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There is no reason for any individual to have a computer in his home.
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Mein Dank gilt zunächst meinen Eltern, die mich während der gesamten Zeit
meiner Ausbildung gefördert haben. Am Ende habe ich dank ihnen den
Unterschied zwischen ”R“ und ”L“ doch noch begriffen.
Herrn Prof. Wolfgang Paul danke ich für die Möglichkeit zur Promotion, sowie
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Abstract

Within the Verisoft project, we aim at the pervasive modeling, implementation,
and verification of a complete computer system, from gate-level hardware
to applications running on top of an operating system. As an adequate
representative for such a system we choose a system for writing, signing, and
sending emails.

The starting point of our work was a processor together with its assembly
language, a compiler for a type safe C variant and a micro kernel. The goal
of our work was to develop a (user-mode) operating system that bridges the
gap between micro kernel and user applications. That is, formally specify
and implement a system that, on the one hand, is built right on top of our
micro kernel and, on the other hand, provides everything necessary for user
applications such as an SMTP server, a signing server, and an email client.
Furthermore, the design of this system should support its verification in a
pervasive context.

Within this thesis, we present the formal specification of such an operating
system. Along with this specification, we (i) discuss the current state-of-the-art
in formal methods applied to operating-systems design, (ii) justify our approach
and distinguish it from other people’s work, (iii) detail our implementation-
and verification stack, (iv) describe the realization of our operating system,
and (v) outline the verification of this system.

Zusammenfassung

Innerhalb des Verisoft-Projekts streben wir die durchgängige Modellierung,
Implementierung und Verifikation eines kompletten Computersystems, von der
Hardware auf Gatterebene bis hin zu Benutzeranwendungen, an.

Ausgangspunkt unserer Arbeit war ein Prozessor inklusive Assembler Spra-
che, ein Compiler für eine typen-sichere C Variante und ein Mikrokern. Ziel
unserer Arbeit war es, ein Betriebssystem (auf Benutzerebene) zu entwickeln,
welches die Verbindung zwischen Mikrokern und Benutzeranwendungen her-
stellt. Das bedeutet, ein System formal zu spezifizieren und zu implementieren,
welches auf der einen Seite direkt auf dem Mikrokern aufsetzt und auf der
anderen Seite alle Voraussetzungen für Benutzeranwendungen wie einen SMTP
Server, einen Signatur Server und ein E-Mail Programm erfüllt. Außerdem soll
das Design dieses Systems seine durchgängige Verifikation unterstützen.

In dieser Arbeit präsentieren wir die formale Spezifikation eines solchen
Systems. Ferner (i) diskutieren wir den aktuellen Stand im Bereich der for-
malen Methoden im Betriebssystemdesign, (ii) rechtfertigen unseren Ansatz
und differenzieren ihn von dem anderer, (iii) stellen die unterschiedlichen
Implementierungs- und Verifikations-Schichten unseres Projektes vor, (iv) be-
schreiben unsere Umsetzung des Systems und (v) skizzieren seine Verifikation.
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Introduction

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Document Organization . . . . . . . . . . . . . . . . . . . . 7

In this chapter we describe the background of this work, discuss related
work, and motivate our own work.

1.1 Background

There is an ever increasing amount of computer systems in our daily life. For
example, we use computers to play games, listen to music, or watch videos.
Besides using them for entertainment, we also use computers to shop, bank,
and pay bills. Most of our communication and information relies on computers.
In industry, production is likely to be planned and coordinated with the aid
of computers. They are widely used in the medical- and service sector. Our
stock markets are controlled by computers and we trust in them to operate
airplanes and nuclear power plants. Finally, even weapons of mass destruction
are controlled by computer systems. In fact, computers are so prevalent in
our daily lives that should they be taken away, almost everything would shut
down; our world would change dramatically.

Although computer systems play such an important and responsible role,
only few of us really understand how they work. In many cases, we use them
without asking questions. Fortunately, most of the time, these systems behave
well and there is no reason to be sceptical. If, however, such a system fails,
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2 CHAPTER 1. INTRODUCTION

severe consequences are possible. It is, therefore, not surprising that the
demand for truly robust, safe, and secure systems constantly grows.

Computer systems are composed of many layers of hard- and software.
In most cases, however, the user only perceives the top-most layer, i. e. the
application layer. Past attempts to satisfy the desire for reliable systems often
focused on this layer. By means of testing, people tried to establish a certain
level of reliability. But only limited reliability can be achieved this way. This
is because (i) unless tested exhaustively, there may be unexpected corner
cases, and (ii) other system components (e. g. underlying system software)
may behave differently than expected. Hence, in order to gain a truly reliable
system, it does not suffice to test independent pieces, but the correctness of
the entire system has to be proven. The Verisoft project [Ver07] aims at the
pervasive modeling, implementation, and verification of a complete computer
system, from gate-level hardware to applications running on top of an operating
system.

The modeling and implementation of a user-mode operating system in a
pervasive context is the topic of this work.

1.2 Related Work

There have been numerous attempts to increase confidence in system software
by means of formal methods. Each of the different attempts may be assigned
to one of the following categories: (i) the component approach, (ii) the par-
allel approach, (iii) the single-layer approach, or (iv) the pervasive approach.
Below, we will discuss the relevant research results for each of these categories.
Although our work belongs to the pervasive-approach category, results from
the other categories are worthwhile looking at.

1.2.1 Component Approach

Projects in this category focus on selected system components. They choose
some part of the implementation of a complex system, contrive some specifica-
tion for it (neglecting the rest of the system), and then show some high level
properties. From a distant point of view, one could say that projects in this
category horizontally and vertically split a single system layer (Figure 1.1(a)
on page 6).

All sorts of system components have been the subject of formal work.
However, as the principal part of the work at hand deals with the formalization
of a file system, a socket API [IEE04] and TCP / IP [Pos81b, Pos81a], as
well as virtual terminals, we will only consider publications related to these
components.

Hard-disc driver and file systems. In [BCT95], Bevier et al. describe how
they specified a subset of the interface functions of the Synergy file system using



1.2. RELATED WORK 3

the specification language Z [Spi92]. This specification is provided on a very
abstract level. It is intended as a programmers manual rather than a model for
proving implementation correctness. The specification describes what happens
if the preconditions for an interface function are met but ignores what happens
if they are not. Many (other) details are ignored and the issue of concurrent file
access is not treated at all. In order to validate their specification, Bevier et al.
later (re-) implemented their Z specification using ACL2 [KMM00]. Definitions
and theorems about the ACL2 model are presented in [BC96].

In 2004, Arkoudas et al. [AZKR04] established a simulation relation between
the specification of a file system (which models the file system as an abstract
map from file names to sequences of bytes) and its implementation (a model
which assumes fixed-size disk blocks to store the contents of the files). They
proved the correspondence between these two models but did not consider an
actual implementation. They omitted details such as file permissions, dates,
links, and multi-layered directories and they assumed an unbounded hard disk.

Yang et al. [YTEM06] used model checking to systematically test for file-
system errors. They did not focus on a single file system, but developed a
method to ‘stress-test’ different file-system implementations. Among other
things, they tested for memory leaks and deadlocks.

In 2007, Joshi and Holzmann [JH07] suggested that “Building a Verifiable
Filesystem” could be a suitable candidate for a so-called mini challenge. Their
goal is to build a small file system for flash memory and at the same time
produce as much as possible machine-readable documentation. This documen-
tation should then be used for automatic verification. No results have been
reported up to now.

Note, an additional discussion and comparison of our file-system formaliza-
tion and the formalizations within the above mentioned related work can be
found in § 4.3.2.12.

TCP / IP stack and socket API. In 1996, Smith [Smi96b, Smi96a] reports
on the formal verification of TCP. In his work, he first of all provides an
abstract specification for TCP / IP transport level protocols and then proves
that different (more concrete) models of TCP satisfy this specification. He
does not consider an actual TCP implementation.

In 2002, Smith et al. [SR02] specified the selective acknowledgment (SACK)
[MMFR96] extension for the TCP standard. Based on this specification, they
were able to verify that SACK does not violate TCP’s safety properties, i. e.
“no data is discarded, duplicated, or reordered because of the SACK mechanism
that could not have been discarded, duplicated, or reordered with the standard
acknowledgment mechanism”. Other than the earlier work of Smith, this work
only focuses on a particular algorithm for network congestion avoidance [Jac88].
They present proofs for a (retransmission) strategy but (again) do not consider
a particular implementation.
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The NETSEM project [Net08], headed by Peter Sewell, did a lot of work
in the area of protocol- specification and validation. This project is an ongoing
effort. So far, they have developed formal models of TCP, UDP [Pos80], and
sockets at protocol level [BFN+05, BFN+06] and at service level [RNS08].
Their extensive specifications are formalized in higher order logic using the
HOL automated proof system [Hol08]. They validated their protocol-level
specification by comparing model traces with traces captured from the imple-
mentations in FreeBSD, Linux, and WinXP. In order to also validate their
service-level specification, they specified an abstraction function and showed
that traces of the protocol-level model have a counter part in the service-level
model. The specifications they provide are very comprehensive and contain
many details and special cases of the standard TCP, UDP, and socket imple-
mentations. However, they are not aiming at proving correctness of a particular
implementation but try to establish a technique that allows us (i) to formalize
complex protocols and (ii) to mechanically validate the achieved specifications.
They suggest that their specifications should be used for conformance testing
of new implementations.

Note, as for the file system, an additional discussion and comparison of
our TCP- and socket formalization and the formalizations within the above
mentioned related work can be found in § 4.3.4.16.

Serial interface driver and terminal I/O. In terms of a component-wise
approach, we do not know of any formal work on serial interfaces.

All projects in this category achieve valuable results. Yet, they suffer from
the fact that integrated components are treated as if they were isolated from
the remaining system (although they are not). That means, correspondence
between implementation and specification can not be proven. Thus, results
can not be transferred to actual systems and are, therefore, of rather limited
value.

1.2.2 Parallel Approach

Projects in the parallel-approach category try to protect security-sensitive
data and, at the same time, provide complete functionality of common general-
purpose operating systems. These projects reduce the system’s trusted com-
puting base by running legacy operating systems and security-sensitive services
in separate partitions on top of a micro kernel. In a sense, the projects in this
category horizontally split a system layer (Figure 1.1(b) on page 6).

The Perseus project [PRS+01] and the Nizza architecture [HHF+05] belong
to this category. Both projects use an L4 micro kernel [L407] implementation
as virtualization platform. On top of the micro kernel, they implement means
that permit the running of legacy operating systems and secure applications
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(e. g. a signature module) in parallel. Furthermore, they provide methods to
exchange data between insecure and secure parts.

Certainly, both projects increase faith in system software but this faith
is based on the correctness of the underlying micro kernel. For the Perseus
project as well as the Nizza project, no formal proofs have been published so
far.

1.2.3 Single-Layer Approach

Work in this third category applies formal methods to an entire system layer,
usually the micro kernel layer (Figure 1.1(c) on the following page).

Recent candidates in this category are L4.verified [HEK+07, EKD+07],
VFiasco [HTS02, HT05, Tew07b, Tew07a], and Eros [SW00]. All three projects
have established semantics for C variants and have verified different properties
on source-code level. But kernel implementations also contain hardware specific
parts that are necessarily implemented in assembly language. To the best of
our knowledge, (up to now) none of the above mentioned projects formally
treats these hardware specific parts. As far as we can see, these parts are
simply postulated to be correct and solely described by their semantic effects.
Moreover, these projects rely on compiler correctness.

Within the Flint project [NYS07], a verification framework for assembly
code was developed. Using this framework and a formalization of a subset of
the x86 instruction set, they were able to formally prove the correctness for
some context-switching code.

Robin [Tew07a] and Coyotos [SDN+04] are the successor projects of VFiasco
and Eros, respectively. So far, none of them has published formal results.

Projects in this category achieve great results. They enrich the micro-kernel
family and increase faith in them. Yet, they discard pervasive verification and
instead focus on the verification of a single software layer.

1.2.4 Pervasive Approach

Projects in this last category aim at pervasive system verification. Formal
methods span multiple layers of hard- and software. That is, several verified
system layers are integrated into a stack. Here, integration means that the
verification of one layer is based on the guarantees of the underlying layers
(Figure 1.1(d) on the next page).

The community in this last category is small. An early but famous project
in this category is the verified stack [Moo02] of Computational Logic Inc. (CLI).
Just like the Verisoft project, this project aimed at pervasive verification
of a complete system. They started from a hardware model and developed
an assembler and a code generator for a simple high-level language. Using
machine language, they implemented the simple operating system kernel KIT
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(a) (b) (c) (d)

Figure 1.1: Categories in System Verification. (a) the component approach,
(b) the parallel approach, (c) the single-layer approach, and (d) the pervasive
approach.

[Bev89]. KIT, however, was never really integrated into their stack; the
modeled hardware lacked the necessary features (e. g. memory management,
different modes of operation, or I/O interrupts). KIT featured services that
are also found in today’s micro kernels, namely memory virtualization, process
isolation, a round-robin scheduler, message passing, and device-driver support.
Yet, these services were still very limited compared to those found in modern
micro kernels. For example, message passing was restricted to single words,
and dynamic process creation was entirely impossible.

Inspired by the CLI stack, the ProCoS project [BHL+96] researched the
development process. They focused on the theoretical background of pervasive
system verification. Consequently, they neither focused on a particular system
nor aimed at machine-checked proofs.

Similarly to ProCoS, FOCUS [BDD+92] provides formalisms for the speci-
fication and verification of distributed interactive systems. FOCUS aims at
the modular development and implementation of such systems by refining
requirement specifications down to concrete implementations. FOCUS itself
is only a framework that provides the methods but, by using these methods,
Spies [Spi98] was able to specify some key concepts of operating system kernels.
In her work, she specifies, for example, process management and memory
virtualization. However, her abstract specification does not correspond to a
particular implementation.

Although the last two projects somehow belong to the pervasive approach
category, they are also examples of a whole group of projects / languages that
aim at providing formal methods. Other examples are TLA+ [Lam02], CSP
[Hoa78], and Z [Spi92].

1.3 Motivation

Without a doubt, the last type of approach, the pervasive approach, is the
most satisfactory one but also the most expensive one. Still, so far no one
has managed to integrate and formally verify a system stack up to the level
of user application. The Verisoft project aims at exactly that. As we will
describe in Chapter 3, a processor together with its assembly language, a
verified compiler for a type safe C variant and a micro kernel have already
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emerged from this project. What is missing to achieve the ambitious goal is a
(user-mode) operating system, i. e. a system that bridges the gap between micro
kernel and user applications, provides a high-level interface to the attached
devices, supports different users, and permits a fine-grained control of system
resources.

The document at hand presents a formal specification of the user-mode
operating system SOS, a system that satisfies the above-mentioned requirements
and thereby fills the gap. In contrast to other projects, our specification is
fully connected to specifications of lower system layers. As we will show in the
following chapters, we are actually incorporating an entire system, consisting
of a processor, external devices, and a micro kernel. This is new. We are the
first to present a formal specification of an operating system that, on the one
hand, reaches so far up and, on the other hand, is part of an integrated system
stack. Still, this operating system is more than a toy. As we will describe
in Chapter 3, our system has been used to successfully implement and run
applications such as an SMTP server, a signing server, and an email client.
Furthermore, our formal specification has been used to specify and partially
prove properties of these user applications.

It is worth mentioning that the specification at hand has a corresponding
Isablele / HOL [NPW02] specification [Bog08c] and a C0 [LPP05] implementa-
tion [Bog08a]. Thus, in a sense, this document is only one of the three corner
stones of our work. (Figure 1.2).

math spec

C0 implementation

Isabelle/HOL spec

Figure 1.2: Cornerstones of This Work.

1.4 Document Organization

The remaining document is organized in the following way. In Chapter 2,
we detail conventions followed in this document. Chapter 3 describes the
foundation of our work and the implementation of the SOS. Chapter 4 is
the key chapter of this work. There, we describe the SOS? model, i. e. the
specification of SOS. In Chapter 5, we extend SOS?. There, we present the
DSOS? model, i. e. the model of a distributed system containing a number of
SOS? instances. In Chapter 6, we outline the verification obligations and sketch
the proofs for the top level theorems. Finally, in Chapter 7, we summarize our
work.
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In this chapter we review typographical and mathematical issues that are
relevant to the unambiguous understanding of the work at hand.

2.1 Typography

Within this document we describe the SOS from different perspectives. In order
to avoid confusion between the different perspectives, we generally use an italic
font for the mathematical specification, monospace for the C0 implementation,
and slanted monospace for Isabelle / HOL related material. Names of constants,
used in the mathematical specification, are set in SMALL UPPERCASE LETTERS.

2.2 Mathematical Notations

Basic types and operations. The basic types used in this document are
N32 = {0, . . . , 232 − 1}, N+

32 = N32 \ {0}, Z32 = {−231, . . . , 231 − 1}, B =
{TRUE, FALSE}. Additionally we use N = {0, 1, 2, . . . } for the set of natural
numbers. In many places we introduce types for a particular purpose. Such
types may be easily recognized by their name extension t. We use, for example,
word t = {0, . . . , 232 − 1} and byte t = {0, . . . , 28 − 1} as basic units for I/O
operations.

For the aforementioned numeric types we take the operations: − (subtrac-
tion), + (addition), / (integer division), ∗ (multiplication), % (modulo), and Σ
(sum) for granted.

9
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For boolean types we assume that the basic logical operations: ∧ (con-
junction), ∨ (disjunction), and ¬ (negation) are predefined. We write ∃ for
the existential quantifier and ∀ for the universal quantifier. Sometimes the
type of a quantified variable is omitted, if it can be inferred otherwise. An
implication is denoted by −→. In rare cases, we use =⇒, ⇐⇒, and ≡ to
express an implication, tautology, and equivalences.

Sets. We take the set operations: A∪B (set union), A∩B (set intersection),
A×B (Cartesian product), and A \B (set difference) as well as A ⊂ B (strict
subset), A ⊆ B (subset), and a ∈ A (element of) for granted. Besides these
operations, we denote set comprehension by {x | x ∈ A∧ P (x)} and the power
set of A by P(A). We write |A| for the cardinality of the set A and { } for
the empty set. We compute the smallest member of a set of numbers using
the min operator, i. e. min(A) = x⇐⇒ x ∈ A ∧ ∀y ∈ A. x ≤ y. Likewise, the
greatest member of a set of numbers is computed using the max operator, i. e.
max (A) = x ⇐⇒ x ∈ A ∧ ∀y ∈ A. x ≥ y. In rare cases we use the Hilbert
Choice Operator ε to select an arbitrary element from a given non-empty set.

Tuples and Records. For small structured values we use n-tuples. The
type of such an n-tuple (x0, x1, . . . , xn) is T0 × T1 × · · · × Tn, if x0 ∈ T0 ∧ x1 ∈
T1 ∧ · · · ∧ xn ∈ Tn. We assume that elements of an n-tuple can be enumerated
(starting from 0). Access to the i-th element of an n-tuple x is denoted by x[i].

We often have to deal with structured values consisting of many components.
To effectively model these values, we use records. Essentially records are n-
tuples with explicitly labeled components. To declare a record type rec t , we
write rec t = {n0 : T0, . . . , nn : Tn}. Here, n0 through nn are distinct identifiers
and T0 through Tn are the types of the corresponding components. When
referring to individual components of a record, we use the dot notation. We
write, for example, x.ni to refer to the component ni of the value x. To construct
an instance of some record type, we write Jn0 = v0, . . . , nn = vnK. Here, the
values v0 through vn must match the types from the corresponding record
declaration. In many places we only need to update individual components of
record-type values. Instead of reconstructing the entire value, mostly copying
values, we write, for example, x′ = xJni := v′iK. Here, x′ is a copy of x where
the component ni is updated to have the value v′i. All other components
remain unchanged. Record types may be nested. Updating a ‘deep component’
of a nested-record-type value would require to unfold the whole structure and
update all enclosing records, from the actual component up to the outermost
record. As this is very inconvenient, we write, for example, x′ = xJni.mj := v′jK
as a shorthand for x′ = xJni := x.niJmj := v′jKK.

Abstract data types. Some aspects are best modeled using so-called ab-
stract data types. Let T0,0, . . . , T0,m0 , T1,0, . . . , T1,m1 , . . . , Tn,mn be some types
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and C0, . . . ,Cn some constructor names. Then, we declare the abstract data
type T as:

T = C0 T0,0 . . . T0,m0

| C1 T1,0 . . . T1,m1

. . .

| Cn Tn,0 . . . Tn,mn .

Now, if, for example, (x1,0, . . . , x1,m1) ∈ T1,0×· · ·×T1,m1 , then C1 x1,0 . . . x1,m1

would be a value of T . There may be abstract data types only containing
constructors, i. e. constructors without parameters. Thus, the simplest abstract
data type is nothing but an enumeration. However, more advanced abstract
data types may contain different constructors with different numbers of pa-
rameters. Furthermore, abstract data types may be nested or even recursively
defined.

Compound expressions. We use a small set of common functional pro-
gramming notations. We write if x then a else b for conditional expressions.
The value of this ‘if then else’ expression is: a if x evaluates to TRUE and
b otherwise. To prevent ambiguous conditional expressions the else part is
mandatory. In several places we use:

a if x,

b else if y,

c else

for a more intuitive version of if x then a else (if y then b else c).
Besides ‘if then else’ expression we use abbreviations. We write let x0 =

y0; . . . ;xn = yn in e(x0, . . . , xn) as an abbreviation for e(y0, . . . , yn). Note that
the substitution of an abbreviation by the corresponding right hand side may
be non-trivial. This is because pattern matching can be used. We write, for
example, let (x0, x1) = (y0, y1) in x0+x1 to simultaniously assign abbreviations
for x0 and x1, which are later used separately. Furthermore, abbreviation may
be nested. That is, within the same let block, an abbreviation introduced
earlier is sometimes used on the right hand side of a later assignment. In
let x0 = y0;x1 = x0 + 1 in . . . , for example, the abbreviation x0 is used to
define x1.

Functions. Usually, we first of all declare the type of a function and only
then define it. We write, for example, f ∈ Z→ N to declare a function f that
maps values from the domain Z to values in the range N. An appropriate
definition could then be f(x) = if x ≥ 0 then x else − x. In many places, we
extend the type of the range of a function by the uninterpreted constant ε, in
order to avoid partial functions. Thus, we use, for example, g ∈ Z→ N ∪ {ε}
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to declare a function that would otherwise only be defined for a subset of
Z. As we use this ‘type extension’ frequently, we write Tε as a shorthand
for T ∪ {ε}. Occasionally, we need to update a function definition only
for particular domain elements. Just like the notation used for records, we
write f ′ = fJni := v′iK to denote f ′(x) = ( if x = ni then v′i else f(x)).
Also, for function updates, we write f ′ = fJni.mj := v′jK as a shorthand for
f ′ = fJni := f(ni)Jmj := v′jKK. Occasionally, we use λ-notation. We write
λx ∈ T. f(x) to denote the anonymous function that maps any x ∈ T to f(x).

Lists. We use the concept of abstract data types to recursively define lists.
Let T be a type. Then, we define the list type T ∗ as T ∗ = [ ] | CONS T T ∗,
i. e. a list is either the empty list [ ] or the concatenation of a single element
and a list. Thus, lists have the constructors [ ] and CONS. As a shorthand for
CONS x xs , we write x#xs . Here, x is called the head of the list and xs its tail.
We assume that the tail of a list is returned by list operator tail . Constructing
lists manually is not very handy. Thus, we write [a] as a shorthand for a#[ ].
Furthermore, let a0, . . . , an ∈ T . Then, the list containing these elements is
denoted by [a0, . . . , an]. Let l1 and l2 be two lists of the same type. Then, their
concatenation is denoted by l1 ◦ l2. The length ∈ T ∗ → N operator returns the
length of a list. It is recursively defined as:

length(l) =

{
0 if l = [ ],
1 + length(tail(l)) else.

The elements of a list l can be enumerated (starting from 0). The i-th element
of l is denoted by l[i]. The sublist of l that contains the elements in the range
i to j is denoted by l[i : j], i. e. l[i : j] = [l[i], . . . , l[j]]. The type of a list with
fixed length n ∈ N is denoted by Tn, if the type of the individual elements
is T . The map ∈ (T0 → T1) × T ∗0 → T ∗1 operator is used to lift a function
to operate on a list of elements, i. e. map(f, [x0, . . . , xn]) = [f(x0), . . . , f(xn)].
The filter ∈ (T → B)× T ∗ → T ∗ operator is used to remove all those elements
from a list that do not satisfy a certain predicate:

filter(P, l) =


[ ] if l = [ ],
filter(P, tail(l)) else if ¬P (l[0]),
l[0]#filter(P, tail(l)) else.

The take ∈ Z × T ∗ → T ∗ operator returns the prefix of a list. Assuming
take(z, l), this prefix contains (at most) z elements. If z ≤ 0, then the empty
list is returned:

take(z, l) =

{
[ ] if l = [ ] ∨ z ≤ 0,
l[0]#take(z − 1, tail(l)) else.
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The drop ∈ Z × T ∗ → T ∗ operator returns the postfix of a list. Assuming
drop(z, l), the first z elements (at most) are dropped from the list. If z ≤ 0,
then the original list is returned:

drop(n, l) =

{
l if l = [ ] ∨ z ≤ 0,
drop(z − 1, tail(l)) else.





Chapter

3

Foundation

Contents

3.1 VAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 C0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 CVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 VAMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Libvamos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 SOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Libsos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 Running the Whole System . . . . . . . . . . . . . . . . . . 30

In this chapter we elaborate on the design and implementation of the SOS
with respect to its environment, i. e. the underlying system layers and the
applications running on top of it.

First, we introduce the micro processor VAMP, an appropriate Assembler,
and the high level programming language C0. Based on these, we work our
way through the different layers of the system stack. That is, we describe the
model of communicating virtual machines, detail the micro kernel VAMOS,
outline the implementation of the SOS, and finally discuss some applications.

3.1 VAMP

At the bottom of our system stack we have the Verified Architecture Mi-
croprocessor (VAMP). This processor is a pipelined 32-bit RISC proces-
sor based on the MIPS instruction set. Among other things, the VAMP

15
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comes with a memory unit with a cache system, a Tomasulo [Tom67] out-
of-order scheduler, fully IEEE 754 [IEE85] compliant floating point units,
a fixed point unit, and precise interrupts [Bey05]. Numerous people (e. g.
[BJK+03, BJK+05, JB05, DHP05, Hil05]) have worked on the design, imple-
mentation and correctness proofs of the individual parts of the VAMP. In the
end, however, the overall proof, i. e. the correctness of the gate-level imple-
mentation of the entire VAMP with respect to the programmer’s model of a
step-by-step instruction execution, has been carried out by Sven Beyer [Bey05],
using the theorem proving system PVS [ORS92], and Sergey Tverdyshev
[Tve08] and Iakov Dalinger [Dal06], using the Isabelle/HOL proof assistant
[NPW02]. The programmer’s model of the processor is realized by the instruc-
tion set of the VAMP. This model is called the instruction set architecture
(ISA). ISA is the basis for the following software layers.

3.2 Assembler

Clearly, we do not want to implement or, even worse, verify any software
at machine-code level. Thus, for the Verisoft project, Mark Hillebrand et al.
have implemented an assembler and Alexandra Tsyban [Tsy08] proved the
correctness of the corresponding assembler model against ISA.

3.3 C0

The verification of operating-system code at assembler level would still be a
very tedious and error prone task. Hence, a high-level language, including
formal semantics and compiler-correctness theorems, is desirable. Having these
in place, we are, on the one hand, able to (more) efficiently argue about the
correctness of operating systems (OSs) and user applications and, on the other
hand, verification results can be brought down to machine level. Then, on
machine level, software verification results can be combined with hardware
correctness into an overall system-correctness proof.

For the Verisoft project, Leinenbach et al. designed the high level program-
ming language C0 and provided a formal small-step semantics. Together with
Elena Petrova, they implemented a C0 compiler and proved its correctness
[LPP05, Pet07, Lei08, LP08].

In order to reason on an even more abstract level, Norbert Schirmer has
provided a verification environment for sequential imperative programming
languages and an automatic verification condition generator [Sch05]. This
environment is built on top of Isabelle/HOL. Via an intermediate C0 big-step
layer, it allows us to reason about C0 programs using classical Hoare triples
[Hoa69].

The higher layers of our system stack, e. g. the SOS and the applications,
are implemented in C0. Their implementations are much influenced by the



3.4. CVM 17

abilities and limitations of C0. Below, we will, therefore, present a short
summary about C0.

The syntax of C0 is similar to the one of standard C [ANS99]. Operational
semantics, however, is similar to Pascal [ANS83]. Compared to C, the main lan-
guage restrictions are the lack of pointer arithmetic, function pointers, pointers
to local variables, and prefix and postfix arithmetic operations. Furthermore,
the size of arrays (including the type of the individual elements) has to be
statically defined, there is only one return statement (which has to be the last
statement of a function body), and side effects in expressions are forbidden. C0
is a type-safe programming language. The basic types it provides are signed
and unsigned integers (int and unsigned int), characters (char), and booleans
(bool). Based on these basic types, structures, array types, and pointers can be
constructed. Type casts are allowed for basic types. C0 inherits the following
operators from standard C:

• !, &&, and || for logical expressions,

• ==, !=, >, <, >=, and <= for (numerical) comparisons,

• +, -, *, and / for arithmetic expressions,

• <<, >>, |, &, and ^ for bitwise manipulations, and

• & and * for pointer manipulations.

Finally, C0 provides while loops, if-then-else conditionals, function calls,
assignments, and basic means for dynamic memory allocation (new) and garbage
collection.

3.4 CVM

As in many recent projects, we have split our OS into a part running in system
mode, i. e. the micro kernel, and a part running in user mode, i. e. the user-mode
OS. Furthermore, we have divided the micro kernel into a hardware-dependent
part and a hardware-independent part [Tan01].

In our implementation, the hardware-dependent part contains portions of
assembly code. It encapsulates all hardware-specific low-level functionality in
so-called CVM primitives and takes care of page faults. Thus, it provides a
framework for the hardware-independent part.

From a verification point of view, the hardware-dependent part provides an
independent layer, i. e. the model of communicating virtual machines (CVM).
Each of these virtual machines (VMs) is essentially an abstract processor with
virtual memory. It is the context for a single thread of execution, i. e. a process.
Thus, the two major tasks of the CVM layer are memory virtualization and
switching between different threads of execution.
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CVM primitive Description

cvm_reset removes memory and initializes registers of a VM
cvm_clone duplicates a VM

cvm_alloc increases memory of a VM
cvm_free decreases memory of a VM

cvm_copy copies data between VMs
cvm_get_gpr reads VM registers
cvm_set_gpr writes VM registers

cvm_dev_io copies data between virtual mem. and a device
cvm_set_mask sets the external interrupt mask
cvm_load_os loads initial user process

cvm_wait (idle) loops until there is a runable VM
cvm_start start / switch to a VM

Table 3.1: CVM Primitives

In our formalization, we call the hardware-independent part the abstract
kernel. By compiling and linking the implementations of the CVM primitives
and some implementation of an abstract kernel (see Section 3.5) we obtain an
executable micro kernel. In our formalization, we call this combination the
concrete kernel.

The implementation of the abstract kernel uses the CVM primitives to
manipulate the virtual machines running in user mode, i. e. the user processes.
Among other things, CVM primitives allow us: to copy data between virtual
machines, to modify their virtual memory size, and to access their general
purpose registers. The set of the available CVM primitives is given in Table 3.1.
Using these primitives, the hardware-independent part can be implemented in
plain C0.

The verification of CVM is nearly finished. The overall CVM correctness is
described in a paper-and-pencil style in [RT08] and in a formal way in [GHLP05,
Rie08]. It comprises the following propositions: (i) the page fault handler
correctly implements memory virtualization [ASS08], (ii) the CVM primitives
establish the CVM model and their implementation is functionally correct
[ST08], and (iii) the CVM model can be instantiated by arbitrary abstract
kernels, written in C0, and arbitrary user processes, written in assembly.
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3.5 VAMOS

In the Verisoft project, we have two abstract kernel implementations: OLOS
[KP07] and VAMOS [Dör06]. OLOS’s primary targets are automotive appli-
cations. OLOS will not be discussed in the work at hand. VAMOS, however,
provides means for general purpose OSs. The SOS is built on top of VAMOS.
Thus, the implementation of VAMOS and the corresponding model of the
concrete kernel will be the subject of this section.1

3.5.1 Implementation

The main features of VAMOS are: (i) user processes can be created and
killed, (ii) user processes may have different privileges, (iii) user processes
are scheduled via a priority-based round-robin scheduler, (iv) user processes
are strictly isolated by means of memory virtualization, (v) user processes
may communicate via synchronous inter-process communication (IPC), and
(vi) user processes may register as device drivers and interact with devices.
These features can be controlled via so-called kernel calls or VAMOS calls.

Initial / privileged process. When VAMOS boots, it launches an initial
user process. This process has to set up the user-mode OS. As a privileged
user process, it is allowed to bring up new user processes and kill existing ones,
it is able to control the memory available to user processes, it may change
scheduling parameters, it can alter the registration of device drivers, and it is
able to add other user processes to the set of privileged processes. In contrast, a
non-privileged user process is basically only allowed to perform IPC operations.
Besides being privileged, the initial user process has the highest scheduling
priority. That means, as long as it does not assign this priority to another user
process, it can be sure to be scheduled next, as soon as it is ready.

Synchronous IPC. VAMOS supports synchronous IPC. Messages of (al-
most) arbitrary size may be exchanged via a send and a receive operation.
Furthermore, an operation for a combined send and receive operation, i. e. a
request, is provided.

Handles. The kernel implements a capability-like security concept for IPC.
While the kernel identifies user processes by unique process identifiers (PIDs),
user processes refer to each other via process-local aliases, so-called handles.
The kernel maintains the mapping between handles and PIDs in the handle
data base. This indirection permits authentic process identification. When a
user process dies, all handles to it are invalidated and all handle owners receive
a death notification.

1 Below, if it is clear from the context, we will (also) refer to the concrete kernel as
VAMOS or simply as kernel.
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IPC rights. Together with handles, the kernel maintains IPC rights. These
rights encode whether a certain user process has the right to send a message
to a certain other user process, if it can only request something, or if it is not
allowed to know the other user process at all. Additionally, a user process can
control whether a finite timeout may be used and whether the IPC rights are
valid for more than one successful IPC operation. The kernel maintains IPC
rights in the rights data base.

Device driver. If a user process is registered as a device driver for a par-
ticular device, then it can read from and write to the corresponding device
registers. Furthermore, it will be notified about interrupts from that device.
There is a one-to-one mapping between devices and interrupt numbers and
only one device driver may be registered for a certain device. Interrupts for
devices without a registered device driver are lost.

Kernel notifications. Besides pure message delivery, the IPC mechanism is
used to control and propagate updates of the handle data base and the rights
data base. Furthermore, it is used to synchronously deliver kernel notifications,
i. e. interrupt- and death notifications.

Kernel calls. A user process may call the kernel using the trap instruction
while passing along the appropriate kernel-call number. The trap instruction
triggers an exception, which causes the system to switch to system mode. In
system mode the interrupt service routine is called. This routine saves the
caller’s context and executes an appropriate interrupt handler. The latter
evaluates the trap instruction and passes control to the kernel-call dispatcher.
The kernel-call dispatcher passes the call to the appropriate kernel-call handler.
The kernel-call handler, finally, reads the kernel-call arguments from the caller’s
registers and services the call. At some point, the kernel call will be processed
and the call chain reverses. In the end, the caller’s context is restored and the
mode switched back to user mode. Upon return from the kernel call, the caller
can find the results in its registers. Note that in our implementation, the kernel
will not be interrupted. Thus, there is no nested interrupt handling. Now, the
mapping between the contents of the caller’s registers and the effect of a trap
instruction constitute the kernel’s binary interface. A formal specification of
this interface is established by the model VAMOS? (see § 3.5.2).

3.5.2 Model

The model of the VAMOS micro kernel including assembly user processes is
called VAMOS?.2 Formal verification of VAMOS?, i. e. the proof of correspon-

2Currently, there is no VAMOS? documentation publicly accessible. The descriptions
here are based on the Verisoft-internal Technical Report #38
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dence between VAMOS?, on the one hand, and the CVM model instantiated
by the implementation of the abstract kernel, on the other hand, is still work
in progress (Figure 3.3 on page 27). The main goal for the VAMOS? verifi-
cation is proving functional correctness of the individual kernel-call handlers,
the scheduler implementation, and the delivery of kernel notifications. This
verification relies on the CVM model and the semantics of the CVM primitives.

3.6 Libvamos

High-level programming languages usually do not allow the direct manipulation
of registers. This is also true for C0. Thus in order to permit user processes,
implemented in C0, to use kernel calls, we provide a library that hides the
necessary assembly code. In our case this library is called Libvamos.

3.6.1 Implementation

The implementation of the Libvamos library is straightforward. In general,
for each of the main cases considered by the kernel call dispatcher, the library
implements a C0 function, a so-called kernel-call wrapper, that: (i) copies
arguments to registers, (ii) calls the trap instruction, and (iii) upon return (of
the trap instruction) extracts values from registers and passes them back as
results. A complete list of the available kernel-call wrappers is presented in
Table 3.2 on the next page.3 A formal specification of Libvamos is established
by the model VAMOS?+C0 (see § 3.6.2).

3.6.2 Model

VAMOS?+C0 is the model of the VAMOS micro kernel including C0 user
processes, i. e. user processes written in C0 using the functions provided by
the library Libvamos. As for the VAMOS?, the verification of VAMOS?+C0
is work in progress. The main goal of this work is to justify the new process
abstraction of C0 user processes with respect to corresponding assembly user
processes (Figure 3.3 on page 27). The challenge is that the different process
abstractions do not have the same granularity; a C0 step usually consists
of many assembly steps. Thus, a C0 user process could be scheduled away
during the execution of a C0 statement. It is, therefore, necessary to abstract
from the concrete scheduler and show that scheduling events can be shifted.
Abstracting the scheduler leads to nondeterministic execution of user processes.

3Below, if it is clear from the context, we will simply write “kernel call” or “VAMOS call”
as a shorthand for “kernel-call wrapper”.
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VAMOS Call Description

process_create creates a new user process from a memory image
process_clone duplicates a process
process_kill kills a process

set_privileged adds a process to the set of privileged processes

chg_sched_params changes scheduling parameters

memory_add increases the amount of virtual memory for a process
memory_free decreases the amount of virtual memory for a process

ipc_send sends an IPC message
ipc_receive receives an IPC message
ipc_request sends an IPC message and waits for a reply

change_rights manipulates IPC rights
read_kernel_info asks for kernel information

change_driver (un-)registers a process as handler for a set of devices
enable_interrupts (re-)enables interrupts
dev_read reads from a device
dev_write writes to a device

Table 3.2: VAMOS Calls

However, fairness between user processes should be preserved.4 Thus, it is also
necessary to show that the VAMOS scheduler ensures fairness between user
processes and that this fairness is, indeed, preserved by VAMOS?+C0. Finally,
the functional correctness of the individual kernel-call wrappers needs to be
shown.5

3.7 SOS

One goal of the Verisoft project is a pervasively verified system for writing,
signing, and sending emails. Analyzing these applications, we derived the
following requirements for our user-mode operating system SOS: (i) the OS

4Note that our scheduler does not ensure that each of the user processes gets exactly the
same amount of computing time. Depending on the type of kernel calls used, a user process
might be scheduled longer than other user processes.

5Currently, there is no VAMOS?+C0 documentation publicly accessible. The descriptions
here are based on the Verisoft-internal Technical Report #67
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must support different users, (ii) concurrently running user applications need
file-system- and network access, (iii) users should be able to interact with the
system by means of a keyboard and a screen, (iv) users should be able to
dynamically start and stop applications, and (v) user applications should be
able to use remote procedure calls. None of these services is directly supported
by the kernel. Instead, the SOS must provide the appropriate calls, i. e. the
SOS calls.

3.7.1 Implementation

Earlier we said that when VAMOS boots, it launches an initial user process.
This user process, the SOS, will be the one providing the SOS calls.6 As
the SOS launches, it registers itself as a device driver, starts an initial user
application, and then serves incoming requests. Note that all user processes,
except for the SOS, are called (user) applications.

SOS server. The SOS is implemented as a server. It waits for an IPC
request, tries to interpret the IPC message as an SOS call, and then dispatches
the call to an appropriate SOS-call handler. This handler processes the call
and returns a result to the calling application. This result is returned by means
of IPC-send and thus completes the caller’s request. As the handler returns,
the SOS turns over by waiting for another SOS call (Figure 3.1 on the next
page).

Users and login shells. The initial application, started by the SOS, is a
login shell. Like every other user application, the login shell is a non-privileged
user process. It is not part of the SOS implementation. It is, however, the
starting point for all other user applications. Internally, the SOS associates a
user with each application. In the case of the login shell, this is the super user.
Usually, login shells implement some sort of user authentication and upon
successful authentication they pass control to a user-specific application. This
user-specific application will be owned by the particular user and in most cases,
it is some sort of general-purpose shell. For our system, we have implemented
a login shell which authenticates users based on a password file, which is only
accessible by the super user. Among other things, our general-purpose shell
allows the logged-in user to interactively start further applications.

Resource management. As said earlier, user applications are non-privileged
user processes. Hence, except for IPC, they are restricted to SOS calls. Thus,
the SOS keeps tight control over every application running in the system.

6 Below, if it is clear from the context, we will write “process” as a shorthand for “user
process”.
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Figure 3.1: SOS Calls. a) User processes solely rely on VAMOS calls. b) In
the presence of the SOS, user applications are restricted to a few VAMOS calls
but (via IPC) they may use SOS calls. c) User applications cannot see the
difference between VAMOS calls and SOS calls. Thus, from the application
point of view, the SOS process and the VAMOS micro kernel melt together.
The resulting (single) operating system provides services in terms of system
calls.
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Together with the knowledge about the user owning a particular application,
the SOS is able to enforce a strict resource management. That is, it can,
for example, control the number of processes and files as well as socket- and
terminal access on a per application and per user basis.

Device drivers. Device drivers account for the major part of the SOS
implementation. These drivers provide access to a hard disk, a keyboard and
a screen, and (partially) to a network card. The front end to these drivers are
SOS calls, i. e. file system calls, terminal calls, and socket calls. Internally, the
drivers are implemented in different layers, each providing a different level of
abstraction (see Figure 3.2 on the following page).

For the hard disk, we have implemented a low-level hard-disk driver pro-
viding word-based access to the hard-disk contents. Based on this, we have
implemented a driver providing a file-based hard-disk access.7 Finally, the
topmost layer adds user-based access-control lists [Grü03] to the individual
files.

For the keyboard and the screen, we have implemented a serial device
driver that hides the communication with the UART chip [Uar07]. This driver
provides a queue of keyboard inputs and an array representing the contents of
the screen. Above this low-level driver, there is a layer that multiplexes the
input and output onto multiple virtual terminals.

For network access, there is an implementation of the TCP layer.8 Based
on an emulated IP layer, this layer provides reliable data exchange. Finally,
on top of the TCP layer, we have implemented a socket interface [IEE04].

In our implementation, all the drivers are part of the SOS server. If the
SOS receives an interrupt notification, it is treated just like an SOS call, i. e. the
notification is passed to the appropriated handler. From there, it will be passed
down to the lower driver layers. On its way back up, each layer processes the
results from its adjacent layer. Once the interrupt notification is handled, the
SOS goes back to receive further SOS calls and interrupt notifications.

A single process. Keeping the whole implementation of the SOS, including
drivers, in a single process is not very efficient (in terms of interrupt- and
SOS-call latency). However, from a verification point of view, this is a lot
easier than arguing about a distributed implementation. In order to reduce
the interrupt- and SOS-call latency, we run the SOS with the highest priority.
That means, the SOS is scheduled next, if there is an interrupt or an SOS
call. While treating one of these, the SOS will not be interrupted by a user
application. Both, interrupts and SOS calls, are delivered to and treated by
the SOS synchronously.

7The low-level hard-disk driver and the driver providing a file-based hard-disk access
were implemented by Mark Hillebrand.

8The TCP implementations were provided by Ulan Degenbaev and Jérôme Creci.



26 CHAPTER 3. FOUNDATION

SOS calls

VAMOS calls

shell sign SMTP email

Libsos

SOS dispatcher init

interrupts dispatcher SOS call dispatcher

sockets

TCP

IP

FS

FAT32

hddrv

terms

serial

apps users pm

requests ainfo

Libvamos

VAMOS

Figure 3.2: Overview of the Implementation. User applications use Libsos calls
that wrap the actual SOS calls. The SOS server is implemented in a single
user process. The main part of the SOS implementation are the device drivers.
These drivers are implemented in different layers. The SOS implementation
uses Libvamos calls to call the VAMOS micro kernel.



3.8. LIBSOS 27

VAMOS?+C0

CVM

VAMOS?

SOS?

SOS?+C0

abstraction

in
st

an
ti

at
io

n

VAMOS

SOS

Libsos

Libvamos

Figure 3.3: Verification Stairs.

Blocking requests. In some cases, an SOS call cannot be answered directly.
For example, the lock for a file can only be granted, if it is available. If not,
the request will be saved and answered as soon as another application releases
it. Because the SOS only permits IPC requests with infinite timeouts, we can
be sure that the original caller waits for the answer.

3.7.2 Model

The formal specification of the SOS implementation is established by the model
SOS?, which is a computational model for communicating user applications.
It is an abstraction of the VAMOS?+C0 model instantiated by the SOS
implementation (Figure 3.3). In a sense, it subsumes all lower system layers
and provides a coherent framework for user applications. SOS? hides as
much as possible of the underlying hard- and software and provides a formal
specification. SOS? is the main topic of the work at hand and will be treated
in detail in Chapter 4.

3.8 Libsos

Analogously to Libvamos, we have implemented a C0 library for the SOS calls.
This library is called Libsos. It relieves the application programmer from
the burden of manually constructing IPC messages (that can be successfully
interpreted by the SOS). The functions provided by Libsos are called SOS-
call wrappers.9 A complete list of these wrappers is provided in Table 3.3 on
the following page. A detailed description (from a programmer’s point of view)
is part of the publicly accessible SOS implementation [Bog08a].10

9Below, if it is clear from the context, we will write “SOS call” as a shorthand for
“SOS-call wrapper”.

10The Libsos documentation is also available as Verisoft-internal Technical Report #13.
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SOS Call Description

sc_user_add adds a user
sc_user_del removes a user

sc_file_creat creates a file
sc_file_truncate reduces the size of a file
sc_file_unlink removes a file
sc_file_info retrieves information about a file
sc_file_write writes to a file
sc_file_seek changes the current position within a file
sc_file_read reads from a file
sc_file_lock locks a file for exclusive access
sc_file_unlock unlocks a file
sc_file_chmod changes permissions for a file
sc_file_chown changes the owner of a file
sc_term_write writes to the screen
sc_term_seek changes the cursor position
sc_term_info retrieves information about the screen
sc_term_read reads from the keyboard
sc_socket_open opens and binds a socket
sc_socket_listen listens on a socket
sc_socket_connect connects to a remote site
sc_socket_accept accepts an incoming connection
sc_socket_read reads from a socket
sc_socket_write writes to a socket
sc_socket_close closes a connection
sc_app_exec executes a file
sc_app_fork forks an application
sc_app_wait waits for an application to terminate
sc_app_exit exits an application
sc_pm_reg registers a service
sc_pm_lookup finds a service
sc_pm_unreg unregisters a service

Table 3.3: SOS Calls
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Other than for Libvamos, the verification of Libsos is straight forward (see
Section 6.3). There would be no need for an additional layer in our verification
stack. However, in order to follow the scheme of instantiation and abstraction,
we call this layer SOS?+C0 (Figure 3.3 on page 27).

3.9 Applications

There are a number of user applications running on top of the SOS. Most
notably: Remote Procedure Calls, an SMTP server as well as a signature
server, and an email client.

In [Sha06], Andrey Shadrin describes his implementation of an interface
compiler that provides primitives for an easier application of Remote Procedure
Calls (RPCs). Using SOS calls, so-called RPC primitives simplify the task
of locating service providers and transferring large and / or dynamic data
structures between user applications.

Although not yet publicly available, a complete and formal description
of RPC was presented in the Verisoft-internal Technical Report #68. Using
the SOS specification, Eyad Alkassar formalized the semantics of the RPC
primitives and the RPC protocol. Following the scheme of abstraction and
instantiation, he instantiated SOS?+C0 with the implementation of the RPC
primitives and abstracted that to the SOS?+C0+RPC model (Figure 3.4).
Furthermore, as an example, he used this model to prove the correctness of an
RPC server that provides a basic (mathematical) service [Alk08].

A large SOS application, namely an SMTP server, was implemented and
verified by Langenstein et al. [LNRS07]. Their implementation comprises three
modules: (i) a module that serves local requests (from an email client), (ii) a
module that sends mail to the outside world, and (iii) a module that receives
mail from the outside world. Using the entire spectrum of SOS calls, their
SMTP server fully supports the SMTP standard [Pos82] as well as the standard
email formats [Cro82].

The SMTP server has been specified and formally verified [LNRS07] in VSE
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[HLS+96]. For that, the set of system calls and system call results (Σp and Ωp,
defined in § 4.3.8) were translated to VSE. In combination with an identifier for
a sender and a receiver, these system calls and system call results form so-called
events. Now, the operational behavior of the SMTP server was specified in
terms of (valid) sequences of such events, so called histories. Langenstein et al.
proved that their implementation obeys the specified set of histories. That is,
they proved that their implementation meets their specification.11

Another application that runs on top of the SOS is an RSA-signature server.
This RPC server provides two services: (i) it receives a text message and a
private key and signs the message or (ii) it receives a signed text message and
a public key and verifies the message.

As the SMTP server, the signature server has been specified and (partially)
verified using VSE. Other than the SMTP server, the signature server has only
few interaction with the operating system. In fact, only for receiving RPC calls
and returning the corresponding results, SOS calls are necessary. Otherwise
the signature server (only) performs local computations. Thus the correctness
proof of the signature server is largely a proof of the C0 implementation of the
RSA algorithm. In terms of interaction with the SOS, the correctness proof
should be similar to the one provided for the example RPC server. Up to now,
the VSE theories and proofs are not publicly available.

Finally, on top of the SMTP server and the signature server, Beuster et al.
have implemented an email application [BB04, BHW06, BBuMW07]. Using
the calls provided by the SOS, the SMTP server and the signature server, the
email-client allows different users to compose, sign, and send as well as receive,
verify, and read emails. The formal specification of the email client is provided
in Isabelle / HOL. Using a reduced SOS? state and axiomatizing the inputs
and outputs of the SMTP server and the signature server (in our terminology
SOS?+C0+RPC+Servers), Beuster et al. were able to completely verify the
C0 implementation of the email client [BHW06]. Their implementation and
verification results are publicly available in [BBuMW07].

3.10 Running the Whole System

In order to comfortably test the SOS implementation we use the dlxsim simu-
lator, which simulates the VAMP micro processor and provides basic means
for debugging. Using QEMU [Qmu07], we are able to emulate a hard disk and
the UART chip. Furthermore, combining QEMU and TUN / TAP [Tun07] we
are able to provide access to the network card of the host. Figure 3.5 on the
next page shows the SOS running the email client. A demonstration of two
SOS instances communicating with each other via the Internet, sending and
receiving signed emails, was given at the German Verification Day ’07 [Bog07].

11Further documentation about the implementation and verification of the SMTP server
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Figure 3.5: SOS Running the Email Client. Screenshot of the SOS (running
on top of the dlxsim). Here, the email client occupies the first virtual terminal,
displays a new email with a verified signature and waits for user input.

is provided in the Verisoft-internal Technical Reports #75, #76, and #77.
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In this chapter we describe SOS?, a model of a whole computer system.
We start out with an overview of the main SOS? components and then present
an exact definition of each of these components.

4.1 Overview

Formally, SOS? is defined as a transition system:

SOS? = (S,S0,Σ,Ω,∆,R).

Where,

• S is the set of possible configurations (the SOS? state space),

• S0 ⊂ S is the set of initial configurations,

• Σ is the set of inputs from the environment (external inputs),

• Ω is the set of outputs to the environment (external outputs),

• ∆ ⊂ S × Σε × S × Ω∗ is the transition relation, and

33
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• R characterizes valid SOS? runs.

SOS? is intended to be used as a programming model for communicating user
applications. In SOS?, we choose not to restrict the types of user applications
that may be verified to a particular programming language. Instead, we follow
the approach used in VAMOS?+C0 and incorporate user applications in the
form of self-contained I/O automata:

APP? = (Sp,Σp,Ωp, δp, ωp, vm-size, interpret).

Where,

• Sp is the set of possible configurations (the application state space),

• Σp is the input alphabet (system call results),

• Ωp is the output alphabet (system calls),

• δp ∈ Sp × Σp ∪ {ε} → Sp is the transition function,

• ωp ∈ Sp → Ωp ∪ {ε} computes the output for a given state,

• vm-size ∈ Sp → N32 computes the size of the occupied virtual memory
for a given state, and

• interpret ∈ word t∗ → Sp maps memory contents to an instance of the
the application state space.

Describing user applications as self-contained automata has the advantage that
the abstraction can be easily instantiated by different machine types. Adding
a new machine type does not change the global transition system as long as
the new machine type complies with the (interface) alphabets Σp and Ωp.

Now, for SOS? that means that the alphabets Σp and Ωp must be well
defined. The remaining types and functions of APP?, however, may be arbitrary
but fixed. Thus, these components can be SOS? parameters. Hence, we get
the following updated definition of SOS?:

SOS?(Sp, δp, ωp, vm-size, interpret) = (S,S0,Σ,Ω,∆,R,Σp,Ωp).

This last definition of SOS? is the final one. Below, we will describe each
of its components in detail.



4.2. STATE SPACE 35

4.2 State Space

4.2.1 Users

SOS is a multi-user operating system. It allows different registered users to
log in. A user is thereby referred to by their user id. In SOS, all registered
users are stored in the user data base.

In SOS?, we represent user ids by numbers. User ids have the type uid t ⊂
N32. The state-space component udb contains all registered users:12

udb : P(uid t).

The system administrator, or super user, is a user with special privileges.
This user is the only one allowed to perform certain administrative tasks.
Registering new users, for example, can only be done by the super user. In
SOS?, the user id of the super user is denoted by SU, where SU ∈ uid t .

4.2.2 Hard Disk and File System

Our SOS implementation supports a hard disk. The hard disk is presented
to user applications in terms of a file system. Here, each file is owned by a
particular user. Different types of file operations (e. g. read, write, or execute)
are offered. In order to perform one of these operations, the particular file must
be locked and the owner of the calling application must have the appropriate
permissions.

In SOS?, the type file t is used to represent a single file. This record type
contains the fields owner , for the owner of the file; pos , for the current position
within the file; con, for the contents of the file; and perm, for the permissions
associated with the file. Here, the function perm maps different types of file
operations, for example locking a file or retrieving information about a file, to
sets of user ids. The type fop t = {LCK,WRT,READ,CHMOD,EXEC} encodes
the set of all types of file operations. Hence, perm stores what can be done
and by whom it can be done. Before an application can access a file, it must
obtain the lock for it. Such a lock guarantees exclusive file access. In SOS?,
file locks are stored along with each file. For that, file t contains the field lock .
The type of lock is a list of handles. The formal representation of handles will
be discussed in § 4.2.5. For now, note that these application identifiers are of
type hn t . In SOS?, the head of lock represents the application that currently
owns the file lock and its tail represents lock requests from other applications.

12 For technical reasons, identifiers in this mathematical specification, in the Isabelle / HOL
specification [Bog08c], and in the implementation [Bog08a] have slightly different names. In
order to allow easier navigation within one the later ones, Appendix A.1 provides the most
important translations.
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An empty list indicates that the file is currently not locked:

file t =



owner : uid t ,
pos : N32,

con : word t∗,
perm : fop t → P(uid t),
lock : hn t∗


.

The file data base is represented by the state-space component fdb. It is
a function that maps file names to individual files. A file name, or file id, is
thereby of type fid t ⊂ N32. Currently unassigned file ids are mapped to ε:

fdb : fid t → file tε.

Because of the limited hard-disks space, we need to expose some more
details of the file-system implementation.

File-system operations are based on words. The easiest way to store a file
on the hard disk would be to store it as a continuous region of words. This,
however, would result in either great fragmentation or much work in the case of
changing a file’s contents. A more advanced approach is used by the FAT32 file
system [Mic07]. Here, the hard disk is divided up into identically sized clusters,
i. e. small blocks of continuous space. Each file may occupy one or more of
these clusters. Thus, a file is represented by a chain of clusters. However,
these clusters are not necessarily stored adjacent to one another. Instead, the
file allocation table (FAT) contains an entry for each cluster on the hard disk
and provides the necessary links. Furthermore, it identifies reserved, bad, and
unused clusters. As the cluster size is defined by the time the hard disk is
formated, the FAT has a fixed size. Along with the FAT, directory tables are
used to provide mappings between file names and starting clusters. These
directory tables are special files on the hard disk. Other than the FAT, the
size of directory tables changes as new files are added or existing ones delete.
The root directory table (RDT) is the global entry point. It has a well-known
starting cluster and, thus, allows us to find files in the root directory. These
files may be standard files or directory tables. The latter are used to describe
subdirectories.

Our file system implementation is based on the FAT32 file system standard.
Other than in this standard, we only support a single directory level, i. e. none
of the files in the root directory is a directory table. Furthermore, we do
not compress the RDT, i. e. if a file is deleted, then the RDT file does not
shrink. Instead, we only invalidate the corresponding directory entry and
reuse it upon creating a new file. Together with some other restrictions, this
simplification provides for a comparablely easy implementation and a fairly
abstract specification.

In our specification, the number of words per cluster is denoted by WPC ∈
N+

32. Knowing that, we can always compute the number of clusters occupied
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by a file of a certain size, using the function ocl :

ocl ∈ N→ N
ocl(size) = dsize/WPCe.

If the contents of a file is modified, then the available hard-disk space may
change. In SOS?, we keep track of the available hard-disk space in terms of
free clusters. The number of free clusters is maintained in the state-space
component free-clusters:

free-clusters : N.

In SOS?, the FAT is not visible. This is because it has a fixed size and the
partitioning of the file contents into separate cluster is not visible.

For the RDT, this approach is not possible. This is because the size of the
RDT file changes and thereby influences the results of some file operations.
However, the number of clusters occupied by the RDT file can be computed
from the information about the number of files on the hard disk, the number
of directory entries per cluster, and the number of invalidated entries (holes) in
the RDT. The number of files on the hard disk is already represented through
the state-space component fdb. The number of directory entries per cluster
is constant. In SOS?, this constant is denoted by RDTEPC ∈ N+

32. Finally,
the number of holes in the RDT is maintained in the state-space component
rdt-holes:

rdt-holes : N.

The FAT32 file-system specification does not consider file owners or file
permissions. In SOS, however, we want this kind of access control. In the
implementation, we maintain this information in the resource data base (RDB).
Just like the RDT, the RDB is a, for user applications invisible, file on the
hard disk. For each user-visible file it contains an entry. Each of these entries
has a fixed size. If a file is created, a new entry is inserted into the RDB. If a
file is deleted, the corresponding entry is invalidated. As for the RDT, we are
not compressing the RDB. An RDB hole is overwritten, if a new file is created.
Thus, the size of the RDB file sometimes increases but never shrinks. Creating
a file fails, if there are no more holes in the RDB and there is not enough free
space on the hard disk to increase the size of that file. In SOS?, we use the
state-space component rdb-holes to keep track of the number of holes in the
RDB.

rdb-holes : N

As for the RDT, we need to know the number of RDB entries that can be
stored in a single cluster. In SOS?, this number is denoted by RDBEPC ∈ N+

32.
Thus, knowing the number of visible files, the number of holes in the RDB,
and RDBEPC, we can always compute the size of the (otherwise invisible) RDB
file.
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4.2.3 Serial Interface and Virtual Terminals

In order to allow users to interact with the system, the SOS supports a screen
and a keyboard. For user applications, these two devices are combined and
multiplexed to a number of so-called virtual terminals. Essentially, a user
application may display characters on the screen of a virtual terminal or retrieve
keyboard input from it.

In SOS?, the keyboard, the screen, and the corresponding device drivers
are abstracted to the state-space component tdb, i. e. the terminal data base.
This abstraction provides NT ∈ N+

32 virtual terminals, where each of them is
identified by a terminal id tid t = {0, . . . ,NT− 1}.

Now, such a virtual terminal is the combination of an input and an output
buffer.13 Each terminal is connected to (at most) one user application. At any
time, only one terminal has the focus. The terminal that currently has the
focus, is stored in the state-space component focus:

focus : tid t .

If a terminal has the focus, then its output buffer is visible on the screen and
the keyboard input is appended to its input buffer. The focus can be switched
by pressing the special key STK ∈ byte t . The STK key is not appended to
the input buffer. The contents of the input- and output buffer is retained
while switching to other terminals but emptied if the terminal connection is
passed to another application. Applications can not read from any terminal’s
output buffer, nor write to any terminal’s input buffer. All terminals have the
same set SCRC-OUT ⊂ byte t \ {STK} of printable characters and the same set
SCRC-IN ⊂ byte t \ {STK} of allowed input characters. The size of the input
queue is limited to TINMAX ∈ N+

32 characters. Finally, the dimensions of the
user accessible screen are fixed to SCRX ∈ N+

32 and SCRY ∈ N+
32 and its area is

denoted by SCRXY ∈ N+
32.

The type term t describes a single virtual terminal. It contains the queue
in, for keyboard input; the array out , representing the contents of the screen;
and pos, for the current cursor position:

term t =


in : byte t∗,
out : byte t∗,
pos : N32

 .

Now, the terminal data base is a function that maps terminal ids to
individual terminals:

tdb : tid t → term t .

13 In the following, if it is clear from the context, we will simply write “terminal” as a
shorthand for “virtual terminal”.
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Note that in the implementation, the topmost row of the screen is reserved
for a status line. This line contains: the information about a pending input
request, the user id of the owner of the connected application, and the file
id of the executable of the connected application. However, only the SOS
can update this line. Thus, in SOS?, it is not included in the user-accessible
screen area. Furthermore, when inspecting other state-space components, the
contents of the status line can always be computed (terminal-status defined in
§ 4.3.3.1). Thus, term t does not contain an explicit field for the status line.

4.2.4 Network Card and Sockets

In order to send and receive emails, a network card is included in the SOS.
In SOS?, the network card, its low level device driver, the TCP/IP imple-

mentation, and the socket interface are abstracted to the state-space component
sdb, i. e. the socket data base. This abstraction provides a number of sockets,
i. e. endpoints of connections, that may be created, accessed, and closed by
means of socket calls and external input.

The type socket t describes a single socket. It contains state, for the
abstract socket state; lpn, for the local port number; rna, for the remote
network address; and rpn, for the remote port number. Furthermore, it
contains the queue lq , storing connection requests from remote sites; in, a
queue holding input that was received from the outside world; and out , a
queue holding output that was sent to the outside world. Additionally there is
the counter read , indicating the number of bytes in the input queue that have
been locally delivered and the counter ack , indicating the number of bytes in
the output queue that have been acknowledged by the remote site:

socket t =



state : sstate t ,
lpn : pn t ,
lq : (na t × pn t)∗,
rna : na tε,
rpn : pn tε,
in : byte t∗,
read : N,
out : byte t∗,
ack : N



.

Here, a socket’s abstract state (sstate t) is BOUND, LISTEN, ACCEPTING,
CONNECTING, ESTABLISHED, or REMOTE-CLOSED. The type na t ⊂ N32 is
used for an abstract network address (IP addresses) and the type pn t ⊂ N32

is used for an abstract port number. A socket’s remote network address and
remote port are set to ε, if the socket is not part of an established connection.
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Now, the socket data base is a function that maps socket ids sid t ⊂ N32

to individual sockets. Currently unassigned socket ids are mapped to ε:

sdb : sid t → socket tε.

The implementation supports a single local network address. In SOS? this
address is represented by the state-space component lna:

lna : na t .

Note that the contents of in and out do not contain any protocol overhead; it
represents pure payload. In addition, note that the number of unacknowledged
characters in the output queue is limited to SOCK-WIN-SIZE ∈ N+

32, i. e. writing
to a socket fails if this number is exceeded.

4.2.5 User Applications

The SOS supports communicating user applications. In Section 4.1, we already
explained how user applications can be seen as self-contained I/O automata.
Now we describe how their representation is integrated into the SOS? state
space.

User applications are manifested in the SOS? state space in three ways.
They are represented by: (i) a local state, i. e. the application’s internal
configuration, (ii) a number of process-related data structures, i. e. bookkeeping
data structures about the user process maintained by the kernel, and (iii) a
number of application-related data structures, i. e. bookkeeping data structures
maintained by the SOS.

4.2.5.1 Local State

From the kernel’s point of view, the SOS and the user applications are user
processes. The maximum number of simultaneously running user processes is
denoted by MAXPROCESSES ∈ N+

32. The kernel uses process identifiers (PIDs)
to refer to specific processes. In SOS?, the set of all PIDs is represented by
pid t = {1, . . . ,MAXPROCESSES}. Here, the constant OSPID ∈ pid t denotes
the PID of the SOS process. The local states of all user applications are stored
in the process data base pdb. This state-space component is a function that
maps PIDs to process states. Currently unassigned process ids are mapped to
ε:

pdb t = pid t \ {OSPID} → Sp ∪ {ε}

and:
pdb : pdb t .

Note that although the SOS is a user process, it is not a user application and,
therefore, invisible in SOS?. Hence, OSPID is excluded from the domain of pdb.
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4.2.5.2 Kernel Data Structures about User Processes

In SOS?, we inherit a number of data structures from VAMOS?+C0 that are
necessary to characterize user applications. In the following paragraphs we
discuss each of these data structures and then combine them into (SOS?) state
space component kds.

Handle data base. User processes exclusively identify each other using
so-called handles. Handles are local names for PIDs. On a per-process basis,
the kernel maintains the mapping between handles (hn t ⊂ N32) and PIDs.
This mapping is called the handle data base. In SOS?, the handle data base is
represented by the kds component hdb:

hdb : pid t × hn t → pid tε.

There are a number of special handles provided. These are: (i) HN-NONE ∈
hn t , the pseudo handle identifying no process; (ii) HN-PARENT ∈ hn t , the
handle identifying the parent process; and (iii) HN-SELF ∈ hn t , the handle
used as self-reference.14

Stolen handle data base. If a process terminates, then all handles that
point to this process become invalid. In order to be able to synchronously
inform the affected processes about this asynchronous change in the handle data
base, the so-called stolen handles are stored in the stolen handle data base.15

In this data base, the kernel maintains for each PID the set of stolen handles.
In SOS?, the stolen handle data base is represented by the kds component
sthdb:

sthdb : pid t → P(hn t).

Rights data base. Along the road of handles are IPC rights. Even if a pro-
cess has the handle for another process, it is desirable to allow a fine grained con-
trol over their communication. For that, handles are accompanied with rights.
In SOS?, these rights are encoded by the set rights t = {SND,REQ,MULT, FIN}.
Here:

• SND denotes the right to send a message to a certain process without
waiting for an answer;

• REQ denotes the right to make a request, i. e. the right to send a message
to a certain process while enforcing that the sender waits for an answer;

14For all user applications HN-PARENT maps to OSPID. This is because the SOS spawns
all user applications.

15Here, “synchronously” means related / due to the computations of a particular pro-
cess. The opposite is described by “asynchronously”, which means independent from the
computations of a particular process, but related to those of another process.
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• MULT denotes the right to make a request and/or send operation multiple
times; and

• FIN denotes the right to make a request and/or send operation specifying
a finite timeout.

For each pair of processes, the kernel maintains the associated IPC rights. In
SOS?, the rights data base is used to represent IPC rights. Here, the rights
data base is represented by the kds component rdb:

rdb : pid t × pid tε → P(rights t).

Wait data base. Finally, if a process makes an IPC request, it might take
some time before an answer is returned. Meanwhile, the requesting process is
not scheduled by the kernel. In SOS?, the wait data base is used to track the
processes waiting for an answer to their requests. Here, the wait data base is
represented by the kds component wdb:

wdb : pid t → Bε.

Now, the handle data base, the stolen handle data base, the rights data base,
and the wait data base are all data structures that are maintained by the
kernel. In SOS?, they are combined in the kernel data structure type kds t :

kds t =


hdb : pid t × hn t → pid tε,
sthdb : pid t → P(hn t),
rdb : pid t × pid t → P(rights t),
wdb : pid t → Bε

 ,

and represented in the state space component kds

kds : kds t

Note that if a certain PID, or a handle, is unassigned, then the functions hdb
and wdb map to ε, and the functions sthdb and rdb map to the empty set.

4.2.5.3 SOS Data Structures about User Applications

The SOS keeps track of all user processes and adds rights management and
access control based on users. It thereby establishes the concept of user
applications. For each user application, the SOS maintains a certain amount of
information. It stores, for example, which user started a particular application
and whether a certain application has access to the screen.

In SOS?, this information is represented in a number of data structures of
type app t . This type contains the fields parent , for the handle of the parent
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application; owner , for the owner of the application; and term, for the terminal
id of the terminal this application is attached to. Furthermore, the field sockets
is used to keep track of the sockets this application is connected to and the
field exec stores the file id of the file being executed. Finally, the flag wait
tells whether the parent application is waiting for this application to terminate
and the flag read tells whether this application is waiting for keyboard input.
If an application is not attached to a terminal, then term is set to ε. If an
application has no parent application, as is true, for example, for the login
shells, then parent has the value ε:

app t =



parent : hn tε,
owner : uid t ,
term : tid tε,
sockets : P(sid t),
exec : fid t ,
wait : B,
read : B


.

Now, the application data base is represented by the state-space component
adb. It is a function that maps application handles to the associated information.
Currently unassigned application handles are mapped to ε:

adb : hn t → app tε.

4.2.6 Portmapper

The SOS provides infrastructure for so-called RPCs. RPCs allow one ap-
plication, the client, to take advantage of some service provided by another
application, the server. Here, a service is specified by an interface name and
a procedure name. At compile time, clients know the names of the services
they intend to call. However, the location of this service, i. e. the handle
of the providing application, is unknown at that time. Hence, we need a
runtime mapping of service names to service providers. This mapping is called
portmapper data base.16

In SOS?, a service name is represented by the type service t . Here, a service
name is the combination of the interface id iid t ⊂ N32 and a procedure id
prcid t ⊂ N32, i. e. service t = iid t × prcid t .

Now, the portmapper data base is represented by the state-space component
pmdb.

pmdb : pmdb t .
16 Currently, our portmapper implementation only supports local inquiries and instead of

mapping services to IP addresses and port numbers, it maps services to handles. This could
be easily changed but for now this simplified version suffice to serve our needs.
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Here, the type pmdb t contains serv , the mapping between interface ids and
the handles of the providing servers; reg , the set of registered services; and
known, the set of known services:

pmdb t =


serv : iid t → hn tε,
reg : P(service t),
known : P(service t)

 .

Note that we need the component known because a portmapper usually only
supports a set of well-known services. In addition, note that (supported)
interfaces that are not served, are mapped to ε.

4.2.7 Summing Up

Now, collecting all pieces, the SOS? state space has the following structure:

S =



udb : P(uid t),
fdb : fid t → file tε,
rdt-holes : N,
free-clusters : N,
rdb-holes : N,
tdb : tid t → term t ,
focus : tid t ,
sdb : sid t → socket tε,
lna : na t ,
pdb : pdb t
kds : kds t ,
adb : hn t → app tε,
pmdb : pmdb t



.
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4.3 Transition Relation

There are three main classes of SOS? transitions: system calls, local compu-
tations, and transitions related to external inputs. The class of system calls
is further differentiated into SOS calls and kernel calls. While kernel calls
and local computations (Assembler / C0 semantics) are already described in
[Tsy08, Lei08], the document at hand concentrates on SOS calls and user-visible
external inputs.

SOS calls are passed to and answered by the SOS by means of IPC calls.
In a sense, each SOS call has three phases: receiving the call, handling it, and
returning the result. The handling of external inputs, can be broken apart
in a similar way. Just like SOS calls, the SOS receives interrupt notifications
through IPC calls. The transitions related to external inputs consist of a
receive phase and a handle phase.17 Now, the semantics of IPC calls are quite
complex. We want to model SOS calls as atomic steps but instead of tackling
all three / two phases at once, we will first of all (§ 4.3.1 – § 4.3.7) only describe
the handler part. That is, we ignore the side effects of receiving SOS calls and
interrupt notifications and do not describe how SOS-call results are applied to
the state space of user applications, i. e. we only describe the local transitions
of the user process that implements the SOS. This description of SOS-local
transitions will be based on the standard alphabets of external inputs (Σ) and
external outputs (Ω) and the intermediate alphabets of SOS-call inputs (Ωsc)
and SOS-call results (Σsc) (Figure 4.1 on the following page).

In the end (§ 4.3.8) we will integrate the SOS-local transitions into the
global transition system. For that, we will add kernel calls, both as individual
calls and as missing pieces under the hood of SOS calls, and extend the
alphabets Ωsc and Σsc to Ωp and Σp. Finally, we will combine this global
view of transitions related to kernel calls, SOS calls, and external inputs with
local transitions of user applications. Thus, in the end, we present a unique
transition relation for the entire system stack (Figure 4.9 on page 134).

Now, before we start specifying each of the SOS-call handlers, note the
following. For each call, we will proceed in the same way. First, we present
the C0 signature of the corresponding wrapper provided by the library Libsos,
and shortly describe the behavior of the SOS call from a programmers point
of view. This introduction should then serve as a motivation for the following
mathematical specification of the particular SOS-call handler. Within this
specification, we first of all define the necessary SOS inputs and SOS outputs,
i. e. add the appropriate elements to the alphabets Ωsc and Σsc, and then
present the specification of the actual handler.

17Other than for SOS calls, for external inputs, there is usually no phase for returning
results. In some cases, however, the external input resolves a pending application request
(e. g. a user application waits for keyboard input) and thus results in sending a message to
some user application.
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Figure 4.1: SOS?— The Small Picture. For the beginning, we specify the
SOS-call handlers independently from the rest of the system.
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4.3.1 Users

4.3.1.1 Adding a User

The library Libsos implements the following call that allows the super user to
add a new user to the system:

int sc_user_add(unsigned int* uid).

In the SOS implementation, sc_user_add is handled by sos_user_add. If there
is no error, then sc_user_add adds a new user and returns success as well the
assigned user id. Note that the new user id returned via to call-by-reference
parameter uid.

In the specification, we add UADD, as an abstract representation of the
SOS call, to the input alphabet Ωsc:

Ωsc 3 UADD

and SUCC-UADD uid t as well as PERM and LIMIT, as abstract representations
of the possible results, to the output alphabet Σsc:

Σsc ⊃ {SUCC-UADD uid ,PERM, LIMIT | uid ∈ uid t}.

The behavior of sos_user_add is described by the function uadd . As we will
see in § 4.3.8.1, it is the SOS-call dispatcher that recognizes UADD and calls
uadd , passing along the current state and the handle of the calling application.
Based on these two arguments, uadd computes the next state, a list of outputs
to the environment, and the list of result messages:

uadd ∈ S × hn t → S × Ω∗ × (hn t × Σsc)∗.

For uadd(s, hn), the following cases are considered:

• If the calling application a, with a = s.adb(hn), is not owned by the
super user, i. e. a.owner 6= SU, then the message (hn,PERM) is returned.

• If there is no more user ids available, i. e. if the set free of unassigned
user ids is empty, then the message (hn, LIMIT) is returned.

• If the previous cases do not apply, then the user id uid is added to
the user data base and a success message, including the new user id, is
returned. Here, uid is computed to be the smallest unassigned user id,
i. e. uid = min(free).

This adds up to the following definition of uadd :
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uadd(s, hn) =

let a = s.adb(hn);
free = {x | x ∈ uid t ∧ x /∈ s.udb};
uid = min(free);
s1 = sJudb := s.udb ∪ {uid}K

in 
(s , [ ], [(hn,PERM)]) if a.owner 6= SU,

(s , [ ], [(hn, LIMIT)]) else if free = { },
(s1, [ ], [(hn, SUCC-UADD uid)]) else.

Note that in the case of uadd , there are no outputs to the environment and
no more than one result message. However, for a simpler formalization of the
SOS-call dispatcher (§ 4.3.8.1), we specify all SOS handlers with the same
result type. Furthermore, all handlers have at least the current state and the
handle of the calling application as input arguments. Below, we will no longer
explicitly mention these (standard) input arguments, nor explain the result
type.

4.3.1.2 Removing a User

The library Libsos implements the following call that allows the super user to
remove a user from the system:

int sc_user_del(unsigned int uid).

In the SOS implementation, sc_user_del is handled by sos_user_del. If there is
no error, then, after the call is handled, uid is no longer registered.

In the specification, we add UDEL uid tε, as an abstract representation of
sc_user_del, to the input alphabet Ωsc:

Ωsc ⊃ {UDEL uid | uid ∈ uid tε}

and SUCC and ARG, as possible results, to the output alphabet Σsc:

Σsc ⊃ {SUCC | ARG}.

The behavior of sos_user_del is described by the function udel . This function
takes, as a call-specific argument, the user id of the user that should be removed:

udel ∈ S × hn t × uid tε → S × Ω∗ × (hn t × Σsc)∗.

For udel(s, hn, uid), the following cases are considered:

• If uid is not the user id of an existing user, i. e. uid /∈ s.udb, then the
message (hn,ARG) is returned.
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• If the calling application is not owned by the super user, uid still owns
some file or application, or if uid still exists in some file’s permission set,
then the message (hn,PERM) is returned.

• If none of the previous cases applies, then the uid is removed from the
system and a success message returned. Here, removing the user from
the system is as simple as removing the user id uid from the user data
base.

This adds up to the following definition of udel :

udel(s, hn, uid) =

let s1 = sJudb := s.udb \ {uid}K

in


(s , [ ], [(hn,ARG)]) if uid /∈ s.udb,
(s , [ ], [(hn,PERM)]) else if s.adb(hn).owner 6= SU

∨ ∃x. s.fdb(x).owner = uid
∨ ∃x. s.adb(x).owner = uid
∨ ∃x, y. uid ∈ s.fdb(x ).perm(y),

(s1, [ ], [(hn, SUCC)]) else.

Note that in sc_user_del, the type used for the argument uid is unsigned int.
In the SOS implementation, however, the largest valid user id is 127. Thus,
it would be of advantage to directly restrict the possible values in SOS’s
(binary) interface. Unfortunately this is not possible due to restrictions of
the underlying IPC mechanism (see § 4.3.7). Instead, if an application calls
sc_user_del, specifying a user id >127, then the handler sos_user_del returns an
error. In the specification, the same happens. However, for a more intuitive
signature of udel , we represent all values > 127 by ε. That is, all values of uid
such that uid /∈ uid t are represented by ε. Thus, we use uid tε rather than
N32, for the third argument of udel . Below, we will use the same approach in
many places, but no longer explicitly mention it.

4.3.2 File I/O

In the following subsection, we will specify SOS calls related to file I/O. We
will describe calls that allow user applications to: create, lock and unlock, read
and write, truncate, and remove files. We will also describe calls that allow
user applications: to change the owner of a file, to change the permissions
associated with files, and to retrieve the information about files.

Note that the necessary SOS? transitions are comparably easy. The reason
for that is that a hard disk only responds to requests from within the system,
i. e. there are no inputs from or outputs to the outside world. Furthermore,
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most file operations are implemented to return a result within a single SOS
cycle. That means that, except for locking a file, there is no need to maintain
requests.

4.3.2.1 Create a File

The library Libsos implements the following call that allows a user application
to create a new file:

int sc_file_creat(unsigned int fid).

In the SOS implementation, sc_file_creat is handled by sos_file_creat. If there
is no error, then, after the call is handled, there is a new file with the id equal
to fid.

In the specification, we add FCREAT fid tε, as an abstract representation
of sc_file_creat, to the input alphabet Ωsc:

Ωsc ⊃ {FCREAT fid | fid ∈ fid tε}.

The behavior of sos_file_creat is described by the function fcreat . This function
takes, as a call-specific argument, the desired file id:

fcreat ∈ S × hn t × fid tε → S × Ω∗ × (hn t × Σsc)∗.

For fcreat(s, hn,fid), the following cases are considered:

• If fid is not a valid file id, i. e. fid = ε, then the message (hn,ARG) is
returned.

• If a file with id fid already exists, i. e. s.fdb(fid) 6= ε, then the message
(hn,PERM) is returned.18

• Creating a new file requires an update of the RDT and the RDB. If the
RDT does not contain holes, i. e. s.rdt-holes = 0, then it is necessary to
extend the RDT data structure using an additional cluster and adding
RDTEPC−1 new holes. The same is true for the RDB. If the RDB does not
contain holes, i. e. s.rdb-holes = 0, then it is necessary to extend the RDB
data structure using an additional cluster and adding RDBEPC− 1 new
holes. That means, depending on s.rdt-holes and s.rdb-holes, we need
cl , with cl = 2−min({1, s.rdb-holes})−min({1, s.rdt-holes}), clusters.
Now, if there are not enough free clusters, i. e. free-clusters < cl , then
(only) the message (hn, LIMIT) is returned.

18In the following, we will use the phrase “file fid” as shorthand for “file with id fid”. If
clear from the context, we will use an analogous shorthand when referring to a user (uid), a
terminal (tid), a socket (sid), or an application (hn).
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• If none of the previous cases applies, then the values for s.rdt-holes,
s.rdb-holes, and free-clusters may be updated, the new file f is added,
and a success message returned. The new file is thereby owned by
the user ao, it has an offset equal to 0, and the initial permissions are
set to perm ′. At this time, the file has no contents and it is not yet
locked. Here, ao is the user id of the owner of the calling application,
i. e. ao = s.adb(hn).owner , and perm only allows ao to lock it, i. e.
perm ′ = λx ∈ fop t . ( if x 6= LCK then { } else {ao}).

This adds up to the following definition of fcreat :

fcreat(s, hn,fid) =

let ao = s.adb(hn).owner ;

perm ′ = λx ∈ fop t .

{
{} if x 6= LCK,

{ao} else;

f = Jowner = ao, pos = 0, con = [ ], perm = perm ′, lock = [ ]K;

rdbh ′ =

{
s.rdb-holes − 1 if s.rdb-holes > 0,
RDBEPC− 1 else;

rdth ′ =

{
s.rdt-holes − 1 if s.rdt-holes > 0,
RDTEPC− 1 else;

cl = 2−min({1, s.rdb-holes})−min({1, s.rdt-holes});

s1 = s

u

wwww
v

fdb(fid) := f,

rdb-holes := rdbh ′,
rdt-holes := rdth ′,
free-clusters := s.free-clusters − cl

}

����
~

in


(s , [ ], [(hn,ARG)]) if fid = ε,

(s , [ ], [(hn,PERM)]) else if s.fdb(fid) 6= ε,

(s , [ ], [(hn, LIMIT)]) else if s.free-clusters < cl ,
(s1, [ ], [(hn, SUCC)]) else.

4.3.2.2 Lock a File

The library Libsos implements the following call that allows a user application
to try to lock a file, i. e. gain exclusive access to a file:

int sc_file_lock(unsigned int fid).
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In the SOS implementation, sc_file_lock is handled by sos_file_lock. If there
is no error, then, after the call is handled, only the caller can access the file.

In the specification, we add FLOCK fid tε, as an abstract representation of
sc_file_lock, to the input alphabet Ωsc:

Ωsc ⊃ {FLOCK fid | fid ∈ fid tε}.

The behavior of sos_file_lock is described by the function flock . This function
takes, as a call-specific argument, the file id of the file to be locked:

flock ∈ S × hn t × fid tε → S × Ω∗ × (hn t × Σsc)∗.

For flock(s, hn,fid), the following cases are considered:

• If the file f , with f = s.fdb(fid), does not exist, i. e. f = ε, then the
message (hn,ARG) is returned.

• If the owner of the calling application a, with a = s.adb(hn), does not
have the permission to lock the file, i. e. a.owner /∈ f.perm(LCK), then
the message (hn,PERM) is returned.

• If the number of files locked by a exceeds the constant MAXFLOCKS ∈ N+
32,

i. e. |locks| ≥ MAXFLOCKS, then the message (hn, LIMIT) is returned.
Here, locks is the set of file ids x that satisfy hn = s.fdb(x).lock [0].

• It is not considered as an error, if a already has the lock for f . Thus, in
this case the message (hn, SUCC) is returned.

• If none of the previous cases applies, then hn is appended to f.lock . If
this makes hn the head of the list, i. e. the new lock owner, then the
message (hn, SUCC) is returned. If it is not the head of the list, then
there is no immediate result. Instead, a result may be returned, if some
other application releases the lock for f (funlock defined in § 4.3.2.3).

This adds up to the following definition of flock :

flock(s, hn,fid) =

let a = s.adb(hn);
f = s.fdb(fid);
locks = {x | s.fdb(x) 6= ε ∧ hn = s.fdb(x).lock [0]};
s1 = sJfdb(fid).lock := f.lock ◦ [hn]K
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in


(s , [ ], [(hn,ARG)]) if fid = ε ∨ f = ε,

(s , [ ], [(hn,PERM)]) else if a.owner /∈ f.perm(LCK),
(s , [ ], [(hn, LIMIT)]) else if |locks| ≥ MAXFLOCKS,

(s , [ ], [(hn, SUCC)]) else if hn = f.lock [0],
(s1, [ ], [ ]) else if f.lock 6= [ ],
(s1, [ ], [(hn, SUCC)]) else.

Note that an application is blocked until it receives a result. Because of this, it
is impossible that the calling application is already in the list f.lock , but not the
head of that list. Thus, we can safely append hn without violating the predicate
inv-unique-lock-requests. Here, the predicate inv-unique-lock-requests is an
invariant for SOS?, which is satisfied, if the entries in the lock lists are unique:

inv-unique-lock-requests ∈ S → B
inv-unique-lock-requests(s) ≡

∀fid . s.fdb(fid) 6= ε

=⇒
∀i, j ∈ N. 0 ≤ i < j < length(s.fdb(fid).lock)

∧ s.fdb(fid).lock [i] 6= s.fdb(fid).lock [j].

4.3.2.3 Unlock a File

As counterpart to sc_file_lock, the library Libsos provides the following call
that allows a user application to release the lock on a file:

int sc_file_unlock(unsigned int fid).

In the SOS implementation, sc_file_unlock is handled by sos_file_unlock.
In the specification, we add FUNLOCK fid tε, as an abstract representation

of sc_file_unlock, to the input alphabet Ωsc:

Ωsc ⊃ {FUNLOCK fid | fid ∈ fid tε}

and LOCK, as an abstract representation of a possible result, to the output
alphabet Σsc:

Σsc 3 LOCK.

The behavior of sos_file_unlock is described by the function funlock . This
function takes, as a call-specific argument, the file id of the file that should be
unlocked:

funlock ∈ S × hn t × fid tε → S × Ω∗ × (hn t × Σsc)∗.

For funlock(s, hn,fid), the following cases are considered:
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• If the file f , with f = s.fdb(fid), does not exist, then the message
(hn,ARG) is returned.

• If the calling application does not have the lock on the file, i. e. hn 6=
f.lock [0], then the message (hn, LOCK) is returned.

• If f is locked, but there is no other application waiting for the lock, i. e.
length(f.lock) = 1, then the lock is released, the position within the file
reset to 0, and the message (hn, SUCC) returned.

• If f is locked and there is at least one application waiting for the lock,
then the lock is passed to the next application and the position in the
file reset to 0. Furthermore, both applications, the one that released the
lock and the new lock owner, are informed about the success.

This adds up to the following definition of funlock :

funlock(s, hn,fid) =

let f = s.fdb(fid);
hn2 = f.lock [1];

s1 = s

t
fdb(fid).pos := 0,
fdb(fid).lock := tail(f.lock)

|

in


(s , [ ], [(hn,ARG)]) if fid = ε ∨ f = ε,

(s , [ ], [(hn, LOCK)]) else if hn 6= f.lock [0],
(s1, [ ], [(hn, SUCC)]) else if length(f.lock) = 1,
(s1, [ ], [(hn, SUCC), (hn2, SUCC)]) else.

Note that because of the invariant inv-unique-lock-requests, we know that
hn 6= hn2. Therefore, we can be sure that we will not accidently send both
success messages to the same application.

Further note, funlock either removes entries form the queue s.fdb(fid).lock
or does not modify it. Hence, we can be sure that inv-unique-lock-requests
is not violated. Now, since flock and funlock are the only functions that
(potentially) modify file locks, we can be sure that inv-unique-lock-requests is
preserved throughout the whole SOS? model.

4.3.2.4 Truncate a File

Before specifying how files are truncated, two auxiliary functions should be
introduced.

The predicate faccess-legal is used to check whether some file access is legal.
faccess-legal(s, hn,fid , fop) is satisfied, if fid is the file id of an existing file, this
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file is currently locked by the application with handle hn, and the corresponding
application owner has the permission to perform the file operation fop:

faccess-legal ∈ S × hn t × fid tε × fop t → B
faccess-legal(s, hn,fid , fop) ≡

fid 6= ε ∧ s.fdb(fid) 6= ε ∧ hn = s.fdb(fid).lock [0]
∧ s.adb(hn).owner ∈ s.fdb(fid).perm(fop).

If faccess-legal is not satisfied, then the function faccess-error returns the
appropriate message to the application hn:

faccess-error ∈ S × hn t × fid tε → S × Ω∗ × (hn t × Σsc)∗

faccess-error(s, hn,fid) =
(s, [ ], [(hn,ARG)]) if fid = ε ∨ s.fdb(fid) = ε,

(s, [ ], [(hn, LOCK)]) else if hn 6= s.fdb(fid).lock [0],
(s, [ ], [(hn,PERM)]) else.

Now, for truncating a file, i. e. shortening its contents, the library Libsos
implements the following call:

int sc_file_truncate(unsigned int fid, unsigned int len).

In the SOS implementation, sc_file_truncate is handled by sos_file_truncate.
If there is no error, then, after the call is handled, the size of the file fid is at
most len words. Only the first len words are kept. Any additional data is lost.
If the file is smaller, then nothing changes.

In the specification, we add FTRUNCATE fid tε N32, as an abstract repre-
sentation of sc_file_truncate, to the input alphabet Ωsc:

Ωsc ⊃ {FTRUNCATE fid len | fid ∈ fid tε ∧ len ∈ N32}.

The behavior of sos_file_truncate is described by the function ftruncate. This
function takes, as call-specific arguments, the id of the file and the desired new
length:

ftruncate ∈ S × hn t × fid tε × N32 → S × Ω∗ × (hn t × Σsc)∗.

For ftruncate(s, hn,fid , len), the following cases are considered:

• If faccess-legal(s, hn,fid ,WRITE) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn,fid).

• If the previous case does not apply, then the file f , with f = s.fdb(fid),
is truncated and the message (hn, SUCC) returned. The value size ′, i. e.
the new size of f , is thereby computed as the minimum of the desired file



56 CHAPTER 4. SOS?

length and the size of the original file. If the size of the file is reduced,
clusters may need to be freed. The number cl of clusters that are freed,
is computed as the difference of the number of clusters occupied by the
original file and the number of clusters occupied by the truncated file.
The new current position within the file is computed as the minimum of
the old position and the new file size.

This adds up to the following definition of ftruncate:

ftruncate(s, hn,fid , len) =

let f = s.fdb(fid);
size = length(f.con);
size ′ = min({len, size});
cl = ocl(size)− ocl(size ′);

s1 = s

u

w
v

fdb(fid).con := take(size ′, f.con),
fdb(fid).pos := min({f.pos, size ′}),
free-clusters := s.free-clusters + cl

}

�
~

in
{

faccess-error(s, hn,fid) if ¬faccess-legal(s, hn,fid ,WRITE),
(s1, [ ], [(hn, SUCC)]) else.

4.3.2.5 Delete a File

The library Libsos implements the following call that allows a user application
to delete a file:

int sc_file_unlink(unsigned int fid).

In the SOS implementation, sc_file_unlink is handled by sos_file_unlink.
In the specification, we add FUNLINK fid tε, as an abstract representation

of sc_file_unlink, to the input alphabet Ωsc:

Ωsc ⊃ {FUNLINK fid | fid ∈ fid tε}.

The behavior of sos_file_unlink is described by the function funlink . This
function takes, as a call-specific argument, the file id of the file to delete:

funlink ∈ S × hn t × fid tε → S × Ω∗ × (hn t × Σsc)∗.

For funlink(s, hn,fid), the following cases are considered:

• If faccess-legal(s, hn,fid ,WRITE) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn,fid).



4.3. TRANSITION RELATION 57

• If the previous case does not apply, then the file f , with f = s.fdb(fid),
is deleted, the lock released, the previously occupied clusters freed, and a
success message returned. As the file is removed from the RDT and the
RDB, the number of holes in these data structures increase. Because of
this, s.rdt-holes and s.rdb-holes are each incremented by 1. Finally, all
pending requests to lock the file f are canceled, i. e. the corresponding
applications receive the result ARG.

This adds up to the following definition of funlink :

funlink(s, hn,fid) =

let f = s.fdb(fid);

s1 = s

u

wwww
v

fdb(fid) := ε,

free-clusters := s.free-clusters + ocl(length(f.con)),
rdt-holes := s.rdt-holes + 1,
rdb-holes := s.rdb-holes + 1

}

����
~

;

m = map((λx. (x,ARG)), tail(f.lock))

in
{

faccess-error(s, hn,fid) if ¬faccess-legal(s, hn,fid ,WRITE),
(s1, [ ], (hn, SUCC)#m) else.

As before, because of the invariant inv-unique-lock-requests, we know that all
entries in the list tail(f.lock) are unique and different from hn. Therefore, we
can be sure that we will not accidently send several messages to the same
application.

4.3.2.6 Retrieve Information about a File

The library Libsos implements the following call that allows a user application
to retrieve information about individual files:

int sc_file_info( unsigned int fid, unsigned int* fidr,

unsigned int* owner, unsigned int* size,

unsigned int* lock, unsigned int* perm,

unsigned int* fidn).

In the SOS implementation, sc_file_info is handled by sos_file_info. If there
was no error, then sc_file_info returns the id of the file that was inspected,
its owner, its size, the information whether the file is currently locked by the
calling application, the permissions for the owner of the calling application,
and the file id of the file with the next bigger file id. If sc_file_info is called
with fid equal to SOS_NIL, then information about the file with the smallest file
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id is returned.19 If there is no file with a bigger file id, then SOS_NIL is returned
for fidn.

In the specification, we add FINFO fid tε∪NIL, as an abstract representation
of the SOS call, to the input alphabet Ωsc:

Ωsc ⊃ {FINFO fid | fid ∈ fid tε ∪ NIL}

and SUCC-FINFO fid t uid t N32 B P(fop t) fid t ∪ NIL, as an abstract repre-
sentation of a possible result, to the output alphabet Σsc:

Σsc ⊃


SUCC-FINFO fidr uid size lock perm fidn |
fidr t ∈ fid t ∧ uid ∈ uid t ∧ size ∈ N32 ∧ lock ∈ B
∧ perm ∈ P(fop t) ∧ fidn ∈ fid t ∪ NIL

 .

The behavior of sos_file_info is described by the function finfo. This function
takes, as a call-specific argument, the file id of the file for which information
should be retrieve:

finfo ∈ S × hn t × fid tε ∪ NIL→ S × Ω∗ × (hn t × Σsc)∗.

For finfo(s, hn,fid), the following cases are considered:

• The set fids = {x | s.fdb(x) 6= ε} is the set of all assigned file ids. If the
supplied fid is equal to NIL, then fidr is set to be the smallest assigned
file id, or ε, if there are no files. If the supplied fid is not equal to NIL,
then fidr is set to the value of fid . Now, if fidr is not a valid file id,
i. e. fidr = ε, or the file f , with f = s.fdb(fidr), does not exist, then the
message (hn,ARG) is returned.

• If the previous case does not apply, then the information about the file
f is compiled and the message SUCC-FINFO fidr uid size lock perm fidn
returned. Here, uid is the owner of the file and size the length of
its contents. The boolean flag lock is TRUE, if the calling application
currently has the lock for the file f . The set perm, with perm = {x | ao ∈
f.perm(x)}, contains the file permissions for the owner of the calling
application. The value of fidn is the file id of the next file, i. e. the
minimum of all assigned file ids that are greater than fidr . If there are
no assigned file ids that are greater than fidr , then fidn is set to NIL.

This adds up to the following definition of finfo:
19Combining this with the information about the next bigger file id, it is possible to gather

information about all files in the file system. This is, for example, necessary to implement
the ls or dir command.
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finfo(s, hn,fid) =

let fids = {x | s.fdb(x) 6= ε};

fidr =


fid if fid 6= NIL,

min(fids) else if fids 6= {},
ε else;

f = s.fdb(fidr);
uid = f.owner ;
size = length(f.con);

lock =

{
TRUE hn = f.lock [0],
FALSE else;

ao = s.adb(hn).owner ;
perm = {x | ao ∈ f.perm(x)};

fidn =

{
min({x | x ∈ fids ∧ x > fidr}) if ∃x ∈ fids. x > fidr ,
NIL else;

m = [(hn, SUCC-FINFO fidr uid size lock perm fidn)]

in
{

(s, [ ], [(hn,ARG)]) if fidr = ε ∨ f = ε,

(s, [ ],m) else.

4.3.2.7 Write to a File

For writing to a file, the library Libsos implements the following call:

int sc_file_write( unsigned int fid, unsigned int len,

sos_buffer_t buf, unsigned int* pos,

unsigned int* size).

In the SOS implementation, sc_file_write is handled by sos_file_write. If
there is no error, then, after the call is handled, the first len words from the
buffer buf are written to the file with the id fid. Thereby writing starts at
the current position. Any previous content is overwritten and the file is, if
necessary, extended. The current position within the file is updated and the
new position as well as the new file size are returned to the calling application.

In the specification, we add FWRITE fid tε word t∗, as an abstract represen-
tation of sc_file_write, to the input alphabet Ωsc. Note that we use word t∗

as an abstraction that combines buf and len:

Ωsc ⊃ {FWRITE fid words | fid ∈ fid tε ∧ words ∈ word t∗}
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Furthermore, we add SUCC-FWRITE N32 N32, as an abstract representation of
a possible result, to the output alphabet Σsc:

Σsc ⊃ {SUCC-FWRITE pos size | pos, size ∈ N32}.

The behavior of sos_file_write is described by the function fwrite. This function
takes, as call-specific arguments, the id of the file and the string that should
be written to the file:

fwrite ∈ S × hn t × fid tε × word t∗ → S × Ω∗ × (hn t × Σsc)∗.

For fwrite(s, hn,fid ,words), the following cases are considered:

• If faccess-legal(s, hn,fid ,WRITE) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn,fid).

• If a user application wants to write to a file fid , then this writing always
starts at the current position within the file. Starting at this point, the
previous contents is overwritten by the words words . If necessary, the file
is extended. If a file needs to be extended, then, depending on the length
of words , the position in the file, and the file size, it may be necessary to
allocate cl additional clusters. Now, if there are not enough free clusters
or the new file size would exceed the maximum file size MAXFSIZE ∈ N+

32,
then the error LIMIT is reported to the calling application.

• If none of the previous cases applies, then the words are written to the
file and the number of free clusters adapted as necessary. Additionally,
the success message m, including the new position and the new file size,
is returned.

This adds up to the following definition of fwrite:

fwrite(s, hn,fid ,words) =

let fc = s.fdb(fid).con;
pos = s.fdb(fid).pos;
pos ′ = pos + length(words);
fc′ = take(pos, fc) ◦ words ◦ drop(pos ′, fc);
cl = ocl(length(fc′))− ocl(length(fc));

s1 = s

u

w
v

fdb(fid).con := fc′,
fdb(fid).pos := pos ′,
free-clusters := s.free-clusters − cl

}

�
~ ;

m = [(hn, SUCC-FWRITE pos ′ length(fc))]
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in 
faccess-error(s, hn,fid) if ¬faccess-legal(s, hn,fid ,WRITE),
(s , [ ], [(hn, LIMIT)]) else if s.free-clusters < cl ∨MAXFSIZE < fc′,
(s1, [ ],m) else.

4.3.2.8 Read from a File

For reading from a file, the library Libsos implements the following call:

int sc_file_read( unsigned int fid, unsigned int* len,

unsigned int* pos, sos_buffer_t* buf).

In the SOS implementation, sc_file_read is handled by sos_file_read. If there
is no error, then, at most, len words are read from the file with the id fid and
returned to the calling application. Furthermore, the new position within the
file and the number of words that have been read, are returned.

In the specification, we add FREAD fid tε N32, as an abstract representation
of sc_file_read, to the input alphabet Ωsc:

Ωsc ⊃ {FREAD fid len | fid ∈ fid tε ∧ len ∈ N32}

and SUCC-FREAD word t∗ N32, as an abstract representation of a possible
result, to the output alphabet Σsc:

Σsc ⊃ {SUCC-FREAD words pos | words ∈ word t∗ ∧ pos ∈ N32}.

The behavior of sos_file_read is described by the function fread . This function
takes, as call-specific arguments, the id of the file and the number of words
that should be read:

fread ∈ S × hn t × fid tε × N32 → S × Ω∗ × (hn t × Σsc)∗.

For fread(s, hn,fid , len), the following cases are considered:

• If faccess-legal(s, hn,fid ,READ) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn,fid).

• If the previous case does not apply, then a success message, containing
the words that have been read and the new position pos ′, is returned.
Here, the length len ′ is calculated as the minimum of how much can be
read from the file, the length len, and the buffer size CMPC ∈ N+

32.20

20In the implementation, we have to statically fix the size of IPC messages used for
receiving SOS calls and returning results. Thus, only a limited number of words may be
read with a single sc_file_read call. In the specification, this number is represented by the
constant CMPC.
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This adds up to the following definition of fread :

fread(s, hn,fid , len) =

let f = s.fdb(fid);
len ′ = min({length(f.con)− f.pos, len,CMPC});
words = take(len ′, drop(f.pos, f.con));
pos ′ = f.pos + len ′;
s1 = sJfdb(fid).pos := pos ′K;
m = [(hn, SUCC-FREAD words pos ′)]

in
{

faccess-error(s, hn,fid) if ¬faccess-legal(s, hn,fid ,READ),
(s1, [ ],m) else.

4.3.2.9 Change the Position within a File

Before specifying how the position within a file can be changed, we need an
auxiliary function.

The function offset(start , current , end ,flag , off ) computes a value in the
range [start . . . current . . . end ]. Depending on the flag flag , the offset off is
either added to start , current , or end :

offset ∈ N32 × N32 × N32 × Z32 × Z32 → N32

offset(start , current , end ,flag , off ) =
max ({min({start + off , end}), start}) if flag < 0,
max ({min({current + off , end}), start}) else if flag = 0,
max ({min({end + off , end}), start}) else.

Note that off < 0 is possible. For example, offset(0, 5, 10, 1,−1) = 9.
Now, for changing the position within a file, the library Libsos implements

the following call:

int sc_file_seek( unsigned int fid, int flag, int off,

*unsigned int pos).

In the SOS implementation, sc_file_seek is handled by sos_file_seek. If there
is no error, then the position within the file fid is changed and the new position
returned to the calling application. The calculation for the new position pos

depends on flag. If flag is smaller than 0, then pos=off. If flag is equal to
0, then off is added to the current position within the file. Finally, if flag is
greater than 0, then off is added to the position at the end of the file. In any
case, the new position is ‘cropped’ to point to a position within the file.
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In the specification, we add FSEEK fid tε Z32 Z32, as an abstract represen-
tation of sc_file_seek, to the input alphabet Ωsc:

Ωsc ⊃ {FSEEK fid flag off | fid ∈ fid tε ∧ flag , off ∈ Z32}

and SUCC-FSEEK N32, as an abstract representation of a possible result, to the
output alphabet Σsc:

Σsc ⊃ {SUCC-FSEEK pos | pos ∈ N32}.

The behavior of sos_file_seek is described by the function fseek . This function
takes, as call-specific arguments, the id of the file, the flag indicating the mode
of operation, and the offset:

fseek ∈ S × hn t × fid tε × Z32 × Z32 → S × Ω∗ × (hn t × Σsc)∗.

For fseek(s, hn,fid ,flag , off ), the following cases are considered:

• If faccess-legal(s, hn,fid ,READ) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn,fid).

• If the previous case does not apply, then the new position pos ′ is calcu-
lated using the function offset , the file position is updated. Furthermore,
a success message, containing the new position within the file, is returned
to the calling application.

This adds up to the following definition of fseek :

fseek(s, hn,fid ,flag , off ) =

let f = s.fdb(fid);
pos ′ = offset(0, f.pos, length(f.con),flag , off );
s1 = sJfdb(fid).pos := pos ′K

in {
faccess-error(s, hn,fid) if ¬faccess-legal(s, hn,fid ,READ),
(s1, [ ], [(hn, SUCC-FSEEK pos ′)]) else.

4.3.2.10 Change the Permissions associated with a File

For changing the permissions associated with a file, the library Libsos imple-
ments the following call:

int sc_file_chmod( unsigned int fid, unsigned int fop,

unsigned int uid, int flag).
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In the SOS implementation, sc_file_chmod is handled by sos_file_chmod. If there
is no error, then the permissions associated with the file fid may be changed.
If flag is greater than or equal to 0, then the user uid receives the permission
to perform the file operation fop. If flag is less than 0, then the permission is
revoked. Note that the SOS call also returns successfully if the permissions do
not need to be updated, i. e. if the user already has the permission and the
calling application tries to add it, or if the user does not have the permission
and the calling application tries to remove it.

In the specification, we add FCHMOD fid tε fop tε uid tε Z32, as an abstract
representation of sc_file_chmod, to the input alphabet Ωsc:

Ωsc ⊃

{
FCHMOD fid fop uid flag |
fid ∈ fid tε ∧ fop ∈ fop tε ∧ uid ∈ uid tε ∧ flag ∈ Z32

}
.

The behavior of sos_file_chmod is described by the function fchmod . This
function takes, as call-specific arguments, the id of the file, the file operation,
the user id, and the flag indicating the mode of operation:

fchmod ∈ S × hn t × fid tε × fop tε × uid tε × Z32

→ S × Ω∗ × (hn t × Σsc)∗.

For fchmod(s, hn,fid , fop, uid ,flag), the following cases are considered:

• If fid is not a valid file id or such a file does not exist or if fop is not a
valid file operation or uid does not exist, then the message (hn,ARG) is
returned.

• If the calling application hn does not have the lock for the file, then the
message (hn, LOCK) is returned.

• If the owner of the calling application is neither the owner of the file
nor entitled to change its permissions, then the message (hn,PERM) is
returned.

• If none of the previous cases applies, then uid is either added to or
removed from the set of users entitled to perform the file operation fop
on the file f . Whether uid is added or removed depends on the flag flag .
If flag ≥ 0, then uid is added, otherwise uid is removed. Furthermore, a
success message is returned.

• If the previous case applies and it is some file-lock permission that has
been revoked, i. e. fop = LCK ∧ flag < 0, then additionally the list of
lock requests is inspected to cancel all requests that are no longer valid,
i. e. the corresponding applications receive the result PERM. For that,
we filter the list of f.lock to collect all applications that are owned by
uid and then create a list of error messages using the map operator.
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Furthermore, all those applications that receive an error message are
removed from the list of lock requests.

This adds up to the following definition of fchmod :

fchmod(s, hn,fid , fop, uid ,flag) =

let ao = s.adb(hn).owner ;
f = s.fdb(fid);

perm ′ =

{
f.perm(fop) ∪ {uid} if flag ≥ 0,
f.perm(fop) \ {uid} else;

s1 = s Jfdb(fid).perm(fop) := perm ′K;
hns = filter((λx. s.adb(x).owner = uid), tail(f.lock));
m = map((λx. (x,PERM)), hns);
lock ′ = hn#filter((λx. s.adb(x).owner 6= uid), tail(f.lock));
s2 = s1 Jfdb(fid).lock := lock ′K

in 

(s , [ ], [(hn,ARG)]) if fid = ε ∨ fop = ε ∨ f = ε ∨ uid /∈ s.udb,
(s , [ ], [(hn, LOCK)]) else if hn 6= f.lock [0],
(s , [ ], [(hn,PERM)]) else if ao 6= f .owner ∧ ao /∈ f .perm(CHMOD),
(s1, [ ], [(hn, SUCC)]) else if fop 6= LCK ∨ flag ≥ 0,
(s2, [ ], (hn, SUCC)#m) else.

Again, because of the invariant inv-unique-lock-requests, we know that all
entries in the list tail(f.lock) are unique and different from hn. Therefore, we
can be sure that we will not accidently send several messages to the same
application.

4.3.2.11 Change the Owner of a File

The library Libsos implements the following call that allows the super user to
change the owner of a file:

int sc_file_chown( unsigned int fid, unsigned int uid).

In the SOS implementation, sc_file_chown is handled by sos_file_chown. If there
is no error, then, after the call is handled, the file fid is owned by uid.

In the specification, we add FCHOWN fid tε uid tε, as an abstract represen-
tation of sc_file_chown, to the input alphabet Ωsc:

Ωsc ⊃ {FCHOWN fid uid | fid ∈ fid tε ∧ uid ∈ uid tε}.
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The behavior of sos_file_chown is described by the function fchown. This
function takes, as call-specific arguments, the id of the file and the user id of
the new owner:

fchown ∈ S × hn t × fid tε × uid tε → S × Ω∗ × (hn t × Σsc)∗.

For fchown(s, hn,fid , uid), the following cases are considered:

• If the file fid does not exist, or the user uid does not exist, then the
message (hn,ARG) is returned.

• If the calling application hn does not have the lock for the file, then the
message (hn, LOCK) is returned.

• If the calling application is not owned by the super user, then the message
(hn,PERM) is returned.

• If none of the previous cases applies, then the file data base is updated
such that uid is the new owner of the file fid , and a success is message
returned.

This adds up to the following definition of fchown:

fchown(s, hn,fid , uid) =

let s1 = sJfdb(fid).owner := uidK

in


(s , [ ], [(hn,ARG)]) if fid = ε ∨ s.fdb(fid) = ε ∨ uid /∈ s.udb,
(s , [ ], [(hn, LOCK)]) else if hn 6= f.lock [0],
(s , [ ], [(hn,PERM)]) else if s.adb(hn).owner 6= SU,

(s1, [ ], [(hn, SUCC)]) else.

4.3.2.12 How Does It Compare

In § 1.2.1, we mentioned a number of projects that focused on file systems.
Since Yang et al. [YTEM06] essentially did rule-based testing and Joshi and
Holzmann [JH07] have not yet published any results, only the works of Bevier
et al. [BCT95, BC96] and Arkoudas et al. [AZKR04] can be compared with
our file system specification.

The specifications provided by Bevier et al. are to a certain degree similar
to our specification. Disregarding the fact that they used the specification
languages Z and ACL2, they represented files in a similar fashion and formalized
similar set of file operations. On the one hand, the file system they specified
has more features than ours (e. g. multi level directories and the concept of
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file descriptors), but, on the other hand, their specification is intended as a
programmer’s manual and thus lacks the completeness of our specification. For
example, they did not consider any resource limits, excluded error reporting,
and ignored concurrent file access.

In [AZKR04], Arkoudas et al. established a simulation relation between
two differently abstract models of a file system. Although they managed to
prove simulation, their specification is far from complete. In fact, they only
considered a simple read operation and a simple write operation. Even for
these two operations, they did not consider anything like processes, users, or
permissions.

4.3.3 Virtual Terminals

In the following subsection, we will specify SOS calls that allow user applications
to get keyboard input, write to the screen, change the position of the cursor,
and retrieve information about the terminal.

Other than the hard disk, a keyboard depends on the outside world. If a
user presses a key on the keyboard, then this is considered to be an external
input to the SOS?. Hence, in the following we will also describe how such input
is treated, i. e. specify the keyboard-interrupt handler.

4.3.3.1 Get Keyboard Input

Before we describe what happens if a user application wants to read keyboard
input, we need some auxiliary functions.

The function terminal-owner(s, tid) returns the handle of the application
that is connected to the virtual terminal tid . If the terminal is not connected
to any application, then ε is returned:21

terminal-owner ∈ S × tid t → hn tε
terminal-owner(s, tid) ={

ε{x | s.adb(x).term = tid} if ∃x.s.adb(x).term = tid ,
ε else.

Note that in terminal-owner we use the Hilbert Choice operator ε to choose
one handle hn from the set of handles of applications that are connected to
the terminal tid . This is only deterministic if there is (at most) one such hn.
That means, any virtual terminal should only be connected to (at most) one

21 A virtual terminal may not be connected to an application, if the initial user application
that was started for this terminal, i. e. the login shell, terminated.
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application. Thus, we need the following invariant:

inv-unambiguous-terminal-owner ∈ S → B
inv-unambiguous-terminal-owner(s) ≡

∀hn1, hn2. s.adb(hn1).term = s.adb(hn2).term
∧ s.adb(hn1).term 6= ε

=⇒
hn1 = hn2.

In § 4.3.6 we will see that the owner of a terminal only changes if a new
application is created (aexec and afork defined in § 4.3.6.1 and § 4.3.6.2,
respectively) or if an existing application is terminated (aexit defined in
§ 4.3.6.4). In all three cases, a terminal connection may be passed from one
application to another but never newly assigned. Thus, we can be sure that inv-
unambiguous-terminal-owner is preserved throughout the whole SOS? model.

In the implementation, each virtual terminal displays a status line (see
§ 4.2.3). The contents of this line can always be computed using the function
terminal-status. If the terminal is connected to some application a, then this
line displays whether a has a pending input request, the terminal id, the user
that owns the connected application, and the file id of the executable of the
application. If the terminal is not connected to an application, then only the
terminal id is displayed:

terminal-status ∈ S × tid t → (Bε, tid t , uid tε,fid tε)
terminal-status(s, tid) =

let hn = terminal-owner(s, tid);
a = s.adb(hn)

in
{

(a.read , tid , a.owner , a.exec) if hn 6= ε,

(ε, tid , ε, ε) else.

Now, the library Libsos implements the following call that allows a user
application to read keyboard input from a connected terminal:

int sc_term_read(char* c).

In the SOS implementation, sc_term_read is handled by sos_term_read. If there
is no error, then the oldest character from the input queue of the connected
terminal is returned to the calling application.

In the specification, we add TREAD, as an abstract representation of the
SOS call sc_term_read, to the input alphabet Ωsc:

Ωsc 3 TREAD
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and SUCC-TREAD byte t , as an abstract representation of a possible result, to
the output alphabet Σsc:

Σsc ⊃ {SUCC-TREAD b | b ∈ byte t}.

The behavior of sos_term_read is described by the function tread :

tread ∈ S × hn t → S × Ω∗ × (hn t × Σsc)∗.

For tread(s, hn), the following cases are considered:

• If the calling application is not connected to a terminal, i. e. tid =
s.adb(hn).term and tid = ε, then the message (hn,PERM) is returned.

• If the input queue t.in, with t = s.tdb(tid), is empty, then the read flag
in the caller’s application data structure is set to TRUE to signal the
pending input request. In this case, there is no immediate result. Instead,
a result may be returned by the event handler that treats keyboard input
(event-tkbd defined in § 4.3.3.2).

• If none of the previous cases applies, then the oldest character, i. e. t.in[0],
is removed from t.in and a success message, containing this character,
returned.

This adds up to the following definition of tread :

tread(s, hn) =

let tid = s.adb(hn).term;
t = s.tdb(tid);
s1 = sJadb(hn).read := TRUEK;
s2 = sJtdb(tid).in := tail(t.in)K

in 
(s , [ ], [hn,PERM]) if tid = ε,

(s1, [ ], [ ]) else if t.in = [ ],
(s2, [ ], [hn, SUCC-TREAD t.in[0]]) else.

4.3.3.2 Keyboard Input — KBD

If the user presses a key on the connected keyboard, then an interrupt is raised
and delivered to the SOS. In the SOS implementation, such an interrupt is
handled by the keyboard-interrupt handler sos_term_int. This interrupt handler
first of all reads the input from the device and then processes it.
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In SOS?, we add KBD na t byte t , as an abstract representation of a
keyboard interrupt, to the input alphabet Σ:

Σ ⊃ {KBD dna byte | dna ∈ na t ∧ byte ∈ byte t}.

Here, KBD identifies the input as keyboard input, the network address identifies
the system the input is intended for, and the byte is the actual input.22

Now, we want to present an abstraction of sos_term_int. First of all, note
that receiving keyboard input is problematic as there are two scenarios where
keyboard input might get lost:

• If the latency of the interrupt handler is high, the UART’s internal
receive queue may overflow. Even if there was hardware flow control, a
user that is fast enough and that does not follow some protocol, could
fill up any hardware buffer. In this case, input from key strokes is lost
independently from the currently focused virtual terminal.

• If an applications does not consume the input, then the software buffer
might overflow. In this case, input from key strokes is only lost, if the
input buffer of the currently focused virtual terminal is full.

We will model these two bottlenecks at different places in SOS?. The hardware
buffer overflow will be modeled at the dispatcher level (see § 4.3.8.2). There,
the transition relation ∆ nondeterministically drops keyboard input. The
software buffer overflow will be modeled along with the specification of the
keyboard-interrupt handler.

Thus, considering the software buffer overflow, the interrupt handler sos_

term_int is described by the function event-tkbd . This function takes, as event-
specific arguments, the (destination) network address and the actual input:

event-tkbd ∈ S × na t × byte t → S × Ω∗ × (hn t × Σsc)∗.

For event-tkbd(s, dna, byte), the following cases are considered:

• If the keyboard input is not intended for the local system, i. e. dna 6=
s.lna; if the key is neither the STK key nor does it translate to a valid
input character; if the input queue of the currently focused terminal
t = s.tdb(s.focus) is full, i. e. length(t.in) = TINMAX; or if t is not
connected to any application; then the key is simply ignored.

• If the key is the STK key, then the focus is moved to the next terminal.

• If the key translates to a valid input character, and there is no pending
input request from the connected application, then the character is
appended to the input queue of the currently focused terminal

22The network address is necessary as soon as there are multiple instances of SOS?. In
this case, we need a way to match keyboard input and target system (see Chapter 5).
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• If the key translates to a valid input character, and there is a pending
input request, then the request is removed and a success message, includ-
ing the new character, returned to the waiting application. Note, there
can only be a pending input request, if the input queue is empty (tread
defined in § 4.3.3.1).

This adds up to the following definition of event-tkbd :

event-tkbd(s, dna, byte) =

let tid = s.focus;
t = s.tdb(tid);
hn = terminal-owner(s, tid);
s1 = sJfocus := (s.focus + 1)%NTK;
s2 = sJtdb(tid).in := t.in ◦ [byte]K;
s3 = sJadb(hn).read := FALSEK

in

(s , [ ], [ ]) if dna 6= s.lna
∨ (byte 6= STK ∧ byte /∈ SCRC-IN)
∨ length(t.in) = TINMAX

∨ hn = ε,

(s1, [ ], [ ]) else if byte = STK,

(s2, [ ], [ ]) else if ¬adb(hn).read ,
(s3, [ ], [(hn, SUCC-TREAD byte))]) else.

4.3.3.3 Write to the Screen

The library Libsos implements the following call that allows a user application
to write to the screen of a connected terminal:

int sc_term_write(char c, int flag).

In the SOS implementation, sc_term_write is handled by sos_term_write. If there
is no error, then the character c is printed on the screen and the cursor position
incremented. The exact placement of c and the contents of the remaining
screen depend on the flag flag. If flag is less or equal to 0, then c is printed at
the current cursor position. If flag is equal to 1, then the row of the current
cursor position is cleared and c printed at the beginning of that row. Finally,
if flag is greater or equal to 2, then the whole screen is cleared and c printed
in the upper left corner.
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In the specification, we add TWRITE byte t Z32, as an abstract representa-
tion of sc_term_write, to the input alphabet Ωsc:

Ωsc ⊃ {TWRITE byte flag | byte ∈ byte t ∧ flag ∈ Z32}.

The behavior of sos_term_write is described by the function twrite. This function
takes, as call-specific arguments, the character that should be printed and the
flag indicating the mode of operation:

twrite ∈ S × hn t × byte t × Z32 → S × Ω∗ × (hn t × Σsc)∗.

For twrite(s, hn, byte,flag), the following cases are considered:

• If the calling application is not connected to a virtual terminal, then the
message (hn,PERM) is returned.

• If byte is not a printable character, i. e. byte /∈ SCRC-OUT, then the
message (hn,ARG) is returned.

• If none of the previous cases applies, then the screen contents is updated
and a success message returned. For that, we first of all compute the
position pos ′ where the character has to be placed. Then, the new
contents of the screen is computed by concatenating beg , the prefix of
the old contents; the character byte; possibly some white spaces; and
end , the postfix the old contents (see Figure 4.2 on the facing page).
Finally, the cursor is moved behind the character that has been printed.
If byte is printed at the lower right corner, then the cursor is moved to
the upper left corner.

This adds up to the following definition of twrite:

twrite(s, hn, byte,flag) =

let tid = s.adb(hn).term;
t = s.tdb(tid);
tc = s.tdb(tid).out ;

pos ′ =


t.pos if flag <= 0,
t.pos − (t.pos%SCRX) else if flag = 1,
0 else;

beg = take(pos ′, tc);

end =


drop(pos ′ + 1, tc) if flag <= 0,
SPACESCRX−1 ◦ drop(pos ′ + SCRX, tc) else if flag = 1,
SPACESCRXY−1 else;

s1 = s

t
tdb(tid).out := beg ◦ [byte] ◦ end ,
tdb(tid).pos := (pos ′ + 1)%SCRXY

|
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in 
(s , [ ], [(hn,PERM)]) if tid = ε,

(s , [ ], [(hn,ARG)]) else if byte /∈ SCRC-OUT,

(s1, [ ], [(hn, SUCC)]) else.

Here, we use SPACE ∈ SCRC-OUT to denote the white-space character. Further,
we use SPACEx to denote a list l ∈ byte tx such that l = [SPACE, . . . , SPACE].
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Figure 4.2: Writing to a Terminal (twrite). If (a) depicts some terminal’s
screen contents s.tdb(t).out , then (b), (c), and (d) depict s1.tdb(t).out , if the
application hn was connected to t and successfully called twrite(s, hn, x, 0),
twrite(s, hn, x, 1), or twrite(s, hn, x, 2), respectively.

4.3.3.4 Change the Position on the Screen

For moving the cursor, the library Libsos implements the following call:

int sc_term_seek(int flag, int off, unsigned int* pos).

In the SOS implementation, sc_term_seek is handled by sos_term_seek. If there
is no error, then the position of the cursor on a connected terminal is updated
and the new position returned to the calling application. The calculation for
the new position pos depends on flag. If flag is smaller than 0, then pos=off.
If flag is equal to 0, then off is added to the current cursor position. If flag is
greater than 0, then off is added to the position at the end of the screen. Note,
as for sc_term_seek, off may be negative, in which case the cursor is moved
backward. In any case, the new position is ‘cropped’ to point to a position on
the screen.

In the specification, we add TSEEK Z32 Z32, as an abstract representation
of sc_term_seek, to the input alphabet Ωsc:

Ωsc ⊃ {TSEEK flag off | flag , off ∈ Z32}

and SUCC-TSEEK N32, as an abstract representation of a possible result, to the
output alphabet Σsc:

Σsc ⊃ {SUCC-TSEEK pos | pos ∈ N32}.
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The behavior of sos_term_seek is described by the function tseek . This function
takes, as call-specific arguments, the flag indicating the mode of operation and
the offset:

tseek ∈ S × hn t × Z32 × Z32 → S × Ω∗ × (hn t × Σsc)∗.

For tseek(s, hn,flag , off ), the following cases are considered:

• If the calling application is not connected to a virtual terminal, then the
message (hn,PERM) is returned.

• If the previous case does not apply, then the new position pos ′ is calcu-
lated using the function offset , the cursor position updated accordingly,
and a success message, containing the new position, returned.

This adds up to the following definition of tseek :

tseek(s, hn,flag , off ) =

let tid = s.adb(hn).term;
pos = s.tdb(tid).pos;
pos ′ = offset(0, pos, SCRXY − 1,flag , off );
s1 = sJtdb(tid).pos := pos ′K

in
{

(s , [ ], [(hn,PERM)]) if tid = ε,

(s1, [ ], [(hn, SUCC-TSEEK pos ′)]) else.

4.3.3.5 Retrieve Information about a Terminal

The library Libsos implements the following call that allows a user application
to retrieve information about a connected terminal:

int sc_term_info( unsigned int* width, unsigned int* height,

unsigned int* pos).

In the SOS implementation, sc_term_info is handled by sos_term_info. If there is
no error, then sc_term_info returns the width and height of the (user accessible)
screen area and the current cursor position.

In the specification, we add TINFO, as an abstract representation of the
SOS call, to the input alphabet Ωsc:

Ωsc 3 TINFO

and SUCC-TINFO N32 N32 N32, as an abstract representation of a possible result,
to the output alphabet Σsc:

Σsc ⊃ {SUCC-TINFO width height pos | width, height , pos ∈ N32}.



4.3. TRANSITION RELATION 75

The behavior of sos_term_info is described by the function tinfo:

tinfo ∈ S × hn t → S × Ω∗ × (hn t × Σsc)∗.

For tinfo(s, hn), the following cases are considered:

• If the calling application is not connected to a virtual terminal, then the
message (hn,PERM) is returned.

• If the previous case does not apply, then a success message, including
SCRX, SCRY, and the position of the cursor on the terminal, is returned.

This adds up to the following definition of tinfo:

tinfo(s, hn) =

let tid = s.adb(hn).term;
pos = s.tdb(tid).pos

in
{

(s, [ ], [(hn,PERM)]) if tid = ε,

(s, [ ], [(hn, SUCC-TINFO SCRX SCRY pos)]) else.

4.3.4 Sockets

We want to allow user applications to communicate with the outside world.
For that, the SOS implementation provides a socket interface. In the following
subsection, we will first of all give some background information about the TCP
layer, its assumptions, and its guarantees. Based on that, we will introduce
abstract network packets, state fundamental invariants about sockets, and
finally specify SOS handlers and event handlers related to sockets.

Note that the necessary SOS? transitions are fairly complex. Modeling a
network card and its device drivers requires us to deal with external input as
well as external output and it is also necessary to consider network properties.
This makes the abstraction less intuitive and the simulation relation more
complex. For a better understanding, we will give more explanation than for
transitions related to file I/O or virtual terminals. In several places we will
point out how the abstraction relates to the implementation and why certain
abstractions may be valid.

4.3.4.1 TCP Assumptions and Guarantees

In general, TCP provides reliable, in-order delivery of a stream of bytes [Ste93].
Our implementation, (additionally) guarantees Safety and Liveness for the
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opening phase, the transmission phase, and the closing phase [Cai06].23 In
order to guarantee these properties a number of assumptions are made. Among
them are:

• Network Liveness: every IP packet that is sent infinitely often will
eventually be received.

• Network Safety: the source of an IP packet can not be faked.

• Time to Live: IP packets expire in a way that guarantees unique sequence
numbers.

• Internal Liveness: the TCP layer is called infinitely often.

• Absence of Timeouts: there are no external timeouts, i. e. the socket
layer does not set up timeouts for data submitted to the TCP layer (e. g.
there are no timeouts for for requesting and accepting a connection or a
connection does not terminate after a certain time without traffic).

These assumptions impose requirements on the network as well as on the
implementation of the network protocol stack of all the communication partners.
At this point, we are actually arguing about several systems (see Chapter
5 and Chapter 6). Although the above assumptions very much restrict our
implementation, we were still able to implement a relevant subset of the socket
calls specified in the POSIX standard [IEE04]. This implementation is, on
the one hand, powerful enough to communicate with any of the standard
implementations (e. g. the implementations within Linux and Windows XP),
and, on the other hand, restrictive enough to meet the above assumptions.
That means that our operating system can be tested / used in the ‘real world’,
but, at the same time, we are able to take advantage of the TCP guarantees
within SOS? and DSOS?. The latter allows us to represent communication via
sockets on a very abstract level.

4.3.4.2 Abstract Network Packets

As in TCP, the communication via sockets can be divided into three phases,
i. e. the opening phase, the communication phase, and the closing phase:

• In the opening phase, a socket is created and bound to a local address
and local port number. Furthermore, in this phase, a connection is
established. How a connection is established depends on the character of
the participating applications. A server signals its willingness to accept
connections on a certain local port by listening on the corresponding
socket. Then, a connection is established, if there is a client that requests

23A short overview of the “Reactive Properties of the TCP Subsystem of the Simple
Operating System” is presented in the Verisoft-internal Technical Report #69.
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Figure 4.3: Live Cycle of a Socket. Sockets end up waiting for connection
requests or may become part of a connection. (Figure 4.8 on page 100, at the
end of this subsection, presents a more precise picture.)

a connection and the server accepts that request. On the client side, the
original socket is used as an endpoint of the newly established connection.
On the server side, the original socket remains in listen mode and a new
socket is used as an endpoint of the newly established connection. (see
Figure 4.3)

• In the communication phase, sockets are used to send and receive data.

• In the closing phase, a connection is terminated, if at least one of the
endpoints explicitly closes it. In this case, the closing side releases it’s
socket and the opposite side is informed. Then, the latter changes it’s
socket state to reflect this (partially) closed connection.

In all three phases, the state of a socket depends on the socket calls executed
on the local machine as well as on external events. In the implementation,
the socket layer is at the top of the TCP / IP stack. At the bottom of that
stack is a network card that receives data from the outside world and that
sends data to the outside world. Receiving data via the network card is very
similar to receiving data via the serial interface; a remote system sending data
is similar to a user pressing a key on a connected keyboard. Hence, in SOS?,
we model data coming in via the network card as external inputs and data
going out as external outputs. Depending on the level of abstraction these
inputs and outputs may be TCP packets, IP packets or one of the units of even
lower layers. In SOS?, we hide as much as possible of the underlying protocols.
Here, we no longer talk about TCP packets but introduce abstract network
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packets. A single abstract network packet is either a packet used to establish a
connection (REQ and READY), a packet used to exchange or acknowledge data
(DATA and ACK), or a packet used to close a connection (CLOSE). In SOS?,
the type np t is used to represent abstract network packets. It is an abstract
data type that contains (at least) the packet identifier (constructor) REQ,
READY, DATA, ACK, or CLOSE; the sender’s port and network address; and
the receiver’s port and network address. A data packet additionally contains a
list of bytes, the actual payload, and a data acknowledge packet additionally
contains the number of bytes that should be acknowledged:

np t = REQ na t pn t na t pn t
| READY na t pn t na t pn t
| DATA na t pn t na t pn t byte t∗

| ACK na t pn t na t pn t N32

| CLOSE na t pn t na t pn t .

Note that the correspondence between abstract network packets and TCP
packets is non-trivial. For example, in the implementation, a client may send
several SYN packets before one of them is received by the server. In SOS?,
however, we represent all of these SYN packets by a single REQ packet, i. e.
we hide the packets that are lost. That means that in SOS?, a REQ packet
simply declares the willingness to connect to a remote site. Thus, instead of
(re-) modeling the opening phase of the underlying TCP protocol, we take
advantage of the TCP guarantees and use the abstract network packets REQ

and READY only as means of synchronization. Hence, there is no need to send
a REQ packet several times. This is also the reason why the final ACK packet,
the third way of the so-called three-way handshake [Ste93], is invisible in SOS?.
In Appendix A.2, we formally proved that, for SOS? and DSOS?, this two-way
handshake is indeed a valid abstraction of the three-way handshake.24 Similar
abstractions are used for the communication- and closing phase.

Having abstract network packets in place, we are now able to add NET np,
as an abstract representation of network input, to the input alphabet Σ:

Σ ⊃ {NET np | np ∈ np t}

and as an abstract representation of network output to the output alphabet Ω:

Ω = {NET np | np ∈ np t}.

4.3.4.3 Socket Invariants

Before we can finally get to the actual calls and handlers, we still need to
formulate a number of necessary socket invariants. These invariants primarily

24The proof in Appendix A.2 is taken from the Verisoft Technical Report #5 [Bog08d].
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rely on the fact that, in our implementation, the only sockets that are shared
are endpoints of established connections. That is, in SOS?, while forking
an application, only those sockets that are in the state ESTABLISHED or in
the state REMOTE-CLOSED are made accessible to the child application (afork
defined in § 4.3.6.2). Furthermore, shared sockets can not be reused to establish
new connections, i. e. the state of such a socket can not be changed (back) to
BOUND, LISTEN, or ACCEPTING. Finally, opening a socket on a port that is
already in use is prohibited:

• If a socket is in the state BOUND or CONNECTING, then there is no other
socket associated with the same local port:

inv-unique-socket-bound-connecting ∈ S → B
inv-unique-socket-bound-connecting(s) ≡

∀sid1, sid2. s.sdb(sid1).state ∈ {BOUND,CONNECTING}
∧ s.sdb(sid2) 6= ε ∧ sid1 6= sid2

=⇒
s.sdb(sid1).lpn 6= s.sdb(sid2).lpn.

• If a socket is in state LISTEN, then there is no other socket listening on
the same local port:

inv-unique-state-listening ∈ S → B
inv-unique-state-listening(s) ≡

∀sid1, sid2. s.sdb(sid1).state = LISTEN

∧ s.sdb(sid2) 6= ε ∧ sid1 6= sid2

=⇒
s.sdb(sid2).lpn 6= s.sdb(sid1).lpn
∨ s.sdb(sid2).state 6= LISTEN.

• If a socket is in state ACCEPTING, then there is no other socket accepting
on the same local port:

inv-unique-state-accepting ∈ S → B
inv-unique-state-accepting(s) ≡

∀sid1, sid2. s.sdb(sid1).state = ACCEPTING

∧ s.sdb(sid2) 6= ε ∧ sid1 6= sid2

=⇒
s.sdb(sid2).lpn 6= s.sdb(sid1).lpn
∨ s.sdb(sid2).state 6= ACCEPTING.
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• Connections are unique, i. e. there are no two sockets that are in the
state ESTABLISHED and that have the same local port, the same remote
port, and the same remote network address:

inv-unique-connection ∈ S → B
inv-unique-connection(s) ≡

∀sid1, sid2. s.sdb(sid1).state ∈ {ESTABLISHED}
∧ s.sdb(sid2).state ∈ {ESTABLISHED}
∧ sid1 6= sid2

=⇒
s.sdb(sid1).lpn 6= s.sdb(sid2).lpn
∨ s.sdb(sid1).rpn 6= s.sdb(sid2).rpn
∨ s.sdb(sid1).rna 6= s.sdb(sid2).rna.

• If there are two application that have access to the same socket, then this
socket is in the state ESTABLISHED, or in the state REMOTE-CLOSED:

inv-only-established-shared ∈ S → B
inv-only-established-shared(s) ≡

∀sid . ∃hn1, hn2. sid ∈ s.adb(hn1).sockets
∧ sid ∈ s.adb(hn2).sockets
∧ hn1 6= hn2

=⇒
s.sdb(sid).state ∈ {ESTABLISHED,REMOTE-CLOSED}.

• Since TCP provides in-order delivery of packets, we can be sure that
a CLOSE packet is only (successfully) received, after all DATA packets
have been received and acknowledged. Hence, if a socket’s state is
REMOTE-CLOSED, then there can not be any unacknowledged data:

inv-close-in-order ∈ S → B
inv-close-in-order(s) ≡

∀sid . s.sdb(sid).state = REMOTE-CLOSED

=⇒
(s.sdb(sid).in − s.sdb(sid).read) ≤ SOCK-WIN-SIZE.

After we have discussed assumptions and guarantees of the TCP layer,
introduced abstract network packets, and stated some socket invariants, we
will now specify SOS calls and event handlers related to Socket I/O. While
specifying the individual calls and handlers we will use the (above-defined)
socket invariants and show how they are maintained.
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4.3.4.4 Open a Socket

As described earlier, the first steps towards an established connection are
creating and binding a socket. Usually this is achieved by two separate system
calls. In SOS, however, this is achieved by a single call. For that, the library
Libsos implements the following call that creates a socket and immediately
binds it to a port:

int sc_socket_open(unsigned int pn, unsigned int* sid).

In the SOS implementation, sc_socket_open is handled by sos_socket_open. If
there is no error, then a socket is initialized, it is bound to the local port pn,
and the socket id is returned to the calling application.

In the specification, we add SOPEN pn tε, as an abstract representation of
sc_socket_open, to the input alphabet Ωsc:

Ωsc ⊃ {SOPEN pn | pn ∈ pn tε}

and SUCC-SOPEN sid t as well as SOCK, as abstract representations of possible
results, to the output alphabet Σsc:

Σsc ⊃ {SUCC-SOPEN sid , SOCK | sid ∈ sid t}.

The behavior of sos_socket_open is described by the function sopen. This
function takes, as a call-specific argument, the desired port number:

sopen ∈ S × hn t × pn tε → S × Ω∗ × (hn t × Σsc)∗.

For sopen(s, hn, pn), the following cases are considered:

• If there are no more socket ids available, i. e. if the set of unassigned socket
ids free is empty, or the calling application a has reached the maximum
number of sockets per application MSPA ∈ N+

32, i. e. |a.sockets| = MSPA,
then the message (hn, LIMIT) is returned.

• If pn is not a valid port number, i. e. pn = ε, then the message (hn,ARG)
is returned.

• If pn is already in use, i. e. ∃x. s.sdb(x).lpn = pn, then the message
(hn, SOCK) is returned.

• If none of the previous cases apply, then a new socket, with the socket id
sidn, is initialized and added to the socket data base. Furthermore, sidn

is added to the application’s socket references and the success message
m, including the new socket’s id, is returned.
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This adds up to the following definition of sopen:

sopen(s, hn, pn) =

let a = s.adb(hn);
free = {x | x ∈ sid t ∧ s.sdb(x) = ε};
sidn = min(free);

s1 = s

u

wwwwwwwwwwwwwwwwwww
v

sdb(sidn) :=

u

wwwwwwwwwwwwwwww
v

state = BOUND,

lpn = pn,
lq = [ ],
rna = ε,

rpn = ε,

in = [ ],
read = 0,
out = [ ],
ack = 0

}

����������������
~

,

adb(hn).sockets := a.sockets ∪ {sidn}

}

�������������������
~

;

m = SUCC-SOPEN sidn

in


(s , [ ], [(hn, LIMIT)]) if free = { } ∨ |a.sockets| = MSPA,

(s , [ ], [(hn,ARG)]) else if pn = ε,

(s , [ ], [(hn, SOCK)]) else if ∃x. s.sdb(x).lpn = pn,
(s1, [ ], [(hn,m)]) else.

4.3.4.5 Change a Socket to Listen Mode

Before specifying how a socket’s state may be changed to listening, two auxiliary
functions should be introduced.

Similar to faccess-legal , the predicate saccess-legal is used to check whether
some socket access is legal. saccess-legal(s, hn, sid , states) is satisfied, if sid is
a valid socked id, sid is in the set of socket references of application hn, and
the socket’s state is in the set states:

saccess-legal ∈ S × hn t × sid tε × P(sstate t)→ B
saccess-legal(s, hn, sid , states) ≡

sid 6= ε ∧ sid ∈ s.adb(hn).sockets
∧ (s.sdb(sid).state ∈ states ∨ states = { }).



4.3. TRANSITION RELATION 83

Note, if saccess-legal is called with states = { }, then the socket’s state does not
matter. We will use this, when closing a socket (sclose defined in § 4.3.4.14).

The function saccess-error is the counterpart to saccess-legal . It returns
the correct error message in the case when the predicate saccess-legal is not
satisfied:

saccess-error ∈ S × hn t × sid tε → S × Ω∗ × (hn t × Σsc)∗

saccess-error(s, hn, sid) =
(s, [ ], [(hn,ARG)]) if sid = ε,

(s, [ ], [(hn, LOCK)]) else if sid /∈ s.adb(hn).sockets,
(s, [ ], [(hn, SOCK)]) else.

The library Libsos implements the following call that allows a user applica-
tion to change a socket’s state to listening:

int sc_socket_listen(unsigned int sid).

In the SOS implementation, sc_socket_listen is handled by sos_socket_listen.
If there is no error, then, after the call is handled, the socket sid is in listen
mode.

In the specification, we add SLISTEN sid tε, as an abstract representation
of sc_socket_listen, to the input alphabet Ωsc:

Ωsc ⊃ {SLISTEN sid | sid ∈ sid tε}.

The behavior of sos_socket_listen is described by the function slisten. This
function takes, as a call-specific argument, the socket id:

slisten ∈ S × hn t × sid tε → S × Ω∗ × (hn t × Σsc)∗.

For slisten(s, hn, sid), the following cases are considered:

• If saccess-legal(s, hn, sid , {BOUND}) is not satisfied, then the result is
computed and returned by saccess-error(s, hn, sid).

• If the previous case does not apply, then the socket’s state is changed
and a success message returned.

This adds up to the following definition of slisten:

slisten(s, hn, sid) =

let s1 = sJsdb(sid).state := LISTENK

in
{

saccess-error(s, hn, sid) if ¬saccess-legal(s, hn, sid , {BOUND}),
(s1, [ ], [(hn, SUCC)]) else.
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Note, because of inv-unique-socket-bound-connecting , we can be sure that there
is no other socket bound to the same local port. Hence, we can be sure that,
after the call, inv-unique-state-listening holds.

4.3.4.6 Establish a Connection

The library Libsos implements the following call that allows a user application
to establish a connection:

int sc_socket_connect( unsigned int sid, unsigned int ip,

unsigned int pn).

In the SOS implementation, sc_socket_connect is handled by the SOS-call
handler sos_socket_connect. If there is no error, then, after the call returns
to the calling application, there exists an established connection between the
local system and the system with the IP address ip. For that, the three way
handshake is initiated by sending a SYN packet to the remote site. After that,
the local system performs other tasks and waits for the remote site to answer
with a corresponding SYN/ACK packet. If this packet is received, then the three
way handshake is completed by sending the final ACK packet. Finally, if all
goes well, the SOS call returns and informs the calling application about the
success.

In the specification, we add SCONNECT sid tε na tε pn tε, as an abstract
representation of sc_socket_connect, to the input alphabet Ωsc:

Ωsc ⊃ {SCONNECT sid na pn | sid ∈ sid tε ∧ na ∈ na tε ∧ pn ∈ pn tε}.

The behavior of sos_socket_connect is described by the function sconnect . This
function takes, as call-specific arguments, the socket id, the remote network
address, and the remote port number:

sconnect ∈ S × hn t × sid tε × na tε × pn tε
→ S × Ω∗ × (hn t × Σsc)∗.

For sconnect(s, hn, sid ,na, pn), the following cases are considered:25

• If saccess-legal(s, hn, sid , {BOUND}) is not satisfied, then the result is
computed and returned by saccess-error(s, hn, sid).

• If the previous case does not apply, but the remote network address is
invalid, i. e. na = ε, or the remote port number is invalid, i. e. pn = ε,
then the message (hn,ARG) is returned.

25The parameter na from sconnect(s, hn, sid ,na, pn) corresponds to the ip parameter in
the Libsos call. This is because we choose to name the corresponding type (abstract) network
address (na t) rather than IP address.



4.3. TRANSITION RELATION 85

• If none of the previous cases apply, then the remote network address and
the remote port number are stored in the socket sid and the abstract
network packet np is sent to the remote site. Furthermore, in order to
indicate the pending connection attempt, the state of the socket sid is
changed to CONNECTING.

This adds up to the following definition of sconnect :

sconnect(s, hn, sid ,na, pn) =

let sock = s.sdb(sid);
sock ′ = sockJstate := CONNECTING, rna := na, rpn := pnK;
np = REQ s.lna sock .lpn na pn;
s1 = sJsdb(sid) := sock ′K

in 
saccess-error(s, hn, sid) if ¬saccess-legal(s, hn, sid , {BOUND}),
(s , [ ], [(hn,ARG)]) else if na = ε ∨ pn = ε,

(s1, [NET np], [ ]) else.

Note, as for slisten, because of inv-unique-socket-bound-connecting , we can be
sure that there is no other socket bound to the same local port. Hence, we can
be sure that, after the call returns, inv-unique-connection holds. Similar to
tread , it is a side effect of the event handler event-sready (defined in § 4.3.4.9)
to complete the process of establishing a connection and to return a result to
the calling application.

4.3.4.7 Accept incoming Connection Requests

Before we go on to describe what happens if a REQ packet is received, we want
to introduce another SOS call.

The library Libsos implements the following call that allows a user applica-
tion, in this case a server, to accept a new connection:

int sc_socket_accept( unsigned int sid, unsigned int* ip

unsigned int* pn, unsigned int* new_sid).

In the SOS implementation, sc_socket_accept is handled by sos_socket_accept.
There are two main scenarios for sc_socket_accept.

• If there are no errors and there is some remote site, in this case a
client that has already requested a connection, then the connection is
established by sending the SYN/ACK packet, and the SOS call returns
immediately. Thereby, the remote IP address ip and the remote port
number pn as well as the socket id of the socket that is used for the new
connection (new_sid), are reported to the calling application.
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Note that the new socket is necessary, as the original socket sid remains
in a listening state. This is the standard behavior. In combination
with a fork operation, servers, such as SMTP servers or HTTP servers,
commonly use this to have a single process accepting all incoming requests
and then serve these requests (in parallel) in separate processes. In fact,
the SMTP server implemented on top of the SOS does that too.

• If there are no errors and (so far) no client has requested a connection,
then the local system performs other tasks and waits for some remote
site to request one.

In the specification, we add SACCEPT sid tε, as an abstract representation of
sc_socket_accept, to the input alphabet Ωsc:

Ωsc ⊃ {SACCEPT sid | sid ∈ sid tε}

and SUCC-SACCEPT sid t na t pn t , as an abstract representation of a possible
result, to the output alphabet Σsc:

Σsc ⊃ {SUCC-SACCEPT sid na pn | sid ∈ sid t ∧ na ∈ na t ∧ pn ∈ pn t}.

The behavior of sos_socket_connect is described by the function saccept . This
function takes, as a call-specific argument, the id of the socket:

saccept ∈ S × hn t × sid tε → S × Ω∗ × (hn t × Σsc)∗.

For saccept(s, hn, sid), the following cases are considered:

• If saccess-legal(s, hn, sid , {LISTEN}) is not satisfied, then the result is
computed and returned by saccess-error(s, hn, sid).

• If there are no more socket ids available or the maximum number of sock-
ets per application is reached, then the message (hn, LIMIT) is returned.

• If none of the previous cases apply but the listen queue is empty, i. e. up
to now there was no REQ packet received for that socket, then the socket
sockn with id sidn is reserved for a later connection. That means that
sockn is initialized and added to the socket data base and sidn is added
to the set of socket references of the calling application. The new socket’s
state is thereby set to ACCEPTING, and the remote network address and
the remote port are set to ε.

In this case there is no immediate result. Instead, a result is returned
if an appropriated REQ packet is received and the connection can be
established. That is, if the event handler that treats REQ packets (event-
sreq defined in § 4.3.4.8) receives an appropriate packet on the local port
pn.
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Note that because of inv-unique-state-listening there can not be another
socket listening on the same port. Moreover, saccept does not return until
the connection via sidn is established. Hence, we can be sure that (this
case of) saccept does not violate the invariant inv-unique-state-accepting .

• Finally, if the predicate saccess-legal is satisfied, (na, pn) is the oldest
entry in the listen queue, and no limits are exceeded, then the following
happens. The new socket sockn is initialized; the abstract network packet
np is sent to the remote site; and the success message m, containing
the remote port, remote network address, and the new socket’s id, is
returned. Furthermore, the head of the listen queue is removed, the new
socket added to the socket data base, and the new socket’s id added
to the set of socket references of the calling application. Other than in
the previous case, the new socket’s state is set to ESTABLISHED, and the
remote network address and remote port number are set to na and pn.

Note that because of the TCP assumption ‘Absence of Timeouts’, we
can be sure that the remote site is still waiting and that it will send the
final ACK packet. Because of this, in SOS?, we can abstract the remaining
part of the three way handshake and claim that the connection has been
established (Appendix A.2).

Further, note that because we assume that sconnect ensures inv-unique-
connection at the remote site, saccept does so too on the local site.

This adds up to the following definition of saccept :

saccept(s, hn, sid) =

let sock = s.sdb(sid);
lq = sock .lq ;
free = {x | x ∈ sid t ∧ s.sdb(x) = ε};
sidn = min(free);
sockets = s.adb(hn).sockets;

(na, pn) =

{
lq [0] if lq 6= [ ],
(ε, ε) else;

state ′ =

{
ESTABLISHED if lq 6= [ ],
ACCEPTING else;

sockn = sock

u

wwww
v

state := state ′,
lq := [ ],
rna := na,
rpn := pn

}

����
~

;
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s1 = s

t
sdb(sidn) := sockn,

adb(hn).sockets := sockets ∪ {sidn}

|

;

s2 = s1Jsdb(sid).lq := tail(lq)K;

m = [(hn, SUCC-SACCEPT sidn na pn)];
np = READY s.lna sock .lpn na pn

in


saccess-error(s, hn, sid) if ¬saccess-legal(s, hn, sid , {LISTEN}),
(s , [ ], [(hn, LIMIT)]) else if free = { } ∨ |sockets| = MSPA,

(s1, [ ], [ ]) else if lq = [ ],
(s2, [NET np],m) else.

4.3.4.8 Network Input — REQ

Before we go on to describe the first socket-related event handler, we need to
introduce an auxiliary function.

The function match-socket(s, state, lpn, rna, rpn) returns the socket id of
the socket that matches the arguments. If several sockets match, then the
smallest socket id is returned. If no match can be found, then ε is returned:

match-socket ∈ S × P(sstate t)× pn tε × na tε × pn tε → sid tε
match-socket(s, state, lpn, rna, rpn) =

let

matches =



x | x ∈ sid t ∧ s.sdb(x) 6= ε

∧ (s.sdb(x).state ∈ state ∨ state = { })
∧ (s.sdb(x).lpn = lpn ∨ lpn = ε)
∧ (s.sdb(x).rna = rna ∨ rna = ε)
∧ (s.sdb(x).rpn = rpn ∨ rpn = ε)


in

{
min(matches) if matches 6= { },
ε else.

If the network card receives some packet, an interrupt is raised and delivered
to the SOS. At the highest level of our TCP / IP implementation, such an
interrupt is treated by the interrupt handler sos_socket_int. Here, the interrupt
is first of all passed down through the different layers of the TCP / IP stack.
At the lowest level, the actual data is read from the device. Then, as results
are passed back up, each level of the TCP / IP stack might process the new
data. The implementation of the different interrupt handlers is quite complex,
but, in the end, it is possible to group all transitions into five distinct classes.
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As described earlier, each of these classes is represented by a different type of
abstract network packet, i. e. REQ, READY, DATA, ACK, and CLOSE.

Now, if a remote site wants to connect to the local system, i. e. a SYN packet
has been received, then, in SOS?, this is modeled as external input that is
an abstract network packet of type REQ. The behavior of the corresponding
interrupt handler(s) is described by the function event-sreq . This function
takes, as event-specific arguments, the sender’s network address and port
number as well as the destination network address and port number:

event-sreq ∈ S × na t × pn t × na t × pn t → S × Ω∗ × (hn t × Σsc)∗.

For event-sreq(s, sna, spn, dna, dpn), the following cases are considered:

• If the packet that was received is not intended for the local system, i. e.
dna 6= s.lna, or if there is no application listening on the destination
port dpn, i. e. match-socket(s, {LISTEN}, dpn, ε, ε) = ε, then this packet
is dropped.

• If there is no pending accept request, then the connection attempt is
stored in the listen queue of the listening socket.

• If there is a pending accept request, then the connection is established
and the abstract network packet np sent to the remote site. Furthermore,
the success message m, containing the remote port, remote network
address and the new socket’s id, is returned to the application waiting
for the accept to complete.

This adds up to the following definition of event-sreq :

event-sreq(s, sna, spn, dna, dpn) =

let sid1 = match-socket(s, {LISTEN}, dpn, ε, ε);
sid2 = match-socket(s, {ACCEPTING}, dpn, ε, ε);
s1 = sJsdb(sid1).lq := s.sdb(sid1).lq ◦ [(sna, spn)]K;

s2 = s

u

w
v

sdb(sid2).state := ESTABLISHED,

sdb(sid2).rna := sna,
sdb(sid2).rpn := spn

}

�
~ ;

hn = ε{x | sid2 ∈ s.adb(x ).sockets};
m = [(hn, SUCC-SACCEPT sid2 sna spn)];
np = READY dna dpn sna spn

in 
(s , [ ], [ ]) if dna 6= s.lna ∨ (sid1 = ε ∧ sid2 = ε),
(s1, [ ], [ ]) else if sid2 = ε,

(s2, [NET np],m) else.
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Note that in the implementation, listen queues are bounded, but, because of
the assumption ‘Absence of Timeouts’, we can be sure that the connection
attempt will eventually be added to the listen queue — even a bounded one.
Hence, unbounded listen queues are a valid abstraction. Also note that if
there exists a socket waiting for a REQ packet, i. e. sid2 6= ε, then, because of
the invariants inv-unique-state-accepting and inv-only-established-shared , there
can only be one application x such that sid2 ∈ s.adb(x ).sockets. Hence, it is
deterministic to use ε to discover the handle of this application.

4.3.4.9 Network Input — READY

If some remote site responds to a connect request, i. e. a SYN/ACK packet is
received, then, in SOS?, this is modeled as external input, which is an abstract
network packet of type READY. The behavior of the corresponding interrupt
handler(s) is described by the function event-sready . This function takes, as
event-specific arguments, the sender’s network address and port number as
well as the destination network address and port number:

event-sready ∈ S × na t × pn t × na t × pn t → S × Ω∗ × (hn t × Σsc)∗.

For event-sready(s, sna, spn, dna, dpn), the following cases are considered:

• If the packet that was received is not intended for the local system,
or none of the applications on the local system tries to connect to the
remote system, i. e. match-socket(s, {CONNECTING}, dpn, sna, spn) = ε,
then this packet is dropped.

• If the previous case does not apply, i. e. there exists an application hn
that wants to connect to the source of the READY packet via the socket
sid , then the socket’s state is set to ESTABLISHED, and a success message
returned.

This adds up to the following definition of event-sready :

event-sready(s, sna, spn, dna, dpn) =

let sid = match-socket(s, {CONNECTING}, dpn, sna, spn);
hn = ε{x | sid ∈ s.adb(x ).sockets};
s1 = sJsdb(sid).state := ESTABLISHEDK

in
{

(s , [ ], [ ]) if dna 6= s.lna ∨ sid = ε,

(s1, [ ], [(hn, SUCC)]) else.

Note that, as mentioned earlier, the final ACK packet is hidden in our abstraction
(Appendix A.2). Furthermore, if there exists a socket waiting for a READY



4.3. TRANSITION RELATION 91

packet, i. e. sid 6= ε, then, because of inv-unique-socket-bound-connecting and
inv-only-established-shared , there can only be one application x such that
sid ∈ s.adb(x ).sockets. Hence, it is deterministic to use ε to discover the
handle of this application.

4.3.4.10 Write to a Socket

The library Libsos implements the following call that allows a user application
to write to a socket, i. e. send data to a remote site via an established connection:

int sc_socket_write( unsigned int sid, unsigned int len

sos_buffer_t buf).

In the SOS implementation, sc_socket_write is handled by sos_socket_write. If
there is no error, then, after the call is handled, (at most) the first len bytes
from the buffer buf are appended to the output buffer of the socket sid.

In the specification, we add SWRITE sid tε byte t∗, as an abstract represen-
tation of sc_socket_write, to the input alphabet Ωsc:

Ωsc ⊃ {SWRITE sid bytes | sid ∈ sid tε ∧ bytes ∈ byte t∗}.

The behavior of sos_socket_write is described by the function swrite. This
function takes, as call-specific arguments, the socket id and the bytes that
should be written:

swrite ∈ S × hn t × sid tε × byte t∗ → S × Ω∗ × (hn t × Σsc)∗.

For swrite(s, hn, sid , bytes), the following cases are considered:

• If saccess-legal(s, hn, sid ,ESTABLISHED) is not satisfied, then the result
is computed and returned by saccess-error(s, hn, sid).

• If the bytes bytes do not fit into the socket’s output buffer, i. e. there
are too many bytes in the output buffer that have not yet been acknowl-
edged by the remote site, then the message (hn, LIMIT) is returned (see
Figure 4.4 on the following page).

• If none of the previous cases apply, then the bytes are appended to the
socket’s output buffer, the abstract network packet np sent to the remote
site, and a success message returned.

This adds up to the following definition of swrite:

swrite(s, hn, sid , bytes) =

let sock = s.sdb(sid);
s1 = sJsdb(sid).out := sock .out ◦ bytesK;
np = DATA s.lna sock .lpn sock .rna sock .rpn bytes
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in
saccess-error(s, hn, sid) if ¬saccess-legal(s, hn, sid ,ESTABLISHED),
(s , [ ], [(hn, LIMIT)]) else if length(sock .out)− sock .ack

+ length(bytes) > SOCK-WIN-SIZE,

(s1, [NET np], [(hn, SUCC)]) else.

Note that any partitioning of data is abstracted away. Furthermore, because
of the liveness property for the TCP transmission phase, we can pretend that
the data only need to be sent once.

sock .ack

sock .out

SOCK-WIN-SIZE

sock .ack

sock .out
bytes

SOCK-WIN-SIZE

Figure 4.4: Writing to a Socket (swrite). Two bytes are appended to the
output buffer sock .out . Appending these bytes increases the number of bytes
that have not yet been acknowledged. Here, swrite would be successful because
SOCK-WIN-SIZE is not exceeded.

4.3.4.11 Network Input — DATA

If some remote site sends some data, then, in SOS?, this is modeled as external
input, which is an abstract network packet of type DATA. The behavior of the
corresponding interrupt handler(s) is described by the function event-sdata.
This function takes, as event-specific arguments, the sender’s network address
and port number, the destination network address and port number, and a list
of bytes:

event-sdata ∈ S × na t × pn t × na t × pn t × byte t∗

→ S × Ω∗ × (hn t × Σsc)∗.

For event-sdata(s, sna, spn, dna, dpn, bytes), the following cases are considered:
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• If the packet that was received is not intended for the local system, or if
the packet does not belong to an established connection between local- and
remote system, i. e. match-socket(s, {ESTABLISHED}, dpn, sna, spn) = ε,
then this packet is dropped.

• If the previous case does not apply, then the list of bytes bytes is appended
to the input queue of the appropriate socket sock (see Figure 4.5 on the
next page).

• Depending on the difference of the number of bytes that were received
in the past and the number of bytes that have been locally delivered,
ack bytes are acknowledged to the remote site. Here, ack is the number
of new bytes that would still fit into the bounded input buffer in the
implementation, i. e. the number of new bytes visible in the sliding
window.

This adds up to the following definition of event-sdata:

event-sdata(s, sna, spn, dna, dpn, bytes) =

let

sid = match-socket(s, {ESTABLISHED}, dpn, sna, spn);
sock = s.sdb(sid);
s1 = sJsdb(sid).in := sock .in ◦ bytesK;
ack = min((sock .read + SOCK-WIN-SIZE− length(sock .in)), length(bytes));
np = ACK dna dpn sna spn ack

in 
(s , [ ], [ ]) if dna 6= s.lna ∨ sid = ε,

(s1, [ ], [ ]) else if ack ≤ 0,
(s1, [NET np], [ ]) else.

Note that because of the liveness and safety properties for the TCP transmission
phase, we can be sure that data that was sent will be appended to the input
buffer at one point. Hence, an unbounded input queue with a bounded
acknowledgment is a valid abstraction. Further, note that because of inv-
unique-connection, we can be sure that the data is appended to the right
socket.

4.3.4.12 Read from a Socket

The library Libsos implements the following call that allows a user application
to read from a socket:
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sock .read

sock .in

SOCK-WIN-SIZE

sock .read

sock .in
bytes

SOCK-WIN-SIZE

ack

Figure 4.5: Receiving Data for a Socket (event-sdata). Five bytes are appended
to the input queue sock .in. The first three of them, the ones already visible in
SOCK-WIN-SIZE, are acknowledged. The remaining two will be acknowledged
if some local application reads from the input queue (sread) and thereby
increments the counter sock .read , i. e. if the window slides to the right.

int sc_socket_read( unsigned int sid, unsigned int* len,

sos_buffer_t* buf).

In the SOS implementation, sc_socket_read is handled by sos_socket_read. If
there is no error, then at most len bytes are read from the socket with the id sid

and returned to the calling application. The SOS only supports non-blocking
reads on sockets. That means that sos_socket_read returns immediately. If
there are less then len bytes in the input buffer, only these ones, together with
the number of bytes that could be read, are returned.

In the specification, we add SREAD sid tε N32, as an abstract representation
of sc_socket_read, to the input alphabet Ωsc:

Ωsc ⊃ {SREAD sid len | sid ∈ sid tε ∧ len ∈ N32}

and SUCC-SREAD byte t∗, as an abstract representation of a possible result, to
the output alphabet Σsc:

Σsc ⊃ {SUCC-SREAD bytes | bytes ∈ byte t∗}.

The behavior of sos_socket_read is described by the function sread . This
function takes, as call-specific arguments, the id of the socket and the number
of bytes that should be read:

sread ∈ S × hn t × sid tε × N32 → S × Ω∗ × (hn t × Σsc)∗.

For sread(s, hn, sid , len), the following cases are considered:
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• If saccess-legal(s, hn, sid , leagl-states), with leagl-states containing the
states ESTABLISHED and REMOTE-CLOSED, is not satisfied, then the
result is computed and returned by saccess-error(s, hn, sid).

• If the previous case does not apply, then a success message m, including
the list of bytes that could be read, is returned. The length len ′ is thereby
calculated as the minimum of: unread-data, the number of up-to-now
unread bytes; the length len; the buffer size 4 ∗ CMPC; and the window
size SOCK-WIN-SIZE. As len ′ bytes are read, the counter sock .read needs
to be increased by len ′ (see Figure 4.6 on the following page).

• At any time, there are at most SOCK-WIN-SIZE unread bytes that are ac-
knowledged. Thus, there are unack-data = unread-data−SOCK-WIN-SIZE

bytes in the input queue that have not yet been acknowledged. That
means, after reading len ′ bytes, ack = min({unack-data, len ′}) bytes can
be acknowledged. Hence, if ack > 0, then the abstract network packet
np is sent to the remote site.

This adds up to the following definition of sread :

sread(s, hn, sid , len) =

let legal-states = {ESTABLISHED,REMOTE-CLOSED};
sock = s.sdb(sid);
unread-data = length(sock .in)− sock .read ;
len ′ = min({unread-data, len, 4 ∗ CMPC, SOCK-WIN-SIZE});
bytes = take(len ′, drop(sock .read , sock .in));
s1 = sJsdb(sid).read := sock .read + len ′K;
m = [(hn, SUCC-SREAD bytes)];
unack-data = unread-data − SOCK-WIN-SIZE;
ack = min({unack-data, len ′});
np = ACK s.lna sock .lpn sock .rna sock .rpn ack

in 
saccess-error(s, hn, sid) if ¬saccess-legal(s, hn, sid , legal-states),
(s1, [ ],m) else if ack ≤ 0,
(s1, [NET np],m) else.

Note that a socket’s state is REMOTE-CLOSED, if the remote partner closed
its side of the connection (event-sclose defined in § 4.3.4.15). In this case, we
may no longer send data to the remote site. However, reading data that was
already received is still possible. Because of inv-close-in-order , we know that
if a socket’s state is REMOTE-CLOSED, then unack-data ≤ 0. Therefore, we
can be sure that we will not send an (abstract) ACK packet to a closed socket.
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Even if a socket’s state is ESTABLISHED, only those bytes that have already
been acknowledged may be read. Thus, we require len ′ ≤ SOCK-WIN-SIZE.
Finally, we may return 4 ∗ CMPC bytes, rather than only CMPC bytes, since
|word t | = 4 ∗ |byte t |.

sock .read

sock .in

SOCK-WIN-SIZE unack-data

unread-data

sock .read

sock .in

SOCK-WIN-SIZE

len ′ ack

Figure 4.6: Reading From a Socket (sread). len ′ bytes are read from the
input queue sock .in and the counter sock .read is incremented accordingly.
Additionally, ack bytes, which were received but not yet acknowledged, can be
acknowledged.

4.3.4.13 Network Input — ACK

If some remote site acknowledges data, then, in SOS?, this is modeled as
external input that is an abstract network packet of type ACK. The behavior of
the corresponding interrupt handler(s) is described by the function event-sack .
This function takes, as event-specific arguments, the sender’s network address
and port number, the destination network address and port number, and the
number of acknowledged bytes:

event-sack ∈ S × na t × pn t × na t × pn t × N→ S × Ω∗ × (hn t × Σsc)∗.

For event-sack(s, sna, spn, dna, dpn, ack), the following cases are considered:

• If the packet that was received is not intended for the local system, or
if the packet does not belong to an established connection between the
local and the remote system, then this packet is dropped.

• If the previous case does not apply, then the counter ack of the appro-
priate socket sock is increased (also see Figure 4.7 on the next page).
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This adds up to the following definition of event-sack :

event-sack(s, sna, spn, dna, dpn, ack) =

let sid = match-socket(s, {ESTABLISHED}, dpn, sna, spn);
sock = s.sdb(sid);
s1 = sJsdb(sid).ack := sock .ack + ackK

in
{

(s , [ ], [ ]) if dna 6= s.lna ∨ sid = ε,

(s1, [ ], [ ]) else.

Note that because of inv-unique-connection, we can be sure that the correct
socket is updated.

sock .ack

sock .out

SOCK-WIN-SIZE

sock .ack

sock .out

SOCK-WIN-SIZE

ack

Figure 4.7: Receiving an Acknowledgment (event-sack). Here, ack bytes are
acknowledged. That means, the counter sock .ack can be incremented by ack .

4.3.4.14 Close a Socket

The library Libsos implements the following call that allows a user application
to close a socket:

int sc_socket_close(unsigned int sid).

In the SOS implementation, sc_socket_close is handled by sos_socket_close.
There are two main scenarios for sc_socket_close.

• If there are no errors and the socket is not shared, then the socket is
removed and the remote site informed.
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• If there are no errors but the socket is shared, then only the calling
application looses its reference to the socket. In this case the socket itself
is not touched.

Note that, in the POSIX standard, the corresponding call shutdown allows to
partially close a socket. There, it is possible to only disable one part of the
full-duplex connection, i. e. a user may prevent subsequent send or receive
operations but otherwise keep the socket. Here, we only support the ‘full
close’, i. e. no more send or receive operations on this socket. This is also
the reason why swrite fails for a socket that is in state REMOTE-CLOSED.
In the specification, we add SCLOSE sid tε, as an abstract representation of
sc_socket_close, to the input alphabet Ωsc:

Ωsc ⊃ {SCLOSE sid | sid ∈ sid tε}.

The behavior of sos_socket_close is described by the function sclose. This
function takes, as a call-specific argument, the id of the socket:

sclose ∈ S × hn t × sid tε → S × Ω∗ × (hn t × Σsc)∗.

For sclose(s, hn, sid), the following cases are considered:

• If saccess-legal(s, hn, sid , {}) is not satisfied, then the result is computed
and returned by saccess-error(s, hn, sid).

• If saccess-legal(s, hn, sid , {}) is satisfied and there exists some application
x 6= hn that has a reference to the socket, then sid is only removed from
the set of sockets accessible by hn.

• If saccess-legal(s, hn, sid , {}) is satisfied and hn is the only one that has
access to the socket sid , then the socket as well as its reference are
removed.

• Finally, unless the remote site has already closed its part of the connection,
i. e. s.sdb(sid).state = REMOTE-CLOSED, the abstract network packet
np = (CLOSE, s.lna, sock .lpn,na, pn) is sent.

This adds up to the following definition of sclose:

sclose(s, hn, sid) =

let s1 = sJadb(hn).sockets := s.adb(hn).sockets \ {sid}K;
s2 = s1Jsdb(sid) := εK;
np = CLOSE s.lna s.sdb(sid).lpn na pn
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in

saccess-error(s, hn, sid) if ¬saccess-legal(s, hn, sid , {}),

(s1, [ ], [(hn, SUCC)]) else if ∃x ∈ hn t . x 6= hn ∧ s.adb(x) 6= ε

∧ sid ∈ s.adb(x).sockets,

(s2, [ ], [(hn, SUCC)]) else if s.sdb(sid).state = REMOTE-CLOSED,

(s2, [NET np], [(hn, SUCC)]) else.

Note that there are no restrictions on the state of a socket that should be
closed. However, because sconnect (§ 4.3.4.6) and saccept (§ 4.3.4.7) are
blocking calls and only those sockets that are part of an established connection
are shared (inv-only-established-shared), we know that the socket’s state is
neither CONNECTING nor ACCEPTING.

4.3.4.15 Network Input — CLOSE

If some remote site closes its part of an established connection, then, in SOS?,
this is modeled as external input that is an abstract network packet of type
CLOSE. The behavior of the corresponding interrupt handler(s) is described
by the function event-sclose. This function takes, as event-specific arguments,
the sender’s network address and port number and the destination network
address and port number:

event-sclose ∈ S × na t × pn t × na t × pn t → S × Ω∗ × (hn t × Σsc)∗.

For event-sclose(s, sna, spn, dna, dpn), the following cases are considered:

• If the packet that was received is not intended for the local system, or
if the packet does not belong to an established connection between the
local and the remote system, then this packet is dropped.

• If the previous case does not apply, then the state of the corresponding
socket sock is changed to REMOTE-CLOSED.

This adds up to the following definition of event-sclose:

event-sclose(s, sna, spn, dna, dpn) =

let sid = match-socket(s, {ESTABLISHED}, dpn, sna, spn);

s1 = s
r

sdb(sid).state := REMOTE-CLOSED,
z

in
{

(s , [ ], [ ]) if dna 6= s.lna ∨ sid = ε,

(s1, [ ], [ ]) else.

Note, because of inv-unique-connection, we can be sure to update the correct
socket.
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REMOTE-CLOSED

LISTEN
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DATA,
sread ,
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sread
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Figure 4.8: Socket States and Transitions. Socket states and transitions
resulting from socket calls and external input.
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4.3.4.16 How Does It Compare

In [Smi96b, Smi96a], Smith provides an abstract specification for TCP / IP
transport level protocols and then proves that different (more concrete) models
of TCP satisfy this specification. This work is very much different from what
we did. He specifies TCP on the protocol level (rather than on the socket level)
and he does not consider TCP in the context of an entire operating system.
Thus, while he has to reveal more of the TCP internals (e. g. sequence numbers
or various scenarios in the closing phase), he does not have to deal with TCP
as the back end of sockets. He is (only) locking at a single connection and
sockets being associated with different ports and applications do not matter
for him. Although he was able to show simulation between differently abstract
TCP models, he did not consider an actual implementation.

Later, in 2002, Smith et al. [SR02] specified the SACK extension for the
TCP standard. However, this work can not be compared with ours as it only
deals with an extension to TCP. In fact, we have not included any of the
congestion avoidance optimizations in our system.

The NETSEM project [Net08] is not aiming at proving correctness of a
particular implementation. However, their service-level specification [BFN+07]
covers way more aspects of the standard socket implementations than ours
does. For example, they specify blocking and non-blocking semantics for socket
calls, they consider timeouts, and, above all, they specify the full range of
socket calls for TCP- and UDP sockets. Still, their specification (summarized
in [RNS08]) formalizes the communication via sockets at the same level of
abstraction as ours does. If one ignores the specialities that are due to the more
comprehensive approach, then their specification looks similar to ours. They
also use higher order logic and thus, some of the transition rules they specify
seem familiar. As we do, they divide transitions into those that are due to
socket calls and those that are due to external inputs. However, they consider
more cases and each of these cases is more complex. Thus, other than we do,
they (further) split the specification of the socket calls and input handlers into
individual rules. Then each of these rules only describes a specific success-
or failure case. For example, while our specification of the socket-accept call
(saccept defined in § 4.3.4.7) contains four different cases, they specify seven
separate rules. However, the cases we consider (in saccept) are also present
in the specification of Bishop et al. [BFN+07]. In the end, they provide a
specification that is, on the one hand, more comprehensive but, on the other
hand, not targeted at pervasive verification.

4.3.5 Portmapper

Remember, in order to implement RPCs we need a runtime mapping from
service names to service providers. In the following subsection, we will specify
SOS calls allow user applications to register, look up, and unregister a service.
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4.3.5.1 Register a Service

The library Libsos implements the following call that allows a user application
to register as a server providing some service:

int sc_pm_reg(unsigned int iid, unsigned int prcid).

In the SOS implementation, sc_pm_reg is handled by sos_pm_reg. If there is no
error, then, after the call is handled, the calling application is registered as
a server for the interface iid, or registered to provide the service (iid, prcid).
Whether the service or only the interface is registered depends on the value of
prcid.

In the specification, we add PMREG iid tε prcid tε∪{PMINT}, as an abstract
representation of sc_pm_reg, to the input alphabet Ωsc:

Ωsc ⊃ {PMREG iid prcid | iid ∈ iid tε ∧ prcid ∈ prcid tε ∪ {PMINT}},

where the special procedure id PMINT indicates that only the interface should
be registered.

The set of possible SOS call results Σsc is extended by PMDUP and
PMOTHER:

Σsc ⊃ {PMDUP,PMOTHER}.
The behavior of sos_pm_reg is described by the function pmreg . This function
takes, as call-specific arguments, the interface id and the procedure id:

pmreg ∈ S × hn t × iid tε × prcid tε ∪ {PMINT}
→ S × Ω∗ × (hn t × Σsc)∗.

For pmreg(s, hn, iid , prcid), the following cases are considered:

• If the application only wants to register the interface, i. e. prcid = PMINT,
but the interface id is unknown, or if the service (iid , prcid) is unknown,
then the message (hn,ARG) is returned.

• If the application is already registered as a server for a different interface,
then the message (hn,PMDUP) is returned.

• If the interface is already registered by a different application, then the
message (hn,PMOTHER) is returned.

• If none of the previous cases apply and the application only wants to
register for the interface, then it is ensured that pmdb.serv(iid) points
to the handle of the calling application. Furthermore, a success message
is returned.

• If none of the previous cases apply and the application wants to register a
particular service, it is ensured that pmdb.serv(iid) points to the handle
of the calling application and that the service (iid , prcid) is in the set of
registered services. As in the previous case, a success is message returned.
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This adds up to the following definition of pmreg :

pmreg(s, hn, iid , prcid) =

let serv = s.pmdb.serv ,
known = s.pmdb.known,

s1 =

{
sJpmdb.serv(iid) := hnK if serv(iid) 6= hn,
s else;

s2 = s1Jpmdb.reg := s.pmdb.reg ∪ {(iid , prcid)}K

in

(s , [ ], [(hn,ARG)]) if (prcid = PMINT ∧ @x. (iid , x) ∈ known)
∨ (prcid 6= PMINT ∧ (iid , prcid) /∈ known),

(s , [ ], [(hn,PMDUP)]) else if ∃x 6= iid . serv(x) = hn,
(s , [ ], [(hn,PMOTHER)]) else if serv(iid) 6= hn ∧ serv(iid) 6= ε,

(s1, [ ], [(hn, SUCC)]) else if prcid = PMINT,

(s2, [ ], [(hn, SUCC)]) else.

4.3.5.2 Lookup a Service

The library Libsos implements the following call that allows a user application
to look up the handle of a service-providing server:

sc_pm_lookup( unsigned int iid, unsigned int prcid,

unsigned int* handle).

In the SOS implementation, sc_pm_lookup is handled by sos_pm_lookup. If there
is no error and there exists a server providing the service (iid, prcid), then a
handle for that server is returned.

In the specification, we add PMLOOKUP iid tε prcid tε, as an abstract
representation of sc_pm_lookup, to the input alphabet Ωsc:

Ωsc ⊃ {PMLOOKUP iid prcid | iid ∈ iid tε ∧ prcid ∈ prcid tε},

and SUCC-PMLOOKUP hn t as well as PMNOTREG, as abstract representations
of possible results, to the output alphabet Σsc:

Σsc ⊃ {SUCC-PMLOOKUP hn,PMNOTREG | hn ∈ hn t}.

The behavior of sos_pm_lookup is described by the function pmlookup. This
function takes, as call-specific arguments, the interface id and the procedure
id of the service in question:

pmlookup ∈ S × hn t × iid tε × prcid tε → S × Ω∗ × (hn t × Σsc)∗.
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For pmlookup(s, hn, iid , prcid), the following cases are considered:

• If the service (iid , prcid) is unknown, then the message (hn,ARG) is
returned.

• If there exists no application that has registered for this service, then
the message (hn,PMNOTREG) is returned.

• If there exists an application that has registered for this service, then
a success message, including the handle hn2 of the service provider, is
returned.

This adds up to the following definition of pmlookup:

pmlookup(s, hn, iid , prcid) =

let hn2 = s.pmdb.serv(iid)

in 
(s, [ ], [(hn,ARG)]) if (iid , prcid) /∈ s.pmdb.known,
(s, [ ], [(hn,PMNOTREG)]) else if (iid , prcid) /∈ pmdb.reg ,
(s, [ ], [(hn, SUCC-PMLOOKUP hn2]) else.

4.3.5.3 Unregister a Service

The library Libsos implements the following call that allows a user application
to unregister a single service or a whole interface:

int sc_pm_unreg(unsigned int iid, unsigned int prcid).

In the SOS implementation, sc_pm_unreg is handled by sos_pm_unreg. If there is
no error, then, after the call is handled, the caller is no longer registered to
provide the service (iid, prcid) or no longer registered to serve the interface at
all. As for sc_pm_reg, the exact behavior depends on the value of prcid.

In the specification, we add PMUNREG iid tε prcid tε ∪ {PMINT}, as an
abstract representation of sc_pm_reg, to the input alphabet Ωsc:

Ωsc ⊃ {PMUNREG iid prcid | iid ∈ iid tε ∧ prcid ∈ prcid tε ∪ {PMINT}}.

The behavior of sos_pm_unreg is described by the function pmunreg . This
function takes, as call-specific arguments, the interface id and the procedure
id:

pmunreg ∈ S × hn t × iid tε × prcid tε ∪ {PMINT}
→ S × Ω∗ × (hn t × Σsc)∗.

For pmunreg(s, hn, iid , prcid), the following cases are considered:
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• If the calling application tries to unregister an interface or service it is
not registered for, then the message (hn,ARG) is returned.

• If the previous case does not apply and the calling application only wants
to unregister the service (iid , prcid), then this service is removed from
the set of registered services, and a success message returned.

• If none of the precious cases apply, then the interface iid is entirely
unregistered and a success message returned. Here, “entirely unregistered”
means, pmdb.serv(iid) is set to ε and all services (x, y), where x = iid ,
are removed from the set of registered services.

This adds up to the following definition of pmunreg :

pmunreg(s, hn, iid , prcid) =

let s1 = sJpmdb.reg := s.pmdb.reg \ {(iid , prcid)}K;

s2 = s

t
pmdb.serv(iid) := ε,

pmdb.reg := {(x, y) | (x, y) ∈ s.pmdb.reg ∧ x 6= iid}

|

in
(s , [ ], [(hn,ARG)]) if s.pmdb.serv(iid) 6= hn

∨ (prcid 6= PMINT ∧ (iid , prcid) /∈ s.pmdb.reg),

(s1, [ ], [(hn, SUCC)]) else if prcid 6= PMINT,

(s2, [ ], [(hn, SUCC)]) else.

4.3.6 Applications

In the following subsection, we will specify SOS calls that allow us to start new
applications, clone existing ones, wait for child applications, and terminate
applications.

4.3.6.1 Start an Application

Before specifying how a new application may be started, we need to look at
the file format of (the underlying) executables.

An SOS executable contains the text segment and the data segment of the
application. By the time of loading an executable, most of the data segment,
i. e. the stack and the heap, is empty. In our case, the data segment is located
at the end of an executable file and it is filled with 0s. In order to handle
such files more efficiently, the compiler / assembler reduces the file size by
clipping trailing 0s and then appending the number of 0s that were clipped,
i. e. the clipp length. Now, for executing an application, the SOS first of all
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loads the contents of the file. Based on the value of the clipp length and
the file size, it allocates the necessary number of virtual memory pages, and
copies the file contents into these pages. Since newly allocated memory pages
are copy-on-write, initially mapping to a 0-filled page, the desired (complete)
process image, including stack and heap, is realized. Obviously, while copying,
the last word, which represents the clipp length, is omitted.

In SOS?, this (re-) construction of the process image is represented by the
function unpack-img :

unpack-img ∈ word t∗ → word t∗

unpack-img(con) =

let len = length(con);
clipp-len = con[len − 1]

in take(len − 1, con) ◦ 0clipp-len .

Here, we use 0clipp-len to denote a list l ∈ word tclipp-len , such that l = [0, . . . , 0].
We will use the function unpack-img in the following specification of the SOS
call sc_app_exec to (re-) construct a process image img from the contents of an
executable file.26

After this preparatory work, we are now able to describe sc_app_exec. This
call is implemented by the library Libsos. It allows a user application to start
a new application:

int sc_app_exec( unsigned int fid, unsigned int uid,

unsigned int flag, unsigned int* handle).

In the SOS implementation, sc_app_exec is handled by sos_app_exec. If there is
no error, then, after the call is handled, there is a new application, i. e. the
child application executing the file fid. The super user has the right to assign
a different application owner when starting a new application. Thus, if the
calling application is owned by the super user, then the child application may
be owned by uid, otherwise it is owned by the owner of the calling application.
If the calling application has access to a terminal and flag!=0, then the terminal
is passed to the child application. In case of success, the calling application
receives a handle for the child and the full set of communication rights.

In the specification, we add AEXEC fid tε uid tε N32, as an abstract repre-
sentation of sc_app_exec, to the input alphabet Ωsc:

Ωsc ⊃ {AEXEC fid uid flag | fid ∈ fid tε ∧ uid ∈ uid tε ∧ flag ∈ N32}
26Note, it is the function interpret (Section 4.1) that maps such a (complete) process

image to an instance of the application state space (Sp).



4.3. TRANSITION RELATION 107

and SUCC-AEXEC hn t as well as KERNEL, as abstract representations of
possible results, to the output alphabet Σsc:

Σsc ⊃ {SUCC-AEXEC hn,KERNEL | hn ∈ hn t}.

The implementation of most SOS handlers relies on kernel calls. For the
SOS handlers that have been specified so far, the underlying kernel calls were
entirely hidden through our abstraction. For sos_app_exec, however, this is not
possible. Here, we split the specification of sos_app_exec into a kernel part and
an SOS part, and, in the end, combine both parts in aexec.

Kernel

The handler sos_app_exec relies on the kernel call vc_process_create. Inside
the kernel, vc_process_create is handled by process_create. Essentially process_

create tries to allocate a number of virtual memory pages, copies the content
of some memory region (from the calling process) into these pages, and then
initializes the kernel data structures. Within VAMOS?+C0, the behavior
of process_create is specified by process create. Unfortunately, some of the
VAMOS? data structures are no longer visible in SOS?; they are hidden by our
abstraction. Thus, it is not possible to directly reuse process create. However,
instead of redefining process create in terms of SOS? data structures, which
would be the ‘same’ as process create only omitting updates of the hidden
data structures, we take aexec-kernel , as SOS? counter part of process create,
for granted.27 We assume that aexec-kernel describes the changes of the (in
SOS? still visible) VAMOS? data structures that result from creating a new
process. Thus, if (kds, pdb, img , kds ′, pdb′, hnn) ∈ aexec-kernel , then kds, pdb,
and img represent the kernel data structures, the process data base, and process
image; and kds ′, pdb′, and hnn represent the updated kernel data structures,
the updated process data base, and the handle of the new process. If for some
reason the kernel can not create the new process, then kds ′ = kds , pdb′ = pdb,
and hnn = ε:

aexec-kernel ⊂ kds t × pdb t × word t∗ × kds t × pdb t × hn tε.

Note that in VAMOS?+C0 the scheduling data base is abstracted and the
scheduler replaced by some fairness property. Among other things, this means,
in SOS?, we can no longer predict the exact process id and handle of the new
process. Hence, aexec-kernel is a relation and not a function.

27In the Isabelle specification of the SOS [Bog08c] we actually construct aexec-kernel .
There, we use the knowledge about the SOS implementation to relate SOS?- and VAMOS?+C0
states. Thus, in Isabelle we specify kernel calls, by deriving a VAMOS?+C0 state, applying
the corresponding VAMOS?+C0 transition, and then (re-) constructing the SOS? state (also
see § 6.1.2).
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SOS

The function aexec-sos specifies the SOS part of sos_app_exec:

aexec-sos ∈ S × hn t × fid tε × uid tε × N32 × kds t × pdb t × hn tε
→ S × Ω∗ × (hn t × Σsc)∗.

For aexec-sos(s, hn,fid , uid ,flag , kds ′, pdb′, hnn), the following cases are con-
sidered:

• If faccess-legal(s, hn,fid ,EXEC) is not satisfied, then the result is com-
puted and returned by faccess-error(s, hn,fid).

• In SOS, we limit the number of simultaneously running applications
owned by a single user. In SOS?, this number is denoted by MAPU ∈ N+

32.

Since applications need to be loaded into the virtual memory of the SOS,
and we want to avoid out-of-memory situations while using dynamically
allocated memory, the maximum size of executables is limited. In SOS?,
this value is denoted by MSOE ∈ N+

32.

If the calling application a is owned by the super user and uid exists,
then the new owner uid ′n is equal to uid . If one of these preconditions is
not satisfied, then uid ′ is equal to the owner of the calling application.

Now, if the number of applications owned by uid ′ reaches the maximum
number of applications per user, or if the size of the file fid exceeds the
maximum size for executables, then the message (hn, LIMIT) is returned.

• If the kernel call fails, i. e. hnn = ε, then the message (hn,KERNEL) is
returned.

• If none of the previous cases apply, then the kernel data structures, the
process data base, and the application data base are updated, and a suc-
cess message, including the handle hnn of the new application, returned.
Here, the updated kernel data structures and the updated process data
base are already an argument to aexec-sos . The application data base is
updated such that a′ represents the updated calling application and a′n
represents the new application. For a′n, hn is the handle of the parent
application, its owner is uid ′, it has no socket references, and its parent
does not wait for it. Furthermore, if the flag flag is different from 0, then
a (potential) terminal connection is passed from a to a ′n.

This adds up to the following definition of aexec-sos:
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aexec-sos(s, hn,fid , uid ,flag , kds ′, pdb′, hnn) =

let a = s.adb(hn);
ao = a.owner ;

uid ′ =

{
ao if ao 6= SU ∨ s.udb(uid) = ε,

uid else;

up = {x | s.adb(x).owner = uid ′};

a′ =

{
aJterm := εK if flag 6= 0,
a else;

a′n =

u

wwwwwwwwwwwwwww
v

parent = hn,
owner = uid ′,

term =

{
a.term if flag 6= 0,
ε else,

sockets = { },
exec = fid ,
wait = FALSE,

read = FALSE

}

���������������
~

;

s1 = sJkds := kds ′, pdb := pdb′, adb(hn) := a′, adb(hnn) := a′nK;
m = [(hn, SUCC-AEXEC hnn)]

in


faccess-error(s, hn,fid) if ¬faccess-legal(s, hn,fid ,EXEC),
(s , [ ], [(hn, LIMIT)]) else if |up| ≥ MAPU

∨ length(s.fdb(fid).con) > MSOE,

(s , [ ], [(hn,KERNEL)]) else if hnn = ε,

(s1, [ ],m) else.

Note that a file must be locked in order to execute it (see faccess-legal definined
in § 4.3.2.4). However, after the application was started the caller may unlock
the file. In this case the contents of the file may be modified, which means
that the file id, displayed in the status line, is not very helpful. It is the
responsibility of the user application to decide whether to keep the file locked,
or to arrange file permissions in an appropriate way.

Now, we combine aexec-kernel and aexec-sos to specify the behavior of
sos_app_exec. The relation aexec relates an SOS? state, the handle of a calling
application, the id of the file that should be executed, the desired application
owner, the flag indicating whether to pass terminal access the child; to a
new SOS? state, external output, and messages that need to be sent to user
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applications:

aexec ⊂ S × hn t × fid tε × uid tε × Z32 × S × Ω∗ × (hn t × Σsc)∗.

Essentially, aexec calls the kernel to create a new process and considers the
results of the kernel call while updating the SOS data structures. In other
words, we (pre-) compute the changes that would result from executing the
kernel call (aexec-kernel) and then use the updated kernel data structures
within the definition of aexec-sos:

aexec =
(s, hn,fid , uid ,flag , s′, o′,m′) |
(s.kds, s.pdb, unpack-img(s.fdb(fid).con), kds ′, pdb′, hnn) ∈ aexec-kernel
∧ (s′, o′,m′) = aexec-sos(s, hn,fid , uid ,flag , kds ′, pdb′, hnn)

 .

4.3.6.2 Fork an Application

The library Libsos implements the following call that allows a user application,
to fork itself:

int sc_app_fork(unsigned int flag, unsigned int* handle).

In the SOS implementation, sc_app_fork is handled by sos_app_fork. If there
is no error, then, after the call is handled, there exists a copy of the calling
application. As a result of the SOS call, the calling application receives a handle
for the child and the full set of communication rights ({SND,REQ,MULT, FIN}).
Also, the new application receives a success message, but in this case the
handle is equal to VAMOS_HANDLE_NONE. Except for the register holding the
returned handle, the two virtual machines are identical. For the corresponding
applications this is not true. For example, the associated entries in the rights
data base are different and at most one of them is connected to a terminal.

In the specification, we add AFORK N32, as an abstract representation of
sc_app_fork, to the input alphabet Ωsc:

Ωsc ⊃ {AFORK flag | flag ∈ N32}

and SUCC-AFORK hn t as abstract representations of a possible result, to the
output alphabet Σsc:

Σsc ⊃ {SUCC-AFORK hn | hn ∈ hn t}.

As for sos_app_exec, it is necessary to expose the underlying kernel call.
Thus, just like we did before, we split the specification of sos_app_fork into a
kernel part and an SOS part, and, in the end, combine both parts in afork .
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Kernel

The handler sos_app_fork relies on the kernel call vc_process_clone. Inside the
kernel, vc_process_clone is handled by process_clone. Basically process_clone

allocates virtual memory pages, copies the contents of the virtual memory of an
existing process, and updates the kernel data structures. Within VAMOS?+C0,
the behavior of process_clone is specified by process clone. Just like we did
for process_create, and for the same reasons, we assume afork-kernel to be
given. We assume that afork-kernel describes the changes of the (in SOS? still
visible) VAMOS? data structures that result from cloning a process. Thus, if
(kds, pdb, hn, kds ′, pdb′, hnn) ∈ afork-kernel , then kds, pdb, and hn represent
the kernel data structures, the process data base, and the handle of the process
that should be cloned; and kds ′, pdb′, and hnn represent the updated kernel
data structures, the updated process data base, and the handle of the new
process. If, for some reason, the kernel can not create the new process, then
kds ′ = kds, pdb′ = pdb, and hnn = ε:

afork-kernel ⊂ kds t × pdb t × hn t × kds t × pdb t × hn tε.

Again, because of the abstracted scheduler, afork-kernel needs to be a relation.

SOS

The function afork-sos specifies the SOS part of sos_app_fork:

afork-sos ∈ S × hn t × N32 × kds t × pdb t × hn tε → S × Ω∗ × (hn t × Σsc)∗.

For afork-sos(s, hn,flag , kds ′, pdb′, hnn), the following cases are considered:

• If the number of applications, owned by the owner of the calling applica-
tion, reaches the maximum number of applications per user, then the
message (hn, LIMIT) is returned.

• If the kernel call fails, i. e. hnn = ε, then the message (hn,KERNEL) is
returned.

• If none of the previous cases apply, then the kernel data structures,
the process data base, and the application data base are updated, and
two success messages returned. The first message is sent to the parent
application, and it contains the handle of the child. The second message
is sent to the child, and it contains the special handle HN-NONE. The
updated kernel data structures and the updated process data base are
already an argument to afork-sos. The application data base is updated
such that a′ represents the updated calling application and a′n represents
the new application. Here, a′n is essentially a copy of a. However, the
child’s parent is set to hn, the sockets es are shared, and the parent
does not wait for its child. Here, es is the subset of the parent’s sockets
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(references) which only contains the sockets that are part of an established
or previously established connection (which ensures inv-only-established-
shared). Furthermore, if the flag flag is different from 0, then a (potential)
terminal connection is passed from a to a ′n.

This adds up to the following definition of afork-sos:

afork-sos(s, hn,flag , kds ′, pdb′, hnn) =

let

a = s.adb(hn);
up = {x | s.adb(x).owner = uid};
es = {x | x ∈ a.sockets ∧ s.sdb(x).state ∈ {ESTABLISHED,REMOTE-CLOSED}};

a′ =

{
aJterm := εK if flag 6= 0,
a else;

a′n = a

u

wwwwwww
v

parent := hn,

term :=

{
a.term if flag 6= 0,
ε else,

sockets := es,
wait := FALSE

}

�������
~

;

s1 = sJkds := kds ′, pdb := pdb′, adb(hn) := a′, adb(hnn) := a′nK;
m = [(hn, SUCC-AFORK hnn), (hnn, SUCC-AFORK HN-NONE)]

in 
(s , [ ], [(hn, LIMIT)]) if |up| ≥ MAPU,

(s , [ ], [(hn,KERNEL)]) else if hnn = ε,

(s1, [ ],m) else.

Now we combine afork-kernel and afork-sos to specify the behavior of the
handler sos_app_fork. The relation afork relates an SOS? state, the handle of a
calling application, and the flag indicating whether to pass terminal access to
the child; to a new SOS? state, external output and messages that need to be
sent to user applications:

afork ⊂ S × hn t × N32 × S × Ω∗ × (hn t × Σsc)∗.

Basically, afork calls the kernel to clone the process and considers the results
of the kernel call while updating the SOS data structures:

afork =
(s, hn,flag , s′, o′,m′) |
(s.kds, s.pdb, hn, kds ′, pdb′, hnn) ∈ afork-kernel
∧ (s′, o′,m′) = afork-sos(s, hn,flag , kds ′, pdb′, hnn)

 .



4.3. TRANSITION RELATION 113

4.3.6.3 Wait for an Application to terminate

The library Libsos implements the following call that allows a user application,
to wait for one of its children:

int sc_app_wait(unsigned int handle, int* ec).

In the SOS implementation, sc_app_wait is handled by sos_app_wait. If there is
no error, then the call returns as soon as the application hn terminates. In this
case ec contains the exit code.

In the specification, we add AWAIT hn t , as an abstract representation of
sc_app_wait, to the input alphabet Ωsc:28

Ωsc ⊃ {AWAIT hn | hn ∈ hn t}

and SUCC-AWAIT Z32 as abstract representations of a possible result, to the
output alphabet Σsc:

Σsc ⊃ {SUCC-AWAIT ec | ec ∈ Z32}.

The behavior of sos_app_wait is described by the function await . This function
takes, as a call-specific argument, the handle of the application that should be
waited for:

await ∈ S × hn t × hn t → S × Ω∗ × (hn t × Σsc)∗.

For await(s, hn, hnw), the following cases are considered:

• If hnw is not the handle of a child application of the calling application,
then the message (hn,PERM) is returned.

• If the previous case does not apply, then the child’s application data
base entry is updated to indicate the waiting parent. In this case, there
is no immediate result. Instead, a result may be returned, if the child
terminates (aexit defined in § 4.3.6.4).

This adds up to the following definition of await :

await(s, hn, hnw) =

let a = s.adb(hnw);
s1 = sJadb(hnw).wait := TRUEK

in
{

(s , [ ], [(hn,PERM)]) if a.parent 6= hn,
(s1, [ ], [ ]) else.

28 In the implementation of sc_app_wait, the handle argument is passed to the SOS using
the additional-handle argument of the IPC-request call. Handles unknown to the calling
application are already captured by the kernel. That means, if the SOS receives this call, we
can be sure to receive a valid handle. Hence, the type of the supplied handle is hn t and not
hn tε.
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4.3.6.4 Exit an Application

Before we specify how a user application may terminate, we need to introduce
two auxiliary functions.

The function unlock-all-files releases all file locks that are owned by a
certain application, and collects the success messages for the new lock owners.
For unlock-all-files(s, hn), the following happens. Within each recursion step,
we first of all compute the set fids of file ids of files that are (still) locked by
the application hn. Afterwards, we apply funlock to the smallest of these ids.
Finally, we concatenate the results of the current recursion step with results
from deeper recursion steps. unlock-all-files terminates, if there are no more
files that are locked by hn:

unlock-all-files ∈ S × hn t → S × (hn t × Σsc)∗

unlock-all-files(s, hn) =

let fids = {x | hn = s.fdb(x).lock [0]};
(s1, x,m1) = funlock(s, hn,min(fids));
(s2,m2) = unlock-all-files(s1, hn)

in
{

(s , [ ]) if fids = { },
(s2, tail(m1) ◦m2) else.

Similar to unlock-all-files, the function close-all-sockets applies sclose to all
socket references owned by a certain application. Other than unlock-all-files,
close-all-sockets collects abstract network packets that need to be sent to
remote endpoints of established connections. close-all-sockets terminates, if all
socket references that were previously owned by hn are processed:

close-all-sockets ∈ S × hn t → S × Ω∗

close-all-sockets(s, hn) =

let (s1, n1, x) = sclose(s, hn,min(s.adb(hn).sockets));
(s2, n2) = close-all-sockets(s1, hn)

in
{

(s , [ ]) if s.adb(hn).sockets = { },
(s2, n1#n2) else.

Now, the library Libsos implements the following call that allows a user
application to terminate:

int sc_app_exit(int ec).
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In the SOS implementation, sc_app_exit is handled by sos_app_exit. After the
call is handled, the calling application no longer exists, and a potentially waiting
parent receives the exit code ec. Thereby, any traces of the calling application
are removed, i. e. all socket references removed and exclusive connections closed,
all file locks released, and registered services unregistered.

In the specification, we add AEXIT Z32, as an abstract representation of
the call sc_app_exit, to the input alphabet Ωsc:

Ωsc ⊃ {AEXIT ec | ec ∈ Z32}.

As before, it is necessary to expose the underlying kernel call. Thus, again, we
split the specification of sos_app_exit into a kernel part and an SOS part, and,
in the end, combine both parts in aexit .

Kernel

The handler sos_app_exit relies on the kernel call vc_process_kill. Inside the
kernel, vc_process_kill is handled by process_kill. Basically, process_kill’s
task is to remove a process and all its traces from the kernel data structures.
Within VAMOS?+C0, the behavior of process_kill is specified by process kill .
At first this might seem an easy task, but killing a process has a number
of drawbacks. Among other things, it is, for example, necessary to resolve
pending IPC operations. Almost all kernel data structures are affected while
killing a process. Thus, just like we did before, we are not going to redefine
process kill in terms of SOS? data structures. Instead, we assume aexit-kernel ,
as SOS? pendant of process kill , to be given. We assume, aexit-kernel describes
the changes of the (in SOS? still visible) VAMOS? data structures that result
from killing a process. Thus, if (kds, pdb, hn, kds ′, pdb′) ∈ aexit-kernel , then
kds, pdb, and hn represent the kernel data structures, the process data base,
and the handle of the process that should be killed; and kds ′ and pdb′ represent
the updated kernel data structures and the updated process data base. Other
than for aexec-kernel and afork-kernel , kernel errors are impossible:

aexit-kernel ⊂ kds t × pdb t × hn t × kds t × pdb t .

SOS

The function aexit-sos specifies the SOS part of sos_app_exit:

aexit-sos ∈ S × hn t × N32 × kds t × pdb t → S × Ω∗ × (hn t × Σsc)∗.

Just like the kernel part, the SOS part of sos_app_exit always succeeds. For
aexit-sos(s, hn, ec, kds ′, pdb′), the following cases are considered.

• First of all, all files that are locked by the calling application a are
unlocked (s1). Then, all sockets a has a reference for are closed (s2). Then,
if a is registered as service provider, then all services are unregistered
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(s3). After that, all children of a are inherited by a’s parent, a potential
terminal connection is passed to a’s parent, and the application data
base entry for a (itself) reset to ε. Finally, the kernel data structures
and the process data base are updated according to the arguments kds ′

and pdb′.

• If a’s parent waits for a to exit, then (additionally) the parent receives a
success message. This message includes the error code ec.

This adds up to the following definition of aexit-sos:

aexit-sos(s, hn, ec, kds ′, pdb′) =

let

(s1,m) = unlock-all-files(s, hn);
(s2, n) = close-all-sockets(s1, hn);
iids = {x | s2.pmdb.serv(x) = hn};

(s3, y, z) =

{
pmunreg(s2, hn, ε(iids),PMINT) if |iids| = 1,
(s2, [ ], [ ]) else;

a = s3.adb(hn);
hnp = a.parent ;

adb′ = λx ∈ hn t .



s3.adb(x)Jparent := hnpK if s3.adb(x).parent = hn,
s3.adb(x)Jterm := a.termK else if x = hnp ∧ hnp 6= ε

∧ a.term 6= ε,

ε else if x = hn,
s3.adb(x) else;

s4 = s3Jkds := kds ′, pdb := pdb′, adb := adb′K

in
{

(s4, n,m) if ¬a.wait ,
(s4, n,m ◦ [(hnp, SUCC-AWAIT ec)]) else.

Note, the calling application can not have a pending request (e. g. a request to
lock a file or a request to receive keyboard input), because in this case it would
not be able to call sc_app_exit. That means that none of the sockets associated
with the calling application can be in the state ACCEPTING or CONNECTING.
Hence, we can be sure that exiting an application does not violate the TCP
requirement ‘Absence of Timeouts’. For the same reason, we can also be sure
that the calling application is not waiting for a file lock, keyboard input, or
another application to terminate. That means that no additional cleanup is
necessary in this respect. Additionally, note that it is possible that hnp = ε.
In this case, all the children of hn would become orphans. Furthermore, if hn
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is connected to a virtual terminal and there is no parent to inherit it, then this
terminal will never again be connected to any application.

Now we combine aexit-kernel and aexit-sos to specify the behavior of
sos_app_exit. The relation aexit relates an SOS? state, the handle of a calling
application, and the exit code; to a new SOS? state, external output and
messages that need to be sent to user applications:

aexit ⊂ S × hn t × Z32 × S × Ω∗ × (hn t × Σsc)∗.

Basically, aexit calls the kernel to kill the process and then considers the results
of the kernel call while updating the SOS data structures:

aexit =
(s, hn, ec, s′, o′,m′) |
(s.kds, s.pdb, hn, kds ′, pdb′) ∈ aexit-kernel
∧ (s′, o′,m′) = aexit-sos(s, hn, ec, kds ′, pdb′)

 .

4.3.7 Undefined SOS Calls

For receiving SOS calls, the SOS provides an initialized IPC buffer of a fixed
size. If the size of this buffer is too small to fit a particular IPC message, then
the calling application receives a kernel-call error.29 If, however, the buffer is
large enough, then, after receiving the call, the content of this buffer will be
‘casted’ into a value of type complex_t:30

#define SOS_COMPLEX_BUF_SIZE 256u
typedef unsigned int sos_buffer_t[SOS_COMPLEX_BUF_SIZE];
struct complex_t_ {
int i[3u];
unsigned int u[10u];
sos_buffer_t a;

};
typedef struct complex_t_ complex_t;

Then, in the implementation of the SOS dispatcher, the SOS interprets the
value of u[0u] as the SOS-call number. According to this number, the arguments
of the particular SOS call are extracted from the remaining fields of i, u, and
a. Thus, the available SOS calls and SOS-call results as well as associated
arguments, their types, and their positions within the arrays i, u, and a

constitute the SOS’s application (binary) interface. The specification of this
interface is encoded in the alphabets Ωsc and Σsc. So far, however, we have not

29 In SOS?, these unsuccessful IPC operations are represented by (unsuccessful) kernel-call
transitions.

30 Note, the implementation constant SOS_COMPLEX_BUF_SIZE corresponds to CMPC in
SOS?
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yet described how to translate the elements of Ωsc and Σsc to values of type
complex_t, i. e. how to get from the specification to the implementation. This
will be done below.

All elements of Ωsc and Σsc are built from a constructor and zero or more
parameters. These parameters either have the type Z32, N32, word t∗, or
byte t∗, or they have a type that was derived from Z32 or N32. Now, in the
SOS implementation, we use int, whenever the specification uses Z32 or one
of its subtypes. Likewise, we use unsigned int, whenever the specification uses
N32 or one of its subtypes. We use the type sos_buffer_t as an implementation
for the SOS? types word t∗ and byte t∗. Finally, we use unsigned int values
to implement the constructors used in Ωsc, and int values to implement the
constructors used in Σsc.

Now, the order and the type of the arguments, as they are specified by Ωsc,
dictate their position in the structure complex_t. Remember, for example,:

Ωsc ⊃ {FSEEK fid flag off | fid ∈ fid tε ∧ flag , off ∈ Z32}.

Here, FSEEK represents the SOS-call number. That means that if the SOS
receives an IPC message that contains the numerical representation of FSEEK

in u[0u], then the SOS implementation should behave as specified by fseek .
For that, the SOS handler sos_file_seek expects the values corresponding to
fid , flag , and off in u[1u], i[0u], and i[1u], respectively. This is because
fid ∈ fid t ∪ ε, fid t ⊂ N32 and flag , off ∈ Z32, i. e. in the implementation, fid
is represented by a value of type unsigned int, and flag and off are represented
by values of type int. Since u[0u] is already occupied by the representation of
FSEEK, fid must be in u[1u]. Furthermore, since flag is mentioned before off
and there are no other int values, flag must be in i[0u], and off must be in
i[1u].

Similar to SOS calls, the elements of Σsc, specify the message layout for
SOS-call results. We use the same rules, based on order and type, to compute
the position of a particular value within the structure complex_t. Thus, in case
of:

Σsc ⊃ {SUCC-FSEEK pos | pos ∈ N32},
SUCC-FSEEK represents the overall result of the SOS call. A user application
can expect to find the overall result of an SOS call in i[0u]. As pos ∈ N32, the
user application can expect to find the value, corresponding to pos, in u[0u].

Now, the only interesting case that is left to explain is a value of type
word t∗ or byte t∗. In SOS?, we use these types in a way such that they
simultaneously encode the contents and the length of a particular value. In the
implementation, however, the type sos_buffer_t has a fixed length. Thus, in
the implementation, we use a single unsigned int value to specify the number
of ‘useful’ values in the a-component of the complex_t structure. This number
is appended after all other unsigned int values. Thus, for example, for:

Ωsc ⊃ {SWRITE sid bytes | sid ∈ sid tε ∧ bytes ∈ byte t∗},
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the length of bytes must be in u[2u]. Similarly, in the case of:

Σsc ⊃ {SUCC-FREAD words pos | words ∈ word t∗ ∧ pos ∈ N32}.

an application can expect to find the number of words that could be read
in u[1u]. Thus, in this case, a[0u],\dots,a[u[1u]] represents the contents of
words.

Now, although it does not really matter for the specification of the SOS,
it is worthwhile noting that the calls implemented in the library Libsos, also
follow the above scheme. Thus, coming back to the example of fseek, the
signature of the corresponding Libsos call is:

int sc_file_seek( unsigned int fid, int flag, int off,

*unsigned int pos).

Here, flag comes before off since sos_file_seek expects the values for fid, flag,
and off in i[0u], and i[1u], respectively.

Now, knowing the message layout of IPC messages that are used to transfer
SOS calls, we need to look at the case where a user application sends something
but the content of u[0u] is not a valid SOS-call number. In SOS? we represented
such calls by the Ωsc element UNDEFINED-SC:

Ωsc 3 UNDEFINED-SC.

The SOS receives such calls but does not handle them, i. e. no error message is
returned. Thus, no handler is needed. The calling application will simply wait
forever to receive a result (see § 4.3.8.1). That is, it will be ‘punished’ for not
using the calls provided by the library Libsos but keeping the SOS busy with
undefined calls.

4.3.8 Putting Together the Transition Relation

Now we want to collect all pieces and present the global transition relation ∆.
For that, we first of all integrate the specification of the SOS-local transitions,
i. e. we combine the phase of handling SOS calls with the receiving phase
and the phase of returning results (compare with the introduction to Section
4.3). While doing that, we extend the intermediate alphabets of SOS inputs
(Ωsc) and SOS outputs (Σsc) to the alphabets of application outputs (Ωp) and
application inputs (Σp). Based on these, we specify the SOS-call dispatcher
and the dispatcher for external inputs. In the end, we assemble SOS calls,
the treatment of external inputs, kernel calls, and local computations of user
applications.

4.3.8.1 SOS Calls

As said earlier, in the implementation, SOS calls are passed to and answered by
the SOS via IPC kernel calls. In SOS?, we would like to hide this mechanism
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and provide an abstraction, where SOS calls are not different from kernel calls.
In most cases this works, but some artefacts of the underlying IPC mechanism
remain.

Earlier we mentioned that IPC calls are also used to communicate handles
and IPC rights. Furthermore, the kernel appends notifications to IPC messages.
These additional IPC features need to be considered in the phase of receiving
SOS calls and in the phase of returning results. Below, we first of all discuss
the receiving phase and the phase of returning results, and then describe the
SOS dispatcher.

Receiving SOS Calls

In general, the calls implemented in the library Libsos do not send (additional)
handles, nor do they update IPC rights.31 However, user applications may use
IPC calls directly and, thus, construct (valid) SOS calls that affect the handle-
and rights data base. Fortunately, they are unprivileged and, therefore, not
allowed to modify the IPC rights of third party applications. Furthermore, the
SOS knows all applications and, thus, it can not be surprised by an unknown
application handle (sent via the additional handle). Hence, the only thing that
could happen is that a user application modifies the IPC rights for the SOS,
i. e. the rights of the SOS for calling this user application.32 That means that
all those elements of Ωp that represent SOS calls have to have a field for IPC
rights.

Besides handles and IPC rights, the kernel uses IPC messages to transfer
kernel notifications. Every time a user process receives an IPC message,
the kernel appends a notification about stolen handles, i. e. the information
whether user processes, previously known to the recipient, have terminated
meanwhile. This notification is simply a boolean flag that is set to TRUE, if
there are stolen handles, and set to FALSE, if there are none. Stolen handles can
be acknowledged using the kernel call read_kernel_info. After acknowledging
a handle as a stolen handle, the kernel no longer flags it as stolen. If a user
processes, with (unacknowledged) stolen handles, calls IPC receive, then the
kernel immediately responds. Even if there is no rendezvous situation, i. e.
currently there is no matching IPC send, the kernel directly delivers the stolen-
handle notification. In this case, the contents of the IPC message is empty,
and the message sender is the kernel. However, a handle is not considered
to be stolen, if one user process (actively) kills another user processes, and
thereby synchronously invalidates one of its handles. Thus, in this case, there
will not be stolen-handle notification.

Now, the SOS is the only user process entitled to kill other user processes.
That means that in general, the SOS does not receive stolen-handle notifica-

31await , defined in § 4.3.6.3, is the only exception. There, the additional handle is used to
transmit the handle of the application to wait for.

32 Using an IPC operation, rights may be granted but not revoked.
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tions. However, if the kernel kills a user application because it miss-behaves
(e. g. it triggers an internal interrupt like missalignment, illegal instruction,
or segmentation fault), then the SOS will be notified. Fortunately, a user
application can only trigger such an interrupt, if it’s active, which means, the
SOS must be waiting for input. Thus, in this case, the SOS is notified immedi-
ately, i. e. the SOS is woken up and the kernel notification delivered directly.
When receiving such a notification, the SOS investigates the handle of the
application that has failed and then updates its bookkeeping data structures
accordingly. These updates are the same as if the killed application called
sc_app_exit. The only difference is that in the case of sc_app_exit the kernel
kills an application because the SOS is asking for it, whereas in the case of a
stolen-handle notification the kernel has already killed an application and only
informs the SOS about it. In the end, both cases result in the same updates of
kernel- and SOS data structures. Thus, in SOS?, we treat such miss-behavior
as if the application called sc_app_exit(-1000) (§ 4.3.6.4). That means that
although stolen-handle notifications are appended to every IPC message, in
SOS? they are not part of standard SOS calls. Instead, they only appear in
the form of aexit calls.

Thus, in order to integrate the SOS-local transitions into the global tran-
sition system, we (only) need to consider the case where a user application
modifies the IPC rights for SOS. Hence:33

Ωp ⊃ Ωsc × P(rights t).

Thus, the set of application outputs that are SOS calls is defined as follows:

Ωp ⊃ { (UADD, r), (UDEL uid , r),

(FCREAT fid , r), (FLOCK fid , r), (FUNLOCK fid , r),
(FTRUNCATE fid len, r), (FUNLINK fid , r), (FINFO fid-nil , r),
(FWRITE fid words, r), (FREAD fid len, r),
(FSEEK fid zflag off , r), (FCHMOD fid fop uid zflag , r),
(FCHOWN fid uid , r),

(TREAD, r), (TWRITE byte zflag , r), (TSEEK zflag off , r),
(TINFO, r),

(SOPEN pn, r), (SLISTEN sid , r), (SCONNECT sid na pn, r),
(SACCEPT sid , r), (SWRITE sid bytes, r),
(SREAD sid len, r), (SCLOSE sid , r),

33Note that Ωp 6= Ωsc ×P(rights t) because Ωp also contains kernel calls. In § 4.3.8.3, we
will add kernel calls (e. g. IPC calls) to Ωp and discuss the corresponding SOS? transitions.
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(PMREG iid prcid-int , r), (PMLOOKUP iid prcid , r),
(PMUNREG iid prcid-int , r),

(AEXEC fid uid nflag , r), (AFORK nflag , r), (AWAIT hn, r),
(AEXIT ec, r),

(UNDEFINED-SC, r)

| r ∈ P(rights t) ∧ byte ∈ byte t ∧ bytes ∈ byte t∗ ∧ words ∈ word t∗

∧ fop ∈ fop tε ∧ uid ∈ uid tε ∧ fid ∈ fid tε ∧ fid-nil ∈ fid tε ∪ {NIL}
∧ zflag , off , ec ∈ Z32 ∧ len,nflag ∈ N32 ∧ pn ∈ pn tε ∧ na ∈ na tε
∧ sid ∈ sid tε ∧ hn ∈ hn t ∧ iid ∈ iid tε
∧ prcid-int ∈ prcid tε ∪ {PMINT} ∧ prcid ∈ prcid tε

}.

Returning Results of SOS Calls

So far, we have only looked at receiving SOS calls. The returning of results,
however, also requires some special considerations.

When returning results to user application, the good thing is that we know
exactly what the SOS does. Thus, although sc_pm_lockup, sc_app_exec, and
sc_app_fork return handles and rights (§ 4.3.5.2,§ 4.3.6.1, and § 4.3.6.2), we
can easily compute the necessary changes and update the handle data base
and the rights data base as it would be done by the IPC call (result defined in
§ 4.3.8.1). That means that the form of the SOS-call results, i. e. the alphabet
Σsc, does not change in this respect.

Note that if a user application did not use a Libsos call but used IPC calls
to manually constructed an SOS call (see § 4.3.7), then it could be that the
size of the specified receive buffer is too small to fit the result. In this case,
the SOS’s IPC-send operation would fail. Nevertheless, since the SOS only
uses immediate send operations, the SOS remains working. In fact, currently,
the SOS does not even care about the success or failure of this IPC operation.
The user application, however, remains blocked, waiting for its IPC request to
be answered. Since user applications are forced to use IPC requests, rather
than independed send- and receive operations, while talking to the SOS, and
these requests must not have a finite timeout, we can be sure that returning a
result either succeeds immediately or fails ultimately.

Now, in terms of stolen handles, the situation is more difficult. User
processes receive the notification about stolen handles with every IPC receive
operation. That means, they also receive this notification when receiving
results of SOS calls. Other than in Ωp, in Σp we can not hide this notification.
Thus, in order to integrate the SOS-local transitions into the global transition
system, SOS-call results must be extended by a flag indicating stolen handles:
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Hence:34

Σp ⊃ Σsc × B.

Thus, the set of application inputs that are SOS-call results is defined as
follows:

Σp ⊃ { (SUCC-UADD uid t , sth,

(SUCC-FINFO fid uid size lock perm fid-nil , sth),
(SUCC-FSEEK pos, sth), (SUCC-FWRITE pos size, sth),
(SUCC-FREAD words pos, sth),

(SUCC-TREAD byte, sth), (SUCC-TSEEK pos, sth),
(SUCC-TINFO width height pos, sth),

(SUCC-SOPEN sid , sth), (SUCC-SACCEPT sid na pn, sth),
(SUCC-SREAD bytes, sth),

(SUCC-PMLOOKUP hn, sth),

(SUCC-AEXEC hn, sth), (SUCC-AFORK hn, sth),
(SUCC-AWAIT ec, sth),

(SUCC, sth)

(ARG, sth), (PERM, sth), (LIMIT, sth), (LOCK, sth), (SOCK, sth),
(KERNEL, sth), (PMDUP, sth), (PMOTHER, sth),

(PMNOTREG, sth)

| sth, lock ∈ B ∧ byte ∈ byte t ∧ bytes ∈ byte t∗ ∧ perm ∈ P(fop t)
∧ words ∈ word t∗ ∧ uid ∈ uid t ∧ pn ∈ pn t ∧ na ∈ na t
∧ ec ∈ Z32 ∧ sid ∈ sid t ∧ fid ∈ fid t ∧ fid-nil ∈ fid t ∪ {NIL}
∧ pos,with, height , size, len,nflag ∈ N32 ∧ hn ∈ hn t

}.

SOS-Call Dispatcher

Up to now, we have defined the SOS-related alphabets of application outputs
and application inputs. Other than Ωsc and Σsc, the alphabets Σp and Ωp

also concern the underlying IPC mechanism. Before we can look at actual
transitions, we still need a number of auxiliary predicates.

Remember that ωp ∈ Sp → Ωp ∪ {ε} computes the output of a user
application based on its state. If, for some (existing) user application, this
output is different from ε, then the user application either wants to call
the system, or the system call of this application is currently being handled.
Furthermore, this system call is an SOS call, rather than a kernel call, if the

34As for SOS calls, Σp 6= Σsc × B because Σp also contains kernel call results § 4.3.8.3.



124 CHAPTER 4. SOS?

output is an element of Ωsc × P(rights t). Now, if it is an SOS call, it could
be that:

• the call was not yet received by the SOS,

• the call was received but could not be answered immediately, or

• the call was received and handled but returning the result failed.

For now, we are only interested in the first case. Since we know that user
applications must use IPC-request operations with infinite timeouts, we can
be sure that if an SOS call was (already) received, then there must be a
corresponding entry in the wait data base. Vice versa, for a new SOS call,
the application output must be an element of Ωsc × P(rights t) and there
cannot be a corresponding entry in the wait data base. In SOS?, the predicate
new-soscall(s, hn) is satisfied, if the output of the application hn indicates a
new SOS call:

new-soscall ∈ S × hn t → B

new-soscall(s, hn) ≡

let pid = s.kds.hdb(OSPID, hn)

in ωp(s.pdb(pid)) ∈ Ωsc × P(rights t) ∧ ¬s.kds.wdb(pid).

If there is an application that wants the SOS to perform an SOS call, then
the SOS needs to receive and handle this call. From what was said earlier, it
is clear that, in terms of the SOS? state space, receiving a call is nothing more
than updating the rights data base and adding an appropriate entry to the
wait data base. Thus, the function receive(s, hn) receives an SOS call from
the application hn, updates the rights- and wait data base, and returns the
updated state space and the call that was received:

receive ∈ S × hn t → S × Ωsc

receive(s, hn) =

let pid = s.kds.hdb(OSPID, hn);
(c, r) = ωp(s.pdb(pid));

s1 = s

t
kds.rdb(OSPID, pid) := s.kds.rdb(OSPID, pid) ∪ r,
kds.wdb(pid) := TRUE

|

in (s1, c).

Note that receive assumes that new-soscall is satisfied.
Most of the SOS handlers return a list of messages that need to be send

to user applications. In order to specify complete transitions we still need



4.3. TRANSITION RELATION 125

to describe how the state space changes while returning these results. The
function result returns a single message to one of the user applications:

result ∈ S × hn t × Ωsc → S.

For result(s, hn, o), the following cases are considered:

• Earlier, we described the situation where returning a result fails because
the application’s receive buffer is too small. Now, assume there is a
predicate result-fit(s, hn, o) that is only satisfied, if the application hn
has provided a receive buffer large enough to fit the result o. Then,
returning a result fails, if result-fit is not satisfied. In this case, the state
s remains unchanged.

• If the receive buffer is large enough, then returning a result will be
successful. In this case, the results, including the flag about stolen
handles, are applied to the application’s state and the wait data base is
updated.

• If the result of the SOS call contains a handle, as is true in case of
SUCC-PMLOOKUP, SUCC-AEXEC, and SUCC-AFORK, and this handle is
not the special handle HN-NONE, then we also need to update the rights
data base and the handle data base.35 In such case, it is necessary to
translate the additional handle hnn from a handle valid for the SOS
into a handle valid for the user application. Currently, the handle data
base is, except for special handles, the identity function hnn. Thus, this
translation is simple.

This adds up to the following definition of result :

result(s, hn, o) =

let pid = s.kds.hdb(OSPID, hn);

(x hnn) =



o if ( o = SUCC-AEXEC hnn

∨ o = SUCC-AFORK hnn

∨ o = SUCC-PMLOOKUP hnn)
∧ hnn 6= HN-NONE,

(ε, ε) else;

pidn = s.kds.hdb(OSPID, hnn);
sth = (s.kds.sthdb(pid) 6= { });

35 In SOS, only sos_app_fork might return a special handle. If sos_app_fork returns a
special handle, then it is HN-NONE. However, for HN-NONE we do not need to update the
handle data base or rights data base, nor do we need to translate it.
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s1 = s

t
kds.wdb(pid) := FALSE,

pdb(pid) := δp(s.pdb(pid), (o, sth))

|

;

s2 = s1

t
kds.hdb(pid , hnn) := pidn,

kds.rdb(pid , pidn) := {SND,REQ,MULT, FIN}

|

in 
s if ¬result-fit(s, hn, o),
s1 else if x = ε,

s2 else.

SOS handlers return lists of messages. The function results recursively calls
result to send all the messages of a list, and updates the state space appropri-
ately:

results ∈ S × (hn t × Ωsc)∗ → S
results(s, l) ={

s if l = [ ],
results(result(s, l[0]), tail(l)) else.

Now, we have everything in place to describe the transition relation for SOS
calls. If there exists a new SOS call sc from the user application hn, then this
call is received, dispatched to the appropriate handler, and the result messages
m are returned to user applications. Doing that, the next state s′ and the
outputs o′ are computed:

∆ ⊃ { (s, ε, s′, o′) | ∃hn ∈ hn t .
new-soscall(s, hn)
∧ (s1, sc) = receive(s, hn),
∧ ( (sc = UADD ∧ (s2, o′,m) = uadd(s1, hn))
∨ (sc = UDEL uid ∧ (s2, o′,m) = udel(s1, hn, uid))
∨ (sc = FCREAT fid ∧ (s2, o′,m) = fcreat(s1, hn,fid))
∨ (sc = FLOCK fid ∧ (s2, o′,m) = flock(s1, hn,fid))
∨ (sc = FUNLOCK fid ∧ (s2, o′,m) = funlock(s1, hn,fid))
∨ (sc = FTRUNCATE fid len ∧ (s2, o′,m) = ftruncate(s1, hn,fid , len))
∨ (sc = FUNLINK fid ∧ (s2, o′,m) = funlink(s1, hn,fid))
∨ (sc = FINFO fid ∧ (s2, o′,m) = finfo(s1, hn,fid))
∨ (sc = FWRITE fid words ∧ (s2, o′,m) = fwrite(s1, hn,fid ,words))
∨ (sc = FREAD fid len ∧ (s2, o′,m) = fread(s1, hn,fid , len))
∨ (sc = FSEEK fid flag off ∧ (s2, o′,m) = fseek(s1, hn,fid ,flag , off ))
∨ (sc = FCHMOD fid fop uid flag ∧ (s2, o′,m) = fchmod(s1, hn,fid , fop, uid ,flag))
∨ (sc = FCHOWN fid uid ∧ (s2, o′,m) = fchown(s1, hn,fid , uid))
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∨ (sc = TREAD ∧ (s2, o′,m) = tread(s1, hn))
∨ (sc = TWRITE byte flag ∧ (s2, o′,m) = twrite(s1, hn, byte,flag))
∨ (sc = TSEEK flag off ∧ (s2, o′,m) = tseek(s1, hn,flag , off ))
∨ (sc = TINFO ∧ (s2, o′,m) = tinfo(s1, hn))
∨ (sc = SOPEN pn ∧ (s2, o′,m) = sopen(s1, hn, pn))
∨ (sc = SLISTEN sid ∧ (s2, o′,m) = slisten(s1, hn, sid))
∨ (sc = SCONNECT sid na pn ∧ (s2, o′,m) = sconnect(s1, hn, sid ,na, pn))
∨ (sc = SACCEPT sid ∧ (s2, o′,m) = saccept(s1, hn, sid))
∨ (sc = SWRITE sid bytes ∧ (s2, o′,m) = swrite(s1, hn, sid , bytes))
∨ (sc = SREAD sid len ∧ (s2, o′,m) = sread(s1, hn, sid , len))
∨ (sc = SCLOSE sid ∧ (s2, o′,m) = sclose(s1, hn, sid))
∨ (sc = PMREG iid prcid ∧ (s2, o′,m) = pmreg(s1, hn, iid , prcid))
∨ (sc = PMLOOKUP iid prcid ∧ (s2, o′,m) = pmlookup(s1, hn, iid , prcid))
∨ (sc = PMUNREG iid prcid ∧ (s2, o′,m) = pmunreg(s1, hn, iid , prcid))
∨ (sc = AEXEC fid uid flag ∧ (s1, hn,fid , uid ,flag , s2, o′,m) ∈ aexec)
∨ (sc = AFORK flag ∧ (s1, hn,flag , s2, o′,m) ∈ afork)
∨ (sc = AWAIT hnw ∧ (s2, o′,m) = await(s1, hn, hnw))
∨ (sc = AEXIT ec ∧ (s1, hn, ec, s2, o′,m) ∈ aexit)
∨ (sc = UNDEFINED-SC ∧ (s2, o′,m) = s1, [ ], [ ])

)
∧ s′ = results(s2,m)}.

Note that the user application that is served is chosen nondeterministically.
However, fairness between user applications is guaranteed by the scheduler
which is, in SOS?, expressed through SOS? runs (app-fairness defined in § 4.5.1).

4.3.8.2 External Inputs

Now, we describe SOS? transitions due to external inputs.
Just like SOS calls, external inputs are received by the SOS by means of

IPC. However, for external inputs, nothing of this underlying mechanism is
exposed. That means, the alphabets Σ and Ω do not need to be adapted.
They remain as they were introduced while defining the individual handlers
(§ 4.3.1 – § 4.3.7):

Σ = KBD na t byte t | NET np t

and
Ω = NET np t .
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Now, if there exists some input i, then this input is dispatched to the appropriate
handler, and possible result messages m are returned to user applications.
Doing that, the next state s′ and the outputs o′ are computed:

∆ ⊃ { (s, i, s′, o′) |
( (i = KBD dna byte
∧ ((s1, o′,m) = (s, [ ], [ ]) ∨ (s1, o′,m) = event-tkbd(s, dna, byte)))

∨ (i = NET REQ sna spn dna dpn
∧ (s1, o′,m) = event-sreq(s, sna, spn, dna, dpn))

∨ (i = NET READY sna spn dna dpn
∧ (s1, o′,m) = event-sready(s, sna, spn, dna, dpn))

∨ (i = NET DATA sna spn dna dpn bytes
∧ (s1, o′,m) = event-sdata(s, sna, spn, dna, dpn, bytes))

∨ (i = NET ACK sna spn dna dpn ack
∧ (s1, o′,m) = event-sack(s, sna, spn, dna, dpn, ack))

∨ (i = NET CLOSE sna spn dna dpn
∧ (s1, o′,m) = event-sclose(s, sna, spn, dna, dpn))

)
∧ s′ = results(s1,m)}.

Note, in § 4.3.3.2, we described two types of buffer overflows related to receiving
keyboard input. While the software buffer overflow was already modeled in
event-tkbd , the hardware buffer overflow is represented above by nondeter-
ministically loosing keyboard input ((s1, o′,m) = (s, [ ], [ ]) in the case that
i = KBD dna byte).

4.3.8.3 Kernel Calls

As said earlier, kernel calls are already specified in VAMOS? and VAMOS?+C0.
The transitions described there nicely fit into SOS?. Instead of redefining them,
we will only extend the alphabets Ωp and Σp, and simply assume there is a
function handle-kernelcall that handles kernel calls.

Thus, in order to represent kernel calls that are still available to user
applications in the presence of the SOS, we extend Ωp in the following way:36

Ωp ⊃ { SND hnr rightss msg hna rightsa tos,

RCV hns buf tor,

36 The types used for the arguments msg and buf are those of memory objects and memory
buffers. While the earlier is used to refer to actual data, the latter is used to describe a buffer
of a certain size to store data. Both types are chosen to abstract as much as possible from
the machine-internal representation and focus on the actual semantics. A detailed discussion
is given in the VAMOS?+C0 specification.
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SNDRCV hnr rightss msg hna rightsa tos hns buf tor,

CHRIGHTS hnsub hnobj grant rights,

KINFO,

PRIVILEGED,UNDEFINED-KC

| rightss, rightsa ∈ P(rights t) ∪ {ε} ∧ tos, tor ∈ Z32 ∪ INF

∧ grant ∈ B ∧ hnr, hna, hns, hnsub, hnobj ∈ hn t
∧msg ∈ byte t∗ ∪ {UNDEFINED,UNAVAILABLE}
∧ buf ∈ N32 ∪ {UNDEFINED,UNAVAILABLE}

}.

Briefly, these calls allow user applications to do inter-process communication
(SND,RCV, and SNDRCV), change communication rights (CHRIGHTS), and re-
trieve information from the kernel (KINFO).37 The kernel provides more calls,
but as user applications are never privileged, only a subset of the kernel calls is
available to them. Calls that require the caller to be privileged are represented
in SOS? by the Ωp element PRIVILEGED. Finally, calls that are unknown to
the kernel are represented by the Ωp element UNDEFINED-KC.

As we added kernel calls to the alphabet Ωp, we also need to extend Σp.
The following additional elements of Σp represent the possible results of the
aforementioned kernel calls:

Σp ⊃ { SUCCESS,

SUCC-RCV hns reuses rightss msg hna reusea rightsa sth,

ERR-UNPRIVILEGED,

ERR-INVALID-ARGS,

ERR-INVALID-HANDLE,

ERR-INVALID-SUBJ-HANDL,ERR-INVALID-OBJ-HANDLE,

ERR-SND-INVALID-HANDLE,ERR-RCV-INVALID-HANDLE,

ERR-SND-TIMEOUT,ERR-RCV-TIMEOUT,

ERR-SND-BUFFER-OVL,ERR-RCV-BUFFER-OVL,

ERR-SND-SEGV,ERR-RCV-SEGV,

| msg ∈ byte t∗

∧ hnnew, hns, hna ∈ hn t
37Note, the presence / availability of these kernel calls (SND,RCV, and SNDRCV) make the

definition of receiving SOS calls (receive) and returning SOS-call results (result) so difficult.
This is because, we are facing two levels of granularity. On the one hand, we would like to
hide the implementation of the Libsos calls but, on the other hand, applications may use
these kernel calls to manually construct SOS calls.
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∧ reuses, reuseda, sth ∈ B
∧ rightss, rightsa ∈ P(rights t)

}.

Before we talk about actual kernel call transitions, we introduce the auxiliary
predicate new-kernelcall . Similarly to new-soscall , new-kernelcall(s, pid) is
satisfied, if the output of the user application pid indicates a new kernel call:

new-kernelcall ∈ S × pid t → B

new-kernelcall(s, pid) ≡

let kc = ωp(s.pdb(pid))

in kc ∈ Ωp ∧ kc /∈ Ωsc × P(rights t) ∧ ¬s.kds.wdb(pid).

Now, we assume handle-kernelcall describes the changes of the (in SOS? still
visible) VAMOS? data structures that would result from handling the kernel
call of a particular process (see Section 6.1 for a more details about handle-
kernelcall). Thus, if (kds, pdb, pid , kds ′, pdb′) ∈ handle-kernelcall , then kds,
pdb, and pid represent the kernel data structures, the process data base, and
the PID of the process; and kds ′ and pdb′ represent the updated kernel data
structures and process data base. Now, we can specify kernel-call-related
SOS? transitions as follows. If there exists an application pid , whose output
is a new kernel call, then the updates to the kernel data structures and the
process data base are computed by handle-kernelcall , and then applied to the
SOS? state:

∆ ⊃ { (s, ε, s′, ε) | ∃pid ∈ pid t .
new-kernelcall(s, pid)
∧ (s.kds, s.pdb, pid , kds ′, pdb′) ∈ handle-kernelcall
∧ s′ = sJkds := kds ′, pdb := pdb′K}.

Note that kernel calls that are triggered by user applications do not produce
any user-visible external output. Hence, the output is by default ε. Further,
note that, as for SOS calls, fairness between user applications is guaranteed
through SOS? runs.

4.3.8.4 Local Computation

Last but not least, there are SOS? transitions that represent local computations
of user applications.
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If there exists an application pid , such that its output is equal to ε, then
this application may do a local step:

∆ ⊃ { (s, ε, s′, ε) | ∃pid ∈ pid t .
ε = ωp(s.pdb(pid))
∧ s′ = sJpdb(pid) := δp(s.pdb(pid), ε)K}.

Again, no user-visible external output is produced, and fairness between user
applications is guaranteed through SOS? runs.

4.4 Initial States

The set S0 of initial states is almost as large as S. Any configuration s that
does not contain any socket in an ACCEPTING, CONNECTING, ESTABLISHED,
or REMOTE-CLOSED state, qualifies as an initial state:

S0 = {s | s ∈ S
∧ (∀x ∈ sid t . s.sdb(x ) = ε ∨ s.sdb(x ).state ∈ {BOUND, LISTEN})}.

4.5 Runs

The model SOS? exhibits properties that can not be expressed solely by means
of transition relation and state space. These properties are formalized by
describing valid sequences of transitions, so-called runs.

We define a run to be an infinite sequence r ∈ (S × Σ)∗, with r[0][0] ∈ S0

and ∀n ∈ N. (sn, in) = r[n] ∧ (sn+1, in+1) = r[n + 1] such that ∃o ∈ Ωε and
(sn, in, sn+1, o) ∈ ∆. We define a (valid) SOS? run to be a run r such that R(r),
i. e. a sequence of states and inputs that is ‘covered’ by the SOS? transition
relation, and that satisfies the predicate R.

4.5.1 Fairness Between User Applications

Fairness between user applications is an important property. However, while
introducing C0 machines as user processes, it was necessary to abstract the
scheduler (Section 3.5). Thus, fairness can no longer be inferred by studying
the scheduler and the interrupt handling mechanism. Here, we use runs to
explicitly state this property.

Intuitively, fairness may be expressed by claiming that all applications
eventually get to do something, and thereby change their state. In SOS? this
is unfortunately not true. There are the following exceptions:

• an application might wait infinitely long for another application to match
an IPC operation,
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• an application does not progress if it terminates, i. e. if it successfully
calls AEXIT (again, also matching the situation where the kernel kills the
application (see § 4.3.6.4 and § 4.3.8.1)),

• an SOS call may not be answered, because a requested resource, such as
a file lock, is never available, or a

• the results of an SOS call can not be returned to an application, because
the provided receive buffer is too small.

Processes that might not make any progress because of one of the afore-
mentioned reasons can be discovered using the predicate possibly-no-progress.
The predicate possibly-no-progress(s, pid) is satisfied, if the output o, with
o = ωp(s.pdb(pid)), reveals an IPC call with infinite timeout (INF) or the
SOS call (AEXIT, . . .) or if the output matches some SOS call and there is an
entry in the wait data base. Note that the last case matches the 3rd and 4th
exception.

possibly-no-progress ∈ S × pid t → B

possibly-no-progress(s, pid) ≡

∃o ∈ Ωp. o = ωp(s.pdb(pid))
∧ ( (o = SNDRCV . . . tos . . . tor ∧ (tos = INF ∨ tor = INF))
∨ (o = SND . . . to ∧ to = INF)
∨ (o = RCV . . . to ∧ to = INF)
∨ o = AEXIT . . .

∨ (o ∈ Ωsc × P(rights t) ∧ s.kds.wdb(pid))).

Besides identifying processes that might not make progress, we also need
to characterize progress. In SOS?, we can simply assume that a process has
progressed, between s and s′, if s′ could be the result of applying δp to s and
some input i:38

progress ∈ Sp × Sp → B
progress(s, s′) ≡ ∃i ∈ Σp ∪ {ε}. s′ = δp(s, i).

Note, depending on the particular process abstraction, it may be that s =
δp(s, i). Therefore, in progress, we do not require s′ 6= s. This is sound, as in
the context of scheduler fairness, it does not matter whether a process was
scheduled but did not change its state or whether it was not scheduled at all.
Without the state changing while progressing, the lack of fairness can not be

38 On lower layers there exists a special case. There, one process might change the size of
virtual memory available to another processes. In this case, the state of the latter would be
changed without the process actually progressing. In our implementation, however, the SOS,
which is the only one entitled to do that, does not make use of the feature. Hence, we do not
need to further inspect the particular input.
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measured anyways. Thus, even if s = δp(s, i), we might as well assume the
process has progressed.

Now, being able to identify processes that may not progress and processes
that have progressed, we can state fairness between user applications as a predi-
cate that must be satisfied by all valid SOS? runs. The predicate app-fairness(r)
is satisfied, if each process progresses infinitely often or gets stuck due to one
of the exceptions covered by the predicate possibly-no-progress:39

app-fairness ∈ (S × Σ)∗ → B
app-fairness(r) ≡

∀i ∈ N, pid ∈ pid t . r[i][0].pdb(pid) 6= ε ∧ ¬possibly-no-progress(r[i][0], pid)
=⇒

∃j ∈ N, j ≥ i. progress(r[j][0].pdb(pid), r[j + 1][0].pdb(pid)).

The proof of app-fairness is discussed in Section 6.2.
Now, R is simply the conjunction of all predicates defined over SOS? runs.

For now, this is only app-fairness. Thus:

R ∈ (S × Σ)∗ → B
R(r) ≡ app-fairness.

4.6 Summary

In the beginning of this chapter we introduced SOS? as the following parame-
terized transition system:

SOS?(Sp, δp, ωp, vm-size, interpret) =

(S,S0,Σ,Ω,∆,R,Σp,Ωp).

At this point, we have defined all its elements. Thus, Figure 4.9 on the
following page should serve as a visual summary of what has been defined.

39app-fairness is still quite coarse grained. However, depending on the needs that arise
when proving properties about user applications, one can easily diversify this predicate.
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Figure 4.9: SOS?— The Big Picture. The transition relation ∆ modifies the
state space S. External inputs (Σ) affect the state-space components related
to virtual terminals and sockets. Communication via sockets also produces
external outputs (Ω). The process data base pdb stores the states of the
individual user processes. These user processes are modeled by them selves as
self-contained I/O automata, communicating via Σp and Ωp with the rest of
the SOS? model.
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In Chapter 4 we spent a great deal of effort specifying a single system.
But, besides specifying the properties of single systems, it is also desirable to
look at properties of (such) systems in a distributed environment. Below, we
will define DSOS?; a model of a distributed system containing a number of
SOS? instances.

5.1 Overview

Similar to SOS?, DSOS? is defined as a transition system:

DSOS? = (Sds,S0
ds,Σds,∆ds,Rds).

5.2 Components of DSOS?

5.2.1 State Space

The state space Sds has two components. These are: nodes, a set of SOS? in-
stances and bus, a kind of central bus connecting the outputs and inputs of
the individual nodes:

Sds = {nodes : P(S), bus : Σ∗}.

Note that we will use bus to store the outputs of individual nodes and later
distribute these outputs as inputs to other nodes. For that, we rely on the fact

135
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that Ω ⊂ Σ. Further, note that, in order to clearly identify individual nodes,
we require unique network addresses. Thus, inv-unique-network-address must
be an invariant of DSOS?:

inv-unique-network-address ∈ Sds → B
inv-unique-network-address(ds) ≡

∀s1, s2 ∈ ds.nodes. s1.lna = s2.lna =⇒ s1 = s2.

5.2.2 External Inputs

In DSOS?, the only external input that needs to be considered is keyboard
input. This is because network traffic is only allowed between nodes of the
system. Thus, Σds, the set of external inputs for DSOS?, is defined as follows:

Σds = {KBD dna byte | dna ∈ na t ∧ byte ∈ byte t}.

Which means, Σds ⊂ Σ.

5.2.3 Transition Relation

Before we go on to specify the transition relation ∆ds, we need to introduce an
auxiliary function.

The function strip-input(l ,na) returns the first element from the list l
which is an input for the node with the network address na. If there exists such
an element, then it will be removed from the list and both, the stripped list
and the match, are returned. If the list does not contain a matching element,
then the original list l and ε are returned:

strip-input ∈ Σ∗ × na t → Σε × Σ∗

strip-input(l,na) ≡

let (x, y) = strip-input(tail(l),na)

in


(ε, [ ]) if l = [ ],
(l[0], tail(l)) else if ∃ byte ∈ byte t , bytes ∈ byte t∗, ack ∈ N.

l[0] = KBD na byte
∨ l[0] = NET . . .na
∨ l[0] = NET . . .na bytes
∨ l[0] = NET . . .na ack ,

(x, l[0]#y) else.

Now, the transition relation ∆ds essentially allows one of the nodes of the
distributed system to do a single step. For that, we append any external input



5.2. COMPONENTS OF DSOS? 137

σ to the bus ds.bus, strip the oldest input for the system s.lna, apply the
transition relation ∆, and append the resulting output (o) to the bus:

∆ds ⊂ Sds × Σ∗ds × Sds × na t

∆ds = { (ds, σ, ds ′,na) | ∃s, s′, i, bus ′, o. s ∈ ds.nodes
∧ (i, bus ′) = strip-input(ds.bus ◦ σ, s.lna)
∧ (s, i, s′, o) ∈ ∆
∧ ds ′ = Jnodes := ds.nodes \ {s} ∪ {s′}, bus := bus ′ ◦ oK
∧ na = s.lna}.

Note that the node which is allowed to do a step is chosen nondeterministically.
This node is identified by na. Similarly to SOS?, we formalize fairness through
runs. In this case, DSOS? runs. Within the formalization of fairness between
nodes (§ 5.2.5) we will need na to identify the system that has progressed in a
certain transition of a DSOS? run.

5.2.4 Initial States

For the set S0
ds, of initial states, we require that all of the individual systems

are in an initial state and there are no untreated inputs on the bus:

S0
ds = {ds | ds ∈ Sds ∧ ds.bus = [ ] ∧ ∀s ∈ ds.nodes. s ∈ S0}.

5.2.5 Runs

Rds is a predicate that characterizes valid DSOS? runs. Similarly to SOS?, we
define a valid DSOS? run to be an infinite sequence of states and inputs that is
‘covered’ by the DSOS? transition relation and that satisfies the predicate Rds.

In DSOS?, we use runs to formalize fairness between nodes of the distributed
system. The predicate Rds is satisfied, if in the course of an infinite DSOS? run,
every node na that has something to do is chosen infinitely often. That is, if, in
state i , there exists a system s , with s.lna = na, that could make progress, i. e.
there exists a process pid such that ¬possibly-no-progress(s, pid), then there
(also) exists a state j ≥ i where s progresses, i. e. s changes its state in the
transition between j and j + 1:

Rds ∈ (Sds × Σ∗ds)
∗ → B

Rds(r) ≡
∀i ∈ N,na ∈ na t . ∃s ∈ r[i][0].nodes, pid ∈ pid t .

s.lna = na ∧ s.pdb(pid) 6= ε ∧ ¬possibly-no-progress(s, pid)
=⇒

∃j ∈ N. j ≥ i ∧ (r[j][0], r[j][1], r[j + 1][0], na) ∈ ∆ds.
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Figure 5.1: DSOS?— The Big Picture. The transition relation ∆ds modifies
the state space Sds. The only external inputs (Σds) to consider are those from
keyboards. Keyboard inputs and abstract network packages are collected and
distributed by means of the bus component. The nodes component stores the
states of the individual SOS? instances.

5.3 Summary

In Chapter 4 we introduced SOS?. In the present chapter we combined several
SOS? instances into a distributed system, i. e. DSOS?. Based on Figure 4.9 on
page 134, Figure 5.1 presents a visual summary of DSOS?.
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In this chapter we want to outline the most important verification obliga-
tions and sketch their proofs. Here, we will only consider the SOS? model.

6.1 Simulation

Eventually, we want to prove that the implementation is correct with respect
to its specification. For that, we rely on VAMOS?+C0. We need to prove that
VAMOS?+C0, instantiated by SOS, is an implementation of SOS?. That is,
SOS? simulates VAMOS?+C0 plus SOS implementation.

First of all, we need to define an abstraction function that maps implemen-
tation states to specification states. Let Svc denote the VAMOS?+C0 state
space, then the abstraction function abs has the following signature:

abs ∈ Svc → S.

Using abs, we have to show that every run in the implementation has an
equivalent SOS? run. Let Rvc denote the set of valid VAMOS?+C0 runs. Then,
we have to prove that for every run rvc ∈ Rvc there exists a valid SOS? run
r ∈ R and a monotonous function ζ such that for all SOS? steps i there exists a
corresponding number ζ(i) of VAMOS?+C0 steps such that r[i] = abs(rvc[ζ(i)]).
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Thus, the following is the main SOS? theorem to prove:

∀rvc ∈ Rvc

=⇒
∃r ∈ R. ∀i ∈ N. r[i] = abs(rvc[ζ(i)])

In order to show this theorem, we need to prove that this statement holds
for each of the four transition types, i. e. SOS calls, external inputs, kernel
calls, and application-local computations. Thus, below, we inspect each of
them.

6.1.1 SOS Calls and External Inputs

For SOS calls and external inputs, the proof obligations are twofold. (i) We
need to show the functional correctness of the individual handlers and (ii) we
need to show that handling an SOS call or external input can be modeled as
an atomic step.

6.1.1.1 Functional Correctness

Functional correctness of SOS handlers boils down to proving C0 code correct-
ness.

The difficult cases, while proving handler correctness, are those handlers
that are related to external devices. This is because of the different device
representations in VAMOS?+C0 and SOS?. While VAMOS?+C0 recognizes
devices as a number of I/O registers and a source of interrupts, SOS? actually
incorporates a set of well known devices. That means, we first of all need a
hardware model for each of the incorporated devices. Then, we need to specify
and prove intermediate abstractions that ‘bridge’ the large ‘gap’ between
hardware model and SOS? state space:

• For the file system, we need (i) a hard-disk model, (ii) an abstraction
hiding the register-based device I/O, and (iii) an abstraction hiding the
cluster-based partitioning of files. Only then, we can add users and
permissions and thus derive the file system as it is specified in SOS?.

So far, [HRP05], Hillebrand et al. have presented paper-and-pencil for-
malizations of a system with devices for the gate level and the assembler
level. Using a hard disk as a specific device, they were able to prove (on
paper) the correctness of a simple disk driver.

The correspondence between VAMOS?+C0 plus hard-disk model in-
stantiated by a user-mode hard-disk driver, on the one hand, and the
abstraction hiding the register-based device I/O, on the other hand, has
been proven by Elena Petrova et al. . Unfortunately, they have not yet
published their results.
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The formalization of a file system abstraction hiding the cluster-based
partitioning of files, i. e. a model of the FAT32 file system, is included in
the Isabelle / HOL specification of the SOS [Bog08b].

• For virtual terminals, we need (i) a model of a serial interface controller
and (ii) the abstraction of a serial device driver. Only then, we can
multiplex the keyboard and the screen and provide virtual terminals to
different user applications.

So far, Alkassar et al. have developed a formal model of the serial interface
controller UART 16550A. Furthermore, they combined this device model
with the ISA model and achieved a programming model for a serial device
drivers. Using this programming model, they proved the correctness of a
simple serial device driver [AHK+07, Alk08].

• For sockets, we need (i) a model of a network card, (ii) an abstraction
of the network layer, (iii) an abstraction of the IP layer, and (iv) an
abstraction of the TCP layer. Then, on top of the TCP layer, we will be
able to establish abstract network packages and application-based access
to endpoints of connections.

So far, little has been done about the intermediate layers of the network
stack. [Cai06] formalized and proved some properties of the TCP layer
but, as of now, there is no complete Isabelle / HOL model.40

Note, in general, the intermediate specification layers correspond to the inter-
mediate implementation layers.

6.1.1.2 Atomic Steps

Now, there are a number of arguments for the atomic character of handling
SOS calls and external inputs. Below, we will point out the main ones:

• Because the SOS has the highest priority, it can not be scheduled away
in favor of a user application.

• If there is an interrupt, then the context of the SOS is saved, the interrupt
handler marks the appropriate interrupt type as pending, and then the
SOS context is restored. Due to the synchronous nature of the interrupt
delivery (see Section 3.5), the SOS does not have to deal with the interrupt
immediately. Although the SOS may be interrupted in the middle of a C0
statement, semantics is preserved, as will be shown by the VAMOS?+C0
model.

40An overview of the desired properties of the TCP layer is also presented in the Verisoft-
internal Technical Report #69.
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• SOS-call handlers return their results to user applications by means of an
IPC-send operation. This call will immediately return because we know
that user applications must be waiting for the results of SOS calls. Even
if this call fails, namely, if a user application’s receive buffer is too small,
it will not affect the atomic character of the SOS-call handler. Only the
user application will wait infinitely long for its SOS call to return.

• If the SOS implementation uses a kernel call other than IPC, then this
call will be treated immediately. After the call, control is passed back to
the SOS. In the meantime, no user application can be scheduled.

6.1.2 Kernel Calls

Essentially, in SOS?, the semantics of kernel calls remains the same as in
VAMOS?+C0. However, a few cases can be excluded, and thus, their represen-
tation can be simplified in the following way.

• The user applications that are found in SOS? are non-privileged processes
in VAMOS?+C0. Hence, all calls that require the calling process to be
privileged can be represented in SOS? by the Ωp element PRIVILEGED.
The result for such a call is ERR-UNPRIVILEGED.

• In our implementation, only the SOS process can be registered as de-
vice driver. Thus, only the SOS receives interrupt notifications. User
applications have no means to observe interrupts. Hence, in SOS? we
abandoned the interrupt data structure and instead reveal selected types
of interrupts as external inputs.41 Thus, as interrupts are no longer
visible, we can use a simplified representation of kernel call return values.

We want to take advantage of the theorems proved in VAMOS? and
VAMOS?+C0, i. e. the functional correctness of the kernel calls, the correctness
of the scheduler abstraction, and the correctness of the kernel-call wrappers.
Thus, instead of redefining each of the kernel calls in terms of the SOS? state
space, we use the knowledge about the SOS implementation to map a certain
SOS? state to a corresponding VAMOS?+C0 state, perform the appropriate
VAMOS?+C0 transition, and then (re-) construct an SOS? state. That is:

• We take the kernel data structures and the process data base from the
current SOS? state as well as specifically crafted values for the remaining
VAMOS?+C0 state-space components (e.g. the interrupt data structure,
the privilege data base, and the SOS process) and construct a valid
VAMOS?+C0 state (lower ∈ kds t × pdb t × pid t → Svc).

41Only selected types of interrupts are revealed because, depending on the abstraction
chosen for a certain device, its interrupts may no longer be visible. This is, for example,
true for the hard disk; user applications do not see the difference between a file system
implemented in memory and a file system that relies on a hard disk.
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• Then, on the resulting VAMOS?+C0 state, we perform a single ∆vc

transition, executing the kernel call of a particular process.

• After the transition, we strip the new VAMOS?+C0 state (lift ∈ Svc →
kds t × pdb t) and incorporate the updated kernel data structures and
process data base into the old SOS? state, and thereby gain the next
SOS? state.

Note, this is the informal definition of the previously declared relation handle-
kernelcall . In the Isabelle / HOL specification of the SOS, we actually define
handle-kernelcall , and thus, formally integrate VAMOS?+C0 into SOS?.

Now, in order to reuse the theorems proved for VAMOS?+C0, we need to
show that the functions lower and lift preserve the kernel call semantics in
terms of kernel data structures and process data base. That means, if, in a
given VAMOS?+C0 state vc and the corresponding SOS? state s, there exists
a new kernel call from the application pid , then the changes to s.kds and s.pdb
that result from applying ∆vc to the ‘lowered’ SOS? state (vcg), on the one
hand, and the actual implementation state (vc), on the other hand, must be
the same (Figure 6.1 on the next page):

∀vc ∈ Svc.

∃s, s′ ∈ S, pid ∈ pid t , vcg, vc′, vc′g ∈ Svc, kds ′ ∈ kds t , pdb′ ∈ pdb t .
s = abs(vc)
∧ new-kernelcall(s, pid)
∧ vcg = lower(s.kds, s.pdb, pid)
∧ (vcg, pid , vc′g) ∈ ∆vc

∧ (kds ′, pdb′) = lift(vc′g)
∧ s′ = sJkds := kds ′, pdb := pdb′K
∧ (vc, . . . , vc′) ∈ ∆vc

=⇒
s′ = abs(vc′)

6.1.3 Local Computations

In SOS? we inherit the process abstractions from VAMOS?+C0. We model
local computations of user application in the same way as VAMOS?+C0 models
user processes. That means, in the case of a local computation, VAMOS?+C0
plus SOS, on the one hand, and SOS?, on the other hand, update the process
data base in the very same way, i. e. the implementation and the specification
do the same. Hence, in terms of application-local computations, the simulation
theorem obviously holds.
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vc vc′

s s′

vcg vc′g

∆vc

abs abs

lower lift

∆vc

Figure 6.1: Translating Between Models. The functions lower and lift preserve
the kernel call semantics in terms of kernel data structures and process data
base.

6.2 Fairness Between User Applications

In § 4.5.1, we formalized fairness between user applications in terms of SOS? runs
(app-fairness). There, we stated that an application eventually progresses
unless it satisfies the predicate possibly-no-progress. VAMOS?+C0 ensures a
similar property for user processes. In VAMOS?+C0, however, an additional
requirement must be met in order to guarantee fairness. There, a user process
only progresses infinitely often, if (besides the things also specified in possibly-
no-progress) it has the maximum priority infinitely often.

Now, in order to derive the fairness between user applications from the fair-
ness between user processes, we need to show that this additional requirement
is discharged by the SOS implementation. For that, we have to show that all
user applications run with the same priority and we have to show that, in the
course of an infinite SOS run, the SOS idles infinitely often and thereby passes
control to lower priority processes, i. e. the user applications.

The former should be easy to prove considering the implementation of the
SOS calls for starting and forking user applications (§ 4.3.6.2 and § 4.3.6.1).
The latter, however, is not as trivial. However, considering that the SOS idles,
if there is no pending work, i. e. there is neither an SOS call nor an interrupt
notification, this proof should not be too hard either. Because:

• SOS calls can only be issued, if user applications are scheduled. Even if
the SOS is currently processing an SOS call, then, from the functional cor-
rectness for the particular handler, we know that this handler eventually
terminates. After that, the SOS must be waiting for new work.

• Interrupt notifications are only received because of external input (e. g.
keyboard input or input from the network card) or as a consequence of an
earlier SOS call (e. g. a file-system call). But, in the SOS implementation,
external input is buffered in bounded buffers. Thus, unless there are SOS
calls, these buffers eventually fill up. If a buffer has reached its maximum,
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the SOS disables the corresponding interrupt. Such a disabled interrupt
is only re-enabled, if some SOS call drains the corresponding buffer. If
the buffers for each of the devices have filled up, then the SOS can no
longer be busy because of interrupt notifications. Hence, the SOS can
not be ‘flooded’ by interrupt notifications. Which means, at some point,
a user application must be scheduled.

Adding up, this means, there is no way that the SOS starves user applications.
Thus, the additional requirement (that was necessary in VAMOS?+C0) is
already satisfied by the SOS implementation. Hence, we can lift fairness
between user processes (VAMOS?+C0) to fairness between user applications
(SOS?).

6.3 SOS?+C0/Libsos Correctness

Proving the correctness of the library Libsos should be straightforward. We need
to prove: (i) that the C0 wrapper code constructs IPC messages that respect
the syntax (§ 4.3.7) required by the SOS call dispatcher, and (ii) that results
are correctly incorporated into the C0 state of the user application. These
proofs should be very similar to the proofs that show functional correctness
of the Libvamos kernel-call wrappers. The concept of shifting the scheduling
decisions was already established in VAMOS?+C0. Thus, the correctness of
the SOS-call wrappers is (solely) a code correctness proof.

6.4 Other Properties

Depending on the way correctness of individual applications shall be proven,
it may be desirable to extract some of the SOS? properties. That is, properties
that are inherent to SOS? may be needed in a more explicit form. Proofs for
those properties only rely on the SOS? model itself. As an example for such a
property, we have formally proven that the cursor can not be moved outside
the visible screen (Appendix A.3).
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7.1 Summary

Within the Verisoft project, we aim at the pervasive modeling, implementation,
and verification of a complete computer system, from gate-level hardware
to applications running on top of an operating system. As an adequate
representative for such a system we choose a system for writing, signing, and
sending emails.

The starting point of our work was a processor together with its assembly
language, a compiler for a type safe C variant and a micro kernel. The goal
of our work was to develop a (user-mode) operating system that bridges the
gap between micro kernel and user applications. That is, formally specify
and implement a system that, on the one hand, is built right on top of our
micro kernel and, on the other hand, provides everything necessary for user
applications such as an SMTP server, a signing server, and an email client.
Furthermore, the design of this system should support its verification in a
pervasive context.

Within this document, we presented the formal specification of such an
operating system, i. e. the model SOS?. Furthermore, we discussed the foun-
dations of our work, briefly described the implementation of the SOS, and
outlined the verification obligations. The specification at hand is comple-
mented by a corresponding Isabelle / HOL specification [Bog08c] and the C0
implementation of the SOS [Bog08a].
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There have been numerous attempts to increase confidence in system
software by means of formal methods. In Section 1.2 we argued that these
projects usually restrict themselves to a particular part of a computer system.
On the one hand, there are projects that tackle selected system components (e. g.
the file system or the network stack) and show that their specification satisfies
certain high-level properties (e. g. [BCT95, BC96, AZKR04] and [Smi96a,
BFN+07, RNS08]). However, projects in this category fail to reliably relate
their specification to a particular implementation. In a sense, they are stuck
at the upper part of their systems because they are missing a solid foundation.
On the other hand, there are projects that start at the bottom. But no matter
whether they have pervasive verification in mind or (only) focus on a particular
micro-kernel implementation, none of the projects that we know of, reaches a
level above micro kernels (e. g. [Bev89, HT05, SDN+04, HEK+07]). Thus, we
are the first that specified and implemented an operating system that reaches
so far up and, at the same time, is part of an integrated system stack. In a
sense, our work connects both worlds.

While developing the SOS, the main problem was to resolve the dependen-
cies between pervasive verification and implementation. This is because design
decisions for one layer usually inflicted consequences for other layers — both,
for implementation and verification. In the course of our work, it was, for
example, several times necessary to entirely redesign the SOS? model and to
adapt the SOS implementation in order to successfully integrate it with the
remaining system. In many places, the VAMOS implementation is influenced
by the verification goals of SOS? (e. g. IPC rights and privileged kernel calls).
Likewise, the SOS implementation is much influenced by the limitations of C0
and the restrictive set of kernel calls (e. g. the lack of pointer arithmetic and
the lack of shared memory). However, in the end, we were still able to provide
a comparatively small specification (∼3000 lines of Isabelle / HOL theories)
and an appropriate implementation.

Except for the network- and the IP layer, our implementation is complete.
Among other things, it includes a simple TCP- and socket implementation, a
FAT32-compatible file system with additional access control lists, and virtual
terminals. Furthermore, it provides means to manage users and applications
and supports remote procedure calls. All in all, there are 31 SOS calls. These
calls have been used to implement applications, such as a basic shell, an SMTP
server, a signing server, and an email client. Running these applications, we
were able to demonstrate two SOS instances sending and receiving signed
emails via the Internet [Bog07].

Our specification, the model SOS?, establishes a computational model
for communicating user applications. This model has been formalized as a
transition system, where each of the transitions represents the handling of
a system call, the handling of input from an external device, or the local
computation of one of the user applications. We were able to specify most
of the SOS calls as deterministic atomic steps. Only at the dispatcher level
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nondeterminism was introduced. Along with the SOS calls, we formalized
various invariants and showed how they are maintained. Within SOS?, user
applications are incorporated as self-contained I/O automata. Via appropriate
model parameters arbitrary process abstractions can be included. In order to
connect our specification to the underlying VAMOS?+C0 model, we developed
a means to translate between state spaces. Using this method we were able to
actually incorporate VAMOS?+C0 into the SOS? model and recycle many of
its definitions. Conversely, our specification has been used to formally verify
parts of the email client [BHW06] as well as the SMTP- and signing server
[LNRS07]. That means, our specification is really part of an integrated stack.

Last but not least, in the document at hand, we used only a small set of
mathematical tools to present the specification of a whole operating system.
We developed a simple formalism that allowed us to specify SOS calls in a dense
and precise manner. After studying the preliminaries, even non-mathematicians
should be able to use this document as a reference manual.

7.2 Future Work

So far, we have only outlined the verification obligations and sketched the
proofs for the top level theorems. In order to reach the goal of a pervasively
verified computer system, one needs to formally prove these theorems. That
is, we need to define the abstraction relation and show that the simulation
relation holds.
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A.1 Lost in Translation

In the following we provide the most important translations between Math,
Isabelle / HOL, and C0.

Math Isabelle / HOL C0
adb s ainfodb

aexec s aexec sos_app_exec

aexec-kernel s create

aexit s aexit sos_app_exit

aexit-kernel s kill

afork s afork sos_app_fork

afork-kernel s clone

await s await sos_app_wait

∆ s ∆

∆ds ds ∆

δp δproc sos

event-sack s event sack sos_socket_int

event-sclose s event sclose sos_socket_int

event-sdata s event sdata sos_socket_int

event-sready s event sready sos_socket_int
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Math Isabelle / HOL C0
event-sreq s event sreq sos_socket_int

event-tkbd s event tkbd sos_term_int

faccess-error s faccess error sos_file_access

faccess-legal s is legal faccess sos_file_access

fchmod s fchmod sos_file_chmod

fchown s fchown sos_file_chown

fcreat s fcreate sos_file_creat

fdb s filedb

finfo s finfo sos_file_info

flock s flock sos_file_lock

focus s focus

fread s fread sos_file_read

free-clusters f32 fc

fseek s fseek sos_file_seek

ftruncate s ftruncate sos_file_truncate

funlink s funlink sos_file_unlink

funlock s funlock sos_file_unlock

fwrite s fwrite sos_file_write

handle-kernelcall s syscall vc

hdb v hdb rightsdb

interpret init proc

lift s lift

lna s lna

lower s lower

match-socket s get socket

Ω s Ω

Ωp Ωproc sos

Ωsc s scT

ωp ωproc sos
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Math Isabelle / HOL C0
ocl f32 ocl

offset s calc offset

pdb s procdb

pmdb.known s pmlist

pmdb.reg s pmregistered

pmdb.serv s pmserver

pmlookup s pmlookup sos_pm_lookup

pmreg s pmreg sos_pm_reg

pmunreg s pmunreg sos_pm_unreg

R s RT

Rds ds RT

rdb v rdb rightsdb

rdb-holes s rdb holes

rdt-holes f32 holes

Σ s Σ

Σds ds Σ

Σp Σproc sos

Σsc s scrT

S s ST

Sds ’a ds ST

Sp ’a::proc conf

saccept s saccept sos_socket_accept

saccess-error s saccess error sos_socket_access

saccess-legal s is legal saccess sos_socket_access

sclose s sclose sos_socket_close

sconnect s sconnect sos_socket_connect

sdb s socketdb

slisten s slisten sos_socket_listen

sopen s sopen sos_socket_open

sread s sread sos_socket_read

sthdb v stolen rightsdb

swrite s swrite sos_socket_write
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Math Isabelle / HOL C0

tdb s termdb

tinfo s tinfo sos_term_info

tread s tread sos_term_read

tseek s tseek sos_term_seek

twrite s twrite sos_term_write

uadd s uadd sos_user_add

udb s userdb

udel s udel sos_user_del

vm-size size proc

wdb s sndstatdb
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A.2 Two-Way Handshake

In the following section, we prove that, for SOS? and DSOS?, the two-way
handshake is indeed a valid abstraction of the three-way handshake (Figure A.1
on page 161). For that, we need to argue on the TCP layer (rather than the
socket layer). However, so far, there is no Isabelle / HOL specification of the
TCP layer. Hence, we model the relevant parts of the TCP layer ourself and
then use this small (problem-tailored) formalization to justify the two-way
handshake.42

theory tcp

imports Main

begin

First we declare a number of (abstract) TCP states.

consts
Accept :: "nat⇒bool"

CA :: "nat=>bool"

CC :: "nat=>bool"

InfinitelySendAck :: "nat⇒nat⇒nat=>bool"

InfinitelySendSyn :: "nat⇒nat⇒nat=>bool"

InfinitelySendSynAck :: "nat⇒nat⇒nat=>bool"

Initial :: "nat⇒bool"

RecvAck :: "nat⇒nat⇒nat=>bool"

RecvSyn :: "nat⇒nat⇒nat=>bool"

RecvSynAck :: "nat⇒nat⇒nat=>bool"

ScAccept :: "nat⇒bool"

ScConnect :: "nat⇒nat⇒nat=>bool"

SendSyn :: "nat⇒nat⇒nat=>bool"

SendSynAck :: "nat⇒nat⇒nat=>bool"

We assume Initial denotes a pristine TCP state and ScAccept denotes a
call to the TCP subsystem to accept incoming connections. The resulting TCP
state is denoted by Accept. Thus, if the system a is in an initial state (Initial
a) and the TCP is called to accept incomming connections (ScAccept a), then
the new state is Accept a.

constdefs
"ItoA ≡
∀ a. Initial a ∧ ScAccept a −→ Accept a"

lemma LItoA:

"[[ ItoA; Initial a; ScAccept a]] =⇒ Accept a"

apply (simp add: ItoA_def)

done
declare LItoA [simp]

If the system a is in the Accept state and it receives a SYN packet from the
system b, here denoted by RecvSyn a b a, then it changes its state to SendSynAck

42This proof has been taken from the Verisoft Technical Report #5 [Bog08d].
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a a b and returns a SYNACK packet (as an acknowledgment to the opposite side
b). Note, we assume that the SYNACK packet matches the SYN packet that was
received. Further note, in RecvSyn a b a, the first “a” identifies the system (that
received the packet), the following “b” identifies the source of the packet, and
the final “a” identifies the destination of the packet. Thus this quadruple can
be interpreted as “<state> <system> <source> <destination>”. We will use
the same scheme throughout the rest of this proof.
constdefs "AtoSSA ≡
∀ a b. a6=b ∧ Accept a ∧ RecvSyn a b a −→ SendSynAck a a b"

lemma LAtoSSA:

"[[ AtoSSA; a6=b ; Accept a ; RecvSyn a b a]] =⇒ SendSynAck a a b"

apply (simp add: AtoSSA_def)

done

declare LAtoSSA [simp]

If the system a is in the SendSynAck a a b state and it receives a matching
ACK packet (RecvAck a b a), i.e. an ACK packet from the site it originally received
the SYN packet from and it sent the SYNACK packet to, then a connection is
considered to be established. Here, we denote such an established connection
by CA:
constdefs "SSAtoCA ≡
∀ a b. a6=b ∧ SendSynAck a a b ∧ RecvAck a b a −→ CA a"

lemma LSSAtoCA:

"[[ SSAtoCA; a6=b ; SendSynAck a a b ; RecvAck a b a]] =⇒ CA a"

apply (simp add: SSAtoCA_def)

apply (auto)

done

declare LSSAtoCA [simp]

Lets switch from the server side, the one accepting incoming connections,
to the client side, the one initiating a connection. Assume the client b is in the
initial state and the TCP subsystem is asked to connect to the remote side a

(ScConnect b b a). In this case, a SYN packet will be sent to the remote side and
the state is changed to SendSyn b b a:
constdefs "ItoSS ≡
∀ a b. a6=b ∧ Initial b ∧ ScConnect b b a −→ SendSyn b b a"

lemma LItoSS:

"[[ ItoSS; a 6=b ; Initial b ∧ ScConnect b b a]] =⇒ SendSyn b b a"

apply (simp add: ItoSS_def)

done

declare LItoSS [simp]

If a SYN packet was sent and a corresponding SYNACK packet received (RecvSynAck
b a b), then the connection is considered to be established (from the local point

156



of view). The resulting state is denoted by CC.
Note, depending on the role of a party of an established connection (either

server or client), this final state is named differently. The reason for this will
be explained later.

constdefs "SStoCC ≡
∀ a b. a6=b ∧ SendSyn b b a ∧ RecvSynAck b a b −→ CC b"

lemma LSStoCC:

"[[ SStoCC; a6=b ; SendSyn b b a ; RecvSynAck b a b]] =⇒ CC b"

apply (simp add: SStoCC_def)

apply (auto)

done

declare LSStoCC [simp]

So far we have only considered an ideal world, where no packets are lost.
In the document at hand, however, we will also consider the case that packets
get lost or discarded because of some sort of error. Still, we will assume that
not all packets get lost. That means, if we sent infinitely many packets, then
infinitely many packets are received. That also means, if we sent a particular
packet often enough, then, eventually, it will be received.

Thus, knowing that, we will now go back and consider the cases, where
packets are lost and therefore need to be resent.

Assume the client side sent a SYN packet (SendSyn b b a) and the server side
really accepts incoming connections (Accept a), then the latter may receive this
packet (RecvSyn a b a) and acknowledge it or the client starts resending the
packet. Our implementation does not support timeouts, thus, it potentially
resends the packet infinitely often (InfinitelySendSyn b b a).

constdefs "SStoISS ≡
∀ a b. a6=b ∧ SendSyn b b a ∧ Accept a

−→ RecvSyn a b a ∨ InfinitelySendSyn b b a"

However, we know that each packet will be received, if it is sent often
enough. That means:

constdefs "ISStoRS ≡
∀ a b. a6=b ∧ InfinitelySendSyn b b a −→ RecvSyn a b a"

lemma LSStoRS:

"[[ SStoISS; ISStoRS; a6=b ∧ SendSyn b b a ∧ Accept a ]]
=⇒ RecvSyn a b a"

apply (simp add: SStoISS_def ISStoRS_def)

apply (auto)

done

declare LSStoRS [simp]

On the way back, we follow the same argument. If a server accepts a
connection and returns an appropriate SYNACK packet, then the packet may be
received (RecvSynAck b a b) and acknowledged by the client or the server starts
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resending the packet. As for SStoISS, our implementation does not support
timeouts, thus, also the server potentially resends the SYNACK packet infinitely
often (InfinitelySendSynAck a a b).

constdefs "SSAtoISSA ≡
∀ a b. a6=b ∧ SendSynAck a a b ∧ SendSyn b b a

−→ RecvSynAck b a b ∨ InfinitelySendSynAck a a b"

But, as before, if sent often enough, then, eventually, it will be received.
Thus:

constdefs "ISSAtoRS ≡
∀ a b. a6=b ∧ InfinitelySendSynAck a a b −→ RecvSynAck b a b"

lemma LISSAtoRS:

"[[ SSAtoISSA; ISSAtoRS; a6=b ∧ SendSynAck a a b ∧ SendSyn b b a ]]
=⇒ RecvSynAck b a b"

apply (simp add: SSAtoISSA_def ISSAtoRS_def)

apply (auto)

done

declare LISSAtoRS [simp]

Finally, also the ACK packet may be lost. Thus, if a client sent an ACK packet,
then the packet may be received (RecvAck a b a) by the server or the client
starts resending the packet (InfinitelySendAck b b a).

constdefs "CCtoISA ≡
∀ a b. a6=b ∧ CC b ∧ SendSynAck a a b

−→ RecvAck a b a ∨ InfinitelySendAck b b a"

Again, if sent often enough, eventually, it will be received. Thus:

constdefs "ISAtoRA ≡
∀ a b. a6=b ∧ InfinitelySendAck b b a −→ RecvAck a b a"

lemma LCCtoRA:

"[[ CCtoISA; ISAtoRA; a6=b ∧ CC b ∧ SendSynAck a a b ]]
=⇒ RecvAck a b a"

apply (simp add: CCtoISA_def ISAtoRA_def)

apply (auto)

done

declare LCCtoRA [simp]

Note, usually the client does not sent the ACK just by itself. Normally, this
packet already contains actual payload. Here, we are not interested in the
payload and simply abstract from it.

Furthermore, in order to be able to express the resending-\small{}ACK
behaviour, we differentiate CC and CA. However, a connection is established
(Established) if CC b ∧ CA a.

constdefs "Established a b ≡
CC b ∧ CA a"
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lemma LEestablished:

"[[ a 6=b; CC b; CA a ]] =⇒ Established a b"

apply (simp add: Established_def)

done

declare LEestablished [simp]

Now, having formalized the different transitions and properties of the
network, we will derive some higher level properties.

The theorem EventuallyConnected states that if two parties have initially a
pristine TCP state and one of them (a) allows for incoming connections, i.e. it
calls accept, while the other one (b) tries to establish a corresponding connection,
i.e. it calls connect, then a connection will be established (Established a b):

theorem EventuallyConnected:

"[[ ItoA; ItoSS; SStoISS; ISStoRS; AtoSSA; SSAtoISSA;

ISSAtoRS; SStoCC; CCtoISA; ISAtoRA; SSAtoCA

]] =⇒ a6=b ∧ Initial a ∧ Initial b ∧ ScAccept a ∧ ScConnect b b a

−→ Established a b"

apply (auto)

done

The proof for EventuallyConnected is trivial as we only have to ”chain” together
the previously decalared axioms (ItoA, ItoSS, etc.).

Besides the assumption, that the network actually transmits some packets,
we further assume that (i) the network does not invent packets, (ii) it is
impossible to fake the source of a packet, and (iii) a packet can not be
tampered with on its way through the net. That means, we can trust received
packets. Thus, the reception of a packet implies that the opposite side must
have sent this packet:

constdefs
"SSfromRS ≡ ∀ a b. a6=b ∧ RecvSyn a b a −→ SendSyn b b a"

"SSAfromRSA ≡ ∀ a b. a6=b ∧ RecvSynAck b a b −→ SendSynAck a a b"

lemma LSSfromRS:

"[[ SSfromRS; a6=b; RecvSyn a b a ]] =⇒ SendSyn b b a"

apply (simp add: SSfromRS_def)

done

lemma LSSAfromRSA:

"[[ SSAfromRSA; a6=b; RecvSynAck b a b ]] =⇒ SendSynAck a a b"

apply (simp add: SSAfromRSA_def)

done

declare LSSfromRS [simp]

declare LSSAfromRSA [simp]

Knowing that, we can conclude that if a SYN packet is received by a server,
then the connection will be established:

theorem SynToEstablished:

"[[ SStoISS; ISStoRS; AtoSSA; SSAtoISSA;

ISSAtoRS; SStoCC; CCtoISA; ISAtoRA; SSAtoCA;
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SSfromRS; SSAfromRSA; SAfromRA

]] =⇒ a6=b ∧ Accept a ∧ RecvSyn a b a −→ Established a b"

apply (auto)

done

Also the proof for SynToEstablished is trivial. We only have to apply SSfromRS to
infer that b really sent a SYN packet and then (again) ”chain” together SStoISS

and friends.
Similarly, the connection will be established, if a SYNACK packet is received

by a client.

theorem SynAckToEstablished:

"[[ SStoISS; ISStoRS; AtoSSA; SSAtoISSA;

ISSAtoRS; SStoCC; CCtoISA; ISAtoRA; SSAtoCA;

SSfromRS; SSAfromRSA; SAfromRA

]] =⇒ a6=b ∧ SendSyn b b a ∧ RecvSynAck b a b −→ Established a b"

apply auto

done

Finally, the proof for SynAckToEstablished works as the previous one.

Now, if, on the one hand, a server can be sure that a connection will be
established as soon as it receives a SYN packet and, on the other hand, a client
can be sure that the connection will be established as soon as it receives the
(matching) SYNACK packet, then we can abstract away the final ACK packet. Hence,
under the given assumptions, a two-way handshake is a valid abstraction of the
three-way handshake (Figure A.1 on the next page). Note, if the ACK packet
contains payload, then, in SOS?, it is simply represented by a DATA packet; if
not, then it is entirely hidden.

=2pt
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Initial a

Accept a

SendSynAck a a b

CA a

Initial b

SendSyn b b a

CB b

ScAccept a

RecvSyn a b a

RecvAck a b a

ScConnect b b a

RecvSynAck b a b

SYN

SYNACK

ACK

Figure A.1: Three-Way Handshake
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A.3 Property Example

We prove a (high-level) property of SOS? using its Isabelle / HOL specification.43

theory sCursor

imports "../sDelta"

begin

We prove that, if in s for all terminals the cursor was within 0 and
S_SCRX*S_SCRY, i.e. 0 ≤ (s_tpos ((s_termdb s) t)) ≤ S_SCRX*S_SCRY, then the same
holds for s’. That means, s_∆ never moves the cursor to a position outside of
the screen area.

declare s_app_tup_def [simp]

declare s_app_the_tid_def [simp]

declare s_is_app_tno_def [simp]

declare S_SCRX_def [simp]

declare S_SCRY_def [simp]

declare S_SCRXY_def [simp]

declare s_file_up_def [simp]

declare s_socketdb_up_def [simp]

lemma min_smaller: "(a::int) ≥ min a b"

apply (arith)

done

lemma max_bigger: "(a::int) ≤ max a b"

apply (arith)

done

lemma max_min_bigger: "(a::int) ≤ max (min b c) a"

apply (arith)

done

s_calc_offset calculates a value between start and stop.

lemma s_calc_offset_in_bounds:

"start<stop =⇒
start ≤ s_calc_offset start cur stop rel off

∧ s_calc_offset start cur stop rel off≤stop"
apply (simp add: s_calc_offset_def)

apply (simp add: max_min_bigger)

apply (simp add: min_smaller)

done

s_tread does not change the cursor position.

lemma s_tread_tpos_equal:

"s_tpos ((s_termdb s) x) = s_tpos ((s_termdb (fst(s_tread s hn))) x)"

apply (simp add: s_tread_def Let_def)

apply (case_tac "s_aterm bs_ainfodb s hnc")
apply (simp+)

apply (case_tac "s_tin (s_termdb s (s_app_the_tid s hn))")

43This proof is included in the Isabelle / HOL specification of the SOS [Bog08c].
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apply (simp)

apply (simp add: split_def)

apply (simp)

apply (simp add: split_def)

done

None of the system call handlers moves the cursor beyond S_SCRX*S_SCRY (if
called by s_dispatch_sc).

lemma s_dispatch_sc_tpos_in_bounds:

"[[(s_tpos ((s_termdb s) t)) ≤ (S_SCRX*S_SCRY)]] =⇒
(s_tpos ((s_termdb (fst (s_dispatch_sc s sc hn))) t))

≤ (S_SCRX*S_SCRY)"

apply (simp (no_asm) add: s_dispatch_sc_def)

apply (split s_scT.split)

apply (auto)

(* twrite *)

apply (simp (no_asm) add: s_twrite_def)

apply (simp add: Let_def)

apply (auto)

(* tseek *)

apply (simp (no_asm) add: s_tseek_def)

apply (simp add: Let_def)

apply (auto)

apply (subst zle_int [THEN sym])

apply (simp)

apply (rule impI)

apply (simp add: s_calc_offset_in_bounds)

(* tinfo *)

apply (simp (no_asm) add: s_tinfo_def Let_def)

(* tread *)

apply (simp add: s_tread_tpos_equal[THEN sym])

(* fcreat *)

apply (simp add: s_fcreate_def f32_create_def Let_def)

(* ftruncate *)

apply (simp add: s_ftruncate_def f32_truncate_def Let_def)

(* ftruncate *)

apply (simp add: s_funlink_def f32_unlink_def Let_def)

(* finfo *)

apply (simp add: s_finfo_def Let_def)

(* fwrite *)

apply (simp add: s_fwrite_def f32_write_def Let_def)

(* fseek *)

apply (simp add: s_fseek_def Let_def)

(* fread *)

apply (simp add: s_fread_def Let_def)

(* flock *)

apply (simp add: s_flock_def Let_def)

(* funlock *)

apply (simp add: s_funlock_def Let_def)

(* fchmod *)

apply (simp add: s_fchmod_def Let_def)

(* fchown *)

apply (simp add: s_fchown_def Let_def)
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(* sopen *)

apply (simp add: s_sopen_def Let_def)

(* slisten *)

apply (simp add: s_slisten_def Let_def)

(* sconnect *)

apply (simp add: s_sconnect_def Let_def)

(* saccept *)

apply (simp add: s_saccept_def Let_def)

apply (simp add: split_def)

apply (simp add: s_new_connection_def Let_def)

(* sread *)

apply (simp add: s_sread_def Let_def)

(* swrite *)

apply (simp add: s_swrite_def Let_def)

(* sclose *)

apply (simp add: s_sclose_def Let_def)

(* uadd *)

apply (simp add: s_uadd_def Let_def)

(* udel *)

apply (simp add: s_udel_def Let_def)

(* pmreg *)

apply (simp add: s_pmreg_def Let_def)

(* pmlkp *)

apply (simp add: s_pmlookup_def Let_def)

(* pmunreg *)

apply (simp add: s_pmunreg_def Let_def)

(* aexec *)

apply (simp add: s_aexec_def)

apply (simp add: s_create_def)

apply (simp add: Let_def)

apply (simp add: s_inherit_term_def)

apply (rule conjI)

apply (rule impI)

apply (rule conjI)

apply (intro impI)

apply (simp add: Let_def)

apply (intro impI)

apply (simp add: Let_def)

apply (intro impI)

apply (simp add: Let_def)

apply (intro impI)

apply (rule conjI)

apply (intro impI)

apply (simp add: Let_def)

apply (intro impI)

apply (simp add: Let_def)

(* afork *)

apply (simp add: s_afork_def Let_def)

apply (simp add: s_clone_def)

apply (simp add: Let_def)

apply (intro impI)

apply (simp add: s_inherit_term_def)

apply (rule conjI)

apply (rule impI)
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apply (simp add: Let_def)

apply (rule impI)

apply (simp add: Let_def)

apply (rule impI)

apply (simp)

(* await *)

apply (simp add: s_await_def Let_def)

(* aexit *)

apply (simp add: s_aexit_def s_kill_def Let_def)

done

declare S_SCRX_def [simp del]

declare S_SCRY_def [simp del]

declare S_SCRXY_def [simp del]

Returning results to user applications (s_send_list) does not move the
cursor beyond S_SCRX*S_SCRY.

lemma s_send_list_tpos_in_bounds [rule_format]:

"∀ s t. (s_tpos ((s_termdb s) t)) ≤ (S_SCRX*S_SCRY) −→
s_tpos (s_termdb (s_send_list s xs) t) ≤ S_SCRX * S_SCRY"

apply (induct_tac xs)

apply (simp)

apply (simp)

apply (intro allI)

apply (rule impI)

apply (simp add: s_send_def)

apply (simp add: split_def)

apply (simp add: Let_def)

done

Handling an SOS call (s_syscall_sos) does not move the cursor beyond
S_SCRX*S_SCRY.

lemma s_syscall_sos_tpos_in_bounds:

"[[(s_tpos ((s_termdb s) t)) ≤ (S_SCRX*S_SCRY)]] =⇒
(s_tpos ((s_termdb (fst(s_syscall_sos s p sc rights_snd hn_add))) t))

≤ (S_SCRX*S_SCRY)"

apply (simp add: s_syscall_sos_def)

apply (simp add: Let_def)

apply (simp add: split_def)

apply (rule s_send_list_tpos_in_bounds)

apply (rule s_dispatch_sc_tpos_in_bounds)

apply (simp add: s_receive_def)

apply (simp add: Let_def)

done

Handling a kernel call (s_syscall_vc) does not move the cursor beyond
S_SCRX*S_SCRY.

lemma s_syscall_vc_tpos_equal:

"(s,p,s’) ∈ s_syscall_vc =⇒
(s_tpos ((s_termdb s’) t))=(s_tpos ((s_termdb s) t))"

apply (simp add: s_syscall_vc_def)
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apply (simp add: ∆vc_def)

apply (simp add: Let_def)

apply (simp add: s_lower_def)

apply (simp add: Let_def)

apply (simp add: s_lift_def)

apply (erule exE)

apply (simp)

done

Neither SOS call nor kernel call move the cursor beyond S_SCRX*S_SCRY

(s_syscall).

lemma s_syscall_tpos_in_bounds:

"[[(s_tpos ((s_termdb s) t)) ≤ (S_SCRX*S_SCRY);

(s,p,s’,output) ∈ s_syscall]] =⇒
(s_tpos ((s_termdb s’) t)) ≤ (S_SCRX*S_SCRY)"

apply (simp add: s_syscall_def)

apply (case_tac "ωproc_sos s p")

apply (simp)

apply (drule_tac f=fst in arg_cong)

apply (simp)

apply (simp add: s_syscall_sos_tpos_in_bounds)

apply (simp)

apply (auto)

apply (simp add: s_syscall_vc_tpos_equal)

done

None of the event handlers moves the cursor beyond S_SCRX*S_SCRY (if called
by s_dispatch_event).

lemma s_dispatch_event_tpos_in_bounds:

"[[(s_tpos ((s_termdb s) t)) ≤ (S_SCRX*S_SCRY)]] =⇒
(s_tpos ((s_termdb (fst(s_dispatch_event s a))) t)) ≤ (S_SCRX*S_SCRY)"

apply (simp (no_asm) add: s_dispatch_event_def)

apply (split s_Σ.split)

apply (rule conjI)

(* event tkbd *)

apply (simp add: Let_def)

apply (rule impI)

apply (rule allI)

apply (rule impI)

apply (simp add: s_event_tkbd_def)

apply (rule conjI)

apply (auto)

apply (simp add: split_def)

apply (rule conjI)

apply (rule impI)

apply (simp add: Let_def)

apply (intro impI)

apply (simp)

apply (rule impI)

apply (simp add: Let_def)

apply (rule impI)

apply (simp)

apply (simp add: Let_def)
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apply (simp add: split_def)

apply (rule impI)

apply (simp)

apply (split s_npT.split)

apply (auto)

(* event sreq *)

apply (simp add: s_event_sreq_def)

apply (simp add: Let_def)

(* event sready *)

apply (simp add: s_event_sready_def)

apply (simp add: Let_def)

(* event sdata *)

apply (simp add: s_event_sdata_def)

apply (simp add: Let_def)

(* event sack *)

apply (simp add: s_event_sack_def)

apply (simp add: Let_def)

(* event sclose *)

apply (simp add: s_event_sclose_def)

apply (simp add: Let_def)

done

s_∆ keeps the cursor within 0 and S_SCRX*S_SCRY.

theorem s_∆_tpos_in_bounds:

"[[ 0≤(s_tpos ((s_termdb s) t));

(s_tpos ((s_termdb s) t))≤(S_SCRX*S_SCRY);
(s,inp,s’,outp) ∈ s_∆ ]] =⇒

0≤(s_tpos ((s_termdb s) t))

∧(s_tpos ((s_termdb s’) t)) ≤ (S_SCRX*S_SCRY)"

apply (simp add: s_∆_def)

apply (auto)

apply (simp add: s_syscall_tpos_in_bounds)

apply (simp add: s_input_def)

apply (simp add: Let_def)

apply (simp add: split_def)

apply (rule s_send_list_tpos_in_bounds)

apply (simp add: s_dispatch_event_tpos_in_bounds)

apply (simp add: s_syscall_vc_tpos_equal)

done

declare s_app_tup_def [simp del]

declare s_app_the_tid_def [simp del]

declare s_is_app_tno_def [simp del]

declare s_file_up_def [simp del]

declare s_socketdb_up_def [simp del]

end
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