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Abstract. From 2007 to 2010, researchers from Microsoft and the Verisoft XT
project verified code from Hyper-V, a multi-core x-64 hypervisor, using VCC, a
verifier for concurrent C code. However, there is a significant gap between code
verification of a kernel (such as a hypervisor) and a proof of correctness of a
real system running the code. When the project ended in 2010, crucial and tricky
portions of the hypervisor product were formally verified, but one was far from
having an overall theory of multi core hypervisor correctness even on paper. For
example, the kernel code itself has to set up low-level facilities such as its call
stack and virtual memory map, and must continue to use memory in a way that
justifies the memory model assumed by the compiler and verifier, even though
these assumptions are not directly guaranteed by the hardware. Over the last two
years, much of the needed theory justifying the approach has been worked out.
We survey progress on this theory and identify the work that is left to be done.

1 Introduction and Overview

Low-level system software is an important target for formal verification; it represents
a relatively small codebase that is widely used, of critical importance, and hard to get
right. There have been a number of verification projects targetting such code, particu-
larly operating system (OS) kernels. However, they are typically designed as providing
a proof of concept, rather than a viable industrial process suitable for realistic code run-
ning on modern hardware. One of the goals of the Verisoft XT project [1] was to deal
with these issues. Its verification target, the hypervisor Hyper-V [2] was highly opti-
mized, concurrent, shipping C/assembler code running on the most popular PC hard-
ware platform (x64). The verification was done using VCC, a verifier for concurrent C
code based on a methodology designed to maximize programmer productivity – instead
of using a deep embedding of the language into a proof-checking tool where one can
talk directly about the execution of the particular program on the particular hardware.

We were aware that taking this high-level view meant that we were creating a non-
trivial gap between the abstractions we used in the software verification and the system
on which the software was to execute. For example,

– VCC has an extension allowing it to verify x64 assembly code; why is its approach
sound? For example, it would be unsound for the verifier to assume that hardware
registers do not change when executing non-assembly code, even though they are
not directly modified by the intervening C code.



– Concurrent C code (and to a lesser extent, the C compiler) tacitly assumes a strong
memory model. What justifies executing it on a piece of hardware that provides
only weak memory?

– The hypervisor has to manage threads (which involves setting up stacks and im-
plementing thread switch) and memory (which includes managing its own page
tables). But most of this management is done with C code, and the C runtime al-
ready assumes that this management is done correctly (to make memory behave
like memory and threads behave like threads). Is this reasoning circular?

When we started the project, we had ideas of how to justify all of these pretenses,
but had not worked out the details. Our purpose here is to i) outline the supporting
theory, ii) review those parts of the theory that have already been worked out over the
last few years, and iii) identify the parts of the theory that still have to be worked out.

1.1 Correctness of Operating System Kernels and Hypervisors

Hypervisors are, at their core, OS kernels, and every basic class about theoretical com-
puter science presents something extremely close to the correctness proof of a kernel,
namely the simulation of k one-tape Turing machines (TMs) by a single k-tape TM [3].
Turning that construction into a simulation of k one-tape TMs by a single one-tape TM
(virtualization of k guest machines by one host machine) is a simple exercise. The stan-
dard solution is illustrated in figure 1. The tape of the host machine is subdivided into
tracks, each representing the tape of one of the guest machines (address translation).
Head position and state of the guest machines are stored on a dedicated field of the track
of that machine (a kind of process control block). Steps of the guests are simulated by
the host in a round robin way (a special way of scheduling). If we add an extra track
for the data structures of the host and add some basic mechanisms for communications
between guests (inter process communication) via system calls, we have nothing less
than a one-tape TM kernel. Generalizing from TMs to an arbitrary computation model
M (and adding I/O-devices), one can specify an M kernel as a program running on a
machine of type M that provides

– virtualization: the simulation of k guest machines of type M on a single host ma-
chine of type M

– system calls: some basic communication mechanisms between guests, I/O devices,
and the kernel

At least as far as the virtualization part is concerned, a kernel correctness theorem is es-
sentially like the Turing machine simulation theorem, and can likewise be conveniently
expressed as a forward simulation. For more realistic kernels, instead of TMs we have
processors, described in dauntingly large manuals, like those for the MIPS32 [4] (336
pages), PowerPC [5] (640 pages), x86 or x64 [6, 7] (approx. 1500, resp. 3000 pages).
The TM tape is replaced by RAM, and the tape head is replaced by a memory manage-
ment unit (MMU), with address translation driven by in-memory page tables. Observe
that a mathematical model of such machine is part of the definition of correctness for a
’real’ kernel.
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Fig. 1. Simulating k Turing machines with 1 k-band Turing machine.

Hypervisors are kernels whose guests are themselves operating systems or kernels,
i.e. each guest can run several user processes. In terms of the TM simulation, each guest
track is subdivided into subtracks for each user, each subtrack having its own process
control block; the actual tape address for the next operation of a process can be calcu-
lated from its tape address, the layout of the subtrack within the track, and the layout
of the track itself. In a real kernel, the address of a memory access is calculated from a
virtual address using two levels of address translation, the first level of traslation pro-
vided by the guest to users via the guest page tables (GPTs), and the second provided
by the hypervisor to the guest. On many recent processors, this second level of address
translation is provided in hardware by a separate set of host page tables. On processors
providing only a single level of translation, it is possible to take advantage of the fact
that the composition of two translations is again a translation, and so can be provided
by a single set of page tables. Because these shadow page tables (SPTs) correspond to
neither the guest nor the host page tables, they are constructed on the fly by the hyper-
visor from the GPTs, and the hypervisor must hide from the guest that translation goes
through these tables rather than the GPTs. Thus, the combined efforts of the hypervisor
and the MMU simulate a virtual MMU for each guest.

1.2 Overview

We discuss the following seven theories in the remainder of the paper:

Multi-Core ISA-sp We define a nondeterministic concurrent instruction set architec-
ture (ISA) model, suitable for system programming. In addition to processor cores
and main memory, it includes low-level (but architecturally visible) features such as
store buffers, caches, and memory management units. Ideally, this would be given
in (or at least derived from) the system programmer’s manuals published by the
chip manufacturers. In reality, many subtle (but essential) details are omitted from
these manuals. Indeed, hardware manufacturers often deliberately avoid commiting
themselves to architectural boundaries, to maximize their flexibility in optimizing
the implementation, and many details leveraged by real operating systems (such
as details concerning the walking of page tables) are shared only with their most
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important customers, under agreements of nondisclosure. Such fuzzy architectural
boundaries are acceptable when clients are writing operating systems; a progammer
can choose whether to program to a conservative model (e.g., by flushing transla-
tions after every change to the page tables) or program more aggressively to a model
that takes advantage of architectural details of the current processor generation. But
such a fuzzy model is fatal when trying to build an efficient hypervisor, because the
architectural specification must both be strong enough for client operating systems
to run correctly, yet weak enough that it can be implemented efficiently on top of
the available hardware.
We provide evidence for the particular model we use and for the particular ways in
which we resolved ambiguities of the manuals in the following way: i) we define
a simplified ISA-sp that we call MIPS-86, which is simply MIPS processor cores
extended with x86-64 like architecture features (in particular, memory system and
interrupt controllers), ii) we reverse engineer the machine in a plausibly efficient
way at the gate level, and iii) we prove that the construction meets the ISA-sp, and
iv) we confirm with OS engineers that the model is sufficiently strong to support
the memory management algorithms used in real operating systems. The correct-
ness theorems in this theory deal with the correctness of hardware for multi-core
processors at the gate level.

ISA Abstraction Multi-core machines are primarily optimized to efficiently run ordi-
nary user code (as defined in the user programming manuals). In this simplified
instruction set (ISA-u), architectural details like caches, page tables, MMUs, and
store buffers should be transparent, and multithreaded programs should see sequen-
tially consistent memory (assuming that they follow a suitable synchronization dis-
cipline). A naive discipline combines lock-protected data with shared variables,
where writes to shared variables flush the store buffer. A slightly more sophisti-
cated and efficient discipline requires a flush only when switching from writing to
reading [8]. After proper configuration, a simulation between ISA-sp and ISA-u
has to be shown in this theory for programs obeying such disciplines.

Serial Language Stack A realistic kernel is mostly written in a high-level language
(typically C or C++) with small parts written in macro assembler (which likewise
provides the stack abstraction) and even smaller parts written in plain assembler
(where the implementation of the stack using hardware registers is exposed, to al-
low operations like thread switch). The main definition of this theory is the formal
semantics of this computational model. The main theorem is a combined correct-
ness proof of optimizing compiler + macro assembler for this mixed language. Note
that compilers translate from a source language to a clean assembly language, i.e.
to ISA-u.

Adding Devices Formal models for at least two types of devices must be defined: reg-
ular devices and interrupt controllers (the APIC in x86/64). A particularly useful
example device is a hard disk – which is needed for booting. Interrupt controllers
are needed to handle both external interrupts and interrupt-driven interprocess com-
munication (and must be virtualized by the hypervisor since they belong to the ar-
chitecture). Note that interrupt controllers are very particular kinds of devices in
the sense that they are interconnected among each other and with processor cores
in a way regular devices are not: They inject interrupts collected from regular de-

4



vices and other interrupt controllers directly into the processor core. Thus, interrupt
controllers must be considered specifically as part of an ISA-sp model with instan-
tiable devices3. Crucial definitions in this theory are i) sequential models for the
devices, ii) concurrent models for ISA-sp with devices, and iii) models for single
core processors semantics of C with devices (accessed through memory mapped
I/O (MMIO)). The crucial theorems of this theory show the correctness of drivers
at the code level.

Extending the Serial Language Stack with Devices to Multi-Core Machines The
crucial definition of this theory is the semantics of concurrent ’C + macro assembly
+ ISA-sp + devices’. Besides ISA-sp, this is the crucial definition of the overall
theory, because it defines the language/computational model in which multi-core
hypervisors are coded. Without this semantics, complete code level verification of
a hypervisor is not meaningful. Essentially, the ownership discipline of the ISA
abstraction theory is lifted to the C level; in order to enable the implementation of
the ownership discipline, one has to extend serial C with volatile variables and a
small number of compiler intrinsics (fences and atomic instructions). In this the-
ory there are two types of major theorems. The first is compiler correctness: if the
functions of a concurrent C program obeying the ownership discipline are com-
piled separately, then the resulting ISA-u code obeys the ownership discipline and
the multi-core ISA-u code simulates the parallel C code. The second is a reduc-
tion theorem that allows us to pretend that a concurrent C program has scheduler
boundaries only just before actions that race with other threads (I/O operations and
accesses to volatile variables).

Soundness of VCC and its Use Programs in the concurrent C are verified using VCC.
In order to argue that the formal proofs obtained in this way are meaningful, one
has to prove the soundness of VCC for reasoning about concurrent C programs,
and one has to show how to use VCC in a sound way to argue about programs in
the richer models.
Obviously, for the first task, syntax and semantics of the annotation language of
VCC has to be defined. VCC annotations consist essentially of “ghost” (a.k.a. “aux-
illiary” or “specification”) state, ghost code (used to facilitate reasoning about the
program, but not seen by the compiler) and annotations of the form “this is true
here” (e.g. function pre/post-conditions, loop invariants, and data invariants). Then
three kinds of results have to be proven. First, we must show that if a program
(together with its ghost code) is certified by VCC, then the “this is true here” as-
sertions do in fact hold for all executions. Second, we must show that the program
with the ghost code simulates the program without the ghost code (which depends
on VCC checking that there is no flow from ghost state to concrete state, and that
all ghost code terminates). Third, we must show that the verification implies that
the program conforms to the Cohen/Schirmer [8] ownership discipline (to justify
VCC’s assumption of a sequentially consistent model of concurrent C).
To reason about richer programming models with VCC, we take advantage of the
fact that the needed extensions can be encoded using C. In particular, one can add

3 MIPS-86 provides such an ISA-sp model with interrupt controllers and instantiable devices –
albeit currently at a level where caches are already invisible.
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additional ghost data representing the states of processor registers, MMUs and de-
vices to a C program; this state must be stored in “hybrid” memory that exists
outside of the usual C address space but from which information can flow to C
memory. We then represent assembly instructions as function calls, and represent
active entities like MMUs and devices by concurrently running C threads.

Hypervisor Correctness The previous theories serve to provide a firm foundation for
the real verification work, and to extend classical verification technology for se-
rial programs to the rich computational models that are necessarily involved in
(full) multi-core hypervisor verification. Verification of the hypervisor code itself
involves several major components, including i) the implemention of a large num-
bers of ’C + macro assembly + assembly’ threads on a multi-core processor with a
fixed small number of cores, ii) for host hardware whose MMUs do not support two
levels of translations, the correctness of a parallel shadow page table algorithm, iii)
a TM-type simulation theorem showing virtualization of ISA-sp guests by the host,
and iv) correct implementation of system calls.

2 ISA Specification and Processor Correctness

2.1 Related Work

For single core RISC (reduced instruction set computer) processors, it is well under-
stood how to specify an ISA and how to formally prove hardware correctness. In the
academic world, the papers [9] and [10] report the specification and formal verification
of a MIPS-like processor with a pipelined core with forwarding and hardware interlock,
internal interrupts, caches, a fully IEEE compliant pipelined floating point unit, a Toma-
sulo scheduler for out of order execution, and MMUs for single-level pages tables. In
industry, the processor core of a high-end controller has been formally verified [11]. To
our knowledge, there is no complete formal model for any modern commercial CISC
(complex instruction set computer); until recently, the best approximations to such a
model were C simulators for large portions of the instruction set [12–14].

The classical memory model for multi-core processors is Lamport’s sequentially
consistent shared memory [15]. However, most modern multi-core processors provide
efficient implementations only of weaker memory models. The most accurate model
of the memory system of modern x86/64 architectures, “x86-tso”, is presented in [16].
This model abstracts away caches and the memory modes specifying the cache coher-
ence protocol to be used, and presents the memory system as a sequentially consistent
shared memory, with a separate FIFO store buffer for each processor core. It is easy
to show that the model collapses if one mixes in the same computation cacheable and
non cacheable memory modes on the same address (accesses in non cacheable memory
modes bypass the cache; accesses in different non cacheable modes have different side
effects on the caches). That the view of a sequentially consistent shared memory can be
maintained even if of one mixes in the same computation accesses to the same address
with different “compatible” memory modes/coherence protocols is claimed in the clas-
sical paper introducing the MOESI protocol [17], but we are not aware of any proof of
this fact.
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Fig. 2. x86-64 processor model consisting of components whose steps are interleaved non-
deterministically.

Another surprising observation concerns correctness proofs for cache coherence
protocols. The model checking literature abounds with papers showing that certain in-
variants of a cache system are maintained in an interleaving model where the individual
cache steps are atomic. The most important of these invariants states that data for the
same memory address present in two caches are identical and thus guarantees a consis-
tent view on the memory at all caches. For a survey, see [18]. These results obviously
provide an important step towards the provably correct construction of a sequentially
consistent shared memory. Apart from our own results in [19], we are not aware of
a gate-level construction of hardware main memory, caches, cache controllers, and the
busses connecting them for which it has been proved that parallel execution of hardware
accesses to the caches simulates the high-level cache model.

2.2 Modeling an x86-64-like ISA-sp

A formal model of a very large subset of the x64 ISA-sp was constructed as part of the
Hyper-V verification project, and is presented in [20]. This 300 page model specifies
140 general purpose and system programming instructions. Due to time constraints, the
model omits debug facilities, the alignment check exception, virtual-8086 mode, vir-
tual interrupts, hardware task-switching, system management mode, and devices other
than the local APICs. The MMX extension of the instruction set is formalized in the
complementary thesis [21]. The instruction set architecture is modeled by a set of com-
municating nondeterministic components as illustrated in figure 2. For each processor,
there is a processor core, MMU, store buffer, caches (which become visible when ac-
cesses of non cacheable and cacheable memory modes to the same address are mixed in
the same computation), and a local APIC for interrupt handling. The remaining compo-
nents (shared between the cores) are main memory and other devices. Sizes of caches,
buffers, and translation look aside buffers (TLBs) in the MMU are unbounded in the
model, but the model is sufficiently nondeterministic to be implemented by an imple-
mentation using arbitrary specific sizes for each of these. In the same spirit, caches
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and MMUs nondeterministically load data within wide limits, allowing the model to be
implemented using a variety of prefetch strategies. Nevertheless, the model is precise
enough to permit proofs of program correctness.

As mentioned in the introduction, an accurate ISA-specification is more complex
than meets the eye. Only if the executed code obeys a nontrivial set of software condi-
tions, the hardware interprets instructions in the way specified in the manuals. In RISC
machines, the alignment of accesses is a typical such condition. In pipelined machines,
the effects of certain instructions only become visible at the ISA level after a certain
number of instructions have been executed, or after an explicit pipeline flush. In the
same spirit, a write to a page table becomes visible at the ISA level when the instruction
has left the memory stages of the pipe, the write has left the store buffer, and previous
translations effected by this write are flushed from the TLB by an INVLPG instruction
(which in turn does only become visible when it has left the pipe). In a multi-core ma-
chine, things are even more complicated because a processor can change code and page
tables of other processors. In the end, one also needs some specification of what the
hardware does if the software violates the conditions, since the kernel generally cannot
exclude their violation in guest code. In turn, one needs to guarantee that guest code
violating software conditions does not violate the integrity of other user processes or
the kernel itself. Each of these conditions exposes to the ISA programmer details of the
hardware, in particular of the pipeline, in a limited way.

Obviously, if one wants to verify ISA programs, one has to check that they sat-
isfy the software conditions. This raises the problem of how to identify a complete set
of these conditions. In order to construct this set, we propose to reverse engineer the
processor hardware, prove that it interprets the instructions set, and collect the soft-
ware conditions we use in the correctness proof of the hardware. Reverse engineering
a CISC machine as specified in [20] is an extremely large project, but if we replace
the CISC core by a MIPS core and restrict memory modes to ’write back’ (WB) and
’uncacheable’ (UC) (for device accesses), reverse engineering becomes feasible. A def-
inition of the corresponding instruction set called ’MIPS-86’ fits on 44 pages and can
be found in [22].

2.3 Gate Level Correctness for Multi-Core Processors

A detailed correctness proof of a multi-core processor for an important subset of the
MIPS-86 instruction set mentioned above can be found in the lecture notes [19]. The
processor cores have classical 5 stage pipelines, the memory system supports memory
accesses by bytes, half words, and words, and the caches implement the MOESI proto-
col. Caches are connected to each other by an open collector bus and to main memory
(realized by dynamic RAM) by a tri-state bus. There are no store buffers or MMUs, yet.
Caches support only the ’write back’ mode. The lecture notes contain a gate-level cor-
rectness proof for a sequentially consistent shared memory on 60 pages. Integrating the
pipelined processor cores into this memory system is not completely trivial, and prov-
ing that this implements the MIPS-86 ISA takes another 50 pages. The present proof
assumes the absence of self-modifying code.

Dealing with tri-state busses, open collector busses, and dynamic RAM involves de-
sign rules, which can be formulated but not motivated in a gate-level model. In analogy
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Fig. 3. Abstracting ISA-sp to ISA-u.

to data sheets of hardware components, [19] therefore uses a detailed hardware model
with minimal and maximal propagation delays, enable and disable times of drivers, and
setup and hold times of registers as its basic model. This allows derivation of the de-
sign rules mentioned above. The usual digital hardware model is then derived as an
abstraction of the detailed model.

2.4 Future Work

The correctness proof from [19] has to be extended in the following ways to cover
MIPS-86

– introducing a read-modify-write operation (easy),
– introducing memory fences (easy),
– extending memory modes to include an uncacheable mode UC (easy),
– extending the ISA-sp of MIPS-86 with more memory modes and providing an im-

plementation with a coherence protocol that keeps the view of a single memory
abstraction if only cacheable modes are used (easy)

– implementing interrupt handling and devices (subtle),
– implementing an MMU to perform address translation (subtle),
– adding store buffers (easy), and
– including a Tomasulo scheduler for out-of-order execution (hard).

3 Abstracting ISA-sp to ISA-u

One abstracts ISA-sp to ISA-u in three steps: i) eliminating the caches, ii) eliminating
the store buffers, and iii) eliminating the MMUs. A complete reduction (for a naive store
buffer elimination discipline and a simplified ownership discipline) is given in [23].
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3.1 Caches

To eliminate caches, an easy simulation shows that the system with caches S simulates
a system without caches S′; the coupling invariant is that for every address, the S′ value
at that address is defined as the value cached at that address if it is cached (the value
is unique, since all cache copies agree), and is the value stored in the S memory if the
location is uncached. One gets the processor view of figure 3 (b).

3.2 Store Buffers and Ownership Disciplines

In single-core architectures, an easy simulation shows that the system with FIFO store
buffers S simulates a system without store buffers S′: the value stored at an address
in S′ is the value in the store buffer farthest away from memory (i.e., the last value
saved) if the address appears in the store buffer, and is otherwise the value stored in the
memory of S. For a single-core architecture, no extra software conditions are needed;
a more careful proof can be found in [24]. One gets the view of figure 3 (c). For the
multi-core architecture, store buffers can only be made invisible if the executed code
follows additional restrictions.

A trivial (but highly impractical) discipline is to use only flushing writes (which
includes atomic read-modify-write operations); this has the effect of keeping the store
buffers empty, thus rendering them invisible. A slightly more sophisticated discipline
is to classify each address as either shared or owned by a single processor. Unshared
locations can be accessed only by code in the owning processor; writes to shared ad-
dresses must flush the store buffer. The proof that this simulates a system without store
buffers is almost the same as in the uniprocessor case: for each owned address, its value
in the S′ memory is the value in its owning processor according to the uniprocessor
simulation, and for each shared address, the value is the value stored in memory.

A still more sophisticated discipline to use the same rule, but to require a flush only
between a shared write and a subsequent share read on the same processor. In this case,
a simple simulation via a coupling invariant is not possible, because the system, while
sequentially consistent, is not linearizable. Instead, S′ issues a write when the corre-
sponding write in S actually emerges from the store buffer and hits the memory. S′

issues a shared read at the same time as S; this is consistent with the writes because
shared reads happen only when there are no shared writes in the store buffer. The un-
shared reads and writes are moved to fit with the shared writes4. It is straightforward to
extend this reduction to include shared “read-only” memory.

A final, rather surprising improvement to the last reduction discipline is to allow
locations to change from one type to another programatically. For example, we would
like to have a shared location representing a lock, where an ordinary operation on that
lock (acquiring it) gives the thread performing that action ownership of some location

4 Note that this means that in S′, an unshared write from one processor might be reordered
to happen before a shared write from another processor, even though the shared write hits
memory first, so while the execution is sequentially consistent, it is not “memory sequential
consistent” as defined in [25], because it violates the triangle race condition. Allowing se-
quentially consistent executions with triangle races is an absolute requirement for practical
reduction theorems for x86-TSO.
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protected by that lock. Moreover, we might want to allow the set of locations protected
by that lock to change, perhaps determined by data values. [8] gives a very general
reduction theorem for x86-TSO that allows these things to be done in the most flexi-
ble way possible, by allowing the program to take ownership of shared data, give up
ownership of data, and change it between being read-only and read-write, in ordinary
ghost code. This theorem says that if you can prove, assuming sequential consistency,
that a concurrent program (which includes ghost code that might change memory types
of locations) follows (a minor modification of) the flushing discipline above, then the
program remains sequentially consistent when executed under x86-TSO. The proof of
this reduction theorem is much more difficult than the previous ones, because reducing
a single TSO history requires reasoning from the absence of certain races in related
sequentially consistent histories.

3.3 Eliminating MMUs

Modern processors use page tables to control the mapping of virtual to physical ad-
dresses. However, page tables provide this translation only indirectly; the hardware has
to walk these page tables, caching the walks (and even partial walks) in the hardware
TLBs. x86/64 machines require the system programmer to manage the coherence of
the TLBs in response to changes in the page tables. The simplest way to make MMUs
invisible is to set up a page table tree that represents an injective translation (and does
not map the page tables themselves), before switching on virtual memory. It is an easy
folklore theorem that the resulting system simulates unvirtualized memory; a proof can
be found in [24]. One gets the view of figure 3 (d). However, this is not how real kernels
manage memory; memory is constantly being mapped in and unmapped. The easiest
way to do this is to map the page tables in at their physical addresses (since page table
entries are based on physical, rather than virtual, page frame numbers). At the other
extreme, one can model the TLBs explicitly, and keep track of those addresses that are
guaranteed to be mapped to a particular address in all possible complete TLB walks
(and to not have any walks that result in a page fault), and to keep track of a subset of
these addresses, the “valid” addresses5, such that the induced map on these addresses is
injective. Only those addresses satisfying these criteria can be read or written. This flex-
ibility is necessary for kernels that manage memory agressively, trying to minimize the
number of TLB flushes. Essentially, this amounts to treating the TLB in the same way
as a device, but with the additional proof obligation connecting memory management
to reading and writing, through address validity. This, however, we currently consider
future work.

3.4 Mixed ISA-sp and ISA-u Computations

In a typical kernel, there is a stark contrast between the kernel code and the user pro-
grams running under the kernel. The kernel program needs a richer model that includes
system instructions not accessible to user programs, but at the same time the kernel can

5 Note that validity of an address is, in general, different for different processors in a given state,
since they flush their TLB entries independently.
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be written using a programming discipline that eliminates many irrelevant and mathe-
matically inconvenient details. For example, if the kernel is being proved memory-safe,
the programming model in the kernel does not have to assign semantics to dereferencing
of null pointers or overrunning array bounds, whereas the kernel must provide to user
code a more complex semantics that takes such possibilities into account. Similarly, the
kernel might obey a synchronization discipline that guarantees sequential consistency,
but since user code cannot be constrained to follow such a discipline, the kernel must
expose to user code the now architecturally-visible store buffers. In the case of a hyper-
visor, the guests are themselves operating systems, so the MMU, which is conveniently
hidden from the hypervisor code (other than boot code and the memory manager), is
exposed to guests.

3.5 Future Work

Extension of the work in [23] to a full a proof of the naive store buffer reduction theorem
should not be hard. In order to obtain the reduction theorem with dirty bits, it is clearly
necessary to extend the store buffer reduction theorem of [8] to machines with MMUs.
This extension is not completely trivial as MMUs directly access the caches without
store buffers. Moreover MMUs do not only perform read accesses; they write to the
’accessed’ and ’dirty’ bits of page table entries. One way to treat MMUs and store
buffers in a unified way is to treat the TLB as shared data (in a separate address space)
and the MMU as a separate thread (with an always-empty store buffer). This does not
quite work with the store buffer reduction theorem above; because the TLB is shared
data, reading the TLB to obtain an address translation for memory access (which is
done by the program thread) would have to flush the store buffer if it might contain a
shared write, which is not what we want. However, the reduction theorem of [8] can
be generalized so that a shared read does not require a flush as long as the same read
can succeed when the read “emerges” from the store buffer; this condition is easily
satisfied by the TLB, because a TLB of unbounded capacity can be assumed to grow
monotonically between store buffer flushes.

4 Serial Language Stack

4.1 Using Consistency Relations to Switch Between Languages

As explained in the introduction, realistic kernel code consists mostly of high-level lan-
guage code, with some assembler and possibly some macro assembler. Thus, complete
verification requires semantics for programs composed of several languages Lk with
0 ≤ k < n ∈ N. Since all these languages are, at some point, compiled to some ma-
chine code language L, we establish for each Lk that programs p ∈ Lk are translated to
programs q ∈ L in such a way that computations (di) – i.e. sequences of configurations
di, i ∈ N – of program q simulate computations (ci) of program p via a consistency
relation consis(c, d) between high level configurations c and low level configurations
d. Translation is done by compilers and macro assemblers. Translators can be optimiz-
ing or not. For non-optimizing translators, steps of language Lk are translated into one
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or more steps of language L. One shows that, for each computation (ci) in the source
language, there is a step function s such that one has

∀i : consis(ci, ds(i))

If the translator is optimizing, consistency holds only at a subset of so called ’con-
sistency points’ of the source language. The translator does not optimize over these
points. Let CP (i) be a predicate indicating that configuration ci is a consistency point.
Then an optimizing translator satisfies

∀i : CP (i)→ consis(ci, ds(i))

Note that the consistency relation and the consistency points together specify the com-
piler. The basic idea to formulate mixed language semantics is very simple. We explain
it here only for two language levels (which can be thought of as machine code and
high level abstract semantics, as in figure 4); extension to more levels is straightforward
and occurs naturally when there is a model stack of intermediate languages for com-
pilation6. Imagine the computations (ci) of the source program and (qj) of the target
program as running in parallel from consistency point to consistency point. We assume
the translator does not optimize over changes of language levels, so configurations ci

where the language level changes are consistency points of the high level language.
Now there are two cases

– switching from Lk to L in configuration ci of the high level language: we know
consis(ci, ds(i)) and continue from ds(i) using the semantics of language L.

– switching from L to Lk in configuration dj of the low level language: we try to
find a configuration c′ of the high level language such that consis(c′, dj) holds. If
we find it we continue from c′ using the semantics of the high level langue. If we
do not find a consistent high level language configuration, the low level portion of
the program has messed up the simulation and the semantics of the mixed program
switches to an error state.

In many cases, switching between high-level languages Lk and Ll by going from Lk to
shared language L, and from the resulting configuration in L to Ll can be simplified to a
direct transition from a configuration of Lk to a configuration of Ll by formalizing just
the compiler calling convention and then proving that the resulting step is equivalent to
applying the two involved consistency relations (e.g., see [26]). This explains why the
specification of compilers necessarily enters into the verification of modern kernels.

4.2 Related Work

The formal verification of a non-optimizing compiler for the language C0, a type safe
PASCAL-like subset of C, is reported in [27]. The formal verification of an optimizing
compiler for the intermediate language C-minor is reported in [28]. Mixed language

6 Note in particular, that, when two given high level language compilers have an intermediate
language in common, we only need to switch downwards to the highest level shared interme-
diate language.
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semantics for C0 + in line assembly is described in [29] as part of the Verisoft project
[11]. Semantics for C0 + external assembly functions is described in [30]. Both mixed
language semantics were used in sebsequent verification work of the Verisoft project.
As the underlying C0 compiler was not optimizing, there was only a trivial calling con-
vention. Note that the nontrivial calling conventions of optimizing compilers produce
proof goals for external assembly functions: one has to show that the calling conven-
tions are obeyed by these functions. Only if these proof goals are discharged, one can
show that the combined C program with the external functions is compiled correctly.

4.3 A Serial Language Stack for Hypervisor Verification

Similar to [28], we use an intermediate language C-IL with address arithmetic and func-
tion pointers. The semantics of C-IL together with a macro assembler obeying the same
calling conventions is described in [26]. Calls from C-IL to macro assembly and vice
versa are allowed. To specify the combined semantics, one has to describe the ABI (i.e.
the layout of stack frames and the calling convention used). In [31], an optimizing com-
piler for C-IL is specified, a macro assembler is constructed and proven correct, and it is
shown how to combine C-IL compiler + macro assembler to a translator for combined
C-IL + macro assembly programs. As explained in the introduction, extension of this
language stack to C-IL + macro assembly + assembly is necessary to argue about saving
and restoring the base and stack pointers during a process switch or a task switch. This
can be done using the construction explained in subsection 4.1.

4.4 Future Work

We believe that, for the consistency relations normally used for specifying compilers
and macro assemblers, the mixed language semantics defined in subsection 4.1 is es-
sentially deterministic in the following sense: if consis(c, d) holds, then d is unique up
to portions of c which will not affect the future I/O behavior of the program (e.g. non
reachable portions of the heap). A proof of such a theorem should be written down.

5 Adding Devices

The obvious way to add devices is to represent them as concurrent threads, and to rea-
son about the combined program in the usual way. This approach is justified only if the
operational semantics of the language stack executing the program in parallel with the
device models simulates the behavior of the compiled code running on the hardware in
parallel with the devices. This is already nontrivial, but is further complicated by the
addition of interrupts and interrupt handlers. It is obviously undesirable to introduce
interrupt handling as a separate linguistic concept, so the natural way to model an in-
terrupt handler is as a concurrent thread. However, the relationship between a program
and an interrupting routine is somewhat closer than that between independent threads;
for example, data that might be considered "thread local" in the context of a concurrent
program might nevertheless be modified by an interrupt handler, which requires care-
ful management of when interrupts are enabled and disabled. Another complication that
arises with many kinds of devices is the need to capture and model real-time constraints.
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5.1 Related Work

Formal methods have been extremely successful identifying large classes of frequent
bugs in drivers [32]. In contrast, complete formal verification results of even of the
most simple drivers have only recently appeared. An obvious prerequisite is a formal
model of devices that can be integrated with processor models both at the hardware and
ISA level [33]. At the hardware level, processor and devices work in parallel in the same
clock domain. At the hardware level, the models of some devices are completely deter-
ministic; an example is a dedicated device producing timer interrupts. But these models
also can have nondeterministic portions, e.g. the response time (measured in hardware
cycles) of a disk access. When we lift the hardware construction to the ISA model, one
arrives in a natural way at a nondeterministic concurrent model of computation: proces-
sor and device steps are interleaved in an order not known to the programmer at the ISA
level or above. This order observed at the ISA level can be constructed from the hard-
ware construction and the nondeterminism stemming from the device models. A formal
proof for the correctness of such a concurrent ISA model for a single core ’processor
+ devices’ was given in [34, 35]. The hardware construction for catching the external
interrupts and the corresponding correctness argument are somewhat tricky due to an -
at first sight completely harmless - nonstandard specification in the instruction set of the
underlying processor, which was taken from [36]. There, external interrupts are defined
to be of type ’continue’, i.e. the interrupted instruction is completed before the interrupt
is handled. In the MIPS-86 instruction set [22] mentioned above, this definition was
changed to reflect standard specification, where external interrupts are of type ’repeat’,
i.e. the interrupted instruction is not executed immediately, but is instead repeated after
the run of the handler.

Now consider a system consisting of a (single core) processor and k devices as
shown in figure 5, and consider a run of a driver for device i. Then one wants to specify
the behavior of the driver by pre and post conditions. For example, if the driver writes
a page from the processor to the disk, the precondition would state that the page is
at a certain place in processor memory and the post condition would specify that it is
stored at a certain place on the memory of the disk. To prove this one has to show that
the other devices do not interfere with the driver run. Indeed one can show an order
reduction theorem showing that if during the driver run i) interrupts of other devices
are disabled and ii) the processor does not poll the devices, then in a driver run with
arbitrary interleaving all steps of devices 6= i can be reordered such that they occur
after the driver run without affecting the result of the computation. A formal proof of
this result is given in [37, 30]. At the same place and in [38] the integration of devices
into the serial model stack of the Verisoft project (resulting in C0 + assembly + devices)
and the formal verification of disk drivers is reported.

Note that the above reorder theorem for device steps has the nontrivial hypothesis
that there are no side channels via the environment, i.e. the outside world between the
devices. This is not explicitely stated; instead it it is implicitly assumed by formalizing
figure 5 in the obvious way. For example, if device 2 is a timer triggering a gun aimed
at device 1 during the driver run of device 1, the post condition is false after the run
because the device is not there any more. Side channels abound of course, in particular
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in real time systems. If device 1 is the motor control and device 2 the climate control in
a car, then the devices are coupled in the environment via the power consumption.

5.2 Multi-Core Processors and Devices

Only some very first steps have been made towards justifying verification of multi-core
processors along with devices. The current MIPS-86 instruction set contains a generic
device model and a specification of a simplified APIC system consisting of an I/O
APIC (a device shared between processors that distributes device interrupts) and local
APICs (processor local devices for handling external and inter processor interrupts).
Rudimentary models of interrupt controllers for various architectures have been built as
parts of VCC verifications.

5.3 Future Work

Instantiating the generic device model of MIPS-86 with an existing formal disk model is
straightforward. Justification of the concurrent ’multi-core processor + devices model’
of the MIPS-86 ISA requires of course the following steps

– extending the MIPS-ISA hardware from [19] with the pipelined interrupt mech-
anism from [10]. The catching and triggering of external interrupts needs to be
modified to reflect that external interrupts are now of type ’repeat’. This should
lead to a simplification of the construction.

– reverse engineering of hardware APICs and the mechanism for delivering inter
processor interrupts (IPIs).

– showing that the hardware constructed in this ways interprets the MIPS-86 ISA.
This proof should be simpler than the proof in [34].

Three more tasks remain open: i) proving a reorder theorem for driver runs, ii) the
reduction theorem from multi-core ISA-sp to ISA-u has to be generalized to the situ-
ation, where the hardware contains devices, and iii) devices must be integrated in the
serial model stack (resulting in C-IL + macro assembly + assembly + devices) along the
lines of [37, 30, 38]. These results would justify language-level reasoning about device
drivers in multi-core systems.
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Formally verifying secure booting is another interesting research direction: ’secure
boot’ guarantees that the verified hypervisor (if we have it) is indeed loaded and run.
This involves the use of verified hardware and libraries for crypto algorithms. Such
libraries have already formally been verified in the Verisoft project [11].

6 Extending the Serial Language Stack to Multi-Core
Computations

Language stacks deal with languages at various levels and translations between them. A
’basic’ language stack for multi-core computations consists simply of i) a specification
of some version of ’structured parallel C’, ii) a compiler from this version of parallel
C to the ISA of a multi-core machine and iii) a correctness proof showing simulation
between the source program and the target program. Definitions of versions of struc-
tured parallel C (or intermediate languages close to it) and correctnes proofs for their
compilers proceed in the flowing way:

– one starts with a small-step semantics of the serial version of the high level lan-
guage; configurations of such semantics have program rests/continuations, stacks,
and global memory. Configurations for parallel C are easily defined: keep program
rests and stack local for each thread; share the global variables among threads.
Computations for unstructured parallel C are equally easy to define: interleave steps
of the small steps semantics of the individual threads in an arbitrary order.

– compiling unstructured parallel C to multi-core machines tends to produce very in-
efficient code. Thus one structures the computation by restricting accesses to mem-
ory with an ownership discipline very similar to the one of [8]. Different versions
of parallel C differ essentially by the ownership discipline used. As a directive for
the compiler, variables which are allowed to be unowned and shared (such that they
can e.g. be used for locks) are declared as volatile. Accesses to volatile variables
constitute I/O-points of the computation.

– Compilers do not optimize over I/O-points, thus I/O-points are consistency points.
Except for accesses to volatile variables, threads are simply compiled by serial
compilers. Code produced for volatile accesses has two portions: i) possibly a fence
instruction draining the local store buffer; clearly this is only necessary if the target
machine has store buffers, and ii) an appropriate atomic ISA instruction.

– Compiler correctness is then argued in the following steps: i) The compiled code
obeys the ownership discipline of the target language in such a way that volatile
accesses of the compiled code correspond to volatile accesses of the source code,
i.e. I/O points are preserved. Then one proves both for the source language and the
target language that, due to the ownership discipline, memory accesses between
I/O points are to local, owned, or shared-read-only addresses only. This implies at
both language levels an order reduction theorem restricting interleavings to occur
at I/O points only. We call such an interleaving an I/O-block schedule. iii) One
concludes simulation between source code and target code using the fact that I/O
points are compiler consistency points and thus in each thread compiler consistency
is maintained by the serial (!) computations between I/O-points.

17



6.1 Related Work

The ’verified software toolchain’ project [39] presently deals with a ’basis’ language
stack. C minor is used as serial source language. The serial compiler is the formally
verified optimizing compiler from the CompCert project [28]. Permissions on memory
are modified by operations on locks – this can be seen as a kind of ownersip discipline.
The target machine has sequentially consistent shared memory in the present work;
draining store buffers is identified as an issue for future work. Proofs are formalized
in Coq. In the proofs the permission status of variables is maintained in the annotation
language. We will return to this project in the next section.

6.2 Extending the Language Stack

A crucial result for the extension of a language stack for ’C + macro assembly + ISA-sp
+ devices’ to the multi-core world is a general order reduction theorem that allows to
restrict interleavings to I/O-block schedules for programs obeying the ownership dis-
cipline, even if the changes of language level occur in a single thread of a concurrent
program. Besides the volatile memory accesses, this requires the introduction of addi-
tional I/O points: i) at the first step in hypervisor mode (ASID = 0) after a switch
from guest mode (ASID 6= 0) because we need compiler consistency there, and ii)
at any step in guest mode because guest computation is in ISA-sp and we no not want
to restrict interleavings there. An appropriate general reorder theorem is reported in
[40]. Application of the theorem to justify correctness of compilation across the lan-
guage stack for a version of parallel C-IL without dirty bits and a corresponding simple
handling of store buffers is reported in [23].

6.3 Future Work

The same reorder theorem should allow to establish correctness of compilation across
the language stack for a structured parallel C-IL with dirty bits down to ISA-u with dirty
bits. However, in order to justify that the resulting program is simulated in ISA-sp with
store buffers one would need a version of the Cohen-Schirmer theorem for machines
with MMUs.

The language stack we have introduced so far appears to establish semantics and
correctness of compilation for the complete code of modern hypervisors, provided
shadow pages tables (which we introduced in the introduction) are not shared between
processors. This restriction is not terribly severe, because modern processors tend more
and more to provide hardware support for two levels of translations, which renders
shadow page tables unnecessary in the first place. As translations used by different pro-
cessors are often identical, one can save space for shadow page tables by sharing them
among processors. This permits the implemention of larger shadow page tables leading
to fewer page faults and hence to increased performance. We observe that this intro-
duces an interesting situation in the combined language stack: the shadow page tables
are now a C data structure that is accessed concurrently by C programs in hypervisor
mode and the MMUs of other processors running in guest mode. Recall that MMUs
set accessed and dirty bits; thus both MMU und C program can read and write. Now

18



interleaving of MMU steps and hypervisor steps must be restricted. One makes shadow
page tables volatile and reorders MMU accesses of other MMUs immediately after the
volatile writes of the hypervisor. To justify this, one has to argue that the MMUs of
other MMUs running in guest mode never access data structures other than shadow
page tables; with the modelling of the MMU as an explicit piece of concurrent code,
this proof becomes part of ordinary program verification.

7 Soundness of VCC and its Use

Formal verification with unsound tools and methods is meaningless. In the context of
proving the correctness of a hypervisor using VCC as a proof tool, two soundness ar-
guments are obviously called for: i) a proof that VCC is sound for arguing about pure
structured parallel C. ii) a method to ’abuse’ VCC to argue about machine components
that are not visible in C together with a soundness proof for this method.

7.1 Related Work

In the Verisoft project, the basic tool for proving program code correct was a verification
condition generator for C0 whose proof obligations were discharged using the interac-
tive theorem prover Isabell-HOL. The soundness of the verification condition generator
for C0 was established in a formal proof [41]. The proof tool was extended to handle
’external variables’ and ’external functions’ manipulating these variables. Components
of configurations not visible in the C0 configuration of kernels (processor registers, con-
figurations of user processes, and device state) were coded in these external variables.
The proof technology is described in great detail in [38].

A formal soundness proof for a program analysis tool for structured parallel C is
developed in the ’verified software toolchain’ project [39].

7.2 Soundness of VCC

An obvious prerequisite for a soundness proof of VCC is a complete specification of
VCC’s annotation language and its semantics. VCC’s annotations have two parts: i) a
very rich language extension for ghost code, where ghost instructions manipulate both
ghost variables and ghost fields which are added to records of the original implemen-
tation language, and ii) a rich assertion language referring to both implementation and
ghost data. A complete definition of ’C-IL + ghost’ can be found in [22] together with a
proof that ’C-IL + ghost’ is simulated by C-IL provided ghost code always terminates.

The VCC assertion language is documented informally in a reference manual and a
tutorial [42]; the reference manual also has some rudimentary mathematical underpin-
nings. More of these underpinnings are described in various articles [43–45]. However,
there is currently no single complete mathematical definition. Thus establishing the
soundness of VCC still requires considerable work (see subsection 7.5).
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7.3 Using VCC for Languages Other Than C

As C is a universal programming language, one can use C verifiers to prove the correct-
ness of programs in any other programming language L by i) writing in C a (sound)
simulator for programs in L, followed by ii) arguing in VCC about the simulated pro-
grams, and iii) proving property transfer from VCC results to results over the original
code given in language L. Extending ’C + macro assembly + assembly’ programs with
a simulator for program portions not written in C then allows to argue in VCC about
such programs. A VCC extension for x64 assembly code is described in [46, 47] and
was used to verify the 14K lines of macro assembly code of the Hyper-V hypervisor. In
the tool, processor registers were coded in a straightforward way in a struct, a so called
hybrid variable which serves the same role as an external variable in the Verisoft tool
chain mentioned above. Coding the effect of assembly or macro assembly instructions
amounts to trivial reformulation of the semantics of the instructions as C functions.
Calls and returns of macro assembly functions are coded in a naive way. The extension
supports gotos within a routine and function calls, but does not support more extreme
forms of control flow, e.g. it cannot be used to prove the correctness of thread switch
via change to the stack pointer.

Currently, however, there is a slight technical problem: VCC does currently not
support hybrid variables directly. We cannot place hybrid variables in ghost memory,
because information clearly flows from hybrid variables to implementation variables,
and this would violates a crucial hypothesis in the simulation theorem between original
and annotated program. If we place it into implementation memory, we have to guar-
antee that it is not reachable by address arithmetic from other variables. Fortunately,
there currently is a possible workaround: physical addresses of modern processors have
at most 48 bits and VCC allows up to 64 bit addresses. Thus hybrid variables can be
placed in memory at addresses larger than 248− 1. Future versions of VCC are planned
to support hybrid memory as a third kind of memory (next to implementation and ghost
memory) on which the use of mathematical types is allowed; in turn, the formalization
of ’C-IL + ghost’ should be extended to include this special hybrid memory.

The papers [31, 48] show the soundness of an assembler verification approach in
the spirit of Vx86 relative to the mixed ’C-IL + macro assembly’ language semantics
of our language stack.

7.4 Verifying Device Drivers with VCC

One way to reason about device drivers is to use techniques from concurrent program
reasoning. In a concurrent program, one can rarely specify a function on shared state
via a pre and post condition on the state of the device, since other concurrent opera-
tions may overlap the execution of the function. Instead, one can specify the function
as a linearizable operation that appears to take place atomically at some point between
invocation of the function and its return. In VCC, the usual idiom for such verification
is to introduce a ghost data object representing the abstract state provided by the device
in combination with the driver; the state of this object is coupled to the concrete states
of the driver and the device via a coupling invariant. Associated with a function call
is a ghost object representing the operation being performed; this operation includes a
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boolean field indicating whether the operation has completed; an invariant of the oper-
ation is that in any step in which this field changes, it goes from false to true and the
abstract state of the device changes according to the semantics of the operation. The
abstract device has a field that indicates which operation (if any) is “executing” in any
particular step, and has an invariant that the abstract state of the device changes only
according to the invariant of the operation being performed (which might also be an
operation external to the system).

However, another current limitation of VCC is that it allows ordinary C memory
operations only on locations that act like memory. This means that it cannot directly
encode devices where writing or reading a memory mapped I/O (MMIO) address has
an immediate side effect on the device state; currently, the semantics of such operations
have to be captured via intrinsics.

7.5 Future Work

A proof of the soundness of VCC apparently still requires the following three major
steps:

– documenting the assertion language. This language is rich and comprises i) the
usual assertions for serial code, ii) an ownership calculus for objects which is
used in place of separation logic to establish frame properties, and iii) a nontriv-
ial amount of constructs supporting arguments about concurrency.

– documenting the assertions which are automatically generated by VCC in order to
i) guarantee the termination of ghost code, and ii) enforce an ownership discipline
on the variables and a flushing strategy for store buffers.

– proving the soundness of VCC by showing i) ghost code of verified programs ter-
minates; thus we have simulation between the annotated program and the imple-
mentation code, ii) assertions proven in VCC hold in the parallel C-IL semantics;
this is the part of the soundness proof one expects from classical theory (this por-
tion of the soundness proofs for VCC should work along the lines of soundness
proofs for rely/guarantee logics – a proof outline is given in the VCC manual [42]),
and iii) variables of verified programs obey ownership discipline and code of trans-
lated programs obeys a flushing discipline for store buffers; this guarantees correct
translation to the ISA-sp level of the multi-core machine.

8 Hypervisor Correctness

Figure 7 gives a very high-level overview of the structure of the overall theory. After
establishing the model stack and the soundness of proof tools and their application, what
is left to do is the actual work of program verification. Thus we are left in this survey
paper with the task to outline the proof of a hypervisor correctness theorem which
expresses virtualization of several ISA-sp machines enriched with system calls stated
on ’C + macro assembly + ISA-u + ISA-sp’. Fortunately we can build on substantial
technology from other kernel verification projects.
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8.1 Related Work

The well known ’seL4’ project [49] succeeded in formally verifying the C portion of an
industrial microkernel comprising about 9000 lines of code (LOC), although that veri-
fication ignored a number of important hardware issues such as the MMU and devices,
and used a rather unrealistic approach to interrupt handling, largely because that verifi-
cation was based entirely on sequential program reasoning. In the Verisoft project [11]
both the C portion and the assembly portion of two kernels was formally verified: i) the
code of a small real real time kernel called OLOS comprising about 450 LOC [50] and
ii) the code of a general purpose kernel called VAMOS of about 2500 LOC [51, 52].
In that project the verification of C portions and assembly portions was decoupled [29]
in the following way: A generic concurrent model for kernels and their user processes
called CVM (for ’communicating virtual machines’) was introduced, where a so called
’abstract kernel’ written in C communicates with a certain number of virtual machines
vm(u) (see figure 8) programmed in ISA. At any time either the abstract kernel or a
user process vm(u) is running. The abstract kernel uses a small number of external
functions called ’CVM primitives’ which realize communication between the kernel,
user processes and devices. The semantics of these user processes is entirely specified
in the concurrent CVM model. To obtain the complete kernel implementation, the ab-
stract kernel is linked with a few new functions and data structures, essentially process
control blocks, page tables and a page fault handler in case the kernel supports demand
paging (e.g. like VAMOS does); CVM primitives are implemented in assembly lan-
guage. The resulting kernel in called the ’concrete kernel’. Correctness theorems state
that the CVM model is simulated in ISA by the compiled concrete kernel together with
the user machines running in translated mode. Since the C portions of seL4 are already
formally verified, one should be able to obtain a similar overall correctness result by
declaring appropriate parts of seL4’s C implementation as abstract kernel without too
much extra effort.
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8.2 Hypervisor Verification in VCC

That VCC allows to verify the implementations of locks has been demonstrated in [53].
Partial results concerning concurrent C programs and their interrupt handlers are re-
ported in [54]. Program threads and their handlers are treated like different threads
and only the C portions of the programs are considered; APICs and the mechanism
for delivery of inter processor interrupts (IPIs) are not modeled. Thus the treatment of
interrupts is still quite incomplete. The full formal verification of a small hypervisor
written in ’C + macro assembly + assembly’ in VCC using the serial language stack of
section 4 (which is also illustrated in figure 6) and the proof technology described in
subsection 7.3 is reported in [31, 48]. The formal verification of shadow page table al-
gorithms without sharing of shadow page tables between processors is reported in [23,
55].

8.3 Future Work

The following problems still have to be solved:

– Adding features to VCC that allow memory mapped devices to be triggered by
reading or writing to an address that already has a value identical to the data written.

– Proving the correctness of a ’kernel layer’ of a hypervisor. In order to provide guests
with more virtual processors than the number np of physical processors of the host,
one splits the hypervisor in a kernel layer and a virtualization layer. The kernel
layer simulates large numbers n of ’C + macro assembly + ISA-sp’ threads by np
such threads. Implementation of thread switch is very similar to the switching of
guests or of user processes. A data structure called thread control block (TCB) takes
the role of process control block. Correctness proofs should be analogous to kernel
correctness proofs but hinge on the full power of the semantics stack.

– The theory of interrupt handling in concurrent C programs and its application in
VCC has to be worked out. The conditions under which an interrupt handler can be
treated as an extra thread needs to be worked out. This requires to refine ownership
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between program threads and their interrupt handlers. For reorder theorems, the
start and return of handler threads has to become an I/O-point. Finally, for liveness
proofs, the delivery of IPI’s (and the liveness of this mechanism) has to be included
in the concurrent language stack and the VCC proofs.

– Proving actual hypervisor correctness by showing that the virtualization layer (which
possibly uses shadow page tables depending on the underlying processor) on top of
the kernel layer simulates an abstract hypervisor together with a number of guest
machines and their user processes. Large portions of this proof should work along
the lines of the kernel correctness proofs of the Verisoft project. New proofs will be
needed when one argues about the state of machine components that cannot explic-
itly be saved at a context switch. Store buffers of sleeping guests should be empty,
but both caches and TLBs of sleeping processors may contain nontrivial data, some
or all of which might be flushed during the run of other guests.

9 Conclusion

Looking at the last section, we see that i) the feasibility of formal correctness proofs
for industrial kernels has already been demonstrated and that ii) correctness proofs for
hypervisors are not that much more complex, provided an appropriate basis of mixed
language semantics and proof technology has been established. It is true that we have
spent 6 of the last 7 chapters of this paper for outlining a paper theory of this basis.
But this basis seems to be general enough to work for a large variety of hypervisor
constructions such that, for individual verification projects, ’only’ the proofs outlined
in section 8 need to be worked out.
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