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Abstract. Implementations of computer systems comprise many layers
and employ a variety of programming languages. Building such systems
requires support of an often complex, accompanying tool chain.

The Verisoft project deals with the formal pervasive verification of
computer systems. Making use of appropriate formal specification and
proof tools, this task requires (i) specifying the layers and languages used
in the implementation, (ii) specifying and verifying the algorithms em-
ployed by the tool chain (or, alternatively, validating their actual output),
and (iii) proving simulation statements between layers, arguing about
the programs residing at the different layers. Combining the simulation
statements for all layers should allow to transfer correctness results for
top-layer programs to their bottom-layer representation; in this manner,
a verified stack can be built.

Maintaining all formal artifacts, the actual system implementation,
and the (verification) tool chain is a challenging task. We call sets of
tools that help addressing this task system verification environments. In
this paper, we describe the structure, contents, and architecture of the
system verification environment used in the Verisoft project.

1 Introduction

We begin with a simple question: do we know how to formally verify software?
At first, the answer would be ‘yes’, because (i) software consists of programs,
(ii) ways to formally specify program behavior can be looked up in any textbook
on programming language semantics, e.g., [1, 2], (iii) it has been known since
decades how to produce paper and pencil proofs for programs based on formal
semantics [3, 4, 5], and (iv) these proofs could be mechanically checked by a
modern computer-aided verification (CAV) system. Thus, at least in principle
the problem should be solved.

However, this is an oversimplification. Software engineering does not just deal
with ‘programs written in a programming language’ but with complex software
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systems. These consist of many programs, which are written in different pro-
gramming languages and interact with each other (and their environment) in
nontrivial ways.

Thus, even the most benevolent software engineer would doubt the useful-
ness of software verification if programs requiring standard operating system
services—e.g., file and terminal I/O, inter-process and network communication—
cannot be handled. Even if such facilities could be handled, the verification re-
sults would be relative to the correctness of the underlying system and therefore
questionable unless the hardware and the operating system (in particular its
kernel and the device drivers) could also be verified.

In some software systems, errors have potentially disastrous consequences
for body or purse and software correctness is particularly desirable. For exam-
ple, security-critical systems implement cryptographic protocols to guarantee
secrecy or authenticity of message exchange over untrusted networks. The sys-
tems controlling our cars, trains, or air planes are distributed and must meet
hard real-time requirements.

The mission of the German Verisoft project [6] is to develop methods and
an integrated set of tools permitting to handle all issues listed above and to
demonstrate these by verifying entire systems of industrial interest. We call in-
tegrated sets of tools supporting the collaborative formal verification of computer
systems (hardware plus software or software alone) system verification environ-
ments. Verification environments are themselves software systems, and like any
substantial software system they should better have an architecture. This paper
is about the architecture of such verification environments.

Present computer systems have a common structure: from the hardware to
the applications they are organized in layers of abstraction with well-defined
interfaces. For every pair of adjacent layers the lower system layer simulates the
upper system layer and implements its interface. Any reasonable theory of cor-
rectness of concrete computer systems will reflect this structure. We will argue
that this determines the architecture of system verification environments to a
very large extent. As an example we will describe in this article the environment
that was developed and is currently being used in the Verisoft project. We also
announce a web site, where we expose those portions of this environment (in-
cluding constructions and formal proofs) that appear sufficiently stable and do
not contain confidential data of industry partners.

Overview. The remainder of this paper is structured as follows. In Sect. 2 we
describe three concrete systems, which cannot be verified unless all the issues
raised in the introduction are dealt with. These systems (and their requirements)
were chosen together with Verisoft industry partners as concrete examples, whose
complete formal verification should be made feasible by our system verification
environment. Of course they will also serve as concrete examples in this paper.

Section 3 deals with computational models for describing the systems under
consideration and their components. The range of these models is necessarily
large, ranging from processors and devices at the low end via abstract C machines
and operating systems to communicating distributed applications at the high
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end. Some of these models serve as building blocks, which are referenced by
concurrent and distributed models. Any system verification environment must
contain formal specifications of these models. There is no complete functional
correctness proof of a C program without a formal C semantics. There is no
complete functional correctness proof of a driver without a formal device model.
There is no complete functional correctness proof of a program making a system
call unless the semantics of that call is defined somewhere.

Section 4 deals with verified components. Clearly, in a technology capable of
producing verified systems it is desirable to develop a library of verified stan-
dard components together with their correctness proofs. Indeed, such a library
is indispensable if pervasive system verification [7, 8] is attempted, i.e., the ver-
ification of entire systems across several layers of abstraction. It turns out that
that standard components often provide a simulation in terms of the models
from Sect. 3. Processors for instance simulate assembler programs by registers,
memories, and gates. Compilers translate source programs into target programs
simulating the source programs.

In Sect. 5 we consider another hierarchy different from the hierarchy of system
layers, namely the hierarchy of semantic models. In its basic form, this hierarchy
and its associated soundness results are classical material from textbooks on
programming language semantics [1]. We consider small step semantics, big step
semantics, and Hoare logic. We use small step semantics in our system models
where we need to argue about communicating systems, sometimes doing rely /
guarantee style proofs [9]. Big step semantics and Hoare logic are equivalent
and allow to prove pairs of pre and post conditions. Because the abstraction
level is higher than in small step semantics, proofs can be generated with higher
productivity than in small step semantics; for the Hoare logic we also make use
of a verification condition generator.

In addition to program state and functions, we also allow abstract state and
functions at the Hoare logic layer. This way, proofs in the Hoare logic may be
conducted relative to low-level functions or libraries. Consider a driver writing
some C variables to a disk. Although that driver has in line assembler code
(otherwise it cannot access the ports of the hard disk controller) its effect can
be specified in the Hoare logics by a pre and post condition pair operating on
abstract state representing the disk configuration. Hoare logics of this kind we
call extended Hoare logics ; soundness results for such Hoare logics are relative
to the postulated extended semantics.

Section 6 deals with proof tools. There must be a combination of interac-
tive and automatic proof tools. Automatic tools increase productivity, thus they
cannot be ignored in an engineering effort. Because the complete verification of
entire systems is out of reach for present automatic tools, at least one ‘general
purpose’ interactive prover must be present. We mainly use Isabelle/HOL [10]
as general purpose prover. Isabelle/HOL also serves as an integration platform
for most automatic proof tools.

Section 7 we shortly describe how the contents of the system verification
environment are stored and related to each other in a version control system.
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Fig. 1. Implementation layers of the academic system (Verisoft subproject 2)

Also, we describe the portions of the environment which are currently made
public. We summarize in Sect. 8.

2 Overview of Systems

In this section, we describe three systems for which the formal pervasive verifi-
cation is attempted in the Verisoft project: the ‘academic system’ (Verisoft sub-
project 2), the ‘chipcard-based biometric identification (CBI) system’ (Verisoft
subproject 4), and the ‘automotive system’ (Verisoft subproject 6). All these sys-
tems use the same implementation languages and also share significant parts of
the hardware and system software implementation. In particular, the employed
hardware architecture and the architecture-specific parts of the microkernel im-
plementation are reused for all described systems.

Academic system. The academic system is a computer system for writing, sign-
ing, and sending emails. It covers all implementation layers from the gate-level
hardware to communicating concurrent programs and thus represents a vertical
cross section of a general-purpose computer system.

Let us describe the components of the academic system in bottom-up fashion
(see also Fig. 1). The lowest layer of the academic system consists of a hardware
architecture, featuring the VAMP, a DLX-like processor with address translation,
and abstractions of memory-mapped I/O devices (timer, network interface card,
keyboard, terminal, and hard disk). The next layer of communicating virtual ma-
chines (CVM) establishes a hardware-independent programming interface for a
microkernel and a virtual computation environment for concurrently running
processes. Some parts of CVM must be implemented in assembler since C0, a
subset of regular C, lacks low-level programming constructs. The microkernel,
which is called VAMOS, is based on the CVM interface and contains no as-
sembler parts. On the next-higher layer the simple operating system (SOS) is
located, which runs as a (privileged) user process. It offers file I/O, inter-process
communication, sockets, and remote procedure calls to user processes. Last but
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not least several user processes are needed to implement the desired function-
ality of the academic system; these include a signing software, an SMTP client
(and, on the receiving side, an SMTP server), and a simple mail user agent.

Chipcard-based biometric identification system. The chipcard-based biometric
identification (CBI) system is an access solution, which grants system access
based on the similarity between fresh biometric data and reference biometric
data. Fresh biometric data is sampled using a biometric sensor. The reference
biometric data is read from a chipcard, which belongs to the user. Biometric
data is considered personal data in Germany and has to be kept confidential
in accordance with German privacy regulations. Additionally, communication
between the host system and the user’s chipcard must have certain cryptographic
properties like authenticity and integrity of messages. This is established by
running a cryptographic protocol between host and chipcard.

Automotive system. The automotive system is the prototype of an automatic
emergency call system, which is meant to contact the public-safety answering
point (PSAP) automatically in case of a (severe) car crash. The system is real-
ized as a distributed system, namely a cluster of electronic control units (ECUs)
connected to each other via a shared serial bus. Bus communication is time-
triggered, i.e., access to this bus is granted to the individual ECUs according to
a static, periodical schedule. The schedule period is called a round ; rounds are
evenly divided into slots, which represent the minimal bus allocation intervals.
In each slot, the sending ECU may broadcast a frame to all other ECUs. Frames
contain messages as a payload. Messages have types. On each ECU runs a small
operating system, which is called OLOS. OLOS maintains a buffer for each mes-
sage type. Incoming messages are stored into this buffer and outgoing messages
are transmitted from that buffer (according to another, static schedule). Appli-
cations may access the message buffer using system calls. The user view of the
whole cluster is as follows: applications are executed on all ECUs in lock-step
while they seem to communicate over shared variables.

In order for this hardware / software stack to work as specified, the following
two aspects concerned with timing are crucial. Already at the hardware level,
a clock synchronization algorithm must be used to compensate for the different
hardware clock frequencies of the ECUs (due to manufacturing tolerances or
environmental conditions). Otherwise, ECUs will violate slot and round bound-
aries, in the long run causing bus contention and compromise of the communi-
cation mechanism. At the software level, for the system to operate in lock-step
fashion, both the system software and the applications must run fast enough to
observe slot and round boundaries. To show that these constraints are met, a
worst-case execution time analysis for all the software is necessary.

3 Computational Models

The repository of computational models plays a very central role in the system
verification environment. Typically, each model is referenced in three situations:
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(i) in correctness proofs for programs in this model, (ii) in simulation theorems
showing that the model is simulated by a model from an adjacent lower system
layer, and (iii) in simulation theorems showing that the model simulates a model
belonging to an adjacent higher system layer (which may also be a program
correctness proof). In the remainder of this sections, we shortly sketch standard
models (for languages and systems without devices), devices models (for systems
with devices), and distributed models (for systems communicating over devices).

Standard models. We consider the following standard models for languages:
(i) the model of the machine language / instruction set architecture (ISA) of
the VAMP [11, 12], a variant of the DLX architecture [13], (ii) the model of
VAMP assembler, (iii) the semantics of C0, which is the subset of C we use [14],
and (iv) the semantics of C0A, which is C0 with in line assembler code. In the
latter model, we have to consider both the computation of a (compiled) C0 pro-
gram and of an assembler program. These computations influence each other
in cases where in line assembler instructions update C0 variables, e.g., when a
processor register is copied to a C0 variable. This requires knowledge about the
memory layout employed by the C0 compiler, which allocates C0 variables to
VAMP memory ranges.

Standard system models are obtained by combining one (or more) of the
above models with specifications of special operations (e.g., system calls). In the
academic system, we consider the following system models: (i) Communicating
virtual machines (CVM), a generic model of operating system kernels permitting
to abstract from the use of in line assembler in the lower-level kernel implemen-
tation [15]. This is a concurrent model of computation consisting of an abstract
kernel modeled as a C0 program and user processes modeled as VAMP assem-
bler programs. At any time either the kernel or one of the user processes are
running. The kernel is non preemptive and may only be interrupted by reset. If
interrupts occur during user process execution, the kernel is entered. No mem-
ory is shared between user processes or (C0 variables of) the abstract kernel.
(ii) VAMOS, the abstraction of an instantiation of CVM with a specific ker-
nel [16]. User processes may be assembler programs, or, in an extension of this
model, also C0 programs. In the latter case, we also abstract from the concrete
VAMOS scheduler. (iii) The model of the simple operating system (SOS), which
specifies the system calls provided for C0 or assembler user applications.

Device models. With the standard models above we cannot yet handle the nu-
merous situations where I/O is performed in the academic system (swap memory,
terminal, file, and network access). This makes a generalization of the hierarchy
above necessary. We have to define models for specific devices for use in the
specific layers of the model stack. Depending on the layer and its level of ab-
straction, even variants of models for a device may be required. From one layer
to the next, a more abstract variant of a device model is employed when the
lower layer implements a (nontrivial) driver for that device.

We distinguish the following models. (i) Hardware with devices. Devices em-
ployed at this stage may be gate-level implementations of devices and, if this
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is the case, must be part of the hardware correctness proofs. (ii) Instruction
set architecture with devices. For special cases (e.g., hard disk) this may be a
nonconcurrent model [17]. In the general case, this model is nondeterministic,
concurrent, and, when communication between computer systems is considered,
also distributed, cf. [18, 19]. The obvious next two models are (iii) assembler
with devices permitting to program device drivers in assembler (e.g., [20]) and
(iv) C0A with devices permitting to use these drivers in C0A programs. (v) As
a next step we turn the drivers into external functions. This permits to return
to the syntax of ordinary C0. For nontrivial drivers (which are not only used
to expose devices directly to user-level device drivers), more abstract variants
of a device may be employed. For example, we abstract a hard disk used for
swapping into a ‘swap memory’, which by the page fault handler via driver calls
to swap in or swap out pages. This model we call C0 with devices.

In the system models devices can only be accessed by (or through) the kernel;
device ports are never mapped to user memory and interrupts are relayed over the
kernel. For each system model, we have an extended model with devices. From one
system model to the next, certain devices may be hidden completely, e.g., the timer
used by the microkernel’s scheduler is not visible to the upper layers.

Extensions for distributed and communicating systems. In the automotive sys-
tem several processors together with their bus interfaces form a cluster of elec-
tronic control units (ECUs), which communicate over a FlexRay like shared
serial bus. A technically interesting complication arises from the fact that each
ECU has a private oscillator with a clock period close but not equal to a refer-
ence clock period. As a consequence the bus interfaces contain serial interfaces
and hardware implementing a clock synchronization algorithm [18,19].

Thus, in the automotive system, the following distributed models are consid-
ered: (i) A distributed hardware model, which extends the usual digital hardware
model in two ways. The hardware of the entire system is partitioned into por-
tions with the same oscillator (the ECUs). Moreover, for the drivers and registers
directly connected to the bus set up and hold times (and metastability of flip-
flops) must be considered [19,21]. (ii) A distributed ISA model with FlexRay like
devices modeling the communicating ECUs at the ISA level. (iii) A distributed
assembler model with FlexRay like devices modeling the communicating ECUs
at the assembler level. (iv) Employing the real-time kernel OLOS (OSEKtime
like operating system) [22], which provides access to the FlexRay to C0 user ap-
plications, we obtain a distributed OLOS model. (v) The top level model used in
the automotive system is a model of communicating automata called AutoFocus
Task Model (AFTM) [23].

The model for academic systems communicating over the Internet is slightly
simpler because only discrete systems are considered. From any computational
model with network interface card as device, a distributed version of the model
can be derived. This is simply the distributed system consisting of copies of the
basic model and the model for their connection, i.e., the Internet, which includes
a model of packet loss.
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4 Verified Components

Based on models of computation of the previous section we may now proceed to
present a library of verified components. A verified component has five parts: (i) a
formal specification of the component, which defines user visible data structures
and operations, (ii) a formal specification of the model in which the component
is implemented, (iii) formal specifications of subcomponents used in the con-
struction of the component (if any), (iv) an implementation of the component,
and (v) a formal proof that the construction meets the specification. Formal
specifications used in components may coincide with the specification of the
computational models from Sect. 3, e.g., for components implementing system
layers. Currently, a large number of verified components is under development
or completed. For the components listed below at least the first four parts are
completed and the formal proof is either completed or under construction.

Hardware. (i) VAMP processors built from ordinary hardware (i.e., gates, reg-
isters, and memories). Formal proofs against the VAMP ISA are completed in
PVS [12,24] and under construction in Isabelle/HOL. (ii) processors with devices
constructed from ordinary hardware devices specified at the hardware level. The
specification of such processors is given by the computational model of VAMP
ISA with devices. The correctness proof is a not completely obvious extension of
‘ordinary’ processor correctness theorems, because the ISA model of a proces-
sor with one or more devices is in general distributed and nondeterministic; the
nondeterminism is resolved by the implementation’s timing behavior. (iii) For
the automotive system, interfaces for a FlexRay like bus have been constructed
at the gate-level. The correctness proof for these devices is conducted in the
distributed hardware model described above. Both the correctness of a serial
interface and the implementation of a clock synchronization algorithm in hard-
ware have to be shown. For paper and pencil proofs see [18, 19]. The part of
the formal correctness proof dealing with setup and hold times of registers is
reported in [21].

Basic data structures and algorithms. For use by other C0 programs, we cur-
rently provide three libraries of basic data structures and algorithms: a library
for doubly linked lists, a string library [25], and a big number library [26]. All
libraries are programmed in C0. Specification and correctness proofs of the li-
brary functions are done in the Hoare logic for C0. The list library is used by
the other two libraries.

Compiler. (i) The C0 compiler (backend) translates abstract syntax trees of C0
programs into VAMP assembler programs [14]. It is specified in C0 small steps
semantics and uses the list library. The correctness is shown using C0 Hoare
logic. Correctness with respect to small steps semantics is inferred using the
soundness of the Hoare logic (cf. Sect. 5). (ii) A fairly straightforward extension,
assuming ‘acceptable’ behavior of in line assembler portions, gives the correct-
ness of the C0A compiler. (iii) A more involved extension of the compiler is a
copying garbage collector [27], which is crucial for certain (application) code,
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such as the big number library. (iv) The simulation of the model C0A with de-
vices by the model assembler with devices works only under certain software
conditions: compiled C0 instructions, e.g., of the kernel, must not be interrupted
and devices may only be accessed with in line assembler and not by compiled
C0 statements. This guarantees that the execution of compiled C0 statements
and device transitions do not interfere with each other. Note that user programs
never directly access devices in our systems and can be interrupted, which has
the effect of the non-interruptible kernel taking over control.

Device drivers. (i) Elementary device drivers are pieces of assembler program
copying data between a region of memory in the processor and a device specific
region of memory on the device, e.g., disk space. Elementary device drivers are
specified and programmed in the model assembler with devices. For a paper and
pencil correctness proofs of elementary device drivers for a disk and a UART
see [17, 20]. (ii) Elementary device drivers may be embedded into functions of
a C0A program. As these device drivers usually abstract from their assembler
implementation, their specification can be done relative to the C0 model with
devices. Typically, these drivers provide an abstracted view of the device they
control. Note that for interfacing reasons, the correctness proofs of any C0A
programs has to refer C0 calling convention and memory layout. (iii) User-level
devices are implemented using system calls for device access provided, e.g., by the
model VAMOS with devices. They may be verified relative to the specifications
of these system calls in an extended Hoare logic (cf. Sect. 5). An example of
such a driver is the hard disk driver used by the simple operating system to
implement a simple file system. In contrast to the elementary device driver used
for swapping, this disk driver is interrupt-driven.

System software. The specification of the generic operating system kernel CVM
is directly given by the model CVM with devices. The so called concrete kernel,
which is the CVM implementation for a given abstract kernel, is obtained by
linking and compiling the abstract kernel with a C0A program. This program
implements the CVM functionality. Its major data structures are the process
control blocks and the page tables. Its major functions are swap memory man-
agement, page fault handling, context switching, and operations on the user
assembler machines, such as user memory copy operations [15]. As the kernel is
non-preemptive parts of its correctness (in particular the page fault handler’s)
can be shown in an extended Hoare logic (cf. Sect. 5).

VAMOS [16] is an instantiation of CVM, which was inspired by the L4 micro-
kernel [28]. It calls CVM functions and is therefore implemented in the model
CVM with devices. Proofs can make use of extended Hoare logics relative to a
specification of this model. Thus, e.g., the correctness of inter-process communi-
cation (IPC) operations, which implement a rendezvous protocol, may be shown
relative to the correctness of the user memory copy operations provided by CVM.
In the VAMOS model allowing C0 user programs, two additional abstractions
have to be justified. First, the scheduler is abstracted away. This requires to
prove fairness of the scheduler. Second, some user processes are allowed to be
C0 programs, which must be linked against a system call library implemented
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in C0A. Proving the library correct, requires another application of compiler
correctness in the correctness proof.

The implementation of the simple operating system makes use of VAMOS,
drivers for disk, terminal, and network interface and an implementation of TCP.
On top of the disk driver, a simple file system is implemented. On top of the
TCP implementation, socket management functions have been implemented.

To implement remote procedure calls (RPC) for SOS applications a port map-
per, user-level primitives for the implementation of remote procedure call (RPC)
on top of SOS, and an interface compiler have to be provided [29]. SOS and the
applications running under it form a distributed system. Computations of user
processes and of SOS are interleaved. Correctness proofs about applications in-
teracting via RPC thus need to use rely / guarantee arguments (e.g., [30]).

Applications. Applications in the academic system are (i) an SMTP client and
server for email transfer [30], (ii) a signature server used to sign electronic mails
and (iii) an email client, which uses the previous applications and implements
a user interface [31]. The applications run under SOS, make use of SOS RPC
and the SOS file system. The signature server also makes use of formally verified
cryptographic primitives (e.g., [32]). For the biometric identification system, se-
curity properties of the cryptographic protocol have been formally modeled and
proven using VSE [33, 34]. Certain properties of the emergency call application
in the automotive system were formally verified in the AutoFocus task model
(AFTM) using the AutoFocus tool [23].

5 Semantics Hierarchy

Because we need to consider interleaved programs in several places of the Verisoft
project (e.g., RPC clients and servers), the standard models listed in Sect. 3 are
all small steps semantics. Although in the end we need many program correct-
ness theorems with respect to small steps semantics, we produce the correctness
proofs as much as possible using the verification condition generator (VCG) of
a Hoare logic for C0 [35]. This needs to be justified by a hierarchy of C0 seman-
tics, which is also part of the system verification environment: the small steps
semantics of C0 (Sect. 3), a big steps semantics for C0 [35], and a Hoare logic
with the VCG mentioned above as a proof tool.

In order to go back and forth between the three levels of C0 semantics we have
proven formal versions of classical textbook theorems. First, the soundness of the
big step semantics with respect to the small steps semantics. Second, the equiva-
lence between Hoare logic and big step semantics. Because of the shallow
embedding of the Hoare logic into Isabelle/HOL there can be no general (program-
independent) equivalence proof in Isabelle because such a proof would require to
quantify over all types of Isabelle [35, Chapter 8]. We expect, however, that the
proofs obligations for individual C0 programs can be automatically proven.

We also use an extended version of this semantics stack with which (noninter-
rupted) C0 programs may be verified in the Hoare logic relative to an abstract
specification, e.g., a system model providing system calls. This may be used in
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the verification of drivers (user or kernel level), abstract kernels, or user appli-
cations. The abstract specification is represented in the Hoare logic with ghost
(i.e., non-program) variables and postulated pre and post condition pairs. All
assumptions made in this manner need of course to be verified; the soundness
results for this semantics are only relative to the assumed specifications. These
assumptions must be discharged when transferring concrete properties from the
Hoare logic to the small steps semantics.

6 Proof Tools

In our system verification environment we use interactive provers (mainly Is-
abelle/HOL [10]) as the central platform for formal modeling and verification
tasks. All computational and semantic models are expressed as Isabelle/HOL
theories. Components (hardware and software) to be verified are usually written
relative to one of the semantic models in a deep embedding. There are two im-
portant exceptions to this rule. In the C0 Hoare logic, C0 expressions are shallow
embedded to improve verification productivity [35]; special care must be taken
about soundness here, as mentioned earlier. Also, hardware models are formu-
lated in a synthesizable subset of Isabelle/HOL [36]. Since gate-level hardware
constitutes the bottom of our model stack, we cannot show soundness here.

The benefit of having a general purpose interactive theorem prover as a central
component is that there is always a verification tool of last resort when automatic
verification fails. However, increasing automation is clearly the key to success in
the verification of industrial computer systems. We have integrated a number
of automatic proof tools into Isabelle/HOL via Isabelle’s oracle interface. These
tools either hook into one of the semantic model described above or Isabelle/HOL
directly. We trust the tools to produce correct results; hence, currently, no proof
objects are imported into Isabelle for automatically proven goals.

Proof tools that have been integrated into Isabelle include classical symbolic
model checkers [36], software model checkers and shape analysis tools [37, 38,
39, 40], translation validation tools [41], and first-order logic theorem provers
[42,43]. As mentioned earlier, the C0 Hoare logic includes a verification condition
generator [35]. For the automotive system, we use AbsInt’s worst-case execution
time analyzer aiT [44] based on abstract interpretation, which is, however, not
directly integrated into Isabelle/HOL.

7 Repository Implementation and Public Releases

To form a viable platform for the development of system correctness proofs,
we keep all afore-mentioned artifacts (computation models, proof objects, tools,
etc.) in a central repository. We make use of the version control system Sub-
version [45], which provides revision tracking and concurrent operation in an
easy-to-use fashion. In addition to the artifacts relevant for the formal verifi-
cation, we also store system implementations, the development tool chain, and
additional documentation in the repository. All of these items are organized
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Fig. 2. Example of modules and their dependencies

in so-called modules, often on a more fine-grained level than described earlier
(e.g., to share commonly used definitions or results across modules). Modules
are related to each other via dependencies, which have to be acyclic.

Figure 2 shows a number of modules from our repository, which are related
to the verification of our non-optimizing C0 compiler [14]. The four boxes on
the left-hand side represent the implementation modules of the compiler: the
compiler itself, the libraries that it needs, and standard headers. The latter need
not to be verified. For the other three implementation modules, there is a cor-
responding code verification module. All proofs therein are conducted in the C0
Hoare logic [35], which is implemented in Isabelle/HOL [10]. In the top-level
code verification module, vc0compiler, the output of the C0 compiler implemen-
tation is shown to be equivalent to the output of an (abstract) code generation
algorithm [46]. This algorithm maps syntax trees of C0 programs to VAMP as-
sembler programs, whose specifications are both modeled in Isabelle/HOL. In
the module C0compsim, the correctness of the code generation, expressed as a
simulation theorem over C0 and VAMP assembler computations, is shown.

We will make available self-contained portions of the repository, which appear
to be appear sufficiently stable and do not contain confidential data of industry
partners. Currently, four releases have been made public.1 Two of the releases
deal with the code-level verification of the C0 string library [25] and the C0
compiler [46], covering all the modules shown in Fig. 2 except C0compsim, which
is planned to be released next. As mentioned above, the code verification is
conducted in the C0 Hoare logic verification environment. For this purpose, the
C0 implementations in concrete syntax have been translated into their Hoare
logic representation. The translator is also included in the latest release. In the
C0 Hoare logic, Hoare triples for partial and total correctness have been shown.
In addition to the functional correctness and termination, the absence of certain
runtime errors has been proven (e.g., integer overflows and out-of-bounds array
access). These properties would be required at a later stage to translate total

1 http://www.verisoft.de/VerisoftRepository.html
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correctness results at the Hoare logic level down to our lower-level semantics,
i.e., in the end to compiled program running on the target architecture.

The third release deals with the code-level verification of the C0 big integer li-
brary, implementing arbitrary-precision integer operations based on a linked-lists
representation of integers. Supported operations include addition, subtraction,
multiplication, division, remainder, and exponentiation modulo an integer.

The fourth release deals with the code-level verification of the email client of
the academic system relative to the services provided the operating system and
applications for signing and email transfer [31]. In addition to modules described
earlier, it contains modules for the email client implementation and proofs.

8 Summary

We have presented an overview of the system verification environment used in
the Verisoft project to carry out the formal pervasive verification of entire sys-
tems of industrial interest. The architecture of our verification environment is
to a large extent determined by each system’s architecture and its requirements.
The system’s layers, its implementation languages, its components, and its tool
chain are all represented in the verification environment, thus enabling to for-
mally reason on system requirements. The form of the representations is on the
one hand shaped by the system requirements and on the other hand by verifica-
tion productivity concerns: we are employing small-steps semantics to reason on
concurrent, communicating programs, but we switch to more abstract semantics
(for which we have verification condition generation and integration of automatic
provers) wherever possible. Soundness and simulation theorems of the higher-
level relative to lower-level semantics justify this approach. Thus, in addition to
the stack of computational models, which inherit from the system implementa-
tion structure, a semantic stack is build. We have announced a web site, where
we have started to publish portions of our verification environment.
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