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Abstract

Within the Verisoft project, we aim at the pervasive modeling, implementation,
and verification of a complete computer system, from gate-level hardware
to applications running on top of an operating system. As an adequate
representative for such a system we choose a system for writing, signing, and
sending emails.

The starting point of our work was a processor together with its assembly
language, a compiler for a type safe C variant and a micro kernel. The goal
of our work was to develop a (user-mode) operating system that bridges the
gap between micro kernel and user applications. That is, formally specify
and implement a system that, on the one hand, is built right on top of our
micro kernel and, on the other hand, provides everything necessary for user
applications such as an SMTP server, a signing server, and an email client.
Furthermore, the design of this system should support its verification in a
pervasive context.

Within this thesis, we present the formal specification of such an operating
system. Along with this specification, we (i) discuss the current state-of-the-art
in formal methods applied to operating-systems design, (ii) justify our approach
and distinguish it from other people’s work, (iii) detail our implementation-
and verification stack, (iv) describe the realization of our operating system,
and (v) outline the verification of this system.

Zusammenfassung

Innerhalb des Verisoft-Projekts streben wir die durchgidngige Modellierung,
Implementierung und Verifikation eines kompletten Computersystems, von der
Hardware auf Gatterebene bis hin zu Benutzeranwendungen, an.

Ausgangspunkt unserer Arbeit war ein Prozessor inklusive Assembler Spra-
che, ein Compiler fiir eine typen-sichere C Variante und ein Mikrokern. Ziel
unserer Arbeit war es, ein Betriebssystem (auf Benutzerebene) zu entwickeln,
welches die Verbindung zwischen Mikrokern und Benutzeranwendungen her-
stellt. Das bedeutet, ein System formal zu spezifizieren und zu implementieren,
welches auf der einen Seite direkt auf dem Mikrokern aufsetzt und auf der
anderen Seite alle Voraussetzungen fiir Benutzeranwendungen wie einen SM'TP
Server, einen Signatur Server und ein E-Mail Programm erfiillt. Auflerdem soll
das Design dieses Systems seine durchgéingige Verifikation unterstiitzen.

In dieser Arbeit prasentieren wir die formale Spezifikation eines solchen
Systems. Ferner (i) diskutieren wir den aktuellen Stand im Bereich der for-
malen Methoden im Betriebssystemdesign, (ii) rechtfertigen unseren Ansatz
und differenzieren ihn von dem anderer, (iii) stellen die unterschiedlichen
Implementierungs- und Verifikations-Schichten unseres Projektes vor, (iv) be-
schreiben unsere Umsetzung des Systems und (v) skizzieren seine Verifikation.
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In this chapter we describe the background of this work, discuss related
work, and motivate our own work.

1.1 Background

There is an ever increasing amount of computer systems in our daily life. For
example, we use computers to play games, listen to music, or watch videos.
Besides using them for entertainment, we also use computers to shop, bank,
and pay bills. Most of our communication and information relies on computers.
In industry, production is likely to be planned and coordinated with the aid
of computers. They are widely used in the medical- and service sector. Our
stock markets are controlled by computers and we trust in them to operate
airplanes and nuclear power plants. Finally, even weapons of mass destruction
are controlled by computer systems. In fact, computers are so prevalent in
our daily lives that should they be taken away, almost everything would shut
down; our world would change dramatically.

Although computer systems play such an important and responsible role,
only few of us really understand how they work. In many cases, we use them
without asking questions. Fortunately, most of the time, these systems behave
well and there is no reason to be sceptical. If, however, such a system fails,
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severe consequences are possible. It is, therefore, not surprising that the
demand for truly robust, safe, and secure systems constantly grows.

Computer systems are composed of many layers of hard- and software.
In most cases, however, the user only perceives the top-most layer, i.e. the
application layer. Past attempts to satisfy the desire for reliable systems often
focused on this layer. By means of testing, people tried to establish a certain
level of reliability. But only limited reliability can be achieved this way. This
is because (i) unless tested exhaustively, there may be unexpected corner
cases, and (ii) other system components (e.g. underlying system software)
may behave differently than expected. Hence, in order to gain a truly reliable
system, it does not suffice to test independent pieces, but the correctness of
the entire system has to be proven. The Verisoft project [Ver07] aims at the
pervasive modeling, implementation, and verification of a complete computer
system, from gate-level hardware to applications running on top of an operating
system.

The modeling and implementation of a user-mode operating system in a
pervasive context is the topic of this work.

1.2 Related Work

There have been numerous attempts to increase confidence in system software
by means of formal methods. Each of the different attempts may be assigned
to one of the following categories: (i) the component approach, (ii) the par-
allel approach, (iii) the single-layer approach, or (iv) the pervasive approach.
Below, we will discuss the relevant research results for each of these categories.
Although our work belongs to the pervasive-approach category, results from
the other categories are worthwhile looking at.

1.2.1 Component Approach

Projects in this category focus on selected system components. They choose
some part of the implementation of a complex system, contrive some specifica-
tion for it (neglecting the rest of the system), and then show some high level
properties. From a distant point of view, one could say that projects in this
category horizontally and vertically split a single system layer (Figure 1.1(a)
on page 6).

All sorts of system components have been the subject of formal work.
However, as the principal part of the work at hand deals with the formalization
of a file system, a socket API [IEE04] and TCP /IP [Pos81b, Pos81lal, as
well as virtual terminals, we will only consider publications related to these
components.

Hard-disc driver and file systems. In [BCT95], Bevier et al. describe how
they specified a subset of the interface functions of the Synergy file system using
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the specification language Z [Spi92]. This specification is provided on a very
abstract level. It is intended as a programmers manual rather than a model for
proving implementation correctness. The specification describes what happens
if the preconditions for an interface function are met but ignores what happens
if they are not. Many (other) details are ignored and the issue of concurrent file
access is not treated at all. In order to validate their specification, Bevier et al.
later (re-) implemented their Z specification using ACL2 [KMMO0]. Definitions
and theorems about the ACL2 model are presented in [BC96].

In 2004, Arkoudas et al. [AZKRO04] established a simulation relation between
the specification of a file system (which models the file system as an abstract
map from file names to sequences of bytes) and its implementation (a model
which assumes fixed-size disk blocks to store the contents of the files). They
proved the correspondence between these two models but did not consider an
actual implementation. They omitted details such as file permissions, dates,
links, and multi-layered directories and they assumed an unbounded hard disk.

Yang et al. [YTEMOG6] used model checking to systematically test for file-
system errors. They did not focus on a single file system, but developed a
method to ‘stress-test’ different file-system implementations. Among other
things, they tested for memory leaks and deadlocks.

In 2007, Joshi and Holzmann [JHOT7] suggested that “Building a Verifiable
Filesystem” could be a suitable candidate for a so-called mini challenge. Their
goal is to build a small file system for flash memory and at the same time
produce as much as possible machine-readable documentation. This documen-
tation should then be used for automatic verification. No results have been
reported up to now.

Note, an additional discussion and comparison of our file-system formaliza-
tion and the formalizations within the above mentioned related work can be
found in § 4.3.2.12.

TCP /IP stack and socket API. In 1996, Smith [Smi96b, Smi96a] reports
on the formal verification of TCP. In his work, he first of all provides an
abstract specification for TCP /IP transport level protocols and then proves
that different (more concrete) models of TCP satisfy this specification. He
does not consider an actual TCP implementation.

In 2002, Smith et al. [SR02] specified the selective acknowledgment (SACK)
[MMFR96] extension for the TCP standard. Based on this specification, they
were able to verify that SACK does not violate TCP’s safety properties, i.e.
“no data is discarded, duplicated, or reordered because of the SACK mechanism
that could not have been discarded, duplicated, or reordered with the standard
acknowledgment mechanism”. Other than the earlier work of Smith, this work
only focuses on a particular algorithm for network congestion avoidance [Jac88].
They present proofs for a (retransmission) strategy but (again) do not consider
a particular implementation.
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The NETSEM project [Net08], headed by Peter Sewell, did a lot of work
in the area of protocol- specification and validation. This project is an ongoing
effort. So far, they have developed formal models of TCP, UDP [Pos80], and
sockets at protocol level [BENT05, BENT06] and at service level [RNS08].
Their extensive specifications are formalized in higher order logic using the
HOL automated proof system [Hol08]. They validated their protocol-level
specification by comparing model traces with traces captured from the imple-
mentations in FreeBSD, Linux, and WinXP. In order to also validate their
service-level specification, they specified an abstraction function and showed
that traces of the protocol-level model have a counter part in the service-level
model. The specifications they provide are very comprehensive and contain
many details and special cases of the standard TCP, UDP, and socket imple-
mentations. However, they are not aiming at proving correctness of a particular
implementation but try to establish a technique that allows us (i) to formalize
complex protocols and (ii) to mechanically validate the achieved specifications.
They suggest that their specifications should be used for conformance testing
of new implementations.

Note, as for the file system, an additional discussion and comparison of
our TCP- and socket formalization and the formalizations within the above
mentioned related work can be found in § 4.3.4.16.

Serial interface driver and terminal I/O. In terms of a component-wise
approach, we do not know of any formal work on serial interfaces.

All projects in this category achieve valuable results. Yet, they suffer from
the fact that integrated components are treated as if they were isolated from
the remaining system (although they are not). That means, correspondence
between implementation and specification can not be proven. Thus, results
can not be transferred to actual systems and are, therefore, of rather limited
value.

1.2.2 Parallel Approach

Projects in the parallel-approach category try to protect security-sensitive
data and, at the same time, provide complete functionality of common general-
purpose operating systems. These projects reduce the system’s trusted com-
puting base by running legacy operating systems and security-sensitive services
in separate partitions on top of a micro kernel. In a sense, the projects in this
category horizontally split a system layer (Figure 1.1(b) on page 6).

The Perseus project [PRST01] and the Nizza architecture [HHF05] belong
to this category. Both projects use an L4 micro kernel [L407] implementation
as virtualization platform. On top of the micro kernel, they implement means
that permit the running of legacy operating systems and secure applications
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(e.g. a signature module) in parallel. Furthermore, they provide methods to
exchange data between insecure and secure parts.

Certainly, both projects increase faith in system software but this faith
is based on the correctness of the underlying micro kernel. For the Perseus
project as well as the Nizza project, no formal proofs have been published so
far.

1.2.3 Single-Layer Approach

Work in this third category applies formal methods to an entire system layer,
usually the micro kernel layer (Figure 1.1(c) on the following page).

Recent candidates in this category are L4.verified [HEK 07, EKD107],
VFiasco [HTS02, HT05, Tew07b, Tew07a], and Eros [SWO00]. All three projects
have established semantics for C variants and have verified different properties
on source-code level. But kernel implementations also contain hardware specific
parts that are necessarily implemented in assembly language. To the best of
our knowledge, (up to now) none of the above mentioned projects formally
treats these hardware specific parts. As far as we can see, these parts are
simply postulated to be correct and solely described by their semantic effects.
Moreover, these projects rely on compiler correctness.

Within the Flint project [NYS07], a verification framework for assembly
code was developed. Using this framework and a formalization of a subset of
the x86 instruction set, they were able to formally prove the correctness for
some context-switching code.

Robin [Tew07a] and Coyotos [SDNT04] are the successor projects of VFiasco
and FEros, respectively. So far, none of them has published formal results.

Projects in this category achieve great results. They enrich the micro-kernel
family and increase faith in them. Yet, they discard pervasive verification and
instead focus on the verification of a single software layer.

1.2.4 Pervasive Approach

Projects in this last category aim at pervasive system verification. Formal
methods span multiple layers of hard- and software. That is, several verified
system layers are integrated into a stack. Here, integration means that the
verification of one layer is based on the guarantees of the underlying layers
(Figure 1.1(d) on the next page).

The community in this last category is small. An early but famous project
in this category is the verified stack [Moo02] of Computational Logic Inc. (CLI).
Just like the Verisoft project, this project aimed at pervasive verification
of a complete system. They started from a hardware model and developed
an assembler and a code generator for a simple high-level language. Using
machine language, they implemented the simple operating system kernel KIT
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= |
I R — —
(a) (b) (c) (d)

Figure 1.1: Categories in System Verification. (a) the component approach,
(b) the parallel approach, (c) the single-layer approach, and (d) the pervasive
approach.

[Bev89]. KIT, however, was never really integrated into their stack; the
modeled hardware lacked the necessary features (e.g. memory management,
different modes of operation, or I/O interrupts). KIT featured services that
are also found in today’s micro kernels, namely memory virtualization, process
isolation, a round-robin scheduler, message passing, and device-driver support.
Yet, these services were still very limited compared to those found in modern
micro kernels. For example, message passing was restricted to single words,
and dynamic process creation was entirely impossible.

Inspired by the CLI stack, the ProCoS project [BHL'96] researched the
development process. They focused on the theoretical background of pervasive
system verification. Consequently, they neither focused on a particular system
nor aimed at machine-checked proofs.

Similarly to ProCoS, FOCUS [BDD"92] provides formalisms for the speci-
fication and verification of distributed interactive systems. FOCUS aims at
the modular development and implementation of such systems by refining
requirement specifications down to concrete implementations. FOCUS itself
is only a framework that provides the methods but, by using these methods,
Spies [Spi98] was able to specify some key concepts of operating system kernels.
In her work, she specifies, for example, process management and memory
virtualization. However, her abstract specification does not correspond to a
particular implementation.

Although the last two projects somehow belong to the pervasive approach
category, they are also examples of a whole group of projects /languages that
aim at providing formal methods. Other examples are TLA+ [Lam02], CSP
[Hoa78], and Z [Spi92].

1.3 Motivation

Without a doubt, the last type of approach, the pervasive approach, is the
most satisfactory one but also the most expensive one. Still, so far no one
has managed to integrate and formally verify a system stack up to the level
of user application. The Verisoft project aims at exactly that. As we will
describe in Chapter 3, a processor together with its assembly language, a
verified compiler for a type safe C variant and a micro kernel have already
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emerged from this project. What is missing to achieve the ambitious goal is a
(user-mode) operating system, i. e. a system that bridges the gap between micro
kernel and user applications, provides a high-level interface to the attached
devices, supports different users, and permits a fine-grained control of system
resources.

The document at hand presents a formal specification of the user-mode
operating system SOS, a system that satisfies the above-mentioned requirements
and thereby fills the gap. In contrast to other projects, our specification is
fully connected to specifications of lower system layers. As we will show in the
following chapters, we are actually incorporating an entire system, consisting
of a processor, external devices, and a micro kernel. This is new. We are the
first to present a formal specification of an operating system that, on the one
hand, reaches so far up and, on the other hand, is part of an integrated system
stack. Still, this operating system is more than a toy. As we will describe
in Chapter 3, our system has been used to successfully implement and run
applications such as an SMTP server, a signing server, and an email client.
Furthermore, our formal specification has been used to specify and partially
prove properties of these user applications.

It is worth mentioning that the specification at hand has a corresponding
Isablele / HOL [NPWO02] specification [Bog08c| and a CO [LPP05] implementa-
tion [Bog08a]. Thus, in a sense, this document is only one of the three corner
stones of our work. (Figure 1.2).

Isabelle/HOL spec
CO implementation

Figure 1.2: Cornerstones of This Work.

1.4 Document Organization

The remaining document is organized in the following way. In Chapter 2,
we detail conventions followed in this document. Chapter 3 describes the
foundation of our work and the implementation of the SOS. Chapter 4 is
the key chapter of this work. There, we describe the SOS* model, i.e. the
specification of SOS. In Chapter 5, we extend SOS*. There, we present the
DSOS* model, i. e. the model of a distributed system containing a number of
SOS* instances. In Chapter 6, we outline the verification obligations and sketch
the proofs for the top level theorems. Finally, in Chapter 7, we summarize our
work.
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In this chapter we review typographical and mathematical issues that are
relevant to the unambiguous understanding of the work at hand.

2.1 Typography

Within this document we describe the SOS from different perspectives. In order
to avoid confusion between the different perspectives, we generally use an italic
font for the mathematical specification, monospace for the CO implementation,
and slanted monospace for Isabelle / HOL related material. Names of constants,
used in the mathematical specification, are set in SMALL UPPERCASE LETTERS.

2.2 Mathematical Notations

Basic types and operations. The basic types used in this document are
N3y = {0,...,2% — 1}, Nj;, = Ny, \ {0}, Zsp, = {-2%1,...,230 — 1}, B =
{TRUE, FALSE}. Additionally we use N = {0,1,2,...} for the set of natural
numbers. In many places we introduce types for a particular purpose. Such
types may be easily recognized by their name extension _t. We use, for example,
word_t = {0,...,232 — 1} and byte_t = {0,...,2% — 1} as basic units for I/O
operations.

For the aforementioned numeric types we take the operations: — (subtrac-
tion), + (addition), / (integer division), % (multiplication), % (modulo), and ¥
(sum) for granted.
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For boolean types we assume that the basic logical operations: A (con-
junction), V (disjunction), and — (negation) are predefined. We write 3 for
the existential quantifier and V for the universal quantifier. Sometimes the
type of a quantified variable is omitted, if it can be inferred otherwise. An
implication is denoted by —. In rare cases, we use —, <=, and = to
express an implication, tautology, and equivalences.

Sets. We take the set operations: AU B (set union), AN B (set intersection),
A x B (Cartesian product), and A\ B (set difference) as well as A C B (strict
subset), A C B (subset), and a € A (element of) for granted. Besides these
operations, we denote set comprehension by {z | z € AA P(x)} and the power
set of A by P(A). We write |A| for the cardinality of the set A and {} for
the empty set. We compute the smallest member of a set of numbers using
the min operator, i.e. min(A) =x <=z € AANVy € A. © <y. Likewise, the
greatest member of a set of numbers is computed using the max operator, i.e.
mazr(A) =z <= x € AANVy € A. © > y. In rare cases we use the Hilbert
Choice Operator € to select an arbitrary element from a given non-empty set.

Tuples and Records. For small structured values we use n-tuples. The
type of such an n-tuple (zg,z1,...,2n) is To X 11 X -+ - X Ty, if xg € T Az €
Ti A--- ANxy € T,,. We assume that elements of an n-tuple can be enumerated
(starting from 0). Access to the i-th element of an n-tuple z is denoted by x[i].

We often have to deal with structured values consisting of many components.
To effectively model these values, we use records. Essentially records are n-
tuples with explicitly labeled components. To declare a record type rec_t, we
write rec_t = {ng : Tp,...,ny : T, }. Here, ny through n,, are distinct identifiers
and Ty through T, are the types of the corresponding components. When
referring to individual components of a record, we use the dot notation. We
write, for example, x.n; to refer to the component n; of the value x. To construct
an instance of some record type, we write [ng = vy, ...,n, = v,]. Here, the
values vy through v, must match the types from the corresponding record
declaration. In many places we only need to update individual components of
record-type values. Instead of reconstructing the entire value, mostly copying
values, we write, for example, ' = x[n; := v}]]. Here, 2’ is a copy of = where
the component n; is updated to have the value v,. All other components
remain unchanged. Record types may be nested. Updating a ‘deep component’
of a nested-record-type value would require to unfold the whole structure and
update all enclosing records, from the actual component up to the outermost
record. As this is very inconvenient, we write, for example, 2’ = z[n;.m; := vé]]
as a shorthand for 2’ = z[n; := z.n;[m; := vj]].

Abstract data types. Some aspects are best modeled using so-called ab-
stract data types. Let Too,...,T0,mos 11,05+ +>L1,mys- -+ Thm, be some types
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and Cy, ..., C, some constructor names. Then, we declare the abstract data
type T as:
T= (g TO,Q . T07m0
’ C1 Tl,() o TLml

’ Cn Tn70 ... Tn,mn-

Now, if, for example, (21,0,...,21,m,) € T1,0 %+ X T m,, then C1y x19... T1m,
would be a value of T. There may be abstract data types only containing
constructors, i. e. constructors without parameters. Thus, the simplest abstract
data type is nothing but an enumeration. However, more advanced abstract
data types may contain different constructors with different numbers of pa-
rameters. Furthermore, abstract data types may be nested or even recursively
defined.

Compound expressions. We use a small set of common functional pro-
gramming notations. We write if  then a else b for conditional expressions.
The value of this ‘if then else’ expression is: a if x evaluates to TRUE and
b otherwise. To prevent ambiguous conditional expressions the else part is
mandatory. In several places we use:

a if x,
b elseif y,
c else

for a more intuitive version of if = then a else (if ¥ then b else c).

Besides ‘if then else’ expression we use abbreviations. We write let xg =
Yoi .-+ Tn = Yp in e(xo, ..., x,) as an abbreviation for e(yo, ..., yn). Note that
the substitution of an abbreviation by the corresponding right hand side may
be non-trivial. This is because pattern matching can be used. We write, for
example, let (zo, 1) = (Yo, y1) in To+ 1 to simultaniously assign abbreviations
for x¢ and x1, which are later used separately. Furthermore, abbreviation may
be nested. That is, within the same let block, an abbreviation introduced
earlier is sometimes used on the right hand side of a later assignment. In
let 7o = yo;x1 = x9 + 1 in ..., for example, the abbreviation zg is used to
define 7.

Functions. Usually, we first of all declare the type of a function and only
then define it. We write, for example, f € Z — N to declare a function f that
maps values from the domain Z to values in the range N. An appropriate
definition could then be f(z) = if x > 0 then z else — z. In many places, we
extend the type of the range of a function by the uninterpreted constant e, in
order to avoid partial functions. Thus, we use, for example, g € Z — NU {e}
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to declare a function that would otherwise only be defined for a subset of
Z. As we use this ‘type extension’ frequently, we write T, as a shorthand
for T'U {e}. Occasionally, we need to update a function definition only
for particular domain elements. Just like the notation used for records, we
write f' = f[n; := )] to denote f'(z) = (if £ = n; then v else f(x)).
Also, for function updates, we write ' = f[n;.m; := vg]] as a shorthand for
f" = flni == f(ni)[m; := vi]]. Occasionally, we use A\-notation. We write
Az € T. f(z) to denote the anonymous function that maps any = € T to f(x).

Lists. We use the concept of abstract data types to recursively define lists.
Let T be a type. Then, we define the list type T* as T* = [] | CONS T' T*,
i.e. a list is either the empty list [] or the concatenation of a single element
and a list. Thus, lists have the constructors [| and CONS. As a shorthand for
CONS x xs, we write z#xs. Here, x is called the head of the list and s its tail.
We assume that the tail of a list is returned by list operator tail. Constructing
lists manually is not very handy. Thus, we write [a] as a shorthand for a#]].
Furthermore, let ag,...,a, € T. Then, the list containing these elements is
denoted by [ag, .. .,ay]. Let I and Iy be two lists of the same type. Then, their
concatenation is denoted by [y oly. The length € T* — N operator returns the
length of a list. It is recursively defined as:

length(l) = {0 , i l=1],
1+ length(tail(l)) else.

The elements of a list [ can be enumerated (starting from 0). The i-th element
of [ is denoted by {[i]. The sublist of [ that contains the elements in the range
i to j is denoted by I[i : j], i.e. l[i : j] = [l[d],...,1[j]]. The type of a list with
fixed length n € N is denoted by T™", if the type of the individual elements
is T. The map € (To — Th) x T — T operator is used to lift a function
to operate on a list of elements, i.e. map(f, [xo,...,zn]) = [f(x0),-.., f(zn)].
The filter € (T' — B) x T* — T™ operator is used to remove all those elements
from a list that do not satisfy a certain predicate:

H if [ = Hv
filter(P,1) = < filter(P, tail(l)) else if = P(l[0]),
[[0]# filter(P, tail(l)) else.

The take € Z x T* — T* operator returns the prefix of a list. Assuming
take(z,1), this prefix contains (at most) z elements. If z < 0, then the empty
list is returned:

[] if [ =[]Vz<0,

take(z,1) = {Z[O]#take(z — 1, tail())  else.
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The drop € Z x T* — T™* operator returns the postfix of a list. Assuming
drop(z,1), the first z elements (at most) are dropped from the list. If z <0,
then the original list is returned:

l if [=[]Vvz<0,
drop(z — 1, tail(l)) else.

drop(n,l) = {






Foundation

Contents
3.1 VAMP . .. 15
3.2 Assembler . .. .. ... .. 16
33 CO. . .o 16
34 CVM . .. e e 17
3.5 VAMOS . . . . 19
3.6 Libvamos . . . . . . . .. ... .. e 21
3.7 SOS . . e 22
3.8 Libsos . . . . . .. 27
3.9 Applications . . . ... Lo 29
3.10 Running the Whole System . . . . . . ... ... ... ... 30

In this chapter we elaborate on the design and implementation of the SOS
with respect to its environment, i.e. the underlying system layers and the
applications running on top of it.

First, we introduce the micro processor VAMP, an appropriate Assembler,
and the high level programming language C0. Based on these, we work our
way through the different layers of the system stack. That is, we describe the
model of communicating virtual machines, detail the micro kernel VAMOS,
outline the implementation of the SOS, and finally discuss some applications.

3.1 VAMP

At the bottom of our system stack we have the Verified Architecture Mi-
croprocessor (VAMP). This processor is a pipelined 32-bit RISC proces-
sor based on the MIPS instruction set. Among other things, the VAMP

15
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comes with a memory unit with a cache system, a Tomasulo [Tom67] out-
of-order scheduler, fully IEEE 754 [IEE85] compliant floating point units,
a fixed point unit, and precise interrupts [Bey05]. Numerous people (e.g.
[BJKT03, BJKT05, JB05, DHP05, Hil05]) have worked on the design, imple-
mentation and correctness proofs of the individual parts of the VAMP. In the
end, however, the overall proof, i.e. the correctness of the gate-level imple-
mentation of the entire VAMP with respect to the programmer’s model of a
step-by-step instruction execution, has been carried out by Sven Beyer [Bey05],
using the theorem proving system PVS [ORS92], and Sergey Tverdyshev
[Tve08] and lakov Dalinger [Dal06], using the Isabelle/HOL proof assistant
[NPWO02]. The programmer’s model of the processor is realized by the instruc-
tion set of the VAMP. This model is called the instruction set architecture
(ISA). ISA is the basis for the following software layers.

3.2 Assembler

Clearly, we do not want to implement or, even worse, verify any software
at machine-code level. Thus, for the Verisoft project, Mark Hillebrand et al.
have implemented an assembler and Alexandra Tsyban [Tsy08] proved the
correctness of the corresponding assembler model against ISA.

3.3 CO

The verification of operating-system code at assembler level would still be a
very tedious and error prone task. Hence, a high-level language, including
formal semantics and compiler-correctness theorems, is desirable. Having these
in place, we are, on the one hand, able to (more) efficiently argue about the
correctness of operating systems (OSs) and user applications and, on the other
hand, verification results can be brought down to machine level. Then, on
machine level, software verification results can be combined with hardware
correctness into an overall system-correctness proof.

For the Verisoft project, Leinenbach et al. designed the high level program-
ming language CO and provided a formal small-step semantics. Together with
Elena Petrova, they implemented a CO compiler and proved its correctness
[LPP05, Pet07, Lei08, LPOS|.

In order to reason on an even more abstract level, Norbert Schirmer has
provided a verification environment for sequential imperative programming
languages and an automatic verification condition generator [Sch05]. This
environment is built on top of Isabelle/HOL. Via an intermediate C0O big-step
layer, it allows us to reason about CO programs using classical Hoare triples
[Hoa69].

The higher layers of our system stack, e. g. the SOS and the applications,
are implemented in CO. Their implementations are much influenced by the
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abilities and limitations of C0. Below, we will, therefore, present a short
summary about CO.

The syntax of CO is similar to the one of standard C [ANS99]. Operational
semantics, however, is similar to Pascal [ANS83]. Compared to C, the main lan-
guage restrictions are the lack of pointer arithmetic, function pointers, pointers
to local variables, and prefix and postfix arithmetic operations. Furthermore,
the size of arrays (including the type of the individual elements) has to be
statically defined, there is only one return statement (which has to be the last
statement of a function body), and side effects in expressions are forbidden. CO
is a type-safe programming language. The basic types it provides are signed
and unsigned integers (int and unsigned int), characters (char), and booleans
(bool). Based on these basic types, structures, array types, and pointers can be
constructed. Type casts are allowed for basic types. CO inherits the following
operators from standard C:

e ! g, and || for logical expressions,

e == 1= > <, >= and <= for (numerical) comparisons,
e + - x and / for arithmetic expressions,

e <<, >> |, & and - for bitwise manipulations, and

e & and x for pointer manipulations.

Finally, CO provides while loops, if-then-else conditionals, function calls,
assignments, and basic means for dynamic memory allocation (new) and garbage
collection.

3.4 CVM

As in many recent projects, we have split our OS into a part running in system
mode, i. e. the micro kernel, and a part running in user mode, i. e. the user-mode
OS. Furthermore, we have divided the micro kernel into a hardware-dependent
part and a hardware-independent part [TanO1].

In our implementation, the hardware-dependent part contains portions of
assembly code. It encapsulates all hardware-specific low-level functionality in
so-called CVM primitives and takes care of page faults. Thus, it provides a
framework for the hardware-independent part.

From a verification point of view, the hardware-dependent part provides an
independent layer, i.e. the model of communicating virtual machines (CVM).
Each of these virtual machines (VMs) is essentially an abstract processor with
virtual memory. It is the context for a single thread of execution, i.e. a process.
Thus, the two major tasks of the CVM layer are memory virtualization and
switching between different threads of execution.
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CVM primitive Description

cvm_reset removes memory and initializes registers of a VM
cvm_clone duplicates a VM

cvm_alloc increases memory of a VM

cvm_free decreases memory of a VM

cvm_copy copies data between VMs

cvm_get_gpr reads VM registers

cvm_set_gpr writes VM registers

cvm_dev_io copies data between virtual mem. and a device
cvm_set_mask sets the external interrupt mask

cvm_load_os loads initial user process

cvm_wait (idle) loops until there is a runable VM
cvm_start start / switch to a VM

Table 3.1: CVM Primitives

In our formalization, we call the hardware-independent part the abstract
kernel. By compiling and linking the implementations of the CVM primitives
and some implementation of an abstract kernel (see Section 3.5) we obtain an
executable micro kernel. In our formalization, we call this combination the
concrete kernel.

The implementation of the abstract kernel uses the CVM primitives to
manipulate the virtual machines running in user mode, i. e. the user processes.
Among other things, CVM primitives allow us: to copy data between virtual
machines, to modify their virtual memory size, and to access their general
purpose registers. The set of the available CVM primitives is given in Table 3.1.
Using these primitives, the hardware-independent part can be implemented in
plain CO.

The verification of CVM is nearly finished. The overall CVM correctness is
described in a paper-and-pencil style in [RT08] and in a formal way in [GHLPO05,
Rie08]. It comprises the following propositions: (i) the page fault handler
correctly implements memory virtualization [ASSO08], (ii) the CVM primitives
establish the CVM model and their implementation is functionally correct
[ST08], and (iii) the CVM model can be instantiated by arbitrary abstract
kernels, written in C0, and arbitrary user processes, written in assembly.
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3.5 VAMOS

In the Verisoft project, we have two abstract kernel implementations: OLOS
[KP07] and VAMOS [D6r06]. OLOS’s primary targets are automotive appli-
cations. OLOS will not be discussed in the work at hand. VAMOS, however,
provides means for general purpose OSs. The SOS is built on top of VAMOS.
Thus, the implementation of VAMOS and the corresponding model of the
concrete kernel will be the subject of this section.!

3.5.1 Implementation

The main features of VAMOS are: (i) user processes can be created and
killed, (ii) user processes may have different privileges, (iii) user processes
are scheduled via a priority-based round-robin scheduler, (iv) user processes
are strictly isolated by means of memory virtualization, (v) user processes
may communicate via synchronous inter-process communication (IPC), and
(vi) user processes may register as device drivers and interact with devices.
These features can be controlled via so-called kernel calls or VAMOS calls.

Initial / privileged process. When VAMOS boots, it launches an initial
user process. This process has to set up the user-mode OS. As a privileged
user process, it is allowed to bring up new user processes and kill existing ones,
it is able to control the memory available to user processes, it may change
scheduling parameters, it can alter the registration of device drivers, and it is
able to add other user processes to the set of privileged processes. In contrast, a
non-privileged user process is basically only allowed to perform IPC operations.
Besides being privileged, the initial user process has the highest scheduling
priority. That means, as long as it does not assign this priority to another user
process, it can be sure to be scheduled next, as soon as it is ready.

Synchronous IPC. VAMOS supports synchronous IPC. Messages of (al-
most) arbitrary size may be exchanged via a send and a receive operation.
Furthermore, an operation for a combined send and receive operation, i.e. a
request, is provided.

Handles. The kernel implements a capability-like security concept for IPC.
While the kernel identifies user processes by unique process identifiers (PIDs),
user processes refer to each other via process-local aliases, so-called handles.
The kernel maintains the mapping between handles and PIDs in the handle
data base. This indirection permits authentic process identification. When a
user process dies, all handles to it are invalidated and all handle owners receive
a death notification.

! Below, if it is clear from the context, we will (also) refer to the concrete kernel as
VAMOS or simply as kernel.
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IPC rights. Together with handles, the kernel maintains IPC rights. These
rights encode whether a certain user process has the right to send a message
to a certain other user process, if it can only request something, or if it is not
allowed to know the other user process at all. Additionally, a user process can
control whether a finite timeout may be used and whether the IPC rights are
valid for more than one successful IPC operation. The kernel maintains IPC
rights in the rights data base.

Device driver. If a user process is registered as a device driver for a par-
ticular device, then it can read from and write to the corresponding device
registers. Furthermore, it will be notified about interrupts from that device.
There is a one-to-one mapping between devices and interrupt numbers and
only one device driver may be registered for a certain device. Interrupts for
devices without a registered device driver are lost.

Kernel notifications. Besides pure message delivery, the IPC mechanism is
used to control and propagate updates of the handle data base and the rights
data base. Furthermore, it is used to synchronously deliver kernel notifications,
i. e. interrupt- and death notifications.

Kernel calls. A user process may call the kernel using the trap instruction
while passing along the appropriate kernel-call number. The trap instruction
triggers an exception, which causes the system to switch to system mode. In
system mode the interrupt service routine is called. This routine saves the
caller’s context and executes an appropriate interrupt handler. The latter
evaluates the trap instruction and passes control to the kernel-call dispatcher.
The kernel-call dispatcher passes the call to the appropriate kernel-call handler.
The kernel-call handler, finally, reads the kernel-call arguments from the caller’s
registers and services the call. At some point, the kernel call will be processed
and the call chain reverses. In the end, the caller’s context is restored and the
mode switched back to user mode. Upon return from the kernel call, the caller
can find the results in its registers. Note that in our implementation, the kernel
will not be interrupted. Thus, there is no nested interrupt handling. Now, the
mapping between the contents of the caller’s registers and the effect of a trap
instruction constitute the kernel’s binary interface. A formal specification of
this interface is established by the model VAMOS* (see § 3.5.2).

3.5.2 Model

The model of the VAMOS micro kernel including assembly user processes is
called VAMOS*.2 Formal verification of VAMOSY, i.e. the proof of correspon-

2Currently, there is no VAMOS* documentation publicly accessible. The descriptions
here are based on the Verisoft-internal Technical Report #38
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dence between VAMOS*, on the one hand, and the CVM model instantiated
by the implementation of the abstract kernel, on the other hand, is still work
in progress (Figure 3.3 on page 27). The main goal for the VAMOS* verifi-
cation is proving functional correctness of the individual kernel-call handlers,
the scheduler implementation, and the delivery of kernel notifications. This
verification relies on the CVM model and the semantics of the CVM primitives.

3.6 Libvamos

High-level programming languages usually do not allow the direct manipulation
of registers. This is also true for C0O. Thus in order to permit user processes,
implemented in CO, to use kernel calls, we provide a library that hides the
necessary assembly code. In our case this library is called Libvamos.

3.6.1 Implementation

The implementation of the Libvamos library is straightforward. In general,
for each of the main cases considered by the kernel call dispatcher, the library
implements a CO function, a so-called kernel-call wrapper, that: (i) copies
arguments to registers, (ii) calls the trap instruction, and (iii) upon return (of
the trap instruction) extracts values from registers and passes them back as
results. A complete list of the available kernel-call wrappers is presented in
Table 3.2 on the next page.® A formal specification of Libvamos is established
by the model VAMOS*+CO (see § 3.6.2).

3.6.2 Model

VAMOS*+CO0 is the model of the VAMOS micro kernel including CO user
processes, i.e. user processes written in C0O using the functions provided by
the library Libvamos. As for the VAMOS*, the verification of VAMOS*+C0
is work in progress. The main goal of this work is to justify the new process
abstraction of CO user processes with respect to corresponding assembly user
processes (Figure 3.3 on page 27). The challenge is that the different process
abstractions do not have the same granularity; a CO step usually consists
of many assembly steps. Thus, a CO user process could be scheduled away
during the execution of a CO statement. It is, therefore, necessary to abstract
from the concrete scheduler and show that scheduling events can be shifted.
Abstracting the scheduler leads to nondeterministic execution of user processes.

3Below, if it is clear from the context, we will simply write “kernel call” or “VAMOS call”
as a shorthand for “kernel-call wrapper”.
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VAMOS Call

Description

process_create
process_clone

process_kill
set_privileged
chg_sched_params

memory_add

memory_free

ipc_send
ipc_receive

ipc_request

change_rights

read_kernel_info

change_driver
enable_interrupts
dev_read

dev_write

creates a new user process from a memory image
duplicates a process

kills a process
adds a process to the set of privileged processes
changes scheduling parameters

increases the amount of virtual memory for a process

decreases the amount of virtual memory for a process

sends an IPC message
receives an [PC message

sends an IPC message and waits for a reply

manipulates IPC rights

asks for kernel information

(un-)registers a process as handler for a set of devices
(re-)enables interrupts
reads from a device

writes to a device

Table 3.2: VAMOS Calls

However, fairness between user processes should be preserved.* Thus, it is also
necessary to show that the VAMOS scheduler ensures fairness between user
processes and that this fairness is, indeed, preserved by VAMOS*+CO0. Finally,
the functional correctness of the individual kernel-call wrappers needs to be
shown.®

3.7 SOS

One goal of the Verisoft project is a pervasively verified system for writing,
signing, and sending emails. Analyzing these applications, we derived the
following requirements for our user-mode operating system SOS: (i) the OS

4Note that our scheduler does not ensure that each of the user processes gets exactly the
same amount of computing time. Depending on the type of kernel calls used, a user process
might be scheduled longer than other user processes.

5Currently, there is no VAMOS*+C0 documentation publicly accessible. The descriptions
here are based on the Verisoft-internal Technical Report #67
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must support different users, (ii) concurrently running user applications need
file-system- and network access, (iii) users should be able to interact with the
system by means of a keyboard and a screen, (iv) users should be able to
dynamically start and stop applications, and (v) user applications should be
able to use remote procedure calls. None of these services is directly supported
by the kernel. Instead, the SOS must provide the appropriate calls, i.e. the
SOS calls.

3.7.1 Implementation

Earlier we said that when VAMOS boots, it launches an initial user process.
This user process, the SOS, will be the one providing the SOS calls.® As
the SOS launches, it registers itself as a device driver, starts an initial user
application, and then serves incoming requests. Note that all user processes,
except for the SOS, are called (user) applications.

SOS server. The SOS is implemented as a server. It waits for an IPC
request, tries to interpret the IPC message as an SOS call, and then dispatches
the call to an appropriate SOS-call handler. This handler processes the call
and returns a result to the calling application. This result is returned by means
of IPC-send and thus completes the caller’s request. As the handler returns,
the SOS turns over by waiting for another SOS call (Figure 3.1 on the next

page).

Users and login shells. The initial application, started by the SOS, is a
login shell. Like every other user application, the login shell is a non-privileged
user process. It is not part of the SOS implementation. It is, however, the
starting point for all other user applications. Internally, the SOS associates a
user with each application. In the case of the login shell, this is the super user.
Usually, login shells implement some sort of user authentication and upon
successful authentication they pass control to a user-specific application. This
user-specific application will be owned by the particular user and in most cases,
it is some sort of general-purpose shell. For our system, we have implemented
a login shell which authenticates users based on a password file, which is only
accessible by the super user. Among other things, our general-purpose shell
allows the logged-in user to interactively start further applications.

Resource management. As said earlier, user applications are non-privileged
user processes. Hence, except for IPC, they are restricted to SOS calls. Thus,
the SOS keeps tight control over every application running in the system.

6 Below, if it is clear from the context, we will write “process” as a shorthand for “user
process”.
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Figure 3.1: SOS Calls. a) User processes solely rely on VAMOS calls. b) In
the presence of the SOS, user applications are restricted to a few VAMOS calls
but (via IPC) they may use SOS calls. ¢) User applications cannot see the
difference between VAMOS calls and SOS calls. Thus, from the application
point of view, the SOS process and the VAMOS micro kernel melt together.
The resulting (single) operating system provides services in terms of system
calls.
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Together with the knowledge about the user owning a particular application,
the SOS is able to enforce a strict resource management. That is, it can,
for example, control the number of processes and files as well as socket- and
terminal access on a per application and per user basis.

Device drivers. Device drivers account for the major part of the SOS
implementation. These drivers provide access to a hard disk, a keyboard and
a screen, and (partially) to a network card. The front end to these drivers are
SOS calls, i.e. file system calls, terminal calls, and socket calls. Internally, the
drivers are implemented in different layers, each providing a different level of
abstraction (see Figure 3.2 on the following page).

For the hard disk, we have implemented a low-level hard-disk driver pro-
viding word-based access to the hard-disk contents. Based on this, we have
implemented a driver providing a file-based hard-disk access.” Finally, the
topmost layer adds user-based access-control lists [Grii03] to the individual
files.

For the keyboard and the screen, we have implemented a serial device
driver that hides the communication with the UART chip [Uar07]. This driver
provides a queue of keyboard inputs and an array representing the contents of
the screen. Above this low-level driver, there is a layer that multiplexes the
input and output onto multiple virtual terminals.

For network access, there is an implementation of the TCP layer.® Based
on an emulated IP layer, this layer provides reliable data exchange. Finally,
on top of the TCP layer, we have implemented a socket interface [IEE04].

In our implementation, all the drivers are part of the SOS server. If the
SOS receives an interrupt notification, it is treated just like an SOS call, i. e. the
notification is passed to the appropriated handler. From there, it will be passed
down to the lower driver layers. On its way back up, each layer processes the
results from its adjacent layer. Once the interrupt notification is handled, the
SOS goes back to receive further SOS calls and interrupt notifications.

A single process. Keeping the whole implementation of the SOS, including
drivers, in a single process is not very efficient (in terms of interrupt- and
SOS-call latency). However, from a verification point of view, this is a lot
easier than arguing about a distributed implementation. In order to reduce
the interrupt- and SOS-call latency, we run the SOS with the highest priority.
That means, the SOS is scheduled next, if there is an interrupt or an SOS
call. While treating one of these, the SOS will not be interrupted by a user
application. Both, interrupts and SOS calls, are delivered to and treated by
the SOS synchronously.

"The low-level hard-disk driver and the driver providing a file-based hard-disk access
were implemented by Mark Hillebrand.
8The TCP implementations were provided by Ulan Degenbaev and Jéréme Creci.
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Figure 3.2: Overview of the Implementation. User applications use Libsos calls
that wrap the actual SOS calls. The SOS server is implemented in a single
user process. The main part of the SOS implementation are the device drivers.
These drivers are implemented in different layers. The SOS implementation
uses Libvamos calls to call the VAMOS micro kernel.
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Figure 3.3: Verification Stairs.

Blocking requests. In some cases, an SOS call cannot be answered directly.
For example, the lock for a file can only be granted, if it is available. If not,
the request will be saved and answered as soon as another application releases
it. Because the SOS only permits IPC requests with infinite timeouts, we can
be sure that the original caller waits for the answer.

3.7.2 Model

The formal specification of the SOS implementation is established by the model
SOS*, which is a computational model for communicating user applications.
It is an abstraction of the VAMOS*+CO0 model instantiated by the SOS
implementation (Figure 3.3). In a sense, it subsumes all lower system layers
and provides a coherent framework for user applications. SOS* hides as
much as possible of the underlying hard- and software and provides a formal
specification. SOS* is the main topic of the work at hand and will be treated
in detail in Chapter 4.

3.8 Libsos

Analogously to Libvamos, we have implemented a CO library for the SOS calls.
This library is called Libsos. It relieves the application programmer from
the burden of manually constructing IPC messages (that can be successfully
interpreted by the SOS). The functions provided by Libsos are called SOS-
call wrappers.” A complete list of these wrappers is provided in Table 3.3 on
the following page. A detailed description (from a programmer’s point of view)
is part of the publicly accessible SOS implementation [Bog08a].”

9Below, if it is clear from the context, we will write “SOS call” as a shorthand for
“SOS-call wrapper”.
10The Libsos documentation is also available as Verisoft-internal Technical Report #13.
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SOS Call

Description

sc_user_add

sc_user_del

sc_file_creat

sc_file_truncate

sc_file_unlink
sc_file_info
sc_file_write
sc_file_seek
sc_file_read
sc_file_lock
sc_file_unlock
sc_file_chmod
sc_file_chown
sc_term_write
sc_term_seek
sc_term_info
sc_term_read

sc_socket_open

sc_socket_listen
sc_socket_connect

sc_socket_accept

sc_socket_read
sc_socket_write
sc_socket_close
sc_app_exec
sc_app_fork
sc_app_wait
sc_app_exit
sc_pm_reg
sc_pm_lookup

sc_pm_unreg

adds a user

removes a user

creates a file

reduces the size of a file

removes a file

retrieves information about a file

writes to a file

changes the current position within a file

reads from a file

locks a file for exclusive access

unlocks a file

changes permissions for a file

changes the owner of a file

writes to the screen

changes the cursor position

retrieves information about the screen

reads from the keyboard

opens and binds a socket

listens on a socket

connects to a remote site

accepts an incoming connection

reads from a socket

writes to a socket

closes a connection

executes a file

forks an application

waits for an application to terminate

exits an application

registers a service

finds a service

unregisters a service

Table 3.3: SOS Calls
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Other than for Libvamos, the verification of Libsos is straight forward (see
Section 6.3). There would be no need for an additional layer in our verification
stack. However, in order to follow the scheme of instantiation and abstraction,
we call this layer SOS*+CO0 (Figure 3.3 on page 27).

3.9 Applications

There are a number of user applications running on top of the SOS. Most
notably: Remote Procedure Calls, an SMTP server as well as a signature
server, and an email client.

In [Sha06], Andrey Shadrin describes his implementation of an interface
compiler that provides primitives for an easier application of Remote Procedure
Calls (RPCs). Using SOS calls, so-called RPC primitives simplify the task
of locating service providers and transferring large and /or dynamic data
structures between user applications.

Although not yet publicly available, a complete and formal description
of RPC was presented in the Verisoft-internal Technical Report #68. Using
the SOS specification, Eyad Alkassar formalized the semantics of the RPC
primitives and the RPC protocol. Following the scheme of abstraction and
instantiation, he instantiated SOS*+CO0 with the implementation of the RPC
primitives and abstracted that to the SOS*+C0+RPC model (Figure 3.4).
Furthermore, as an example, he used this model to prove the correctness of an
RPC server that provides a basic (mathematical) service [AlkOS].

A large SOS application, namely an SMTP server, was implemented and
verified by Langenstein et al. [LNRS07]. Their implementation comprises three
modules: (i) a module that serves local requests (from an email client), (ii) a
module that sends mail to the outside world, and (iii) a module that receives
mail from the outside world. Using the entire spectrum of SOS calls, their
SMTP server fully supports the SMTP standard [Pos82] as well as the standard
email formats [Cro82].

The SMTP server has been specified and formally verified [LNRS07] in VSE
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[HLS™96]. For that, the set of system calls and system call results (X, and Q,,
defined in § 4.3.8) were translated to VSE. In combination with an identifier for
a sender and a receiver, these system calls and system call results form so-called
events. Now, the operational behavior of the SMTP server was specified in
terms of (valid) sequences of such events, so called histories. Langenstein et al.
proved that their implementation obeys the specified set of histories. That is,
they proved that their implementation meets their specification.!!

Another application that runs on top of the SOS is an RSA-signature server.
This RPC server provides two services: (i) it receives a text message and a
private key and signs the message or (ii) it receives a signed text message and
a public key and verifies the message.

As the SMTP server, the signature server has been specified and (partially)
verified using VSE. Other than the SMTP server, the signature server has only
few interaction with the operating system. In fact, only for receiving RPC calls
and returning the corresponding results, SOS calls are necessary. Otherwise
the signature server (only) performs local computations. Thus the correctness
proof of the signature server is largely a proof of the CO implementation of the
RSA algorithm. In terms of interaction with the SOS, the correctness proof
should be similar to the one provided for the example RPC server. Up to now,
the VSE theories and proofs are not publicly available.

Finally, on top of the SMTP server and the signature server, Beuster et al.
have implemented an email application [BB04, BHW06, BBuMWO07]|. Using
the calls provided by the SOS, the SMTP server and the signature server, the
email-client allows different users to compose, sign, and send as well as receive,
verify, and read emails. The formal specification of the email client is provided
in Isabelle /HOL. Using a reduced SOS* state and axiomatizing the inputs
and outputs of the SMTP server and the signature server (in our terminology
SOS*+C0+RPC+Servers), Beuster et al. were able to completely verify the
CO implementation of the email client [BHWO06]. Their implementation and
verification results are publicly available in [BBuMWO07].

3.10 Running the Whole System

In order to comfortably test the SOS implementation we use the dixsim simu-
lator, which simulates the VAMP micro processor and provides basic means
for debugging. Using QEMU [Qmu07], we are able to emulate a hard disk and
the UART chip. Furthermore, combining QEMU and TUN / TAP [Tun07] we
are able to provide access to the network card of the host. Figure 3.5 on the
next page shows the SOS running the email client. A demonstration of two
SOS instances communicating with each other via the Internet, sending and
receiving signed emails, was given at the German Verification Day ’07 [Bog07].

"Eurther documentation about the implementation and verification of the SMTP server
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Figure 3.5: SOS Running the Email Client. Screenshot of the SOS (running
on top of the dixsim). Here, the email client occupies the first virtual terminal,
displays a new email with a verified signature and waits for user input.

is provided in the Verisoft-internal Technical Reports #75, #76, and #77.
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In this chapter we describe SOS*, a model of a whole computer system.
We start out with an overview of the main SOS* components and then present
an exact definition of each of these components.

4.1 Overview
Formally, SOS* is defined as a transition system:
SOS* = (8,8, %,Q,A,R).
Where,
e S is the set of possible configurations (the SOS* state space),

e S¥ C S is the set of initial configurations,

Y is the set of inputs from the environment (external inputs),

) is the set of outputs to the environment (external outputs),

e ACS x X, xS xQ*is the transition relation, and

33
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e R characterizes valid SOS* runs.

SOS*is intended to be used as a programming model for communicating user
applications. In SOS*, we choose not to restrict the types of user applications
that may be verified to a particular programming language. Instead, we follow
the approach used in VAMOS*+CO0 and incorporate user applications in the
form of self-contained I/O automata:

APP* = (S,,%,, 8, 6, wp, vm-size, interpret).
Where,
e S, is the set of possible configurations (the application state space),
e Y, is the input alphabet (system call results),
e (), is the output alphabet (system calls),
o §, €S, x3,U{e} — S, is the transition function,
o w, €S, — N, U{e} computes the output for a given state,

o vm-size € S, — N3, computes the size of the occupied virtual memory
for a given state, and

e interpret € word_t* — S, maps memory contents to an instance of the
the application state space.

Describing user applications as self-contained automata has the advantage that
the abstraction can be easily instantiated by different machine types. Adding
a new machine type does not change the global transition system as long as
the new machine type complies with the (interface) alphabets ¥, and €.

Now, for SOS* that means that the alphabets X, and 2, must be well
defined. The remaining types and functions of APP*, however, may be arbitrary
but fixed. Thus, these components can be SOS* parameters. Hence, we get
the following updated definition of SOS™:

SOS*(S,, 8, wy, vm-size, interpret) = (S, 8%, 2, Q, A, R, 2, ).

This last definition of SOS* is the final one. Below, we will describe each
of its components in detail.
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4.2 State Space

4.2.1 Users

SOS is a multi-user operating system. It allows different registered users to
log in. A user is thereby referred to by their user id. In SOS, all registered
users are stored in the user data base.

In SOS*, we represent user ids by numbers. User ids have the type wid_t C
N3,. The state-space component udb contains all registered users:?

udb : P(uid-t).

The system administrator, or super user, is a user with special privileges.
This user is the only one allowed to perform certain administrative tasks.
Registering new users, for example, can only be done by the super user. In
SOS*, the user id of the super user is denoted by SU, where SU € uid_t.

4.2.2 Hard Disk and File System

Our SOS implementation supports a hard disk. The hard disk is presented
to user applications in terms of a file system. Here, each file is owned by a
particular user. Different types of file operations (e.g. read, write, or execute)
are offered. In order to perform one of these operations, the particular file must
be locked and the owner of the calling application must have the appropriate
permissions.

In SOS*, the type file_t is used to represent a single file. This record type
contains the fields owner, for the owner of the file; pos, for the current position
within the file; con, for the contents of the file; and perm, for the permissions
associated with the file. Here, the function perm maps different types of file
operations, for example locking a file or retrieving information about a file, to
sets of user ids. The type fop_t = {LCK, WRT, READ, CHMOD, EXEC} encodes
the set of all types of file operations. Hence, perm stores what can be done
and by whom it can be done. Before an application can access a file, it must
obtain the lock for it. Such a lock guarantees exclusive file access. In SOS*,
file locks are stored along with each file. For that, file_t contains the field lock.
The type of lock is a list of handles. The formal representation of handles will
be discussed in § 4.2.5. For now, note that these application identifiers are of
type hn_t. In SOS*, the head of lock represents the application that currently
owns the file lock and its tail represents lock requests from other applications.

!2 For technical reasons, identifiers in this mathematical specification, in the Isabelle / HOL
specification [Bog08c], and in the implementation [Bog08a] have slightly different names. In
order to allow easier navigation within one the later ones, Appendix A.1 provides the most
important translations.
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An empty list indicates that the file is currently not locked:

(owner : uid_t,
pos : Naa,
filet = ¢ con  : word_t*,
perm : fop_t — P(uid-t),
lock  : hn_t* J

The file data base is represented by the state-space component fdb. It is
a function that maps file names to individual files. A file name, or file id, is
thereby of type fid_t C N3,. Currently unassigned file ids are mapped to e:

fdb : fid_t — file_t..

Because of the limited hard-disks space, we need to expose some more
details of the file-system implementation.

File-system operations are based on words. The easiest way to store a file
on the hard disk would be to store it as a continuous region of words. This,
however, would result in either great fragmentation or much work in the case of
changing a file’s contents. A more advanced approach is used by the FAT32 file
system [MicO7]. Here, the hard disk is divided up into identically sized clusters,
i.e. small blocks of continuous space. Each file may occupy one or more of
these clusters. Thus, a file is represented by a chain of clusters. However,
these clusters are not necessarily stored adjacent to one another. Instead, the
file allocation table (FAT) contains an entry for each cluster on the hard disk
and provides the necessary links. Furthermore, it identifies reserved, bad, and
unused clusters. As the cluster size is defined by the time the hard disk is
formated, the FAT has a fixed size. Along with the FAT, directory tables are
used to provide mappings between file names and starting clusters. These
directory tables are special files on the hard disk. Other than the FAT, the
size of directory tables changes as new files are added or existing ones delete.
The root directory table (RDT) is the global entry point. It has a well-known
starting cluster and, thus, allows us to find files in the root directory. These
files may be standard files or directory tables. The latter are used to describe
subdirectories.

Our file system implementation is based on the FAT32 file system standard.
Other than in this standard, we only support a single directory level, i.e. none
of the files in the root directory is a directory table. Furthermore, we do
not compress the RDT, i.e. if a file is deleted, then the RDT file does not
shrink. Instead, we only invalidate the corresponding directory entry and
reuse it upon creating a new file. Together with some other restrictions, this
simplification provides for a comparablely easy implementation and a fairly
abstract specification.

In our specification, the number of words per cluster is denoted by WPC &
Ni,. Knowing that, we can always compute the number of clusters occupied
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by a file of a certain size, using the function ocl:

ocle N— N
ocl(size) = [size/WPC].

If the contents of a file is modified, then the available hard-disk space may
change. In SOS*, we keep track of the available hard-disk space in terms of
free clusters. The number of free clusters is maintained in the state-space
component free-clusters:

free-clusters : N.

In SOS*, the FAT is not visible. This is because it has a fixed size and the
partitioning of the file contents into separate cluster is not visible.

For the RDT, this approach is not possible. This is because the size of the
RDT file changes and thereby influences the results of some file operations.
However, the number of clusters occupied by the RDT file can be computed
from the information about the number of files on the hard disk, the number
of directory entries per cluster, and the number of invalidated entries (holes) in
the RDT. The number of files on the hard disk is already represented through
the state-space component fdb. The number of directory entries per cluster
is constant. In SOS*, this constant is denoted by RDTEPC € Ni,. Finally,
the number of holes in the RDT is maintained in the state-space component
rdt-holes:

rdt-holes : N.

The FAT32 file-system specification does not consider file owners or file
permissions. In SOS, however, we want this kind of access control. In the
implementation, we maintain this information in the resource data base (RDB).
Just like the RDT, the RDB is a, for user applications invisible, file on the
hard disk. For each user-visible file it contains an entry. Each of these entries
has a fixed size. If a file is created, a new entry is inserted into the RDB. If a
file is deleted, the corresponding entry is invalidated. As for the RDT, we are
not compressing the RDB. An RDB hole is overwritten, if a new file is created.
Thus, the size of the RDB file sometimes increases but never shrinks. Creating
a file fails, if there are no more holes in the RDB and there is not enough free
space on the hard disk to increase the size of that file. In SOS*, we use the
state-space component rdb-holes to keep track of the number of holes in the
RDB.

rdb-holes : N

As for the RDT, we need to know the number of RDB entries that can be
stored in a single cluster. In SOS*, this number is denoted by RDBEPC € Ni,.
Thus, knowing the number of visible files, the number of holes in the RDB,

and RDBEPC, we can always compute the size of the (otherwise invisible) RDB
file.
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4.2.3 Serial Interface and Virtual Terminals

In order to allow users to interact with the system, the SOS supports a screen
and a keyboard. For user applications, these two devices are combined and
multiplexed to a number of so-called virtual terminals. Essentially, a user
application may display characters on the screen of a virtual terminal or retrieve
keyboard input from it.

In SOS*, the keyboard, the screen, and the corresponding device drivers
are abstracted to the state-space component tdb, i.e. the terminal data base.
This abstraction provides NT € N, virtual terminals, where each of them is
identified by a terminal id tid_t = {0,...,NT — 1}.

Now, such a virtual terminal is the combination of an input and an output
buffer.!® Each terminal is connected to (at most) one user application. At any
time, only one terminal has the focus. The terminal that currently has the
focus, is stored in the state-space component focus:

focus : tid_t.

If a terminal has the focus, then its output buffer is visible on the screen and
the keyboard input is appended to its input buffer. The focus can be switched
by pressing the special key STK € byte_t. The STK key is not appended to
the input buffer. The contents of the input- and output buffer is retained
while switching to other terminals but emptied if the terminal connection is
passed to another application. Applications can not read from any terminal’s
output buffer, nor write to any terminal’s input buffer. All terminals have the
same set SCRC-OUT C byte_t \ {STK} of printable characters and the same set
SCRC-IN C byte_t \ {STK} of allowed input characters. The size of the input
queue is limited to TINMAX € Nj, characters. Finally, the dimensions of the
user accessible screen are fixed to SCRX € N, and SCRY € Ni, and its area is
denoted by SCRXY € Nj,.

The type term_t describes a single virtual terminal. It contains the queue
in, for keyboard input; the array out, representing the contents of the screen;
and pos, for the current cursor position:

in : byte_t™,
term_t = < out : byte_t*,

pos : N3

Now, the terminal data base is a function that maps terminal ids to
individual terminals:
tdb : tid_t — term_t.

13 In the following, if it is clear from the context, we will simply write “terminal” as a
shorthand for “virtual terminal”.
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Note that in the implementation, the topmost row of the screen is reserved
for a status line. This line contains: the information about a pending input
request, the user id of the owner of the connected application, and the file
id of the executable of the connected application. However, only the SOS
can update this line. Thus, in SOS*, it is not included in the user-accessible
screen area. Furthermore, when inspecting other state-space components, the
contents of the status line can always be computed (terminal-status defined in
§ 4.3.3.1). Thus, term_t does not contain an explicit field for the status line.

4.2.4 Network Card and Sockets

In order to send and receive emails, a network card is included in the SOS.

In SOS*, the network card, its low level device driver, the TCP/IP imple-
mentation, and the socket interface are abstracted to the state-space component
sdb, i.e. the socket data base. This abstraction provides a number of sockets,
i.e. endpoints of connections, that may be created, accessed, and closed by
means of socket calls and external input.

The type socket_t describes a single socket. It contains state, for the
abstract socket state; Ipn, for the local port number; rna, for the remote
network address; and rpn, for the remote port number. Furthermore, it
contains the queue lg, storing connection requests from remote sites; in, a
queue holding input that was received from the outside world; and out, a
queue holding output that was sent to the outside world. Additionally there is
the counter read, indicating the number of bytes in the input queue that have
been locally delivered and the counter ack, indicating the number of bytes in
the output queue that have been acknowledged by the remote site:

( state : sstate_t,

lpn : pn_t,
lg  :(na-t x pn_t)*,
ra : na_te,

socket_t = ¢ rpn : pn_t.,

in  : byte_t*,
read : N,
out : byte_t*,
ack :N

\

Here, a socket’s abstract state (sstate_t) is BOUND, LISTEN, ACCEPTING,
CONNECTING, ESTABLISHED, or REMOTE-CLOSED. The type na_-t C N3, is
used for an abstract network address (IP addresses) and the type pn_t C N,
is used for an abstract port number. A socket’s remote network address and
remote port are set to e, if the socket is not part of an established connection.
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Now, the socket data base is a function that maps socket ids sid_t C Nj
to individual sockets. Currently unassigned socket ids are mapped to e:

sdb : sid_t — socket_t..

The implementation supports a single local network address. In SOS* this
address is represented by the state-space component Ina:

lna : na_t.

Note that the contents of in and out do not contain any protocol overhead; it
represents pure payload. In addition, note that the number of unacknowledged
characters in the output queue is limited to SOCK-WIN-SIZE € N, i. e. writing
to a socket fails if this number is exceeded.

4.2.5 User Applications

The SOS supports communicating user applications. In Section 4.1, we already
explained how user applications can be seen as self-contained I/O automata.
Now we describe how their representation is integrated into the SOS* state
space.

User applications are manifested in the SOS* state space in three ways.
They are represented by: (i) a local state, i.e. the application’s internal
configuration, (ii) a number of process-related data structures, i. e. bookkeeping
data structures about the user process maintained by the kernel, and (iii) a
number of application-related data structures, i. e. bookkeeping data structures
maintained by the SOS.

4.2.5.1 Local State

From the kernel’s point of view, the SOS and the user applications are user
processes. The maximum number of simultaneously running user processes is
denoted by MAXPROCESSES € Nj,. The kernel uses process identifiers (PIDs)
to refer to specific processes. In SOS*, the set of all PIDs is represented by
pid_t = {1,..., MAXPROCESSES}. Here, the constant OSPID € pid_t denotes
the PID of the SOS process. The local states of all user applications are stored
in the process data base pdb. This state-space component is a function that
maps PIDs to process states. Currently unassigned process ids are mapped to
e:
pdb_t = pid_t \ {OSPID} — S, U {e}

and:
pdb : pdb_t.

Note that although the SOS is a user process, it is not a user application and,
therefore, invisible in SOS*. Hence, OSPID is excluded from the domain of pdb.
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4.2.5.2 Kernel Data Structures about User Processes

In SOS*, we inherit a number of data structures from VAMOS*+CO that are
necessary to characterize user applications. In the following paragraphs we
discuss each of these data structures and then combine them into (SOS*) state
space component kds.

Handle data base. User processes exclusively identify each other using
so-called handles. Handles are local names for PIDs. On a per-process basis,
the kernel maintains the mapping between handles (hAn_t C N33) and PIDs.
This mapping is called the handle data base. In SOS*, the handle data base is
represented by the kds component hdb:

hdb : pid_t x hn_t — pid_t..

There are a number of special handles provided. These are: (i) HN-NONE €
hn_t, the pseudo handle identifying no process; (ii) HN-PARENT € hn_t, the
handle identifying the parent process; and (iii) HN-SELF € hn_t, the handle
used as self-reference.'4

Stolen handle data base. If a process terminates, then all handles that
point to this process become invalid. In order to be able to synchronously
inform the affected processes about this asynchronous change in the handle data
base, the so-called stolen handles are stored in the stolen handle data base.'®
In this data base, the kernel maintains for each PID the set of stolen handles.
In SOS*, the stolen handle data base is represented by the kds component
sthdb:
sthdb : pid_t — P(hn_t).

Rights data base. Along the road of handles are IPC rights. Even if a pro-
cess has the handle for another process, it is desirable to allow a fine grained con-
trol over their communication. For that, handles are accompanied with rights.
In SOS*, these rights are encoded by the set rights_t = {SND, REQ, MULT, FIN }..
Here:

e SND denotes the right to send a message to a certain process without
waiting for an answer;

e REQ denotes the right to make a request, i.e. the right to send a message
to a certain process while enforcing that the sender waits for an answer;

MFor all user applications HN-PARENT maps to OSPID. This is because the SOS spawns
all user applications.

5Here, “synchronously” means related / due to the computations of a particular pro-
cess. The opposite is described by “asynchronously”, which means independent from the
computations of a particular process, but related to those of another process.
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e MULT denotes the right to make a request and/or send operation multiple
times; and

e FIN denotes the right to make a request and/or send operation specifying
a finite timeout.

For each pair of processes, the kernel maintains the associated IPC rights. In
SOS*, the rights data base is used to represent IPC rights. Here, the rights
data base is represented by the kds component rdb:

rdb : pid_t x pid_t. — P(rights_t).

Wait data base. Finally, if a process makes an IPC request, it might take
some time before an answer is returned. Meanwhile, the requesting process is
not scheduled by the kernel. In SOS*, the wait data base is used to track the
processes waiting for an answer to their requests. Here, the wait data base is
represented by the kds component wdb:

wdb : pid_t — B..

Now, the handle data base, the stolen handle data base, the rights data base,
and the wait data base are all data structures that are maintained by the
kernel. In SOS*, they are combined in the kernel data structure type kds_t:

hdb : pid_t x hn_t — pid_t.,

sthdb : pid_t — P(hn_t),

rdb : pid_t X pid_t — P(rights_t),
wdb : pid_t — B,

kds_t =

and represented in the state space component kds
kds : kds_t

Note that if a certain PID, or a handle, is unassigned, then the functions hdb
and wdb map to €, and the functions sthdb and rdb map to the empty set.

4.2.5.3 SOS Data Structures about User Applications

The SOS keeps track of all user processes and adds rights management and
access control based on users. It thereby establishes the concept of user
applications. For each user application, the SOS maintains a certain amount of
information. It stores, for example, which user started a particular application
and whether a certain application has access to the screen.

In SOS*, this information is represented in a number of data structures of
type app_t. This type contains the fields parent, for the handle of the parent
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application; owner, for the owner of the application; and term, for the terminal
id of the terminal this application is attached to. Furthermore, the field sockets
is used to keep track of the sockets this application is connected to and the
field exec stores the file id of the file being executed. Finally, the flag wait
tells whether the parent application is waiting for this application to terminate
and the flag read tells whether this application is waiting for keyboard input.
If an application is not attached to a terminal, then term is set to €. If an
application has no parent application, as is true, for example, for the login
shells, then parent has the value e:

parent : hn_t.,
owner : utd_t,
term  : tid_t,,
app-t = { sockets : P(sid-t),

erec : fid_t,
wait B,
(read B J

Now, the application data base is represented by the state-space component
adb. It is a function that maps application handles to the associated information.
Currently unassigned application handles are mapped to e:

adb : hn_t — app_t..

4.2.6 Portmapper

The SOS provides infrastructure for so-called RPCs. RPCs allow one ap-
plication, the client, to take advantage of some service provided by another
application, the server. Here, a service is specified by an interface name and
a procedure name. At compile time, clients know the names of the services
they intend to call. However, the location of this service, i.e. the handle
of the providing application, is unknown at that time. Hence, we need a
runtime mapping of service names to service providers. This mapping is called
portmapper data base.'©

In SOS*, a service name is represented by the type service_t. Here, a service
name is the combination of the interface id #id_t C N3, and a procedure id
preid_t C Nag, 1.e. service_t = #id_t X prcid_t.

Now, the portmapper data base is represented by the state-space component
pmdb.

pmdb : pmdb_t.

16 Currently, our portmapper implementation only supports local inquiries and instead of
mapping services to IP addresses and port numbers, it maps services to handles. This could
be easily changed but for now this simplified version suffice to serve our needs.
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Here, the type pmdb_t contains serv, the mapping between interface ids and
the handles of the providing servers; reg, the set of registered services; and
known, the set of known services:

serv  :iid_t — hn_t.,
pmdb_t = ¢ reg  :P(service-t),

known : P(service_t)

Note that we need the component known because a portmapper usually only
supports a set of well-known services. In addition, note that (supported)
interfaces that are not served, are mapped to €.

4.2.7 Summing Up

Now, collecting all pieces, the SOS* state space has the following structure:

udb : P(uid-t),

fdb : fid_t — file_t.,

rdt-holes N,

free-clusters : N,

rdb-holes  : N,

tdb s tid_t — term_t,
S =< focus : tid_t,

sdb . sid_t — socket_t,,

Ina : na_t,

pdb : pdb_t

kds s kds_t,

adb s hn_t — app_t.,

pmdb : pmdb_t
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4.3 Transition Relation

There are three main classes of SOS* transitions: system calls, local compu-
tations, and transitions related to external inputs. The class of system calls
is further differentiated into SOS calls and kernel calls. While kernel calls
and local computations (Assembler / CO semantics) are already described in
[Tsy08, Lei08], the document at hand concentrates on SOS calls and user-visible
external inputs.

SOS calls are passed to and answered by the SOS by means of IPC calls.
In a sense, each SOS call has three phases: receiving the call, handling it, and
returning the result. The handling of external inputs, can be broken apart
in a similar way. Just like SOS calls, the SOS receives interrupt notifications
through IPC calls. The transitions related to external inputs consist of a
receive phase and a handle phase.!” Now, the semantics of IPC calls are quite
complex. We want to model SOS calls as atomic steps but instead of tackling
all three / two phases at once, we will first of all (§ 4.3.1 — § 4.3.7) only describe
the handler part. That is, we ignore the side effects of receiving SOS calls and
interrupt notifications and do not describe how SOS-call results are applied to
the state space of user applications, i.e. we only describe the local transitions
of the user process that implements the SOS. This description of SOS-local
transitions will be based on the standard alphabets of external inputs (3) and
external outputs (€2) and the intermediate alphabets of SOS-call inputs (£2)
and SOS-call results (X,.) (Figure 4.1 on the following page).

In the end (§ 4.3.8) we will integrate the SOS-local transitions into the
global transition system. For that, we will add kernel calls, both as individual
calls and as missing pieces under the hood of SOS calls, and extend the
alphabets (). and ¥, to 2, and X,. Finally, we will combine this global
view of transitions related to kernel calls, SOS calls, and external inputs with
local transitions of user applications. Thus, in the end, we present a unique
transition relation for the entire system stack (Figure 4.9 on page 134).

Now, before we start specifying each of the SOS-call handlers, note the
following. For each call, we will proceed in the same way. First, we present
the CO signature of the corresponding wrapper provided by the library Libsos,
and shortly describe the behavior of the SOS call from a programmers point
of view. This introduction should then serve as a motivation for the following
mathematical specification of the particular SOS-call handler. Within this
specification, we first of all define the necessary SOS inputs and SOS outputs,
i.e. add the appropriate elements to the alphabets 2 . and ¥, and then
present the specification of the actual handler.

17Other than for SOS calls, for external inputs, there is usually no phase for returning
results. In some cases, however, the external input resolves a pending application request
(e.g. a user application waits for keyboard input) and thus results in sending a message to
some user application.
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pdb

A <

Figure 4.1: SOS*—The Small Picture. For the beginning, we specify the
SOS-call handlers independently from the rest of the system.
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4.3.1 Users
4.3.1.1 Adding a User

The library Libsos implements the following call that allows the super user to
add a new user to the system:

int sc_user_add(unsigned int* uid).

In the SOS implementation, sc_user_add is handled by sos_user_add. If there
is no error, then sc_user_add adds a new user and returns success as well the
assigned user id. Note that the new user id returned via to call-by-reference
parameter uid.

In the specification, we add UADD, as an abstract representation of the
SOS call, to the input alphabet €:

Q. © UADD

and SUCC-UADD wuid_t as well as PERM and LIMIT, as abstract representations
of the possible results, to the output alphabet >:

Y D {SUCC-UADD wid, PERM, LIMIT | uid € uid_t}.

The behavior of sos_user_add is described by the function uwadd. As we will
see in § 4.3.8.1, it is the SOS-call dispatcher that recognizes UADD and calls
uadd, passing along the current state and the handle of the calling application.
Based on these two arguments, uadd computes the next state, a list of outputs
to the environment, and the list of result messages:

uadd € § X hn_t — 8§ x QF x (hn_t x Xs.)*.

For wadd(s, hn), the following cases are considered:

e If the calling application a, with a = s.adb(hn), is not owned by the
super user, i.e. a.owner # SU, then the message (hn, PERM) is returned.

e If there is no more user ids available, i.e. if the set free of unassigned
user ids is empty, then the message (hn, LIMIT) is returned.

e If the previous cases do not apply, then the user id wid is added to
the user data base and a success message, including the new user id, is
returned. Here, uid is computed to be the smallest unassigned user id,
i.e. uid = min(free).

This adds up to the following definition of uadd:
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uadd(s, hn) =

let a = s.adb(hn);
free ={x | v € wid-t Nz ¢ s.udb};
uid = min(free);
s1 = s[udb := s.udb U {uid}]
in (s ,[], [(hn,PERM)]) if a.owner # SU,
(s 1], [(hn,LIMIT)]) else if free = { },
(s1,[], [(hn,SUCC-UADD uid)]) else.

Note that in the case of uadd, there are no outputs to the environment and
no more than one result message. However, for a simpler formalization of the
SOS-call dispatcher (§ 4.3.8.1), we specify all SOS handlers with the same
result type. Furthermore, all handlers have at least the current state and the
handle of the calling application as input arguments. Below, we will no longer
explicitly mention these (standard) input arguments, nor explain the result

type.

4.3.1.2 Removing a User

The library Libsos implements the following call that allows the super user to
remove a user from the system:

int sc_user_del(unsigned int uid).

In the SOS implementation, sc_user_del is handled by sos_user_del. If there is
no error, then, after the call is handled, uid is no longer registered.

In the specification, we add UDEL wid_t., as an abstract representation of
sc_user_del, to the input alphabet :

Q. D {UDEL wid | uid € uid_t.}
and SUCC and ARG, as possible results, to the output alphabet X :
Y. D {succ | ARG}.

The behavior of sos_user_del is described by the function udel. This function
takes, as a call-specific argument, the user id of the user that should be removed:

udel € S X hn_t X uwid_t: — S x Q" x (hn_t x X.)*.

For udel(s, hn, uid), the following cases are considered:

e If wid is not the user id of an existing user, i.e. uid ¢ s.udb, then the
message (hn, ARG) is returned.
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e If the calling application is not owned by the super user, uid still owns
some file or application, or if wid still exists in some file’s permission set,
then the message (hn, PERM) is returned.

e If none of the previous cases applies, then the uid is removed from the
system and a success message returned. Here, removing the user from
the system is as simple as removing the user id uid from the user data
base.

This adds up to the following definition of udel:

udel(s, hn, uid) =
let s1 = sfudb := s.udb \ {uid}]

(s, [][(hn, ARG)])  if uid & s.udb,
(s ,[],[(hn,PERM)]) else if s.adb(hn).owner # SU
V 3z, s.fdb(x).owner = wid
V 3. s.adb(x).owner = uid
V 3z, y. uwid € s.fdb(x).perm(y),

(81, H, [(hn, SUCC)D else.

Note that in sc_user_del, the type used for the argument uid iS unsigned int.
In the SOS implementation, however, the largest valid user id is 127. Thus,
it would be of advantage to directly restrict the possible values in SOS’s
(binary) interface. Unfortunately this is not possible due to restrictions of
the underlying IPC mechanism (see § 4.3.7). Instead, if an application calls
sc_user_del, specifying a user id >127, then the handler sos_user_del returns an
error. In the specification, the same happens. However, for a more intuitive
signature of udel, we represent all values > 127 by e. That is, all values of uid
such that wid ¢ wid_t are represented by . Thus, we use uid_t. rather than
N3,, for the third argument of udel. Below, we will use the same approach in
many places, but no longer explicitly mention it.

4.3.2 File IO

In the following subsection, we will specify SOS calls related to file I/O. We
will describe calls that allow user applications to: create, lock and unlock, read
and write, truncate, and remove files. We will also describe calls that allow
user applications: to change the owner of a file, to change the permissions
associated with files, and to retrieve the information about files.

Note that the necessary SOS* transitions are comparably easy. The reason
for that is that a hard disk only responds to requests from within the system,
i.e. there are no inputs from or outputs to the outside world. Furthermore,
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most file operations are implemented to return a result within a single SOS
cycle. That means that, except for locking a file, there is no need to maintain
requests.

4.3.2.1 Create a File

The library Libsos implements the following call that allows a user application
to create a new file:

int sc_file_creat(unsigned int fid).

In the SOS implementation, sc_file_creat is handled by sos_file_creat. If there
is no error, then, after the call is handled, there is a new file with the id equal
to fid.

In the specification, we add FCREAT fid_t., as an abstract representation
of sc_file_creat, to the input alphabet {2.:

Qs D {FCREAT fid | fid € fid_t.}.

The behavior of sos_file_creat is described by the function fereat. This function
takes, as a call-specific argument, the desired file id:

fereat € S X hn_t x fidt. — 8 x Q* x (hn_t x X))

For fereat(s, hn, fid), the following cases are considered:

e If fid is not a valid file id, i.e. fid = &, then the message (hn, ARG) is
returned.

o If a file with id fid already exists, i.e. s.fdb(fid) # €, then the message
(hn, PERM) is returned.'®

e Creating a new file requires an update of the RDT and the RDB. If the
RDT does not contain holes, i.e. s.rdt-holes = 0, then it is necessary to
extend the RDT data structure using an additional cluster and adding
RDTEPC—1 new holes. The same is true for the RDB. If the RDB does not
contain holes, i.e. s.rdb-holes = 0, then it is necessary to extend the RDB
data structure using an additional cluster and adding RDBEPC — 1 new
holes. That means, depending on s.rdt-holes and s.rdb-holes, we need
cl, with ¢l = 2 — min({1, s.rdb-holes}) — min({1, s.rdt-holes}), clusters.
Now, if there are not enough free clusters, i.e. free-clusters < cl, then
(only) the message (hn,LIMIT) is returned.

8In the following, we will use the phrase “file fid” as shorthand for “file with id fid”. If
clear from the context, we will use an analogous shorthand when referring to a user (uid), a
terminal (tid), a socket (sid), or an application (hn).
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e If none of the previous cases applies, then the values for s.rdt-holes,
s.rdb-holes, and free-clusters may be updated, the new file f is added,
and a success message returned. The new file is thereby owned by
the user ao, it has an offset equal to 0, and the initial permissions are
set to perm’. At this time, the file has no contents and it is not yet
locked. Here, ao is the user id of the owner of the calling application,
i.e. ao = s.adb(hn).owner, and perm only allows ao to lock it, i.e.
perm’ = Az € fop_t. (if x # LCK then { } else {ao}).

This adds up to the following definition of fereat:
fereat (s, hn, fid) =

let a0 = s.adb(hn).owner;
perm’ = Az € fop_t. { Ew} Zif LCK,
f = [owner = ao, pos = 0, con =[], perm = perm/, lock = []];
dbl — {s.rdb—holes —1 if s.rdb-holes > 0,
RDBEPC — 1 else;

, s.rdt-holes — 1  if s.rdt-holes > 0,
rdth’ =
RDTEPC — 1 else;

cl =2 — min({1, s.rdb-holes}) — min({1, s.rdt-holes});
Jfdb(fid) =/
rdb-holes = rdbh’,

S1 =S
rdt-holes  := rdth’,

free-clusters := s.free-clusters — cl
in hn,ARG)])  if fid = ¢,
hn,PERM)]) else if s.fdb(fid) # ¢,
hn,LIMIT)|) else if s.free-clusters < cl,
hn,SUCC))) else.

~
Vo)
e N

4.3.2.2 Lock a File

The library Libsos implements the following call that allows a user application
to try to lock a file, i.e. gain exclusive access to a file:

int sc_file_lock(unsigned int fid).
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In the SOS implementation, sc_file_lock is handled by sos_file_lock. If there
is no error, then, after the call is handled, only the caller can access the file.

In the specification, we add FLOCK fid_t., as an abstract representation of
sc_file_lock, to the input alphabet €).:

Qs D {FLOCK fid | fid € fid_t.}.

The behavior of sos_file_lock is described by the function flock. This function
takes, as a call-specific argument, the file id of the file to be locked:

flock € S x hn_t x fid.t. — S x Q* x (hn_t x X.)*.

For flock(s, hn, fid), the following cases are considered:

e If the file f, with f = s.fdb(fid), does not exist, i.e. f = e, then the
message (hn, ARG) is returned.

e If the owner of the calling application a, with a = s.adb(hn), does not
have the permission to lock the file, i.e. a.owner ¢ f.perm(LCK), then
the message (hn, PERM) is returned.

e If the number of files locked by a exceeds the constant MAXFLOCKS € N3,
i.e. |locks| > MAXFLOCKS, then the message (hn,LIMIT) is returned.
Here, locks is the set of file ids = that satisfy hn = s.fdb(x).lock[0].

e It is not considered as an error, if a already has the lock for f. Thus, in
this case the message (hn,SUCC) is returned.

e If none of the previous cases applies, then hn is appended to f.lock. If
this makes hn the head of the list, i.e. the new lock owner, then the
message (hn,SUCC) is returned. If it is not the head of the list, then
there is no immediate result. Instead, a result may be returned, if some
other application releases the lock for f (funlock defined in § 4.3.2.3).

This adds up to the following definition of flock:
flock(s, hn, fid) =

let a  =s.adb(hn);

fo = sfdb(fid);
locks = {x | s.fdb(x) # € N\ hn = s.fdb(z).lock[0]};
s1 = s[fdb(fid).lock = f.lock o [hn]]
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(S 7[]7[(hn7ARG)]) ifﬁdZE\/f:é‘,

(s ,[],[(hn,PERM)]) else if a.owner ¢ f.perm(LCK),
(s ,[], [(hn,LIMIT)])  else if |locks| > MAXFLOCKS,
(s ,[]; [(hn,sUCC)])  else if hn = f.lock|0],

(s1, [ [D) else if f.lock # [],

(s1,[], [(hn,SUCC)]) else.

Note that an application is blocked until it receives a result. Because of this, it
is impossible that the calling application is already in the list f.lock, but not the
head of that list. Thus, we can safely append hn without violating the predicate
v-unique-lock-requests. Here, the predicate inv-unique-lock-requests is an
invariant for SOS*, which is satisfied, if the entries in the lock lists are unique:

mv-unique-lock-requests € S — B
inv-unique-lock-requests(s) =
Vfid. s.fdb(fid) # ¢
_—
Vi,j e N. 0<i<j<length(s.fdb(fid).lock)
A s.fdb(fid).lock[i] # s.fdb(fid).lock]j].

4.3.2.3 Unlock a File

As counterpart to sc_file_lock, the library Libsos provides the following call
that allows a user application to release the lock on a file:

int sc_file_unlock(unsigned int fid).

In the SOS implementation, sc_file_unlock is handled by sos_file_unlock.
In the specification, we add FUNLOCK fid_t., as an abstract representation
of sc_file_unlock, to the input alphabet {2.:

Q.. D {FUNLOCK fid | fid € fid_t.}

and LOCK, as an abstract representation of a possible result, to the output
alphabet ¥.:
Y O LOCK.

The behavior of sos_file_unlock is described by the function funlock. This
function takes, as a call-specific argument, the file id of the file that should be
unlocked:

funlock € 8 x hn_t x fid_-t. — S x Q" x (hn_t x Xg.)".

For funlock(s, hn, fid), the following cases are considered:
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o If the file f, with f = s.fdb(fid), does not exist, then the message
(hn, ARG) is returned.

e If the calling application does not have the lock on the file, i.e. hn #
f.lock[0], then the message (hn,LOCK) is returned.

e If f is locked, but there is no other application waiting for the lock, i.e.
length(f.lock) = 1, then the lock is released, the position within the file
reset to 0, and the message (hn, SUCC) returned.

e If f is locked and there is at least one application waiting for the lock,
then the lock is passed to the next application and the position in the
file reset to 0. Furthermore, both applications, the one that released the
lock and the new lock owner, are informed about the success.

This adds up to the following definition of funlock:

funlock(s, hn, fid) =

let f = s.fdb(fid);
hng = f.lock[1];
_ fdb(fid).pos =0,
|| fdb(fid).lock := tail(f.lock)
(s 1], [(hn, ARG)]) if fid=cV f=c¢,
(s ,[], [(hn,LOCK)]) else if hn # f.lock[0],
(s1,[], [(hn,SUCC)]) else if length(f.lock) =1,
(s1,[], [(hn,SUCC), (hng,SUCC)]) else.

Note that because of the invariant inv-unique-lock-requests, we know that
hn # hns. Therefore, we can be sure that we will not accidently send both
success messages to the same application.

Further note, funlock either removes entries form the queue s.fdb(fid).lock
or does not modify it. Hence, we can be sure that inv-unique-lock-requests
is not violated. Now, since flock and funlock are the only functions that
(potentially) modify file locks, we can be sure that inv-unique-lock-requests is
preserved throughout the whole SOS* model.

4.3.2.4 Truncate a File

Before specifying how files are truncated, two auxiliary functions should be
introduced.

The predicate faccess-legal is used to check whether some file access is legal.
faccess-legal(s, hn, fid, fop) is satisfied, if fid is the file id of an existing file, this
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file is currently locked by the application with handle hn, and the corresponding
application owner has the permission to perform the file operation fop:

faccess-legal € S x hn_t X fid_t. X fop_t — B
faccess-legal(s, hn, fid, fop) =

fid # e A s.fdb(fid) # & A hn = s.fdb(fid).lock|0]
A s.adb(hn).owner € s.fdb(fid).perm(fop).

If faccess-legal is not satisfied, then the function faccess-error returns the
appropriate message to the application hn:

faccess-error € § x hn_t X fid_t. — S x Q" x (hn_t x ¥4 )*

faccess-error(s, hn, fid) =

(s,[], [(hn, ARG)]) if fid = ¢V s.fdb(fid) = ¢,
(s,[],[(hn,LOCK)]) else if hn # s.fdb(fid).lock|0],
(s,[], [(hn,PERM)]) else.

Now, for truncating a file, i.e. shortening its contents, the library Libsos
implements the following call:

int sc_file_truncate(unsigned int fid, unsigned int len).

In the SOS implementation, sc_file_truncate is handled by sos_file_truncate.
If there is no error, then, after the call is handled, the size of the file fid is at
most len words. Only the first 1en words are kept. Any additional data is lost.
If the file is smaller, then nothing changes.

In the specification, we add FTRUNCATE fid_t. N3,, as an abstract repre-
sentation of sc_file_truncate, to the input alphabet €:

Qs D {FTRUNCATE fid len | fid € fid_t- A len € N3}

The behavior of sos_file_truncate is described by the function ftruncate. This
function takes, as call-specific arguments, the id of the file and the desired new
length:

ftruncate € S X hn_t X fid_t- x N3y — & x Q" x (hn_t x X.)*.

For ftruncate(s, hn, fid, len), the following cases are considered:

o If faccess-legal(s, hn, fid, WRITE) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn, fid).

e If the previous case does not apply, then the file f, with f = s.fdb(fid),
is truncated and the message (hn,SUCC) returned. The value size', i.e.
the new size of f, is thereby computed as the minimum of the desired file
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length and the size of the original file. If the size of the file is reduced,
clusters may need to be freed. The number ¢l of clusters that are freed,
is computed as the difference of the number of clusters occupied by the
original file and the number of clusters occupied by the truncated file.
The new current position within the file is computed as the minimum of
the old position and the new file size.

This adds up to the following definition of ftruncate:

ftruncate(s, hn, fid, len) =

let [ =s.fdb(fid);
size = length(f.con);
size’ = min({len, size});
cl = ocl(size) — ocl(size');
fdb(fid).con := take(size', f.con),
s1 = s || fdb(fid).pos = min({f.pos, size'}),
free-clusters := s.free-clusters + cl

in faccess-error(s, hn, fid)  if —faccess-legal(s, hn, fid, WRITE),
(81, H, [(hn, SUCC)]) else.

4.3.2.5 Delete a File

The library Libsos implements the following call that allows a user application
to delete a file:

int sc_file_unlink(unsigned int fid).

In the SOS implementation, sc_file_unlink is handled by sos_file_unlink.
In the specification, we add FUNLINK fid_t., as an abstract representation
of sc_file_unlink, to the input alphabet .:

Q. D {FUNLINK fid | fid € fid_t.}.

The behavior of sos_file_unlink is described by the function funlink. This
function takes, as a call-specific argument, the file id of the file to delete:

funlink € S X hn_t x fid-t: — S8 x Q" x (hn_t x ¥..)".
For funlink(s, hn, fid), the following cases are considered:

o If faccess-legal(s, hn, fid, WRITE) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn, fid).
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e If the previous case does not apply, then the file f, with f = s.fdb(fid),
is deleted, the lock released, the previously occupied clusters freed, and a
success message returned. As the file is removed from the RDT and the
RDB, the number of holes in these data structures increase. Because of
this, s.rdt-holes and s.rdb-holes are each incremented by 1. Finally, all
pending requests to lock the file f are canceled, i.e. the corresponding
applications receive the result ARG.

This adds up to the following definition of funlink:
funlink(s, hn, fid) =

let [ = s.fdb(fid);

fdb(fid)  =e,
|| free-clusters := s.free-clusters + ocl(length(f.con)), ||
1= rdt-holes := s.rdt-holes + 1, 7
rdb-holes = s.rdb-holes + 1

m = map((Ax. (x, ARG)), tail(f.lock))

in faccess-error(s, hn, fid)  if —faccess-legal(s, hn, fid, WRITE),
(81, H, (hn, SUCC)#m) else.

As before, because of the invariant inv-unique-lock-requests, we know that all
entries in the list tail(f.lock) are unique and different from hn. Therefore, we
can be sure that we will not accidently send several messages to the same
application.

4.3.2.6 Retrieve Information about a File

The library Libsos implements the following call that allows a user application
to retrieve information about individual files:

int sc_file_info( unsigned int fid, unsigned int* fidr,
unsigned int* owner, unsigned int* size,
unsigned int* lock, unsigned int* perm,

unsigned int* fidn).

In the SOS implementation, sc_file_info is handled by sos_file_info. If there
was no error, then sc_file_info returns the id of the file that was inspected,
its owner, its size, the information whether the file is currently locked by the
calling application, the permissions for the owner of the calling application,
and the file id of the file with the next bigger file id. If sc_file_info is called
with £id equal to S0S_NIL, then information about the file with the smallest file
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id is returned.'® If there is no file with a bigger file id, then sos_NIL is returned
for fidn.

In the specification, we add FINFO fid_{. UNIL, as an abstract representation
of the SOS call, to the input alphabet .:

Q. D {FINFO fid | fid € fid_t. UNIL}

and SUCC-FINFO fid_t uid_t N33 B P(fop-t) fid_t UNIL, as an abstract repre-
sentation of a possible result, to the output alphabet ¥ .:

SUCC-FINFO fidr uid size lock perm fidn |
Yse D R fidr_t € fid_t A\ uid € uid_t A size € N3y A lock € B
A perm € P(fop-t) A fidn € fid_t UNIL

The behavior of sos_file_info is described by the function finfo. This function
takes, as a call-specific argument, the file id of the file for which information
should be retrieve:

finfo € S X hn_t x fid_t- UNIL — S X Q" x (hn_t x 3 .)".

For finfo(s, hn, fid), the following cases are considered:

e The set fids = {x | s.fdb(x) # £} is the set of all assigned file ids. If the
supplied fid is equal to NIL, then fidr is set to be the smallest assigned
file id, or €, if there are no files. If the supplied fid is not equal to NIL,
then fidr is set to the value of fid. Now, if fidr is not a valid file id,
i.e. fidr = ¢, or the file f, with f = s.fdb(fidr), does not exist, then the
message (hn, ARG) is returned.

e If the previous case does not apply, then the information about the file
f is compiled and the message SUCC-FINFO fidr wid size lock perm fidn
returned. Here, uid is the owner of the file and size the length of
its contents. The boolean flag lock is TRUE, if the calling application
currently has the lock for the file f. The set perm, with perm = {x | ao €
f.perm(x)}, contains the file permissions for the owner of the calling
application. The value of fidn is the file id of the next file, i.e. the
minimum of all assigned file ids that are greater than fidr. If there are
no assigned file ids that are greater than fidr, then fidn is set to NIL.

This adds up to the following definition of finfo:

19Combining this with the information about the next bigger file id, it is possible to gather
information about all files in the file system. This is, for example, necessary to implement
the 1s or dir command.
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finfo(s, hn, fid) =
let fids ={x|s.fdb(z) # e};

fid if fid # NIL,
fidr = < min(fids) else if fids # {},
€ else;
f = s.fdb(fidr);
utd = f.owner;

size = length(f.con);
TRUE hn = f.lock[0],
lock =
FALSE else;
ao = s.adb(hn).owner;
perm = {x | ao € f.perm(x)};
fid {mm({x | z € fids Nx > fidr}) if 3z € fids. x > fidr,
n =

NIL else;
m = [(hn,SUCC-FINFO fidr wid size lock perm fidn)]
" (s.[].[(hn, ARG)])  if fidr =V f =,
(8, H, m) else.

4.3.2.7 Write to a File

For writing to a file, the library Libsos implements the following call:

int sc_file_write( unsigned int fid, unsigned int len,
sos_buffer_t buf, unsigned int* pos,

unsigned int* size).

In the SOS implementation, sc_file_write is handled by sos_file_write. If
there is no error, then, after the call is handled, the first 1en words from the
buffer vuf are written to the file with the id fid. Thereby writing starts at
the current position. Any previous content is overwritten and the file is, if
necessary, extended. The current position within the file is updated and the
new position as well as the new file size are returned to the calling application.

In the specification, we add FWRITE fid_t. word_t*, as an abstract represen-
tation of sc_file_write, to the input alphabet Q.. Note that we use word_t*
as an abstraction that combines buf and len:

Qs D {FWRITE fid words | fid € fid_t. N words € word_t*}
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Furthermore, we add SUCC-FWRITE Nj3; N3y, as an abstract representation of
a possible result, to the output alphabet ¥ .:

Y D {SUCC-FWRITE pos size | pos, size € N3y }.

The behavior of sos_file_write is described by the function fwrite. This function
takes, as call-specific arguments, the id of the file and the string that should
be written to the file:

fuwrite € § X hn_t x fid_t. X word_t* — & x Q* x (hn_t x Xy.)*.

For fwrite(s, hn, fid, words), the following cases are considered:

o If faccess-legal(s, hn, fid, WRITE) is not satisfied, then the result is com-

puted and returned by faccess-error(s, hn, fid).

If a user application wants to write to a file fid, then this writing always
starts at the current position within the file. Starting at this point, the
previous contents is overwritten by the words words. If necessary, the file
is extended. If a file needs to be extended, then, depending on the length
of words, the position in the file, and the file size, it may be necessary to
allocate cl additional clusters. Now, if there are not enough free clusters
or the new file size would exceed the maximum file size MAXFSIZE € N,
then the error LIMIT is reported to the calling application.

If none of the previous cases applies, then the words are written to the
file and the number of free clusters adapted as necessary. Additionally,
the success message m, including the new position and the new file size,
is returned.

This adds up to the following definition of fwrite:

let

fuwrite(s, hn, fid, words) =

fc = s.fdb(fid).con;

pos = s.fdb(fid).pos;
pos’ = pos + length(words);
f¢' = take(pos, fc) o words o drop(pos’, fc);

cl = ocl(length(fc')) — ocl(length(fc));

fdb(fid).con = fc',
s || fdb(fid).pos := pos’, ;
free-clusters := s.free-clusters — cl

S1

m = [(hn,SUCC-FWRITE pos’ length(fc))]
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in faccess-error(s, hn, fid)  if —faccess-legal(s, hn, fid, WRITE),
(s ,[], [(hn,LIMIT)]) else if s.free-clusters < cl V MAXFSIZE < fc',
(817 [], m) else.

4.3.2.8 Read from a File

For reading from a file, the library Libsos implements the following call:

int sc_file_read( unsigned int fid, unsigned int* len,

unsigned int* pos, sos_buffer_tx* buf).

In the SOS implementation, sc_file_read is handled by sos_file_read. If there
is no error, then, at most, 1en words are read from the file with the id fid and
returned to the calling application. Furthermore, the new position within the
file and the number of words that have been read, are returned.

In the specification, we add FREAD fid_t. N3,, as an abstract representation
of sc_file_read, to the input alphabet ():

Qs D {FREAD fid len | fid € fid_t. A len € N3o}

and SUCC-FREAD word_t* Ns,, as an abstract representation of a possible
result, to the output alphabet X.:

Y D {SUCC-FREAD words pos | words € word_t* A pos € N3y }.

The behavior of sos_file_read is described by the function fread. This function
takes, as call-specific arguments, the id of the file and the number of words
that should be read:

fread € S X hn_t x fid_t. x N3y — & x Q* x (hn_t x X))

For fread(s, hn, fid, len), the following cases are considered:

o If faccess-legal(s, hn, fid, READ) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn, fid).

e If the previous case does not apply, then a success message, containing
the words that have been read and the new position pos’, is returned.
Here, the length len’ is calculated as the minimum of how much can be
read from the file, the length len, and the buffer size CMPC € Ni,.20

20Tn the implementation, we have to statically fix the size of IPC messages used for
receiving SOS calls and returning results. Thus, only a limited number of words may be
read with a single sc_file_read call. In the specification, this number is represented by the
constant CMPC.
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This adds up to the following definition of fread:

fread(s, hn, fid, len) =

let f o =s.fdb(fid);

len = min({length(f.con) — f.pos, len, CMPC});
words = take(len’, drop(f.pos, f.con));

/

pos’ = f.pos + len';
51 = s[fdb(fid).pos := pos'];
m = [(hn,SUCC-FREAD words pos’)]

in faccess-error(s, hn, fid)  if —faccess-legal(s, hn, fid, READ),
(81, [],m) else.

4.3.2.9 Change the Position within a File

Before specifying how the position within a file can be changed, we need an
auxiliary function.

The function offset(start, current, end, flag, off ) computes a value in the
range [start...current...end]. Depending on the flag flag, the offset off is
either added to start, current, or end:

Oﬁset S N32 X NSQ X N32 X Z32 X Z32 — NgQ
offset(start, current, end, flag, off ) =

mazx ({min({start + off , end}), start}) if flag <0,
mazx ({min({current + off , end}), start}) else if flag =0,
mazx({min({end + off , end}), start}) else.

Note that off < 0 is possible. For example, offset(0,5,10,1,—1) = 9.
Now, for changing the position within a file, the library Libsos implements
the following call:

int sc_file_seek( unsigned int fid, int flag, int off,

*unsigned int pos).

In the SOS implementation, sc_file_seek is handled by sos_file_seek. If there
is no error, then the position within the file fid is changed and the new position
returned to the calling application. The calculation for the new position pos
depends on flag. If flag is smaller than o, then pos=off. If flag is equal to
0, then off is added to the current position within the file. Finally, if fiag is
greater than o, then off is added to the position at the end of the file. In any
case, the new position is ‘cropped’ to point to a position within the file.
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In the specification, we add FSEEK fid_t. Zs, Z33, as an abstract represen-
tation of sc_file_seek, to the input alphabet €.:

Q. D {FSEEK fid flag off | fid € fid_t- A flag, off € Z32}

and SUCC-FSEEK Ns,, as an abstract representation of a possible result, to the
output alphabet X:

Y D {SUCC-FSEEK pos | pos € N3, }.

The behavior of sos_file_seek is described by the function fseek. This function
takes, as call-specific arguments, the id of the file, the flag indicating the mode
of operation, and the offset:

fseek €8 x hn_t x ﬁd,te X Z32 X Z32 — S x O x (hn,t X ESC)*.

For fseek(s, hn, fid, flag, off ), the following cases are considered:

o If faccess-legal(s, hn, fid, READ) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn, fid).

e If the previous case does not apply, then the new position pos’ is calcu-
lated using the function offset, the file position is updated. Furthermore,
a success message, containing the new position within the file, is returned
to the calling application.

This adds up to the following definition of fseek:

fseek(s, hn, fid, flag, off ) =

let [ = s.fdb(fid);
pos’ = offset(0, f.pos, length(f.con), flag, off);
s1 = s[fdb(fid).pos := pos']

in

faccess-error(s, hn, fid) if ~faccess-legal(s, hn, fid, READ),
(s1,]], [(hn,SUCC-FSEEK pos’)]) else.

4.3.2.10 Change the Permissions associated with a File

For changing the permissions associated with a file, the library Libsos imple-
ments the following call:

int sc_file_chmod( unsigned int fid, unsigned int fop,

unsigned int uid, int flag).
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In the SOS implementation, sc_file_chmod is handled by sos_file_chmod. If there
is no error, then the permissions associated with the file fid may be changed.
If f1ag is greater than or equal to o, then the user uid receives the permission
to perform the file operation fop. If flag is less than 0, then the permission is
revoked. Note that the SOS call also returns successfully if the permissions do
not need to be updated, i.e. if the user already has the permission and the
calling application tries to add it, or if the user does not have the permission
and the calling application tries to remove it.

In the specification, we add FCHMOD fid_t. fop_t. wid_t. Zss, as an abstract
representation of sc_file_chmod, to the input alphabet €).:

a s FCHMOD fid fop uid flag |
> fid € fid_t. A fop € fop_t. A uid € uid_t. A flag € Zss |

The behavior of sos_file_chmod is described by the function fchmod. This
function takes, as call-specific arguments, the id of the file, the file operation,
the user id, and the flag indicating the mode of operation:

fehmod € S x hn_t x fid_t. X fop_t. X wid_t. X Zs»
— S X Q" x (hn_t x ¥g)*.

For fchmod(s, hn, fid, fop, uid, flag), the following cases are considered:

e If fid is not a valid file id or such a file does not exist or if fop is not a
valid file operation or uid does not exist, then the message (hn, ARG) is
returned.

e If the calling application hn does not have the lock for the file, then the
message (hn, LOCK) is returned.

e If the owner of the calling application is neither the owner of the file
nor entitled to change its permissions, then the message (hn, PERM) is
returned.

e If none of the previous cases applies, then wuid is either added to or
removed from the set of users entitled to perform the file operation fop
on the file f. Whether wid is added or removed depends on the flag flag.
If flag > 0, then wuid is added, otherwise uid is removed. Furthermore, a
success message is returned.

e If the previous case applies and it is some file-lock permission that has
been revoked, i.e. fop = LCK A flag < 0, then additionally the list of
lock requests is inspected to cancel all requests that are no longer valid,
i.e. the corresponding applications receive the result PERM. For that,
we filter the list of f.lock to collect all applications that are owned by
uid and then create a list of error messages using the map operator.
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Furthermore, all those applications that receive an error message are
removed from the list of lock requests.

This adds up to the following definition of fchmod:

fchmod (s, hn, fid, fop, wid, flag) =

let ao = s.adb(hn).owner;
[ = s.fdb(fid);
, f.perm(fop) U{uid} if flag >0,
perm/ =
f.perm(fop) \ {uid} else;

s1 = s [fdb(fid).perm(fop) := perm/];

hns = filter((Az. s.adb(x).owner = uid), tail(f.lock));

m = map((Ax. (x,PERM)), hns);

lock! = hn#filter((A\x. s.adb(z).owner # wid), tail(f.lock));
S9 = s1 [fdb(fid).lock := lock']

(s, [], [(hn, ARG)]) if fid=cV fop=cV f=cVuid ¢ s.udb,
(s ,[], [(hn,LOCK)]) else if hn # f.lock|0],

(s ,[],[(hn, PERM)]) else if ao # f.owner A ao ¢ f.perm(CHMOD),
(s1,[], [(hn,SUCC)]) else if fop # LCK V flag > 0,

(s2, ], (

, (hn, SUCC)#m) else.

S1,

52,

Again, because of the invariant inv-unique-lock-requests, we know that all
entries in the list tail(f.lock) are unique and different from hn. Therefore, we
can be sure that we will not accidently send several messages to the same
application.

4.3.2.11 Change the Owner of a File

The library Libsos implements the following call that allows the super user to
change the owner of a file:

int sc_file_chown( unsigned int fid, unsigned int uid).

In the SOS implementation, sc_file_chown is handled by sos_file_chown. If there
is no error, then, after the call is handled, the file fid is owned by uid.

In the specification, we add FCHOWN fid_t. uid_t;, as an abstract represen-
tation of sc_file_chown, to the input alphabet .:

Qs D {FCHOWN fid wid | fid € fid_t. A\ uid € uid_t.}.
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The behavior of sos_file_chown is described by the function fchown. This
function takes, as call-specific arguments, the id of the file and the user id of
the new owner:

fchown € 8 X hn_t x fid_t. x uid_t. — S x Q% x (hn_t x Xg.)*.

For fchown(s, hn, fid, wid), the following cases are considered:

o If the file fid does not exist, or the user uid does not exist, then the
message (hn, ARG) is returned.

e If the calling application An does not have the lock for the file, then the
message (hn, LOCK) is returned.

e [f the calling application is not owned by the super user, then the message
(hn,PERM) is returned.

e If none of the previous cases applies, then the file data base is updated
such that uid is the new owner of the file fid, and a success is message
returned.

This adds up to the following definition of fchown:

fchown(s, hn, fid, uid) =

let s1 = s[fdb(fid).owner := uid]

in (s ,[],[(hn, ARG)]) if fid = ¢V s.fdb(fid) =V uid ¢ s.udb,
(s ,[],[(hn,LOCK)]) else if hn # f.lock|0],
(s ,[],[(hn,PERM)]) else if s.adb(hn).owner # SU,
(81, H, [(hn, SUCC)]) else.

4.3.2.12 How Does It Compare

In § 1.2.1, we mentioned a number of projects that focused on file systems.
Since Yang et al. [YTEMO0G6] essentially did rule-based testing and Joshi and
Holzmann [JHO07] have not yet published any results, only the works of Bevier
et al. [BCT95, BC96] and Arkoudas et al. [AZKR04] can be compared with
our file system specification.

The specifications provided by Bevier et al. are to a certain degree similar
to our specification. Disregarding the fact that they used the specification
languages Z and ACL2, they represented files in a similar fashion and formalized
similar set of file operations. On the one hand, the file system they specified
has more features than ours (e.g. multi level directories and the concept of
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file descriptors), but, on the other hand, their specification is intended as a
programmer’s manual and thus lacks the completeness of our specification. For
example, they did not consider any resource limits, excluded error reporting,
and ignored concurrent file access.

In [AZKRO04], Arkoudas et al. established a simulation relation between
two differently abstract models of a file system. Although they managed to
prove simulation, their specification is far from complete. In fact, they only
considered a simple read operation and a simple write operation. Even for
these two operations, they did not consider anything like processes, users, or
permissions.

4.3.3 Virtual Terminals

In the following subsection, we will specify SOS calls that allow user applications
to get keyboard input, write to the screen, change the position of the cursor,
and retrieve information about the terminal.

Other than the hard disk, a keyboard depends on the outside world. If a
user presses a key on the keyboard, then this is considered to be an external
input to the SOS*. Hence, in the following we will also describe how such input
is treated, i.e. specify the keyboard-interrupt handler.

4.3.3.1 Get Keyboard Input

Before we describe what happens if a user application wants to read keyboard
input, we need some auxiliary functions.

The function terminal-owner(s, tid) returns the handle of the application
that is connected to the virtual terminal tid. If the terminal is not connected
to any application, then ¢ is returned:?!

terminal-owner € § X tid_t — hn_t.

terminal-owner(s, tid) =

{e{x | s.adb(z).term = tid}  if Jz.s.adb(x).term = tid,

€ else.

Note that in terminal-owner we use the Hilbert Choice operator € to choose
one handle hn from the set of handles of applications that are connected to
the terminal ¢id. This is only deterministic if there is (at most) one such hn.
That means, any virtual terminal should only be connected to (at most) one

21 A virtual terminal may not be connected to an application, if the initial user application
that was started for this terminal, i.e. the login shell, terminated.
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application. Thus, we need the following invariant:

inv-unambiguous-terminal-owner € § — B
inv-unambiguous-terminal-owner(s) =
Vhni, hna. s.adb(hny).term = s.adb(hnz).term
A s.adb(hny).term # e
_—
hni = hno.

In § 4.3.6 we will see that the owner of a terminal only changes if a new
application is created (aexec and afork defined in § 4.3.6.1 and § 4.3.6.2,
respectively) or if an existing application is terminated (aexit defined in
§ 4.3.6.4). In all three cases, a terminal connection may be passed from one
application to another but never newly assigned. Thus, we can be sure that inv-
unambiguous-terminal-owner is preserved throughout the whole SOS* model.

In the implementation, each virtual terminal displays a status line (see
§ 4.2.3). The contents of this line can always be computed using the function
terminal-status. If the terminal is connected to some application a, then this
line displays whether a has a pending input request, the terminal id, the user
that owns the connected application, and the file id of the executable of the
application. If the terminal is not connected to an application, then only the
terminal id is displayed:

terminal-status € S x tid_t — (B, tid_t, uid_t., fid_t.)

terminal-status(s, tid) =

let hn = terminal-owner(s, tid);
a = s.adb(hn)
in . .
(a.read, tid, a.owner, a.exec) if hn # ¢,
(e, tid, e, €) else.

Now, the library Libsos implements the following call that allows a user
application to read keyboard input from a connected terminal:

int sc_term_read(char* c).

In the SOS implementation, sc_term_read is handled by sos_term_read. If there
is no error, then the oldest character from the input queue of the connected
terminal is returned to the calling application.

In the specification, we add TREAD, as an abstract representation of the
SOS call sc_term_read, to the input alphabet {2g.:

Q. O TREAD
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and SUCC-TREAD byte_t, as an abstract representation of a possible result, to
the output alphabet X.:

Y. D {SUCC-TREAD b | b € byte_t}.
The behavior of sos_term_read is described by the function tread:
tread € S X hn_t — S x Q* x (hn_t x Xg.)".

For tread(s, hn), the following cases are considered:

e If the calling application is not connected to a terminal, i.e. tid =
s.adb(hn).term and tid = e, then the message (hn, PERM) is returned.

e If the input queue t.in, with ¢t = s.tdb(tid), is empty, then the read flag
in the caller’s application data structure is set to TRUE to signal the
pending input request. In this case, there is no immediate result. Instead,
a result may be returned by the event handler that treats keyboard input
(event-tkbd defined in § 4.3.3.2).

e If none of the previous cases applies, then the oldest character, i. e. t.in[0],
is removed from ¢.in and a success message, containing this character,
returned.

This adds up to the following definition of tread:

tread(s, hn) =

let tid = s.adb(hn).term;
t = s.tdb(tid);
s1 = s[adb(hn).read := TRUE];
sg = s[tdb(tid).in := tail(t.in)]
in (s ,[],[hn, PERM]) if tid = ¢,
(s1,[1,[]) else if t.in =[],
(s2,[], [An,SUCC-TREAD t.in[0]]) else.

4.3.3.2 Keyboard Input —KBD

If the user presses a key on the connected keyboard, then an interrupt is raised
and delivered to the SOS. In the SOS implementation, such an interrupt is
handled by the keyboard-interrupt handler sos_term_int. This interrupt handler
first of all reads the input from the device and then processes it.
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In SOS*, we add KBD na_t byte_t, as an abstract representation of a
keyboard interrupt, to the input alphabet :

Y O {KBD dna byte | dna € na_t A byte € byte_t}.

Here, KBD identifies the input as keyboard input, the network address identifies
the system the input is intended for, and the byte is the actual input.??

Now, we want to present an abstraction of sos_term_int. First of all, note
that receiving keyboard input is problematic as there are two scenarios where
keyboard input might get lost:

e If the latency of the interrupt handler is high, the UART’s internal
receive queue may overflow. Even if there was hardware flow control, a
user that is fast enough and that does not follow some protocol, could
fill up any hardware buffer. In this case, input from key strokes is lost
independently from the currently focused virtual terminal.

e If an applications does not consume the input, then the software buffer
might overflow. In this case, input from key strokes is only lost, if the
input buffer of the currently focused virtual terminal is full.

We will model these two bottlenecks at different places in SOS*. The hardware
buffer overflow will be modeled at the dispatcher level (see § 4.3.8.2). There,
the transition relation A nondeterministically drops keyboard input. The
software buffer overflow will be modeled along with the specification of the
keyboard-interrupt handler.

Thus, considering the software buffer overflow, the interrupt handler sos_
term_int is described by the function event-tkbd. This function takes, as event-
specific arguments, the (destination) network address and the actual input:

event-tkbd € S x na_t x byte_.t — S x QO x (hn_t x ¥..)*.

For event-tkbd(s, dna, byte), the following cases are considered:

e If the keyboard input is not intended for the local system, i.e. dna #
s.Ina; if the key is neither the STK key nor does it translate to a valid
input character; if the input queue of the currently focused terminal
t = s.tdb(s.focus) is full, i.e. length(t.in) = TINMAX; or if ¢ is not
connected to any application; then the key is simply ignored.

e If the key is the STK key, then the focus is moved to the next terminal.

e If the key translates to a valid input character, and there is no pending
input request from the connected application, then the character is
appended to the input queue of the currently focused terminal

22The network address is necessary as soon as there are multiple instances of SOS*. In
this case, we need a way to match keyboard input and target system (see Chapter 5).
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e If the key translates to a valid input character, and there is a pending
input request, then the request is removed and a success message, includ-
ing the new character, returned to the waiting application. Note, there
can only be a pending input request, if the input queue is empty (tread
defined in § 4.3.3.1).

This adds up to the following definition of event-tkbd:

event-tkbd (s, dna, byte) =

let tid = s.focus;
t = s.tdb(tid);
hn = terminal-owner(s, tid);
s1 = s[focus := (s.focus + 1) %NT];
so = s[tdb(tid).in := t.in o [byte]];
s3 = s[adb(hn).read := FALSE]

(s, [, if dna # s.lna

V (byte # STK A byte ¢ SCRC-IN)
V length(t.in) = TINMAX

V hn =g,
(s1, [, []) else if byte = STK,
(s2,[1,1]) else if —adb(hn).read,

(s3,[], [(hn,SUCC-TREAD byte))]) else.

4.3.3.3 Write to the Screen

The library Libsos implements the following call that allows a user application
to write to the screen of a connected terminal:

int sc_term_write(char c, int flag).

In the SOS implementation, sc_term_write is handled by sos_term_write. If there
is no error, then the character c is printed on the screen and the cursor position
incremented. The exact placement of ¢ and the contents of the remaining
screen depend on the flag f1ag. If flag is less or equal to 0, then c is printed at
the current cursor position. If fiag is equal to 1, then the row of the current
cursor position is cleared and ¢ printed at the beginning of that row. Finally,
if f1ag is greater or equal to 2, then the whole screen is cleared and ¢ printed
in the upper left corner.
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In the specification, we add TWRITE byte_t Zso, as an abstract representa-

tion of sc_term_write, to the input alphabet €).:

Q. D {TWRITE byte flag | byte € byte_t A flag € Z3a}.

The behavior of sos_term_urite is described by the function twrite. This function
takes, as call-specific arguments, the character that should be printed and the

flag indicating the mode of operation:

twrite € S X hn_t X byte_t X Zzy — S X Q* x (hn_t x X.)*.

For twrite(s, hn, byte, flag), the following cases are considered:

e If the calling application is not connected to a virtual terminal, then the

message (hn, PERM) is returned.

If byte is not a printable character, i.e. byte ¢ SCRC-OUT, then the
message (hn, ARG) is returned.

If none of the previous cases applies, then the screen contents is updated
and a success message returned. For that, we first of all compute the
position pos’ where the character has to be placed. Then, the new
contents of the screen is computed by concatenating beg, the prefix of
the old contents; the character byte; possibly some white spaces; and
end, the postfix the old contents (see Figure 4.2 on the facing page).
Finally, the cursor is moved behind the character that has been printed.
If byte is printed at the lower right corner, then the cursor is moved to
the upper left corner.

This adds up to the following definition of twrite:

let

twrite(s, hn, byte, flag) =

tid = s.adb(hn).term;
t = s.tdb(tid);
tc = s.tdb(tid).out;
t.pos if flag <=0,
pos’ t.pos — (t.pos%SCRX)  else if flag =1,

0 else;

beg = take(pos’, tc);

drop(pos’ + 1, tc) if flag <=0,
end = { SPACESCRX=1o drop(pos’ + SCRX, tc) else if flag =1,
SPACESCRXY—1 else;

tdb(tid).out := beg o [byte] o end,
s1 =s
! tdb(tid).pos := (pos’ + 1)%SCRXY
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in (s ,[], [(hn, PERM)])  if tid = e,
(s ,[],[(hn,ARG)])  else if byte ¢ SCRC-OUT,

(s1,[], [(hn,SUCC)])  else.

Here, we use SPACE € SCRC-OUT to denote the white-space character. Further,
we use SPACE” to denote a list | € byte_t* such that [ = [SPACE, ..., SPACE].

01 0|1 0 X
6|7 41516 |7 415
10(11 819 |x|11 X

121131415 121131415 12113|14|15

(a) (b) (c) (d)

Figure 4.2: Writing to a Terminal (twrite). If (a) depicts some terminal’s
screen contents s.tdb(t).out, then (b), (c), and (d) depict s1.tdb(t).out, if the
application hn was connected to t and successfully called twrite(s, hn,z,0),
twrite(s, hn,x, 1), or twrite(s, hn,x,2), respectively.

4.3.3.4 Change the Position on the Screen

For moving the cursor, the library Libsos implements the following call:
int sc_term_seek(int flag, int off, unsigned int* pos).

In the SOS implementation, sc_term_seek is handled by sos_term_seek. If there
is no error, then the position of the cursor on a connected terminal is updated
and the new position returned to the calling application. The calculation for
the new position pos depends on flag. If flag is smaller than o, then pos=off.
If f1ag is equal to o, then off is added to the current cursor position. If flag is
greater than o, then off is added to the position at the end of the screen. Note,
as for sc_term_seek, off may be negative, in which case the cursor is moved
backward. In any case, the new position is ‘cropped’ to point to a position on
the screen.

In the specification, we add TSEEK Zs3, Zss, as an abstract representation
of sc_term_seek, to the input alphabet €:

Qsc ) {TSEEK ﬂag Oﬁ | ﬂa’g’ Oﬁ € Z32}

and SUCC-TSEEK Nas,, as an abstract representation of a possible result, to the
output alphabet X.:

Ysc D {SUCC-TSEEK pos | pos € N3y }.
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The behavior of sos_term_seek is described by the function tseek. This function
takes, as call-specific arguments, the flag indicating the mode of operation and
the offset:

tseek € S X hn_t X Zzg X Lzg — S x Q* x (hn_t X Xg.)*.
For tseek(s, hn, flag, off ), the following cases are considered:

e If the calling application is not connected to a virtual terminal, then the
message (hn, PERM) is returned.

e If the previous case does not apply, then the new position pos’ is calcu-
lated using the function offset, the cursor position updated accordingly,
and a success message, containing the new position, returned.

This adds up to the following definition of tseek:
tseek (s, hn, flag, off ) =

let tid = s.adb(hn).term;
pos = s.tdb(tid).pos;
pos’ = offset(0, pos, SCRXY — 1, flag, off );
s1 = s[tdb(tid).pos := pos']

in (s ,[], [(hn, PERM)]) if tid = ¢,
(s1,[], [(hn,SUCC-TSEEK pos’)]) else.

4.3.3.5 Retrieve Information about a Terminal

The library Libsos implements the following call that allows a user application
to retrieve information about a connected terminal:

int sc_term_info( unsigned int* width, unsigned int* height,

unsigned int* pos).

In the SOS implementation, sc_term_info is handled by sos_term_info. If there is
no error, then sc_term_info returns the width and height of the (user accessible)
screen area and the current cursor position.

In the specification, we add TINFO, as an abstract representation of the
SOS call, to the input alphabet .:

Q. O TINFO

and SUCC-TINFO N3, N3, N3j, as an abstract representation of a possible result,
to the output alphabet X.:

Ysc D {SUCC-TINFO width height pos | width, height, pos € N3 }.
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The behavior of sos_term_info is described by the function tinfo:
tinfo € S X hn_t — 8 x QF x (hn_t x ¥g.)".
For tinfo(s, hn), the following cases are considered:

e If the calling application is not connected to a virtual terminal, then the
message (hn, PERM) is returned.

e If the previous case does not apply, then a success message, including
SCRX, SCRY, and the position of the cursor on the terminal, is returned.

This adds up to the following definition of tinfo:

tinfo(s, hn) =

let tid = s.adb(hn).term;
pos = s.tdb(tid).pos

in (s, 1], [(hn, PERM)]) if tid = e,
(s,]], [(hn,SUCC-TINFO SCRX SCRY pos)]) else.

4.3.4 Sockets

We want to allow user applications to communicate with the outside world.
For that, the SOS implementation provides a socket interface. In the following
subsection, we will first of all give some background information about the TCP
layer, its assumptions, and its guarantees. Based on that, we will introduce
abstract network packets, state fundamental invariants about sockets, and
finally specify SOS handlers and event handlers related to sockets.

Note that the necessary SOS* transitions are fairly complex. Modeling a
network card and its device drivers requires us to deal with external input as
well as external output and it is also necessary to consider network properties.
This makes the abstraction less intuitive and the simulation relation more
complex. For a better understanding, we will give more explanation than for
transitions related to file I/O or virtual terminals. In several places we will
point out how the abstraction relates to the implementation and why certain
abstractions may be valid.

4.3.4.1 TCP Assumptions and Guarantees

In general, TCP provides reliable, in-order delivery of a stream of bytes [Ste93].
Our implementation, (additionally) guarantees Safety and Liveness for the
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opening phase, the transmission phase, and the closing phase [Cai06].2% In
order to guarantee these properties a number of assumptions are made. Among
them are:

e Network Liveness: every IP packet that is sent infinitely often will
eventually be received.

e Network Safety: the source of an IP packet can not be faked.

e Time to Live: IP packets expire in a way that guarantees unique sequence
numbers.

e Internal Liveness: the TCP layer is called infinitely often.

e Absence of Timeouts: there are no external timeouts, i.e. the socket
layer does not set up timeouts for data submitted to the TCP layer (e.g.
there are no timeouts for for requesting and accepting a connection or a
connection does not terminate after a certain time without traffic).

These assumptions impose requirements on the network as well as on the
implementation of the network protocol stack of all the communication partners.
At this point, we are actually arguing about several systems (see Chapter
5 and Chapter 6). Although the above assumptions very much restrict our
implementation, we were still able to implement a relevant subset of the socket
calls specified in the POSIX standard [IEE04]. This implementation is, on
the one hand, powerful enough to communicate with any of the standard
implementations (e. g. the implementations within Linux and Windows XP),
and, on the other hand, restrictive enough to meet the above assumptions.
That means that our operating system can be tested / used in the ‘real world’,
but, at the same time, we are able to take advantage of the TCP guarantees
within SOS* and DSOS*. The latter allows us to represent communication via
sockets on a very abstract level.

4.3.4.2 Abstract Network Packets

As in TCP, the communication via sockets can be divided into three phases,
i.e. the opening phase, the communication phase, and the closing phase:

e In the opening phase, a socket is created and bound to a local address
and local port number. Furthermore, in this phase, a connection is
established. How a connection is established depends on the character of
the participating applications. A server signals its willingness to accept
connections on a certain local port by listening on the corresponding
socket. Then, a connection is established, if there is a client that requests

23 A short overview of the “Reactive Properties of the TCP Subsystem of the Simple
Operating System” is presented in the Verisoft-internal Technical Report #69.
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open
close
close |
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accept
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/ connect listen
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Figure 4.3: Live Cycle of a Socket. Sockets end up waiting for connection
requests or may become part of a connection. (Figure 4.8 on page 100, at the
end of this subsection, presents a more precise picture.)

a connection and the server accepts that request. On the client side, the
original socket is used as an endpoint of the newly established connection.
On the server side, the original socket remains in listen mode and a new
socket is used as an endpoint of the newly established connection. (see
Figure 4.3)

e In the communication phase, sockets are used to send and receive data.

e In the closing phase, a connection is terminated, if at least one of the
endpoints explicitly closes it. In this case, the closing side releases it’s
socket and the opposite side is informed. Then, the latter changes it’s
socket state to reflect this (partially) closed connection.

In all three phases, the state of a socket depends on the socket calls executed
on the local machine as well as on external events. In the implementation,
the socket layer is at the top of the TCP /IP stack. At the bottom of that
stack is a network card that receives data from the outside world and that
sends data to the outside world. Receiving data via the network card is very
similar to receiving data via the serial interface; a remote system sending data
is similar to a user pressing a key on a connected keyboard. Hence, in SOS*,
we model data coming in via the network card as external inputs and data
going out as external outputs. Depending on the level of abstraction these
inputs and outputs may be TCP packets, IP packets or one of the units of even
lower layers. In SOS*, we hide as much as possible of the underlying protocols.
Here, we no longer talk about TCP packets but introduce abstract network
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packets. A single abstract network packet is either a packet used to establish a
connection (REQ and READY), a packet used to exchange or acknowledge data
(DATA and ACK), or a packet used to close a connection (CLOSE). In SOS*,
the type np_t is used to represent abstract network packets. It is an abstract
data type that contains (at least) the packet identifier (constructor) REQ,
READY, DATA, ACK, or CLOSE; the sender’s port and network address; and
the receiver’s port and network address. A data packet additionally contains a
list of bytes, the actual payload, and a data acknowledge packet additionally
contains the number of bytes that should be acknowledged:

np_-t = REQ na-t pn_t na_-t pn_t
| READY na_t pn_t na-t pn_t
| DATA na_t pn_t na_t pn_t byte_t*
| ACK na-t pn_t na-t pn_t N3,
| CLOSE na-t pn_t na_t pn_t.

Note that the correspondence between abstract network packets and TCP
packets is non-trivial. For example, in the implementation, a client may send
several sYN packets before one of them is received by the server. In SOS*,
however, we represent all of these syn packets by a single REQ packet, i.e.
we hide the packets that are lost. That means that in SOS*, a REQ packet
simply declares the willingness to connect to a remote site. Thus, instead of
(re-) modeling the opening phase of the underlying TCP protocol, we take
advantage of the TCP guarantees and use the abstract network packets REQ
and READY only as means of synchronization. Hence, there is no need to send
a REQ packet several times. This is also the reason why the final ack packet,
the third way of the so-called three-way handshake [Ste93], is invisible in SOS*.
In Appendix A.2, we formally proved that, for SOS* and DSOS*, this two-way
handshake is indeed a valid abstraction of the three-way handshake.?* Similar
abstractions are used for the communication- and closing phase.

Having abstract network packets in place, we are now able to add NET np,
as an abstract representation of network input, to the input alphabet >:

Y D {NET np | np € np_t}
and as an abstract representation of network output to the output alphabet 2:
Q= {NET np | np € np_t}.

4.3.4.3 Socket Invariants

Before we can finally get to the actual calls and handlers, we still need to
formulate a number of necessary socket invariants. These invariants primarily

#The proof in Appendix A.2 is taken from the Verisoft Technical Report #5 [Bog08d].
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rely on the fact that, in our implementation, the only sockets that are shared
are endpoints of established connections. That is, in SOS* while forking
an application, only those sockets that are in the state ESTABLISHED or in
the state REMOTE-CLOSED are made accessible to the child application (afork
defined in § 4.3.6.2). Furthermore, shared sockets can not be reused to establish
new connections, i.e. the state of such a socket can not be changed (back) to
BOUND, LISTEN, or ACCEPTING. Finally, opening a socket on a port that is
already in use is prohibited:

e If a socket is in the state BOUND or CONNECTING, then there is no other
socket associated with the same local port:

mv-unique-socket-bound-connecting € S — B
inv-unique-socket-bound-connecting(s) =
Vsidy, sida. s.sdb(sidy).state € {BOUND, CONNECTING }
A s.sdb(sida) # € A sidy # sido
—
s.sdb(sidy).lpn # s.sdb(sid2).lpn.

e If a socket is in state LISTEN, then there is no other socket listening on
the same local port:

inv-unique-state-listening € S — B
inv-unique-state-listening(s) =
Vsidy, sidy. s.sdb(sidy).state = LISTEN
A s.sdb(sida) # € A sidy # sido
—
s.8db(sids).lpn # s.sdb(sidy).lpn
V s.5db(sida).state # LISTEN.

e If a socket is in state ACCEPTING, then there is no other socket accepting
on the same local port:

inv-unique-state-accepting € S — B
inv-unique-state-accepting(s) =
Vsidy, sidy. s.sdb(sidy).state = ACCEPTING

A s.sdb(sida) # € A sidy # sido
.
s.sdb(sidgy).lpn # s.sdb(sidy).lpn
V s.sdb(sidy).state # ACCEPTING.
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e Connections are unique, i.e. there are no two sockets that are in the
state ESTABLISHED and that have the same local port, the same remote
port, and the same remote network address:

inv-unique-connection € S — B
inv-unique-connection(s) =
Vsidy, sida. s.sdb(sidy).state € {ESTABLISHED }
N s.sdb(sidy).state € {ESTABLISHED }
A sidy # sida
_—

s.sdb(sidy).lpn # s.sdb(sid2).lpn

V s.sdb(sidy).rpn # s.sdb(sids).rpn

V s.sdb(sidy).rna # s.sdb(sids).rna.

e If there are two application that have access to the same socket, then this
socket is in the state ESTABLISHED, or in the state REMOTE-CLOSED:

inv-only-established-shared € S — B
inv-only-established-shared(s) =
Vsid. 3hny, hny. sid € s.adb(hny).sockets
A sid € s.adb(hng).sockets
A hny # hna
_—
s.sdb(sid).state € {ESTABLISHED, REMOTE-CLOSED}.

e Since TCP provides in-order delivery of packets, we can be sure that
a CLOSE packet is only (successfully) received, after all DATA packets
have been received and acknowledged. Hence, if a socket’s state is
REMOTE-CLOSED, then there can not be any unacknowledged data:

inv-close-in-order € S — B
inv-close-in-order(s) =
Vsid. s.sdb(sid).state = REM