Diplomarbeit

Design and Ewvaluation
of a Superscalar RISC Processor

Mark A. Hillebrand

(mahQ@ujpserver.cs.uni-sb.de)

Lehrstuhl Prof. Dr. W. J. Paul
Fachbereich Informatik
Universitat des Saarlandes

April 2000

Eidesstattliche Erklarung
Hiermit erklire ich an Eides Statt, daf3 ich die vorliegende Arbeit selbstindig und

ohne unerlaubte fremde Hilfe angefertigt und andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt habe.

Saarbriicken, den 5. April 2000

Contents

1 Introduction

1.1
1.2

2.1

2.2

2.3

Overview o i i e e e e e e e e e
Noteson Reading Lo
2 Abstract Model
Tomasulo Algorithm
2.1.1 Sequential Instruction-Stream-Based Machine
2.1.2 Tomasulo Machine
2.1.3 Correctness it e e e e e e e e e
Roll-Back e
2.2.1 Definition of Precise Roll-Back
2.2.2 Roll-Back Retirement Protocol
2.2.3 Proof of Preciseness
Instruction Fetch and Speculation
2.3.1 Sequential Instruction-Memory-Based Machine
2.3.2 Non-Speculative Instruction Fetch
2.3.3 Speculative Instruction Fetch

3 Hardware

3.1

3.2
3.3

34
3.5
3.6
3.7

3.8

3.9

Notation o e e e e
3.1.1 Control Signalso
3.1.2 BUSSES . . . i e e e e e e e e e e e e e e e
313 Figures e
Half-Unary Number Format
Instruction Fetch Mechanism
3.3.1 Overview e
3.3.2 Algorithms
3.3.3 Control
Instruction Memory Environment
Instruction Fetch Queue Environment
PC environment
Prediction Environment 0.
3.71 Finding the first CFI
3.7.2 Prediction
3.73 Resolving
3.7.4 Construction of the CFIbus
Instruction Window Environment
3.8.1 Construction of the Instruction Window
3.8.2 Draining and Switching the Issuing IFQ
Decode / Issue Environment
3.9.1 Decoding the Instruction
3.9.2 Issuing the Instruction

CONTENTS

3.10 Reservation Station Environment 60
3.10.1 Scheduling of the reservation station input busses. 60
3.10.2 Snooping for source operands L. .. 61

3.11 Function Unit Environments 61
3.11.1 Arithmetical and Logical Functional Unit 61
3.11.2 Floating Point Functional Units. 62
3.11.3 Data Memory Functional Unit 62
3.11.4 Branch Checker Unit 65
3.11.5 Producer Environments 67

3.12 CDB Control Environment 68

3.13 Reorder Buffer Environment, 68
3.13.1 ROB Queue Control 70
3132 Issue L 70
3.13.3 Forwarding 70
3.13.4 Completion 71
3.13.5 Retirement 71

3.14 Register File Environment 73
3.14.1 General Purpose Register File. 74
3.14.2 Floating Point Register File 74
3.14.3 Special Purpose Register File 75

3.15 Producer Table Environment 78
3.15.1 General Purpose Register Producer Table 78
3.15.2 Floating Point Register Producer Table 80
3.15.3 Special Purpose Register Producer Table 81

Evaluation 85

4.1 Hardware Model 85

4.2 Parameter Spaceo e 85

4.3 A 2-Superscalar Processor 86
4.3.1 Cost and Delay Optimization 88
432 LongestPath 91
4.3.3 Quality Comparison 91

Circuits 923

5.1 Multiported Round-Robin Selector 93
5.1.1 Abstract View on Multiported Round-Robin Selectors 93
5.1.2 Implementation of a Multiported Round-Robin Selector . . . 94

5.2 Multicounter 96

5.3 Multiported Queue 96
5.3.1 Definition of an Abstract Multiported Queue 96
5.3.2 Imterface L 98
5.3.3 Register-Based Implementation 99
5.3.4 RAM-Based Implementation 103

5.4 Reservation Station Queue., 105
5.4.1 Definition of an Abstract Multiported Queue 105
5.4.2 Description of the Interface and Equivalence Criterion 106
5.4.3 Register-Based Implementation 106

6 Perspective 111

A DLX Instruction Set Architecture 113

CONTENTS

B Sample Branch Predictor Unit

B.1 Branch Predictor
B.1.1 TImplementation
B.1.2 Integration in the processor

B.2 Write-Buffered RAM
B.21 Write
B.22 Read. e

C Auxiliary Circuits

C.1 Find-First-One Half-Unary
C.1.1 Definition and Construction
C.1.2 Correctness. v v v v v it e e e e e

C.2 Find-First-k-Ones
C.2.1 Definition e
C.2.2 Construction i
C.2.3 Correctness v o i it e e e
C.2.4 Different Interpretation

C.3 Multiple Incrementer oo

CONTENTS

Chapter 1

Introduction

Processor design tries to increase the computing power of microprocessors by the
advances in two fields of research. In the first, speed-up is achieved by physical
advances in circuitry like reduced gate delay and an increased integration density
or wafer size. In the second, refined or new algorithmic strategies are implemented
decreasing the cycle-per-instruction (CPI) rate of a processor.

One approach in the second field that has been followed with considerable success
is the development of superscalar processors. Such processors execute instructions
in parallel while retaining the traditional sequential semantics of programs.

This thesis develops a superscalar processor on formal basis. Our superscalar
processor falls into two parts: an instruction fetch mechanism and a superscalar
DLX processor core implementing the Tomasulo algorithm. The instruction fetch
mechanism loads instruction from the instruction memory and by sorting them in
program order produces the so-called instruction stream. The processor takes the
instruction stream and executes it as fast as possible. This combination of fetch
mechanism and processor is extended by speculative execution (in the context of
branch prediction) and by a precise interrupt mechanism.

1.1 Overview
The remaining part of this thesis is organized in five chapters:

e Chapter 2 develops the formal framework of our processor. It contains formal
approaches and proofs of correctness of a superscalar Tomasulo algorithm, a
precise roll-back mechanism and a (speculative) instruction fetch mechanism.

e Chapter 3 describes the implementation of the hardware of our processor
design hierarchically descending down to gate-level. The hardware model used
for the description is that of [MP95]. It provides a formal background and is
easily evaluated.

e Chapter 4 examines the parameter space of the proposed processor design
and compares variants of it to existing processor designs from [MP95, MP00,
Krs99].

e Chapter 5 defines modules used in the machine description from chapter 3.
These modules represent integral functional parts of the processor. There-
fore their correctness is of great importance to the correctness of the whole
processor design; formal criteria for correctness are specified and proven.

9

10 CHAPTER 1. INTRODUCTION

e Chapter 6 draws conclusions from the presented design, the formal approach
and its evaluation. It also points out the fields that may be of interest for

further research.

1.2 Notes on Reading

We assume that the reader is familiar with the concepts of circuit and processor
design as developed in [KP95, MP95, MPOQ0]. For the understanding of a non-
superscalar DLX design implementing the Tomasulo algorithm, [Kr699] is of further
help.

Chapter 2

Abstract Model

This chapter develops an abstract model for a superscalar hardware in three steps:

e Section 2.1 presents a superscalar Tomasulo scheduling algorithm. The algo-
rithm handles the execution of instruction streams, sequences of instructions
without control flow changes. This limitation is removed later on. The cor-
rectness of the algorithm is proven.

e Section 2.2 extends the Tomasulo algorithm by a precise roll-back mechanism.
A precise roll-back mechanism stops the execution of an instruction stream
at a specified instruction I,; the instruction following I, must not modify the
state of the machine according to its sequential semantics. Precise roll-back is
needed for the implementation of precise interrupts and speculative execution.
The correctness of the roll-back mechanism is proven.

e Section 2.3 develops the concepts of an instruction fetch mechanism and of a
speculative instruction fetch mechanism. These concepts are needed to provide
the transition from instruction-stream based machines (that nobody builds)
to real-life instruction-memory-based machines (with speculative execution).
The speculation makes use of the precise roll-back mechanism to take back
the effects of falsely executed instructions.

This chapter does not treat data memory and interrupts specifically. The exact
manner of their treatment is often only defined by concrete system architectures.
This is not the level of generalization we aim for in this chapter; nevertheless, in
chapter 3 data memory and interrupts are treated in the environment of the DLX
architecture.

2.1 Tomasulo Algorithm

The section describes a superscalar Tomasulo scheduling algorithm. It executes a
dynamic instruction stream ly,ls,... out-of-order while preserving the sequential
semantics.

Our approach is in three steps. First, we define the semantics of an instruction
stream by a sequential instruction-stream-based machine IS;.,. Second, a super-
scalar Tomasulo machine TM is defined by description of the global structure and
the scheduling protocols. In the third step, it is shown that TM simulates IS;.,.
This is done by showing the data consistency theorem and the termination lemma.

11

12 CHAPTER 2. ABSTRACT MODEL

2.1.1 Sequential Instruction-Stream-Based Machine

We define the model of an instruction-stream-based sequential machine, IS,.,. The
machine IS;., has #reg registers Ry, ..., Ryreg Over the finite domain DOM. These
registers are referenced by the indices R := {1,.. ., #reg}. Instructions are executed
from the instruction stream. In cycle n the machine executes I, a tuple:

I, = (op, d,dopi.A,...,dops.A, o,sopi.A,..., s0p,.A)

The function op : DOM? — DOM? computes the results of the operation; ¢ is
the number of destination operands and dop;.A,...,dops.A € R are their identifiers
(pairwise distinct); o is the number of source operands and sop;.A,...,sop,.A € R
are their identifiers. With

(resulty,...,results) = op (Rsop;,.A,;---;Reop,.A)

and primed registers denoting “new”, i.e. next-cycle values of registers, the seman-
tics of the instruction |, is defined as

result; if A =dop;.A
result if A = dops.A

results if A = dops.A
Ra otherwise

Note, that a generalization on multiple, orthogonal destination operands (§ > 1)
is not used in real machines. Usually just one general destination operand and
additional fixed-addressed destination operands (like operation flags) are sufficient.
However, we allow 6 > 1 for two reasons: first, our approach to fetch mechanisms
takes advantage of this fact, justifying the extra effort. Second, the simplifications
used in machines having additional fixed-address destinations can be justified on
the basis of algorithms for ¢ > 1.

For ease notation, we consider ¢ and J fixed for the instruction set of the machine.

A configuration of the machine stores (the values of) the registers. Instruction
I is supposed to arrive in cycle n and is therefore not stored in the configuration.

2.1.2 Tomasulo Machine
Informal description of the Tomasulo algorithm

This algorithm was originally published by Tomasulo in [Tom67] in the year 1967.
Written first for a very specific environment, this algorithm can be easily adopted
for more general architectures. The algorithm associates each instruction and its
destination registers on execution with a state-unique identifier, a small natural
number, called tag.! On requesting a source register, an instruction either receives
the (correct) value of this register, or the tag of a previous instruction computing it.
On receiving a tag, the instruction has to wait until the result becomes available by
a global result broadcast system. If all operands are gathered, an instruction may
start execution. On completing execution, the instruction broadcasts tag and results
in the whole machine for the benefit of instructions awaiting their source operands.
Note that instructions awaiting execution need only to be connected to the global
result broadcast system without taking up any other machine resources. A data
structure, called reservation station, serves this purpose for a single instruction.

IState-unique means that in each cycle there is at most one instruction in execution holding the
identifier. In the machine, the tags are recycled if not used; so the same tag may identify different
instructions in different states.

2.1. TOMASULO ALGORITHM 13

Basic Data Structures and Paths of a Tomasulo Machine

The figure 2.1 shows the basic data structures and paths of a superscalar Tomasulo
machine. The figures are annotated with the scheduling phases of an instruction.
The following components are present in a Tomasulo machine:

e The instruction window buffers incoming instruction in slots i; to ig. Each
round, the machine tries to start the execution of as many of these instructions
as possible. According to the definition of the abstract machine, i; is a tuple
of source operand addresses i;.sop; to ij.sop,, an operation code i;.op and
destination operand addresses i;.dop; to i;.dop;.

e The register file contains a tuple (valid, tag, st , data) for each register R;. Two
invariants will hold for the register file:

If R;.valid = 1 then R;.data contains the data of the last instruction writing to
R; up to the current machine cycle.

If R;.valid = 0, then R;.tag holds the tag of the producing instruction, i.e. the
newest instruction having R; as destination operand. The item st € {1,...,4d}
then specifies the index of the destination operand having address .

e The common data busses are the global result broadcast system for the ma-
chine. Each common data bus bears a tuple (tag,resulty,...,results) of a tag
and the associated results.

e The reorder buffer contains for each instruction currently in execution a
record, addressed by the instruction’s tag, with the following items: the items
dop; .A to dops.A buffer the destination addresses of the instruction. The valid
flag signals 1, if the instruction has already broadcast its results on a common
data bus. In this case, the items dop;.data to dops.data store the results. The
reorder buffer writes results back to the register file in program order.

The reorder buffer is organized as a simple wrap-around queue. The variable
ROB.head points to the head of the queue, which is also the oldest instruc-
tion. The variable ROB.tail points to the next free entry of the queue, unless
ROB.tail = ROB.head which signals a full reorder buffer. The constant ROB-
SIZE denotes the size of the reorder buffer.

e Reservation station queues are collections of buffers, called reservation sta-
tions, for instructions waiting for their source operands to be broadcast on
the common data busses. A reservation station contains the following items:
the item full indicates valid reservation station contents; the item op is an
operation identifier; the tag of the instruction that the reservation holds is
stored in the item tag; a tuple sop, for each source operand.

The source operand tuple contains the correct operand data, if valid = 1;
otherwise it holds the tag and subtag of the producing instruction.

An instruction i; is executed from the machine in the following way. On issue it
is taken from the instruction window, associated with a tag from which the reorder
buffer can reconstruct program order and put it an appropriate reservation station.
Its source operands may either contain valid data or correct tag and subtag infor-
mation. The instruction will remain in the reservation station until it has gathered
all its missing source operands from the common data busses in a process called
snooping. Having valid source operand data, the instruction will eventually leave
its reservation station and be dispatched to its functional unit for execution. The
functional unit computes the result busses and passes them via an interface called
producer to one of the common data busses. This step is called completion. The

QUIYDRW O[NSBWOT, ® JO syjed pue SoInjonijs eyep oseq :1°g oansdig

issue

dispatch

execute

complete

retirement / writeback

Instruction Window Register File Reorder Buffer
ih ’sop*.A op dop,.A ‘ R, ’valid tag,st data ‘ - ’valid dop*.{A,data}‘
is |sop, A op dop, A | | |Ryp |valid tagst data valid dop, {A,data}
) 1)
v v 1
)
RSQop

RS ’full op tag sop*.{valid,data,tag,st}‘

RS ’full op tag sop*.{valid,data,tag,st}‘

|

FU,

p

Producer,,

1

common data busses

Snoop

4!

THAONW LOVYLSAV ¢ H4LdVHO

2.1. TOMASULO ALGORITHM 15

reorder buffer stores the result and will write it back to the register file in program
order, i.e. after the results of all previous instructions have been written to the
register file. This phase is called retirement of an instruction.

The exact procedure of the five phases issue, dispatch, snooping, completion and
retirement is defined in protocols below. Basically, these protocols can be obtained
by unrolling the non-superscalar Tomasulo algorithm handling only one instruction
per cycle.

Issue

Superscalar issuing (algorithm 1) processes the instructions in the instruction
window iy, ...,ig with 3 € IN, fixed, in a loop (1. 1) in program order. In line 2,
a tag for the instruction i; is obtained by adding index ¢ to the tail pointer of the
ROB. If the tag is not equal to the head pointer (i.e. the ROB is not full) and the
appropriate reservation station queue for the instruction is not full, i; may issue.
The test of this condition is contained in line 3.

Instruction issue is divided in three phases: gathering the source operands (1. 4—
27), allocation of a free reservation station (11. 28-31) and updates for the destination
registers in the ROB and the register file (1. 32-39).

Consider an iteration of the loop body of the source operand construction, 1l. 4—
27, and define S and R as in ll. 5-6. S is constructed according to five different
cases:

First, S might be produced an accompanying instruction from the instruction
window (Il. 7-11). This case is indicated if a destination operand’s address of the pre-
vious instruction matches S.A. Naturally, the data is not available for the operand,
and we only set the S.tag to the latest instruction’s tag having destination S.A. The
subtag denotes the index of the destination operand.

Second, the register R might be found valid in the register file (1. 12-14). In this
case we set the operand valid and take the data out of the register file.

Third, the operand might be broadcast on one of the common data busses (1l.
15-18). This is the case if the register’s tag R.tag is found on one of the common
data busses. The data can be taken from the result bus indicated by R.st and stored
in the source operand.

Fourth, the operand’s data may reside valid in the reorder buffer, waiting for its
retirement (1. 19-21). In this case, the data can be taken from ROBR tag.datar st

With none of the previous cases meeting, the operand is still being computed in
a functional unit and only its tag R.tag and subtag R.st is available (11. 22-25).

The destined reservation station RS is filled with the instruction opcode, the
destination tag, and the source operands (11. 28-32). The notation of line 31 results
in the assignment of all the items from all the source operands to all the reservation
station source operands.

After gathering the source operands, the instruction has to update the register
file and the ROB for each destination operand (1l. 32-39). Each destination register
is invalidated, the tag information is set to the instruction’s tag, the subtag infor-
mation is set to the destination’s index. The addresses of the destination register
are stored in the ROB for further use.

In hardware, this protocol is parallelized to handle all the instructions in the
instruction window simultaneously. Note the construction in lines 41-43 to stop
issuing at the first instruction encountering a full reorder buffer or a non-available
reservation station. On termination of the issue protocol, #issued contains the num-
ber of issued instructions.

For notation we define #issued’ as the value of #issued in cycle ¢. The same

16 CHAPTER 2. ABSTRACT MODEL

1: for i+ 1to @ do
2: ij.tag « (ROB.tail + 7) mod ROBSIZE
3 if i;.valid A (i;.tag # ROB.head) A RSQj; .op.full then
4 for all¢' € {1,...,0} do (obtain source operands)
5: Let S denote i;.sop,-
6 Let R denote Rg p
7 if 3i- <i:36 €{1,...,0}:i;-.dops.A =S.A then (case: window)
8 Let i~ be maximal with 3¢’ € {1,...,6} : i;-.dopss.A =S.A
9: S.alid + 0
10: S.tag < i;-.tag
11: S.st « &'
12: else if R.valid then (case: register)
13: S.alid « 1
14: S.data + R.data
15: else if 3 k : CDBy.tag = R.tag then (case: snoop)
16: Let k satisfy CDBy.tag = R.tag
17: S.walid « 1
18: S.data « CDBy.datagr.s:
19: else if ROBR.tsg.valid then (case: forwarding)
20: S.alid + 1
21: S.data <~ ROBR tag-datag st
22: else (case: tag)
23: S.alid + 0
24: S.tag + R.tag
25: S.st «+ Rust
26: end if
27: end for
28: Let RS denote an empty reservation station in RSQ; op
29: RS.full’ + 1
30: RS.tag’ « ij.tag
31: RS.sop’, % < ii.sop, .x
32: ROBii.vaIid-Va“d +«~0
33: for all ¢’ € {1,...,4} do (update ROB, RF)
34: Let D denote i;.dopy
35: Rp.a.valid' <+ 0
36: Rp.a-tag’ < ij.tag
37: RD_A.St' « 4
38: ROB;; tag-dops A’ <~ D.A
39: end for
40: 11+1
41: else (could not issue i—th instruction)
42: 1¢—1—1
43: Break out of loop, stop issuing
44: end if

45: end for
46: ROB.tail' « (ROB.tail + i) mod ROBSIZE
47: #issued < ¢

Algorithm 1: Superscalar issue protocol

2.1. TOMASULO ALGORITHM 17

1: for all reservation stations RS do
for all o' € {1,...,0} do
Let S denote RS.sop,-
if S.valid A 3 k : CDBy.tag = S.tag then (snoop S on CDBy)
Let k satisfy CDBy.tag = S.tag
S.walid' + 1
S.data’ « CDBy.datag o
end if
end for
end for

© P TSP D RPN

—
Q@

Algorithm 2: Superscalar common data bus snooping

1: for all functional units FU,, do

2: if FUgp.stall A3 j : RS;.full AV o' : RSqp j.50p,.valid = 1 then
3 RS < RSyp,; with j fairly selected

4: FU,p.0p’ < RS.op

5 FU,p-tag’ + RS.tag

6 for all¢' € {1,...,0} do (copy source operands into FU,y)
7 FUop.sop’, < RS.sop,.

8 end for

9: RS.full' «+ 0

10: end if

11: end for

Algorithm 3: Superscalar dispatch

notation defines
W o= (irh,...,ig")

as the instruction window presented to the machine in cycle ¢. The base b of this
instruction window is the index of the first instruction in the window. Naturally the
base can be computed by b= 1+ 3, ., , #issued’ and we have

(i, ig") = (byeeeslogpo1)

Common Data Bus Snooping

Algorithm 2 defines the superscalar common data bus snooping protocol. The
reservation stations snoop on the common data busses to gather their missing
source operands’ data. Le., if a reservation station has a non—valid operand and
the operand’s tag is seen on a CDB (l. 4), then the data is taken from the result
bus denoted by the subtag from this CDB and the operand is validated (1. 5-7).
While scanning multiple CDBs at once for an operand’s tag, at most one matching
CDB may be found because of uniqueness of tags in a single state.

Dispatch

Algorithm 3 shows the superscalar dispatch protocol. Dispatch of a full reservation
station to the appropriate functional unit takes place, if all source operands are valid
(1. 2). Fair candidate selection (for example by the age of the entries) is needed to
ensure termination of instructions in a finite amount of time (1. 3). The reservation
copies its operation code, tag and the source operands in the appropriate functional

18 CHAPTER 2. ABSTRACT MODEL

1: for all functional units FU,, do

2: if FU,, has result and got CDBj-acknowledgement for next cycle then
3: Let T denote FUgp.tag

4: ROBy.valid’ «+ 1

5: CDBy.tag' «+ T

6: for all ¢’ € {1,...,46} do

7 CDBy.datas < FUqp.results

8: ROB.dopg .data’ <— FUgp.results
9: end for

10: end if

11: end for

Algorithm 4: Superscalar completion protocol

Require: register file updates have lower priority than from issue protocol
1: for i + 1 to e do
2: ri.tag < (ROB.head + 7) mod ROBSIZE
3 Let r; denote ROB, tag
4: if (r;.tag # ROB.tail) A r;.valid then
5: for all ¢’ € {1,...,6} do (update RF)
6 Let A denote r;.dops:.A
7 R .data’ < r;.dops .data
8
9

if r;.tag = Ra.tag then (validate register on tag equality)
: Ra.valid' «+ 1
10: end if
11: end for
12: else (no valid instructions left for retirement)
13: 11—1
14: Break out of loop, stop retiring.
15: end if
16: end for

17: ROB.head’ + (ROB.head + i) mod ROBSIZE
18: #retired < ¢

Algorithm 5: Superscalar retirement

unit (ll. 4-8). After dispatch has taken place, the reservation station is marked as
empty (1. 9).

Note, that dispatch to duplicates of functional units is only a simple extension
to the protocol.

Completion

The completion protocol (algorithm 4) puts instruction results on a common data
bus. If a results is avaible and a CDB has been acknowledged by the CDB bus
control (1. 2) the following actions are performed: The associated ROB entry is
marked valid in 1. 4; the CDB tag field is set in 1. 5. The results of the instruction
are copied on the CDB and into the ROB (1. 6-9).

Retirement

During retirement, completed instructions are taken in program order out of the
reorder buffer and their results are stored in the register file. Without interrupts,

2.1. TOMASULO ALGORITHM 19

the reorder buffer is not a necessity. However, reordering instructions is required for
the precise roll-back mechanism developed in section 2.2.

Algorithm § defines the retirement protocol. It exploits the queue organization
of the reorder buffer, with the ROB head pointing to the oldest instruction present
in the reorder buffer. The retirement protocol is defined in phases. The i—th phase
attempts to retire instruction r; located at position ROB.head + ¢ mod ROBSIZE in
the queue.

Instruction r; may retire, if it still is a valid queue entry (r;.tag # ROB.tail) and
r.valid = 1, i.e. the instruction has completed (1. 5).

All destination operands are written back into the register file (1. 6-8). A tag
comparison (1. 9) indicates, if the retiring instruction is still the producing instruc-
tion for register R. In this case, the register entry is validated (1. 10).

Note that the issue protocol and the retirement protocol concurrently write to
the register file. These conflicts are resolved by giving the issue protocol a writ-
ing priority over the retirement protocol. The proof of correctness relies on this
behaviour.

Like the issue protocol the retirement returns the number of processed instruc-
tions in a variable, #retired. Again, we define for notation #retired’ as the value
of #retired in cycle ¢. The sequence

t _ ¢
R = (rl'tag7“"r#retired°‘tag)

denotes the tags of the retiring instructions in cycle ¢; ri.tag is the tag of the in-
struction processed in the i—th retirement phase.

2.1.3 Correctness

This section proves the correctness of the superscalar Tomasulo algorithm in two
steps. In the first step, data-consistency is shown: all instructions receive the correct
source operands as defined by the (sequential) semantics. In the second step the
termination of the protocols is examined: instructions take only a finite amount of
time to process.

At first we define for notation some partial functions:

last(4,n) = max{n' <n|3§ :ly.dops.A= A}
st(A,n) = ¢ withl,.dops. A=A
result(4,n) = ly.resulty with §' =st(4,n)
tag(A,n) = Iy.tag if 34 :ly.dopy. A=A
idx(tag,t) = max{n'|l..tag=tagAl, issued in cycle t' <t}

In words the notations read as follows: The index of the last instruction writing to Ra
before instruction |, is denoted by last(A,n). The subtag, i.e. index of destination
operand, of instruction |, writing to R4 is denoted by st(A,n). The result of an
instruction’s write to Ra is denoted by result(A,n). The tag that has been given to
instruction l,—if it writes Ro—is denoted by tag(A,n). Finally, idx(tag,t) is the
index n of the instruction lastly associated with the tag tag in cycle ¢.

The notation C* for some component C' denotes the value of this component at
the beginning of cycle t.

Theorem 2.1 Have a reservation station RS with RS.fulll = 1. Let n be the index
of the instruction that RS holds, i.e. n: = idx(RS.tag’,t). Then for all 1 < o' <
o N A:=ly.s0p,.A:

RS.sopy.valid® =0 = RS.sop,.tag’ = tag(4,last(4,n))

20 CHAPTER 2. ABSTRACT MODEL

RS.sop,.st’ = st(A,last(4,n))
RS.sopy.valid® =1 == RS.sop,.data’ = result(4,last(4,n))

Corollary 2.2 (Data Consistency) If the functional units work correctly (and
terminate), the superscalar Tomasulo algorithm is data consistent.

Proof of Corollary 2.2. Once an instruction becomes dispatched, all its source
operands are valid. By the theorem, all source operand data fields contain the result
of the last instruction writing to them. The functional unit therefore produces the
correct result.

Proof of Theorem 2.1. We simultaneously prove the claim and the following
invariant:

Invariant 2.3 Let A be a register address and b the base of the instruc-
tion window ITW?* in cycle t. Then the following implications hold:

Ravalid® =0 = Ra.tag’ = tag(4,last(4,b))
Ra.st’ = st(4,last(A4,b))
Ravalid® =1 = Rja.data’ = result(4, last(A4,b))

The theorem is proved by induction over the cycles of the machine ¢. For the
induction basis we have ¢ = 1. Since an initialization condition of the machine is
assumed, the reservation stations are empty and the registers are valid and zero-
valued; the claims of the theorem and the invariant therefore hold trivially. Now
assume that ¢ > 1 and the invariant, the theorem and the corollary on data consis-
tency hold for all # < t. Let b be the base of ZW?", t—:=t — 1 and b~ be the base
of TW' .

First, the induction step for the invariant is shown. Define n~ maximal with the
property b= <n~ < bA I :l,-.dops.A = A. The following two cases must be
examined:

e There was an issuing instruction with destination register R4 in cycle t~. This
is equivalent to n~ having a defined value. Then, obviously last(A4,b) = n~.
In cycle t—, the issue protocol sets

Ravalid® = 0
Ra.tag? = tag(A, b+ max{i < #issued’ |3 :idopy’ = A})
= tag(4,n")
= tag(A4,last(4,b))
Ra.stt = st (A, b~ + max {z < #issued” |3 :idops’t = A})
= st(4,n")

= st(A4,last(A4,b))

Note that in this case retiring instructions are (correctly) not taken into ac-
count, since the issue protocol has a higher write priority than the retirement
protocol on the register file (cf. section 2.1.2).

e Now assume that we are not in the first case, i.e. there was no issuing instruc-
tion with destination register R4 in cycle t~. Therefore:

last(A4,b) = last(A,b7)

2.1. TOMASULO ALGORITHM 21

Further assume, there was a retiring instruction in cycle ¢t~ that matched tag
with RA.tagt_; i.e.

Ji < #retired’ : rj.tag = Ra.tag

There is at most one such ¢, because no two retiring instructions can have the
same tag. The retirement protocol in cycle ¢~ correctly sets:

Ravalidd = 1

Ra.data® = result(4,idx(r.tag))
= result(A,last(4,b7))
= result(4,last(4,b))

If there was no retiring instructions matching tag with Ra.tag, the register,
as well as last(4, b~) remaing unchanged and the induction assumption holds.

This shows the induction step for the invariant. For the induction step of the theorem
two cases must be distinguished:

e RS.full® = 0. With the assumption of the theorem, RS.full® = 1, this means
that an issue took place on the reservation station in cycle ¢t~

If RS.sop,s.valid® = 1 the issue protocol has filled RS.sop,s.data from the
register file, from a common data bus CDBy, or from the reorder buffer. Because
of the induction assumption on the invariant and on data consistency, each
case results in:

CDBy.dopg: .result
RS.sop, .data = ROBR, .tag-data
Ra.data

= result(4,last(A4,n))

Otherwise, assume RS.sop,-.valid® = 0. If there is an n~, maximal, with the
property b~ < n~ <n A3 :ly.dops.A = A the tag and the subtag were
set by tag forwarding:

RS.sopsr.tag = tag (A,b* + max {z < #issued® |36 : i.dops! = A})
= tag(A,n7)
= tag(4,last(4,n))
RS.sopsr.st = st (A, b~ + max {z < #issued” |36 :i.dopy’ = A})
= st(4,n")
= st(4,last(A4,n))

If there is no defined n~, then then tag and subtag are taken out of the register
file. By the induction assumption for the invariant:

RS.sops.tag = Ra.tagt

tag (last(4,b7))
= tag(A4,last(4,n))

RS.sops.st = Ra.st’

st(last(A4,b7))

st(A,last(A,n))

22 CHAPTER 2. ABSTRACT MODEL

e RS.full® = 1. The reservation station was already full in the last cycle. If

RS.sop,-.valid® = RS.sop,.valid® , source operand RS.sop,+ did not change its
value in the preceding cycle and the claim holds by induction assumption.

Otherwise, have RS.sop,.valid® = 0 A RS.sop,.valid’ = 1. This means that
the reservation station snooped operand RS.sop,s in the last cycle on, say,
CDB;. By induction assumption, have

CDBj.tag" = RS.sop,.tag
tag(A,last(4,n))

which implicates by the induction assumption on data consistency:

t t~
RS.sop,.data® = CDB;.resultgg .,

= result(4,last(A4,n))

Lemma 2.4 (Termination) If CDB acknowledgements are fair and computations
in functional units take up finite time, then the Tomasulo algorithm does not dead-
lock the machine.

Proof. This lemma is also proven by induction over the instructions in the in-
struction stream.

We show that the first instruction terminates. For the first instruction, all regis-
ter file items are valid, the reorder buffer and all the reservation stations are empty.
Since the first instruction is also first in the instruction window, the instruction
window case does not apply. Therefore, |y is issued to the appropriate reservation
station with all operands valid according to the register case in the issue protocol.
Dispatch takes place one cycle after issue. Since the functional unit takes only finite
time to compute the result of the instruction and because of fair CDB acknowledge-
ment, completion takes place. Retirement follows one cycle after completion, since
lp occupies the ROB head.

Now assume that instructions lg, ..., l;_; terminate. Issuing takes place if room
is available in the ROB and the appropriate reservation station queue. Eventually,
this is the case: according to the induction assumption lg,...,li_; terminate and
especially leave the reservation stations and the ROB. Having space, the issue pro-
tocol processes l;. The issue protocol states that each instruction looks for its source
operands at all places where results can be found. If a source operand is not valid
immediately, it is snooped on the common data busses. Therefore and because of
fair dispatch acknowledgements, the instruction dispatches. The functional unit ex-
ecuting |; only takes finite time to compute the result of the instruction. Because of
fair CDB acknowledgements, the instruction is completed in finite time. Retirement
also takes finite time, since by induction assumption all the previous instructions
retire.

2.2 Roll-Back

This section shows the implementation of a precise roll-back mechanism. A roll-
back mechanism allows to suspend the execution of an instruction stream at a
retiring instruction having tag ri.tag € R?, a non-trivial operation on pipelined or
superscalar machines. If n:= idx(r;.tag,t), preciseness requires that after roll-back,
the instructions ly,... I, have been retired and the instructions ly41,ln42,... do
not have any effect (this definition reminds of the definition of precise interrupts
[Miil97, SP88]; it is formulated differently below).

2.2. ROLL-BACK 23

A precise roll-back mechanism is an essential for support of precise interrupts
and speculative execution. Interrupts force the machine to switch to the interrupt
service routine’s instruction stream on internal or external interrupt conditions.
Preciseness of interrupts requires this switch to be made in well-defined and recov-
erable manner. Speculative execution needs to discard the instructions of a wrongly
predicted instruction stream and to continue execution with the correct one.

This section proceeds in three steps. First, the formal definition of a precise
roll-back for a superscalar machine is given. Second, precise roll-back support is
incorporated in the retirement protocol. Third, we prove that the new protocol
meets the formal requirements of a precise roll-back.

2.2.1 Definition of Precise Roll-Back

The semantics of a precise roll-back are defined with the help of two invariants on
the semantics of a sequential machine.

Definition 2.5 (Sequential Configuration) A configuration for the sequential
machine IS;c, defined in section 2.1 is a tuple of the values of all its registers and
the index n of the lastly executed instruction.

Definition 2.6 (Projection on Sequential Configuration) The projection of
the Tomasulo machine T M after retirement phase i in cycle t is defined as

pr; (Chy) = (idx(ri-tag',t),V A : R s.data’)
where R; o.data’ denotes the value of Ra.data’ after the i—th retirement phase.

Definition 2.7 A machine having a precise roll-back mechanism must fulfil the
following two invariants:

e The projection invariant states that in each retirement phase, the register file
contains the correct register data values for the instruction up to the retiring
instruction:

V1<i< #retired' ,n:= idx(r;.tag,t) : pr; (Chy) = Ceeq

e The halting invariant states that on executing a roll-back after instruction |,
in cycle t and after retirement phase i (n: = idx(r;.tag,t)) must not change
the projected configuration on empty instruction stream:

Vi >t ipvalid' =0:V1<i' < #retired - PIy (C%M) = Cgey

Remark 2.8 The projection invariant ensures the projected state of the machine
equal to the state of the sequential machine at defined times. The halting variant
implicitly ensures that the machine does not do something “nasty” while it has
been told to roll-back. As can be seen below, this criterion is easily verified for the
Tomasulo algorithm.

2.2.2 Roll-Back Retirement Protocol

To implement a precise roll-back mechanism, the retirement protocol, algorithm
5, has to be modified. Algorithm 6 shows the extensions, which may be inserted
between line 12 and line 13 of the original algorithm 5.

The method implemented in our machine is called roll-back by flushing. The
machine simply wipes away all the information of instructions still resident in the
machine by clearing all RSQs, the ROB and the computations in functional units
(1. 2-8).

We call the machine using the extended retirement protocol T'M ..

24 CHAPTER 2. ABSTRACT MODEL

1: if perform roll-back? then

2: Update as follows with priority over the other protocols:
3: Set RS.full' < 0 for all reservation stations

4: Clear all computations in all functional units FU,p

5: VA: RA.vaIid’ «—1

6: ROB.head + 0

7: ROB.tail' + 0

8: Break out of loop (do not modify head)

9: end if

Algorithm 6: Extension to superscalar retirement to support precise roll-back

2.2.3 Proof of Preciseness

Lemma 2.9 The machine T M,y satisfies the projection invariant.
We proof the projection invariant in the following form:
Vt,1<i< #retired’, n:= idx(r;.tag,t),A : Ra.data’ = result(4,last(A4,n))

In words: in every retirement phase i each register’s data contains the result of the
last instruction writing to it.

The proof is by induction over the cycles ¢. Let 1 < i < #retired’, n: =
idx(r;.tag, t). For ¢t = 1 there is nothing to show, since no instructions retires and
TM,p and IS, are assumed to be initialized in the same way.

Let t > 1 and consider the claim true for any t' < . Let A be a register address.
If no instructions prior to and including the i—th retirements phase writes to R4,
the claim holds because of the induction assumption.

Otherwise, Ra .data’ contains the data of the latest retirement writing to R4. By
data consistency and the queue order of the ROB, this is also the data of the last
instruction writing R4, so

Ra.data’ = result(4,last(4,n))

Lemma 2.10 The machine T M., satisfies the halting invariant.

Proof. This lemma is proven by taking a quick look at all the protocols. The issue
protocol terminates directly on seeing ij.valid = 0 and does not change ROB.tail.
The snooping protocol and the dispatch protocol only operate on full reservation
stations of which there are none. The functional units have been told to stop any
computations, so the completion protocols does not find a result to forward to the
reorder buffer. The retirement protocol terminates directly on ROB.head = ROB .tail
without changing ROB.head.

2.3 Instruction Fetch and Speculation

2.3.1 Sequential Instruction-Memory-Based Machine

We define a sequential, instruction-memory-based machine, IM,. The definition of
IM;eq is similar to the definition of IS, given in section 2.1.1. The machine IM,
also has #reg registers Ry, ..., Rureg over the finite domain DOM. Additionally, the
machine has a special register, called the program counter register PC.

The PC € {1,...,N} C DOM for some N € IN determines the instructions
that IM,, executes from the instruction memory ZM = (IMy, ..., IMy). In the n-
th cycle IM;., executes the instruction I,:= IMpc» with R™ denoting the value of

2.3. INSTRUCTION FETCH AND SPECULATION 25

the register R in the n—th cycle. The sequence of instructions Iy, I, ... is called
the dynamic instruction stream, while the instructions IM; stored in the instruction
memory are called the static instructions. The instructions IM; in the instruction
memory are tuples of the following form:

IMi = (op,d,dopi.A,...,dops.A,0,s50p1.A,...,s0p,.A)

If the set of register identifiers is extended to R:= {1,...,#reg} U {PC}, the tuples
are of the same type as in the instruction-stream-based machine.

The semantics of the regular registers is identical to the instruction-stream-based
machine. With

(resulty,...,results) = op (Rsop,.A,---;Reop,.A)

the program counter is updated in the n—th cycle according to the following equa-
tions:

result; if dop;.A =PC
result if dops.A = PC

PC' := : :
results if dops.A = PC
PC+1 otherwise

As an initialization condition, we set PC':= 1.

2.3.2 Non-Speculative Instruction Fetch

This section develops the notion of an instruction fetch mechanism. Informally
speaking, an instruction fetch mechanism is a machine that constructs the dynamic
instruction stream out of the static instructions. A machine simulating IM,., nat-
urally constructs the dynamic instruction stream at some time and may therefore
be called an instruction fetch mechanism for IM,.,. What we are rather interested
in are simple machines providing the dynamic instruction stream for execution on
a Tomasulo machine.

Definition

We construct the Tomasulo machine T'M', an extension of T'M. The following three
modifications are made:

e The instruction window’s entries are extended by an additional item PC con-
taining the program counter of the associated instruction. This information
can be used by the machine, whenever PC is needed as a source operand. So,
an instruction window entry i; is a tuple

ii = (valid,PC, op,d,dopi.A,... dops.A,c,s0p1.A,... s0p,.A)

e The issue protocol allows read access to its variable #issued.

e The retirement protocol is modified to report all write accesses to the PC to
an external interface. This modification allows for simple fetch mechanism, as
the results of computations of the Tomasulo machine can be used.

The necessary protocol changes are trivial and not included here for the sake of
brevity.

Now an instruction fetch mechanism is a machine that correctly constructs the
dynamic instruction stream for execution with our Tomasulo machine TM' and
without deadlock:

26 CHAPTER 2. ABSTRACT MODEL

: loop
Fetch a basic block starting at fetchPC
Wait for the CFI to execute
Set fetchPC to the reported result
end loop

Algorithm 7: Generic scalar instruction fetch mechanism

Definition 2.11 (Instruction Fetch Mechanism) A machine IFM is called an
instruction fetch mechanism for TM' if it constructs instruction windows TW?! sat-
isfying the following property:

For every n there is an index t such that the sequence of issued instruc-
tion and their PC of TM' in cooperation with IFM is a prefiz of the
sequence of issued instructions and their PC of IM.,.

In conclusion we find the following theorem:

Theorem 2.12 An instruction fetch mechanism IFM and TM' in cooperation
stmulate IM;eq.

Scalar Fetch Mechanism

We develop a simple fetch mechanism, called scalar fetching (cf. [Joh91]). The in-
structions are divided into two classes, the basic-block instructions (BBI) and the
control flow instructions (CFI):

IM; is BBI : 4= V1<d <6:IM.dops # PC
IM; is CFI : <= 31<4§' <6:IMj.dops = PC

Definition 2.13 Let i,l € IN. The finite instruction sequence (IM, ... IMi11_1)
with

|Mi+1 is CFI A VjE{i,...,’i+l—1}:|Mj is BBI

is called the basic block starting at i with length 1. If I = O then the basic block
starting at i is said to be empty.

The following lemma contains an elementary but significant observation about the
semantics of our new machine:

Lemma 2.14 Let I; = IMpct. Let I be the length of the basic block starting at PC.
Then:

Vll S {O,,l} : In+ll :IMPCt-H’
Proof. BBIs inside a basic block do not modify the PC, so execution is sequential.

This way, the dynamic instruction sequence | = (lg,l1,...) can be rewritten as
an alternating sequence of basic blocks and CFlIs:

I = (bbo,Cﬁo,bbl,Cﬁl,...)

In this equation, bb; is the basic block starting at PC(cfi;—1) and cfi; is the CFI
following bb;_;. The basic blocks are possibly empty.

Lemma, 2.14 justifies the generic scalar fetch mechanism for TM' shown in Al-
gorithm 7. The fetch mechanism fetches a blocks of BBIs followed by a CFI in the

2.3. INSTRUCTION FETCH AND SPECULATION 27

first step (line 2). After that it waits for the machine to execute the CFI (line 3).
According to the communication protocol of the fetch mechanism and the machine,
the machine notifies the fetch mechanism of the newly computed value for PC.
This is used by the fetch mechanism to update its fetchPC in the third step (line
3). Traditional and especially non-superscalar fetch mechanisms are based on this
algorithm.

2.3.3 Speculative Instruction Fetch

Scalar instruction fetch much too slow for superscalar machines. This is due to
the small average basic block length of about 5 instructions. This means, while
superscalar machines intend to process many instructions in parallel, they have
wait for new instructions every few cycles due to scalar instruction fetch.

Today’s microprocessors have the ability to execute instructions speculatively.
This means that for each CFI they can guess a target PC prior to its computation.
The speculation must be verified in the Tomasulo machine. It verification is suc-
cessful, the machine may continue execution; otherwise the machine must roll back
and proceed execution on the “right” execution path.

Definition

We proceed the same way as for non-speculative instruction fetch. First, we de-
fine a Tomasulo machine T M., supporting speculative execution. Then we define
speculative instruction fetch mechanisms for T'M;pe..

The machine T Mjp,. is based on T M,;, and TM' with the following modifica-
tions:

e The instruction window’s entries are extended by additional entries bbi, cfi and
nPC. The boolean variable bbi indicates if the fetch mechanism “believes” the
associated instruction to be a basic-block instruction. The boolean variable
cfi indicates if the fetch mechanism “believes” the associated instruction to be
a control flow instruction. The entry nPC indicates the alleged PC after the
execution of the instruction, i.e. the source PC for the following instruction.
So, an instruction window entry i; is a tuple

ii = (valid,PC,nPC, bbi,cfi,
op,d,dop;.A,...,dops.A, 0,s0p1 A, ..., s0p,.A)

o The issue protocol is modified to stop issuing on encountering an instruction
that is not properly marked as BBI or CF1I instruction. The fetch mechanism
is notified of that condition. Furthermore, variable #issued is passed back to
the fetch mechanism.

e The retirement protocol checks for every retiring instruction, if the speculated
value of the next PC, nPC, matches the computed value of the next PC. If
this is not the case, the machines notifies the fetch mechanism and performs
a roll-back immediately after the offending instruction.

e Again, the retirement protocol is modified to report all write accesses to the
PC to an external interface.

Algorithms 8 and 9 list the modifications necessary to the old algorithms 5 and
6. The remaining modifications again are considered straightforward and not listed
here for the sake of brevity.

As can be seen, a speculative instruction fetch involves two levels of speculation.

28 CHAPTER 2. ABSTRACT MODEL

if i;.valid and i; has missing or wrong mark in CFI / BBI field then
Notify fetch mechanism.
11—1
Break out of loop, stop issuing

end if

Algorithm 8: Addition to the issue protocol

if 36" € {1,...,0} Ari.dops.A =PC then
if r;.dops:.result #2 ROBg.nPC then
Initiate roll-back. Notify fetch mechanism.
else
Notify fetch mechanism of verification.
end if
end if

Algorithm 9: Addition to the retirement protocol

loop
if retirement protocol detects misspeculation then
Set PC to the corrected version
Invalidate the instruction window
else
Fetch a basic-block
Guess a target for the CFI and modify PC
Annotate the instructions
9: end if
10: end loop

Algorithm 10: Generic speculative instruction fetch mechanism

First, the instruction fetch mechanism is allowed to speculate about the class
of an instruction. This approach will not be followed in this thesis, although it
is common for high performance fetch mechanism. For example, instruction fetch
mechanisms might cache the class-information of instructions basicblock-wise, to
avoid the decoding of instructions (cf. [Yeh93]).

Second, it speculates control flows, i.e. the irregular change of the PC.

Both speculations are verified and may cause a roll-back. In the first case, this
is detected as early as in the issue phase. As the offending instruction is kept from
issuing, no “real” roll-back is necessary. In the second case, the verification takes
place in the retirement protocol. A misspeculation causes a roll-back taking back
the effects of the instructions still in execution.

Now we define:

Definition 2.15 (Speculative Instruction Fetch) A machine SIFM is called
an instruction fetch mechanism for T Mgp.. if it constructs instruction windows
IW"! so that the following property holds:

For every n there is an index t such that the sequence of retired instruc-

tion and their PC of T Mgpe. in cooperation with SIFM is a prefiz of
the sequence of issued instructions and their PC of IM.,.

A Generic Speculative Instruction Fetch Mechanism

2.3. INSTRUCTION FETCH AND SPECULATION 29

1: if rollback to cfcPC signalled then
Remove all instruction fetch queues
Let @ be a new queue
fetchlFQ «+ @
issuelFQ « @
fetchPC « cfcPC
end if
1+ 0
: for i < 1to a do
if IMfetchPC is CFI then
Guess a result cfcPC for the update of the fetchPC register
12: fetchlFQ.push (“valid CFI”, PC = fetchPC,nPC = cfcPC)
13: fetchPC « cfcPC

R IS A

— =
= O

14: fetchlFQ « new queue @)
15: Break out of loop. Stop fetching.
16: else

17: fetchlFQ.push (“valid BBI”, PC = fetchPC, nPC = fetchPC + 1)
18: fetchPC « fetchPC + 1

19: end if

20: end for

21: i,.% < issuelFQ.x

22: issuelFQ.drain (#issued)

23: if issuelFQ.empty A (fetchlFQ # issuelFQ) then

24: issuelFQ + next IFQ

25: end if

Algorithm 11: Queue-based speculative instruction fetch

Algorithm 10 shows the algorithm for a generic speculative instruction fetch
mechanism. If the retirement protocol detects a misspeculation, it invalidates the
instruction window and sets its internal PC to the corrected version (1. 2-4). Oth-
erwise it fetches a basic-block. Each basic-block ends in a CFI. The outcome the
CF1I is guessed and the PC is modified accordingly (1l. 6-8). The process repeats.

Queue-Based speculative instruction fetch

The generic speculative instruction is not of much use in real implementations.
We present here a different algorithm closer to the implementation of chapter 3.

The algorithm maintains a list of queues, each of which will store a single basic
block. The instruction fetch is decoupled from the instruction issue: it addresses
the memory via the fetch PC, fetchPC, and appends instructions to a designated
fetching queue until a CFI has been met. The PC computation of a CFI will be
guessed and fetching continues in a new queue from the guess control flow change
PC, cfcPC.

Instructions will be issued by draining them from a designated issuing IFQ. If
the issuing IFQ is empty, issuing switches to the the next queue.

Initialization and rollback result in the clearing of all queues and starting all
over with a new queue), which will be fetching and issuing IFQ.

Algorithm 11 shows the algorithm just described.

30

CHAPTER 2. ABSTRACT MODEL

Chapter 3

Hardware

This chapter develops the hardware of a superscalar DLX processor implementing
the Tomasulo algorithm. The basic structure of such a processor is in analogy to a
non-superscalar version; [Kr699] develops a non-superscalar processor. Figure 3.1 on
the following page shows an overview of the data paths of our processor design. The
processor decomposes the execution of an instruction into five pipeline stages. In
the first, the instruction fetch mechanism accesses the instruction memory, predicts
control flow and puts instructions in the instruction window. From the instruction
window, instructions are decoded and led on to the appropriate reservation station
in the second stage. During decode and in the reservation stations the instructions
gather their source operands, which may come out of the register file, the reorder
buffer or from a common data bus. Instructions with available source operands are
led to the third stage, the execution stage. This stage contains the functional units
to compute the instruction result. The functional units may be pipelined to reduce
cycle time. Computed results are put on a common data bus, in the fourth stage.
The common data bus is snooped on by the reservation station as was described
above, and the reorder buffer, also located in the completion stage, gathers all results
in a buffer. The results leave the reorder buffer in program order to be written back
in the register file in the fifth stage. The fifth stage therefore is called the write back
stage.

The chapter proceeds with some notes on the notation, an introduction to a
half-unary number format frequently used throughout this thesis and a detailed
description of the pipeline stages.

3.1 Notation

3.1.1 Control Signals

Control signals are denoted by alphanumeric names set in a special font, like
test € {0,1}. Control signals are not limited to bit signals, they may form multi-
dimensional arrays. In this case, indices are attached to the signals according to
their dimension. If we have, for example, an n-bit signal bus called data, decalred
in notation by data, € {0,1}", we might reference it such:

data; bit ¢ from data
dataj.; bits j to ¢ (in that order) from data
data, all the bits from data

The following example demonstrates the reference to a m x n-bit signal array /
matrix called ar, declared in notation by ar, , € {0,1}™". This signal array is said

31

Figure 3.1: Data paths of the superscalar DLX processor

32 CHAPTER 3. HARDWARE
— — — —
1 IF Instruction Fetch Mechanism .
Y 4
' 1
Decode/ Issue
* Environment 9
2 D/I L] L] L] L] L] L]
R R v R
° Reservation Reservation Reservation Reservation Reservation
Stations Stations Stations Stations Stations
4 1 4
ALU Float Float Data Memory Branch
3 EX Environment FU1 FU5 Environment Checker Unit
| Resut || Resut of Rest || Rest || Resuit |
4 Compl
Reorder Buffer o
Environment
'
5 WB Register File
Environment

3.1. NOTATION 33

to have m rows and n columns:

ari bit j from the i—th row of ar
ar ..k bits j to k from the i—th row of ar
ar,x the i—th row of ar
ary; the j—th column of ar
ar x all the bits from ar

The star notation and the range notation is also frequently used in equations. It
is a shortcut notation for using an all quantifier. The following sample notational
equivalences hold for a, , by, c,,s4 € {0,1}" and o € {A,V}:

Gh=a, <= VO0<n <n:cy =ay
=3y <= VO<n' <n:cy =3y
C*:a*ob* e VOSn'<n:cn,:an,obn,
Ge=(sx7ax:by) <= VO<n <n:(sn? an : by)
Constructions like
Cji = A(j4c)-(i+c)
C, = testAa,
arix = ax

are also allowed if the signals are properly typed; again, inserting an all quantifier
reveals their meaning.

The standard order for writing signals is from high to low. For example, the
definition bs..q:= (1,a3..2,0) results in

(b37b27b17b0) = (173373270)

3.1.2 Busses

Often it is convenient to identify a group of signals by a single name. In our notation
such signals share the same prefix ending in a dot.

An instruction operand, for instance, might consist of a valid flag op.flag € {0,1},
a data bus op.data, € {0,1}*? and a tag op.tag, € {0,1}°. These three items form
a bus, abbreviated by op.x.

Busses themselves might also be indexed to form vectors of busses. For example,
having two instruction operands denoted by op; and op, we might reference such:

op, .x both complete busses
op, .valid the valid flags of both operands
op, .data, the data items of both operands
op,.tag, bit 0 of the tags of both operands

If the context is clear, bus items are accessed without providing the bus prefix.

3.1.3 Figures

Figure 3.2 denotes the symbols used for gates in drawing circuits. All figures showing
circuits are bounded by a dotted rectangle denoting the circuit’s interface. Signals
appearing left of or over the rectangle are inputs of the environment. Signals ap-
pearing right of or below the rectangle are outputs of the environment. Signals that

34 CHAPTER 3. HARDWARE

AR WA NI e w Dl
3st Drivert AND | OR | XOR | Multiplexer '
e ARRREE S Lo IRRREEEEEEEEEEEE .
| | | | | RI :
: : : : : ‘ 1
| | ? | (@7 | % " Re—> R |
| | | | | | |
| 1 1 | | R ‘
! Inverter | NAND : NOR | XNOR | Flip-Flop |

Figure 3.2: Symbols for the basic gates

have been named in a figure may be used by their name in other parts of the figure.
Especially it is allowed to select single signals from an array or components of a bus
by name.

The star notation and the range notation already defined will also be used in
figures. For example, the signal definition ¢, := ax A b, we will draw as a single
AND gate having inputs a, and b, and the output c,.

3.2 Half-Unary Number Format

This section defines the half-unary number format, which is frequently used in
circuits throughout this thesis. The advantage of this format are threefold. First,
the definition and proof of circuits, especially of such handling multidimensional
signal arrays, is often greatly simplified by using the half-unary number format.
Second, the half-unary format inherently encodes the information “not-equal-zero”
and “greater-than-constant”, which often comes in handy for control definitions.
Third, a half-unary encoding can be converted in constant time to a unary encoding,
an encoding requiring equivalent storage space. This does not hold for the other
way round. The section proceeds with a definition of the half-unary format and a
description of basic properties and circuits.
Let n €IN. The sets

DOMhu’n = {0,,”}
BSTRhu,n = {0" 11| 0<i<n}

represent the domain and the valid bit strings of the n—bit half-unary encodings.
Using this, we define the encoding function encp,,, and the decoding (or value)

function (-}, ,, as follows:

encpyn: DOMpy,, — BSTRpun
c — 0n7c1e
(:)hu,n : BSTRhu’n — DOMhu’n

0"=c1° — ¢

These functions are bijective and inversion functions of each other. Note that value
0 will be encoded as the zero bit string 0”. If the index n is omitted from {-)
it is determined by operand length.

hu,n’

3.2. HALF-UNARY NUMBER FORMAT 35

Properties Have a, = 0" °1° € BSTRpy,n. The following properties can be easily
proven:!

(A)py 21 = a1=1 (3.1)

(a)p 70 = a=1 (3.2)

@y, €{ii+1,...,j} < a_1=1Aa=0 (3.3)
(a,1%), = (@dputi (3.4)

(0%, an_1. 1> = max{0,(a.),, — i} (3.5)

(30-n—1, 1)hu = n—{(an-1.0)p, (3.6)
(markLastOne(ay)),,, = (a)ha (3.7

Remarks. The Properties 3.1 and 3.2 provide a simple means to compare half-
unary encodings to constants and to 0 especially. Property 3.3 can be used to check
an encoding against a given constant interval.

Properties 3.4, 3.5 and 3.6 are arithmetic properties. They justify the implemen-
tations of adders and subtracters given below.

Property 3.7 is frequently used for conversion of a half-unary encoding into a
unary encoding. We define for notational convenience:

markLastOne(a,) := the lower n bits of (0,a,) A (ax,0)

The property then is explained by the fact that the markLastOne(-) function simply
find the edge, i.e. the 0-1-transition, in the half-unary encoding a,. The functions
markLastZero(+), markFirstZero(-) and markFirstOne(-) are defined in analogy and
will be also used in this thesis.

Conversion the other way round, i.e. from a unary encoding to a half-unary
encoding, can be achieved by a parallel-prefix OR circuit or, preferably for delay
reasons, by a find-first-one half-unary circuit FF1hu,, described in section C.1. Note
that this conversion inherently requires logarithmic delay. This can be shown by a
reduction of the conversion function to the 1-threshold function (thl(i,) =1 <
3 :i; = 1).2 A circuit for the 1-threshold function has cost 2(n) (a proof of this
classical result can found [Weg87]) and therefore, being a 1-output function, delay
Qlogn).

Maximum and Minimum. The maximum operation on two half-unary encod-
ings a, and b, can be computed in constant time by a slice of OR gates:

Gi=a,Vby = ¢ € BSTRpun A (Ch)py = max{(ay),, > (b)p,t (38)

A generalization of the maximum function on m arguments ag , . ..,am_1, needs
logarithmic time by using trees of OR gates:

V a2 = c €BSTRuum A ey, = max {(aix),,} (3.9)
0<i<m !

Dually, the minimum operation on half-unary encodings can be computed using
AND gates. We have:

Coi=a,Aby = ¢ € BSTRuyn A (Ci)p,, = min {(ay)y,, » (bi)p, } (3-10)

N ax = c €BSTRuum A(ch)y, = min {(ai),, } (3.11)
0<i<m !

!For illustration only, drawing half-unary encodings as a white box of width (n — c) followed
by a black box of width ¢ has often proved useful.
2The lowest bit of the conversion function computes the 1-threshold function.

36 CHAPTER 3. HARDWARE

“w_"

Relations. The equality relation can be computed in logarithmic time using
an equality tester, because we have a unique encoding of numbers. The less-than
relation “<” can be computed in logarithmic time:

r=\/aAbi=1 < (a),, < (b (3.12)

K3

Addition and Subtraction. To compute the half-unary encoding representing
the sum of the values of two other encodings, we use the following identity:

<a*>hu + <b*)hu = max{<a*)hu +i | 0 S i S nA <b*)hu Z Z} (313)

This equation can be directly transformed in a recipe for building a half-unary adder
rewriting it with equations 3.1, 3.4, 3.9 and formally setting b_; := 1:

Cyi= \/ ((0°" % a0, 1) Abiz1) = {c)py = (@xdpy + (Bx)py (3-14)
0<i<n

For subtraction we use the negation property 3.6 and the adding equation 3.14. So,
we have:

cei=\ (0% a0, 1) Abnis) = (Cdpy =1+ (@) py— () (3.15)
0<i<n

Note that for a, and b, having different length it is advisable for delay reasons
that b, is the shorter operand.

The Instruction Fetch Stage

3.3 Instruction Fetch Mechanism

3.3.1 Overview

This section describes the instruction fetch mechanism implemented in our proces-
sor. The fetch mechanism is a specifically tailored version of algorithm 11, p. 29,
for the DLX architecture.

The fetch mechanism maintains two instruction buffers, called instruction fetch
queues (IFQs). In each cycle one of these queues is designated the fetching IFQ and
one, not necessarily different, queue is designated the issuing IFQ. The fetching IFQ
receives newly fetched instructions and from the issuing IFQ fetched instruction are
being issued.

Initially the fetching IFQ and the issuing IFQ are equal. The situation changes,
when the control predicts or resolves a control flow change from a CFI in the issuing
IFQ. Then, the fetching IFQ will be switched and fetched instruction will be stored
in the alternative queue. The issuing IFQ follows this switch, if the instruction
causing the control flow change has been issued.

On control flow speculation, the fetch mechanism goes in the outstanding spec-
ulation state. It will not predict or resolve further CFIs, until the branch checker
unit (BCU) has positively or negatively verified the prediction. The report of the
BCU causes the clearance of the outstanding speculation state. On a misprediction,
the fetch mechanism has to roll back to the corrected target, involving initialization
of the fetching and issuing IFQ and setting its fetch PC anew. For the special case,
that a predicted taken branch is corrected to a fall-through branch, the alternative
IFQ still contains the instructions following a branch; i.e. only a switch of IFQs
without initialization is required.

3.3. INSTRUCTION FETCH MECHANISM 37

1: if more than k free entries in fetchlFQ then

2: Request k instructions from memory starting at fetchlFQ.PC
3: Push the & instructions from the memory on fetchlFQ

4: fetchlFQ.PC « fetchlIFQ.PC + &

5: end if

Algorithm 12: Implementation algorithm for instruction fetch

if rollback then
if JISR then
Switch fetchlFQ
Initialize fetchlFQ
Set issuelFQ to fetchlFQ
fetchlFQ.PC « SISR
else
IWdisabled < 0
9: end if
10: end if

Algorithm 13: Implementation algorithm for rollback

Exceptions may also interrupt regular instruction fetch. Similar to the treatment
of mispredictions, fetching and issuing IFQ are switched and cleared and the fetch
PC is set to the start of the interrupt service routine.

Buffering instructions in prefetch queues is a common approach in modern mi-
croprocessors ([Bha96, WS94]). The alternating prefetch queue design can also be
found in the Pentium processor, although [AS95] does not provide an in-depth dis-
cussion.

3.3.2 Algorithms

The details of the instruction fetch mechanism are given in five algorithms dealing
with the fetch of instructions, the misprediction treatment, the interrupt treatment,
the prediction of control flow and the construction of the instruction window. Each
round, the algorithms are executed in that sequence.

Algorithm 12 shows the implementation algorithm for instruction fetch. Instruc-
tion fetch is made in blocks of k subsequent instructions. Therefore it stalls, if the
fetching IFQ has no room for & instructions left (1. 1). The instruction requested and
fetched are pushed in the fetching IFQ (1l. 2-3). After this, the fetch PC advances
by k steps (L. 4).

Algorithm 13 shows the implementation algorithm for the treatment of rollback.
Rollback is initiated by the global signal rollback (1. 1), generated during retirement.
In case that JISR is activated in addition (1. 2), the fetch IFQ is switched and
initialized (1l. 3-4), followed by the issuing IFQ (1. 5). The interrupt service routine
is called (1. 6). If rollback is activated but not JISR (l. 7), a mispredicted CFI
was caught retiring. Since in this case the branch checker unit will have reported
a misprediction before, the control flow has already been changed adequately by
the misprediction implementation algorithm described below. Only the instruction
window, temporarily disabled for issuing, has to be enabled again by zeroeing the
status variable IWdisabled (1. 8).

Algorithm 14 on the next page shows the implementation algorithm for the
treatment of reports from the branch checker unit. The branch checker unit verifies
predictions made by the fetch mechanism. Its implementation is described in detail
in section 3.11.4. For the moment, it is sufficient to present the branch checker unit

38 CHAPTER 3. HARDWARE

| Component | Width | Purpose |

valid 1 indicates valid bus contents
mp 1 indicates misprediction
jump 1 indicates jump instruction
btaken 1 indicates taken branch
cfcPC, 32 corrected CFC address

Table 3.1: Branch checker unit bus

1: if bcu.valid then

2 oss «+ 0

3: if bcu.mp then

4 Switch fetchlFQ

5: Set issuelFQ to fetchlFQ

6 if bcu.jump V bcu.btaken then
7 Initialize fetchlFQ

8 fetchlFQ.PC « bcu.cfcPC

9

end if
10: IWdisabled < 1
11: end if
12: end if

Algorithm 14: Implementation algorithm for BCU treatment

interface. The BCU reports its verifications on a bus bcu.x. Table 3.1 lists the com-
ponents. Signal bcu.valid indicates that a verification took place. On a misprediction,
bcu.mp = 1, two cases are distinguished: for a jump instruction, the corrected PC
cfcPC,; for a branch instruction, btaken indicates the correct outcome, cfcPC, will
also contain the correct PC.

We continue the description of algorithm 14. The algorithm first checks if the
BCU reports a valid bus (1. 1). Any report, be good or ill, results in clearance of
the outstanding speculation state (1. 2). A misprediction of control flow results in
the initiation of a rollback (1. 3-11). The fetch IFQ is switched (1. 4), the issu-
ing IFQ follows (1. 5). If the mispredicted CFI was a branch and has been falsely
taken, fetchlFQ still holds the instruction of the fall-through target and need not
be initialized. Otherwise, the (new) fetch IFQ is initialized (1. 7) and its PC is set
to the corrected address, as reported by the BCU (L. 8). Note that branch checking
is done out of order to speed up the machine: fetch of the correct control flow may
start as soon as the misprediction is detected, though the execution of the correct
control flow start after machine rollback. Mispredicted CFIs are therefore passed
on to retirement and will generate a regular rollback call there if the control flow
has not been interrupted by a previous interrupt condition. Instruction issue is dis-
abled by setting IWdisabled until then (1. 10). The rollback algorithm will enable
the instruction window again, as has already been seen above.

Algorithm 15 shows the implementation algorithm used for prediction and re-
solving of CFIs. The issuing IFQ is scanned for CFIs in case that the machine is not
in an outstanding speculation situation and its instruction window is not disabled
(1. 1). The first found CFTI is renamed to cfi for ease of notation (1. 2). If cfi can be
resolved or predicted, the algorithm will do so in 1. 4-17. For a branch, the inter-
mediary variable cfi.cfcPC is set to the relative jump target (1. 5) and the variable
cfi.cfc, indicating a control flow change, is set to the predicted or resolved outcome.
Otherwise, the CFI is a jump instruction. In this case, cfi.cfcPC is set to the pre-
dicted or resolved target (1. 8) and cfi.cfc is set (1. 9) since the DLX jump instruction

3.3. INSTRUCTION FETCH MECHANISM 39

1: if oss A IWdisabled A3 j : issuelFQ; is CFI then

2: Let cfi denote issuelFQ;, j minimal s.t. issuelFQ; is CFI
3: if can predict / resolve cfi then

4: if cfi is branch then

5: cfi.cfcPC « cfi.PC + cfi.imm16

6: cfi.cfc + (predicted / resolved taken 71 : 0)

7: else

8: cfi.cfcPC « predicted / resolved target

9: cfi.cfc 1
10: end if
11: On prediction only: oss < 1
12: if cfi.cfc then
13: Switch fetchlFQ and initialize
14: fetchlFQ.PC « cfi.cfcPC
15: end if
16: cfidl.valid « 1
17: cfidl.cfc « cfi.cfc
18: cfiReady + 1
19: end if
20: end if

Algorithm 15: Implementation algorithm for prediction and resolving

1: if IWdisabled then

2: Set issuelFQj.valid < 1 for all j

3: if 35 :issuelFQ; is CFI then

4: Let j be minimal s.t. issuelFQ; is CFI

5: Set issuelFQy .bbi + 1,issuelFQy .cfi +— 0 for all j' < j
6: Set issuelFQ;.bbi < 0, issuelFQ;.cfi < cfi4l.valid

7 Set issuelFQy .bbi < 0, issuelFQ; .cfi - 0 for all j' > j
8: else

9: Set issuelFQ;.bbi < 1 for all j

10: end if

11: else

12: Set issueIFQj.vaIid + 0 for all j

13: end if

14: Wait for issue

—_
o

: Drain the issued instructions from the issuing IFQ.
16: if 3 j : issuelFQ; issued AissuedI FQ[j].cfi then
17: cfidlvalid < 0

18: if cfidl.cfc then

19: Switch the issuing IFQ
20: end if
21: end if

Algorithm 16: Implementation algorithm for instruction window construction

always cause a control flow change. For a prediction, the fetch mechanism sets the
outstanding speculation state, preventing further predictions until the BCU signals
verification (1. 11). In case of control flow change, predicted or not, the fetching IFQ
is switched and its PC is set to the cfi.cfcPC variable (ll. 13-14). Finally, setting
cfi4l.valid indicates that a CFI awaits issuing (1. 16). Variable cfi4l.cfc indicates that
the control flow breaks at this instruction (1. 17).

40 CHAPTER 3. HARDWARE

| Name | Width | Description |
IFQ;.PC, 32 fetch PC for IFQy, 7 € {0,1}
cfcPC, 32 control flow change PC buffer
fetchlFQ.idx 1 index of the fetching IFQ
issuelFQ.idx 1 index of the issuing TFQ
0ss 1 outstanding speculation
IWdisabled 1 disabled instruction window
cfidl.valid 1 indicate that CFI is ready to be issued
cfidl.cfc 1 indicates that next CFI causes a CFC
7

| P, | | pending action |

Table 3.2: Registers in the instruction fetch stage

Algorithm 16 presents the procedure to construct the instruction window for
the Tomasulo machine core. In case that the instruction window is not disabled
(1. 1), the instructions in the issuing IFQ are set valid. First assume that a CFI
is present in the issuing IFQ (1. 3-7). Basicblock instructions before the first CFI
are marked as such (1. 5). The CFI will be marked as non-bbi; it is marked as CFI
iff it is ready for issue, cfidl.valid = 1 (1. 6). The following instructions are marked
neither BBI or CFI, so that the Tomasulo core will not issue them (1. 7). If no
CF1 exists, all the instructions stored in the queue are basicblock instruction and
marked appropriately (1. 9). A disabled instruction window will be all set to invalid
instructions (1. 12).

After this preparation, instruction issue can take place (1. 14). The issued in-
structions will be drained from the issuing IFQ (1. 15). If these instructions included
a CFI (1. 16), the cfi4l.valid variable is cleared (1. 17), and the issuing IFQ is switched
if the cfi involved a control flow change (1l. 18-20).

3.3.3 Control

In hardware, the implementation algorithms are parallelized. The execution of the
algorithms is subject to the conventions of the memory protocol. As this protocol
forbids the interruption of read requests, the control flow can only be changed
after completion of the previous read request. So, the control must reflect that the
processor cycles are superimposed by the “memory cycles” (as indicated by the
IM.busy signal).

Registers

We proceed with the description of the registers that the instruction fetch stage is
maintaining. Most of these register appeared already as variables in the algorithms.
Table 3.2 shows an overview; details follow:

e Registers IFQq.PC, and IFQ,.PC, store a fetch PC of IFQq and IFQ; respec-
tively. Register cfcPC, is the scrapbook register for buffering the PC of control
flow changes.

Update of these three register is performed in the PC environment, described
in section 3.6.

e Registers fetchlFQ.idx and issuelFQ.idx store the index of the fetching and of
the issuing IFQ respectively.

Updates of these registers are controlled by three signals. Signal fIFQswitch
and ilFQswitch indicates the toggling of fetchlFQ.idx and issuelFQ.idx. Signal

3.3. INSTRUCTION FETCH MECHANISM 41

Active Control Signals
on Enter | on Leave

| Name Detection

0 | CFC cfi.ready A cfi.cfc cfcPC.ce | fIFQswitch
1 | Mpo bcu.valid A bcu.mp cchC.ce fIFQswitch, iIFQ2fIFQ
disablelW
2 | MPOsw bcu.valid A bcu.mp cfcPC.ce | fIFQswitch, iIFQ2fIFQ
A (bcu.jump V beu.btaken) | disablelW | dontlnitIFQ
3 | MP1 rollback enablelW

fIFQswitch, iIFQ2fIFQ
enablelW
fIFQswitch, iIFQ2fIFQ
5 | MP2sw | MPOsw A rollback — dontInitIFQ, enablelW
cfcPC.ce | fIFQswitch, ilIFQ2fIFQ
disablelW | enablelW

4 | MP2 MPO A rollback —

6 | JISR JISR

Table 3.3: Pending actions in the instruction fetch mechanism

ilIFQ2fIFQ indicates that the issuing ITF(Q index will be set to the fetching TFQ
index. We have:

fetchlFQ.idx’
issuelFQ.idx’

fetchlFQ.idx @ fIFQswitch
(iIIFQ2fIFQ ? fetchlFQ.idx' : issuelFQ.idx & iIFQswitch)

e Register oss indicates if the fetch mechanism is in an outstanding speculation
situation.

As the algorithms state, the oss register is set on a prediction of a CFI and
cleared on rollback, misprediction and successful verification. We have:

oss' := (ossA bcu.valid) V (cfi.ready A cfi.doPred)

o Register IWdisabled indicates a disabled instruction window. It is updated by
the control signals disablelW and enablelW according to the following equation:

IWdisabled" := (IWdisabled V disable]W) A enablelW

e Register cfidl.valid is active, if a CFI in the issuing IFQ awaits issue. It will be
set, if a CFI is ready and it will be reset, if a CFI is issued or the instruction
window has been disabled:

cfidlvalid := (cfidl.valid V cfi.ready) A (cfilssued V disablelW)

If cfidl.valid = 1 register cfidl.cfc denotes, if the CFI awaiting issue gener-
ates a change control flow. The register is updated with cfi.cfc, whenever the
prediction environment got a prediction ready, signalled by cfi.cfc:

cfidl.cfc’ := (cfi.ready ? cfi.cfc : cfidl.cfc)
e The pending action register P, € {0,1}7 will be described in detail below.

Pending Actions

Changes to the fetching IFQ may be only allowed on the completion of an instruction
memory read access. There are three actions of the algorithms resulting in a change
of the fetching IFQ (and the fetch PC):

42 CHAPTER 3. HARDWARE

e The prediction or resolving of a CFI causing a control flow change (cf. algo-
rithm 15, 11. 12-15).

e A misprediction report by the branch checker unit (cf. algorithm 14, 1l. 4-9).
The instruction fetch mechanism may initiate rollback but might not complete
until a rollback is signalled from the retirement stage as well.

e A JISR condition is reported by the retirement stage (cf. algorithm 13, 11. 3-6).
A rollback to the interrupt service must be initiated.

Since all the three actions might possibly be detected in a single memory cycle,
they must be prioritized to ensure the same order of execution as in the algorithms.
Regular control flow changes are overruled by mispredictions and JISR conditions,
misprediction is overruled by JISR conditions. Furthermore, the misprediction case
has to be broken down in three subcases, to treat the waiting for the rollback
adequately.

Table 3.3 shows an overview of the events we catch in each memory round.
They are ordered by increasing priority. Each event has a detection signal associ-
ated, which evaluates to 1 if the preconditions for the event are met. An event will
“enter” its pending execution, if it is the event of highest priority detected in the
current memory round. On entering control signals as listed will be activated. If
the instruction memory is not busy, as indicated by IM.busy, the event of highest
priority so far detected may actually be executed; it “leaves” the state of pending
action and activates the signals listed under column “on leave”. We continue with
a detailed description of the cases and will then develop a circuit to control the
pending actions.

Following are the descriptions of the cases listed in table 3.3 from low to high
priority:

e The prediction environment (cf. section 3.7), scanning for CFIs, signals cfi.readyA
cfi.cfc if a control flow instruction causing a control flow change has been re-
solved or predicted.

On enter, the determined cfcPC, is clocked by setting cfcPC.ce. On leave, the
fetching IFQ is switched by setting fIFQswitch.

e Misprediction treatment must be broken down into a number subcases ac-
cording to the two phasses detection and retirement of a mispredicted CFI.

The cases MP0O and MPOsw account for the detection of the misprediction by
the report bcu.valid A bcu.mp = 1 of the branch checker unit. If additionally
bcu.jump V bcu.btaken = 1, the rollback will be by switching the IFQ only. On
enter, MP0O and MPOsw both clock the cfcPC, register. On leave, both will
switch the fetching IFQ and set the issuing IFQ to the fetching IFQ. MPOsw
will prevent the initialization of the fetching IFQ by setting dontInitlIFQ. Ad-
ditionally, both will disable the instruction window by the signal disablelW.

Cases MP1, MP2 and MP2sw deal with the treatment of the rollback, if the
mispredicted CFT is retired in the reorder buffer. At earliest, this is one cycle
after the detection of cases MP0O or MPOsw.

Case MP2 and MP2sw deal with the rollback of a mispredicted CFI in the
memory cylce of the detection of MPO or MP0Osw. Their detection therefore
depends on the detection of MP0O or MPOsw in the same cycle. They will
perform the same updates as MPO and MP0Osw and additionally enable the
instruction window (enablelW) on leave.

Case MP1 deals with the mispredicted CFI retiring in a memory cycle after
detection of MPO or MPOsw. The queue states therefore has already been

3.3. INSTRUCTION FETCH MECHANISM 43

P,.detect IM.busy
compMax

P 1> P,
detectMax,

enter, leave,

Figure 3.3: Pending actions of the instruction fetch

updated appropriately and only the instruction window needs to be enabled
again.

e Detection of an interrupt requests by JISR = 1 has the highest priority. It
disables the instruction window on entering by activating disablelW and clocks
the start of the interrupt service routine in the cfcPC, register by setting
cfcPC.ce. On leave, the fetching IFQ is switched by setting fIFQswitch and the
issuing IFQ follows (ilFQ2fIFQ). The instruction window is enabled again.

Figure 3.3 shows the circuit used to implement this control. The register P,
holds the current action level detected in half-unary encoding.

Arriving at the control are the detection signals P,.detect from table 3.3.3 With
a half-unary maximum computation we filter out the detected action:*

detectMax, := \/ (077, Pi.detecti)
0<i<7

The new (auxiliary) pending level can likewise be computed by a half-unary maxi-
mum computation:

auxP, := P,V detectMax,

Now, the auxP, is also the new value of the P, register if the memory is still busy
fetching. Otherwise the pending register will be cleared:

P, := auxP, AIM.busy

The unary signals enter, and leave, signal the entering and leaving of a certain
pending level. We have enter; = 1 iff level ¢ was entered in the round and leave; = 1
iff level 7 was left in the round. We define as follows:

enter, := markLastOne (auxP,) A P,

leave, := markLastOne (auxP,) A IM.busy

3Define MP0:= P; APy and MPOsw:= Py A P3
4 Actually this computation simplifies greatly on filling in the detection expressions. This strat-
egy will not be followed here for ease of reading.

44 CHAPTER 3. HARDWARE

, fetchPC
' fetchPC,,

fetchPC, —— A

Figure 3.4: Instruction memory environment

These equations are explained as follows: the highest pending level, given in half-
unary encoding by markLastOne (auxP,) is entered, if it is greater than the previous
pending level. It is left, if the instruction memory is not busy.

The control signals given in table 3.3 can be computed via the enter, and leave,
busses. If S is such a signal, we set

S = \/ enter;

s activated on enter i

\Y, \/ leave;

s activated on leave i

3.4 Instruction Memory Environment

The design of the instruction memory environment IMenv follows the design pre-
sented in [Kr699]. However, the underlying instruction memory k-IM always returns
k instruction opcodes and their PCs starting at the base address (A,),, not neces-
sarily a multiple of k. The design of such instruction memory is not treated here;
such extensions are closely related to cache design. An approach to cache design
can be found in [MPO00).

Figure 3.4 shows the implementation of the IMenv. Read requests are controlled
by the IM read signal readlM. This signal requests reading whenever there is enough
room in the fetching IFQ:

readiIM := (fetchlFQ.idx ? ifq,.full : ifqy.full)

The fetch PC fetchPC,, forwarded from the PC environment, specifies the read
address. On IM.busy Instruction PCs are returned on the busses im,..PC,. Instruction
opcodes are returned on the busses im,.opc,. In two cases the opcodes are cleared,
resulting in a nop instruction having no effect: First, the instruction fetch may
be misaligned, signalled by imy.imal: = fetchPC; V fetchPCy. Second, one of the
instructions may reside on a memory page swapped out of physical memory. In
that case, the memory returns a page fault signal. This convention requires an
additional software requirement for the interrupt service routine: on return from
page fault recovery it must be guaranteed that all &k instructions starting at address
(fetchPC,.), reside in physical memory. The page fault signal is returned on im,.pff.

3.5 Instruction Fetch Queue Environment

Figure 3.5 shows the implementation of the instruction fetch queue environments
using a multiported queue. Multiported queues are data structures that allow stor-
ing and retrieving of multiple elements in a round on a first-in-first-out basis. See

3.6. PC ENVIRONMENT 45

im,.data,

|
l.data, . !
doFetch;* lreq, E..x [ifq;.E,.x
ifq;.read, ——O.req,
initlIFQ; —init

| TFQ.: MPQ 1
3 l.ack, X |
| O.ack, X !
| O.data, , !

,,,,,,,,,,,,,,,,

Figure 3.5: Instruction fetch queue environment

| Component | Width | Purpose |

valid 1 indicates valid entry (maintained by queue control)
PC, 32 instruction’s program counter

opc, 32 instruction’s opcode

pff 1 indicates page fault on fetch

imal 1 indicates misalignment

Table 3.4: Components of the instruction fetch queue entries

section 5.3 for the abstract definition, implementation and correctness proof of a
multiported queue.

Table 3.4 shows the composition of an entry in the IFQ. The PC, and opc, com-
ponent are self-explanatory. The page fault exception bit pff and the misalignment
exception bit imal are passed by the instruction memory environment.

Each IFQ is controlled by three signals. The signal initlFQ; requests an initial-
ization (i.e. a clearing of the valid bits) of the queue. The signal doFetch is activated
in the same cycle that instructions from the memory arrive at this queue.

doFetch; := IM.busy A readIM A (fetchlFQ.idx = 4)
initlFQ; := fIFQswitch A dontInitlFQ A (fetchlFQ.idx" = 7)

Data is requested for read out by the read signals ifg;.r, generated by the issue
selector environment. It leaves the queue on the output busses Oy. For prediction
purposes, the queue entries are exported on the entry bus E,.x and received back
on E', .x.

3.6 PC environment

Figure 3.6 shows the PC environment. It contains two registers, IFQy.PC, and
IFQ;.PC,, holding the fetch PC for IFQq and IFQ;. Only one of these PCs is active
at a time—in the sense of addressing the instruction memory. This PC is selected by
the index of the fetching IFQ, fetchlFQ.idx, generated by the control. The resulting
bus fetchPC, was already used to address the instruction memory in the IMenv.
The update of these registers is as follows. For i = fetchlFQ.idx register IFQ;.PC,
receives the incremented-by-k-version of fetchPC,. It will only store it, if a fetch
takes place, as indicated by the signal doFetch;, which has been defined already.
For i = fetchlFQ.idx register IFQ;.PCy is updated if it becomes the fetching PC in

46 CHAPTER 3. HARDWARE

cfcPC, cfcPC’,

INC

IFQ,.PC.ce —— > IFQ,.PC, IFQ,.PC,

Figure 3.6: PC environment

cfi.cfcPC,

bcu.cfcPC,
JISR

rollback

cfcPC, cfcPC/,

Figure 3.7: Control flow change PC generation

3.7. PREDICTION ENVIRONMENT

47

| Signal | opcgy..0¢ | Associated instructions
t.epc 111111 | rfe
t.gpr 01011x | jr, jalr
t.imm16 | 000lxx | beqz, bnez, fbeqz, fbnez
t.imm26 | 00001 | j, jal
cfi t.epc V t.gpr V t.imm16 V t.imm26
bbi cfi
relJump | t.imm16 V t.imm26
absJump | relJump

Table 3.5: Control signals in the control flow environment

the next round and is initalized, i.e. if initlIFQ; = 1 In this case it is fed either the
stored value cfcPC, or the update value cfcPC', of the CFC PC register, chosen by
cfcPC.ce.

In summary, the clock enable signals of these register is defined as follows:

IFQ;.PC.ce := doFetch; Vv initlFQ;

3.7 Prediction Environment

The prediction environment PredEnv is part of the hardware implementation of the
prediction algorithm 15. The prediction environment scans for CFI in the issuing
IFQ and attemps to predict or resolve them.

The following sections review the scan procedure for the CFI, the prediction of
CF1Is, the resolving of CFIs and the construction of the following bus:

cfi.ready indicate that a CFTI is ready
cfi.doPred the CFI was predicted
cfi.btaken the CFI is a taken branch

cfi.cfc the CFI causes a control flow change
cfi.cfcPC, the control flow change PC of the CFI

3.7.1 Finding the first CFI
We start with the selection of the issuing IFQ from IFQy and IFQ;:

issuelFQ,.x := (issuelFQ.idx ? IFQ;.Ex.x : IFQq.E,.%)

In hardware this is done in three steps.

First, the instruction opcodes issuelFQ,.opc, are predecoded to determine their
type. Table 3.5 shows the signals generated for each entry in the fetching IFQ. Refer
to appendix A for an overview of the DLX instruction set architecture. The signals
t.epc, t.gpr, t.imm16 and t.imm26 characterize the target a CFI can take; relJump
indicates PC-relative jumps as opposed to absolute jumps. The signals cfi and bbi
classify instructions into basic-block and control flow instructions.

Second, a find-first-one half-unary circuit FF1hu,, receiving issuelFQ, .cfi returns
the position of the first control flow instruction in the issuing IFQ in half-unary
encoding. If cfiNegHU, € {0,1}™ is the output of the circuit, we have

issuelFQp.cfi=0 ' <l

(cfiNegHU,),, =1 <=\ icouelFQu.cfi — 1

48 CHAPTER 3. HARDWARE

Third, the found instruction is driven on an auxiliary bus cfi.x by using
firstCFl, := markFirstOne (cfiNegHU,)

as an output enable signal. The contents of cfi.x are valid, if a candidate was found,
the fetch mechanism has no outstanding speculation and no action is pending in
the P, register:

cfivalid := cfiNegHU,_; A (GssV bcu.valid A bcu.mp) A (\/ P*)

3.7.2 Prediction

The cfi.x bus is passed on to the branch predictor unit (BPU) for prediction. The
BPU acknowledges the prediction requests with the signal bpu.pred. On acknowl-
edgement, the BPU guarantess a valid bpu.btaken signal indicating the outcome of
a branch or a valid bpu.cfcPC, bus indicating an absolute jump target.

Appendix B introduces a sample branch predictor for branch instructions only
(so bpu.pred : = cfi.t.imm16).

3.7.3 Resolving

To resolve branches, we access the source operand data generation of the decode /
issue environment. The bus firstCFl, is used to select the first source operand of
the CFI by drivers from all the first operands i..op;.data, in the decode / issue
environment:

cfi.op,.data, := i;.op;.data, with firstCFl; =1,i€ {0,...,8—1}

The contents of this bus are only valid, if the decode / issue environment actually
“sees” the CFI, i.e. if the CFI has an index which is less than the issue width.
Additionally, the data on i;.op, .data, is only valid if i;.op, .valid = 1. We obtain with
selecting on i.op,.valid by drivers:

cfi.op;.valid := cfiNegHUz Ai.op;.valid with firstCFl; = 1,i € {0,...,8 — 1}
We resolve a CFI in three situations:

e A rfeinstruction is resolved, when the ROB is emptied. This ensures that the
exceptional registers ESR, and EPC, have the values of the last instruction
writing to it.

e The unconditional relative jump instructions j and jal are resolved right-
away, since their target address can be immediately computed and they are
known to jump unconditionally.

e The register jump instructions jr and jalr are resolved when their first
operand becomes valid. The operand contains the target address.

This conditions are summarized in the following equation:
cfi.resolve := (cfi.t.epc ? ROB.empty : cfi.op,.valid V cfi.t.imm26)
If cfi.resolve = 1, a taken branch is signalled by
cfi.resolve.btaken := cfi.op;.eqz @ cfi.opcyg

where cfi.op,.eqz: = (\/ cfi.op,.data,). The target of a direct jump can be directly
taken from cfi.op, .data,.

3.8. INSTRUCTION WINDOW ENVIRONMENT 49

sextgs (cfi.opcys)
sextga(cfi.opcyg..q)

t.imm26
cfi.op, .data,
bpu.cfcPC,

cfi.resolve
EPC,
cfi.t.epc

cfi.relJump

cfi.cfcPC,

Figure 3.8: Generation of the CFI CFC PC

3.7.4 Construction of the CFI bus

A CF1I is ready for execution, if it is valid can be either predicted or resolved:
cfiready := cfivalid A (cfi.resolve V bpu.pred)

Resolving a CFI has priority over prediction. This is reflected in the definitions of
the signals doPred, telling the BPU to predict actually, cfi.btaken indicating a taken
branch and cfi.cfc indicating a control flow change:

cfi.doPred := cfi.resolve A bpu.pred
cfi.btaken := (cfi.resolve ? cfi.resolve.btaken : bpu.btaken)
cficfc := (cfi.t.imm16 A cfi.btaken)

Finally, prediction or resolving results in the computation of a control flow
change PC for the CFI, cfi.cfcPC,. Figure 3.8 shows how to compute this bus.
For relative jumps, indicated by cfi.relJump, the cfcPC, is computed as the PC of
the CFI plus the immediate constant, either 16 or 26 bits. Otherwise, the target
is the EPC, register for rfe instructions, the resolved or the predicted address for
jumps to register locations.

3.8 Instruction Window Environment

3.8.1 Construction of the Instruction Window

The construction of the instruction window takes place in the instruction window en-
vironment IWenv. Here, the instructions that the fetch mechanism choses to present
to the decode / issue environment are selected and the entries are padded with the
necessary interface information (classification of instructions by flags bbi, cfi and
providing the next PC nPC,) to the decode / issue environment.

Some work has already been done in section 3.7.1: recall the definition of the
issuing IFQ as

issuelFQ,.x := (issuelFQ.idx ? IFQ;.E..x : IFQq.Ex.x)

In accordance to the nomenclature used in the algorithms we rename the first entries
of the issuing IFQ. For clarity, we explicitly list all the renamed bus items, ¢ €

30 CHAPTER 3. HARDWARE

{0,...,0—1}:
ii.opc, := issuelFQj.opc,
i;.PC, := issuelFQ;.PC,
ii.imal := issuelFQ;.imal
i;.pff := issuelFQ;.pff

The valid, bbi, cfi signals are computed as follows:

i,.valid := issuelFQ,.valid A Wdisabled
i,.bbi := cfiNegHU,
ix.cfi 1= firstCFl, A (cfi.ready V cfidl.valid)
ix.cfc = firstCFl, A (cfi.ready ? cfi.cfc : cfidl.cfc)

The abstract interface of a speculative instruction fetch mechanism requires to
compute the next PC for every instruction. As the PC is not a general-purpose
source register in the DLX instruction set, we need to supply its alleged new value
only for the verification of control flow instructions. Since at most one control flow
instruction is presented to the decode / issue stage in the issuing IFQ, we supply
the next PC via

cfidl.cfcPC, := (cfcPC.ce ? cfcPC'y : cfcPCy)
already generated in the CFC PC generation. Additionally, we also have to supply

the sequential PC for every CFI, as we will see in the description of the branch
checker unit, section 3.11.4. For this we compute

cfidl.inlinePC, := inc4 (cfi.PC,)

with inc4(-) denoting an increment-by-4 function.

3.8.2 Draining and Switching the Issuing IFQ

The second task of the issue selector environment is to drain the issuing IFQ and
initiate a switch, in case that a CFI causing a control flow change has been issued.

The decode / issue environment returns for this purpose the i,.issue signals;
giving a half-unary encoding of the number of issued instructions. The following
signals detects, if a CFI has been issued:

cfilssued := (\/i*.issue/\i*.cfi)

If a CFI causing a control flow change has been issued, the issuing IFQ must be
switched:

iIFQswitch := cfilssued A (cfi.ready ? cfi.cfc : cfidl.cfc)

The issuing IFQ is drained by the number of issuing instructions, supplied in
half-unary encoding. We have:

ifg;.read, := i,.issue A (issuelFQ.idx = 4)

3.9. DECODE / ISSUE ENVIRONMENT 51
Decode / Issue Stage

3.9 Decode / Issue Environment

The purpose of the decode / issue environment (DIenv) is to take instructions
from the IFQ in a sequential order, compute control signals for them, gather their
operands if possible and direct them to the appropriate reservation stations to
initiate their execution. These operations have to be executed for an arbitrary but
fixed number 3 of instructions simultaneously.

In accordance to the nomenclature of issue protocol, algorithm 1 (p. 16), the
instructions in the instruction window are delivered by the instruction fetch stage
on busses i;.x. The following two subsections describe the exact operation of the
DIenv.

3.9.1 Decoding the Instruction

The decoding component for instruction i; takes the instruction opcode i;.opc and
computes the following control signals:

e Signal isCFl indicates that the decoded instruction is a CFI. The opposite
condition, i.e. that the instruction is a BBI, is expressed by the negation,
isCFI.

e The signals itype, jtype and rtype determine the instruction type according
to the instruction set architecture of the DLX, appendix A. The instruction
type specifies the location of operand addresses or immediate constants in the
instruction’s opcode.

Naturally, exactly one of the signals itype, jtype and rtype should be activated.

e Floating point instructions are marked by the signal fp; in case that they
operate on double IEEE encodings, signal db is activated additionally.

e The functional unit identifiers FU.x, explicitly listed in table 3.6, specify which
functional unit will be used for the execution of instruction i;. The special
signal noFU indicates, that the instruction does not need a functional unit
for execution, i.e. it completes on issue. Only illegal instructions meet this
requirement.

Naturally, exactly one of the signals FU.x should be activated.

o The operand signals are defined for the source operands op; and op, and for
the destination operand d of an instruction i;. Their signals can be divided
into two subgroups.

The first group, consisting of the signals IMM, RS1, RS2, RD, FS1, FS2, SA,
R31, describe the possible sources and destination in a DLX instruction. These
are, in order of appearance, a 16-bit or 26-bit immediate constant, the first and
second general purpose register operand, the integer destination register, the
first and second floating point source operand, the shift amount and register
R31. Again, the nomenclature and semantics is shown in appendix A.

The second group locates register operands in the machine: gpr, fpr and spr
determine if the register is general-purpose, floating-point or special; db speci-
fies a double operand in case of a floating-point reference. The register address
is specified by the address bus a, € {0,1}°.

52 CHAPTER 3. HARDWARE

Functional Unit | Purpose |

FUg = FU.alu int computation

FU; = FU.mem | load / store

FU, = FU.add fp addition / subtraction
FU3z = FU.fmul | fp multiplication

FU,; = FU.fdiv fp division

FUs = FU.fconv | conversion int / fp

FUg = FU.ftest | fp condition test

FU7; = FU.bcu branch checker unit

Table 3.6: Coding of the functional units

e The remaining signals, load, fabsneg, ff2i, fi2f, fmov, link, jump, noChk, trap,
rfe, movs2i, movi2s and ill, specify behaviour of the functional unit executing
the instructions. They are just passed on to the functional unit and will not
be described in detail here.

The decoding of the instruction, i.e. the computation of the signals just de-
scribed, is divided into two parts. The control automaton CSig decodes the in-
struction word and activates the control signals necessary for the execution of the
instruction. This is done by specifying states for sets of instructions, as listed in ta-
ble 3.7. Table 3.8 defines the automaton CSig. For each state, monomials are listed
matching to the corresponding instructions (cf. appendix A). The automaton com-
putes the monomials to determine its state at the beginning of each cycle. Then, it
activates the control signals for each state, in correspondance to the signals given
in the table.

A discussion of such automata, including analysis for cost and delay, is found in
[MP95].

Additionally, for each operand op,, op, and dest the operand address is gener-
ated. The operand address is gathered from opcode bits specified in appendix A
according to the operand type. So, we have:

opcyg.. for op;.SA =1

op;.ax = 0pCyg..1¢ for op;.RS2 =1
OpCys..9; Otherwise
Opz-ax = OPCy..16

(11111) for d.R31 =1
(01000) for d.FCC =1
da, := opCyg.. for dSA=1
opc5.1; for itype A (d.RDV d.FD) =1
OpCyg..1¢ for itype A (d.RDV d.FD) =1

The computation of the signals db, fpr, gpr and spr for the operands is straightfor-
ward. Refer to figure 3.9 showing the operand address computation.

3.9.2 Issuing the Instruction
Testing for Reservation Station Availability

The issue protocol, algorithm 1 (p. 16), states that an instruction i; cannot be
issued, if there is no appropriate reservation station available. This section derives
the computation of the signal i;.noRS indicating this condition.

Consider a functional unit FUj, fixed. This functional unit is associated with a
set of reservation stations which we will later organize in a queue RSQ; (section 3.14)

3.9. DECODE / ISSUE ENVIRONMENT

| State | Instructions
sll, sla, srl, sra
ALU add, addu, sub, subu, and, or, xor, 1lhg
clr, sgr, seq, sge, sls, sne, sle, set
Shifti s11i, slai, srli, srai
addi, addiu, subi, subiu
ALUi andi, ori, xori, lhgi
clri, sgri, seqi, sgei, slsi, snei, slei, seti
Load 1b, 1h, 1w, 1bu, 1hu
Load.s load.s
Load.d load.d
Store sb, sh, sw
Store.s store.s
Store.d store.d
Faddsub.s | fadd.s, fsub.s
Faddsub.d | fadd.d, fsub.d
Fmul.s fmul.s
Fmul.d fmul.d
Fdiv.s fdiv.s
Fdiv.d fdiv.d
Fcond.s fc.cond.s
Fcond.d fc.cond.d
Fabsneg.s | fabs.s, fneg.s
Fabsneg.d | fabs.d, fneg.d
Ff2i mf2i
Fi2f mi2f
FMov.s mov.s
FMov.d mov.d
FConv.s cvt.s.d, cvt.s.i, cvt.i.s, cvt.i.d
FConv.d cvt.d.i, cvt.d.s
Branch beqz, bnez
FBranch fbeqz, fbnez
JumpReg | jr
JLinkReg | jalr
Jump j
JLink jal
Trap trap
RFE rfe
Movs2i movs2i
Movi2s movi.s
uFOP fsqt.s, fsqt.d, frem.s, frem.d

Table 3.7: Correspondance of states and instructions

53

54 CHAPTER 3. HARDWARE
Monomials Active Control Signals

State

OPC3;..06 OPCq OPCs..q | FU. Jop;. op,. d.
ALU Coonn T rtype alu [RS1 RS2 RD
Shifti 000000 * 0000 |rtype alu |RS1 imm RD
ALUi O#Tsksx % x| itype alu |RS1 imm RD
Load 100%#% # sk |itype, load mem |[RS1 - RD
Load.s 110001 # sk |itype, load, fp mem |[RS1 - FD
Load.d 110101 # ssskkxx |itype, load, fp, db mem [RS1 - FD
Store 101k % sskskkxk | itype mem [RS1 RD -
Store.s 111001 # s#sskkxx |itype, fp mem |[RS1 FD -
Store.d 111101 # ssskk%x |itype, fp, db mem [RS1 FD -
Faddsub.s | 010001 0 00000 |rtype, fp fadd [FS1 FS2 FD
Faddsub.d | 010001 1 00000 |rtype, fp, db fadd [FS1 FS2 FD
Fmul.s 010001 0 000010 |rtype, fp fmul |FS1 FS2 FD
Fmul.d 010001 1 000010 rtype, fp, db fmul |FS1 FS2 FD
Fdiv.s 010001 0 000011 |rtype, fp fdiv |FS1 FS2 FD
Fdiv.d 010001 1 000011 |rtype, fp, db fdiv |[FS1 FS2 FD
Fcond.s 010001 O 1lsskskx|rtype, fp ftest | FS1 FS2 FCC
Fcond.d 010001 1 1ls#*x*|rtype, fp, db ftest [FS1 FS2 FCC
Fabsneg.s | 010001 0 00010%|rtype, fabsneg, fp fconv|FS1 - FD
Fabsneg.d | 010001 1 00010%|rtype, fabsneg, fp, db fconv|FS1 - FD
Ff2i 010001 % 001001|rtype, ff2i, fp fconv|FS1 - RS2
Fi2f 010001 * 001010 |rtype, fi2f, fp fconv|RS2 - FS1
FMov.s 010001 0 001000 |rtype, fmov, fp fconv|FS1 - FD
FMov.d 010001 1 001000 |rtype, fmov, fp, db fconv|FS1 - FD
FConv.s 010001 * 10000 |rtype, fp fconv|FS1 - FD
FConv.d 010001 * 100001 |rtype, fp, db fconv|FS1 - FD
Branch 00010% % sk |itype, isCFI bcu [RS1 - -
FBranch 00011% * sxx%%x|itype, isCFI bcu |[FCC - -
JumpReg | 010110 % sk |itype, jump, isCFI bcu [RS1 - -
JLinkReg | 010111 % sk |itype, jump, isCFI bcu [RS1 - R31
Jump 000010 = sskskkx | jtype, jump, noChk, isCFI| bcu [imm - -
JLink 000011 * sk |jtype, jump, noChk, isCFI| bcu |imm - R31
Trap 111110 % 000000 |jtype, trap, noChk bcu [imm - -
RFE 111111 # ssskkxx |jtype, rfe, noChk, isCFI bcu |imm - -
Movs2i 000000 = 010000 |rtype, movs2i alu |SA - RD
Movi2s 000000 % 010001|rtype, movi2s alu [RS1 - SA

010001 % 00011
uFOP 010001 # Olsssx|UFOP noFU| =~ ~
Tllegal (z0)| (alternative case) |ill noFU| - - -

Table 3.8: Decode control

3.9. DECODE / ISSUE ENVIRONMENT

0p,.Spr
OPy-ax

d.SA |
d.spr
d.FCC — !
d.RD —
d.FD —
d.SA —
01000 —— O
w11
it l
Itype 7 1 >_ﬁ da,
OPCy5..11 f 0 J\/
OpCy..16 &/
d.R31 %

Figure 3.9: Operand address generation

95

of size RSQ.SZ;. The fill state of the queue is indicated by the signals RSQ;.empty,;
we have (RSQ;.empty,) hu = U iff there no more than (I +1) free reservation stations
left. Furthermore, the number of instructions issuing on the queue each cycle is
bounded by its “indegree”, the parameter k := RSQ.IN;.

The instruction i; cannot issue on RSQ; if it is the [-th candidate requesting

FU; and RSQ; has no I free reservation stations left. In circuitry, we compute the

candidate number i2RSQ; j.cand, € {0,1}**! for instruction i; issuing on RSQ;:

i2RSQ; ;.cand, = min{k + 1, ones(i;..o.FU;)
sJ hu J

A find-first-(k + 1)-ones-half-unary circuit, described in section C.2, computes this
information. Now we check <i2RSQi,j.cand*>hu > <R5Qj.empty*>hu by half-unary
comparison (equation 3.12, p. 36) and obtain

RSQbusy4Ij’i = (\/ i2RSQi’j.cand*/\RSQj.empty*)

The following equation computes i;.noRS:

i.noRS := §.noFU A (\/ i.FU, A RSQbusy4I*7i)

This reflects the fact that an instruction needing no functional unit never fails in
finding one and for i;.FU; = 1 there must be a free reservation station in RSQ;, i.e.

RSQbUSy4IJ71 = 1.

Source Operand Data Generation

The source operand data generation computes for each source operand a tuple
(tag, ,valid ,data,) € {0,1}* x {0,1} x {0,1}32, where v is the tagwidth (cf. section

96 CHAPTER 3. HARDWARE

3.13). Double source operands are composed of a low part and a high part, so four
operands opy y,, k € {1,2} and b € {lo, hi} have to be generated.

The source operand data generation is a direct implementation from the appro-
priate portion of the issue protocol, algorithm 1, p. 16. Recall that valid = 1 signals
a valid data, component while valid = 0 ensures that tag, contains the tag of the
producing instruction of the operand.

We proceed with a description of the various cases. They are ordered according
to their priority, so the latter cases only apply if none of the previous cases applies.

o Let b =lo. If the operand is the immediate constant, signalled by i;.op,.imm,
we set

(tag, ,valid,data,) := (0%,1,i;.co)

To compute the immediate constant i;.co, € {0, 1}32, three cases must be
distinguished: for register type instructions, the immediate constant is taken
from the shift amount field, ij.opc;q..4. Otherwise, it is the sign-extended 16-bit
constant for immediate type instructions or the sign-extended 26-bit constant
for jump type instructions. The distinction of the three cases results in the
following equations:

i;.c05..0 = (ij.rtype ? i;.0pcyg..¢ : 1i-0pCs..0)
i1.C015..6 = 1i.0PCy5..4
i;.co25.16 = (ii-jtype ? ;.0pCys..16 : 1i-0PCy5)
ii.C032..26 = ii.C025

For b = hi, the procedure is simplified. If an immediate constant operand is
indicated by i;.op,.imm or if the operand is no double operand (i;.op,.db = 1)
we define:

(tag, ,valid,data,) := (0”,1,0%?)

e We now check, if an accompanying instruction i; with j < ¢ produces the source
operand. This is done by comparing the source operand’s location information
db, gpr, fpr, spr and a, to the destination location for i;. Let the predicate
eqA (i,k,b,j) indicate that operand i;.opy ;, is produced by i;j. For b = lo this
is the case, if the operand has the same address for the same location. If the
destination of i; is a double floating point register, only the upper four bits of
the address must match. So, with S denoting i;.opy ;, and D denoting i;.d, we
define:

eqA (i,k,lo,j) := ((S.gpr,S.fpr,S.spr,S.as..1,S.ap V D.db)
= (D.gpr,D.fpr,D.spr,D.as..; ,D.ag vV D.db))
For b = hi, the computation is similar. This case is only relevant for i;.op,
being a double floating point register, since the other operands are all 32 bits.
Instruction i; produces the source operand, if its destination is a single floating

point register with ag = 1 or double floating point register. So, with S denoting
i;-0py p, and D denoting i;.d, we define:

eqA (i,k,hi,j) := (ii.fpr,as.1,1) = (ij.fpr,as..1,a0 Vij.db)

In case that equal (or as in the double case rather overlapping) location is
signalled, we obtain the instruction tag i;.tag, := ROB.tail; . for the maximum
j with eqA (i,k,b,j) =1

(tag, ,valid ,data,) := (ij.tag*)1, 032)

3.9. DECODE / ISSUE ENVIRONMENT 57

e Now we have to access the register file to obtain the tag and the valid bit the
source operand. In our implementation, tag and valid bit are stored in the
so-called producer tables, while the actual data of registers is stored in the
register file.

The producer table is accessed via the addresses of the source operands and re-
turns the signal PTvalid: = pt.i;.opy ;,-valid and bus PTtag, : = pt.i;.opy , -tag,.
If PTvalid = 1, then the data stored in the register file, rf.i;.opy.datay 4 is valid
and can be used to compose the source operand:

(tag, ,valid,data,) := (0",1,rf.i;.op;.datap)

e Having PTvalid = 0, the instruction producing the source operand has not yet
retired. To detect the result being broadcast on a common data bus in the
same cycle, we define

snoopCDB,; := ((CDB;.valid,CDB;.tag,) = (1,PTtag,))

We have snoopCDB, = 1, if the result has been detect on CDB;. Note, that as
tags are unique, at most one CDB can qualify in having the tag being looked
for, so the order of checks is not important. A succesful snooping has taken
place, if one of the signals snoopCDB; is active:

snoop = (V snoopCDBl)

In case of snooping, data from the snooped CDB can be driven by snoopCDB,
on the source operand bus.

e If the reorder buffer, accessed by PTtag,, signals valid data with rob.i;.op;.valid,
the instruction having tag PTtag, already completed its computation and
the result is stored in the reorder buffer as rob.i;.opy y,.data.. So, under the
assumption of rob.i;.opy },.valid = 1, we set:

(tag, ,valid data,) := (0%,1,rob.i;.op, ,.data,)

e Finally, only the tag is available in this case. Therefore we set

(tag, ,valid ,data,) := (PTtag,,0,0%?)

The cases just described lead to the implementation of the source operand data
generation as shown in figure 3.10.

Figure 3.11 shows the source operand data generation for the special registers
RM (rounding mode) and MSK (interrupt mask) needed by floating point opera-
tions. The procedure is similar to the general operands. Since these source operand
generation refers to fixed-address registers, most part of its hardware may be shared
for different instructions. The predicates eqRM (j) and eqMSK (j) are used to detect
instructions writing to RM and MSK. With the addresses of the RM and the MSK
register being (0110), and (0000),, according to table 3.13, these predicates are
defined as follows:

eqRM (j) := (ij.d.spr,ij.as..0) = (1,0110)
eqMSK (j) (i;.d.spr,ij.as..0) = (1,0000)

98

CHAPTER 3. HARDWARE

(0%,1,i;.co5) b=lo

(0,1,0%) b= hil

|
- .
|

(i;-0p, ,-tag, ,i;.0p, ,-valid , i;.0p, ,.data,)

u+1+32j < Vo

(pt.i;-op, 4-tag, , 0, 0%%)
(07,1, rob.i;.op,.data,)

rob.i;.op, ,-valid

(0”,1, cdb,.data, ,)

i;.0p,.snoopCDB,

i;.0p;, ;-SNOOP

(07,1, rf.i;.op,.datay,)
pt.i;.op, ,-valid

(ip-dest.tag, , 0, 0%2)
eqA(i, k,b,0)

(i;_ 5.dest.tag, , 0,0%2)
eqA(ik, b,i — 2)
i;_.dest.tag, , 0, 0%2
eqA(i,k,b,i —1)

i;.op,.imm b=1lo

i;.0p,.imm

Figure 3.10: Generating the source operand data, b € {lo, hi}

3.9.

DECODE / ISSUE ENVIRONMENT 59

(pt.SPEC.tag, , 0, 0%)
(0,1, rob.SPEC.data,)
rob.SPEC.valid

(0%, 1, cdb,.data,)
SPEC.snoopCDB,

SHARED

SPEC.snoop

(0%, 1, rf.i;.SPEC.data,)
pt.SPEC.valid

(io.dest.tag, , 0, 0%%)
eqSPEC(0)

(i;_o.dest.tag, ,0,0%2)

eqSPEC(i — 2)
i, .dest.tag, ,0,032
eqSPEC(i — 1)

(i;-SPEC.tag, ,i;.SPEC.valid ,i;.SPEC.data,)

Figure 3.11: Generating the source operand data, SPEC € {RM, MSK}

Stall Generation

The

purpose of the stall generation is to model the execution of the issue loop

present in the issue protocol, algorithm 1 (p. 16). The goal is the computation of
the signal i;.stall (and its complement i;.issue: = ij.stall); i;.stall = 1 iff instruction
i; cannot be issued. We proceed in two steps. First, we define the signal i;.stallAux,
indicating a “local” stall condition. This signal is used to compute the actual stall
signals in the second step.

The following cases form the local stall condition for an instruction i;:

On rollback condition, signalled by rollback, no instruction shall issue.

The cycle after an rfe instruction has been issued, the machine performs the
actual register transfers for returing from exception (i.e. SR will be initialized
to 0). The register doRFE is used to catch this event and stall issuing in this
case:

doRFE' := (Vi*.rfe/\i*.issue)
The instruction may not be ready for issue, which happens in two cases:

the instruction is not fetched or the instruction was falsely classified by the
instruction fetch mechanism. This results in

ii.invalid :=ivalid V (i;.cfi @ i;.isCF1) V (i;.bbi & i;.isCFI)
There is no reservation station left to issue instruction ij, i.e. i;j.noRS = 1.

There is no room left to store i; in the reorder buffer. The reorder buffer signals
this condition by ROB.i;.full = 1.

60 CHAPTER 3. HARDWARE

Figure 3.12: Eligibility for read-out for reservation station

e The instruction is a movs2i with source register IEEEf, and the ROB is not
empty. This is necessary since no forwarding mechanism for the IEEEf, register
is implemented, so preceding floating point instructions may modify IEEEf,
without notice. This condition is written as follows:

ii.IEEEfstall :=i;.movs2i A (i;.opcyq.. = 00111) A ROB.empty

The following equation summarizes all the above cases:

i;.stallAux := rollback V doRFE
V ii.invalid V i;.noRS vV ROB.i;.full Vv i;.IEEEfstall

The (global) stall condition is written as follows:

istall = (\/ii..o.staIIAux)

This information can be computed using a parallel-prefix OR or a find-first-1 half-
unary circuit.

3.10 Reservation Station Environment

The Reservation Station Environment is built up using a RS-Queue. An RS-Queue
is a queue that provides an additional signal e4ro for each entry which is active if
the entry is eligible for read-out. Among the candidates for read-out a RS-queue
selects the oldest. The formal specification of an RS-queue and its implementation
can be found in section 5.4.

The data elements of the RS queue consist of the control signals for the FU,
tuples of (tag,valid,data) for each source operand and the tag for the destination
operand. An entry is eligible for read-out if it is not empty (that is accounted for
automatically in the RS queue) and if all its source operands are valid. The resulting
circuit is drawn in figure 3.12.

The reservation station queues are initialized on the activation of the global
signal rollback.

3.10.1 Scheduling of the reservation station input busses

Let RSQj have indegree RSQ.IN ;. The instruction destined for FU; must be mapped
on to the reservation stations write busses RSQ;.W,.x. We control this mapping
by the signal i2RSQ2W; ; i; i2RSQ2W; ; i indicates that instruction i; forwards its
operand to the k-th write bus of the RSQ;.

Instruction i; is mapped on the k-th write bus of RSQ;, iff it requests for FU; and
is the (k4 1)-th candidate in doing so. Since i2RSQ; j.cand,, defined in section 3.9.2
on page 52, is a half-unary encoding of the candidate number, we have

i2RSQ2W; ; ., := ii.FU; A markLastOne (i2RSQ; ;.cand..)

3.11. FUNCTION UNIT ENVIRONMENTS 61

RS.op’; %

Figure 3.13: Common data bus snooping

The interface of the reservation station queues requires us to indicate the write
requests. The k—th write bus of RSQ; is requested, if there exists an instruction
actually issuing on the k—th write bus of RSQj. So:

RSQ;Woreq, i= (\/i2RSQ2W, ;) Aissue)

3.10.2 Snooping for source operands

This section implements the common data bus snooping protocol, algorithm 2, p. 17.

Have a reservation station RS and one of its operands RS.op;. To scan for the
presence of the operand’s tag on CDB; we define the signal RS.op;.snoopCDB; as
follows:

RS.op;.snoopCDB; := ((RS;.op;.valid,1,RS;.op; -tag,)
= (0,CDB;.valid , CDB;.tag,))

The reservation snoops an operand, if one of the signals RS.op;.snoopCDB; is
active:

RS.op;.snoop := <\/RS.opi.snoopCDB*)

The following equation is used to update the contents of the RS.op;.valid register:
RS.op;.valid" := RS.op,.valid V RS.op;,.snoop
The definition of these signals justifies the implementation the update circuits
for the data fields given in figure 3.13. The signal snoopCDB; is used as output

enable signal to drive CDBj.x on an internal update bus. The mux selects between
the internal update bus and the old data RS.op;.x with the signal RS.op;.snoop.

Execution Stage

3.11 Function Unit Environments

3.11.1 Arithmetical and Logical Functional Unit

The arithmetical and logical functional unit (ALU) executes the integer compute
instructions. For the distinction of these operations, the following items need to be
stored in its reservation stations:

62 CHAPTER 3. HARDWARE

opcy..o | Operation |
00000 | left shift

00010 | right shift

00011 | arithmetic right shift
10000 | add without overflow
10001 | add with overflow

10010 | subtract without overflow
10011 | subtract with overflow
10100 | bitwise AND

10101 | bitwise OR

10110 | bitwise XOR

10111 | load high

11001 | test “>”

11010 | test “="

11011 | test <>”

11100 | test “<”

11101 | test “#£”

11110 | test “<”

Table 3.9: Encoding of the ALU operations

e The operation code op, € {0,1}. The operation code is gathered from the
instruction’s opcode. Let instruction i; issue on the ALU. Then:

opy := (ii.itype? 1 : opcy)

opg := (ii.itype ? opcgyy : opcs)

op, := (ij.itype ? opcyg : Opcy AOpPCs)
opi.o := (ii-itype? opcyr.06 1 OPCy..0)

Table 3.9 shows an the encoding of the ALU operations.
e Signals movi2s and movi2s indicate special move operations.

The design of the ALU is copied from [MP95, MP00] and is therefore not presented
here.

3.11.2 Floating Point Functional Units

The machines has five floating point units for IEEE-compliant addition, multiplica-
tion, subtraction, relation checking and conversion. We use the same configuration
as presented in [Kr$99].

The design of the floating point functional units lies beyond the scope of this
thesis. The design of the units is treated in [Lei99, MPO0O0] from which they are
copied. [Kro99] provides more detail on the integration of the FPUs in Tomasulo
design.

3.11.3 Data Memory Functional Unit

The data memory functional unit can be copied from [Kr699]. We only describe here
the structure of its reservation station queue, containing the modified superscalar
dispatch protocol.

3.11. FUNCTION UNIT ENVIRONMENTS 63

Reservation Station Entry

A reservation station RS; for the data memory functional unit contains the following
items:

e The first operand, contained in op,.data,, is used as address operand for a
memory access. On issue, op; .data, is initialized with the sum of the immediate
constant and the first operand:

op;.data, := add (i;.op,.datay,ii.coy)

This sum equals the immediate constant, if the first operand was not valid on
issue. Eventually, this operand will be snooped and then added to op, .data,.
This process is defined below.

o Items op,.valid and op,.data, are the standard fields for the second source
operand.

e Item load is active for a load instruction, inactive for a store instruction.
e Item fp signals a floating point instruction.
e Item db signals a double floating point operand.

e The least significant bit of the second operand’s address, op,.ag, is used for the
single adjustment of floating point operands: single operands with opy.ap = 1
arriving on op,.datags..32 will be shifted to the lower portion of the bus on
entering the functional unit.

e The least significant bit of the destination operand’s address, d.ag, is likewise
used for single adjustment on leaving the functional unit.

o Instruction opcode bits opcyg..5¢ encode the operand width and whether the
operation is signed or unsigned.

Operand Snooping

We only describe snooping for the address operand. Let RS; be the i—th reservation
station in the data memory reservation station queue. The signal RS;.snoopCDB,; is
defined to detect the operand’s tag on CDB;:

RS;.op;.snoopCDB; := ((RS;.op,.valid, 1, RS;.op, .tag,)
= (0, CDB;.valid, CDB;.tag,))

Operand RS;.op; can be snooped, if one of these signals is active:
RS;.op;.snoop := (\/ RSi.opl.snoopCDB*)
The new valid register is computed as:
RS;.op;.valid := RS;.op;.valid V RS;.op; .snoop
The update circuit for the RS;.op, .data, field is given in figure 3.14. The signal
snoopCDB; is used as output enable signal to drive CDBj.data, on the input of a

32-bit adder ADD32. The other operand is RS;.op,.data,. The adder’s result is the
memory access address, in case that snoop is valid.

64 CHAPTER 3. HARDWARE

snoopCDB,

RS.op'; x

Figure 3.14: Common data bus snooping for the data memory FU

Dispatch Protocol

The interface of the reservation station queue requires the definition of an eligible
for read-out signals edro; for each reservation station RS;. These signals constitute
the dispatch protocol.

The dispatch protocol used herein is based on [Miil97]. It is defined separately
for load and store instructions:

e A load instruction may dispatch if the following two conditions are met;:

— The operands are valid, i.e. RS;.op;.valid A RS;.op,.valid.

— Each previous reservation station contains either also a load or its address
does not overlap with RS;.op,.data,:

Vj <i:RS;.loadV (overlap(i)N RSj.opl.vaIid)

The notion that two addresses overlap is defined by the memory access
width. The memory is accessed in 64-bit portions for double operands
and in 32-bit portions for all other memory operations. Therefore, if
one instruction accesses a 64-bit portion, the accesses overlap, if their
upper 29 address bits are the equal. If both instructions are not double,
i.e. address 32-bit portions of the memory, their region overlaps, if their
upper 30 address bits are equal. These two conditions can be comprised
in the following equation of the overlap (i,) macro:

overlap (I ,_]) = (RSi.opl.data31..3 = RSj.opl.data31..3)
A ((RSj.op;.datas = RS;.op;.datas) V (RS;.db Vv RS;.db))

e Stores may only dispatch, if all preceding instructions have completed. This is
the case, if the tag matches the (foremost) head of the ROB queue, RS;.tag, =
ROB.heady .. This condition implies the following two, noteworthy observa-
tions:

— Due to the organization of reservation station queues, the store instruc-
tions is the first in the reservation station queue, since all previous in-
structions must have completed. Especially, the condition RS;.tag, =
ROB.heady,« can only be true for i = 0 and automatically evaluates to
false for i > 0.

— The operands of the store are valid since the preceding instructions have
completed and therefore broadcast their results on the common data
busses.

3.11. FUNCTION UNIT ENVIRONMENTS 65

—

bcu.jumpMP

bcu.branchMP

bcu.cfcPC,
bcu.EData,

Figure 3.15: Branch checker unit

We summarize the load and store case for the first reservation station:

ed4rog := (ROB.heady . = RSq.tag,)
V (RSp.load A RSq.0p, .valid A RSg.op,.valid)

The succeeding reservation stations RS; for ¢+ > 0 may dispatch on the following
condition:

edro; := RS;.load A RS;.op;.valid A RS;.op,.valid

A /\ RS;.load V (RSj.opl.vaIid A overlap (i ,j))
i<i

3.11.4 Branch Checker Unit

The definition of the rollback protocol (9, p. 28) states, that the predicted next PC
has to be compared with the computed next PC to verify a prediction. On a failing
verification, the computed next PC has to be reported back to the instruction fetch
unit. As has already been outlined in the overview of the implemented instruction
fetch mechanism, section 3.3, the verification of CFI predictions is the task of a
special functional unit called the branch checker unit, BCU.

A reservation station RS of the branch checker unit contains the standard fields
valid, op, .valid, op,.tag, and op,.data,. In addition, we have the following items to
identify control flow instructions and their predictions:

66

CHAPTER 3. HARDWARE

Signal jump indicates the presence of a jump instruction on value 1 and of a
branch instruction on value 0.

Signal cfc equals 1, if a CFI was predicted to cause a control flow change. In
connection with jump = 0, this indicates a taken branch.

Opcode bit opcyg is stored to differentiate between the branch types eqz and
nez.

The signal noChk indicates that no verification has to be made for the instruc-
tion. Currently, there are three types of instructions just being passed through
the BCU without check (cf. 3.8): jump instructions with immediate relative
offset, the trap instruction and the rfe instruction. No speculation is allowed
for these instructions, this behaviour may change for branch prediction.

Signal trap indicates the presence of a trap instruction in the reservation
station. A trap instruction passes its immediate constant via op,.data, and
the ROB to the EData register. This implementation has been chosen to save
an additional ROB write port for the issue.

The inlinePC, register contains the inline sequential PC of the instruction.

The cfcPC, register contains the (predicted) PC of a control flow change.
In case of a branch instruction, it is the branch target; in case of a jump
instruction, it is the predicted PC of a control flow change.

The branch checker unit operates, according to the definition of the DLX ISA,

in two different situations:

tions:

e On a jump instruction, jump = 1, a valid operand RS.op, .data, contains the

computed next PC. The predicted next PC is stored in RS.cfcPC,. Testing
these two values for equality defines the signal

bcujumpMP := (\/RS.opl.data*,RS.cchC*)

e On a branch instruction, jump = 0, we first test the valid operand op,.data,

for zero:

bcu.op;.eqz := (\/RS.opl.data*)

Since RS.opcyg = 1 for a nez branch and RS.opcy; = 0 for a eqz branch, the
correct branch result is computed by

bcu.btaken := bcu.op;.eqz ® RS.opcyg

The misprediction of a branch is therefore indicated by

bcu.branchMP := RS.cfc & bcu.btaken
The interface of the branch checker unit is completed with the following defini-
bcu.cfcPC, := (RS.jump V RS.trap? RS.op; .data,
: (bcu.btaken? RS.cfcPC, : RS.inlinePC,))
bcu.mp := RS.noChk A (RS.jump ? bcu.jumpMP : bcu.branchMP)
bcu.data, := RS.inlinePC,

Refer to figure 3.15 for the actual implementation of the branch checker unit.

The computed signals are forwarded to the producer unit and to the branch checker
unit bus bcu.x.

3.11. FUNCTION UNIT ENVIRONMENTS 67

FU;.valid FU,.tag, FU,.data, FU,.lexception,

} tag data late-excp 3

pup |

CDB,.ack; [— [— | !
FU,.CDBreq FU,.pstall CDB,.tag, CDB,.data,CDB,.lexception,

Figure 3.16: Result producer environment

3.11.5 Producer Environments
Implementation

Associated with each functional unit FU; is a producer environment. The producer
buffers results from the functional unit, requests for a common data bus and for-
wards the result to the CDB on acknowledgement. Figure 3.16 shows the result
producer environment for FU;. The implementation features a central control reg-
ister valid, which operation will now be described.

The functional unit signals a computed result by setting the bit FU;.valid. The
producer answer with FU;.pstall = 1 in case that it cannot take the result, be-
cause it is already full and did not receive a CDB acknowledgment. With CDBj.ack;
signalling an acknowledgment from the j—th CDB for producer i, we define:

FU;.pstall := (PROD;.valid A pup) A (\/ CDB*.acki)
The valid register is clocked, whenever no producer stall is generated:

PROD;.valid.ce := FU;j.pstall

On clocking the valid register, it receives the functional unit’s valid bit FU;.valid.

A CDB is requested via the signal FU;.CDBreq in two situation. First, the pro-
ducer may contain valid data for which it did not receive an acknowledgment.
This is the case, if FU;.pstall = 1. Second, a valid FU result requests the CDB.
So FU;.CDBreq is defined as:

FU;.CDBreq := FUj;.validV FU;.pstall

Producer Data Convention

The implementation of our reorder buffer given below requires, that each producer
always produces 64-bit data. With double IEEE values, this is automatically the
case. Single IEEE values, and general purpose or special purpose register result data
is 32-bit and needs to be duplicated on the higher 32 bits of the operand bus. So:

FU.datags..o for 64-bit data

PROD.datags..o = { (FU.datas;.o, FU.datas;.o) for 32-bit data

68 CHAPTER 3. HARDWARE

3.12 CDB Control Environment

Let k£ equal the number of common data busses and n equal the number of produc-
ers. Already introduced in the producer environment, section 3.11.5, the producer
requests the CDB via the signal FU,.CDBreq. The task of the CDB control is to
fairly select each round up to k producers for acknowledgments. To satisfy the
fairness of the selection, we use a k-from-n multiported round-robin selector k :n—
MPRRS (cf. section 5.1). Taking FU,.CDBreq as input, this circuit computes the
acknowledgment array ack, , € {0,1}*¥"® such that the i—th row ack; , of this array
contains a half-unary encoding of the i—th acknowledgment.

So, the signal CDB;.ack;, acknowledging CDB; for producer FU; can be defined
via the following equation:

CDB;j.ack, := markLastOne (ack;)

Additionally, the k :n—MPRRS returns the signal numAck,, a half-unary encod-
ing of the number of acknowledged candidates. This signal defines the validness of
the CDB for the computed acknowledgments:

CDB;.valid := numAck,

According to the semantics of the producer bus requests, requesting the CDB for
the next round, these signals, CDB,.ack, and CDB,.valid, are buffered in flip-flops.

Completion Stage

3.13 Reorder Buffer Environment

The reorder buffer (ROB) guarantees in-order retirement and allows the speculative
execution of instruction streams. These properties are necessary to realize precise
interrupts and branch prediction. The idea of a the reorder buffer was introduced
in [SP8&8].

The ROB presented in this design is based on a multi-ported queue implemented
with multiported RAM (section 5.3 describes the implementation of such a queue).
In addition to writing entries at the queue tail and reading them at the queue head,
the queue must have update ports to read out and write to entries in the “middle”
of the queue.

The ROB stores © = 2¥ entries. An entry is a dynamically updated data struc-
ture allocated for each issued (but not retired) instruction. The entry stores infor-
mation about the position, the result and the exception conditions of an instruc-
tion. It is referenced by a state-unique id, the instruction tag; a number in the set
{0,...,2¥ —1}.

Table 3.10 contains a complete list of the ROB entry components. Putting the
components into groups provides a way to specify, which item is accessed in which
contexts. Of these contexts there are four: During issue entries are written in the
queue (at the tail). Also during issue, operands are forwarded from the ROB to the
source operand data generation. Addressing is done via the instruction’s tag, which
can be obtained by the producer tables. Third, a completing instruction on a CDB
must store its results and its exception status in the reorder buffer. Here, the “write
address” is given by the instruction’s tag available on the CDB. The last context
in which the ROB is accessed is the retirement of an instruction. The ROB queue
is read out (at its head) for this purpose.

Looking at the components of a ROB entry reveals that they are not accessed
in every context. The implementation of the ROB can exploit this information to

3.13. REORDER BUFFER ENVIRONMENT

| Group | Name | Width | Purpose |
valid valid 1 valid data item
datalow datazi..o 32 low 32 bit of result
dataHigh datags..3o 32 high 32 bit of result
dmal 1 misaligned DMem access
Dpf 1 data memory page fault
onCompletion ovf 1 overflow in ALU instruction
|IEEESf, 5 IEEE flags
mp 1 mispredicted CFI
EData, 32 exception data
ill 1 illegal instructions
imal 1 misaligned IMem access
Ipf 1 IMem page fault
trap 1 trap instruction
uFOP 1 unimplemented fp instruction
onlssue d.a, 4 destination register address
d.db 1 double precision
d.fpr 1 FPR destination
d.spr 1 SPR destination
d.gpr 1 GPR destination
PC, 32 instruction’s PC
Table 3.10: Components of a ROB entry
| Group | Width | Ports Description
17I- W: issue
. (41 + 2)- RM: forw. op;..5 10> OP1..2.ni» RM, MSK
valid 1 1C- WM: completion’ ’
1R- R: retirement
(2I +1)- RM: forw. opy j,, OP2 1, RM
datalow 32 1C- WM: completion
1R- R: retirement
(2I +1)- RM: forw. op; i, OP3 ,;; MSK
dataHigh 32 1C- WM: completion
1R- R: retirement
. 1C- WM: completion
onCompletion 41 1R- R: retirement
17I- W: issue
onlssue 45 1R- R: retirement

Table 3.11: ROB ports

69

reduce cost and delay. Critical path analysis in [Kr699] suggests that it may be
worthwhile to reduce the delay of the ROB. Table 3.11 contains the of the analysis
of the access structure. The table lists for each group the accessing contexts as
well as the modes of access (write at tail, read from middle, write in middle, read
from head). The constants I, C' and R specify the maximum number of issuing,
completing and retiring instructions respectively. This information is used for the
cost and delay calculation, chapter 4.

70 CHAPTER 3. HARDWARE

3.13.1 ROB Queue Control

The queue is controlled by a number of signals. For queue write operations, the
bus iy.issue supplies the number of instruction to be written in half-unary encoding.
The queue returns the address of the i—th entry written on the bus ROB.tail; .. This
address is the tag of the i—th instruction and is stored in the producer table.

For read operations, the retirement signals r,.retire generated from the retire-
ment control below are used as read request signals. As shown below, they provide
the number of retiring instructions in half-unary encoding; r;.retire = 1 iff the in-
struction on the i—th retire bus can retire. The tag of the i—th retiring instructions
is returned on the bus ROB.head; ..

The read-in-the-middle and the write-in-the-middle ports are directly controlled
by appropriate address, request / enable and data-in signals, as specified below.

In addition to this, the queue returns its fill status on bus ROB.full, that contains
a half-unary encoding of the number of occupied entries:

i = # of occupied entries <= ROB.full, = 0971
The queue is initialized on a roll-back condition:

ROB.init := rollback

3.13.2 Issue

An issuing instruction i; sets the valid and the onlssue group of the ROB entry
located at the position ROB.tail; . The components ill, imal, IPf, trap, uFOP, d.x
and PC, are set to their corresponding signals out of the instruction environment.
The component bj is set to the term i;.jumpR V ij.jump V i;.jumpR. The component
valid is set to the signal i;.noFU.

3.13.3 Forwarding

In section 3.9.2 the source operand data generation was described. Every instruction
i; requests up to six 32-bit operands to be forwarded from the ROB. These are op, ,,
OP1 hi» OP2,105 OP2,pi> the rounding mode RM and the mask register MSK. For each
operand the data and the valid signals have to be requested.

The producer data convention (section 3.11.5) states, that 32-bit results can be
found in both the dataHigh and the datalow component. This justifies forwarding
OP1 105 OP2 1o @and RM from the datalow group and forwarding op; ;, op, 1,; and MSK
from the dataHigh group.

Note that without this simple convention, the number of ports is increased for
the dataLow group resulting in an imbalanced port distribution for dataLow and
dataHigh. There are two reasons for this:

o Without the convention, the rounding mode RM and the mask register MSK
would both have to be forwarded from the dataLow group. Therefore a read
port would have to be removed from dataHigh and moved to the dataLow

group.

e Double floating point source operands may have two producing instructions:
one producing the lower 32-bit half of the operand and another one producing
the upper 32-bit half of the operand. If the producing instructions are both 32-
bit instructions, their result will be stored in the dataLow group only without
the convention. Again, the dataLow group would have to provide additional
read ports.

3.13. REORDER BUFFER ENVIRONMENT 71

3.13.4 Completion

For each valid CDB, the data must be updated in the valid, data and late-exception
groups of the corresponding ROB entry. The CDB;.valid signal provides the write
enable signal and the CDB;.tag, bus provides the address. The valid component
is set to 1. The dataLow and dataHigh components are filled with CDB;.datas;. .o
and CDB;.datags..32 respectively. The onCompletion group is filled with CDB;’s late
exception signals, Dmal, Dpf, ovf, IEEEf,, the misprediction signal mp and the ex-
ception data EData,.

3.13.5 Retirement

During retirement exception conditions and branch predictions are checked. Define
ri to be the i—th read-out bus from the ROB. For each r; the following important
interface signals must be generated:

e rj.retire signals that the instruction retires

e r;.wb indicates that the result of the instruction actually has to be written
back

e 1;.iIRQ signals the detection of an internal interrupt at instruction r;

Table 3.12 contains a listing of all the possible interrupts. These fall into three
categories. The reset exception has the highest priority and is the only unmaskable
external interrupt. Exceptions 1 to 12 are the internal exceptions. They are stored
in the corresponding ROB entry and are exceptions that occur during the execution
of an instruction. The exceptions 13 to 31 are the external I/O exceptions. They are
triggered by the external event lines ex;g..o. The processor detects external interrupt
conditions for the last retiring instruction (LRI) in a cycle, i.e. the instruction on
r; with r;.retire = 1 and ¢ maximal.

Mispredicted CFIs are handled in much the same way. So, instruction retiring
also stops if r;.mp = 1. A mispredicted retiring instruction may only be accompanied
by external interrupts or a reset interrupt. All the other interrupts either do not
occur in connection with DLX CFIs or their occurrence would have caused the in-
struction to be transformed in a machine nop (for instruction memory misalignment
or instruction memory page fault).

In the following two sections, the computations of control signals for external
interrupts and internal interrupts / branch mispredictions is described. Then, in the
last section, these results are used to complete the retirement of instructions.

External Interrupts Control Signals

The external interrupt processing requires computing the register MCA’3;..13 and
the signal elRQ signalling an external interrupt request. As external interrupts will
be associated with the last retiring instruction Iri.x, we define:

|ri.MCA31..13
Iri.elRQ := (\/Iri.MCA31..13)

ex, N SR31..13

Internal Interrupt Control Signals

For each retirement bus r; a number of signals have to be computed. First, the
masked cause bus, r;.MCA,, is generated, by taking the exception signals and mask-
ing them out with the status register SR,:

72 CHAPTER 3. HARDWARE

| Interrupt | Symbol || Priority | Resume | Maskable | External |
reset reset 0 abort no yes
illegal instruction il 1
misaligned access mal 2 abort
page fault IM Ipf 3 no
page fault DM Dpf 4 repeat
trap trap b} continue
FXU overflow ovf 6 continue o
FPU overflow fOVF 7
FPU underflow fUNF 8
FPU inexact result fINX g | abort / yes
FPU divide by zero fDBZ [g | continue
FPU invalid operation | fINV 11
FPU unimplemented uFOP 12 continue no
external I/O ex; 1244 | continue yes yes

Table 3.12: Coding of the interrupts

ri.MCAg := pup

ri.MCA; := n.ill

r;i.MCAs := r;.dmalV r.imal

ri.MCAs := n.lpf

ri.MCA; := r.Dpf

ri.MCAs := r.trap

r;.MCAg := SRg Ari.ovf
ri.MCAq1..7 = nr.lEEEf, ASRy1..7

r;.MCA;, := r.uFOP

Second, the following signals are additionally computed for each retiring instruction
ri:

ri.eligible := ROB.full; A r;.valid

ri.SRdest := r.d.sprA (ri.d.a, = %0000)
rlllRQ = (\/ ri.MCAlg..o)

ri.wbAux := (\/ ri.MCA4..0) V ri.mp

The meaning of these signals is as follows: r;.eligible indicates that there is an in-
struction at the i—th head of the ROB and it has already completed and may
therefore retire; r;.SRdest indicates that the instruction writes to the status register
SR,. Only the last retiring instruction in a cycle may write to the status register
SR,, since otherwise interrupts may incorrectly be masked or unmasked. This signal
stops instruction retirement beyond r;. Last, r;.ilRQ indicates an internal interrupt
at the instruction (an interrupt with priority between 0 and 12). Such an interrupt
requires write-back iff r;.wbAux is active; mispredicted CFIs will always be written
back. If r;.ilIRQ = 1 instruction retirement will also stop.

Completing the Retirement Interface

With the definition

3.14. REGISTER FILE ENVIRONMENT 73

ri.retireVeto := r.eligibleV r;_;.SRdestVr;_1.iIRQV r,_;.mp

the r;.retire signals can be computed by a parallel-prefix OR:

ri.retire = (\/rj_l..o.retireVeto)

The r,.retire bus contains the index of the last retiring instruction in half-unary
encoding. We convert this information into a unary encoding;:

re.ri := markLastOne (r,.retire)
Thereby, ri.Iri = 1 iff the i—th instruction is the last retiring instructions. This
signal is used as an output enable signal to construct the bus of the last retiring
instruction, Iri.x, from the busses r,.x.

Furthermore, we compute the write-back signals r,..wb; instruction r; writes back
iff it not the last retiring instructions or it is the last retiring instructions and
requires write back. This is expressed by:

rpwb = rij.retire V (rj.retire A r;.wbAux)
The global signal JISR is set if an external or internal interrupt was found:
JISR := Iri.elRQ VIri.ilRQ

The machine performs a rollback on interrupt or misprediction situation, i.e.:

rollback := JISRV Iri.mp

The Write Back Stage

3.14 Register File Environment

The register file environment contains the general purpose register file, the floating
point register file and the special purpose register file. The register files are accessed
in three different main contexts:

e During issue the source operands are read from the register files if the pro-
ducer tables indicates their validness. This requires 21 read ports since each
instruction has two variable-address operands.

¢ During retirement, the register file environment takes each retirement bus r;
and writes it back to the appropriate register files on activation of rj.wb. This

requires R write ports.

e The special purpose register file has extended modes of access during exception
conditions specified in detail in section 3.14.3.

The section proceeds with a description of each register file.

74 CHAPTER 3. HARDWARE

|
|
|
i;-0p; .2, *? i;.0p,.a.nez 3
| |
| |
l l
| |
i;.0Py. 24 ? i;.0p,.a.nez i,.op,.a.nez i, op,.gpr 3 ?eagling
‘ L ‘ or Source
: — rf.i;.op, .data; . Operand
i;.0p;.a, A D !
| |
3 i;.0py.a.n€z i;.0p,.gpr 3
| |
| | .
| — rf.i;.op,.datas; .¢
i;.0py.a, —T A’ g po?
T e T T
| |
rjda, /1A }
r;.w.GPRF — W | Writeback
! } } on Retirement
r;.datag; .o ——D |

Figure 3.17: Operand reading and retirement ports for the GPRF

3.14.1 General Purpose Register File

The general purpose register file GPRF consists of 32 integer registers having a
width of 32 bits. A 32 x 32-RAM is used for the implementation.

This RAM has to provide two read ports per instruction for the operands i;.op,
and i;.op,. These ports are addressed by i;.op;.a, and i;.op, respectively. Since ac-
cesses to GPR Ry must always return 032, we check if

ii.opj.a.nez = (\/ii.opj.a*)

and force the output of the RAMs to zero in this case. The data is driven on the
operand bus, if GPR data was requested, as indicated by i;.op;.gpr and i;.op,.gpr.
The arrangement is shown in figure 3.17.

Additionally, the GPR must also have one write port per retirement bus rj. This
port takes the address rj.d.a, and the input data r;.datas;..o. The write enable signal
r;.w.GPRF are computed as follows:

rj WGPRF = rJdgpr/\ rj.wb

Again, figure 3.17 shows the arrangement.

3.14.2 Floating Point Register File

The floating point register file consists of 32 single precision floating point registers,
alternatively accessed as 16 double precision floating point register. It is constructed
of two 16 x 32-RAMs, named FPRF(0 and FPRF1. The FPRF0 RAM stores the
single precision registers with even addresses, the FPRF1 RAM stores the single
precision registers with odd addresses. Double precision registers are decomposed
in two 32-bit parts; the low part is stored in FPRFO, the high part is stored in
FPRF1.

As with the GPRF, two read ports per instruction for the operands i;.op; and
i;.op, are provided. These ports are addressed by i;.op;.a4..1 and i;.0p,.a4..1 respec-
tively. The data is driven on the operand bus, if a floating point register was re-
quested, as indicated by i;.op,.fpr and i;.op,.fpr. The arrangement is shown in figure
3.18.

3.14. REGISTER FILE ENVIRONMENT 75

37 777777777 i;.op, .fpr i
i;.0pj.ag.q, A D i— rf.i;.op,.datagc
} } Reading
! . ! for Source
| ij-0p,.fpr Operand
i;.0pg.aq.p A D’ — rf.i;.op,.datagg
N FPRF, | . |
rida,., A 1
;. w.FPRF, —— W | Writeback
! ! on Retirement
rjdatare =) D 'k=0:RG=31-0
1 'k=1:RG=63--32

Figure 3.18: Operand reading and retirement ports for the FPRF

| Special Purpose Register | Width | Purpose |

SPRy . = SR, 32 Status register (interrupt mask)
SPR; . = ESR, 32 Exception status register

SPR, . = EPC, 32 Exception program counter

SPR; , = EPCn, 32 Exception program counter 2 obsolete!
SPR4,. = ECA, 32 Exception cause register

SPR; , = EData, 32 Exception data register

SPRs . = RM, 2 Rounding mode

SPR7 , = IEEEf, 5 IEEE interrupt flags

SPRs . = FCC 1 Floating point comparison flags

Table 3.13: Special purpose registers

One write port is needed for each retirement bus r;. The address is provided by
rj.d.as..;. According to the number format indicated by r;.db and the lowest address
bit rj.d.ag we define the write enable signals for the FPRi as:

rj.w.FPRFi = rj.d.fpr A (rJddb \% (rj.d.ag = Z)) A rj.wb

Again, figure 3.18 shows the arrangement.

3.14.3 Special Purpose Register File

The special purpose register file SPRF consists of nine variable-width registers, as
listed in table 3.13. Note that the EPCn, register is specific for the implementation of
a delayed branch. Since our processor does not have a delayed branch mechanism it
is not used. Numbering of the special purpose registers has been preserved, though,
to ensure address register compatibility to the DLX processors of [MP95, MP0O,
Krs99, Lei99]. The SPRF is build up using flip-flops for the register storage, since
the registers must have extended access structures.

Two read ports per instruction for the operands i;.op; and i;.op, are provided.’
These ports are addressed by i;.op; .a. and i;.op,.a, respectively. The data is driven
on the operand bus, if SPRF data was requested, as indiciated by i;.op;.spr and
i.0p5.spr. If i;.0p; .auns..¢ is a unary encoding of the adress i;.op; .ax, then the signal

i;.op;.SPRready, := i;.0p;.Spr A i;.op; .aung

S5Instruction access the SPRF only via the first operand, though.

76 CHAPTER 3. HARDWARE

rf.i;.op,.datas; .o

Figure 3.19: Reading from the special purpose register file, k € {0,1}

can be used as an output enable signal to drive special register SPRy . on the
operand bus rf.i;.op, .datas;..q. The same can be done for i;.op,. The arrangement is
shown in figure 3.19.

Additionally, each instruction might request RM and MSK. These requests can be
hard-wired though, since they are fixed address and the underlying implementation
is based on flip-flops.

For write purposes we always clock each register and consider three modes of
access:

e The first mode is the update access. This write access is default for all registers.
It feeds the data SPR;.upd, in register SPR;. Usually we just have

SPR;.upd, = SPR;
which results in SPR’ 5« = SPR; , in case of update access. The exception is

the IEEE mask register |IEEEf,, which accumulates the mask of all retiring
instructions on normal update:

IEEEf.upd, = \/(rj.wb A r;.IEEEf,)

J

¢ The second mode of access is the regular write access. Let rj.aung..o be a unary
encoding of the retirement address for r;. Then

r;.SPR.wreq, := rj.d.sprArj.aung A rj.wb

indicates a write request for SPRy , by retirement bus r;. The signal

SPRi.write := (\/r*.SPR.wreqk)

detects if SPRy . is written to. In this case, the data written must be
SPRy.writeData, = rj.data with j = max {j' | r;.SPR.wreq; = 1}
Layers of muxes are sufficient to solve this equation in circuitry.

o The exceptional write access refers to the exception status registers SPR; x to
SPR5 « only. It is activated on encountering an interrupt situation, JISR = 1.

3.14. REGISTER FILE ENVIRONMENT 7

SPR;.upd

SPR;,.writeData

SPR;.write Update for

RM, IEEEf, FCC

SPR;,.writeData
SPR;.write
SPR;.JISR.data

Update for
JISR

ESR, EPC, ECA, EData

SPR;.writeData

SPR,.write — |
SPR, — |
doRFE ‘ !
| ! Update for

| | the status register
: 1 0 |
JISR —— I j }
1> sPR,

SPR,

Figure 3.20: Writing to the special purpose register file

The following data is fed into the various special registers:

SR.JISR.data, := 0
ESR.JISR.data,, := SR,
Iri.nPC, := incd (Iri.PC,)
EPC.JISR.data, := (lri.imp ? Iri.EData, : (Iriwb ? Iri.nPC, : Iri.PC,))
ECAJISR.data, := Iri.MCA,
EData.JISR.data, := Iri.EData,

e Finally, the status registers SR has to be cleared if doRFE is signalled (cf. 3.9,
p- 3.9.2 for the definition of doRFE).

Figure 3.20 shows the update paths for the special purpose registers.

78 CHAPTER 3. HARDWARE

! i;.0p,.gpr |
i;.0p; .2, % A D : pt.i;.op, .tag, Reading
| | for Source
| 1;.0P,.8pr
! P-8P ! Operand
i;.0py.a, — A’ D’ 3 pt.i;.op,.tag,
o GPRPT |

For Tag Comparison
rjda, A (tagpart) D I r;.GPR.tag, on Retirement

I
' on Issue

i;;w.GPRPT —— W/ ! Set Tag

ROB.head,, —— D

Figure 3.21: Tag information of the GPR producer table

3.15 Producer Table Environment

Producer tables indicate, whether data stored in the register files is valid or being
computed in the processor. If the data is still being computed, the producer tables
return an identifying tag for the instruction producing the result.

The producer tables are accessed in four contexts:

e First, during issue, information on the valid bit and the tag are taken out of
the producer tables for the generation of the source operands i;.op;.

e Second, the producer tables must be read out during retirement, to determine
if a retiring instruction is the producing instruction for its destination register.

e Third, if tags matched in the above context, a retiring instruction stores its
result in the register file and may therefore validate the register in the producer
table.

e Fourth, destination registers of instructions are marked invalid during issue
and a new tag is stored for them. This operation has priority over the third
operation (cf. section 2.1.2).

Our processor features three producer tables, one for each register type, which
are implemented with register-based RAM to allow write concurrency. The different
accessing contexts above suggest—similar to the ROB—a division of each producer
table into two parts: one storing the valid information and the other storing the tag
information. We follow this approach; however, it will turn out that the producer
tables do not lie on a critical path in the processor.

3.15.1 General Purpose Register Producer Table
The general purpose register producer table GPRPT producer table consists of a
32 x 1 valid RAM and of a 32 x v tag RAM; v is the tag width, cf. section 3.13.

Reading the Source Operands

The tag and the valid part provide two read ports per instruction for the operands
i;.op; and i;.op,. These ports are addressed by i;.op;.a, and i;.op, respectively. Ac-

3.15. PRODUCER TABLE ENVIRONMENT 79

i;.0p,.a.nez 7:><} i;.0p,.a.eqz i
i;.0p,.a.nez —— i,.0p,.a.eqz 1i-0P1-3-€4Z 1;-0p,.gpr |
P2 | ><} -0P2-8-€4 } Reading
. | — pt.i;.op, .valid for Source
ijop.a, A D ! Operand
} i;.0py.a.€qZ i;.0p,.gpr !
1 ' pt.i;.op,.valid
i;.0py.a, A D’ ! P P2
rjda, /14 3
! | Retirement
rw.GPRPT —— W GPRPT | Validation
| (valid part) ! of PT entry
1 - D \
ijda, A |
. L | Issue
i w.GPRPT ! w | Invalidation
0 p } of PT entry

Figure 3.22: Valid information of the GPR producer table

cesses to the GPR Ry always return a valig flag. We check
ij.op;.a.eqz 1= i;.0p;.a.nez

and force the output of the valid bit to 1 with an OR gate. The data is only driven
on the operand bus, if the instructions are integer operands as indicated by i;.op; .gpr
and i;.op,.gpr. Figures 3.21 and 3.22 include this arrangement for the instruction ij.

Update During Retirement

During retirement, the producer tables tags are read out to decide, if the entry must
be validated.

First, the tag of register r;.d.a, as stored in the tag part is read out and returned
on the bus r;.GPR.tag, . Define:

r;.w.GPRPT := r;.wb Arj.d.gpr A (ROB.head; . = r;.GPR.tag,)

This signal equals 1 iff r; must validate GPR register entry r;.d.a, (cf. algorithm 5,
page 18, 11. 9-11).

These equations suggest that the full time of a read and a write access to the
producer table is needed. However, a closer look the implementation of the register-
based RAM reveals that the RAM address decoders for both accesses can work in
parallel. This allows for a large reduction in path length.

Figures 3.21 and 3.22 include this arrangement for the retirement bus r;.

Update during Issue

If instruction i; issues, it invalidates its destination register in the producer table
and sets the tag information accordingly. The signal

i;.w.GPRPT := ij.issue A i;.d.gpr

80 CHAPTER 3. HARDWARE

! i;.op,.fpr |
i;.0p;.a5..1 % A D : pt.i;.op,.tag, Reading
| p | for Source
| op,.Tpr 1
! 1i-0P-1P ! Operand
i;.0pg.aq.p — A D’ I— pt.i;.op,.tag,
| FPRPT, |
! (tag pa]E) ! For Tag Comparison
ridas.; | A gpart) p i ———r;FPRtag, on Retirement
i;das.; —A |
i, w.FPRPT, —— W ! Set Tag
| | on Issue
ROB.head; , —— D !

! i;.op,.fpr !
i;-0p;.24.1 f: A D ™ pt.ij.op;.validy Reading
| i;.op,.for ! for Source
! | Operand
i;0pg.ag. A D i— pt.i;.op,.valid,,
ridags, 14 |
! ! Retirement
rjw.FPRPT, ——w FPRPT; | Validation
! (valid part) : of PT entry
1—{D !
ijdag. A4 |
) . ! Issue
i;,w.FPRPT,, | W ! Invalidation
| [of PT entry
0 —D |

Figure 3.24: Valid information of the FPR producer table

indicates this condition for the GPR producer table. If i;.w.GPRPT equals one the
following two actions are taken:

e The valid part of the GPR producer table stores a 0 at i;.d.a,.

o The tag part of the GPR producer table stores the instruction’s tag, ROB.tail; .,
at the address i;.d.a,.

Figures 3.21 and 3.22 include this arrangement for the instruction i;.

3.15.2 Floating Point Register Producer Table

The floating point register producer table FPRPT producer table consist of two
16 x 1 valid RAMs, and of two 16 x v tag RAMs. This split is in accordance with
the structure of the floating point register file.

3.15. PRODUCER TABLE ENVIRONMENT 81

Reading the Source Operands

Reading out the tag and valid information for an instruction operand i;.op; and
ij.op, at the operand’s addresses i;.op;.a4..1 and i;.0py.a4..1 returns two valid flags
and two tags for each operand. This data are driven on the operand busses according
to the signals i;.op;.fpr and i;.op,.fpr.

Figures 3.23 and 3.24 include this arrangement for the instruction i;.

Update During Retirement

During retirement, the producer tables tag are read out to determine, if the entry
must be validated.

First, we read out the low and high tags of the registers r;.d.as..; and return
them on the busses rj.FPRjo.tag, and rj.FPRy;.tag,. Then define:

w.FPRPT. := r.wbAr.d.fpr A (r.d.db Vv (r;.d.ag = k))
A (ROB.head; , = r;.FPRy.tag,)

These two signals indicate, whether the floating point register entry must be vali-
dated.

Again, no two real RAM lookups are required for the same reason as stated in
3.15.1, p. 79.

Figures 3.23 and 3.24 include this arrangement for the retirement bus r;.

Update during Issue

If instruction i; issues, it invalidates its destination register in the producer table
and sets the tag information accordingly. The signals

ii.w.FPRPT, := ij.issue A i;.d.fpr A (I,ddb \% (ri.d.ao = k))

indicates this condition for the low and the high part of the FPR producer tables. If
i;.w.PTGPR), (resp. i;.w.PTGPRy;) equals one the following two actions are taken:

e The valid part of the low FPR producer table (resp. the high FPR producer
table) stores a 0 at i;.d.ay..0-

e The tag part of the low FPR producer table (resp. the high FPR producer
table) stores the instruction’s tag, ROB.tail; ., at the address i;.d.ay..o.

Figures 3.23 and 3.24 include this arrangement for the instruction i;.

3.15.3 Special Purpose Register Producer Table

The SPR producer table consists of a 32 x 1 valid RAM and of a 32 x v tag RAM.

Reading the Source Operands

The tag and the valid part provide two read ports per instruction for the operands
ij.op; and ij.op,. These ports are addressed by i;.op;.a, and i;.op, respectively.
Figures 3.25 and 3.26 include this arrangement for the instruction i;.

82 CHAPTER 3. HARDWARE

| i;.0py.Spr
i;.0p; .2, % A D — pt.i;.op, .tag, Reading
| . | for Source
: 'i:OPp-SPY | Operand
i;.0py.a, — A D’ — pt.i;.op,.tag,
| SPRPT | For Tag Comparison
rj.d.a, : A (tag part) D 1 r;-SPRtag, on Retirement
i.da, A ;
i, w.SPRPT — W l Set Tag
! ! on Issue
ROB.head;, —— D 1

Figure 3.25: Tag information of the SPR producer table

o i;.op, .spr |
i;.0p; .a, f: A D : pt.i;.op, .valid Reading
} i;.0p,.Spr | for Source
| | Operand
i;.0py.a, — A’ D’ i— pt.i;.op,.valid
rida, /A4 |
| | Retirement
rjw.SPRPT —— W SPRPT | Validation
\ (valid part) ! of PT entry
1—D !
ipda, | A |
i e ! Issue
i w.SPRPT ! w ! Invalidation
| [of PT entry
0—D !

Figure 3.26: Valid information of the SPR producer table

3.15. PRODUCER TABLE ENVIRONMENT 83

Update During Retirement

During retirement, the producer tables tag are read out to determine, if the entry
must be validated.

First, the tag of register r;.d.a, as stored in the tag part are read out and returned
on the bus r;.SPR.tag, . Define:

r;w.SPRPT := r;.wb Arj.d.spr A (ROB.head; . = r;.SPR.tag,)

This signal equals 1 iff r; must validate the SPRF entry stored at r;.d.a,.
Figures 3.23 and 3.24 include this arrangement for the retirement bus r;.

Update during Issue

If instruction i; issues, it invalidates its destination register in the producer table
and sets the tag information accordingly. The signal

i;.w.SPRPT := i.issue A i;.d.spr

indicates this condition for the SPR producer table. If i;.w.PTSPR equals one the
following two actions are taken:

e The valid part of the SPR producer table stores a 0 at i;.d.a,.

o The tag part of the SPR producer table stores the instruction’s tag, ROB.tail; 4,
at the address ij.d.a,.

Figures 3.25 and 3.26 include this arrangement for the instruction i;.

84

CHAPTER 3. HARDWARE

Chapter 4

Evaluation

4.1 Hardware Model

The model used herein to determine hardware cost and delay has been introduced
in [MP95, KP95]. In this model, basic gates have a fixed cost and delay. The cost of
a circuit is defined as the accumulated cost of its gates. The cycle time of a circuit
is defined as the longest delay on a path between two registers. Table 4.1 lists the
normalized cost and delay for the MOTOROLA technology as taken from [MP95].

Note that this model does not take into account fanout restrictions and wire de-
lay. As the Tomasulo algorithm especially in its superscalar variant employs several
large bus structures, this topic leaves room for further research.

The cost and the delay of our processor is computed by C++ programs available
via WWW!. They use a circuit library from [MP95] extended by the additional
circuits of this thesis. Cost is simply computed by adding up the individual circuits’
costs that compose the processor. Delay is computed by modelling the paths of the
processor with a C++ class supplied by [Kr$99]. This class allows constructing paths
by taking the maximum of several paths and by adding delay to a single path. The
paths have symbolical names. Two additional program, both written in perl, were
used to simplify the task of constructing the paths. The first program extracts the
equations for signal definitions directly from the text of this thesis. This procedure
simplifies the error-prone task to maintain the coherence between the delay program
and the description of the machine. The second program allows for the modular
definition of paths and the instantiation of modules. It takes an arbitrarily ordered
input of path equations and sorts these to resolve forward references.

4.2 Parameter Space

The design presented in this thesis leaves a big parameter space to explore. When-
ever possible explicit constants have been avoided in the design and have been
replaced by a parameter.

The parameters of the processor fall into two classes:

e The scale parameters are concerned with the widths of major data paths in
the design. They put a theoretical limit on the processor’s performance, i.e.
the cycles per instruction (CPI) rate.

The parameters we consider belonging to this class, are the number of fetched
instructions F', the number of issued instructions I, the number of issues I(RS)
on a reservation station RS, the number of dispatches D(RS) of a reservation

Ihttp://www-wjp.cs.uni-sb.de/ mah/thesis/costdelay.tgz

85

86 CHAPTER 4. EVALUATION

station RS to its functional unit(s), the number of completions C' (i.e. the
number of CDBs) and the number of retirements R. As a trivial lower bound
on the CPI rate we have:

1

> .
CPI 2 min {F,I,C, R}

e The size parameters are concerned with the sizes of the major data structure
in our design. Size parameters influence the CPI rate only implicitly: the
processor is stalled, if the resources are low. The thought is tempting that by
choosing size parameters large enough, stalling can be overcome. However, as
we also see below, size parameters have an impact on the processor’s cycle
time.

The size parameters of our processor that we are concerned with are the size
of its instruction fetch queues IFQSIZE, the size of the reservation station
queues RSQSIZE(RS) for reservation station RS and the size of the reorder
buffer ROBSIZE. Parameters we leave out of consideration are the BPU table
size and the instruction cache size; these parameters do not influence the
processor itself.

Because of the lack of simulations, we cannot study the parameter space ad-
equately. We provide a short glimpse on the effects of the scale and the size pa-
rameters. For this consider an overall scale parameters sc and a size parameter sz
defining the following point in the parameter space:

F=I=I(ALU) =D(ALU) = sz
I(RS)=D(RS) = 1
C=R = sz

IFQSIZE = 8-sc
RSQSIZE(RS) = 4-sc
RSQSIZE(ALU) = 4-sz-sc

ROBSIZE = 2201

The choice of parameters reflects the fact that for sz = sc¢ = 1, the processor is
similar to [Kr699]. Duplication of the ALU with increasing scale sc is suggested by
[Joh91] since 40% to 50% of the dynamic instructions of a MIPS instruction set
architecture are ALU instructions.

Keeping F, I, C' and R to the same value seems to be the natural solution,
although it is unclear that this is an optimal choice. This question may be of interest
in simulations of the processor.

Tables 4.2 and 4.3 show nine choices for sz and sc. Cost and cycle time grow
monotonically with the rows and the columns. These tables must be read with care,
since they only concern the machine core. Scaling of the machine has also an impact
on components that lie outside the processor core, for example the instruction cache.
These must also be adapted, when more power is wished for.

4.3 A 2-Superscalar Processor

We now restrict our choice of parameters further:

e Set F' = 2, because the underlying instruction cache (cf. [MPO00]) has a 64-
bit bus to the processor. We assume the modifications necessary to support
our instruction fetch protocol are of negligible cost and have no performance
impact.

4.3. A 2-SUPERSCALAR PROCESSOR

| Gate | Cost | Delay |
Inverter Cinw =1 Dy =1
NAND Cnand =2 | Dpona=1
NOR Chor =2 Dypor =1
AND Cand =2 Dand =2
OR Cor =2 DOT =2
XOR Cwor =4 DwOT =2
XNOR Cwnor =4 Dwnor =2
Multiplexer Cruz =3 | Dz =2
Tristate Driver | Cgriv =5 | Dariy = 2
Flip-Flop Cir=8 D=4

Table 4.1: Cost and delay of the basic gates

| Delay |

sz=1.0

| sz2=15

| sz =2.0

sc=1

107 100.00%

113

105.61%

139 129.91%

sc =2

122 114.02%

143

133.64%

185 172.90%

sc=4

164 153.27%

201

187.85%

275 257.01%

Table 4.2: Effect on Delay due to Scaling and Sizing

| Cost | sz =1.0 | sz=1.5 | sz =20 |
sc=1 1] 317279 100.00% | 424346 133.75% 569332 179.44%
sc=2 | 410673 129.44% | 551572 173.84% 738716 232.83%
sc=4 | 637495 200.93% | 863926 272.29% | 1153707 363.63%

Table 4.3: Effects on Cost due to Scaling and Sizing

87

88 CHAPTER 4. EVALUATION

e Consequently, we set] = C' = R = 2, since there is no hint for a better
allocation.

e The ALU is duplicated. Its reservation station are configured for indegree
2 and outdegree 2. So, two instructions may be issued on RS(ALU) and two
instructions may also be dispatched from RS(ALU). Studies in [Joh91] suggest
that providing an additional ALU in a register-renaming-implementation is
worthwhile.

e We have 6 ALU reservations stations and 4 reservation stations for each other
functional unit. For a non-superscalar processor 4 and 2 were a good choice
according to [Kr699].

e The reorder buffer size is set to 32 to accommodate the additional instructions
executed in the superscalar design. Again, 16 seemed to be a wise choice for
a non-superscalar processor.

e The IFQ size is set to 8.

4.3.1 Cost and Delay Optimization

Table 4.4 shows a detailed overview of the processor cost.

The execute and the decode / issue stage make up for about 70% of the whole
machine cost. In the execute stage, the floating point units are particularly expen-
sive. In the decode / issue stage the reservation station queues contribute most
of the cost; note, that there also reservation stations in the DMemFu. So, all the
reservation stations cost about half of the machine.

As has been indicated in section 3.13, we consider various variants of the ROB
design. First, the ROB may be considered as “one RAM”. This RAM requires
4% I+ 2+ Rread and I + C write ports. Second, the ROB may be broken down into
functional groups, and providing only the ports needed for each group. An overview
of the groups is shown in table 3.11. “Trimming” the ROB results in cost savings
and delay reduction and is therefore the better option in all scenarios.

As we will see, the ROB lies on the critical path of the design. Further delay
optimization are therefore advisable. One approach is to replace the regular RAM
by register-based RAM. Having the “one RAM” ROB implementation, this results
in a fabulous cost increase. With a “trimmed ROB”, however, one is able to optimize
the time-critical parts of the ROB only.

Table 4.5 shows a number options. Trimmed ROB is cheapest and has only 50%
cost of a regular ROB implementation. Furthermore, the trimmed ROB implementa-
tion has only delay 160 compare to gate delay 248 of a regular ROB implementation.
Four optimization options are shown for the trimmed ROB. The first one imple-
ments the valid group with register-based RAM, the second implements the valid
group and the onlssue group with register-based RAM. As these components lie on
the critical path, delay decreases from 160 to 143 to 135 with relatively little cost
increase. With gate delay 135, the data group lies on the critical path. The data
group, divided in low and high data, has a width of 64 bits, and therefore takes up
a great portion of the ROB storage. Implementing it with register-based RAM is
therefore quite expensive, although delay also reduces considerably.

For comparison to other architectures, we will use the “Trimmed (opt: valid,
onlssue)” design with delay 135. Since there the floating point unit has a path of
gate delay 137 ([Lei99]), further optimization are not necessary without optimizing
the floating point units as well.

4.3. A 2-SUPERSCALAR PROCESSOR 89

Component GatgsoTt 7 Cf.
IF stage (2 fetches, 2 issues) 21349 5.5
IF Control 385 0.1 3.3.3
IM environment 136 0.0 3.4
IFQ (2 of size 8) 3822 1.0 3.5
PC environment 1563 0.4 3.6
Prediction environment 2682 0.7 3.7
BPU (2-bit sat. cntr, 2048 entries) 8582 2.2 | app. B
Instruction Window 357 0.1 3.8
DI stage (2 issues) 111513 | 28.8
decode / issue 7678 2.0 3.9
instruction control 2504 0.6
instruction data 2118 0.5
global control 410 0.1
global data 1528 0.4
reservation stations (snooping from 2 CDBs) 103835 26.9 | 3.10
EX stage 135658 35.1
Float Adder 23735 6.1 | [Lei99
Float Mul/Div 47557 12.3 | [Lei99
Float Conv. 15926 4.1 | [Lei99
Float Tranfer 2209 0.6 | [Lei99
Integer ALU (2) 7386 1.9 | [MP95]
BCU 461 0.1 3.114
DMemFU (including 4 reservation stations) 25664 6.6 | [Kr699)
Producers (to 2 CDBs) 12720 3.3 | 3.11.5
Completion stage (2 compl., 2 ret.) 62940 | 16.3
CDB Control 794 0.2 3.12
ROB (32 entries) 61448 | 159 | 3.3
Retirement Computation / Rollback Checking 698 0.2 | 3.13.5
WB stage (2 retirements) 55146 | 14.3
Register Files 24452 6.3 3.14
Producer Tables 30694 7.9 3.15
| Total | 386606 | 100.0 | |

Table 4.4: Overview of the 2-Superscalar Machine Cost

| Type | ROB Cost | Total Cost | Delay |
Trimmed 33956 100.00% | 359114 100.00% 160
Trimmed (opt: valid) 38132 112.30% | 363290 101.16% | 143
Trimmed (opt: valid,onlssue) 61448 180.96% | 386606 107.66% | 135
Trimmed (opt: valid,onlssue,data) | 139472 410.74% | 464630 129.38% | 112
Trimmed (all reg-based) 160716 473.31% | 485874 135.30% | 112
One RAM 70202 206.74% | 395360 110.09% 248
One RAM (reg-based) 428234 1261.14% | 753392 209.79% | 112

Table 4.5: Comparison of ROB designs

CHAPTER 4. EVALUATION

| Pipelined | Tomasulo | Superscalar |

CPU core only | 108949 100% | 235989 216% | 386606 354%

with 16 KB cache | 483928 100% | 610968 126% | 761585 157%

CPI/speedup 2.12 0% 147 44% 141 50%

Table 4.6: Cost of Complete CPU and CPI rates

0 p_issuelFQ_idx 0 p_issuelIFQ_idx

2 issueIFQ[*].* 2 issueIFQ[*].*

0 i_opc 0 i_opc

13 i_CSIG 13 i_CSIG

4 i_op_a 4 i_op_a

9 pt_i_op_tag_GPR 9 pt_i_op_tag_GPR

2 pt_i_op_tag 2 pt_i_op_tag

43 rob_i_op_data 44 rob_i_op_valid
i_op_4R0OB 2 i_op_4R0OB
i_op_3CDB 2 i_op_3CDB
i_op_2RF 2 i_op_2RF
i_op_1DI 2 i_op_1DT
cfi_op_validAux 2 cfi_op_validAux
cfi_op_valid 2 cfi_op_valid
cfi.resolve 4 cfi.resolve
cfi.ready 4 cfi.ready
i[*].cfi 4 i[x].cfi
i[i].invalid 6 i[i].invalid
i[i].stallAux 4 i[i].stallAux
i[*].stall 2 i[*].stall
i[i].issue 1 i[i].issue

S
kS

RSQ[j].W.reqlk] rob_issue_VALIDp
floatRSQ_r_req p_rob_issue_VALID register in
floatRSQ_m 160 TOTAL (23 circuits)
floatRSQ_r_ack

floatRSQ_validAfterRead

floatRSQ_w_ack Trimmed (opt:valid,onIssue)
floatRSQ_validAfterWrite

floatRSQ_validP

floatRSQ_data_ce

p_floatRSQ_data register in

135 TOTAL (31 circuits)

GQONUTFLOODONOPREFPLPNOP P PBPNNMNNDNNDN
¢

Trimmed

Table 4.7: Path of maximum delay

4.3. A 2-SUPERSCALAR PROCESSOR 91

4.3.2 Longest Path

Table 4.7 shows a path of maximum delay for two variants of the processor. The pro-
cessor producing the path on the left-hand side is implemented with a trimmed ROB
RAM. The processor producing the path on the right-hand side is the “Trimmed
(opt:valid,onIssue)” we have chosen for comparison with other architectures.

The slower, right-hand path starts in the instruction window and continues with
instruction decoding. The ROB valid RAM is requested during source operand
generation to decide, if the source operand is already stored in the RAM. The
constructed source operand is passed on to the fetch mechansism (cfi.x) for resolving
branches. Only after the resolving of branches, the instruction fetch mechanism may
annotate the instruction window with the bbi and cfi tags and the decode / issue
environment may generate the stall signals i;.stall.

The path resembles the critical paths for control flow resolving of classical
pipelined designs. It can be avoided with a branch predictor unit predicting all
types of CFIs, so that CFI resolving will not be necessary.

The faster, left-hand path has the slowest component replaced. However, it takes
the same route. The paths ends in the reservation station queue control, which can
only update its state, if read and write requests have been computed.

4.3.3 Quality Comparison
Quality Measure

This section presents a quality comparison of three DLX designs. Quality is defined,
according to [Grii94, MP95], as the g—weighted geometric mean of the performance
of an architecture and of the reciprocal of its cost. The weight ¢ € [0,1] can be used
to put emphasis either on cost or on performance: Only performance counts with
q = 0, only cost counts with ¢ = 1. For ¢ = 0.5 cost and performance are equally
weighted. The choice of ¢ between 0.2 and 0.5 seems to be realistic.

Justified below, we measure the performance of an architecture by the reciprocal
of its CPI rate. Cost is measured by gate counting. Therefore, the quality of a design
can be written as follows:

1

@ = Gpr-ice

With q fixed, two designs A and B can be compared by their quality Q;;‘ and Qf.
Better design with respect to g have a greater quality.

Comparison

We compare our design with two others: a pipelined DLX design with precise inter-
rupts and floating point units from [MP95, MP00] and a non-superscalar Tomasulo
design presented in [Kr699).

All designs use similar floating point units and therefore share the same longest
path with 137 gate delays. Performance therefore depends only on the CPI ratio.
The CPI values for the pipelined DLX and the non-superscalar Tomasulo design
are taken from [Ger98, Del98]. Due to lack of simulations we have to estimate the
CPI rate of the 2-superscalar processor. [Joh91] suggests that a superscalar out-
of-order design using 2 ALUs and a scalar fetcher has a 1.5-fold speed-up over a
non-superscalar processor. We apply this (conservative) estimate to the CPI rate of
the pipelined design and obtain a CPI ratio of 2.12/1.5 = 1.41.

Figure 4.1 plots the quality functions of these designs in a logarithmic scale. The
two vertical lines indicate the points of equal quality of the non-superscalar to the

CHAPTER 4. EVALUATION

92
1 I I : |
[~ Pipelined

T Tomasulo ——---

e Superscalar -
<3
£
=
=
(e

| 1 | I

0.125
0 0.2 0.4 0.6 0.8 1

only performance counts q only cost counts

Figure 4.1: Quality for Pipeline DLX, Non-Superscalar and Superscalar Tomasulo

super-scalar and of the non-superscalar to the pipelined processor. With an unre-
alistic emphasis ¢ =~ 0.6 on cost, the pipelined design has the highest quality. For
q ~ 0.18, the superscalar Tomasulo design wins over the non-superscalar Tomasulo
design. This parameter is, however, out of the “realistic” interval. Two reasons can
be given for the bad quality: First, our generic approach to superscalar processors
most likely produces overhead in cost and delay for instantiation of the machine.
This can be mended by optimizing the machine for fixed parameters. Second, simu-
lations miss to replace the CPI ratio 1.41 by a more realistic and hopefully smaller

value.

Chapter 5

Circuits

This chapter introduces four circuits forming integral parts of our design.

The multiported round-robin selector presented first, is used to generate bus
acknowledgement signals for the common data bus control. Second, a multicounter
is developed. This component is used for the implementation of multiported queues
in section 5.3. Multiported queues are used in the instruction fetch stage to build the
IFQs and in the completion stage to build the reorder buffer. Finally, a (multiported)
reservation station queue is developed, providing a multiple-issue and multiple-
dispatch framework for reservation stations.

5.1 Multiported Round-Robin Selector

5.1.1 Abstract View on Multiported Round-Robin Selectors

Definition 5.1 Let n € IN and N: = {0,...,n—1}. The round-robin selection
function for width n is defined as follows:!

rrs,: P(N)xN — N
(R,p) — a

such that

a

min R>? if R°P £
min R<P U {p} otherwise

The function rrs(-) is used to describe round-robin selecting. R represents the set
of requests received from n busses, p is the previously selected bus and the function
result a is the bus that receives acknowledgement.

Next, we define a similar function that handles up to k requests in a round.

Definition 5.2 Let n € IN and N: = {0,...,n—1}. Let 1 < k < n and K: =
{0,...,k —1}. The k—round-robin selection function for width n is defined as fol-

lows: 2
k—rrs,: P(N)x N — K x N<k

(R,p) — (numAck,ay,...,anumAck)

!For a set M, the power set is denoted by P (M). For a relation Ron M and a € M (respectively
b € M) define

Me R {be M|aRb}
MEb = {aeM|aRb}

2For a set M define M <! as the set of tuples of M with maximum length I. This overloads the
notation M2 defined above; the context, however, always makes the meaning clear.

93

94 CHAPTER 5. CIRCUITS

such that
numAck = min{k,#R}
a; = 1r8y(R,p)
a; = rrsp(R\{a1,...,a;_1},a;-1) fori>1

The following lemma justifies the implementation of the k-from-n round-robin
selector as given below:

Lemma 5.3 Let k—rrsp(R,p) = (numAck, a1, ..., anumAack) and let (p1,...,p1) be
the sorted sequence of elements in R>P and (pi+1,---,qm) be the sorted sequences
of elements in R<P. Then:

(at,---,Qnumack) 15 a prefix of (p1,---,Pm)

Proof. We make a finite induction of the number of acknowledgements, numAck.
For the induction basis, it is clear that a; equals p; by the definition of rrs,(-).
Assume, that we have showed that (ay,...,a;) is prefix of (p1,...,pm). Then by
definition of k—rrs, and the induction hypothesis:

ai+1 = rrsp(R\{a1,---,0a;},ai)
= ITSn({Pi-i-l; e 7pm} 7pi)
= DPi+1

5.1.2 Implementation of a Multiported Round-Robin Selec-
tor

This section deduces the implementation of a k-from-n round-robin selector. Such
a circuit receives n requests signals req, € {0,1}™; given the encoding of definition
5.2, we have

re=1 <= i€eR
Furthermore, the circuit stores the index of the last acknowledgement in a register

h, € {0,1}" in (negated) half-unary encoding. Again, with the notation of the
definition, we have

(hidp, = P

The circuit computes the 2-dimensional signal array ack,, € {0,1}*". The k'-
th row ackiw , of this array contains a negated half-unary encoding of the k'-th
acknowledgement, so

(3ckes) _ ap if k' < numAck
AR x T 0 otherwise

The register h, must be set each cycle to the last acknowledgement i.e.

<hT> _ AnumAck if numAck >0
hu T <h>hu otherwise

This completes the definition of the behaviour of the circuit. We proceed with the
description of an implementation.

5.1. MULTIPORTED ROUND-ROBIN SELECTOR 95

As lemma 5.3 showed, the candidates can be found by looking first in the sorted
elements of R>P and then in the sorted elements of R<P. The implementation
computes these sets by the equations

rh,
rl, := req*/\E

req, A h,

Since h, = 1*»"P0? we have:

rhi=1 < {eR’?
th=1 <= ieR=P

The search for the candidates for acknowledgement can now be reduced on finding
the first k£ ones in the bus (rh,,rl,). We use a FFklhu,,, circuit, defined in section
C.2. The FFk1huy, circuit returns a signal array o, . € {0,1}?™*. By corollary C.3
(p- 125) the columns o, ; of m, , being different from 0?" deliver a prefix of the
indices of the input bits equal to 1. This sequence is given in negated half-unary
encoding: if (04 ;),, = @ the (j + 1)-th one is located at the input bit a. Due to the
construction, positions indicated being greater or equal to n refer to indices in R>?
and have to shifted back. Such a shift is indicated by o,_1,1v = 0 since

Oonciw =0 = Ok, 2N
The acknowledgement signals can therefore be computed the following way:?
acky s 1= (On—1,k' ? On—1-0,k' : O2n—1.nk’)

Finally, the register h, must be updated, if a candidate was acknowledged. Again,
0, provides sufficient information to distinguish the different cases: the signal

numAck, = On—_1x

contains a half-unary encoding of the number of candidates found. We clock register
h, in case that at least one candidate was found,

hce := numAckg

Since the signal numAck, is a half-unary encoding of the number of candidates
acknowledges, a pointer to the last acknowledged candidate can be found using an
edge detector:

lastAck, := markLastOne (numAck,)
The update formula for h, can therefore be written the following way:
h, = \/ acki . A lastAck;

Figure 5.1 shows an overview of the implementation just described. Much of the
computation just outlined is hidden in the “update” box. For the initialization, h,
is forced to 1™.

Proof of Correctness. The correctness of the circuit follows from the construc-
tion of the circuit with help of lemma 5.3 and corollary C.3 as pointed out above.

3By a notational twist we also conver the columns 0,k to the rows ackys ,. The definition of
acksx,« by rows is the more natural one.

96 CHAPTER 5. CIRCUITS

5.2 Multicounter

A E-MCNT, is a counter that makes up to k steps in a single cycle. The step
width is determined by an input inc, € {0,1}* containing a half-unary encoding of
the number of steps. The counting register CNT, € {0,1}" satisfies the following
equation:

' _ 0 init=1
<CNT *)2 =2n { <CNT*>2 + k/ lf <inc*>hu — k‘l

Additionally, the multicounter returns the counters cnt;, € {0,1}" for 0 < j < k
with the property

(entji), = (CNT.), +j

An implementation of such a multicounter is shown in figure 5.2. An multiple
incrementer (cf. section C.3) is used to compute the output counters cnt;, for
j € {0,...,k}. From these counters the correct one has to be selected for the
update of CNT’,. Selection signals can be obtained by converting inc, into unary
encoding using an edge detector:

incU := markLastOne ((inc,, 1))

The bus incU, € {0,1}*+1 satisfies incU; = 1 <= j = (inc,),,,. Therefore, CNT’,
can be computed with

CNT', = \/ incU; A cnt;
0<j<k—1

5.3 Multiported Queue

This section develops a multiported queue. A queue is a storage structure supporting
read and write operations on a first-in-first-out (FIFO) basis. Multiporting allows
multiple read / write accesses per cycle.

This section proceeds in two steps. First, an abstract model of a multiported
queue is developed on the basis of finite state transducers. Second, an interface
for the implementation is described which we use in two different implementations.
The correctness of the implementations is verified by showing the equivalence to
the abstract definition.

5.3.1 Definition of an Abstract Multiported Queue

Definition 5.4 A finite state transducer A is an 6-tuple A = (I,Z,6,20,0,¢); I
is the input alphabet, Z is a set of states, § : I x Z — Z is the state transition
function, zg € Z is the initial state, O is the output alphabet, € : I x Z — O 1is the
output function.

Note that finite state transducers, as needed in this thesis, do not require a set
of end states. Finite state transducers are only used to represent computations from
one step to another.

Definition 5.5 (Abstract Multiported Queue) Letk,l,n €IN, k,l <n, DOM
a finite set. Define K:={0,...,k—1}, L:={0,...,l =1}, N:={0,...,n —1}. An

5.3. MULTIPORTED QUEUE

init req,

Figure 5.1: Implementation of a multiported round-robin selector

Mark
LastOne

Figure 5.2: Definition of a multicounter

97

98 CHAPTER 5. CIRCUITS

<————old queue entries write
cycle t: E; s E, Eryp | ®°® E, Wi cee W
cycle t + 1: R, ces| R, E; s | E,_. ||E_,pi|***| E.
read new queue entries ———————————=|

Figure 5.3: Read-write-operation on an abstract MPQ with wack = w,rack =r

abstract k:l-multiported queue of size n over the domain DOM is a finite state
transducer

Api—mrg, = ([I,Z,6,2,0,¢)
input alphabet I = K x DOM=* x L
set of states Z = N x DOM="
initial state z9 = 0
output alphabet O = K x L x DOM~!

The set of states Z models the storage space of the queue. The input alphabet 1
encodes the arrival of new objects and the output alphabet O encodes the reading-
out of objects. The transition function § : I X Z — Z and the output function
€:1IxZ — O are defined as follows:

§(w,Wy,...,Wy,r, eEr,...,E) = (e,E],...,E.)
e(w,Wi,...,Wy,r, e Ei,...,E) = (wack,rack,Ry,...,Rrack)
rack := min{re}
wack = min{n—e+ rack,w}
e := e+ wack — rack
(Ri,---yRrack) = (B1,.--,Erack)
(El,..-»EL) = (Bracktir---sBes Wi, oo, Waack)

It is easy to see, that this definition is a formalization of the concept of a mul-
tiported queue: the order of the queue entries (according to the insertion time)
Ey, ..., E, is preserved. Entries are read head-first and written tail-first. Multiplic-
ity is introduced by the read and write parameters. Figure 5.3 shows a graphical
interpretation of these equations for the case that the queue is “nicely” filled (i.e. we
have wack = w,rack = r). The first row shows the entries E, ..., E. being stored
in the queue in cycle t. New data Wy, ..., W,, arrives also in cycle ¢t and r elements
are requested for read-out. The second row shows the read-out entries Ry,..., R,
and the newly formed queue Ef,...,E.,.

5.3.2 Interface

For the implementation consider the domain DOM = {0,1}™ for some m € IN.
Table 5.1 shows the definition of the implementation interface of a multiported
queue. In addition to the interface for the read / write operations, we consider the
information on how the data is stored in the queue also part of the interface. The
queue data is stored in slots each of which is tagged by a valid bit. The entries
Ey,...,E, are to be found in the valid slots, by convention S; ,...,Se. Note the

5.3. MULTIPORTED QUEUE 99

| Name | Type | Meaning |
W, .data, In the write data, busses for W1,..., Wy
W, .req In the write requests, half-unary encoding of r
W,.ack Out | the write acknowledgments, half-unary encoding of rack
S,wvalid | Out | half-unary encoding of e
S,.data, Out | storage slots for the entries
R,..data, | Out | the read data, busses for Ry,...,R;
R,.req In the read requests, half—unary encoding of w
R,-ack Out | the read acknowledgments, half-unary encoding of wack

Table 5.1: Multi-ported queue interface

negation and reversion of the E,.valid bus can also be interpreted as a full bus,
full, : = Eg..n_1.valid. In this case, full; = 1 iff 7 entries cannot be stored in queue
(before read-out).

5.3.3 Register-Based Implementation

In the register-based implementation, the slots are directly modelled with flip-flops
Si.dataj for 0 <4 <nm—1and 0 < j < m — 1. A valid register valid, € {0,1}"
indicates which slots hold valid entries. It encodes the fill state of the queue in
half-unary encoding, i.e. (valid,),,, is the number of allocated queue slots.

Queue Control

This section develops the queue control signals in three different steps. The “Read
Phase” describes how the read operations are acknowledged and performed. The
“Slot Propagation” describes the adjustment of the queue slots after the read-out.
The “Write Phase” describes how the write operations are acknowledged and how
the data reaches the appropriate slots.

Read Phase. The reading of slots is simple. For the computation of the read
acknowledgements signals we use the fact, that the minimum function used to com-
pute rack (cf. definition 5.5), is easily implemented in half-unary encoding with a
slice of AND-gates:

Ry.ack := S; j.¢.valid A R,.req

In preparation for the write phase, we assume that the read operations have been
separately performed before the write operations. The fill state of the queue after
read-out, (validAfterRead,),,, can be obtained by a half-unary subtraction operation:

(validAfterRead,),, = (validy),, — (R«.ack),,,

Slot Propagation. After reading out, the entries stored in the slots move down
the queue to fill the read-out empty slots again. This movement is called slot
propagation. Let prop, = 1 indicate that the propagation distance equals I’ steps
(I" € {0,...,1}). Since R,.ack provides a half-unary encoding of the number of
read-out entries, we can compute prop, with an edge detector:

prop, := markLastOne (R,.ack)

100 CHAPTER 5. CIRCUITS

Write Phase. In the write phase, we first want to compute the write acknowl-
edgement signals. According to property 3.6 (p. 35), of half-unary numbers, the
reversed and negated version of validAfterRead, encodes the number of free entries
after read-out:

(validAfterReadg.n—1),, = n—e+rack

Because wack = min {n — e + rack,w} by definition 5.5 we can compute the write
acknowledgement signals by a slice of AND-gates:

W, .ack = W,.req A validAfterRead;, _y..._1

= W,.req A validAfterRead,, _y..._1

The acknowledged write data must be appended to the valid entries in the queue
after read-out. To control the distribution of the write busses, we define the signal
array W2S, .. The condition W2Sy/ v = 1 indicates that write bus Wy shall be
written to slot Syr.

For k' = 0, the bus

insPos, := markFirstZero (validAfterRead,)

marks the insertion position, i.e. W2Sg ., = Wq.req A insPos,.. For k' > 0 we obtain
W2Sy « by shifting insPos,:

W2Sy/ v = Wyr.reqAinsPosy v for 1<n'—k <n

This ensure that the written entries are appended “en bloc” after the valid queue
entries.

Update of the Valid Register. The new valid register valid’y can be computed
by a half-unary addition that satisfies:

(valid'y),, = (validAfterRead,),, + (W,.ack),,

Figure 5.4 contains an overview of the calculations for the valid register. Addi-
tionally it initializes the valid, register if the signal init, equals 0.

Structure of the Slots

Figure 5.5 shows the definition of the slot S,:. The register S,s.data, stores the
data. Sources for this register are the k write busses W,.data, the own data S,
(which may be looped back for update purposes) and the data of the I above slots
Sni41,---,Sn 41 for slot propagation purposes. Drivers are used to select the data
from the different sources; W2Sy: n» = 1 indicates, that write bus Wi shall write
into slot Syv. At most one bit of W2S, 1 can be active by definition of W25, ,. The
signal

SQSHI_H/J,I = validn 41 A propy

for I' € {0,...,1} is used to select S,y1 as a source. Again, at most one of
S2S,/41.07,n' can be active, since at most one of prop, is active by definition. Fur-
thermore, the two different output enables busses are mutually exclusive:

3 ll : stn’—{—l’,n’ =1 propy = 1A validn,+1/ =1
R,.ack = 0" 1" Avalidy 4y = 1
validAfterRead, = 1

W2S, . =0

111

5.3. MULTIPORTED QUEUE 101

R.req,

W.req,

R.ack, W.ack,

Figure 5.4: Definition of the valid register

S 4. -dataW, . data,

S,.data’

Figure 5.5: Definition of the n'—th slot

102 CHAPTER 5. CIRCUITS

The data register is only clocked, if it is valid in the next cycle, i.e. Syr.data.ce’ =
valid’n: .

Note that the construction of the slots allows the integration of an update circuit
for the queue data, as shown in figure 5.5. Such a circuit can be used to modify
entries after they have been written. However, for simplifying notation, we just
consider the update circuit computing the identity function for the remaining part
of this section.

Correctness

Our implementation behaves the same way as an abstract queue Agj_pmpg, on
domain DOM = {0,1}™. In an inductive proof, we show that the initialization
configuration and the state transitions are equivalent subject to the interface defined
in section 5.3.2.

For initialization we have e = 0 and no entries in the abstract machine. The
implementation machine is in an equivalent state since

(valide),,, = (0",
=0
= e
and the slots must not match any entries.

Now we show that both machines make equivalent transitions. Under the as-
sumptions

W,.reqq = 0Fw1v
Wy _1..0.data = (Ww,...,Wl) (51)
R..req = o-r1r
the following equations hold:
(Ri.ack),, = rack (5.2)
Rrack_1..0.data = (ETack; - ,El) (53)
(Wy.ack),, = wack (5.4)
(valid',),, = ¢€ (5.5)
Ser—1..0-data = (Eé: ey E{) (5.6)

So, assume 5.1. First, we consider the read phase, for which we can directly
derive by properties of half-unary encodings:

(Ri.ack),,, = (Ri.reqASi_1.0)s,
= min{re}

= rack

Srack—l-.o.data*
(ETack7 Sy El)

Rrack—1..0.data,

Next, the equivalence of the write acknowledgement signals are shown. The following
equations use properties of half-unary numbers and the correctness of the read
acknowledgements already shown:

(W,.ack),, = (Wi.reqA validAfterReadn,k..n,l)hu
= ((0"*,W,.req) A validAfterReado.n—x),

5.3. MULTIPORTED QUEUE 103

—| RAddr, RData,, ™ R,.data,

tail, , e WAddr, ,
W, .data, —]WData,,
W,.ack —{ WEnable,

Figure 5.6: Slot storage

= max {w,n — (validAfterRead,_1..0);, }
= max{w,n —max{0,e — rack}}
= max{w,n — e+ rack}

= wack

The preservation of the queue slot structure remains to be shown. The updated
valid register is computed by a half unary addition, so we have

(valid’,c),,, (validAfterRead,),, + (Wx.ack),,

= e —rack + wack
!

= e
Each propagated slot moves down by a distance of rack. The written entries are
stored in positions e — rack + 1 to e — rack + wack. So:

Ser—1..0.data = (Wwack;---,Wl,Ee,---,El)
== (é/,...,Ei)

5.3.4 RAM-Based Implementation

The RAM-based implementation uses a regular multiported RAM accessed by head
and tail pointers in a wrap-around fashion. This implementation is cheaper although
slower than a register-based implementation. The implementation restricts for n
being a power of 2. Sections on the structure of a RAM-based implementation
follow.

Slot Storage

The slot storage is a multiported RAM with [write and k read ports. The read ports
are addressed by the head pointers head, , returning their data to the read busses
R.data,. The write ports are addressed by the tail pointers tail, . and enabled by
the write acknowledgement signals W,.ack. The data is on the incoming write busses
W, .data,. Figure 5.6 shows the slot storage environment.

Head and Tail Pointers

The queue is controlled a head and a tail pointer. The (master) head pointer HEAD,,
always points to the first (oldest) element in the slot storage. The (master) tail
pointer TAIL, always points to the first free slot in the slot storage. The queue
entries consist of the entries stored between head and tail. Addresses wrap around
if they get larger than n.

104 CHAPTER 5. CIRCUITS

R.ack, % inc, I W.ack, % inc, !
init — init 1 init = init 1
| | I-MONT f10g, n: | | k-MCONT 10, n:
! HeadCntr } ! TailCntr }
i cnt, 3 i cnt, 3
head*,* tail*,*

Figure 5.7: Definition of the head and tail pointer

However, one head pointer and one tail pointer is not enough for multiple read
and write operations. To support k read operations, we need k head pointers head, .
with

(headk:,*)2 = <HEAD*)2 + kl

The k'—th head pointer can be used to read out the k'—th element. After reading
out, the master head is incremented by (Ry.ack),,,.

The same holds for the tail pointers. To support [write operations, we need [
tail pointers tail, , with

<tai|ll,*>2 = <TA”_*)2 + ll

The I'-th tail pointer can be used to write the I'-th element. After writing, the
master tail pointer is incremented by (Wy.ack),,,

The multicounter, already implemented in section 5.2, provides this functionality
for both the head and the tail pointer as shown in figure 5.7.

Valid Register

The valid register is implemented exactly the same way as for the register-based
implementation. Refer to section 5.3.3 and figure 5.4 for details.

Correctness

We show correctness the same way as for the register—based implementation. First,
we show that the initial configurations are equivalent and then we show inductively
that equivalent transitions are performed. Equivalence is defined along with the
interface of section 5.3.2. The definition of the slots of the RAM-based implemen-
tation is a slightly more complicated; the slots are located between head and tail of
the queue. With e = (S,.valid),, we satisfy

Ee’ = Shead+e’

For the initialization we correctly have e = 0 and S,.valid = 0. Then we show
under the assumptions:

W,.req = ok-wiw
W, _1..0.data (Ww, ey Wl) (57)
Rereq = 07717

5.4. RESERVATION STATION QUEUE 105

that the following equations hold:

(Re.ack),,, = rack (5.8)
Rrack—1--0-data = (Ergcks---,E1) (5.9)
(W,.ack),, = wack (5.10)
(Skvalid'),, = ¢€ (5.11)
Ser—1.0.data = (E.,...,E) (5.12)

We only show here that the data is correctly read and written to the queue. The
other equations have already been proved in 5.3.3.

For read requests r' € {0,...,rack — 1}, the r'—th head pointer is used. This
pointer points to the 7’ element starting with and including the master head pointer
HEAD,. Therefore by induction assumption:

Ry.data = E. 44

Data from the write busses is written at the queue tail; W,/ is written to the
position indicated by the w'~th head pointer. With T:= (TAIL,), we have

ST+WI .data' = le+1
Otherwise, the slot is not modified, so for n' ¢ {T,...,T + wack} we have

Sln/ — Sn/

Update Ports

The design of the RAM-based MPQ allows for the integration of update ports: these
ports allow reading and writing data in the middle of the queue. To access an entry,
its position is used as an address.

The update ports can be implemented by adding the required read and write
ports to the slot storage RAM.

5.4 Reservation Station Queue

A reservation station queue is a specialized multiported queue maintaining an addi-
tional status bit edro (“eligible for read-out”) for each entry. If the bit is 1, an entry
may be read; if it is 0 an entry cannot be read. This sort of behaviour is needed
in collection of reservation stations: each reservation station becomes eligible for
read-out, if it has gathered all its source operands.

We proceed the same way as for multiported queues: first we develop an abstract
definition of a reservation station queue based on finite state transducers. A descrip-
tion of an implementation interface follows. Then, a register-based implementation
is presented only.

5.4.1 Definition of an Abstract Multiported Queue

Definition 5.6 (Abstract Reservation Station Queue) Let k,l,n €IN, k,1 <
n, DOM a finite set. Define K:= {0,...,n}, L:= {0,...,I}, N:= {0,...,n}, An
abstract k :l-reservation station queue of size n over the domain DOM is a finite
state transducer

AkifRSQn = (IJ Z7 57 ZOJan)

input alphabet I = K x DOMS* x L

106 CHAPTER 5. CIRCUITS

| Name | Type | Meaning |
W, .data, In the write data, busses for W1y,..., Wy
W, .req In the write requests, half-unary encoding of r
W,.ack Out | the write acknowledgments, half-unary encoding of rack
Siwvalid | Out | half-unary encoding of e
S,.edro Out | the eligibility for read—out
S..data, Out | storage slots for the entries
R,.data, | Out | the read data, busses for Ry,...,R;
R,.req In the read requests, half—unary encoding of w
R,-ack Out | the read acknowledgments, half—unary encoding of wack

Table 5.2: Reservation station queue interface

set of states Z = N x DOM="
transition function§ : IXZ —Z
initial state zp = 0
output alphabet O = K x L x DOM=!
output functione = IxZ— O

Let E4RO (“eligible for read-out”) be a finite predicate on DOM, EJRO C DOM.
The transition function § and the output function € are defined as follows:

§(w,Wy,...,Wy,r, ¢,E1,...,E,) = (¢,Ef,...,E.)
e(w,Wi,...,Wy,r, €,E1,...,E,) = (wack,rack,Ry,-..,Rrack)

Define edro:= |{i € {1,...,e} | E; € E4{RO}|. Then

rack := min{rack,efro}
wack = min{n — e+ rack,w}
e := e+ wack —rack

Let (e4roj) be the prefix of length rack of the sorted sequence of the indices of the
elements eligible for read out. Let (e4rok) be the sorted sequence of the remaining
indices. Then, with an update function upd for the entries, the queue operation looks
as follows:

(Rl; ey Rrack) = (Ee47'01; ceey Ee4’r'omck)
(E!,...,E.) (upd(Eml), coosupd(Boges), Wi, Wwack)

5.4.2 Description of the Interface and Equivalence Criterion

For the implementation of the abstract multiported queue we consider a domain
DOM = {0,1}™ for some m €IN. Table 5.2 shows the definition of the implemen-
tation interface of a multiported queue.

5.4.3 Register-Based Implementation

In the register-based implementation, the slots are directly modelled with flip-flops
S..data,. A valid register valid, € {0,1}" indicates which slots hold valid entries.
It encodes the fill state of the queue in half-unary encoding, i.e. (validy),, is the
number of allocated queue slots.

5.4. RESERVATION STATION QUEUE 107

Queue Control

This section develops the queue control signals in three steps. The procedure is ac-
cording to the multiported queue case. The “Read Phase” describes how queue read
operation are acknowledged and performed. The “Entry Propagation” describes the
adjustment of the queue entries after the read-out. The “Write Phase” describes how
queue write operations are acknowledged and how the data reaches the appropriate
slots.

Read. Candidates for read-out must be searched in all valid and eligible entries:
S,.cand = S,.valid A S,.e4ro

The definition of the abstract reservation station queue requires us to find the first [
ones in this bit string. A find-first-l-ones half-unary circuit executes this operation.
Let Sy.cand € {0,1}" be the input of this circuit, mAux, , € {0,1}"! the output.
We have

(mAuxi +),,, = min{l,ones(S;.q.cand)}

by definition. As we are interested to determine the number of read-out entries, we
compute a half-unary minimum operation

mi . = Ry.req A mAux; «

)

and obtain

(mi)y, = min{(Rs.req),, I, ones(S; g.cand)}

= min {(R..req),,, ,ones(S;..o.cand)}

From this signal array, the read acknowledgement signals can be directly read
out from the last line:

Reack 1= mp_i4

To compose the read busses we further need to compute output enable signals
S2R; ; indicating that slot ¢ shall be mapped to read bus j. Again, the signal array
m, . provides this information. By corollary C.3 (p. 125) the columns m, ; of m, ,
being different from 0™ deliver a (R..ack),,—prefix of the sorted sequence of the
indices of the input bits equal to 1. This sequence is given in negated half-unary
encoding; to obtain the output signals, we merely compute the edge in them:

S2R,; := markLastOne (m,;)

The rest of the read phase works the same as in the multiported queue. In prepa-
ration of the write phase, we assume that the read operations have been separately
performed before the write operations. The signal bus validAfterRead, indicating
the valid slots after the completion of the read phase is obtained by a half-unary
subtraction operation:

(validAfterRead,),, = (valid),, — (R«.ack),,

Slot Propagation. The entry propagation in a reservation station queue is more
complicated than in a multiported queue. Each entry may be propagated by a
different distance since reading of queue entries can occur at different places of the
queue and is not restricted to the head.

108 CHAPTER 5. CIRCUITS

Let S;.prop; indicate that the propagation distance of entry i is j. The slot
propagation is characterized by two rules. A read-out slot is not propagated at all.
Any other slot is propagated by the number of entries that have been read out
before it.

Define

Si.prop, := mj_j 4 A markLastOne(m;)

Then, for any read-out slot S;, we have (m;_;,),, < (mj.),, and therefore in
S;.prop, = 0'. Otherwise,

(Si-prop,)y, = ones(S;..o.cand)
= ones(S;_1..9.cand)

Write. The write phase works the same as in the multiported queue (cf. section
5.3.3). In the write phase, we first want to compute the write acknowledgement
signals. According to property 3.6 (p. 35) of half-unary encodings, the reversed and
negated version of validAfterRead, encodes the number of free entries after read-out:

(validAfterReado.., 1),, = n—e+rack

Because wack = min {n — e + rack,w} by definition 5.5, we can compute the write
acknowledgement signals by a slice of AND-gates:

W,.ack = W,.req A validAfterRead,, _x..,_1

= W,.req A validAfterRead,, ..n_1

The acknowledged write data must be appended to the valid entries in the queue
after read-out. To control the distribution of the write busses, we define the signal
array W2S, .. The condition W2Sy/ »» = 1 indicates that write bus Wi shall be
written to slot Syr.

For k' = 0, the bus

insPos, := markLastOne (validAfterRead,)

marks the insertion position, i.e. W2Sg . = Wy.req A insPos,.. For k' > 0 we obtain
W2Sy . by shifting insPos,:

W2Sy v = Wi.req AinsPosy i for 1 <n' — k' <n

This ensures that the written entries are appended “en bloc” after the valid queue
entries.

Update of the Valid Register. The new valid register valid’, can be computed
by a half-unary addition that satisfies:

(valid',),, = (validAfterRead,),, + (W,.ack),,

Entry

Figure 5.8 shows the definition of the slot Spr. The register Sy .data, stores the
data. Sources for this register are the k write busses W,.data, the own data Sy
looped-back for update purposes and the data of the [above slots Spr41,-..,Sn/+1
for slot propagation purposes. Drivers are used to select the data from the different

5.4. RESERVATION STATION QUEUE 109

Sy +,.n-data’y W, .data,

W2S, v — |
S2Su 4 fomtmt
valid’,, —— S,.data, |
S2R,, ‘ ; }updateCompl 3
o ' edroComp D

R,.data, S, .e4ro S, .data’,

Figure 5.8: Definition of a reservation station queue slot
sources; W2Sy ;v = 1 indicates that write bus Wy shall write into slot S,/. At most
one bit of W2S, » can be active by definition of W2S, ,. The signal
S2Sn/+1l’nl = validn:+1/ A Sn:_H/.propl,

for I' € {0,...,l} is used to select Spyr as a source. Again, at most one of
S2S,/41.0,nr can be active. The data register is only clocked, if it is valid in the
next cycle, i.e. Syr.data.ce:= valid'y.

110 CHAPTER 5. CIRCUITS

Chapter 6

Perspective

Several aspect of superscalar processor design have not been examined in-depth in
this thesis. They are left for further research.

e Modern microprocessors execute multiple control flows with several outstand-
ing branches in parallel. Such execution can be implemented by introduction
of a control flow tag, which associates each instruction in execution with a
specific control flow followed. The reorder buffer will only retire the instruc-
tions of the control flow that eventually is know to execute, results for other
control flows will be dropped. Duplication of the producer tables is necessary
for an individual register renaming and forwarding in each control flow.

Multiple control flow execution therefore depends on major changes of the
machine design; an analysis would be of interest.

e More elaborate branch predictors and fetch mechanism still remain to be
examined. [Yeh93] states the importance of such mechanism with the growing
instruction-level parallelism of the processor since mispredictions incur a great
penalty in performance. Therefore, current processor designs spend more cost
for sophisticated control flow predictors.

e Branch problem “solved”, the memory operations are likely to limit the ma-
chine’s performance. In our design, stores are executed in order and loads
execute on completed address computation. More elaborate schemes, as de-
veloped for example in [AMS97], involve the speculation of memory access
addresses by maintaining appropriate history information. Schemes replacing
in-order store by something more efficient are also thinkable, although pre-
ciseness for such schemes regarding interrupt and roll-back is a most delicate
matter.

e QOur design provided a superscalar framework for the whole instruction set.
In contrast to this, today’s microprocessor often provide different levels of
superscalarity for fixed-point and for floating point instructions. Additionally,
the grouping of reservation stations in a centralized reservation station pool /
dispatch stack results in a better utilization of reservation stations on a cost
overhead ([Joh91, WS84, AKT86]).

The effect of such choices on cost and performance remains to be examined.
e Simulations are missing to measure the exact impact of the parameters of our

design. The conservative CPI rate estimate made in chapter 4 could be could
be corrected, improving the quality of this design.

111

112 CHAPTER 6. PERSPECTIVE

e The hardware model used neglects the effect of wiring and fanout. A study of
this design in a model dealing with layout, like [PS98], could adequately cope
with the large wiring overhead present in our design.

Appendix A

DLX Instruction Set
Architecture

This instruction set is taken from [MP95, MP00] with minimal modifications.

6 5 5 16
I-type ‘ opc ‘ RS1 ‘ RD ‘ imm16 ‘
6 5 5 5 5 6

R—type‘ opc ‘ RS1 ‘ RS2 ‘ RD ‘ SA ‘ fn ‘

6 26
J-type ‘ opc ‘ imm26 ‘
6 5 5 16
Fl-type ‘ opc ‘ RS1 ‘ FD ‘ imm16 ‘
6 5 5 5 2 3 6

FR-type | opc | FS1 [FS2,RS2 FD [00[fmt| fn

Figure A.1: Instruction formats of the DLX

| ls1.26 | Mnemonic | Effect |

Control Flow Operation
000010 j (PCy)y =232 (PCy), + 4 + [imm26,]
000011 jal (R31,), =232 (PC,), +4, PC, =imm26,

Exception Control

EPC, = PC,,PC, = SISR,

ESR, = SR, ,ECA, = MCA,

SR, = 032, EDATA, = sextgs(imm26,,)
clear CA but catch new interrupt events
111111 rfe SR, = ESR, ; PC, = EPC,

111110 trap

Table A.1: J-type instructions

113

114 APPENDIX A. DLX INSTRUCTION SET ARCHITECTURE
| ls1.26 | Mnemonic | Effecto
Load / Store, mem, = M [(RS1,), + [imm16,]]
1000000 1b RD, = sextsa(memy..q)
100001 1h RD* = Sethg(memls..o)
100011 1w RD* = memsi..g
100100 1bu RD, = (0%*, memy..o)
100101 1hu RD, = (0"6, memys..0)
101000 sb memy..o = RD7..¢
101001 sh memis..o = RD15..0
101011 SW memsy..o = RD*
Arithmetic / Logical Operation
001000 addi (RDy)y =232 [RS1,] + [imm16,]
001001 addiu (RD,), =232 [RS1,] + [imm16,] (no overflow)
001010 subi (RD,), =932 [RS1,] + [imm16,]
001011 subiu (RD,)y =232 [RS1,] + [imm16,] (no overflow)
001100 andi RD, = RS1, A sextsz2(imm16,)
001101 ori RD, = RS1, V sexts2(imm16,)
001110 xori RD, = RS1, @ sextzs(imm16,)
001110 | 1hgi | RD, = (imm16,,0'%)
Test Set Operation ¢
011000 clri RD, = 032
011001 sgri RD, = ([RS1,] > [imm16,] ? 031 : 0%2)
011010 seqi | RD, = ([RSL,] = [imm16,] ? 0%'1 : 032)
011011 sgei RD, = ([RS1,] > [imm16,] ? 03!1: 032)
011100 slsi RD, = ([RS1,] < [imm16,] ? 03'1 : 032)
011101 snei | RD, = ([RSL,] # [imm16,] ? 0%'1 : 0%2)
011110 slei | RD, = ([RSL,] < [imm16,] ? 0%'1 : 0%2)
011111 seti RD, = 031
Control Flow Operation
000100 beqz (PC,), =232 (PC,), + 4+ (RS, =032 7 [imm16,] : 0
000101 bnez (PCy)y =232 (PCy)y + 4+ (RSx # 032 ? [imm16,] : 0
010110 jr PC, = RS1,
010111 jalr | (R3L,), =s» (PC,), +4, PC,=RS1,

%The six relations defined are redundant for compiler-generated code in most situations: Com-
pilers can replace relations “<”, “#” and “<” by their inverted operations in arithmetic expres-
sions. The redundant operations could be replaced by unsigned comparisons which miss in the
ISA presented. We will not follow this approach, however, to maintain binary compatibility to
[MP95, MP00] and because the underlying ISA is not of primary interest of the thesis.

Table A.2: I-type instructions

115

| 5126 |

I5..0

| Mnemonic | Effect

Shift Operation

000000 | 000000 s1li RD, = RS1, < SA,

000000 | 000001 slai RD, = RS1, < SA, (arithmetic shift)
000000 | 000010 srli RD, = RS1, > SA,

000000 | 000011 srai RD, = RS1, > SA, (arithmetic shift)
000000 | 000100 s11i RD, = RS1, < RS;4..¢

000000 | 000101 slai RD, = RS1, <« RS,..¢ (arithmetic shift)
000000 | 000110 srli RD, = RS1, > RS4..¢

000000 | 000111 srai RD, = RS1, > RS4..¢ (arithmetic shift)
Data Transfer Operation

000000 | 010000 | movs2i RD, = SA,

000000 | 010001 | moviZ2s SA, = RD,

Arithmetic / Logical Operation

000000 | 100000 add (RDy), =232 [RS1,] + [RS2,]

000000 | 100001 addu (RDy)y =232 [RS1,] + [RS2,] (no overflow)
000000 | 100010 sub (RDy), =232 [RS1,] + [RS2,]

000000 | 100011 subu (RDy), =232 [RS1,] + [RS2,] (no overflow)
000000 | 001100 and RD, = RS1, A RS2,

000000 | 001101 or RD, = RS1, V RS2,

000000 | 001110 xor RD, = RS1, @& RS2,

000000 | 001110 lhg RD, = (RS2,,0'%)

Test Set Operation

000000 | 101000 clri RD, = 032

000000 | 101001 sgri RD, = ([RSL.] > [RS2,] ? 0311 : 0%2)
000000 | 101010 seqi RD, = ([RSL.] = [RS2,] ? 031 : 0%2)
000000 | 101011 sgei RD, = ([RSL.] > [RS2,] ? 031 : 0%2)
000000 | 101100 slsi RD, = ([RS1,] < [RS2,] ? 031 : 0%2)
000000 | 101101 snei RD, = ([RSL,] # [RS2,] 7 03!1 : 032
000000 | 101110 slei RD, = ([RSL,] < [RS2,] ? 03'1: 032
000000 | 101111 seti RD, = 0311

Table A.3: R-type instructions

| |31~~26 | Mnemonic | Effect

Load / Store, memgs..o = M [(RS1,), + [imm16,]]

110001 load.s FD31..0 = memgsj..g

110101 load.d FD63..0 = memgs..g

111001 | store.s | memgsi..q = FD31..0

111101 store.d mems;..g = FDgs..0

Control Flow Operation

000110 fbeqz (PCy)s =22 (PC,), +4+ (FCC =07 [imml6,] : 0)
000111 fbnez (PCy)y #2s2 (PC)y +4+ (FCC =17 [imml6,] : 0)

Table A.4: Fl-type instructions

116 APPENDIX A. DLX INSTRUCTION SET ARCHITECTURE

| |31~~26 | |5..0 | |8~~6 | Mnemonic | Effect |
Arithmetic / Compare Operation, fmt:= ls..¢
010001 | 000000 fadd.s/d FD, =ieeeAdd(FS1, ,FS2, ,fmt,)
010001 | 000001 fsub.s/d FD, =ieeeSub(FS1, ,FS2, ,fmt,)
010001 | 000010 fmul.s/d FD, =ieeeMul(FS1,,FS2, ,fmt,)
010001 | 000011 fdiv.s/d FD, =ieeeDiv(FS1,,FS2,,fmt,)
010001 | 000100 fneg.s/d FD, =ieeeNeg(FS1, ,fmt,)
010001 | 000100 fabs.s/d FD, =ieeeAbs(FS1, ,fmt,)
010001 | 000100 fsqt.s/d FD, =ieeeSqt(FS1, ,fmt,)
010001 | 000100 frem.s/d FD, =ieeeRem(FS1, ,FS2,,fmt,)
010001 | 1lcs..0 fc.cond.s/d | FCC = ieeeCond(FS1, ,FS2, ,c, ,fmt,)

Data Transfer Operation
010001 001000 000 fmov.s FD31..0 = FS].31..0
010001 001000 001 fmov.d FD63..0 = FS].63..0

010001 | 001001 mf2i RS, = FS131..0

010001 | 001010 mi2f FD31..0 = RS,

Conversion

010001 | 100000 | 001 cvt.s.d FD, = ieeeConv(FS1, , s, d)
010001 | 100000 | 100 cvt.s.i FD, = ieeeConv(FS1, ,s,14)
010001 | 100001 | 000 cvt.d.s FD, = ieeeConv(FS1, ,d,s)
010001 | 100001 | 100 cvt.d.d FD, = ieeeConv(FS1, ,d, 1)
010001 | 100100 | 000 cvt.i.s FD, = ieeeConv(FS1, ,i, s)
010001 | 100100 | 001 cvt.i.d FD, = ieeeConv(FS1, ,i,d)

Table A.5: FR-type instructions

Appendix B

Sample Branch Predictor
Unit

B.1 Branch Predictor

We only implement a simple branch predictor in our design. The design of more a
complex branch predictor lies beyond the scope of this thesis. Our branch predic-
tor is a branch target buffer design using a 2-bit saturating counter scheme. The
description and analysis such schemes can be found in [LS84]. !

B.1.1 Implementation

Each branch, identified by its address, is associated with a status information
(c1,c0) € {0,1}2. This information is the state of an automaton called 2-bit sat-
urating counter. Figure B.1 shows this automaton. The automaton is used in two
ways. First, branches are predicted based on the state (c1 , ¢o). A branch is predicted
taken (predT) if ¢; = 1; it is predicted fall-through (predFT) if ¢; = 0. After the
prediction of a branch, the state is updated according to the real outcome of that
branch. A taken result increments the state number (c,), up to its maximum while
a fall-through result decrements the state number (c4),, but not below 0. This way,
the counter “saturates” for many taken or for many fall-through results. A simple
proof shows that the next state (c'y,c¢’¢) can be computed out of (c; ,¢o) and T (for
taken result) with the following equations:

CI() C1/\EV(C1@C0)/\T
i = g ATVeAT

Figure B.2 shows the data paths for a 2-bit saturating counter branch predictor.
The predictor is interfaced by 6 signals. Requests for predictions are made by setting
R = 1 and ID to the ID of the branch. We identify branches in a direct-mapped
approach by part of its PC The predictor outputs the prediction result with the
signal PRED; PRED = 1 indicates a taken branch. If a prediction is actually used,
the signal DO must be activated.

The remaining part of the interface deals with the verification of predictions.
Signal WB indicates that a branch has been verified. In this case MP is set to 1 if
a misprediction has been detected.

INote that the DLX only implements branches with static targets, i.e. the target is encoded as
a constant offset to the PC of the branch instructions. The original branch target buffer design,
presented by Lee and Smith, also treated dynamic targets by storing an additional target item,
giving the buffer its name. Dropping this target item simplifies the description of the scheme.

117

118 APPENDIX B. SAMPLE BRANCH PREDICTOR UNIT

Take C

Fall-Through

01 Take 00

predFT ’ Pl Th . o predF'T QFall—Through
all-Throug

Figure B.1: State automaton for the 2-bit saturating counter

REQ ID
1 I [!
DO — bCntr bAddr |
| |
MP : nCntrGen i
WB ‘
i Din w wA |
N x 2-wbRAM '
! rA !
| Dout }
! WB 1
(1 o : =7 —

Figure B.2: Data paths for a 2-bit saturating counter branch predictor

B.2. WRITE-BUFFERED RAM 119

The predictor features a central N x 2-wbRAM (see below) storing N 2-bit
saturating counters. If a prediction is requested, this RAM is read out at the address
ID,, returning the counter (c; ,cq) of the requested branch. From this counter, we
can directly take the upper bit c; to obtain the prediction PRED. In case this
prediction is actually used, i.e. DO = 1, the address ID,. and the counter (¢ ,¢q) are
clocked into two buffer registers bAddr, and bCntr,. There it waits for the prediction
verification.

If WB = 1, the verification result MP is available. The new counter (c'y,c/o)
can be computed by the equations above. Note that T = ¢; & MP. A write access
to address bAddr, writes back the counter. The writing counter is forwarded for
reading, if it is requested in the same round: so if ID, = bAddr, and WB = 1 then
(c'1,co) is returned.

A close observation of our processor reveals that the underlying RAM of the
branch predictor need not have two “real” ports for reading and writing. A cycle
after prediction, our processor will not requests for another prediction, because
it first has to resolve the outstanding speculation. This means, that between two
possible write-backs due to prediction verification there is always a cycle where no
prediction is requested, i.e. no read access occurs. So-called write-buffered RAM,
implemented in section B.2, exploits this property and is used to build a fast counter
RAM for the predictor.

B.1.2 Integration in the processor

The interface of the BPU developed in the previous section are defined as follows:

BPU.ID, := cfi.opcs;..o
BPU.REQ := cfi.valid

BPU.DO := cfi.doPred

BPU.MP := bcu.mp

BPU.WB := bcu.valid A bcu.jump

bpu.pred := cfi.t.imm16

Note that allowCFI will be zero the cycle after a prediction has been made.

B.2 Write-Buffered RAM

This section describes the implementation of a special 2-ported RAM that requires
a cycle of no read requests between two write requests. Such RAM can be built with
conventional single-ported RAM and an additional buffer for write operations.

Figures B.3 and B.4 shows the implementation of a N x m-write-buffered RAM
featuring the central N x m-RAM. We continue describing the write and the read
operation.

B.2.1 Write

Let n:= [log, N|. Written data is always stored in a buffer register first; bAddr, €

{0,1}™ buffers the write address, bDin, € {0,1}™ buffers the incoming data. An

additional register valid € {0, 1} equals one, if the buffer contains data to be written.
A full buffer is written to the RAM, if no read request has to be fulfilled:

wb := wvalidAT

120 APPENDIX B. SAMPLE BRANCH PREDICTOR UNIT

wAddr, Din, w writebuf
bAddr, bDin,
rAddr,

A, w Din,

=? N x m-RAM

Dout,

Dout,

Figure B.3: Implementation of write-buffered RAM

1 = bValid
!

writebuf

Figure B.4: Implementation of the valid register

B.2. WRITE-BUFFERED RAM 121

In this case the write signal is set and the buffered write address is selected as the
RAM access address. The buffer valid register bValid is set to 1 iff it was valid and
has not yet been written or if new write data has arrived in the same cycle:

valid’ := (bValid Awb) Vw

On initialization valid is reset.

B.2.2 Read

As seen above, no write operation will be executed, if a read is requested by r = 1.
The address multiplexor will forward the read address to the address input of the
RAM. Additionally, a forwarding logic is implemented for the data stored in the
write buffer. A compare circuit “=7” is used to determine matching read and buffer
address. If this circuit signals matching addresses and the buffer is valid, read data
is not taken from the RAM but forwarded from the buffer data register bDin.

122 APPENDIX B. SAMPLE BRANCH PREDICTOR UNIT

Appendix C

Auxiliary Circuits

This appendix describes three auxiliary circuits used in the implementation of our
machine.

C.1 Find-First-One Half-Unary

C.1.1 Definition and Construction

This section implements a find-first-one half-unary circuit FF1hu,, frequently used
in this thesis. The FF1lhu, receives an input bus a, € {0,1}" and produces the
output bus o, € {0,1}" with the following property:

o=1 <<= 3j€{0,...,i}:a;=1

Equivalently, the negated output is the number of leading zeroes at the beginning
of a, in half-unary encoding;:

(on), =k <= ak.=10"

For n = 1, FF1lhu, is defined by og: = ag. For n > 1, figure C.1 shows the
recursive definition. It has delay of O(logn) and cost of O(nlogn). Alternatively,
a find-first-one half-unary circuit can be implemented with a parallel-prefix OR
circuit (cf. [Lei99]).

C.1.2 Correctness.

The OR gate used in the construction can also be seen as the first bit of a half-unary
adder for two 1-bit encodings. This way, the correctness proof of section C.2 for a
generalized version of the circuit applies.

C.2 Find-First-k-Ones

C.2.1 Definition

Let the function oneg(-) sum up the ones of a binary argument, i.e.

ones(Xm—1..0) = in

i<m
Let k,n €IN, a, € {0,1}". Define

O; := min{k,ones(aj..q)}

123

124 APPENDIX C. AUXILIARY CIRCUITS

On input a, a n-bit find-first-k-ones half-unary circuit FFk1lhu, computes the out-
put array o, € {0,1}™* such that

(00 py, = O

C.2.2 Construction
For k > n =1 the FFk1lhu, is defined by

01,1 = a1
o1 := 0

)

Now assume the construction of FFklhu,. We construct FFklhusy, using two
FFklhu, and n half-unary adders (cf. equation 3.14) in the following way. One
FFEk1lhu,, receives

aly, = ap_1.0
and computes ol, , € {0, 1}""“. The other receives
ah, := asnm
and computes oh, , € {0, 1}™*. The outputs of the FFk1lhuy, are computed such:

olj « for j € {0,...,n—1}

O = { huAdd(ohj_n«,0lh-1) forj€ {n,...,2n -1}

Only the k lower bits of the add operations are used; this puts an upper bound to
the values (0j,4),, computed as in the definition of O;.

C.2.3 Correctness

In an inductive proof we assume the correctness of FFk1hu,, to show the correctness
of FFk1hus,. According to the construction of FFklhu,, we distinguish two cases.

e j€{0,...,n—1}. We have:
<Ojv*>hu = <0|ja*>hu
= Oj
e je{n,...,2n —1}. We have:

<0ja*)hu = min {k, (huAdd(ohj_n,* , Oln—la*»hu}

= min {k, (ohj—n), + (Olh—1,4)p, }
min {k, ones(aj..,) + ones(an_1..0) }

min {k, ones(aj..0) }
= 0
C.2.4 Different Interpretation

The following two lemmas satisfy a column-wise interpretation of the output array
04 This way, a FFklhu, can be used to actually find the first k ones, i.e. mark
up their positions.

Lemma C.1 Let o, € {0,1}*" satisfy (0j), = O;. Then:

C.3. MULTIPLE INCREMENTER 125

Proof. Assume ones(a(j_1)..0) = ones(aj..o) —1 = l. Because of half-unary number
encoding, we have o;_1; = 0 A 0;; = 1. Since the ones(-) function is monotonous in
growing inputs, i.e. ones(Xm..q) > ones(Xm_1..0), the I-th column of o, , satisfies:

0 forj' €{0,...,5—1}
1 forj'e{j,...,n—1}

oy
Therefore (0,1),, = J-
Lemma C.2 Let o, € {0,1}*" satisfy (054),,, = Oj. Then:

ones(an—1.0) =1 = VI'>1:{G),, =n

Proof. With (on_1,4),, = ones(as—1..0) = ! we obtain on_1x—1.1 = 0¥~ Since
ones(xm..0) > ones(xm_1..0), this results in the claim o, ;. = 0¢=0n,
Corollary C.3 (Sorting) Let K:= O,,_1. Define

si = {ox1),, forle{0,...,K—1}

Then (s1,-..,8K—1) s the prefiz of length K of the sorted sequences of indices of
the inputs bits being 1. Formally:

. —5—1
S1<Si41 A dgyes = (1,000 7%7H)

Proof. The corollary follows from lemmas C.1 and C.2.

C.3 Multiple Incrementer
The circuit K-Mlnc,,, K = 2* and k,n €IN, computes the following function:

K-minc, : {0,1}" — {0,1}(K+1)-n
A > Ok

with

(Okrx)y Z2n (ax)y + K

We develop an implementation suitable for small k. The computation of the
outputs proceeds in two steps. The input string a, is split into a high and a low
part:

al* = dk—-1..0

ah, = ap_1.x

To generate the low parts of the results ol, . we use a 2K (k + 1)-bit barrel
right-shifter SH. We let the shifter operate on 2K groups of (k + 1) bits length. It
receives al, as shift distance and its inputs are the bit string of length (k¥ + 1) in
lexicographical order:

SH.input; , := bin (i)
SH.dist,
oli, := SH.outputi,*

al,

126 APPENDIX C. AUXILIARY CIRCUITS

! |

I

‘ |

I

| O2p—1

| Ohn,] :

! I

! I

: |

| >+ O2n — 2
A —1.n T oh, _, !

[FFlhun ° e .

I L] L] | .

| . . ! .

! I

! I

| o

I n

! oh, |

I

! I

! I

! I

I

‘ |

| olp T On—1

! I

! I

|

‘ |

|

| .
Ap—1-0 1 |39 oln_» " On—2

! |

I

| FF1lhun ° }

1 L]

‘ : ;

I

‘ 1

‘ oy o

| 1 H 1

I

Figure C.1: Definition of a find-first-one half-unary circuit

Figure C.2: The multiple incrementer

C.3. MULTIPLE INCREMENTER 127

Thereby the shifter computes

(olin), = (bin(i) +(al), mod2K),

=k i+ (aly),

The uppermost bit ol; x can be used to select between the original and an incre-
mented version inchy, (inch,), =sx-r (ahy), + 1, of the input bus in conditional-
sum-adder fashion:

Ohi,* = (O|i,k ? ahy : inch*)
The output busses are composed as

0ix 1= (0his,0lik 1.0)

)

128 APPENDIX C. AUXILIARY CIRCUITS

Bibliography

[AKTS6]

[AMS97]

[AS95]

[Bha96]

[Del98]

[Ger98]

[Grii94]

[Joh91]

[KP95)

[Kr599]

[Lei99]

[LS84]

[MP95]

R. D. Acosta, J. Kjelstrup, and H. C. Torng. An instruction issuing
approach to enhancing performance in multiple function unit processors.
In IEEE Transactions on Computers, volume C-35, pages 815-828. 1986.

T.N. Vijaykumar A. Moshovos, S. E. Breach and G. S. Sohi. Dynamic
speculation and synchronization of data dependences. In Proceedings

of the 24th Annual International Symposium on Computer A rchitecture
Conference, 1997.

Don Anderson and Tom Shanley. Pentium Processor System Architecture,
second edition. Addison-Wesley, Amsterdam;Sydney;Singapore, 1995.

Dileep P. Bhandarkar. Alpha Implementations and Architecture, Complete
Reference and Guide. Digital Press, Boston;Oxford;Tokyo, 1996.

Peter Dell. Die Auswirkung von Mechanismen zur Out-of-Order
Ausfiihrung auf den Cyclecount von RISC-Architekturen. Master’s thesis,
Universitat des Saarlandes, FB. Informatik, 7/ 1998.

Nikolaus Gerteis. Die Auswirkung von Mechanismen fiir die prazise In-
terruptbehandlung auf den Cyclecount von RISC-Prozessoren. Master’s
thesis, Universitit des Saarlandes, FB. Informatik, 4/ 1998.

Thomas Griin. Quantitative Analyse von I/O-Architekturen. PhD thesis,
Universitit des Saarlandes, FB. Informatik, 1994.

Mike Johnson. Superscalar Microprocessor Design. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1991.

Jorg Keller and Wolfgang J. Paul. Hardwaredesign — Formaler Entwurf
digitaler Schaltungen. Stuttgart, Leipzig, 1995.

Daniel Kréning. Design and evaluation of a RISC processor with a Toma-
sulo scheduler. Master’s thesis, University of Saarland, Computer Science
Department, Germany, 1999.

Holger Leister. Quantitative Analysis of Precise Interrupt Mechanisms
for Processors with Out-Of-Order Ezrecution. PhD thesis, University of
Saarland, Computer Science Department, Germany, 1999.

Johnny K. F. Lee and Alan J. Smith. Branch prediction strategies and
branch target buffer design. Computer, 17(1):6-22, January 1984.

Silvia M. Miiller and Wolfgang J. Paul. The complexity of simple computer
architectures, volume 995 of Lecture Notes in Computer Science. Springer-
Verlag Inc., New York, NY, USA, 1995.

129

130

[MP00]

[Miil97]

[PS98]

[SP8§]

[Tom67]

[Weg87]
[WS84]

[WS94]

[Yeh93]

BIBLIOGRAPHY

Silvia M. Miiller and Wolfgang J. Paul. Computer Architectures: Com-
plexity and Correctness. Draft. EMail: {smueller,wjp}@cs.uni-sb.de, 2000.

Silvia M. Miiller. Vorlesung Rechnerarchitektur I, WS 96/96, Universitét
des Saarlandes, FB. Informatik. 1997.

Wolfgang J. Paul and Peter-Michael Seidel. On the complexity of Booth
recoding. In Proc. 8rd Conference on Real Numbers and Computers
(RNC3), pages 199-218, 1998.

James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts
in pipelined processors. In IEEE Transactions on Computers, volume C-
37, pages 562-573. 1988.

Robert M. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. In IBM Journal of Research and Developement, volume 11
(1), pages 25-33. IBM, 1967.

Ingo Wegener. The Complezity of Boolean Functions. Stuttgart, 1987.

Shlomo Weiss and James E. Smith. Instruction issue logic for pipelined
supercomputers. In Proceedings of the 11th Annual International Sym-
posium on Computer Architecture, pages 110-118, Ann Arbor, Michigan,
June 5-7, 1984. IEEE Computer Society and ACM SIGARCH.

Shlomo Weiss and James E. Smith. Power and PowerPC. Morgan Kauf-
mann, San Francisco, 1994.

Tse-Yu Yeh. Two-Level Adaptive Branch Prediction and Instruction Fetch
Mechanism for High Performance Superscalar Processors. PhD thesis,
University of Michigan, USA, 1993.

