), evenstmt(s2))
evenstmt(Ass(e1, e2, i)) = Ass(e1, e2, 2 · i)

evenstmt(Assc(e, l, i)) = Assc(e, l, 2 · i)
evenstmt(PAlloc(e, tn, i)) = PAlloc(e, tn, 2 · i)

evenstmt(SCall(vn, fn, pl, i)) = SCall(vn, fn, pl, 2 · i)
evenstmt(Return(e, i)) = Return(e, 2 · i)

evenstmt(Ifte(e, s1, s2, i)) = Ifte(e, evenstmt(s1), evenstmt(s2), 2 · i)
evenstmt(Loop(e, s, i)) = Loop(e, evenstmt(s), 2 · i)

evenstmt(Ass(il, i)) = Ass(il, 2 · i)
evenstmt(XCall(fn, rl, pl, i)) = XCall(fn, rl, pl, 2 · i)

evenstmt(ESCall(vn, fn, pl, i)) = ESCall(vn, fn, pl, 2 · i)

and for odd stmt likewise.
Then, we obtain a renumbered procedure table by applying one of the above

functions to all of its function bodies, formally

map(evenstmt, pt),

and for odd statement ids

map(odd stmt, pt),
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Definition 6.6 (External Procedures) Given a C0 procedure table pt ∈
proctableT (cf. Sect. 3.2.4). Such a procedure table consists of pairs of function
names and their descriptors. We say a procedure table entry (fn, fdesc) is
external if

fdesc.lvars = [ ] ∧ fdesc.body = Skip

and denote this with the predicate ?ext : Σ+ × procT → B.
The list of external procedures of pt is then given through

ptext = filter(?ext, pt)

and, correspondingly, the list of internal procedures by

ptdef = filter(¬?ext, pt).

Definition 6.7 (Removing External Procedures) For two procedure ta-
bles pta and ptb, we want to remove the external functions from ptb, which
are defined in pta. The comparison has to rely on the function name, since
the associated descriptors do obviously not match. We define the function
rem : proctableT × proctableT → proctableT that returns the remainder of the
external procedures in ptb. We set:

rem(pta, ptb) = filter((λx. fst(x) /∈ ptadef), ptbext).

Definition 6.8 (Merging Procedure Tables) As mentioned further above,
the merged procedure table of pta and ptb consists of the defined functions of
both procedure tables and those procedures that remain external.

For this purpose, we define a function linkpt : proctableT × proctableT →
proctableT . Given two procedure tables pta and ptb, we first renumber the
function bodies obtaining ptar = even(pta) and ptbr = odd(ptb). Then we
merge the renumbered procedure tables as follows:

linkpt(pta, ptb) = ptadef
r @ptbdef

r @rem(ptar, ptbr)@rem(ptbr, ptar).

Updating Procedure Bodies

The last step in abstract linking is the update of the external function call
statements in the procedure bodies of the linked procedure tables.

Definition 6.9 (Updating a Statement Tree) Procedure bodies are made
up by statement trees, so we have to introduce a function that walks these trees
recursively and replaces external function calls where necessary.

For a single external function call, we check if the function called is still
external or if it is defined now. In the first case, we leave the statement as it is,
in the latter case we replace it with a conventional function call statement.

For most statements, this function computes the identity. Thus, we omit
these cases and define only the interesting ones here.

Given a procedure table pt. For e2i : proctableT × stmt → stmt , we set:

e2i(pt,Comp(s1, s2)) = Comp(e2i(pt, s1), e2i(pt, s2))
e2i(pt, Ifte(e, s1, s2)) = Ifte(e, e2i(pt, s1), e2i(pt, s2))

e2i(pt,Loop(e, s) = Loop(e, e2i(pt, s))
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and for external function calls

e2i(pt,ESCall(vn, fn, plist)) ={
ESCall(vn, fn, plist) if fn ∈ {map(fst , ptext)}
SCall(vn, fn, plist) otherwise

Definition 6.10 (Updating a Procedure Table) An element (fn, f) of a
procedure table can now be updated using the function introduced above. We
define repl : proctableT × (Σ+ × procT )→ Σ+ × procT and set:

repl(pt, (fn, f)) = (fn, f [body := e2i(pt, f.body)]).

To replace all outdated external function calls in one procedure table, we
simply apply this function with map:

replpt(pt) = map(repl pt).

Definition 6.11 (Abstract Linking) We combine all of the functions intro-
duced in this section to define the overall abstract linking function

link : c0prog × c0prog → c0prog .

Given two programs Πa = (tea, gsta, pta) and Πb = (teb, gstb, ptb), we set

link(Πa,Πb) =

 link te(tea, teb),
linkgst(gsta, gstb),

replpt(linkpt(pta, ptb))







Part II

CVM Correctness

107





Crash programs fail because they are based on
theory that, with nine women pregnant, you can
get a baby a month.

Werner von Braun

Chapter 7

CVM Implementation Correctness
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Overall CVM correctness is a classical simulation theorem, where a VAMP
instruction set architecture with devices (cf. Sect. 5.2) simulates CVM as
introduced in Chapter 6. Single states of the two computational models are
related by an abstraction relation, which subsumes several other abstraction
relations for the single components of a CVM configuration (cf. Sect. 6.1).

The rest of this chapter is outlined as follows: at first, we introduce the
major individual abstraction relations (Sect. 7.2). Particular attention will be
given to the relation between the abstract and the concrete kernel (Sect. 7.2.2)
and the user process relation (Sect. 7.2.1).

Most of them rely on other work, for instance compiler correctness [Lei08,
Pet07], page fault handler correctness [Sta09, Alk09], and low-level CVM code
correctness [Tsy09]. We will provide references for those as necessary, but will
not discuss them in detail again.

Then, we combine the single relations to the overall abstraction relation,
which we will use to formulate the overall CVM implementation correctness
theorem (Sect. 7.3).

7.1 Auxiliary Functions

Frequently, we will access the memory regions, where variables of the concrete
kernel are stored. For global variables, these addresses are fixed and can be
statically computed using the compiler allocation function as introduced in
[Lei08] (see also Fig. 6.2). We write short adci&d(σ) for the corresponding base
address of a C0 variable σ in an ISA configuration ci&d, which is assigned by
the compiler.

For the corresponding integer and natural interpretation of the bit vector
stored at the word address adci&d(σ), we use the notation 〈σ〉int and 〈σ〉nat,
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respectively, and define:

〈σ〉intci&d
= toint(ci&d.proc.mm(adci&d(σ)))

〈σ〉natci&d
= tonat(ci&d.proc.mm(adci&d(σ)))

7.2 Abstraction Relations

In this section, we will introduce the individual abstraction relations between
the various components of CVM and the hardware, the devices, and the concrete
kernel, respectively.

We start with B, a function relating the CVM user process component to a
VAMP ISA configuration.

In a next step, we will treat the relations dealing with the CVM kernel
component. Of particular relevance for the rest of this work is konsis, the
abstraction relation between the abstract and the concrete kernel.

Then, we will shortly introduce the—rather trivial—relation between the
devices in CVM and those on the hardware layer.

Before we will combine all individual abstraction relations into a single
comprehensive one, we will introduce the relations for the current process
identifier and the interrupt mask.

7.2.1 User Process Relation

We remember that the user process component up of a CVM configuration
cCVM contains a mapping of process ids to assembly machines encoding user
processes.

The user process relation

B : (P→ confTasm)× confTi&d → B

relates this user process component to its representation in a VAMP ISA
configuration.

To define the B relation, we define auxiliary functions to extract a user
process configuration for a process with id pid from a given VAMP ISA with
devices configuration ci&d. Whenever a user process is not active—i.e. the
kernel or another user process runs—, its registers are stored in the process
control blocks of the concrete kernel (cf. Sect. 6.5.1). The memory of a user
process is distributed over the physical memory ci&d.proc.mm of the processor
and the swap memory of the swap hard disk in ci&d.devs. Thus, we split this
task into two functions, one to extract the process’ memory, one to obtain its
register file.

The so obtained virtual machine is then compared to the corresponding one
stored in the user process component cCVM.up.procs(pid).

Extracting the Register Files

We consider two cases:
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1. If the current process is not pid or if we are in system mode, we use
the process control blocks to obtain the register files and the program
counters.

2. Otherwise—i.e. process pid is running—, we take the registers and counters
directly from the processor component of ci&d.

Let x denote one of the program counters, that is either pcp or dpc. We
define a function getx that takes a combined ISA and device configuration, a
process id and returns the program counter x.

getx(ci&d, pid) =

{
ci&d.proc.x if pid = 〈cp〉natci&d

〈pcb[pid].x〉natci&d
otherwise

Register files are represented in the assembly semantics as a list of integers.
To construct a list of 32 values for a register file x from a processor configuration,
we define:

r2lx(ci&d) = toint(ci&d.proc.x(0))
# toint(ci&d.proc.x(1))
# . . .

# toint(ci&d.proc.x(31))

Similarly, we define p2lx to extract the register file x from the process control
blocks of a process pid in a configuration ci&d.

p2lx(ci&d, pid) = 〈pcb[pid].x[0]〉intci&d

# 〈pcb[pid].x[1]〉intci&d

# . . .

# 〈pcb[pid].x[31]〉intci&d

We combine the above functions to extract the register set x ∈ {gprs, sprs}
and set:

getx(ci&d, pid) =

{
r2lx(ci&d) if pid = 〈cp〉natci&d

p2lx(ci&d, pid) otherwise

Definition 7.1 (Register Extraction) We can now define the function

get regs : confTi&d ×N→ confTasm

that takes a process id and a ISA and device configuration and returns an
assembly configuration for the corresponding process as encoded in the hardware.
We set:

get regs(ci&d, pid) =


pcp = getpcp(ci&d, pid),
dpc = getdpc(ci&d, pid),
gprs = getgprs(ci&d, pid),
sprs = getsprs(ci&d, pid),
mm = undef


Note, that we leave the memory undefined for now. We will define the extraction
of the virtual memory from physical and swap memory in the next paragraph.
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Extracting the Memory

As we have seen in Sect. 5.1.1, the valid bit of a page table entry determines, if
the corresponding page is present in the physical memory or not. Note, that the
memory at ISA level is byte-addressed, while it is word-addressed on assembly
level. Therefore, the following definitions vary slightly from the ones introduced
in Sect. 5.1.1, e.g., there is no byte index for a virtual address, but a word
index.

Definition 7.2 (Page Table Entry Extraction) For a ISA and device con-
figuration ci&d and a process id pid, we extract the page table entry for a virtual
address va using the function pte(ci&d, pid, va). In addition, let va′ denote the
bit vector representation for va. Hence, we write px(va′) = va′[29 : 10] for the
virtual page index and wx(va′) = va′[9 : 0] for the word index of va′.

We abbreviate vm = get regs(ci&d, pid) and compute the page table entry as

pte(ci&d, pid, va) = ci&d.proc.mm(vm.sprs!pto · 210 + px(va′)).

The predicate ?valpte takes an address va, a configuration ci&d, and a process
id pid. It evaluates to True, if the corresponding page for va is in physical
memory and False, if it is in the swap memory. We set:

?valpte(ci&d, pid, va) =

{
True if pte(ci&d, pid, va)[11] = 1
False otherwise

For ?valpte(ci&d, pid, va), we obtain the corresponding physical word address
pa(ci&d, pid, va) = [pte(ci&d, pid, va)[29 : 10];wx(va′)].

The swap memory is located on a hard disk present in the device part
ci&d.devs of the combined configuration. Address translation for the swap
device—i.e. relating virtual addresses to sectors on the hard disk—works obvi-
ously differently from the address translation introduced in Sect. 5.1.1 and is not
part of the hardware, but the page fault handler. We omit the details of address
translation for the swap memory, which can be found in [ASS08] and [Sta09].
Instead, we use the function sa(ci&d, pid, va), which yields the swap memory
address for a virtual address with ¬?valpte(ci&d, va), in an uninterpreted way.
Furthermore, we assume the existence of a swap device with id did swap, a hard
disk with a component sm, the swap memory.

Definition 7.3 (Memory Extraction) Now we can extract a virtual mem-
ory from the physical and swap memory. We define getmm : confTi&d ×N→
(N→ Z) and set

getmm(ci&d, pid) =

λva.toint

{
ci&d.proc.mm(pa(ci&d, pid, va)) if ?valpte(ci&d, pid, va)
ci&d.devs.did swap.sm(sa(ci&d, pid, va)) otherwise

Definition 7.4 (Equivalence of Assembly Configurations) We say two
virtual machine configurations are equivalent, iff

• both program counters are equal,
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• both register files are equal,

• the content of the two memories are equal.

We express this formally using the predicate ∼= and define for two assembly
configurations vm1 and vm2:

vm1
∼= vm2 = vm1.dpc = vm2.dpc

∧ vm1.pcp = vm2.pcp

∧ (0 ≤ i ≤ 31 −→ vm1.gprs!i = vm2, gprs!i)
∧ (0 ≤ i ≤ 31 −→ vm1.sprs!i = vm2.sprs!i)
∧ (i < (vm1.sprs.ptl + 1) · 210 −→ vm1.mm(i) = vm2.mm(i))

Definition 7.5 (B-Relation) Combining both the extraction functions for
registers and memory, we obtain a virtual machine vmpid of process pid from a
given ISA and device configuration ci&d as follows:

vmpid(ci&d) = get regs(ci&d, pid)[mm := getmm(ci&d, pid)].

We say, the user process relation B holds for a user process component procs :
P→ confTasm and a combined configuration ci&d ∈ confTi&d, iff all user process
stored in procs are equal under the equivalence relation defined further above
to the virtual machines extracted from the hardware, formally:

B(procs, ci&d) = (∀pid ∈ P : procs(pid) ∼= vmpid(ci&d)).

7.2.2 Kernel Relations

Abstract Kernel to Concrete Kernel

The relation between the abstract kernel and the concrete kernel is the most
complex one. In order to make it more understandable, we have split it up in
several smaller relations, each relating specific parts of the abstract kernel to
their counterparts in the concrete kernel. In the rest of this section, we will
introduce these sub-relations and combine them finally to the konsis relation,
which connects the abstract to the concrete kernel.

Definition 7.6 (Type Name Environment Consistency) Let tea denote
a type name environment. Then, tea is consistent to another type name
environment teb, iff all elements in tea are also elements in teb. We define
konsistenvs : tenv × tenv → B and set

konsistenv(tea, teb) = {tea} ⊆ {teb}.

Definition 7.7 (Relating Recursion Depths) Compared to the abstract
kernel, the concrete kernel has a certain computational overhead in the sense,
that there have already happened some function calls before the call of the
abstract kernel dispatcher.
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For instance, the dispatcher function, which calls the page fault handler if
necessary, is only present in the concrete kernel, but not in the abstract one,
where page faults are not visible at all.

This means that the local memory stack of the concrete kernel has necessarily
more stack frames than the one of the abstract kernel, in other words: the
recursion depth of the first one is larger by a constant offset than the latter one.

We name this offset rdoff and describe the consistency of two local memory
recursion depths by a predicate konsisrd : memconfT ×memconfT → B. Given
two memory configurations ma and mb, we define:

konsisrd(ma,mb) = (|mb.lm| = |ma.lm|+ rdoff).

We have to define a relation which connects statements in the abstract
kernel with statements in the concrete kernel. This cannot just be ordinary
equality, since the concrete kernel program has been created by abstract linking
(cf. Sect. 6.5.2), that is:

• all statements have undergone renumbering, and

• external function calls have been replaced by conventional function calls.

Definition 7.8 (Statement Equivalence) We introduce the equivalence re-
lation for statements eqstmt : stmt × stmt → B and define recursively:

eqstmt(Skip, s) = (s = Skip)
eqstmt(Ass(e1, e2, i), s) = (∃j : s = Ass(e1, e2, j))

eqstmt(PAlloc(e, tn, i), s) = (∃j : s = PAlloc(e, tn, j))
eqstmt(SCall(vn, fn, plist , i), s) = (∃j : s = SCall(vn, fn, plist , j))

eqstmt(ESCall(vn, fn, plist , i), s) = (∃j : s = SCall(vn, fn, plist , j))
eqstmt(XCall(fn, elist1, elist2, i), s) = (∃j : s = XCall(fn, elist1, elist2, j))

eqstmt(Asm(il, i), s) = (∃j : s = Asm(il, j))
eqstmt(Return(e, i), s) = (∃j : s = Return(e, j))
eqstmt(Loop(e, t, i), s) = (∃j, u : eqstmt(t, u) ∧ (s = Loop(e, u, j)))

eqstmt(Ifte(e, t1, t2, i), s) = (∃j, u1, u2 : eqstmt(t1, u1)
∧eqstmt(t2, u2) ∧ (s = Ifte(e, u1, u2, j)))

eqstmt(Comp(t1, t2), s) = (∃s1, s2 : eqstmt(t1, s1) ∧ eqstmt(t2, s2)
∧(s = Comp(s1, s2)))

We will now use the eqstmt relation to reason about the defined functions in
the abstract and the concrete kernel. For all defined functions in the abstract
kernel’s procedure table and the corresponding functions in the concrete kernel,
we require that

• the statements in the function bodies are equal under the above relation,
and

• the function parameters and local variables are the same.
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Definition 7.9 (Relating Procedure Tables) Given two procedure tables
pta and ptb. Let (fn, f) denote an entry in the procedure table pta and (fn, f ′)
its corresponding entry in ptb with f ′ = the(mapof (ptb, fn)).

We say (fn, f) and (fn, f ′) are equivalent under a predicate konsis func :
(Σ+ × procT )× (Σ+ × procT )→ B, iff:

eqstmt(f.body , f ′.body)∧
(f.params = f ′.params)∧
(f.lvars = f ′.lvars)

We can now connect the two procedure tables pta and ptb using the above
predicate:

konsispt(pta, ptb) = (∀(fn, f) ∈ {ptdef
a }.∃(fn, f ′) ∈ {ptb}.konsis func(f, f ′)).

The predicates defined above are dealing with C0 programs, thus dealing
with static properties. We will now introduce several predicates connecting
configurations of the abstract kernel with those of the concrete kernel. We start
with the program rest of a C0 configuration.

Definition 7.10 (Program Rest Consistency) For two program rests pra
and pr b, we define the equivalence predicate konsisprog : stmt × stmt → B and
set:

konsisprog = (∀i < |s2l(pra)| : eqstmt(s2l(pra)!i), s2l(prb)!i).

We have to relate g-variables (cf. Sect. 3.3.1) of the abstract kernel to
corresponding g-variables in the concrete kernel. This is pretty easy for global
variables, which have identical names in the concrete kernel. For local variables
of the abstract kernel, we find the corresponding local variables by adding the
offset rdoff to the local memory frame identifier.

With heap variables, things become a little more tricky. Since the concrete
kernel can allocate new memory independently from the abstract kernel, we have
to keep track, which abstract heap variables are connected to which concrete
heap variables. We realize this bookkeeping by introducing a heap map function
hp : N→ N (cf. Fig. 7.1).

Definition 7.11 (Corresponding g-Variables) We introduce an allocation
function kalloc : gvar × (N → N) → gvar , which takes a g-variable of the
abstract kernel and a heap map function, returning the corresponding g-variable
in the concrete kernel. We define inductively:

kalloc(gvargm(σ), hp) = gvargm(σ)
kalloc(gvarlm(i, σ), hp) = gvarlm(i+ rdoff, σ)

kalloc(gvarhm(j), hp) = gvarhm(hp(j))
kalloc(gvararr (a, i), hp) = gvararr (kalloc(a, hp), i)

kalloc(gvarstr (st, cn), hp) = gvarstr (kalloc(st, hp), cn)
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Figure 7.1: Mapping Abstract to Concrete Heap Variables

In the following sections, we will analyze and relate the initialization, type
and values of g-variables of the abstract kernel and their counterparts in the
concrete kernel. Yet, we will only consider reachable variables. We distinguish
between reachable named g-variables, i.e. global and local variables, and reach-
able nameless g-variables, that is heap variables. Reachability relies on validity
of g-variables, which we will therefore introduce first.

Definition 7.12 (Validity of g-Variables) Let sc denote a symbol config-
uration. We define the set gvars√ : symbolconft → gvar set of all valid g-
variables—i.e. those of well-formed structure—for this symbol configuration
inductively. For the base case, we define:

σ ∈ map(fst , sc.gst)
gvargm(σ) ∈ gvar√(sc)

σ ∈ map(fst , sc.lst!i) i < |sc.lst |
gvarlm(i, σ) ∈ gvar√(sc)

i < |sc.hst |
gvarhm(i) ∈ gvar√(sc)
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Array variables are valid, if their parent g-variable (i) is valid and (ii) of array
type, and the index is within the bounds of the array:

a ∈ gvar√(sc) typeg(a, sc) = ArrT (n, t) i < n

gvararr (a, i) ∈ gvar√(sc)

We have similar requirements for the validity of struct variables: the parent
g-variable (i) has to be valid itself and (ii) of structure type, and the component
name has to be defined in the structure:

st ∈ gvar√(sc) typeg(st, sc) = StrT (cl) cn ∈ map(fst , cl)

gvarstr (st, cn) ∈ gvar√(sc)

Definition 7.13 (Reachability of g-Variables) Basing on the definition of
validity, we will now introduce the notion of reachability of g-variables formally.
First, we will define the set of reachable named g-variables reachablenamed :
memconfT → gvar set . This is pretty simple, since we only require that these
variables are named and valid:

g ∈ gvar√(sc(m)) ?named(g)

g ∈ reachablenamed(m)

Second, we continue with the set of reachable nameless g-vars. We could define
this set inductively, too, as presented in [Lei08]. Unfortunately, this notion has
turned out to be too weak for the proof described in Chapter 8. Hence, we will
introduce a stronger notion of reachability for nameless g-variables, which is
defined inductively over a measure: reachablenameless : memconfT ×gvar×N→
B.

Let h denote a valid nameless heap variable. For the base case, we look for
a valid and initialized global or local variable g of pointer type, whose value
points to h. If this is the case, then h is reachable in 0 steps.

h ∈ gvar√(m)
¬named(h) named(g) g ∈ gvar√(m) initg(m, g)

valueg(m, g) = Ptr(h) ∃tn. tyg(sc(m), g) = PtrT (tn) ∨NullT
reachablenameless(m,h, 0)

If h is reachable in i steps, then it is also reachable in i+ 1 steps:

reachablenameless(m,h, i)
reachablenameless(m,h, i+ 1)

If there exists a pointer variable g, which is reachable in i steps, and whose
value points to h, then h is also reachable in i+ 1 steps:

reachablenameless(m, g, i) valueg(m, g) = Ptr(h)
h ∈ gvar√(m) ¬?named(h) ∃tn. tyg(sc(m), g) = PtrT (tn) ∨NullT

reachablenameless(m,h, i+ 1)

Finally, h is reachable in i+ 1 steps, if it is the sub g-variable of g, which itself
is reachable in i steps:

reachablenameless(m, g, i) ¬?named(h) h ∈ gvar√(m) h ∈ subg(g)

reachablenameless(m,h, i+ 1)
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Definition 7.14 (Content and Value Equality) In Def. 7.11, we have de-
fined how to obtain the corresponding concrete kernel g-variable for an ab-
stract kernel g-variable. We will now define, when we consider the values of
such a pair of variables to be equivalent. First, we introduce the predicate
eqcont : ty × (N → mcellT ) × (N → mcellT ) × (N → N) → B. eqcont takes a
C0 type (cf. Sect. 3.2.1) and two memory frame contents (cf. Sect. 3.3.1) along
with a heap map as arguments. In the following, let hp be a heap map and ca
and cb two memory contents.

For the basic types, i.e. BoolT , UnsgndT , IntT , and CharT , we simply check,
if the content at address 0 is equal in both contents:

eqcont(BoolT ) = λ ca, cb, hp. ca(0) = cb(0)
eqcont(UnsgndT ) = λ ca, cb, hp. ca(0) = cb(0)

eqcont(IntT ) = λ ca, cb, hp. ca(0) = cb(0)
eqcont(CharT ) = λ ca, cb, hp. ca(0) = cb(0)

For the null pointer type NullT , we proceed similarly and check, if both memory
cells at address 0 contain the null pointer literal:

eqcont(NullT ) = λ ca, cb, hp. ca(0) = NullPointer ∧ cb(0) = NullPointer

For the pointer type PtrT (σ), we need a case distinction:

• ca(0) contains a null pointer literal. In this case, this has also to be true
for cb(0).

• Otherwise, ca(0) is of the form Ptr(g), where g is a g-variable of the
abstract kernel. Then, cb(0) has to hold a pointer to the corresponding
g-variable in the concrete kernel, that is Ptr(kalloc(g, hp)).

We write formally:

eqcont(PtrT (σ)) = λ ca, cb, hp.{
cb(0) = NullPointer if ca(0) = NullPointer
cb(0) = Ptr(kalloc(g, hp)) if ca(0) = Ptr(g)

For an array type ArrT (k, t), with k being the number of elements and t their
type, we demand that for each array element the eqcont predicate holds. For
such an element with index i < k, we compute its offset by off (i, t) = sizeT (t) · i.
The relevant parts of the memory frame contents ca and cb are defined as
follows:

c′a(i, t) = λ j.

{
ca(off (i, t) + j) if j < sizeT (t)
undef otherwise

c′b(j, t) = λ j.

{
cb(off (i, t) + j) if j < sizeT (t)
undef otherwise

We can now define the equivalence relation for a complete array type:

eqcont(ArrT (k, t)) = λ ca, cb, hp. ∀i < k. eqcont(t, c′a(i, t), c′b(i, t), hp)
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Similarly, we proceed with an struct type StrT (cl), where cl denotes a component
list. For a component (σ, t)—a pair of component name and type—in this list,
we obtain its offset by off (σ, cl). The detailed definition of this function can be
found in [Lei08]. Again, the relevant parts of the memory frame contents ca
and cb for such a component are given through

c′a((σ, t), cl) = λ j.

{
ca(off (σ, cl) + j) if j < sizeT (t)
undef otherwise

c′b((σ, t), cl) = λ j.

{
cb(off (σ, cl) + j) if j < sizeT (t)
undef otherwise

The equivalence relation for a complete struct type and two contents is then
defined as follows:

eqcont(StrT (cl)) = λ ca, cb, hp.∀(σ, t) ∈ {cl}. eqcont(t, c′a(σ, cl), c′b(σ, cl))

Since we do not want to deal with memory frame contents, but with g-variables
and their values, we will now introduce the predicate

eqval : memconfT × gvar ×memconfT × gvar × (N→ N)→ B,

which bases on the above definitions. Given two g-variables ga and gb and two
memory configurations ma and mb. Then we define:

eqval(ga,ma, gb,mb) = eqcont(typeg(sc(ma), ga), valueg(ma, ga), valueg(mb, gb))

Definition 7.15 (Type & Initialization Equality) Given two g-variables
ga and gb, and two memory configurations ma and mb. We introduce two
predicates eqtype : memconfT × gvar × memconfT × gvar → B and eqinit :
memconfT×gvar×memconfT×gvar → B, which are valid, if the two variables
have the same type and the same initialization, respectively:

eqtype(ma, ga,mb, gb) = (typeg(sc(ma), ga) = typeg(sc(mb), gb))
eqinit(ma, ga,mb, gb) = (initg(ma, ga) = initg(mb, gb))

Definition 7.16 (g-Variable Consistency) We combine now the individual
relations as introduced before to a single relation konsisgvars : memconfT ×
memconfT × (N→ N)→ B, which connects variables of the abstract kernel to
variables in the concrete kernel.

Informally, we require the following for a variable x in the abstract kernel:

• if x is reachable, so is kalloc(x, hp) reachable in the concrete kernel;

• the initialization of x and kalloc(x, hp) is equal;

• if we are dealing with an elementary g-variable, we additionally require

– that the types are equal



120 CVM Implementation Correctness

– and in the case that x is initialized, the values have to be equal, too.

We split konsisgvars in two smaller predicates, one dealing with named g-
variables—konsisnamed—and one for nameless ones—konsisnameless. Let ma

and mb denote two C0 memory configurations and hp a heap map. Then, we
define formally:

konsisnamed(ma,mb, hp) = ∀g.g ∈ reachablenamed(ma) =⇒
kalloc(g, hp) ∈ reachablenamed(mb)∧
eqinit(ma, g,mb, kalloc(g, hp))∧
(?elem(typeg(sc(ma), g)) =⇒

(eqtype(ma, g,mb, kalloc(g, hp))∧
(?init(ma, g) =⇒ eqval(g,ma, kalloc(g, hp),mb)))).

Correspondingly, we define for nameless g-variables:

konsisnameless(ma,mb, hp) = ∀g, i.reachablenameless(ma, g, i) =⇒
reachablenameless(mb, kalloc(g, hp), i)∧
(?elem(typeg(sc(ma), g)) =⇒

eqtype(ma, g,mb, kalloc(g, hp))∧
eqval(g,ma, kalloc(g, hp),mb))).

We now combine the above two predicates:

konsisgvars(ma,mb, hp) =
konsisnamed(ma,mb, hp)∧
konsisnameless(ma,mb, hp)

Definition 7.17 (Symbol Table Consistency) Two global symbol tables
are consistent, iff all elements in the first one are also elements in the second
one. We define konsisgst : memconfT ×memconfT → B and set

konsisgst(ma,mb) = {gst(ma)} ⊆ {gst(mb)}.

Similarly, we define for local symbol tables a predicate konsis lst : memconfT ×
memconfT → B. Here, the individual symbol tables of the abstract heap have
to be equivalent to the corresponding ones in the concrete stack, which are
shifted by the offset rdoff:

konsis lst(ma,mb) =
∀i. i < |sc(ma).lst | =⇒ sc(ma).lst !i = sc(mb).lst !(i+ rdoff)

Finally, we require regarding the heap symbol table that for an abstract heap
variable with index i, the type has to be equivalent to the corresponding concrete
heap variable with index hp(i):

konsishst(ma,mb, hp) = ∀i. i < |hst(ma)|
=⇒ snd(hst(ma)!i) = snd(hst(mb)!(hp(i))
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Definition 7.18 (Return Destination Consistency) On returning from a
function call, the return destination—a g-variable—associated with that func-
tion’s stack frame will be updated with the function’s return value. We require,
that the return destinations of corresponding stack frames are equivalent under
the kalloc function from Def. 7.11:

konsisreturn(ma,mb, hp) ≡ ∀i.i < |sc.lst(ma)| =⇒
snd(mb.lm!(i+ rdoff)) = kalloc(snd(ma.lm!i), hp)

Definition 7.19 (Heap Map Injectivity, Boundedness) We have to ap-
ply certain restrictions on our heap map functions. We require that

• for each abstract heap variable, there is exactly one corresponding concrete
heap variable, that is injectivity, and

• the result of the heap map function for an abstract heap variable returns
an index within the concrete heap (boundedness).

We introduce two predicates that describe these properties formally. Given a
heap map hp and two memory configurations ma and mb, we define:

hmapinj(ma, hp) ≡ ∀i, j. i 6= j ∧ i < |ma.hm| ∧ j < |ma.hm|
=⇒ hp(i) 6= hp(j)

hmapbound(ma,mb, hp) = ∀i. i < |ma.hm| =⇒ hp(i) < |mb.hm|

Definition 7.20 As we have seen in Sect. 3.5.3, the result of a memory alloca-
tion depends on the availability of heap memory. If there is no more memory
available for a given type t in a configuration ca, then the heap memory stays
unchanged a null pointer will be assigned.

In order to keep the two kernels in sync, we need to state an invariant, which
guarantees that if there is enough memory in the abstract kernel, then there is
also enough heap memory available in the concrete kernel.

We define this invariant formally as:

heapinv(ca.m, cb.m) ≡
?heap(ca.m, t) = True =⇒ ?heap(cb.m, t) = True.

The justification of this invariant is not obvious, since the concrete kernel
might use much more heap memory than the abstract kernel. Yet, our CVM
low-level implementation allocates memory in a very restricted way, namely
only for the page tables. In particular, there is now memory allocation in the
CVM primitives or even in recursive functions. So, the total heap consumption
of the CVM implementation is in fact statically computable.

Nevertheless, if the low-level implementation is changed or replaced, the
corresponding heap memory consumption has to be reconsidered in order to
discharge the heapinv invariant.
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The above definition of the heap invariant is sufficient in the sense that
the concrete kernel always uses at least as much heap memory as the abstract
kernel. Thus, the scenario that abstract heap allocation fails while it succeeds
in the concrete kernel can never happen.

Definition 7.21 (Konsis) We have now all necessary predicates to combine
them into one definition describing how the abstract and concrete kernel are
connected. We name this combining predicate konsis : tenv × proctableT ×
confT × tenv × proctableT × confT → B and describe it formally:

konsis(tea, pta, ca, teb, ptb, cb) =
∃hp. konsistenv(tea, teb)
∧ konsispt(pta, ptb)
∧ konsisprog(ca.prog , cb.prog)
∧ konsisrd(ca.m, cb.m)
∧ konsisgvars(ca.m, cb.m, hp)
∧ konsisgst(ca.m, cb.m)
∧ konsis lst(ca.m, cb.m)
∧ konsishst(ca.m, cb.m, hp)
∧ konsisreturn(ca.m, cb.m, hp)
∧ hmapinv(ca.m, hp)
∧ hmapbound(ca.m, cb.m, hp)
∧ heapinv(ca.m, cb.m)

Concrete Kernel to ISA and Concrete Kernel Invariants

As we have learned in Chapter 6, the abstract kernel is an incomplete program
which cannot be compiled and thus cannot be directly related to the hardware.
Instead, we do this with the concrete kernel using the compiler correctness
relation.

In [Lei08], the original version of the compiler correctness theorem was
formulated between the C0 small-step layer and the assembly layer. [Tsy09]
has extended this work and has defined a relation sim-c0 -isa connecting a C0
configuration with a VAMP ISA configuration.

By further adding requirements on the validity of the C0 configuration and
the structure of the heap and global memory, [Tsy09] has obtained the relation

kernel -sim-c0 -isa : confTC0 × confTC0 × confTi&d × (gvar → N)→ B.

Using this definition, the concrete kernel implementation, the C0 configura-
tion encoding the page fault handler and the one encoding the concrete kernel
to a ISA configuration can now be related to each other, using an allocation
function mapping g-variables to their base address in the hardware.

This relation is not used in our proofs, but needed to present an overall
correctness theorem sketch for CVM. [Tsy09] gives the full formal definitions of
kernel -sim-c0 -isa and uses it in her proofs.
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Finally, the page fault handler configuration on small-step level has to be
connected to the concrete kernel. In particular, the active and free lists used in
the page fault handler for memory management as well as the process control
blocks have to be well-formed and have corresponding values to those in the
concrete kernel. [Sta09] has described this by the predicate

concr -kernel -inv : confTC0 × confTC0 → B.

Weak Relations

The abstraction relations, which we have introduced in the sections before,
are too strong in certain cases. For instance, when a user process is making
progress, the local memory stack and the program rest of the abstract kernel
are empty.

Hence, we have to formulate a weaker relation between the abstract and the
concrete kernel and name it konsisweak. In particular, we omit

• the program rest consistency, since there is no abstract program rest
during user execution, and

• the invariants on local memories and symbol tables as well as the recursion
depth relation for the same reason.

The static properties, i.e. type name, procedure table and global symbol table
consistency, still have to hold, as well as the properties of the heap and the
g-variables.

Definition 7.22 (Weak Konsis) Let tea, teb denote two type name environ-
ments, pta, ptb two procedure tables and ca, cb two C0 configurations. The
formal definition of the weaker konsis predicate

konsisweak : tenv × proctableT × confTC0 × tenv × proctableT × confTC0 → B

is then as follows:

konsisweak(tea, pta, ca, teb, ptb, cb) =
∃hp. konsistenv(tea, teb)
∧ konsispt(pta, ptb)
∧ konsisgvars(m(ca),m(cb), hp)
∧ konsisgst(m(ca),m(cb))
∧ konsishst(m(ca),m(cb), hp)
∧ hmapinv(m(ca), hp)
∧ hmapbound(m(ca),m(cb), hp)

Furthermore, the kernel -sim-c0 -isa relation is also too strong during user
execution. For instance, the hardware registers are those of the user process,
which obviously affects control and register consistency in the overall compiler
consistency (cf. [Lei08, Sect. 8.2]). Thus we do not relate the whole concrete
kernel to the ISA, but consider only its global and heap memory content and its
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heap symbol table (remember: there is no abstract local memory stack during
user execution). A weaker form of this relation has been formulated by [Tsy09]:

weak -sim-c0 -isa : confTC0 × (N→ mcellT )× (N→ mcellT )
×(Σ× ty) list × confTi&d × (gvar → N)→ B

Combining the Kernel Relations

Definition 7.23 ((Weak) Kernel Relation) All of the relations defined be-
fore can now be combined into an overall kernel relation. Given a hardware
configuration ci&d and an allocation function alloc. For a CVM configuration
cCVM, we abbreviate as follows: teabs for cCVM.kern.tn, ptabs for cCVM.kern.pt,
and cC0 abs for cCVM.kern.kconf . Furthermore we abbreviate the concrete ker-
nel program with Πk = (tek, ptk, gstk). Then there exist two C0 small-step
configurations for the page fault handler and the concrete kernel, such that the
concrete kernel to ISA and concrete kernel invariants as well as the relation
between the abstract and the concrete kernel hold.

Formally, we define:

kernel -rel(Πk, cCVM.kern, ci&d, alloc) =
∃pfhss, cC0 k.

kernel -sim-c0 -isa(pfhss, cC0 k, ci&d, alloc)
∧ concr -kernel -inv(pfhss, cC0 k)
∧ konsis(teabs, ptabs, cC0 abs, tek, ptk, cC0 k)

For the weaker kernel relation weak -kernel -rel , we use the weaker forms of
the corresponding predicates. Moreover, we omit the concrete kernel invariants
defined in concr -kernel -inv and require that

• the first heap variable gvarhm(0), which represents the page tables, resides
at address heap-base, and

• if the current process identifier denotes some process id, this process
has some allocated memory corresponding the process control blocks as
maintained by the page fault handler.

We define this weaker relation formally:

weak -kernel -rel(Πk, cCVM.kern, ci&d, alloc, cCVM.up.cp) =
∃pfhss, cC0 k.

weak -sim-c0 -isa(pfhss, cC0 k.m.gm.cont ,
cC0 k.m.hm.cont , hst(cC0 k.m), ci&d, alloc)
∧ konsisweak(teabs, ptabs, cC0 abs, tek, ptk, cC0 k)
∧ alloc(gvarhm(0)) = heap-base
∧ cCVM.up.cp = bpidc =⇒ 0 ≤ pfhss.abs-pcbs-ss[pid ].ptl)
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Linkable Programs

We have described in Sect. 6.5.2 how to obtain a concrete kernel program by
linking the low-level CVM implementation to the abstract kernel program.

Obviously, abstract linking does not produce meaningful programs for arbi-
trary input in the sense that the obtained code is runnable and/or compilable.
Thus, we restrict the set of pairs of programs that are linkable by introducing a
predicate

linkable : c0prog × c0prog → B,

which takes two programs for input and evaluates to True, if these two programs
are linkable and False otherwise.

Most of our requirements base on the validity of C0 programs and configu-
rations. We refer to [Lei08, Sect. 5.2] for the full definitions of the individual
validity predicates and describe their intuitive meaning here instead.

Informally, we require that

• the two type name environments are valid and that no type name is
declared twice with two different types,

• both symbol tables gsta and gstb are valid,

• after linking, no external function calls are left,

• all internal functions are valid functions, and finally

• only one program has in-line assembly parts.

A type name environment is valid, if all type names are pairwise distinct
and their associated types are valid.

A type is valid, if (i) it is a basic type, that is BoolT , IntT , UnsgndT

or CharT , (ii) it is a pointer PtrT (tn) and tn is defined in the type name
environment, (iii) it is a struct and all component names are pairwise distinct
and their types are valid, too, (iv) it is a non-empty array type with a valid
element type. We abbreviate the set of all valid type name environments by
valid tenv.

A symbol table is valid, if all variable names in it are pairwise distinct and
each type associated with a variable name is valid, too. For a given type name
environment te, we refer by valid st(te) to the set of valid symbol tables.

Let pt denote a procedure table, te a type name environment and gst a global
symbol table. The set of valid functions valid fun(te, pt, gst) is then defined as
follows: A function f is valid (i) if its body is a valid statement, (ii) the last
and only the last statement in the function body of f is a return statement,
(iii) the type of the return expression matches the return type of the function,
(iv) and the symbol table consisting of parameters and local variables of f is a
valid symbol table.

For valid statements, we basically require that for an assignment, the types
on the right side and on the left side match, and that the types of a function
call parameters match with those of the called function.
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Definition 7.24 (Linkable Programs) Two programs Πa = (tea, pta, gsta)
and Πb = (teb, ptb, gstb) are linkable, if the following holds:

linkable(Πa,Πb) = tea ∈ valid tenv ∧ teb ∈ valid tenv

∧ (∀(ta, tna) ∈ tea, (tb, tnb) ∈ teb. ta = tb =⇒ tna = tnb)
∧ gsta ∈ valid st(tea) ∧ gstb ∈ valid st(teb)
∧ (∀(fn, f) ∈ ptext

a .∃f ′. (fn, f ′) ∈ ptdef
b )

∧ (∀(fn, f) ∈ ptext
b .∃f ′. (fn, f ′) ∈ ptdef

a )
∧ (∀(fn, f) ∈ ptdef

a . f ∈ valid fun(tea, pta, gsta))
∧ (∀(fn, f) ∈ ptdef

b . f ∈ valid fun(teb, ptb, gstb))
∧ ((∀(fn, f) ∈ pta.∀s ∈ s2l(f.body).¬is Asm(s)
∨(∀(fn, f) ∈ ptb.∀s ∈ s2l(f.body).¬is Asm(s)))

7.2.3 Device Relation

The relation between the CVM devices and those in the hardware is rather
simple. The only difference is that in CVM the swap device with id did swap

is not visible any longer, since page faults are not visible in the CVM model.
Thus, we exclude this swap device from our device relation: We define devsim :
confTdevs × confTdevs → B and set for two generalized device configurations
devs1 and devs2:

dev sim(devs1, devs2) = (∀i ∈ D, i 6= did swap : devs1(i) = devs2(i))

7.2.4 Interrupt Mask and Current Process

As we have seen in Sect. 6.5.1, the concrete kernel has two variables to store
the interrupt mask and the current user process identifier: mask and cp. The
values of these variables have to be equal to the CVM components cp and mask.
[Tsy09] has introduced two abstraction relations SRrel : confTi&d ×B32 → B

and CP rel : confTi&d ×N→ B, formally defined as follows:

SRrel(ci&d,mask) =

{
True if toint(mask) = 〈mask〉intci&d

False otherwise

CP rel(ci&d, cp) =

{
True if cp = 〈cp〉natci&d

False otherwise

7.2.5 Other Invariants

Besides the abstraction relations, which we have introduced in the sections before,
there are some minor invariants dealing with subtleties of the implementation.
They are presented in detail by [Tsy09].

The relation user -invariant : confTi&d → B for instance ensures that the
hardware is in user mode (sprs(mode) = 1), the page table length register
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Figure 7.2: CVM Abstraction Relations

sprs(ptl) and page table origin register sprs(pto) in the instruction set architec-
ture are equivalent to the values stored in the process control blocks, and that
the interrupt mask sprs.sr corresponds to the one stored in the variable mask.

The reg-invariant : confTi&d → B says that all internal interrupts are
disabled, i.e., the bits sprs(sr)[31 : 13] are zeroed. Furthermore, it states that
the hardware is in system mode (sprs(mode) = 0).

There exists also another form of reg-invariant that describes the hardware
registers, whenever we are in kernel wait : weak -reg-invariant : confTi&d → B.
This invariant guarantees that—unlike during ‘normal’ kernel execution—the
external interrupts are enabled and that the program counters dpc and pcp
establish the program loop that is used to implement kernel wait.

7.2.6 Putting It All Together

Definition 7.25 (CVM Abstraction Relation) We can now combine all
of the above abstraction relations into one CVM relation (see Fig. 7.2).

CVMrelation : c0prog × confTCVM × confTi&d × (N→ mcellT )→ B.

Depending on the possible CVM transitions described in Sect. 6.2, we
distinguish three different cases:

• In kernel wait (cf. Sect. 6.2.2), the weak kernel relation and the weak
register invariant hold, and the current process variable has value 0.

• For user steps (cf. Sect. 6.2.3)—i.e. cCVM.up.cp = bpidc—, the weak
kernel relation, the CPrel relation and the user invariant hold.
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• For kernel steps different from kernel wait, the kernel relation and the
register invariant hold.

In all cases, the user process relation and the device relation hold.

CVMrelation(Πk, cCVM, ci&d, alloc) =
dev sim(cCVM.devs, ci&d.devs)∧
B(cCVM.up.procs, ci&d)∧
SRrel(ci&d, cCVM.up.mask)∧
if (* Kernel Steps *)

cCVM.up.cp = None
then

if (* Kernel Wait *)
cCVM.kern.kconf .prog = Asm[ ]

then
weak -kernel -rel(Πk, cCVM.kern, ci&d, alloc,None)∧
CP rel(ci&d, 0)∧
weak -reg-invariant(ci&d)

else (* Other Kernel Step *)
kernel -rel(Πk, cCVM.kern, ci&d, alloc)∧
reg-invariant(ci&d)

else (* User Step *)

weak -kernel -rel(cCVM.kern, ci&d, alloc, the(cCVM.up.cp))∧
CP rel(ci&d, the(cCVM.up.cp))∧
user -invariant(ci&d)

7.3 Sketch of a Correctness Theorem

The CVM top-level correctness theorem is a classical simulation theorem: a
VAMP instruction set architecture with devices simulates the CVM model. It
has been originally presented in [AHL+09]. We start with an initial combined
ISA and device configuration c0i&d = (cisa, cdevs).

Furthermore, we assume that the concrete kernel program Πk has been
loaded to the main memory cisa.mm. This hardware state is described by the
predicate init-isa-conf (Πk, cisa).

As we have seen in Sect. 5.2, the combined transition function of VAMP
ISA and devices is parametrized over a sequence of external device inputs
din isa

ext : N → (D × Eifi)⊥ (cf. Sect. 4.2). Obviously, there have to be certain
requirements that this sequence has to meet:

• the sequence has to be fair in the sense that the processor progresses
infinitely often:

∀i ∈ N : ∃j > i : din isa
ext(j) = None.

• the sequence has to be well-typed, that is that device type and external
device input type match for each element of the sequence:

∀i ∈ N : din isa
ext(i) = b(did, ev)c ∧ t = typedev(devs(did)) =⇒ ev ∈ Eifot.
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We combine these preconditions to one predicate precond -seq-isa(din isa
ext, cdevs).

In addition, we have some requirements that have to be satisfied by the
swap hard disk cdevs(did swap):

• requests—sector transfers—from or to the hard disk are handled in finite
time, and

• the swap hard disk cdevs(did swap) is large enough, i.e. it can store the
kernel image and still offer enough space for swap memory as needed by
the page fault handler.

We subsume these requirements as invariant-hd(cdevs(did swap)).
As we have seen in Sect. 6.4, the swap device as present in the VAMP ISA

and device configuration is replaced by an idle device for the CVM configuration.
We denote this slightly updated device configuration by cCVM

devs .
The corresponding external device input sequence dinCVM

ext has to satisfy
similar requirements as the one on VAMP ISA level, i.e., it has to be fair and
well-typed. We denote this using the predicate precond -seq-cvm.

For a sub sequence of dinCVM
ext , we can easily count the number of processor

steps in it. We define recursively

count-proc-steps(dinCVM
ext , 0) =

{
1 if dinCVM

ext (0) = None
0 otherwise

and

count-proc-steps(dinCVM
ext , i+ 1) ={

1 + count-proc-steps(dinCVM
ext , i) if dinCVM

ext (i+ 1) = None
count-proc-steps(dinCVM

ext , i) otherwise

In the Verisoft project, there are two ways regarding the treatment of heap
overflows. In one scenario, the compiler returns a null pointer, when trying to
allocate a new heap object on insufficient space. The other approach, which
we use in the stack verification, guarantees correct translation only under the
assumption that the compiled code does not allocate more heap memory than
available.

Throughout the execution of CVM, the abstract kernel can exceed its
maximal heap and/or stack size, hence create a run-time error. We therefore
formulate two measure functions asize-heap and asize-stack , which return the
current stack and heap size of the abstract kernel, and require that those values
stay within the bounds given through the two constants abs-heap-max -size and
abs-stack -max -size.

For the VAMOS personality, both preconditions can be discharged pretty
easily: since the kernel only allocates two heap objects during initialization,
but no further ones during execution, the heap size can be computed statically.
For the stack size, the situation is similar. Since there are no recursive function
calls in VAMOS, the maximal recursion depth can be computed statically and
hence also the stack size. The necessary framework has been built and applied
exemplarily by Leinenbach and Alkassar [Alk09].
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Using all of the above definitions, we can now formulate the CVM top-level
simulation theorem, which says that a CVM computation starting from an
initial CVM configuration (cf. Sect. 6.4) and parametrized over an external
device input sequence dinCVM

ext can be simulated by a VAMP ISA with devices
computation.

Theorem 7.1 (CVM Top-Level Correctness)
For all n ∈ N denoting a number of non-device steps in the CVM model, which
lead to some CVM configuration—that is the kernel has not produced a run-time
fault—we have to show that there exists a step number N ′ for the ISA and
device model, after which the combined abstraction relation CVMrelation holds:

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
init-isa-conf ((Πk, cisa) ∧ precond -seq-isa(dinisa

ext, cdevs)∧
invariant-hd(cdevs(did swap)) =⇒
∃dinCVM

ext .precond -seq-cvm(dinCVM
ext , cdevs)∧

(∀n.∃N.count-proc-steps(dinCVM
ext , N) = n∧

(∀c′CVM, dout ′ext.

δNcvm(initCVM(Πabs, c
CVM
devs ), dinCVM

ext ) = bc′CVM, dout ′extc∧
asize-heap(hst(c′CVM.kern.kconf .m)) ≤ abs-heap-max -size∧
asize-stack(c′CVM.kern.kconf .m.lm) ≤ abs-stack -max -size =⇒

(∃N ′, alloc′.

CVMrelation(Πk, c
′
CVM, fst(δN

′

i&d((cisa, cdevs), dinisa
ext)), alloc′))))

The proof of this theorem can be split according to the possible steps in the
CVM model and as visible in the top-level abstraction relation CVMrelation
(cf. Def. 7.25).

In the remainder of this work, we will deal with the case of a kernel step,
which is not kernel wait nor a primitive call. More precisely, we will show how
the relation of the abstract kernel and the concrete kernel konsis is preserved
during such a step. User step correctness, including the page fault interrupt
case, is summarized in [AHL+09].

We will now formulate inductively the correctness theorem for the case
described above This means in particular:

• We start in a machine configuration (cisa, cdevs) ∈ confTi&d, which is
related to a CVM configuration cCVM and a concrete kernel program Πk

using an allocation function alloc.

• Since the kernel is running, the current process identifier is None.

• We assume that we are not in kernel wait, i.e. the abstract kernel program
rest does not consist of an Asm statement.

• We exclude the case of a primitive call, which would be denoted by an
abstract kernel rest starting with an ESCall statement.

• Kernel execution has not terminated, which would be denoted by a
program rest merely consisting of a single Skip statement.
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Furthermore, we have requirements similar to those of the top-level correct-
ness theorem (see Theorem 7.1):

• there exists a low-level CVM implementation that is linkable with the
abstract kernel and hence yields the concrete kernel program;

• the external device input sequence satisfies well-typedness and fairness;

• the swap hard disk is big enough and its invariants hold.

Last but not least, there are additional assumptions on

• the well-formedness of the ISA configuration—is-dlx -conft(cisa)—;

• the boundedness of the abstract kernel heap and stack;

• that the concrete kernel program is present in the main memory of the
ISA—code-invariant-isa(Πk, cisa);

Theorem 7.2 (Kernel Step, no Primitive, not Kernel Wait)
Given and abstract kernel program Πabs = (teabs, ptabs, gstabs) and an low-
level CVM implementation ΠCVM, which are linkable to a concrete kernel
implementation Πk = (tek, ptk, gstk). Furthermore we assume that the kernel is
to progress and that we do not have to deal with kernel wait, kernel termination
or a primitive call and that we are in a configuration cCVM, in which the
combined abstraction relation holds for a processor and device configuration
(cisa, cdevs). Assuming that the next non-device step in the CVM model will not
create a run-time fault but yield some successor configuration, there exists a step
number N ′ for the combined ISA and device model, after which the combined
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abstraction relation holds again.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
precond -seq-isa(dinisa

ext, cdevs)∧
asize-heap(hst(c′CVM.kern.kconf .m)) ≤ abs-heap-max -size∧
asize-stack(c′CVM.kern.kconf .m.lm) ≤ abs-stack -max -size∧
invariant-hd(cdevs(did swap)) ∧ code-invariant-isa(Πk, cisa)∧
is-dlx -conft(cisa) ∧ cCVM.up.cp = None∧
¬is Asm(hd(s2(cCVM.kern.kconf .prog)))∧
¬is Skip(cCVM.kern.kconf .prog)∧
¬is ESCall(hd(s2l(cCVM.kern.kconf .prog)))∧
CVMrelation(Πk, cCVM, (cisa, cdevs), alloc) =⇒
∃dinCVM

ext .precond -seq-cvm(dinCVM
ext , cdevs)∧

(∃N.count-proc-steps(dinCVM
ext , N) = 1∧

(∀c′CVM.

∃dout ′ext. δ
N
cvm(initCVM(Πabs, cdevs), dinCVM

ext ) = bc′CVM, dout ′extc∧
asize-heap(hst(c′CVM.kern.kconf .m)) ≤ abs-heap-max -size∧
asize-stack(c′CVM.kern.kconf .m.lm) ≤ abs-stack -max -size =⇒

(∃N ′, c′isa, c′devs.

fst(δN
′

i&d((cisa, cdevs), dinisa
ext)) = (c′isa, c

′
devs)∧

(∃alloc′.CVMrelation(Πk, c
′
CVM, (c

′
isa, c

′
devs), dinisa

ext), alloc′)))
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In this chapter we will present the proof that the relation between the
abstract and the concrete kernel, as introduced in Sect. 7.2.2, Def. 7.21, is
preserved by a C0 kernel step within the CVM model (cf. Sect. 6.2.2).

We break down this proof in several parts. In Sect. 8.1, we will define and
prove some auxiliary lemmas needed in the remainder of this chapter. Since the
abstract kernel is a crippled program, its configurations cannot be valid in the
sense of [Lei08]. We therefore define the notion of weak validity in Sect. 8.2.

Expression evaluation in the two kernels and the relation of its results is of
crucial importance for the proof work. In Sect. 8.3, we will treat this topic in
detail.

We continue with the static properties, that is type name environment,
procedure table and global symbol table consistency. The corresponding lemmas
and proofs are detailed in Sect. 8.4.

Finally, we will consider the dynamic properties, e.g., recursion depth, return
destination and g-variable consistency (Sect. 8.5).

With Sect. 8.6, we conclude this chapter by putting together the various
results into the comprising correctness theorem.

8.1 Auxiliary Lemmas

Lemma 8.1 (Equal Types Invariant) Assuming that the symbol table re-
lations and the heap invariants hold, and that x is a valid g-variable in the
abstract kernel, then its type is equal to the corresponding g-variable in the

133
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concrete kernel.

konsisgst(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsishst(cabs.m, ck.m) ∧ ck ∈ conf √(tek, ptk)∧
hmapinj(cabs.m, hp) ∧ konsisrd(cabs.m, ck.m)∧
x ∈ gvar√(sc(cabs.m))

=⇒
eqtype(cabs.m, x, ck.m, kalloc(x, hp))

Proof The proof is done by induction over the g-variable x. It is very straight-
forward; basically we just expand the invariants over the symbol tables for the
base cases and instantiate the induction hypotheses for array and structure
variables. q.e.d.

Lemma 8.2 (Valid g-Variable Invariant) We assume that the symbol table
relations, the recursion depth and the heap invariants hold, and that x is a valid
g-variable in the abstract kernel, then the corresponding g-variable kalloc(x, hp)
in the concrete kernel is also valid.

konsisgst(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsishst(cabs.m, ck.m) ∧ ck ∈ conf √(tek, ptk)∧
hmapinj(cabs.m, hp) ∧ hmapbound(cabs.m, ck.m, hp)∧
konsisrd(cabs.m, ck.m) ∧ x ∈ gvar√(sc(cabs.m))

=⇒
kalloc(x, hp) ∈ gvar√(sc(ck.m))

Proof We prove this lemma by an induction over the structure of g-variable
x.

Case 1: Given a global variable, i.e. x = gvargm(σ). Due to validity of
the variable, there exists a type t, such that (σ, t) ∈ {sc(cabs.m.gm)}.
Expanding the invariant on the global symbol tables konsisgst, this entry
also exists in the linked global symbol configuration. Since kalloc is the
identity for global variables, kalloc(gvargm(σ), hp) is valid in the concrete
kernel, too.

Case 2: In the local case x = gvarlm(σ, i), validity is defined by two crite-
ria: (i) σ is defined in the i-th symbol table of the abstract local memory,
σ ∈ {map(fst , sc((cabs.m.lm)!i))}, and (ii) i is less than the recursion
depth of the abstract kernel: i < |cabs.m.lm|. Using the invariants on
local symbol tables, konsis lst, and on recursion depth, konsisrd, we obtain
that σ is also obtained in the concrete local symbol table at position
i+rdoff, which is still less than the concrete kernel’s recursion depth. This
implies that gvarlm(σ, i+ rdoff) = kalloc(gvarlm(σ, i), hp) is also valid in
the concrete kernel.
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Case 3: For a heap variable x = gvarhm(i) in the abstract kernel, the
only validity criterion is that the heap index is within bounds, that is
i < |cabs.m.hm|.
hp(i) is an index within the concrete heap, since the concrete heap is
bounded by hmapbound(cabs.m, ck.m, hp).

So, gvarhm(hp(i)) = kalloc(gvarhm(i), hp) is a valid concrete variable.

Case 4: We come to the inductive cases of array and structure variables.
Both cases are very similar, hence we only elaborate on x = gvararr (a, i).

Validity for array variables means that the root g-variable a is valid and
of array type, and that the index i is less than the array size.

From Lemma 8.1 we obtain that kalloc(a, hp) has the same type as a.
From the induction hypothesis, we know that it is also valid. Hence,
gvararr (kalloc(a, hp), i) = kalloc(gvararr (a, i), hp) is a valid g-variable of
the concrete kernel. q.e.d.

Lemma 8.3 (Root g-Variable with kalloc) If g is a root g-variable, then
kalloc(g) is a root variable, too:

rootg(g) = g =⇒ root(kalloc(g, hp)) = kalloc(g, hp)

Proof The proof is straightforward, basing on a case distinction over the type
of variables, using the definition of kalloc. q.e.d.

Lemma 8.4 (Transitivity of Sub g-Variables) The relation subg for sub
g-variables is transitive under kalloc.

x ∈ gvar√(sc(cabs.m) ∧ y ∈ gvar√(sc(cabs.m)

hmapinv(cabs.m, hp)
=⇒
(x ∈ subg(y)⇐⇒ kalloc(x, hp) ∈ subg(kalloc(y, hp)))

Proof We split the proof into two cases.

Case 1: At first, we start with

x ∈ subg(y) =⇒ kalloc(x, hp) ∈ subg(kalloc(y, hp)).

We proceed with an induction over the g-variable x. For the base cases—
global, local, and heap variables—the proof is trivial, since sub g-variable
means identity in these cases (cf. Def. 3.4). Let us consider the global
variable case exemplarily:

gvargm(σ) ∈ subg(y) =⇒ gvargm(σ) = y

So we have to show that

kalloc(gvargm(σ), hp) ∈ subg(kalloc(gvargm(σ), hp)),

which is covered by the base case in the definition of sub g-variables.
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For the inductive cases, we concentrate on array variables, that is x =
gvararr (a, i).

There are now two possibilities: since gvararr (a, i) ∈ subg(y), either
y is identical to gvararr (a, i) or a is a sub g-variable of y. The first
possibility is covered again by the base case of sub g-variables. For the
second one, we use the induction hypothesis to obtain that kalloc(a, hp) ∈
subg(kalloc(y, hp)), which by definition implies that

kalloc(gvararr (a, i), hp) ∈ subg(kalloc(y, hp)).

Case 2: Now we start with the assumption that

kalloc(x, hp) ∈ subg(kalloc(y, hp)).

We proceed again with an induction over x. Here, the base cases are very
straightforward. For the heap variable case we additionally need heap
map injectivity to obtain a unique index.

In the array case, we have again the two possibilities. Assuming that
gvararr (kalloc(a, hp), i) = kalloc(y, hp), we have to prove gvararr (a, i) =
y—which is true due to the injectivity of kalloc. For the other possibility,
we use the induction hypothesis to obtain a ∈ subg(y), which trivially
implies by definition that

gvararr (a, i) ∈ subg(y). q.e.d.

Nearly in all proofs in this chapter, we need to show that the concrete
kernel’s program rest starts with the same statement as the abstract kernel’s
program rest—modulo the statement id (due to renumbering, see Def. 6.5).

Lemma 8.5 (Equivalence of Program Rest Heads) Let the consistency
relation for program rests konsisrd hold for two C0 configurations cabs and ck.
Then the heads of the program rest of these two configurations are equivalent
under the function eqstmt:

konsisprog(cabs.prog , ck.prog) ∧ (s2l(cabs.prog)) 6= [ ]
=⇒ eqstmt(hd(s2l(cabs.prog)), hd(s2l(ck.prog)))

Proof From the definition of s2l (cf. Sect. 3.2.3), we know that its result is a
list of length at least 1, hence

0 < |s2l(cabs.prog)|

and
0 < |s2l(ck.prog)|,

or in other words that there is at least one element in each of the two lists,
i.e. there exists a head in each of them.

Using konsisprog(cabs.prog , ck.prog) and the definition of program rest con-
sistency (cf. Def. 7.10), which says that for all elements in s2l(cabs.prog) the
corresponding element in s2l(ck.prog) is equivalent under eqstmt, we finally
obtain.

eqstmt(s2l(cabs.prog)!0, s2l(ck.prog)!0) q.e.d.



8.2. Weak Validity of C0 Configurations 137

8.2 Weak Validity of C0 Configurations

The Isabelle/HOL versions of the proofs presented in this chapter make extensive
use of existing lemmas about the C0 small-step semantics. These lemmas
often have quite big assumptions, a lot of them dealing with validity of C0
configurations in the sense of [Lei08, Sect. 5.5, Def. 5.38] or at least parts of
them.

The definition of valid C0 configurations is huge and the detailed definition
does not contribute to a better understanding of this work, hence we will omit
it here.

Nonetheless we have to mention that configurations encoding the abstract
kernel cannot be valid in the sense of this definition, since not all of the functions
in the abstract procedure table are valid, for which [Lei08, Def. 5.14] requires
that

• its body is a valid statement,

• the local and parameter symbol tables are valid,

• the last and only the last statement of the function body is a Return
statement, and

• the type of the return expression matches the return type of the function.

Since the abstract kernel necessarily has external functions, whose body merely
consists of a Skip statement, the last two requirements cannot be met by all
abstract kernel functions. Thus, we introduce the notion of weak valid functions,
for which we only require that the body and the local and parameter symbol
tables are valid.

The definition of valid procedure tables ([Lei08, Def. 5.17]) makes use of
the notion of valid functions, as it requires that all functions in that procedure
table have to be valid in the strong sense.

Hence we also have to come up with a weakened version for valid procedure
tables, where we distinguish if a function is called via an SCall statement and
has a body different from a single Skip statement. We start with the definition
of two auxiliary functions, before we proceed with weak validity for procedure
tables.

Definition 8.1 (Exists Statement) We define a predicate existsstmt taking
two arguments, a statement s and a predicate over statements P . existsstmt
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evaluates to True, iff at least one of the sub statements of s satisfies P , formally:

existsstmt(Skip, P ) = P (Skip)
existsstmt(Comp(s1, s2), P ) = P (Comp(s1, s2))

∨existsstmt(s1, P )
∨existsstmt(s2, P )

existsstmt(Ass(e), P ) = P (Ass(e))
existsstmt(PAlloc(e), P ) = P (PAlloc(e))
existsstmt(Return(e), P ) = P (Return(e))

existsstmt(SCall(e, fn, plist), P ) = P (SCall(e, fn, plist))
existsstmt(ESCall(e, fn, plist), P ) = P (XCall(e, fn, plist))

existsstmt(XCall(fn, elist , plist), P ) = P (ESCall(e, fn, plist))
existsstmt(Ifte(e, s1, s2), P ) = P (Ifte(s1, s2)) ∨ existsstmt(s1, P )

∨existsstmt(s2, P )
existsstmt(Loop(e, s), P ) = P (Loop(e, s)) ∨ existsstmt(s, P )

Definition 8.2 (Used Function) We use the above definition to define the
notion of a used function. A function with name fn is used in a procedure table,
if there exists a statement s in any of the function bodies of pt with s being a
function call of fn. We describe this property by funcused : Σ+×proctableT → B

and define recursively:

funcused(fn, [ ]) = False
funcused(fn, (x, f)#xs) = (existsstmt(x.body ,

λs. ∃e, plist . s = SCall(e, fn, plist))

This definition allows us to weaken the definition of valid procedure tables
by a case split over its functions:

• For a used function and for all functions with a body different from a
single Skip statement, we simply use the requirements of valid functions.

• For all others, we require that they only satisfy the conditions of weak
validity of functions.

In simple words, this definition says that for defined and used functions, we
leave the validity predicate as it is defined in [Lei08], while we use the weakened
form for functions which are only declared and not called.

This definition of weak procedure table validity is finally used to define weak
valid C0 configurations, which we denote with conf weak√ compared to conf √.
Here again, we leave all requirements of strong validity unchanged and merely
replace the procedure table validity by its weakened form.

Our Isabelle/HOL proofs use approximately 50 lemmas from [Lei08] with
most of them assume a given valid C0 configuration. For all of these lemmas
we have shown, that weak C0 configuration validity is sufficient, so their use
has been justified.

Similar to [Lei08, Lemma 5.17], there exists a lemma that weak validity is
preserved by the C0 transition function.
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Lemma 8.6 (Preservation of Weak Validity) Given a weak valid C0 con-
figuration cC0 with respect to a page table pt and a type name environment te.
If there exists a successor configuration cC0

′ obtained by applying the transition
function, then cC0

′ is weak valid, too.

cC0 ∈ conf weak√ (te, pt) ∧ δC0(te, pt, cC0 ) = bcC0
′c

=⇒
cC0

′ ∈ conf weak√ (te, pt)

8.3 Expression Evaluation in the two Kernels

Expression evaluation plays a crucial role in the C0 small-step semantics—hence
also in the correctness proofs presented in this chapter.

In this section, we will consider expressions in the abstract and concrete
kernel. We will formulate and prove lemmas about their type, validity and the
results of their evaluation.

Lemma 8.7 (Type of Expressions Equality) Let tek be the type name en-
vironment the concrete kernel, which is encoded by a valid configuration ck.
Furthermore, let the consistency relations for recursion depth, global and local
symbol tables hold, and let e denote an expression of type t, which is valid in
the abstract kernel. Then it is also of type t in the concrete kernel.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m) ∧ konsistenv(teabs, tk)∧
konsisgst(cabs.m, ck.m) ∧ e ∈ validexprs(teabs, toplst(cabs.m), gst(cabs.m))∧
ck ∈ conf √(tek, ptk) ∧ type(teabs, toplst(cabs.m), gst(cabs.m, ), e) = btc

=⇒
type(tek, toplst(ck.m), gst(ck.m, ), e) = btc

Proof We will prove this lemma by induction over e. There are two base cases,
namely literals and variable accesses. The literal case is trivial since purely
syntactical, so we only present the variable access case.

Case 1: For a variable access e = Var(σ), there are two possibilities:
either we are dealing with a local variable or with a global variable (see
also Sect. 3.4.3).

Assuming that σ is the name of a local variable, we derive that (σ, t) ∈
{toplst(cabs.m)}. By definition of toplst we know that this is the symbol
table of the topmost stack frame, that is sc.lst(cabs.m)!(|cabs.m.lm| − 1),
with |cabs.m.lm| − 1 denoting the recursion depth of the abstract kernel.

From konsis lst(cabs.m, ck.m) we obtain

sc(cabs.m).lst !(|cabs.m.lm| − 1) = sc(ck.m).lst !(|cabs.m.lm| − 1 + rdoff),

hence (σ, t) ∈ {sc(ck.m).lst !(|cabs.m.lm| − 1 + rdoff)}.
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Exploiting the recursion depth consistency relation, we know that this is
exactly the recursion depth of the concrete kernel in configuration ck and
can conclude:

|cabs.m.lm| − 1 + rdoff = |ck.m.lm| − 1
=⇒ (σ, t) ∈ {sc(ck.m).lst !(|ck.m.lm| − 1)}
=⇒ (σ, t) ∈ {toplst(ck.m)}

and—using the definition of type—this finally implies

type(tek, toplst(ck.m), gst(ck.m, ), e) = btc

For global variables, the proof is even simpler: knowing that (σ, t) ∈
{gst(cabs.m)}, which is equivalent to (σ, t) ∈ {sc.gst(cabs.m)}, we obtain
that this pair also has to be an element of the linked global symbol
table—since the abstract one is a subset of it as given by the relation
konsisgst:

(σ, t) ∈ {gst(cabs.m)}
=⇒ (σ, t) ∈ {gst(ck.m)} (using konsisgst)
=⇒ (σ, t) ∈ {gst(cabs.m)} (Def. of gst)
=⇒ type(tek, toplst(ck.m), gst(ck.m, ),Var(σ)) = btc (Def. of type)

Case 2: The proofs for the arithmetic operations are all very similar,
since they merely rely on instantiating the induction hypotheses. Hence
we present only the proof for binary arithmetic operations, that is e =
BinOp(op, e1, e2). From the fact that e is a valid expression of the abstract
kernel, we obtain that also the sub expressions are valid

e1 ∈ validexprs(teabs, toplst(cabs.m), gst(cabs.m))
e2 ∈ validexprs(teabs, toplst(cabs.m), gst(cabs.m))

and there exist two types t1 and t2 for these sub expressions:

type(teabs, toplst(cabs.m), gst(cabs.m, ), e1) = bt1c
type(teabs, toplst(cabs.m), gst(cabs.m, ), e2) = bt2c.

We can now use the induction hypothesis to show that the sub expression
types are equivalent for the concrete kernel, that is

type(tek, toplst(ck.m), gst(ck.m, ), e1) = bt1c
type(tek, toplst(ck.m), gst(ck.m, ), e2) = bt2c

which we then finally use to conclude

type(tek, toplst(ck.m), gst(ck.m, ),BinOp(op, e1, e2)) = btc,

since the type of BinOp only depends on the types of the sub-expressions.
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Case 3: Let e denote a pointer dereferencing expression, that is e =
Deref (ex). This means that

type(teabs, toplst(cabs.m), gst(cabs.m),Deref (ex)) = btc.

From the assumption that e is a valid expression in the abstract kernel,
we obtain that the sub expression ex is valid and of a pointer type:

ex ∈ validexprs(teabs, toplst(cabs.m), gst(cabs.m))
type(teabs, toplst(cabs.m), gst(cabs.m), ex) = bPtr(tn)c

and furthermore there is a corresponding element in the abstract type
name environment, such that

(tn, t) ∈ {teabs}.

Using the above facts together with the induction hypothesis, we obtain
for the type of ex

type(tek, toplst(ck.m), gst(ck.m), ex) = bPtr(tn)c.

Due to type name environment consistency, we know that (tn, t) is also
an element in the concrete type name environment:

(tn, t) ∈ {tek}. (8.1)

By the definition, this implies for the type of the comprising dereferencing
expression:

type(tek, toplst(ck.m), gst(ck.m),Deref (ex)) = btc.

Case 4: The proof works in a similar way for an Address-Of expression,
that is e = AddrOf (ex) with

type(teabs, toplst(cabs.m), gst(cabs.m),AddrOf (ex)) = bPtr(tn)c.

From the assumption that AddrOf (ex) is valid we obtain for the sub
expression ex that there exists a type t with

type(teabs, toplst(cabs.m), gst(cabs.m), ex) = btc

and

(tn, t) ∈ {teabs}.

We use the induction hypothesis to obtain that this also holds in the
concrete kernel:

type(tek, toplst(ck.m), gst(ck.m), ex) = btc.

From this, equation 4, and the fact that because of type name environment
consistency teabs is a subset of tek, we know that (tn, t) ∈ {tek} and finally

type(tek, toplst(ck.m), gst(ck.m),AddrOf (ex)) = bPtr(tn)c.
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Remark (Isabelle/HOL) The above argumentation neglects the fact
that there could be more type names in tek associated to the type t, hence
the conclusion in the last step would not be justified.

In Isabelle, type name environments are modeled as lists and the function
mapof returns the first witness in a list that satisfies the criterion.

By construction (cf. Def. 6.3) of tek, the elements originally originating
from the abstract type name environment always come before those of the
low-level CVM implementation. So, in both cases the result of the mapof
operation on the type name environments of the abstract and concrete
kernel is (tn, t).

Case 5: We will omit the detailed proofs for both the array element access
case e = Arr(ea, ei) and the structure access case e = Str(es, cn). Both
proofs are very similar to the one presented above for binary operations.

For the array case, we deduce the validity and types for both sub ex-
pressions and instantiate then the induction hypothesis adequately. For
structure components its even simpler, since there is only one sub expres-
sion and the component name is static. q.e.d.

Lemma 8.8 (Transitivity of Valid Expressions) Let tek denote the type
name environment of the concrete kernel, which is given by a valid configuration
ck. Furthermore, let the consistency relations for recursion depth, global and
local symbol tables hold, and let e denote an expression, which is valid in the
abstract kernel. Then e is also valid in the concrete kernel.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m) ∧ konsistenv(teabs, tk)∧
konsisgst(cabs.m, ck.m) ∧ e ∈ validexprs(teabs, toplst(cabs.m), gst(cabs.m))∧
ck ∈ conf √(tek, ptk)

=⇒
e ∈ validexprs(tek, toplst(ck.m), gst(ck.m))

Proof We will prove this lemma by induction over e. For most cases, the
proof is trivial and we will omit the details.

Case 1: For literals, that is e = Lit(l), the definition says that l is a valid
literal. Since this l is syntactically the same in the concrete kernel, e is
also valid there.

Case 2: Let e = Var(σ) denote a local or global variable access. Due to
similarities we will only consider the local variable case.

Expanding the definition of valid expressions, we obtain that σ is defined
in the topmost local symbol table:

(σ, t) ∈ {toplst(cabs.m)}.
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From konsis lst(cabs.m, ck.m) we know that the local symbol tables in both
kernels are equal modulo the shift constant rdoff regarding the recursion
depth.

Using konsisrd, we derive that (σ, t) is also defined in the topmost local
symbol table of the abstract kernel, which satisfies the criterion for a valid
variable access expression.

Case 3: For e = Deref (e1), i.e. pointer dereferencing, we expand the
definition of valid expressions and obtain:

• e1 is valid in the abstract kernel,

• it is of a pointer type t = PtrT (tn), that is mapof (teabs, tn) = btc,
and

• the type name is defined in the type name environment of the abstract
kernel.

We use the induction hypothesis to derive that e1 is also valid in the
concrete kernel. Due to the type name relation konsistenv(teabs, tek), we
know that (tn, t) ∈ {tek}.
Finally, we use Lemma 8.7 to obtain that e is of pointer type in the
concrete kernel, too. These are all the requirements for a valid pointer
dereferencing in the concrete kernel.

Case 4: Let e = AddrOf (e1) denote an Address-Of expression. Then, e1 is
valid, too, and its type t is defined in the abstract type name environment,
i.e. t ∈ {map(snd , teabs)}. Moreover, e1 is a memory object.

From the induction hypothesis we obtain that e1 is also valid in the
concrete kernel. Using Lemma 8.7 yields that e1 is of type t in the
concrete kernel, too, while the invariant konsistenv guarantees that t ∈
{map(snd , tek)}.
This is all we need to prove that e is a valid expression in the concrete
kernel.

Case 5: We will not present the proof for the structure case, since it is
very similar to the array case e = Arr(ea, ei).

From the assumption that e is valid, we derive that both sub expressions
are valid, too, and that ei is of a numerical type.

Using the induction hypothesis and expression type equality from Lemma
8.7, we prove this case. q.e.d.

Lemma 8.9 (Relating Expression Evaluation) Given cabs, a weak valid
abstract kernel configuration, and ck a valid configuration of the concrete kernel,
which has been obtained by abstract linking. Furthermore, let the invariants for
the global and local symbol tables, the recursion depth and the type name envi-
ronment as well as the invariant for g-variables hold. For any valid expression e
in the abstract kernel of an elementary type, which can be right-hand evaluated,
(i) there also exists a right-hand value in the concrete kernel, (ii) which is equiv-
alent under the eqcont relation, if e is initialized. Furthermore, the initialization
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of e is equal in both kernels, and if e is a memory object in the abstract kernel,
then it is one in the concrete kernel, too.

Ultimately, if e can be left evaluated to some g-variable g in the abstract
kernel, the left evaluation in the concrete kernel will return the corresponding
g-variable kalloc(g, hp).

We define this formally as follows:

ck ∈ conf √(tek, ptk) ∧ linkable(Πabs,ΠCVM)∧

cabs ∈ conf weak√ ∧ konsistenv(teabs, tk)∧
Πk = link(Πabs,ΠCVM) ∧ konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ e ∈ validexprs(teabs, toplst(cabs.m), gst(cabs.m))∧
konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
type(teabs, toplst(cabs.m), gst(cabs.m), e) = btc∧
rval(teabs, cabs.m, e) = bvc
=⇒
rval(tek, ck.m, e) = byc∧
?init(teabs, cabs.m, e) = ?init(tek, ck.m, e)∧
?inter(teabs, cabs.m, e) = ?inter(tek, ck.m, e)∧
(∀g. lval(teabs, cabs.m, e) = bgc =⇒ lval(tek, ck.m, e) = bkalloc(g, hp)c)∧
(?init(teabs, cabs.m, e) ∧ ?elemT (t) =⇒ eqcont(t, v, y))

Proof Proof by induction over the expression e. We will omit the trivial cases
of arithmetic operations and literals.

Case 1: Let e denote a variable access, that is e = Var(σ). From the fact
that this is a valid expression of the abstract kernel, we can derive that σ
is defined either in the global symbol table or in the topmost local symbol
table:

(σ, t) ∈ {toplst(cabs.m)} ∨ (σ, t) ∈ {gst(cabs.m)}

The proof for both the local and the global case are very similar, thus we
will only work out on the first case, i.e. σ is the name of a local variable.
Hence, the left-hand value of e is

lval(teabs, cabs.m,Var(σ)) = bgvarlm(|cabs.m.lm| − 1, σ)c.

From konsislst(cabs.m, ck.m) we know that the abstract kernel’s local
symbol tables are equivalent to those in the concrete kernel—shifted
by the offset rdoff. Together with the type equivalence for expression
evaluation from Lemma 8.7 and the recursion depth consistency between
the abstract and the concrete kernel we obtain:

(σ, t) ∈ {toplst(ck.m)}

and hence from the definition of expression evaluation

lval(tek, ck.m,Var(σ)) = bgvarlm(|ck.m.lm| − 1, σ)c
bkalloc(gvarlm(|cabs.m.lm| − 1, σ), hp)c.
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This satisfies the proof goal regarding the left-hand evaluation of variable
accesses.

In a (weak) valid configuration, any expression that can be left evaluated,
i.e. lval is not equal to None, yields a reachable g-variable (cf. [Lei08,
Theorem 8.1]), hence

gvarlm(|cabs.m.lm| − 1, σ) ∈ reachablenamed(cabs.m) (8.2)

and for the concrete kernel

gvarlm(|ck.m.lm| − 1, σ) ∈ reachablenamed(ck.m)
=⇒ kalloc(gvarlm(|cabs.m.lm| − 1, σ), hp) ∈ reachablenamed(ck.m)

(8.3)

Since we have assumed g-variable consistency, we can now unpack the
definition of konsisgvars and obtain that the initialization of both variables
is equal:

?initg(gvarlm(|cabs.m.lm| − 1, σ))
= ?initg(kalloc(gvarlm(|cabs.m.lm| − 1, σ), hp)).

From the definition of expression evaluation for variable access we know
that

?init(teabs, cabs.m,Var(σ))
= σ ∈ toplm(cabs.m).init
= ?initg(gvarlm(|cabs.m.lm| − 1, σ)), (Def. 3.11)

and hence

?init(teabs, cabs.m,Var(σ)) = ?init(tek, ck.m,Var(σ)).

For the rest of this case, let us assume that the variables, which are
accessed, are initialized and of elementary type. We will now obtain the
right-hand value rval for the variable access in the abstract kernel and
relate it to the value of the g-variable given through the left-hand value.

Note that since t is elementary, the corresponding type size sizeT equals
one:

rval(teabs, cabs.m,Var(σ))
= btoplm(cabs.m).ct[bav(toplst(cabs.m), σ), 1]c (cf. Sect. 3.4.3)
= btoplm(cabs.m).ct[bag(sc(cabs.m), gvarlm(|cabs.m.lm| − 1, σ)), 1]c

(Def. 3.12)

which is the value of the g-variable as defined in Def. 3.14:

bvalueg(cabs.m, gvarlm(|cabs.m.lm| − 1, σ))c (8.4)

We proceed in a similar way for the concrete kernel and obtain

rval(tek, ck.m,Var(σ))
= bvalueg(ck.m, gvarlm(|ck.m.lm| − 1, σ))c
= bvalueg(ck.m, kalloc(gvarlm(|cabs.m.lm| − 1, σ), hp))c. (8.5)
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We will now expand the konsisgvars invariant (cf. Def. 7.16). Using the
fact that gvarlm(|cabs.m.lm|−1, σ) is reachable (8.2) and the assumptions
on initialization and type, we obtain

eqval(gvarlm(|cabs.m.lm| − 1, σ), cabs.m,

kalloc(gvarlm(|cabs.m.lm| − 1, σ), hp), ck.m)

which we expand to

eqcont(t, valueg(cabs.m, gvarlm(|cabs.m.lm| − 1, σ)),
valueg(ck.m, kalloc(gvarlm(|cabs.m.lm| − 1, σ), hp))

and obtain finally using (8.4) and (8.5):

eqcont(t, the(rval(teabs, cabs.m,Var(σ))), the(rval(tek, ck.m,Var(σ)))).

Case 2: We will now deal with pointer dereferencing, i.e. e = Deref (e1).
Since rval(teabs, cabs.m, e) = bvc, we know that the right-hand expression
evaluation of the sub expression e1 yields a non-null pointer, that is

rval(teabs, cabs.m, e1) = bPtr(p)c∧
p 6= NullPointer

where the type of e1 is given through

type(teabs, toplst(cabs.m), gst(cabs.m), e1) = bPtrT (tn)c (8.6)

and

mapof (teabs, tn) = btc. (8.7)

This means that the left-hand value of Deref (e1) in the abstract kernel is
the g-variable that e1 points to, that is

lval(teabs, cabs.m,Deref (e1)) = bpc, (8.8)

and the right-hand evaluation is equal to the value of this variable p:

rval(teabs, cabs.m,Deref (e1)) = valueg(cabs.m, p). (8.9)

Using the induction hypothesis, we know that there exists a y′ such that

rval(tek, ck.m, e1) = by′c

and

eqcont(PtrT (tn),Ptr(p), y′).

Expanding the definition of eqcont for non-null pointer types, we obtain

y′ = Ptr(kalloc(p, hp)). (8.10)
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Furthermore, we derive that since e1 is initialized in the abstract kernel,
so it is in the concrete kernel—?init(te,mk, e1) = True—, and that the
types of e1 are equal in both kernel configurations (see equation (8.6),
using Lemma 8.7).

The invariant konsistenv ensures that the type associated with the type
name tn in the concrete kernel is the same type as in the abstract kernel,
namely t.

Finally, since p is not a local variable, so kalloc(p) is not local neither by
definition of kalloc.

Since all of the above facts ensure also the successful expression evalua-
tion for Deref (e1) in the concrete kernel, too, we can now compute the
corresponding results. From (8.10) we can derive the left-hand value of
Deref (e1) as

lval(tek, ck.m,Deref (e1)) = bkalloc(p, hp)c. (8.11)

and for the right-hand value

rval(tek, ck.m,Deref (e1)) = valueg(ck.m, kalloc(p, hp)). (8.12)

Both the abstract kernel and the concrete kernel configurations are valid,
which implies that the left-hand values obtained by expression evaluation
yields reachable variables. Furthermore we know that t is an elementary
type by assumption. We can now again unfold the konsisgvars invariant
(Def. 7.16), by which we can syntactically show our goal.

Case 3: Let e be an Address-Of expression, i.e. e = AddrOf (e1). Since
the evaluation of this expression in the abstract kernel was successful, we
can conclude that the assumptions regarding right-hand evaluation and
type on the sub expression e1 have been satisfied, too, that is

lval(teabs, cabs.m, e1) = bpc

and

mapof (map(flip, teabs), type(teabs, toplst(cabs.m), gst(cabs.m), e1)) = btnc.

From the definition of expression evaluation we obtain for the right-hand
value a content list with exactly one element, namely a pointer to p:

rval(teabs, cabs.m,AddrOf (e1)) = b[Ptr(p)]c (8.13)

Using the induction hypothesis, we obtain for the concrete kernel

lval(tek, ck.m, e1) = bkalloc(p, hp)c (8.14)

and

?inter(tek, toplst(ck.m), gst(ck.m), e1) = False (8.15)

In addition, we use the type name invariant konsistenv to derive

mapof (map(flip, tek), type(tek, toplst(ck.m), gst(ck.m), e1)) = btnc.
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These are all requirements for a successful evaluation of AddrOf (e1) in
the concrete kernel. Hence, the right-hand evaluation returns

rval(tek, ck.m,AddrOf (e1)) = b[Ptr(kalloc(p, hp))]c. (8.16)

Furthermore, the type of the expression is identical in both the abstract
and the concrete kernel, namely

type(teabs, toplst(cabs.m), gst(cabs.m),AddrOf (e1)) =
type(tek, toplst(ck.m), gst(ck.m),AddrOf (e1)) =
bPtrT (tn)c

and both expressions are initialized by definition.

Using these facts together with the definition of konsisgvars, we have
completed the proof for this case.

Case 4: The cases for an array element access and a structure component
access are very similar. Hence, we will only discuss the case of an array
element access, i.e. Arr(ea, ei).

We know that the sub expression ei—the index expression—is of a numer-
ical type, which is by definition an elementary type. Hence we can use
the induction hypothesis to obtain that the initialization of ei is equal in
both kernel configurations.

For the initialization of the array element access the definition of expression
evaluation says that

?init(teabs, cabs.m,Arr(ea, ei)) =
?init(teabs, cabs.m, ea) ∧ ?init(teabs, cabs.m, ei).

This means that in the case of an uninitialized sub expression ei, the proof
for the array case is already complete1. So let us assume that both sub
expressions ea and ei are initialized.

In addition, an array access is a memory object, iff the array expression
ea is a memory object. By using the induction hypothesis, we obtain

?inter(teabs, cabs.m, ea) = ?inter(tek, ck.m, ea)

and hence

?inter(teabs, cabs.m,Arr(ea, ei)) = ?inter(tek, ck.m,Arr(ea, ei)).

Let i denote the right-hand value of ei in the abstract kernel and i′ the
one for the concrete kernel, respectively. Furthermore let ti denote the
type of ei. Then we derive from the induction hypothesis that for the
right-hand values of ei holds

eqcont(ti, i, i′)

1We would just use the induction hypothesis for ei and obtain that it is uninitialized in
the concrete kernel, too.
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and since ti is elementary, this equation can be simplified to i = i′.

Let us consider the array expression ea now. The left-hand evaluation in
the abstract kernel returns a g-variable g of an array type ArrT (n, t). For
the corresponding right-hand value we use Def. 3.14 and obtain

rval(teabs, cabs.m, ea)
= bvalueg(cabs.m, g)c

Using the induction hypothesis, we left evaluate ea in the concrete kernel
to kalloc(g, hp) with a right-hand value

rval(tek, ck.m, ea)
= bvalueg(ck.m, kalloc(g, hp))c.

If t is not elementary, then the proof for the array access case is done
now. So let us assume ?elemT (t). Then we can expand the right-hand
evaluation as follows:

rval(teabs, cabs.m, ea)
= bvalueg(cabs.m, g)c
= bmmemg(g)[bag(sc(cabs.m), g), sizeT (typeg(sc(m), g))]c
= bmmemg(g)[bag(sc(cabs.m), g), n · sizeT (t)]c
= bmmemg(g)[bag(sc(cabs.m), g), n]c
= bvac

We proceed likewise with kalloc(g, hp) in the concrete kernel and obtain
its value v′a.

From the preconditions for array element access evaluation we know that
i < n, that is the index expression yields an index which is smaller than
the array size.

This means that the left-hand value—gvararr (g, i)—is a sub g-variable of
g (see also Def. 3.4). Using Def. 3.12, we obtain the corresponding base
address as

bag(sc(cabs.m), gvararr (g, i))
= bag(sc(cabs.m), g) + i · sizeT (t)
= bag(sc(cabs.m), g) + i. (since sizeT (t) = 1)

By definition of valueg, the value of this sub g-variable is given through

valueg(cabs.m, gvararr (g, i))
= valueg(cabs.m, g)!i · sizeT (t)
= valueg(cabs.m, g)!i
= va!i

For the concrete kernel we use gvararr (kalloc(g, hp), i) and obtain a value
v′a!i.
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gvararr (g, i) has been obtained by evaluating a valid expression in a valid
configuration, i.e. it is a reachable g-variable. Furthermore, it is initialized
by assumption and of elementary type. As in the cases before, we unfold
the definition of konsisgvars to obtain

eqval(t, valueg(cabs.m, gvararr (g, i)),
valueg(ck.m, kalloc(gvararr (g, i), hp))

= eqval(t, valueg(cabs.m, gvararr (g, i)),
valueg(ck.m, gvararr (kalloc(g, hp), i)) (using Def. of kalloc)

which is equivalent to

eqcont(t, va!i, v′a!i),

which is exactly the definition of the right-hand evaluation of the array
element access. q.e.d.

8.4 Static Properties

In this section, we will deal with the static properties of the overall correctness
relation between the abstract and the concrete kernel. Static means that these
properties reason about the components of a C0 program, hence components
that do not change during the kernel execution.

As there are three components for a C0 program (cf. Sect. 3.2)—a type
name environment, a procedure table, and a global symbol table—, so there
are three abstract relations that deal with these components:

1. konsistenv is relating a type name environment to another,

2. konsispt connects two procedure tables, and

3. konsisgst is talking about two global symbol tables.

Lemma 8.10 (Preservation of konsistenv) Let Πabs and ΠCVM denote an
abstract kernel and a low-level CVM implementation, which are linkable with
each other. Furthermore, let Πk denote the result of the abstract linking of these
two programs.

Then the type name environment teabs of Πabs is consistent with the linked
type name environment tek:

linkable(Πabs,ΠCVM)∧
Πk = link(Πabs,ΠCVM) =⇒

konsistenv(teabs, tek)

Proof From Πk = link(Πabs,ΠCVM), and here in particular

tek = link te(teabs, teCVM),

we know by construction (cf. Def. 6.11) that tek is pairwise distinct and that
all elements in teabs are also elements of tek, and hence

{teabs} ⊆ {tek},
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which is exactly the definition of konsistenv as given in Def. 7.6:

konsistenv(teabs, tek). q.e.d.

Lemma 8.11 (Preservation of konsispt) Let Πabs and ΠCVM denote two
linkable programs, with Πk representing the corresponding linked program.

Then, the procedure table ptabs is consistent with the linked procedure table
ptk under the function konsispt.

linkable(Πabs,ΠCVM)∧
Πk = link(Πabs,ΠCVM) =⇒

konsispt(ptabs, ptk)

Proof Let (fn, f) denote any defined procedure of the abstract kernel procedure
table, i.e. (fn, f) ∈ {ptabs}.

From linkable(Πabs,ΠCVM) we know that the names of the defined functions
of ptabs and ptCVM are pairwise disjoint, that is:

{map(fst , ptdef
abs)} ∩ {map(fst , ptdef

CVM)} = ∅.

The procedure table of the concrete kernel ptk is the result of

replpt(linkpt(ptabs, ptCVM)),

as defined in Def. 6.10. This means that (fn, f ′) ∈ {ptk} with (fn, f ′) =
repl(ptk, (fn, f)) or in words: f ′ is equivalent to f except that external function
calls are replaced by ‘normal’ function calls and that the statements have been
renumbered (cf. Def. 6.10).

This is exactly the equivalence as defined by the relation eqstmt, which has
been introduced in Def. 7.8, hence:

konsis func(f, f ′) =
eqstmt(f.body , f ′.body)∧
(|s2l(f.body)| = |s2l(f ′.body)|∧
(f.params = f ′.params)∧
(f.lvars = f ′.lvars)

Since we have picked an arbitrary defined abstract kernel function, we can
extend this property for all defined functions in ptabs:

(∀p ∈ {ptdef
abs}.∃q ∈ {ptk}.konsis func(p, q))

which is in fact the expanded definition of konsispt(ptabs, ptk) as introduced
in Def. 7.9. q.e.d.

The global symbol table is not only a component of the C0 program, but is
also part of the (dynamic) memory configuration. Hence, the correctness lemma
has to include certain assumptions about the next state function, though we
show that the global symbol table does not change at all during the execution
of the program.
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Lemma 8.12 (Preservation of konsisgst) Given cabs and ck denoting C0
configurations encoding the abstract kernel and the concrete kernel, where the
global symbol table of the abstract kernel is consistent with the one of the concrete
kernel under the relation konsisgst.

Under the assumption that the C0 transition function does not yield None
for any of the two configurations, the relation will also hold for the two successor
configurations c′abs and c′k:

δC0(teabs, ptabs, cabs) = bc′absc∧
δC0(tek, ptk, ck) = bc′kc∧
konsisgst(gst(cabs.m), gst(ck.m)) =⇒

konsisgst(gst(c′abs.m), gst(c′k.m))

Proof The proof idea is to show that the global symbol table—though part
of the C0 configuration—is not changed by any statement at all, that is it is
invariant.

We start with the fact that δC0(teabs, ptabs, cabs) 6= None. In this case we
know that the C0 transition function is defined over the head of the program
rest2 hd(s2l(cabs)). By a case distinction over this statement and expanding
the next state function we can show that the global symbol table is not altered
by any C0 statement, that is it stays the same for each C0 step:

δC0(teabs, ptabs, cabs) = bc′absc∧ =⇒
gst(cabs.m) = gst(c′abs.m) (8.17)

We do the same for the concrete kernel and obtain

δC0(tek, ptk, ck) = bc′kc∧ =⇒
gst(ck.m) = gst(c′k.m) (8.18)

Finally, we combine the above two results (8.17) and (8.18) to show:

gst(cabs.m) = gst(c′abs.m) ∧ gst(ck.m) = gst(c′k.m)∧
konsisgst(gst(cabs.m), gst(ck.m)) =⇒

konsisgst(gst(c′abs.m), gst(c′k.m)) q.e.d.

8.5 Dynamic Properties

Some of the kernel relations talk about parts of the kernel configurations that
might change during execution. We call this share dynamic properties.

Most of the proofs in this section rely on the fact that expression evaluation
in the abstract and concrete kernel returns results, which are equivalent under
certain relations.

In particular we want to assure that a successful expression evaluation in
the abstract kernel—a property the implementer of an abstract kernel would

2Actually, δC0 is defined inductively over the statement tree. Yet, there exists a lemma
that shows equivalence in execution for a flattened statement tree, where the head of the list
is the next statement to be executed.
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probably want to show—also means that the evaluation in the concrete kernel
will not fail.

The following lemmas will define these expectations formally.

Lemma 8.13 (Absence of Run-Time Errors) Let cabs and ck denote two
(weak) valid configurations encoding the abstract and concrete kernel, the latter
one being obtained by abstract linking.

Moreover, let the invariants regarding the symbol tables, the recursion depth,
the type name environments, the program rest and the g-variables in both kernels
hold.

Given a program rest, which does not start with an assembly statement, an
external function call, or an XCall, and assuming that the abstract kernel does
not produce a run-time error, that is there exists a successor configuration c′abs.

Then, concrete kernel execution will not produce a run-time error neither:

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))
=⇒
∃c′k. δC0(tek, ptk, ck) = bc′kc

Proof We will prove this lemma by case distinction over the head of the
program rest of the abstract kernel. Due to readability, we will omit the proof
steps showing that the first statements in the program rests of both kernels are
equivalent under eqstmt. This fact can be simply deduced using the konsisprog

invariant and Lemma 8.5.
For similar reasons, we do not explicitly describe the deduction of valid

expressions required by Lemma 8.9. This follows directly from the validity of
the configurations and hence the validity of the statement at the head of the
program rest (cf. [Lei08]).

Most proof cases are similar, since the existence of a successor configuration
merely relies on a successful memory update. Thus we will not work out the
proof for all statements, but concentrate on representative ones.

Case 1: Let the program rest start with an assignment, that is

hd(s2l(cabs.prog)) = Ass(el, er).

Since there is a successor configuration in the abstract kernel, expression
evaluation has not failed there, that is

lval(teabs, cabs.m, el) = bgc

and

rval(teabs, cabs.m, er) = bvc.
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Furthermore, the memory update has been successful, too, i.e. g is initial-
ized or a root g-variable.

From Lemma 8.9 we obtain that the expression evaluation in the concrete
kernel will be successful, too:

lval(tek, ck.m, el) = bkalloc(g, hp)c

and for the right expression

rval(tek, ck.m, er) = bv′c.

Also, if g has been initialized in the abstract kernel, so is kalloc(g, hp)
initialized in the concrete kernel. In the case that g is a root g-variable,
then this is also true for kalloc(g, hp) (using Lemma 8.3).

Hence the memory update will succeed and by definition of the C0
transition function, there is a successor configuration in the concrete
kernel, too.

Case 2: Given a program rest that starts with a memory allocation, that
is hd(s2l(cabs.prog)) = PAlloc(el, tn).

Left evaluation has succeeded in the abstract kernel and has yielded a
g-variable g. With Lemma 8.9 we obtain the left value kalloc(g, hp) in
the concrete kernel. Due to type name consistency, tn is also defined in
the linked type name environment tek.

Depending on sufficient memory, the memory update in the concrete
kernel is done either with a null pointer or a pointer to a newly created
heap variable gvarhm(|hst(ck.m)|).
g is reachable in the abstract kernel, so we obtain initialization equality for
g and kalloc(g, hp), the g-variable to be updated in the concrete kernel, by
merely expanding the definition of konsisgvars. Since the memory update
has been successful in the abstract kernel, g has to be initialized and
hence kalloc(g, hp) is initialized, so the concrete kernel memory update
will succeed, too.

Case 3: Let the program rest start with a function call, that is

hd(s2l(cabs.prog)) = SCall(σ, fn, plist).

Let us consider the concrete kernel. The execution of a function call
basically fails, if either the left evaluation of the return destination fails,
that is

lval(tek, ck.m,Var(σ)) = None

or if right evaluation of one or more parameters fails:

∃p ∈ {plist} : rval(tek, ck.m, p) = None.

Using Lemma 8.9 and the fact that expression evaluation has not failed in
the abstract kernel, we deduce that this will not happen in the concrete
kernel neither, so there exists a successor configuration. q.e.d.
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Lemma 8.14 (Preservation of Recursion Depth Consistency) Let cabs
and ck denote two configurations of the abstract and the concrete kernel, which
are in the set of valid configurations.

Furthermore let the recursion depth consistency konsisrd and the program
rest consistency hold for both configurations.

In addition, we assume that the program rest of the abstract kernel does not
start with an assembly statement, an external function call, an XCall statement,
or that kernel run has already terminated.

Then the recursion depths of the successor configurations c′abs and c′k will
also be consistent:

cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))
=⇒
konsisrd(c′abs.m, c

′
k.m)

Proof We prove the above lemma by case distinction over the current state-
ment of the abstract kernel hd(s2l(cabs.prog)).

For all cases but function calls and returns this is trivial, since none of the
other statements adds or removes stack frames. Thus, we concentrate on these
two cases.

We assumption that there is a successor configuration for the concrete kernel,
can easily been shown using Lemma 8.13.

Case 1: We start with function calls, i.e.

hd(s2l(cabs.prog)) = SCall(vn, fn, pl)).

From konsisprog(cabs.prog , ck.prog), Lemma 8.5, and Def. 7.8 we obtain
that also the program rest of the concrete kernel starts with a function
call statement:

hd(s2l(ck.prog)) = SCall(vn, fn, pl).

From δC0(teabs, ptabs, cabs) = bc′absc we know that the function call suc-
ceeds. This means by definition of the transition function that a new
stack frame has been added to the local memory, so we obtain that the
recursion depth has been increased by 1:

|c′abs.m.lm| = |cabs.m.lm|+ 1 (8.19)

and likewise for the concrete kernel using δC0(tek, ptk, ck) = bc′kc

|c′k.m.lm| = |ck.m.lm|+ 1 (8.20)
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Using the induction hypothesis konsisrd(cabs.m, ck.m) along with (8.19)
and (8.20), we show

|c′k.m.lm| = |ck.m.lm|+ 1
= |cabs.m.lm|+ rdoff + 1
= |c′abs.m.lm|+ rdoff,

which is exactly the definition of konsisrd (cf. Def. 7.7) :

konsisrd(c′abs.m, c
′
k.m).

Case 2: Similarly, we proceed with a Return statement at the head of the
program rest, that is

hd(s2l(cabs.prog)) = Return(e).

Again, we deduce that the head of the concrete kernel’s program rest also
starts with a Return statement using Lemma 8.5:

hd(s2l(ck.prog)) = Return(e).

Since execution of the Return statement succeeds, we know that the
topmost stack frame has been removed from the local memory, i.e. the
recursion depth of the new abstract kernel configuration has been decreased
by 1:

|c′abs.m.lm| = |cabs.m.lm| − 1 (8.21)

and for the concrete kernel’s recursion depth

|c′k.m.lm| = |ck.m.lm| − 1, (8.22)

respectively.

Using konsisrd(cabs.m, ck.m), (8.21), and (8.22), we finally show by ex-
panding the definition of konsisrd:

|c′k.m.lm| = |ck.m.lm| − 1
= |cabs.m.lm|+ rdoff − 1
= |c′abs.m.lm|+ rdoff,

which is again equivalent to konsisrd(c′abs.m, c
′
k.m). q.e.d.

8.5.1 Program Rest Consistency

Informally, program rest consistency guarantees that the execution of the
concrete kernel follows the same path as abstract kernel execution.

For most statements we rely on certain invariants, like return destination and
procedure table consistency, to prove that program rest consistency holds. For
conditional statements, we have to make sure that expression evaluation in the
abstract kernel corresponds to the one in the concrete kernel (see Lemma 8.9).
For others—like assignments—program rest consistency is obvious.
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Lemma 8.15 (Preservation of Program Rest Consistency) Given cabs
and ck, two (weak) valid C0 configurations encoding the abstract and concrete
kernel, respectively. Furthermore, we assume that the program rest does not
start with an assembler statement, an external function call or an XCall, and
that execution has not terminated. Moreover, let the invariants on symbol
tables, recursion depth, type name environment, procedure tables, g-variables,
and program rest hold.

If there is no run-time error in the abstract kernel, then program rest con-
sistency will also hold in the successor configurations of both kernels, formally:

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
konsispt(ptabs, ptk)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(cabs.prog)
=⇒
konsisprog(c′abs, c

′
k)

Proof We will present proofs for the preservation of program rest consistency
during kernel execution. The proof basically consists of a case distinction over
the head statement of the program rest. We will omit the trivial cases and
concentrate on one representative for statements with similar proofs.

Case 1: The next state function δC0 defines a case distinction for a pro-
gram rest starting with Skip: either the whole program rest consists of
single statement—the termination case— or other statements follow the
Skip.

For the abstract kernel we know by assumption that we are not in the
termination case: ¬is Skip(cabs.prog). Hence, we know that the length of
the flattened abstract program rest is greater 1, since there has to exist a
second statement:

|s2l(cabs.prog)| > 1.

From konsisprog(cabs.prog , ck.prog) we obtain that the flattened concrete
kernel program rest is at least as long as the abstract one, hence we can
conclude |s2l(ck.prog)| > 1, which then implies

¬is Skip(s2l(ck.prog)).

For this case, the C0 transition function defines the tail of the old program
rest as the new configuration’s program rest, that is

s2l(c′abs.prog) = tl(s2l(cabs.prog))
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and likewise for the concrete kernel

s2l(c′k.prog) = tl(s2l(ck.prog))

This means that the length of the new program rest has been decreased
by 1 and all statements but the consumed Skip have been shifted one
position to the left in the new program rest:

|s2l(c′abs.prog)| = |s2l(cabs.prog)| − 1
∀i < |s2l(c′abs.prog)| : s2l(c′abs.prog)!i = s2l(cabs.prog)!(i+ 1)

and for the concrete kernel

|s2l(c′k.prog)| = |s2l(ck.prog)| − 1
∀i < |s2l(c′k.prog)| : s2l(c′k.prog)!i = s2l(ck.prog)!(i+ 1).

Together with the assumption konsisprog(cabs.prog , ck.prog), we can finally
show the thesis by expanding the definition of konsisprog.

Case 2: The proof for the If-Then-Else case relies on the fact that the
conditional expression is evaluated consistently in both kernels, so that
the program rests are updated equivalently.

Since cabs is valid, the head of the program rest is also valid. In the
Ifte(e, s1, s2) case this means that e is a Boolean expression:

type(teabs, toplst(cabs.m), gst(cabs.m), e) = BoolT .

Since there is a successor configuration for cabs, right-hand expression
evaluation cannot have failed, that is

rval(teabs, cabs.m, e) = bvc.

Using Lemma 8.9, we obtain that there is also a right-hand value of e in
the concrete kernel

rval(tek, ck.m, e) = bv′c

and

eqcont(BoolT , v, v′)

which we simplify—using the definition of eqcont—to

v = v′.

Furthermore, depending on v, the program rest of the abstract kernel
starts either with s1 or s2:

s2l(c′abs.prog) =

{
s1#tl(s2l(cabs.prog)) if v = True
s2#tl(s2l(cabs.prog)) otherwise
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Due to konsisprog, the head of the concrete program rest is also a condi-
tional statement:

hd(s2l(ck.prog)) = Ifte(e, s′1, s
′
2),

where s1 and s′1, as well as s2 and s′2 are equivalent under eqstmt.

Since expression evaluation has returned equal values in both kernel,
program rest consistency is also preserved in both kernel successor config-
urations.

Case 3: Let the program rest start with a function call, that is

hd(s2l(cabs.prog)) = SCall(σ, fn, plist).

We abbreviate the called function with f = the(mapof (ptabs, fn)).

Since there is a successor configuration c′abs for the abstract kernel, the
program rest has been updated by replacing the function call statement
with the body of fn, that is

s2l(c′abs.prog) = s2l(f.body)#tl(s2l(cabs.prog))

Let c′k denote the successor configuration of the concrete kernel, which
exists following Lemma 8.13. This means that there is an entry in the
concrete procedure table ptk with name fn and a descriptor f ′, such that

s2l(c′k.prog) = s2l(f ′.body)#tl(s2l(ck.body)).

Since fn is a defined function in the abstract kernel—(fn, f) ∈ ptdef
abs—,

we can expand the invariant on procedure tables konsispt(ptabs, ptk) (cf.
Def. 7.9). In particular, this means that

eqstmt(f.body , f ′.body).

This is all we need to prove the function call case. q.e.d.

8.5.2 Symbol Table Consistency

Symbol table consistency guarantees that corresponding variables in the abstract
and concrete kernel are of the same type. In this section, we will show that
the consistency relations are preserved during C0 kernel steps. In Sect. 8.4,
Lemma 8.12, we have already proven that for global symbol tables.

Lemma 8.16 (Preserving Consistency of konsis lst) Let cabs be a weak
valid abstract kernel configuration and ck a valid concrete kernel configuration.
Furthermore, let the invariants on symbol tables, program rest, type name
environments, procedure table, recursion depth, and g-variables hold. If the
abstract program rest does not start with an external function call or an assembler
statement and if the abstract kernel has not terminated and the C0 transition
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function yields an abstract successor configuration, then the consistency between
the local symbol tables will be preserved.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
konsispt(ptabs, ptk)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))

=⇒
konsis lst(c′abs.m, c

′
k.m)

Proof This proof is done by case distinction over the head of the abstract
program rest.

We remember: konsis lst(cabs.m, ck.m) says that for each local symbol table
in the abstract kernel, there exists a corresponding, equal symbol table in the
concrete kernel (cf. Def. 7.17). Here, corresponding means that the abstract
kernel index is shifted by the constant recursion depth offset:

konsis lst(cabs.m, ck.m) =
∀i. i < |sc(cabs.m).lst | =⇒ sc(cabs.m).lst !i = sc(ck.m).lst !(i+ rdoff).

In most cases, the proof is very straightforward, since most statements do
not change the local symbol tables. In fact, only function calls and returns are
relevant. We will concentrate on these two cases.

Case 1: We start with function calls, that is

hd(s2l(cabs.prog)) = SCall(σ, fn, plist)).

From the fact that execution of the abstract kernel has not failed, we
know that for the called function fn, there exists a descriptor f such that
(fn, f) ∈ {ptdef

abs}.
Furthermore, there has been added a new frame to the existing local
memory stack, whose symbol table is made up by the symbol table of the
called function:

toplst(c′abs.m) = stfunc(f)
= f.params@f.lvars.

Using Lemma 8.13, which implies that concrete kernel execution does not
fail neither, together with the invariant on procedure tables, we obtain a
function descriptor f ′ for fn in the concrete kernel for which holds:

f ′.params = f.params ∧ f ′.lvars = f.lvars.
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This means that the symbol table of the topmost local stack frame of
the concrete kernel—which has just been added—is equal to the function
symbol table of f ′, which again is equal to the function symbol table of f :

toplst(c′k.m) = stfunc(f ′)
= stfunc(f)
= f.params@f.lvars.

We take this intermediate result and the preservation of recursion depth
consistency as defined in Lemma 8.14 together with the fact that all
other local symbol tables stay untouched. By expanding the definition of
konsis lst, we prove the function call case.

Case 2: Let the abstract program rest start with a return statement, i.e.

hd(s2l(cabs.prog)) = Return(e).

The successful execution of this statement in the abstract kernel has
removed the topmost frame from the local memory stack. The same
happens in the concrete kernel.

This means that in both successor configurations, the recursion depth has
been decreased by 1:

|sc(c′abs.m).lst | = |sc(cabs.m).lst | − 1
|sc(c′k.m).lst | = |sc(ck.m).lst | − 1

Together with the fact that all other frames stay unchanged and that the
invariant on local symbol tables holds for them by assumption, we prove
this case. q.e.d.

Lemma 8.17 (Preserving Consistency of konsishst) Let cabs be a weak
valid abstract kernel configuration and ck be a valid concrete kernel configuration.
Furthermore, let the invariants on symbol tables, program rest, type name
environments, procedure table, recursion depth, and g-variables hold, and in
particular the invariants on the heap. If the abstract program rest does not start
with an external function call or an assembler statement and if the abstract
kernel has not terminated and the C0 transition function yields an abstract
successor configuration, then the consistency between the heap symbol tables will
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be preserved.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
konsishst(cabs.m, ck.m, hp)konsispt(ptabs, ptk)∧
heapinv(cabs.m, ck.m)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))

=⇒
∃hp′. konsishst(c′abs, c

′
k, hp

′)

Proof We prove this lemma by case distinction over the head of the abstract
program rest. All cases but memory allocation are trivial, since the other
statements do not change the heap symbol table.

Given a program rest head hd(s2l(cabs.prog)) = PAlloc(e, tn). This means
there is a type t with mapof (te,abs , tn) = btc.

There are two possible successful execution paths for memory allocation:

• either there is enough heap memory available to allocate a new object of
type t—?heap(cabs.m, t) = True,

• or heap memory is used up, i.e. ?heap(cabs.m, t) = False.

In the latter case, the heap memory stays unchanged, that is c′abs.m.hm =
cabs.m.hm. Since we assume that the invariant on the heap symbol table holds
for cabs and ck, we are done setting hp′ = hp.

Let us assume that there is enough heap memory available in the abstract
kernel. In this case, a new element has been appended to the old heap symbol
table:

hst(c′abs.m) = hst(cabs.m)@[(undef , t)]

Due to the invariant on heap memory, heapinv(cabs.m, ck.m), there is also
enough memory available in the concrete kernel3. Furthermore, the type name
tn is associated with the same type t in the concrete kernel, due to type name
consistency. Hence we add the same element to the concrete heap symbol table
as in the abstract kernel, thus

snd(hst(c′abs.m)!(|hst(cabs.m)|)) = snd(hst(c′k.m)!(|hst(ck.m)|)) (8.23)

We update the heap map function as follows:

hp′(i) =

{
|hst(ck.m)| if i = |hst(cabs.m)|
hp(i) otherwise

3The concrete kernel can have only more allocated memory, but never less than the
abstract kernel



8.5. Dynamic Properties 163

Using the assumption that the invariant on the heap symbol table has held
before together with (8.23), we finally obtain konsishst(c′abs, c

′
k, hp

′). q.e.d.

8.5.3 Return Destination Consistency

Return destination consistency states that the return destinations of correspond-
ing stack frames are equivalent under kalloc.

Lemma 8.18 (Preservation of konsisreturn) Let cabs and ck be two (weak)
valid configurations encoding both kernels. Furthermore, let the invariants on
symbol tables, program rest, type name environments, procedure table, recursion
depth, and g-variables hold. If the abstract program rest does not start with
an external function call or an assembler statement and if the abstract kernel
has not terminated and the C0 transition function yields an abstract successor
configuration, then the return destination consistency will be preserved.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
konsispt(ptabs, ptk) ∧ konsishst(cabs.m, ck.m)
konsisreturn(cabs, ck, hp)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))
=⇒
konsisreturn(c′abs, c

′
k, hp)

Proof We prove this lemma by case distinction over the head of the abstract
program rest. All cases but return and function call are trivial, hence we omit
the former ones.

Case 1: We start with a function call, that is

hd(s2l(cabs.prog)) = SCall(σ, fn, plist).

The return destination of this function call is a g-variable which is given
through the left-hand evaluation of the expression Var(σ). We know that
this left-hand value exists, since abstract kernel execution has yielded a
successor configuration:

lval(teabs, cabs.m,Var(σ)) = bgc.

Corresponding to the definition of the C0 transition function, this g-
variable is then used as the second component of the newly added frame
in the local memory stack, that is:

snd(toplm(c′abs.m)) = g.
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From Lemma 8.9 we obtain that the left-hand evaluation of the variable
access in the concrete kernel is successful, too:

lval(tek, ck.m,Var(σ)) = bkalloc(g, hp)c.

Hence, the second component of the new topmost stack frame in the
successor configuration of the concrete kernel is

snd(toplm(c′abs.m)) = kalloc(g, hp).

Using the recursion depth invariant and Lemma 8.14, we know that the
recursion depth—and thus the topmost stack frame— is shifted by a
constant rdoff to the recursion depth of the abstract kernel.

Hence, we obtain:

snd(toplm(c′k.m)) = snd(lst(c′k.m)!(|lst(c′abs.m)|+ rdoff))
= kalloc(g, hp)
= kalloc(snd(toplm(c′abs.m)), hp)
= kalloc(snd(c′abs.m.lm!(|lst(c′abs.m)|), hp))

Since all other stack frames of the successor configurations stay unchanged,
we can exploit the assumption of konsisreturn(cabs.m, ck.m, hp) together
with the equation above to prove this case.

Case 2: The return case hd(s2l(cabs.prog)) = Return(e) is much simpler.

Successful execution in the abstract kernel leads to a new local memory,
which is equal to the old one without the topmost stack frame.

The same happens in the concrete kernel. This means that recursion
depth has been decreased by one in both successor configurations. All
other stack frames stay unchanged.

By simply using the assumption konsisreturn(cabs.m, ck.m, hp), we have
completed the proof for this case. q.e.d.

8.5.4 Heap Invariants

The heap invariants capture two properties of the heap: the first is injectivity
of the heap map, that is different arguments to this function deliver different
results, the second one is boundedness, i.e. the values of the heap map—heap
indices—stay within the boundaries of the concrete heap size.

Lemma 8.19 (Preservation of Heap Invariants) Let cabs and ck be two
(weak) valid configurations encoding both kernels. Furthermore, let the invari-
ants on symbol tables, program rest, type name environments, procedure table,
recursion depth and g-variables hold. If the abstract program rest does not start
with an external function call or an assembler statement and if the abstract
kernel has not terminated and the C0 transition function yields an abstract
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successor configuration, then there exists an (updated) heap map such that the
heap invariants hold in the successor configurations, too.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
hmapinj(cabs.m, hp) ∧ hmapbound(cabs.m, ck.m, hp)

heapinv(cabs.m, ck.m)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))
=⇒
∃hp′. hmapinj(c

′
abs.m, hp

′) ∧ hmapbound(c′abs.m, c
′
k.m, hp

′)

Proof We conduct this proof by case distinction over the head of the ab-
stract program rest. All cases but memory allocation, i.e. hd(s2l(cabs.prog)) =
PAlloc(e), are trivial and we omit them.

In C0, each newly allocated heap object gets an index larger than all other
objects allocated before. This is due to the fact that there is no explicit
deallocation of memory in C0.

We consider again the two possible execution paths depending on heap
memory availability. The case when no memory is available is easy: since the
new heap memory is equal to the old one, we leave the heap map as it is:

hp′ = hp.

Since we have assumed the validity of both invariants, hmapinj(cabs.m, hp) and
hmapbound(cabs.m, ck.m, hp), the proof is done.

Let us consider the positive case, that is ?heap(cabs.m, t) = True, with
mapof (teabs, tn) = btc. Then, the new heap has been extended by an element,
both in the abstract and in the concrete kernel due to heapinv(cabs.m, ck.m),
type name consistency, and absence of run-time errors (cf. Lemma 8.13).

In this case, we update the heap map function in the following way:

hp′(i) =

{
|ck.m.hm| if i = |cabs.m.hm|
hp(i) otherwise

From hmapbound(cabs.m, ck.m, hp) we know that the value |ck.m.hm| has not
been assigned to any abstract heap index before:

hmapbound(cabs.m, ck.m, hp) ≡
∀i. i < |cabs.m.hm| =⇒ hp(i) < |ck.m.hm|

Together with the assumption that the heap map has been injective before, we
obtain the injectivity for hp′ in the successor configuration:

hmapinj(c
′
abs.m, hp

′).
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This is also true for the boundedness of the heap map. Since it has been
bounded before by assumption, we only have to consider the function value for
the new abstract heap index i = |cabs.m.hm|, which is:

hp′(i) = |ck.m.hm|
= |c′k.m.hm| − 1.

Hence we obtain:

∀i.i < |c′abs.m.hm| =⇒ hp′(i) < |c′k.m.hm|
≡ hmapbound(c′abs.m, c

′
k.m, hp

′). q.e.d.

8.5.5 g-Variable Consistency

The consistency relation between g-variables of the abstract and concrete kernel
is the most crucial of all kernel relations. Informally, it says: when a g-variable
is reachable in the abstract kernel, so is its counterpart in the concrete kernel;
plus, their initialization status is the same and their types are equal in the case
that they are elementary. Finally, if the abstract kernel variable is elementary
and initialized, then its value and the value of its concrete counterpart are equal
under eqval.

Lemma 8.20 (Equal Content after Memory Update) The value of sev-
eral g-variables might be changed by a memory update, so we have to make sure
that the updates in the abstract and concrete kernel ‘match’ somehow.

Given two (weak) valid configurations for the two kernels and two values v
and v′ that are used in the successful memory update of the valid g-variables
g and kalloc(g, hp). Moreover, let v and v′ be equal under the eqcont function.
If x is valid, initialized, of elementary type, and value equal with its concrete
counterpart, then this is also true after the memory update.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
updmm(cabs.m, g, v) = bm′absc ∧ updmm(ck.m, kalloc(g, hp), v′) = bm′kc
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsishst(cabs.m, ck.m)∧
hmapinj(cabs.m, hp) ∧ hmapbound(cabs.m, ck.m, hp)∧
x ∈ gvar√(sc(cabs.m) ∧ g ∈ gvar√(sc(cabs.m)∧
(?initg(cabs.m, x) −→ eqval(x, cabs.m, kalloc(x, hp), ck.m))∧
?elemT (typeg(sc(cabs.m), x)) ∧ eqcont(typeg(sc(cabs.m), g), v, v′)

=⇒
?initg(m′abs, x) −→ eqval(m′abs, x,m

′
k, kalloc(x, hp))

Proof We consider an arbitrary but fixed g-variable x. We distinguish two
cases: either x is changed by the memory update or not. If x is a sub g-variable
of g, then its value will be updated. Otherwise, it stays unchanged.
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Case 1: We start with the easier case, that is x /∈ subg(g). Using this
along with the fact that x is elementary yields that there is no overlap
between the memory regions of x and g:

bag(sc(cabs.m), x) /∈
{bag(sc(cabs.m), g), . . . ,
bag(sc(cabs.m), x) + (sizeT (typeg(sc(cabs.m), g))− 1)}.

Due to the transitivity of sub g-variables (cf. Lemma 8.4) and type equality
under kalloc (cf. Lemma 8.1), we deduce the corresponding property for
kalloc(x, hp) and kalloc(g, hp) in the concrete kernel.

This means that the values of both x and kalloc(x, hp) are not changed
by the memory update, hence

valueg(m′abs, x) = valueg(cabs.m, x)
valueg(m′k, kalloc(x, hp)) = valueg(ck.m, kalloc(x, hp)).

Using the assumption that value equality for x and kalloc(x, hp) has been
established before the memory update, we simply expand the definition
of eqval to complete the proof for this case.

Case 2: Let x be a sub g-variable of g, i.e. x ∈ subg(g). So, kalloc(x, hp)
is in the set of sub g-variables of kalloc(g, hp).

By definition, g is definitely initialized after the memory update. This is
also true for all its sub g-variables, hence

?initg(m′abs, x) = True. (8.24)

As we have seen in Sect. 3.5.2, the value of g after the memory update
(see Def. 3.10 and Def. 3.14) is equal to v, that is

v = valueg(m′abs, g)
= m′abs.memg(g).ct[bag(sc(m′abs), g), sizeT (typeg(sc(m

′
abs), g))]

(8.25)

Similarly, we obtain for v′ and kalloc(g, hp) in the concrete kernel:

v′ = valueg(m′k, kalloc(g, hp))
= m′k.memg(kalloc(g, hp)).ct[bag(sc(m′k), kalloc(g, hp)),

sizeT (typeg(sc(m
′
k), kalloc(g, hp)))] (8.26)

In the case that g is of an elementary type, its size is equal to 1 and x
and g are trivially identical. Similarly, this is also true for kalloc(g, hp)
and kalloc(x, hp), using the corresponding lemmas 8.1 and 8.4.

Formally we obtain:

v = valueg(m′abs, g)
= mmemg(g)[bag(sc(m′abs), g), 1)]
= mmemg(x)[bag(sc(m′abs), x), 1)]
= valueg(m′abs, x)
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and for the concrete kernel v′ = valueg(m′k, kalloc(x, hp)). Using the
assumption eqcont(typeg(sc(cabs.m), g), v, v′) and the definition of eqval,
we finally obtain

eqval(x,m′abs, kalloc(x, hp),m′k),

which together with equation (8.24) completes the proof for the case that
x = g.

Let us consider the non-trivial case, i.e. x ∈ subg(g)∧x 6= g. We remember
that the value of g is equal to v after the memory update (see eq. (8.25)).

We recall the structure of g-variables as presented in Sect. 3.3.1. Their
tree-like structure can finally be broken down into a set of elementary
sub g-variables (see Fig. 3.3). As we have seen in Sect. 3.3.1, our memory
model is flat in the sense that we merely string together g-variables (see
also Def. 3.12).

This results in a compact memory, which is free of holes, or in other
words: for each memory cell within the memory range of a non-elementary
g-variable, there exists a elementary g-variable, whose value is stored in
this memory cell.

Hence, there exists an index i, such that

bag(sc(m′abs), x) = bag(sc(m′abs), g) + i

with 0 ≤ i < sizeT (typeg(sc(cabs.m), g)). Due to type equality, this
index i also exists for kalloc(x, hp) in the concrete kernel with respect to
konsis(g, hp).

Using the fact that x is elementary and thus has a type size of 1, we
obtain for the value of x:

valueg(m′abs, x) = m′abs.memg(x).ct[bag(sc(m′abs), x), 1)]
= m′abs.memg(g).ct[bag(sc(m′abs), g),

sizeT (typeg(sc(m
′
abs), g))](i)

= v(i)

Similarly, we proceed in the concrete kernel to obtain

valueg(m′k, kalloc(x, hp)) = v′(i)

The definition of eqcont (cf. Def. 7.14) for the aggregate type case guaran-
tees that the equality relation holds for all elements of that type. Using
the assumption eqcont(typeg(sc(cabs.m), g), v, v′), this implies

eqcont(typeg(sc(m
′
abs), x), v(i), v′(i)),

which is by definition and using the fact that the abstract and concrete
memory have been updated appropriately

eqval(x,m′abs, kalloc(x, hp),m′k). q.e.d.
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Lemma 8.21 (konsisnamed on Memory Updates) We will now use the
recent lemmas to prove that the g-variable consistency for named g-variables is
preserved by a memory update.

Given two kernel configurations cabs and ck. We assume that with two equal
values, v and v′, the memory update of the g-variables g and kalloc(g, hp) is
successful. If the konsisnamed relation has held before, then it will be preserved
by the memory updates.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
updmm(cabs.m, g, v) = bm′absc ∧ updmm(ck.m, kalloc(g, hp), v′) = bm′kc
∧ konsispt(ptabs, ptk)∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(cabs.m, ck.m, hp)∧
konsispt(ptabs, ptk) ∧ konsishst(cabs.m, ck.m)∧
konsisreturn(cabs, ck, hp) ∧ eqcont(typeg(sc(cabs.m), g), v, v′)

=⇒
konsisnamed(m′abs,mk, hp)

Proof We remember: konsisnamed is an invariant over all named—hence
reachable—g-variables in the abstract kernel. Without limitation of generality,
let x denote such a g-variable.

We distinguish two proof cases: either x is a sub g-variable of the variable g
used in the memory update or it is not.

Case 1: We start with the sub g-variable case, that is x ∈ subg(g). We
use Lemma 8.4 to obtain kalloc(x, hp) ∈ subg(kalloc(g, hp)).

We assume that x is a named g-variable in the new abstract memory
configuration:

x ∈ reachablenamed(m′abs) ≡ x ∈ gvar√ ∧ ?named(x). (8.27)

Using Lemma 8.2 on transitivity of g-variable validity and the trivial fact,
that kalloc(x, hp) is named, too, we derive

kalloc(x, hp) ∈ reachablenamed(m′k). (8.28)

The variable used in a memory update is always initialized after the
update has happened. So, all sub g-variables of g are initialized, too (cf.
Def. 3.11).

This means that

?initg(m′abs, x) = True = ?initg(m′k, kalloc(x, hp))
=⇒ eqinit(m′abs, x,m

′
k, kalloc(x, hp)) (8.29)

Let us assume that x is of an elementary type, i.e.

?elem(typeg(sc(m
′
abs), x)). (8.30)
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Using Lemma 8.1 on type equality under kalloc, we deduce

eqtype(m′abs, x,m
′
k, kalloc(x, hp)). (8.31)

Furthermore, from equation (8.29) we know that x is initialized. So Let
us consider the value of x after the memory update. Using the auxiliary
Lemma 8.20 for value equality after memory updates and the fact that
symbol configurations are not altered by a memory update, we obtain

eqval(x,m′abs, kalloc(x, hp),m′k). (8.32)

Ultimately, we combine the equations (8.27), (8.28), (8.29), (8.30), (8.31),
and (8.32) to complete the proof for this case.

Case 2: Now we will consider the case that x is not a sub g-variable of
the updated g: x /∈ subg(g). Using the transitivity of sub g-variables as
specified in Lemma 8.4, we obtain kalloc(x, hp) /∈ subg(kalloc(g, hp)).

The first steps of this case are identical to those in the sub g-variable case
before: x and kalloc(x, hp) are also reachable in the succeeding memory
configurations m′abs and m′k (see equations (8.27) and (8.28)).

Since the invariant was valid in the configurations cabs and ck, the initial-
ization of both x and kalloc(x, hp) was equal at this point in time. [Lei08]
has shown that the initialization of variables not afflicted by a memory
update (i.e. that are not sub g-variables of the updated variable) stays
untouched. This gives us

eqinit(m′abs, x,m
′
k, kalloc(x, hp)) (8.33)

Let us assume again that x is elementary:

?elem(typeg(sc(m
′
abs), x)). (8.34)

The rest of this case’s proof is equivalent to the case before. We use again
Lemma 8.1 to establish type equality and—in case that x is initialized—
Lemma 8.20 to obtain value equality after the memory update. q.e.d.

Reachability of Nameless g-Variables

Things are slightly different and more complicated when dealing with nameless
variables. We have to strengthen our arguments slightly, in particular regarding
the values used in the memory update. Thus, we will introduce the notion of
reachable pointers first.

Definition 8.3 (Memcells Containing Pointers to Reachable Objects)
We will define a predicate mcell reachable : memconfT ×mcellT → B for mem-
ory cells containing pointers to reachable objects. The predicate evaluates
to True, if a pointer memory cell contains a pointer to a reachable memory
object regarding a given memory configuration m or if it is of non-pointer type,
formally:

NullPointer
mcell reachable(m,Ptr(NullPointer))



8.5. Dynamic Properties 171

g ∈ reachablenamed(m)
mcell reachable(m,Ptr(g))

reachablenameless(m, g, i)
mcell reachable(m,Ptr(g))

c ∈ {Int(i),Unsgnd(u),Bool(b),Char(z)}
mcell reachable(m, c)

We lift this definition to the level of memory content by defining a predicate
cont reachable : (N → mcellT ) ×N → B. Given a piece of memory content ct
and a bound n ∈ N, the predicate evaluates to True if all memory cells of this
content up to n− 1 contain reachable pointers, formally:

cont reachable(m, ct, n) = ∀i < n.mcell reachable(m, ct(i))

Lemma 8.22 (konsisnameless on Memory Update) For kernel configura-
tions cabs and ck, we assume that with two equal values, v and v′, the memory
update of the g-variables g and kalloc(g, hp) is successful. If the konsisgvars

relation has held before, then its sub relation konsisnameless will be preserved by
the memory updates.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
updmm(cabs.m, g, v) = bm′absc ∧ updmm(ck.m, kalloc(g, hp), v′) = bm′kc∧
konsispt(ptabs, ptk) ∧ konsisreturn(cabs, ck, hp)∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(cabs.m, ck.m, hp)∧
konsishst(cabs.m, ck.m) ∧ eqcont(typeg(sc(cabs.m), g), v, v′)

contreachable(cabs.m, v, sizeT (typeg(sc(cabs.m, g))))

=⇒
konsisnameless(m′abs,m

′
k, hp)

Proof We remember the definition of konsisnameless:

konsisnameless(cabs.m, ck.m, hp) ≡
∀x, i.reachablenameless(cabs.m, x, i) =⇒
reachablenameless(ck.m, kalloc(x, hp), i)∧
(?elem(typeg(sc(cabs.m), x) =⇒
eqtype(cabs.m, x, ck.m, kalloc(x, hp))∧
eqval(x, cabs.m, kalloc(x, hp), ck.m)))

First, we fix an arbitrary nameless g-variable x. Then, the proof is conducted
by induction over the reachability measure i (cf. Def. 7.13).
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Case 1: We begin with the induction start, i.e. i = 0. Hence, we assume
that x is reachable in 0 steps in the successor memory configuration m′abs:

reachablenameless(m′abs, x, 0). (8.35)

At first, we will show that kalloc(x, hp) is reachable in 0 steps in the new
memory configuration of the concrete kernel m′k.

Expanding the definition of nameless reachability, we obtain that there
exists a valid named pointer variable p, which points to x:

?named(p)∧
p ∈ gvar√(m′abs)∧
valueg(m′abs, p) = Ptr(x)∧
tyg(sc(m′abs), p) = PtrT (tn)∧
?init(m′abs, p) = True (8.36)

Furthermore, x itself is a valid nameless g-variable.

The validity of a named variable also implies its reachability. Together
with the fact that the symbol configurations do not change during a
memory update, we derive that p was also reachable before the memory
update.

Using the transitivity of g-variable validity yields that kalloc(p, hp) was
reachable in ck.m and hence is reachable in m′k, too:

kalloc(p, hp) ∈ reachablenamed(m′k) (8.37)

By expanding the consistency relation for named g-variables and using
(8.36), we obtain the equivalence of initialization and type for p and
kalloc(p, hp) in the old memory configurations. Both type and initializa-
tion are invariant regarding a memory update, so we know:

?init(m′abs, p) = ?init(m′k, p) =⇒
eqinit(m′abs, p,m

′
k, kalloc(p, hp)) (8.38)

and

eqtype(m′abs, p,m
′
k, kalloc(p, hp)) (8.39)

In Lemma 8.21 we have shown that the consistency relation for named
g-variables is preserved by a memory update: konsisnamed(m′abs,m

′
k, hp).

Since p is initialized, the values of p and kalloc(p, hp) are equivalent under
eqval:

eqval(p,m′abs, kalloc(p, hp),m′k),

which we expand using the fact that p is of pointer type:

valueg(m′k, kalloc(p, hp)) = Ptr(kalloc(x, hp)). (8.40)
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Let us summarize what we have until now: we know that there exists
a reachable and hence valid named g-variable kalloc(p, hp) of pointer
type PtrT (tn), which points to kalloc(x, hp), and is initialized (eq. (8.37),
(8.38), (8.39), (8.40)).

There is only one requirement left to satisfy reachability in 0 steps, which
is kalloc(x, hp) being a valid nameless g-variable. This can easily be
deduced using Lemma 8.2 and the definition of kalloc, thus

reachablenameless(m′k, kalloc(x, hp), 0). (8.41)

We come now to type equality of x and kalloc(x, hp). Our theorem only
makes a statement for variables of elementary type, hence we assume:

?elem(typeg(sc(m
′
abs), x))

Using [Lei08, Theorem 8.1], which says that nameless heap g-variables
being reachable after a memory update have already been reachable before,
and the pointer reachability of v we obtain from (8.35):

∃j. reachablenameless(cabs.m, x, j).

This is the necessary precondition to expand the definition of the con-
sistency relation for nameless g-variables. Due to symbol configuration
invariance, we simply obtain type equality for the successor configurations:

eqtype(m′abs, x,m
′
k, kalloc(x, hp)). (8.42)

Finally, there is still value equivalence to show for x and kalloc(x, hp).
Again, we expand konsisnameless(cabs.m, ck.m, hp) to derive that this was
the case before the memory update.

This—together with the assumptions and the fact that nameless (heap)
variables are initialized by definition—is used to instantiate Lemma 8.20,
hence obtaining that the values of x and kalloc(x, hp) are also equivalent
after the memory update:

eqval(m′abs, x,m
′
k, kalloc(x, hp)). (8.43)

Combining equations (8.35), (8.41), (8.42), and (8.43) finish the proof for
the induction start.

Case 2: Let us now consider the induction step, that is we assume

reachablenameless(m′abs, x, i+ 1). (8.44)

We start again with the proof for the reachability of kalloc(x, hp) in the
new concrete memory m′k.

Corresponding the definition of reachablenameless (cf. Def. 7.13) in the
inductive case, there are three different ways in which x can be reachable
in m′abs.

1. The first, trivial case, is that x is also reachable in i steps. We just
use the induction hypothesis to prove this case.
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2. In the second case, there is a heap variable p, which is itself reachable
in i steps and points to a valid x:

reachablenameless(m′abs, p, i)∧
typeg(sc(m

′
abs), p) = PtrT (tn)∧

valueg(m′abs, p) = Ptr(x)∧
x ∈ gvar√(m′abs).

We instantiate the induction hypothesis for p and kalloc(p, hp), re-
spectively, and obtain type and value equality. This and transitivity
of g-variable validity satisfy the preconditions for

reachablenameless(m′k, kalloc(x, hp), i+ 1).

3. In the third and last case, there exists a heap variable p, which is
again reachable in i steps, and x is a sub g-variable of it:

reachablenameless(m′abs, p, i)∧
x ∈ subg(p)∧
x ∈ gvar√(m′abs).

Here again, the induction hypothesis gives us the reachability for
kalloc(p, hp) in m′k in j steps. In Lemma 8.4 we have shown that x ∈
subg(p) implies kalloc(x, hp) ∈ subg(kalloc(p, hp)). So, kalloc(x, hp)
is reachable in m′k in i+ 1 steps.

We still have to show type and value equality for x and kalloc(x, hp).
Since the first one is quite trivial (Lemma 8.1 and symbol configuration
invariance), we consider only the latter one.

We proceed similarly to the induction start: We consider the case that x
is elementary. Since it is reachable in m′abs, so it must have been reachable
in cabs.m. This means that x and kalloc(x, hp) have had the same values
before the memory update (expanding the definition of konsisnameless).

Using Lemma 8.20 with these results, we finally obtain

eqval(x,m′abs, kalloc(x, hp),m′k). q.e.d.

Lemma 8.23 (Equal Content for g-Variables) We will now expand value
equality of the abstract and concrete kernel variables to those of non-elementary
types.

Let the invariant on g-variables hold for two (weak) valid kernel configura-
tions cabs and ck. Then, the content of a reachable g-variable g is equal under



8.5. Dynamic Properties 175

eqcont with the content of its concrete counterpart kalloc(g, hp).

ck ∈ conf √(tek, ptk) ∧ linkable(Πabs,ΠCVM)∧

cabs ∈ conf weak√ ∧ konsistenv(teabs, tk)∧
Πk = link(Πabs,ΠCVM) ∧ konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
?init(cabs.m, g) ∧ g ∈ reachablegvars(cabs.m)
=⇒
eqcont(typeg(sc(cabs.m), g), valueg(cabs.m, g), valueg(ck.m, kalloc(g, hp))

Proof We distinguish between g being elementary or not. The first case is
trivial, since we simply expand the konsisgvars invariant.

So let us consider the non-elementary case. Then, the structure of g is given
through a set of elementary g-variables with base addresses within the range of
[bag(sc(cabs.m), g), sizeT (typeg(sc(cabs.m), g))].

For an arbitrary sub g-variable x let 0 ≤ i < sizeT (typeg(sc(cabs.m), g))
denote its offset in this range and let v denote the value of g. The corresponding
value of x is then v(i).

We proceed in a similar way for kalloc(g, hp), whose value we abbreviate
with v′, and kalloc(x, hp), its sub g-variable with offset i.

Furthermore, since g is reachable and initialized, so are all its sub g-
variables, in particular x. By applying the definition of konsisgvars, we obtain
eqval(x, cabs.m, kalloc(x, hp), ck.m), which is equivalent to

eqcont(typeg(sc(cabs.m), x), v(i), v′(i)). (8.45)

This holds for all sub g-variables of g, and hence for all offsets i in the range
mentioned above. With the same argumentation as in Lemma 8.20 regarding
the structure of g-variables, we inductively show that eq. (8.45) holds for all
array elements or struct components, respectively, comprised by g.

This is exactly the definition of eqcont for non-elementary variables as
presented in Def. 7.14. q.e.d.

Lemma 8.24 (g-Variable Consistency) We can now formulate the lemma
for the preservation of g-variable consistency for an ordinary C0 kernel step.
Given two kernel configurations cabs and ck and assuming that the usual kernel
relations hold—in particular the one for g-variable consistency—and that there
exists a successor configuration in the abstract kernel, then g-variable consistency
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will be preserved.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc ∧ δC0(tek, ptk, ck) = bc′kc∧
konsisprog(cabs, ck) ∧ konsistenv(teabs, tek)∧
konsisrd(cabs.m, ck.m) ∧ konsis lst(cabs.m, ck.m)∧
konsisgst(cabs.m, ck.m) ∧ konsisgvars(teabs, cabs.m, tek, ck.m, hp)∧
konsispt(ptabs, ptk) ∧ konsishst(cabs.m, ck.m)∧
konsisreturn(cabs, ck, hp)∧
hmapinj(cabs.m, hp) ∧ hmapbound(cabs.m, ck.m, hp)∧
heapinv(cabs.m, ck.m)∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))

=⇒
∃hp′. konsisgvars(teabs, c′abs.m, tek, c

′
k.m, hp

′)

Proof The proof is done by case distinction over the head of the abstract
program rest hd(s2l(cabs.prog)). For statements that do not update the memory,
thus have no affect on the reachability of g-variables and their values, the proof
is very straightforward. Hence, we will concentrate on the more interesting
cases.

Case 1: We start with assignments, that is

hd(s2l(cabs.prog)) = Ass(el, er).

The proof for the assignment case basically relies on the successful appli-
cation of both lemmas 8.21 and 8.22, which state that in the case of a
successful memory update the konsisgvars relation will be preserved. Thus,
we will concentrate on discharging the assumptions of these lemmas.

Since there is a successor configuration c′abs for the abstract kernel, the
memory update has been successful according to the transition function of
C0. This means that left evaluation has yielded an initialized g-variable,
right evaluation some value and that the right expression is of some type
t, formally:

∃g, v, t.
lval(teabs, cabs.m, el) = bgc∧
rval(teabs, cabs.m, er) = bvc∧
?init(teabs, cabs.m, er) = True∧
type(teabs, cabs.m, el) = btc∧
updmm(cabs.m, g, v) = bc′abs.m

′c

We obtain an initialized kalloc(g, hp) and v′ from the expression evaluation
in the concrete kernel using Lemma 8.9. Hence, the memory update will
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be successful in the concrete kernel, too:

updmm(ck.m, kalloc(g, hp), v′) = bc′k.mc.

We still have to show eqinit(typeg(sc(cabs.m)), v, v′). There are two cases
to be considered: either er is a memory object—?inter(teabs, cabs, er) =
False—or not. In the latter case, er is definitely of elementary type (which
can be easily checked looking at the definitions of expression evaluation
in Sect. 3.4) and we can apply Lemma 8.9. The same holds for er being a
memory object of elementary type.

Let us consider the case that er is a memory object of non-elementary
type. Then, there exists a g-variable x such that lval(teabs, cabs, er) = bxc
and valueg(cabs.m, x) = v. Furthermore, this variable is reachable due
to [Lei08, Theorem 8.1] and initialized, since er is initialized. So we can
apply Lemma 8.23 to obtain eqcont(typeg(sc(cabs.m)), v, v′).

So there is only pointer reachability left to show. In [Lei08, Theorem 8.1],
the proof has been done that the right value of an expression, given that
it is initialized, in a valid configuration only contains reachable pointer
memory cells, hence:

cont reachable(cabs.m, v, sizeT (t)).

This is all we need to complete the proof for this case.

Case 2: Let us now consider memory allocation, i.e. hd(s2l(cabs.prog)) =
PAlloc(e, tn). We obtain a g-variable g by left evaluation of e and a type
t by mapof (teabs, tn) = btc.
For the proof, we distinguish on the availability of heap memory in the
abstract kernel.

We start with no memory available, that is ?heap(cabs.m, t) = False. In
this case, the heap memory stays unchanged and the special null pointer
value is assigned to g.

Due to the heap invariant heapinv(cabs.m, ck.m), the same happens in the
concrete kernel. Both g and kalloc(g, hp) are reachable and—at latest
after the memory update—initialized. Furthermore, they are of the same
type, since type name environment consistency yields the same type t
associated with the type name tn in the concrete kernel. Since the value
of both g and kalloc(g, hp) is now NullPointer ,

eqval(g, c′abs.m, kalloc(g, hp), c′k.m)

holds, too. This is all we need to show konsisgvars(c′abs.m, c
′
k.m).

Now we examine the case in which enough heap memory is available. In
an intermediate step (cf. Def. 3.25), we extend the heap symbol table
of both kernels by appending an entry (undef , t) and initialize the value
of the new heap variable according to Def. 3.19. Let us denote these
intermediate memories with m′abs = extheap(?heap, cabs.m, t) and m′k =
extheap(?heap, ck.m, t), respectively.

We update our heap map function hp in such a way that the new abstract
heap element index is mapped to the new concrete element index . The
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mapping stays unchanged for all other values and we denote the update
heap map by hp′:

hp′(x) =

{
|hst(ck.m)| if x = |hst(cabs.m)|
hp(x) otherwise

Note that Lemma 8.19 guarantees that the heap invariants are preserved
by such an update.

In a second step, we obtain the successor memory configuration by updat-
ing the value of g with a pointer to the new heap variable:

c′abs.m = updmm(m′abs, g,Ptr(gvarhm(|hst(cabs.m)|)))

and similarly for the concrete kernel, using Lemma 8.13:

c′k.m = updmm(m′k, kalloc(g, hp),Ptr(gvarhm(|hst(ck.m)|))).

Since both g and kalloc(g, hp) are reachable, the new heap variables
to which they point are reachable, too. Furthermore, we know that
gvarhm(|hst(ck.m)|) = kalloc(gvarhm(|hst(cabs.m)|), hp′).

Obviously, both heap variables are of the same type, namely t. Let us
assume that t is elementary. Then the value of these variables is equal
to the initial value of t, which is 0 for IntT , UnsgndT and CharT , False
for BoolT , and NullPointer for pointer types. In any case, the value
equivalence holds (see Def. 7.14 for elementary types).

So far for the new heap variables. We still have to have a look at g and
kalloc(g, hp) (which is equal to kalloc(g, hp′)). Both g-variables have been
obtained by left evaluating an expression in a valid configuration, so they
are reachable in this configuration.

In addition, reachability of the updated variable is invariant. Hence, both
g and kalloc(g, hp′) are reachable in c′abs.m and c′k.m, respectively, and
initialized.

Furthermore, they are of the same—elementary—type PtrT (tn) Since the
memory update was successful in the abstract kernel, the value of g in
the successor configuration is

valueg(c′abs.m, g) = Ptr(gvarhm(|hst(cabs.m)|))

and for kalloc(g, hp′) in the concrete kernel

valueg(c′k.m, g) = Ptr(kalloc(gvarhm(|hst(cabs.m)|), hp′)).

Using the definition of eqcont for pointer types (cf. Def. 7.14), we finally
deduce

eqval(g, c′abs.m, kalloc(g, hp′), c′k.m).
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Case 3: We will now consider function calls, that is hd(s2l(cabs.prog)) =
SCall(σ, fn, plist).

The relevant parts of a function call regarding g-variable consistency are
the stack extension and the parameter passing. The new stack frame
being added by the call defines a return destination g, which comes
from the expression evaluation of Var(σ). Using Lemma 8.9, we know
that the return destination in the concrete kernel is kalloc(g, hp). Since
these two variables are reachable in cabs and ck and since their values
are not changed, the invariant on g-variables still holds in the successor
configurations of both kernels.

Let us now deal with parameter passing. The called function fn has a
function descriptor f , such that (fn, f) ∈ {ptabs}. Due to procedure table
consistency, there exists a corresponding entry (fn, f ′) in the concrete
procedure table ptk with f ′.params = f.params and f ′.lvars = f.lvars.

As we have seen in Sect. 3.5.3, at first the local memory stack is extended
by a new stack frame mf ′ with

mf ′ =

 st = stfunc(f)
ct = undef
init = ∅

 .
We denote the memories extended with mf ′ withmabs andmk, respectively.
Subsequently, the parameter list plist is right evaluated. In the next step,
the parameter names of the called function are obtained. Finally, the
memory is updated, e.g., given a parameter name π and a value v:

updmm(mabs, gvarlm(|cabs.m.lm|, π), v) = bm′absc.

In the concrete kernel, we proceed likewise. Since the parameters are the
same, so are the names. Let π and v′ denote such a parameter name and
its corresponding value.

So, the corresponding memory update in the concrete kernel looks like
this:

updmm(mk, gvarlm(|ck.m.lm|, π), v′)
= updmm(mk, gvarlm(|cabs.m.lm|+ rdoff, π), v′)
= updmm(mk, kalloc(gvarlm(|cabs.m.lm|, π), hp), v′)
= bm′kc.

gvarlm(|cabs.m.lm|, π) and kalloc(gvarlm(|cabs.m.lm|, π), hp) are reachable
in mabs and mk, since they are valid and named. Furthermore, they are
initialized due to the memory update and of equal type, since the function
symbol tables are equal.

Finally, we obtain content equality for v and v′ in the same manner as
we did it for assignments further above, depending on the expression
evaluation returning a memory object or not.

Using Lemma 8.9, we prove that the konsisnamed holds for these two
variables in the two successor configurations.
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We proceed likewise by induction over the parameter list of the function
call. Since all other variables stay unchanged, both regarding reachabil-
ity and value, the invariant on g-variable consistency also holds in the
successor configurations c′abs and c′k.

Case 4: The last case is an abstract program rest starting with a return
statement, i.e. hd(s2l(cabs.prog)) = Return(e). The proof for this case is
very similar to the one dealing with assignments.

The variable updated by a return statement is specified by the return
destination of the current stack frame. For the abstract kernel, this is:

g = snd(toplm(cabs.m))
= snd(cabs.m.lm!(|sc.lst(cabs.m)| − 1)).

Exploiting the invariants on return destinations and recursion depth,
konsisreturn and konsisrd, we obtain for the concrete kernel:

snd(toplm(ck.m))
= snd(ck.m.lm!(|sc.lst(ck.m)| − 1))
= snd(ck.m.lm!(|sc.lst(cabs.m)|+ rdoff − 1))
= kalloc(g, hp).

Both variables are reachable, since they are named and valid.

We right evaluate e to obtain the return values: v in the abstract kernel
and v′ in the concrete kernel, where we obtain

eqcont(typeg(sc(cabs.m), g), v, v′)

in a similar way as we did it in the assignment case.

Again, memory updates do not change the reachability of the updated
variable, so both g and kalloc(g, hp) are reachable and initialized in the
successor configurations. Applying Lemma 8.21 finally completes the
proof for this case. q.e.d.

8.6 Preservation of Kernel Consistency by C0 Kernel
Steps

In the previous sections, we have proven for ordinary C0 steps—no XCalls, no
external function calls, no assembler—that the individual relations between the
abstract and concrete kernel components are preserved under the assumption
that the abstract kernel does not yield a run-time error.

Furthermore, we have shown that if the abstract kernel proceeds, i.e. yields
some successor configuration using the C0 transition function, then concrete
kernel execution will not fail neither.

We will now summarize these results into one theorem stating that the
abstract and concrete kernel relation konsis will be preserved.
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Lemma 8.25 (Induction Step for konsis) Let cabs denote a weak valid ab-
stract kernel configuration and ck a valid concrete kernel configuration, where
the concrete kernel programs results from linking the abstract kernel to the
low-level CVM implementation.

Further we assume that the kernel relation konsis holds and that the program
rest of the abstract kernel neither starts with an external function call, an as-
sembler or a XCall statement, nor that abstract kernel execution has terminated,
and that there exists an abstract successor configuration obtained by applying
the C0 transition function.

Then there exists also a concrete successor configuration, such that the kernel
relation holds for these two new configurations.

linkable(Πabs,ΠCVM) ∧Πk = link(Πabs,ΠCVM)∧
konsis(teabs, ptabs, cabs, tek, ptk, ck)∧
cabs ∈ conf weak√ (teabs, ptabs) ∧ ck ∈ conf √(tek, ptk)∧
δC0(teabs, ptabs, cabs) = bc′absc∧
¬is Asm(hd(s2l(cabs.prog))) ∧ ¬is Skip(cabs.prog)∧
¬is ESCall(hd(s2l(cabs.prog))) ∧ ¬is XCall(hd(s2l(cabs.prog)))

=⇒
∃c′k. δC0(tek, ptk, ck) = bc′kc ∧ konsis(teabs, ptabs, c′abs, tek, ptk, c

′
k)
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In this Chapter, we will first summarize on the results presented in this
thesis (Sect. 9.1). Subsequently, we discuss the work that has yet to be done in
order to integrate our results into the overall correctness theorem (Sect. 9.2) We
will then discuss some possible directions for future work in operating systems
verification (Sect. 9.3).

9.1 Achievements

CVM Computational Model In this thesis, we have introduced the formal
semantics of CVM, a hardware-abstracting framework for microkernel program-
mers. The CVM semantics definitions have not only been presented in this
work, but they are also formalized within the Isabelle/HOL interactive theorem
prover environment. Unlike the related work, CVM

• offers serious support for virtual memory and its management,

• integrates user processes and devices into the computational model,

• considers the low-level hardware in detail.

To the best of our knowledge, there exists no other project covering all of the
above features.

The development of CVM semantics started with [GHLP05]. Though the
current formal semantics has been largely specified by us, it obviously benefitted
from contributions and demands from many people in the Verisoft project, who
have been using CVM in one or the other way.
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Correctness and Pervasiveness CVM correctness is formulated as a sim-
ulation theorem, where the hardware simulates the CVM model. Individual
states of the computational models are related by an abstraction relation, which
subsumes several other abstraction relations for the single components of a
CVM configuration.

We have defined the relation between abstract and concrete kernel. The
user process relations bases on our work and has been continued by Tsyban.
[Tsy09] has formulated the other correctness relations and invariants, which
are used in the top-level correctness theorem sketch as presented in [AHL+09],
basing on an initial version of Tsyban.

For standard abstract kernel steps, that is those, in which no primitive is
called or in which the kernel goes to kernel wait, we have presented the proof
that the kernel relation is preserved. Particularly this involves that the concrete
kernel does not produce any run-time faults if the abstract kernel does not.
This proof has also been formalized to a very large extent in Isabelle/HOL.

Furthermore, CVM has been developed with pervasive system verification
in mind. This means that for all layers in the system stack, we have developed
computational models or have integrated models from other sources within the
Verisoft project.

While most other OS verification projects aim to prove that the implemen-
tation satisfies a certain security policy, the CVM top-level correctness theorem
is a statement on total functional correctness. Practically, this implies already
more or less complex security policies as memory separation of user processes.
Yet, it is also sufficient for much stronger correctness criteria, in particular if
one aims to prove functional correctness of layers above CVM as it is done in
the Verisoft project.

Compositionality and Modularization There are certainly different phi-
losophies when verifying a system stack. One is to take the overall actual
implementation of everything at hand—compiler, hardware, low-level CVM
implementation—and disclose the full state of all components to the layers
above.

There is nothing wrong with this if one merely aims to verify one specific
given stack. It even makes verification life easier, since one can resort to all
low-level detail at any time and does not have to worry about clean and concise
interfaces.

Yet, this approach falls short whenever it comes to specification and/or
implementation modifications on any layer: the proofs have to be re-checked
and adapted, if possible. Moreover, the bigger the system stack gets, the more
demanding it becomes for the verification engineer to handle this complexity—or
even worse: become acquainted with an existing design and proof.

It is not a new idea to aim for encapsulation and modularization. In software
technology and the design of programming languages, the same experiences
with growing software have led already decades ago to the same principles. This
is why we have chosen to stick with the credo as much detail as necessary, as
less as possible.

In particular, we have introduced the notion of abstract linking and linkabil-
ity of C0 programs. This allows to separate the low-level hardware-dependent
implementation from the actual kernel implementation. Not for nothing, CVM



9.2. Integrating Our Results 185

has been designed as a hardware-independent framework for microkernel pro-
grammers, where the abstract kernel is a parameter provided by the implementer.

This allows us to define a clean interface for the verification above CVM
level: one can show code correctness for the abstract kernel (e.g., absence of
run-time faults) using comfortable tool support and rely on the correctness of
the CVM implementation, given that the resource restrictions and linkability
requirements are met.

Furthermore, by proceeding like this, we were able to use and re-use plenty
of results (and in particular lemmas) from [Lei08]. The proof we have presented
demonstrates the feasibility of this approach: the correctness relation between
the abstract and the concrete kernel—obtained by linking—is preserved.

9.2 Integrating Our Results

As a matter of fact, our work did not always proceed with the speed for which
we have hoped. In order to be able to continue her work on the top-level
correctness criterion, Tsyban has formulated her own version of a relation for
the abstract and the concrete kernel.

Yet, the integration of our correctness proof requires some predictable and
manageable effort. In the remainder of this section, we will sketch the changes
and extra work that has to be done.

The Dummy Function The dummy function, whose existence we have
assumed in Sect. 6.2.2, is a crutch to allow for the use of the existing C0
small-step semantics and its rich resources on lemmas when arguing about the
abstract kernel. In the concrete kernel, the abstract kernel dispatcher is called
by the low-level CVM dispatcher in the same way as the dummy function.

A meta-theorem that the concrete kernel obtained by linking behaves in the
same way with or without this dummy function has to be shown. Yet, since
this function is never called, the proof of such a theorem is supposedly rather
simple.

For instance, our construction fits perfectly well with the kernel -rel result

relation from [Tsy09], which relates the cup variable of the concrete kernel with
the abs kernel res variable of the abstract kernel.

Induction Start For the induction start, given through an abstract kernel
configuration after reset, it has to be proven that the kernel relation holds. We
would relate this abstract kernel configuration to a concrete kernel configuration
where the head of the program rest also points to a call of the abstract kernel
dispatcher.

In the abstract kernel, there has been no memory allocated, its global
variables are disjoint from those of the low-level implementation (hence of initial
value) and the stack has been freshly initialized. These facts make the proof for
most kernel invariants rather easy. As Fig. 9.1 illustrates this for consistency of
the program rest at induction start.

Resource Restrictions Currently we assume that memory allocation does
not fail in the concrete kernel if it succeeds in the abstract kernel. This
assumption has to be discharged.
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SCall
abs_kernel_disp Return

SCall
abs_kernel_disp Return CVM low-level

program rest

abstract kernel program rest

concrete kernel program rest

Figure 9.1: Abstract and Concrete Program Rest at Induction Start

Yet, the low-level CVM implementation in Verisoft makes currently very
little use of memory allocation (and fortunately not in a recursive manner),
basically only when creating the page tables for the (fixed number of) user
processes and some data structures for the page fault handler. Computation
of memory consumption can hence be done in the conventional way for the
abstract kernel, with the constant offset for the CVM implementation being
simply added.

Kernel Wait and Primitives For kernel wait and the primitives it still has
to be shown that kernel consistency is respected (in the sense that it holds
after a primitive call and after leaving kernel wait, not necessarily in between).
The proof has to focus mainly on the consistency relation for g-variables, in
particular heap variables (due to global variable disjointness). In the current
CVM low-level implementation, primitives do not take pointer arguments,
making things quite easier. This is not true when dealing with physical I/O,
where data structures of the abstract kernel are directly changed. Yet, there
have been no such primitives been verified in Verisoft up to now.

Theorem Integration [Tsy09] has used a correctness relation kernel -rel for
the abstract and concrete kernel. Basically, this relation covers a subset of
the sub relations of konsis as defined in the chapters before and uses concrete
numbers instead of constants, as given through the current low-level CVM
implementation.

For instance Tsyban’s conversion function abs2conc [Tsy09, Def. 7.5] uses
an offset of 2 for local variables, where we use the constant rdoff, and uses a
constant shift for heap variables, where we prefer a mapping function between
the abstract and the concrete heap (note, that this implies that the concrete
kernel is only allowed to allocate memory at the very beginning, but never again
during execution). The instantiation of kalloc with appropriate parameters is
more or less trivial.

The relation for g-variables in the abstract and concrete kernel, kernel -relGvar

[Tsy09, Def. 7.7], is syntactically nearly the same as the one of konsisgvars (cf.
Def. 7.10). Generally, our correctness statement given by konsis is stronger,
such that it should be feasible to prove that it implies the correctness statement
of Tsyban—with a reasonable amount of work.

Regarding abstract linking, Tsyban prefers to swap the parameters compared
to our use of link in this thesis. Since the compiler used in the Verisoft project
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allocates C0 functions in the assembler memory in the order they are defined
in the procedure table of the compiled program, she can use this to obtain the
concrete address of the low-level init() and dispatcher() function, which
she uses in her proofs.

Though this is a pretty strong assumption, since the use of a different
compiler would render large parts of the proof useless, we do not require a certain
order in the linking of procedure tables (unlike for type name environments,
see also the remark at Lemma 8.7). Hence, we could easily adapt our linking
process in the desired way.

Last but not least, our correctness theorem as presented in Lemma 8.25
has to be applied within the proof for the correctness of a kernel step (cf.
Theorem 7.2). Besides the instantiation of the compiler correctness [Lei08], this
would require to prove preservation of the other correctness relations.

Of all these relations, the user process relation B is probably the most
demanding one. Since in kernel mode, user process relation bases on the process
control blocks, that is heap variables of the concrete kernel (cf. Sect. 6.5.1 and
7.2.1), we basically have to show that the abstract kernel does not alter these
variables. The current CVM low-level implementation does not make use of
pointers as function parameters, so we can be sure that this will not happen,
making the proof seemingly not too tedious (though it is a strong assumption
on the actual code, see also next section).

9.3 Operating Systems Verification

The academic system was not meant to be a high-performance system, but
to show the feasibility of the Verisoft approach to a system stack of realistic
complexity regarding size and functionality. This has been accomplished and
we have the necessary theory at hand.

Yet, to play devil’s advocate: the system has been built with formal verifica-
tion in mind and neither the programming languages nor the hardware involved
are commercially available or relevant.

To lift the quality of our results to industrial heights, we have to apply the
methodology to an industrial system. In fact, this is part of the Verisoft XT
project, where the Hypervisor and PikeOS verification benefits considerably
from the experiences made in specifying and verifying an operating system.

Though the settings are by far more complex, the top-level correctness
criteria are similar: memory separation and functional correctness of the kernel
calls. The existing theory has of course be extended, in order to handle features
like preemption, memory sharing and the fact that the kernel itself runs many
threaded in a truly concurrent way.

An analysis, how our results and those of the L4.verified project [KEH+09]
could be used to mutual improvement would be of great interest.

Last but not least, the current CVM low-level implementation does not
make use of pointers as function parameters. This means we can be sure that
the abstract kernel never gets access to concrete kernel only data structures
(i.e. CVM data structures), a property that makes for instance proving of the
B-relation much easier. It would be interesting to analyze the problems that
arise when allowing for function pointers and its consequences regarding heap
separation.
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