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Abstract. Unsupervised learning of eye-hand-coordination is an interesting problem for two
very different reasons. First, it ia an important step in the hurmnan cognitive development. Second,
when applied to a real-world set-up as we do here, it has an application potential. Demonstrating
its potential on this concrete task, we present a novel approach to unsupervised learning, the so-
called stimulus-response-tearning or short SRL. It features an on-line evolution of simple reactive
rules stored in a dynamic directed graph, such that both reactive behavior and a word-model are
learhed in parallel. The graph is somewhere similar to belief-networks as it represents potential
cansecutive activation of rules, hence allowing a simple inference of future states of the environment
in dependence of possible actions of the system. But the unsupervised learning of both rules and
the graph are not based on a bayesian or any refated learning technique, but on a novel type of
on-line evolution. Unlike common evolutionary techniques, the Gtness function in this algorithm
is independent of the taslk as it is based on general statistical’ measures. :
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1. Introduction

During the last decade, robots have been strongly promoted as experimental plat-

forms for AT research. Especiaily the bottom-up approach to investigate simple
. animal-like Tobots or animats [26] and %o stepwise increase their complexity was

and still is very popular within this line of work. Reactive controllers as fast, direct

couplings between sensors and motors have dominated this field, mainly motivated

by Brooks’ well-known critique on “classical” Al [3, 4], When it comes to research

on learning robots (see e.g. [1] for an overview), the exploitation of task-dependent

reinforcement or even explicit information from a teacher is the most common ap-

proach. ' o . . _

We likewise strongly belief that a constructive understanding of intelligence has

- to be grounded in a physical body interacting with an environment,-or to {ab)use
an ancient Roman slogan: “mens sana in copore sano”, stating that a sane mind
needs a sane body. But though following the “artificial life route to arfificial intel-
ligence” [22], we also belief that world-models and inference can not be neglected
in the long run when trying to understand higher-level intelligence up to cognition.
Furthermore, we strongly belief that intelligence is a continuous process, which is -
mainly based on an unsupervised acquisition of kmowledge.

This acquisition or learning process is unsupervised in a strong sense, i.e., it is
a general extraction of structure from data without neither any reinforcement or
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any explicit information from a teacher nor an a priory bias on how this knowledge
will be used. This even includes the absence of innate reinforcement mechanisms
like basic drives in the form of e.g. pain, hunger, and so on. Of course, when using
the knowledge learned, basic drives and other forms of bias do play a role and they
"influence partially which knowledge is kept in the long run. But primarily, thig
process is a life-long construction and up-dating of a so-to-say general theory of the
world in the spirit of [20], without necessarily regarding if or how this knowledge is
used in the sense that'there is no a priori focus of inference on the knowledge.
This view is partially supported by psychological experiments indicating that
even animals with simple non-human intelligence are capable of an unsupervised
construction of world-models. Seward reports for example in [24] that rats learn
the stricture of a maze without reinforcement. '
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Figure I. Qur view on “intelligence” as a continuous process boot-strapped by an unsupervised
‘acquisition of knowledge as a general and dynamic “theory of the world”. This acquisition or
learning process is unsupervised in a strong sense as it is independent from any external or innate
_reinforcemnent or any explicit information from a teacher. It is even not related to the fact if or
how this Iknowledge is used in the sense that there is no a priori focus of inference. Basic drives
and other forms of bias depending on the task/environment come only later on into play, using
the acquired knowledge and partially influencing which knowledge is kept in the long run.

" The rest of this article is structured as follows. In section 2, the basic condepts of
SRL are defined and motivated. Section 3 introduces the set-up for learning eye-
hand-coordination, which is then used for concrete examples to further illustrate
the principles of SRL. Related research, especially work by Drescher, is discussed in
section 4. Results with SRL are presented, which significantly out-perform this pre-
vious worlk. In section 5, further results are presented from simulated and real-world
set-ups. Varying problem-sizes are used for a rough analysis of SRL’s computational
behavior. Section 6 concludes the article-and sketches potential future work.,

.



UNSUPERVISED LEARNING OF EYE-HAND-COORDINATION ; ‘ 3

2. Stimulus Response Learning
2.1. Overview

Stimulus response learning is an attempt towards bridging the gap between reactive
control and world-modeling. It permits animats to explore and internally model an
environment by means of unsupervised learning. The basic elements of this world-
madel are reactive in the sense that they establish a close link between sensor-data
and motor-activations. But they do not form a strict must-do-control. Instead,
fhey supply the system with a can—do-lmowledge as they allow a simple form of .
inference.

The central data structure of the world- model used in SRL is a dynamic d1~
rected graph, which is called the m-net as motivated later on. Its nodes are simple
rules for behavioral-control, the so-called stimulus response rules (SRRs), which are
composed of predicates and actions. In its simplest form such a rule is a classifier
[14, 13], i.e., it has the form c/a, representing that action @ can be performed if
condition c‘holds. Ferforming a When ¢ holds is called ezecution of the rule. In
addition to its “control-character”, a rule is seen as a prediction, namely that the
world changes (in respect to sensor-data) due to execution of the rule. In a more
elaborated version, SRRs resemble schemas [8], having a result r describing the
sensor-data after execution, .

A directed edge between two rules represents a possible consecutive execution of
the rules. Looking at.a path in the m-net therefore allows to anticipate the fu-
ture consequences of actions. An m-net is learned by a novel type of evolutionary
algorithm where the fitness of rules and edges is measured by two simple, purely
statistical quality measures namely reliability and applicability. Reliability is the
relative number of times the prediction associated with a rule or edge holds. Ap-
plicability is the number of times an edge or rule i3 actually used. Note that no
reinforcement is used in this framework. The system maintains solely relations
between sensor-data and motor-activations in the m-net which have sufficient sta-
tistical support from iterated “experiences”. ‘ :

By building up a directed graph, the system constructs a spatial — but in general
not Euclidean — model of the world. In the graph we keep track of the SRR
executed last. This SRR is called the stendpoini. Tt models the system’s current
position in the world. It is introduced for two reasons. First, simple inference of
future environment states, which can be used for planning, reduces to a search of

" paths from the standpoint to an SRR with a desired property. Second, continuous
processing of the whole knowledge learnéd so far is avoided.

The underlying evolutionary algorithm uses in each learning-step rules and edges
that .are connected to the standpoint, i.e., the standpoints’ neighborhood in the
graph theoretic sense. In a large m-net this greatly reduces the complexity of

- learning steps and captures the following intuition: if we want to explain a new
phenomenon at some place in the world (modeled by the standpoint in the m-net),
then we expect existing knowledge about that part of the world (the nelghborhood
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1. Introduction

During the last decade, robots have been strongly promoted as experimental plat-
forms for AT research. Especially the bottom-up approach to investigate simple
animal-like robots or animats [26} and to stepwise increase their complexity was
and still is very popular within this line of work. Reactive controllers as fast, direct
couplings between sensors and motors have dominated this field, mainly motivated
by Brooks’ well-known critique on “classical” AT [3, 4] When it comes to research
on learning robots (see e.g. [1] for an overview), the exploitation of task-dependent
reinforcement or even explicit information from a teacher is the most common ap-
" proach. ' : :
We likewise strongly belief that a constructive understanding of intelligence has
" to be grounded in a physical body interacting with an environment, or to (ab)use
an ancient Roman slogan: “mens sana in copore sano”, stating that a sane mind
needs a sane body. But though following the “artificial life route to artificial intel-
ligence” [22], we also belief that world-models and inference can not be neglected
in the long run when trying to understand higher-level intelligence up to cognition.
Furthermore, we strongly belief that intelligence is a continuous process, which is .
mainly based on an unsupervised acquisition of knowledge.

This acquisition or learning process is unsupervised in a strong sense, ie., it is
a general extraction of structure from data without neither any reinforcement, or
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any explicit information from a teacher nor an a priory bias on how this knowledge
‘will be used. This even includes the absence of innate reinforcement mechanisms
like basic drives in the form of e.g. pain, hunger, and so-on. Of course, when using
the knowledge learned, basic drives and other forms of bias do play a role and they
“influence partially which knowledge is kept in the long run. But primarily, this
process is a life-long construction and up-dating of a so-to-say general theory of the
world in the spirit of [20}, without necessarily regarding if or how this knowledge is
used in the sense that'there is no a priori focus of inference on the knowledge.
This view is partially supported by psychological experiments indicating that-
even animals with simple non-human intelligence are capable of an unsupervised
construction of world-models. Seward reports for example in [24] that rats learn
the structure of a maze without reinforcement.
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Figure !. Our view on “intelligence™ as a continuous process boot-strapped by an unsupervised
acquisition of knowledge a8 a general and dynamic “theory of the world”. This acquisition or
learning process is unsupervised in a strong sense as it is independent from any external or inrate
- reinforcement or any explicit information from a teacher. It is even not related to the fact if or
how this knowledge is used in the sense that there is ne a priori focus of inference. Basic drives
and other forms of bias depending on the task/environment come only later on into play, using
the acquired knowledge and partially infleencing which knowledge is kept in the long run.

The reat of this article is structured as follows. In section 2, the basic. concepts of
SRL are defined and motivated. Section 3 introduces the set-up for learning eye-
hand-coordination, which is then used for concrete examples to further illustrate
the principles.of SRL. Related research, especially work by Drescher, is discussed in
section 4. Results with SRL are presented, which significantly out-perform this pre-
vious work. In section 5§, further results are presented from simulated and real-world
set-ups. Varying problem-sizes are used for a rough analysis of SRL’s computational
behavior. Section 6 concludes the article and sketches potential future work.
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2. ' Stimulus Response Learning
2.1. Overview

Stimulus response learning is an attempt towards bridging the gap between reactive
control and world-modeling. - It permits animats to explore and internally model an
environment by means of unsupervised learning. The basic elements of this world-
model are reactive in the sense that they establish a close link between sensor-data
and motor-activations. But they do not form a strict musi-do-control. Instead,
they supply the system with a can—do-lmowledge as they allow a simple form of
inference.

The central data structuré of the world-model used in SRL is a dynamic dl—
rected graph, which is called the m-net as motivated later on. Its nodes are simple
rules for behavioral-control, the so-called stimulus response rules (SRRs), which are
composed of predicates and actions. In its simplest form such a rule is a classifier
[14, 13}, ie., it has the form ¢/a, representing that action a can be performed if
condition ¢ holds. Performing a when ¢ holds is called ewecution of the rule. In
addition to its “control-character”, a rule is seen as a prediction, namely that ‘the
world changes (in respect to sensor-data) due to execution of the rule. In a more
elaborated version, SRRs resemble schemas [8], having a result r describing the
sensor-data after execution,

A directed edge between two rules represents a possible consecutive execution of
the rules. Looking at a path in the m-net therefore allows to anticipate the fu-
ture consequences of actions. An me-net is learned by a novel type of evolutionary
algorithm where the fitness of rules and edges is measured by two simple, purely
statistical quality measures, namely reliability and applicability. Beliability is the
relative number of times the prediction associated with a rule or edge holds. Ap-
plicability is the number of times an edge or rule is actually used. Note that no
reinforcement is used in this framework. The system maintains solely relations
between sensor-data and m'otor-activation% in the m-net which have sufficient sta- -
tistical support from iterated “experiences”. .

By building up a directed graph, the system constructs a spatial — but in general
not ‘Buclidean — model of the world. In the graph we keep track of the SRR
executed last. ‘This SRR is called the stendpoini. It models the system’s current
position in the world. It is introduced for two reasons. First, simple inference of
future environment states, which can be used for planning, reduces to a search of

" paths from the standpoint to an SRR with a desired property. Second, continuous
processing of the. whole knowledge learned so far is avoided.

The underlying evolutionary algorithm uses in each learning-step rules and edges
that are connected to the standpoint, i.e., the standpoints’ neighborhood in the
graph theoretic sense. In a large m-net this greatly reduces the complexity of

. learning steps and captures the following intuition: if we want to explain a new
phenomenon at some place in the world (modeled by the standpoint in the m-net),
then we expect existing knowledge about that part of the world (the neighborhood
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of the standpoint) to be more useful than existing lmowledge about remote parts
of the world

2.2. The M-Net as Controller and World—Mddél

~As mentioned before, we are interested in a constructive understanding of intelli-
gence by investigating animal-like robots or animats, starting with simple systems
and step-wise incrementing their complexity. Within Al there has been and to some
extent still is a big debate about re-active versus model-based approaches. Instead
of engaging in yet another discussion, we simply denote here any kind of software
which helps the animat to get along in its environment as an animat-"mind”, let it
be reactive or model-based- or both. ‘
Within SRI,; the animat-"mind” is based on a dynarmc directed graph hence
called the “mind”-net or short the m-net. The hodes are as mentioned before
the so-called stimulus response rules (SRR). Concretely, the concept of an SRR,
captures following three types of rule: a slightly extended version of the condition
action rule CAR of classifier systems [13], the schema as used by Gary L. Drescher
[8], and the TOTE. The TOTE was introduced as psychological concept by George
Miller, Eugene Galanter and Karl Pribam in [10] and has, as far as we lcnow, not
_yet been used in AL :
The basic elements of SRRs are tests and actions. A test {'is a predicaﬁ:e on
sensor-states represented by so-called semsor-channels. Actions activates effectors
via motor-chennels. The set of tests is denoted with 7 and the set of actions is
denoted with .A.

o A CARisapair ¢/a € T x A It is the most simple SRR .consisf;mg of a test ¢;
the so-called condition, and an actzon . If the condition holds, the aciion can
be executed.

e A schemais atriple c/a/r € T x Ax T. It is a CAR extended by a test 7, the
so-called result. The result is supposed to represent the state of the envuonment
after execution of action a.

e. A TOTEis a quadruple ¢/e/f/r € T x Ax T xT. The letiters TOTE are
an abbreviation for test;, operate, tests, exit. A TOTE is an extension of a
schema, where test; corresponds to the condition, the operate corresponds to
the action and the exit corresponds to the result. The action of a TOTE is
repeatedly executed until testy, the so-called feedback holds.

For an SRR s we use ¢(s), a(s), f(s) and r(s) to denote condition, action, feedback
and result of s.

Assume ty,qe i a test which is always fulfilled. The CAR c/a corresponds to the
schema c/a/tirue and the schema c/a/r corresponds to the TOTE ¢/a/tiue/r with
the above semantics. Therefore, the set S of SRRs is the set of TOTEs containing
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Figuré 2. The TOTE as the most genera.l S$RKE. When the condition holds, the rule can be
activated, i.e., the action is repeatedly execuied until the feedback becomes true. The result of
the rule represents the change of the environment after activation of the rule. Known approaches
to rules, na.mely achemas and CARs of classifier-systema are a subset of this type of rule.

unphmtly schemas and CARs. Flgure 2 shows the workmg principle of a TOTE as
most general form of SRAR.

TOTEs are like do-until loops; their execution only terminates when the feedback
turns true. In order to prevent the system from getting stuck, the execution of a
TOTE is aborted if the action is repeated more than a fixed reppax times.

A m-netis a trlple (V, E, sp) where (V, E) is a directed graph V is a set of SRRs’
and sp € V is a node called the standpoint. An edge (51,52) € E between two SRRs
represents a possible consecutive execution of s; and ss. It is tempting to include in
E all edges (s1,52) such that the result r(s;) logically implies the condition c(s2).
But for practical purposes this does not work: if the set 7 of tests is sufficiently
powerful, then the question whether r(s1) = ¢(s2) quiclly becomes NP-hard or
even undecidable. Alternatively, one can severely restrict the set 7~ of tests. This
is the route taken by Drescher ([8], see also section 4 on related worl). There, tests -
are characterized by monomials. This makes the decision r(s1) = (52} trwlal
but tests cannot be negated. Most of the effort in [8] is spent Strugglmg with the
consequences of this.

We chose an extremely smlple and brute force way out of this dilemma Wth.h is
purely based on statistics. One way would be to keep track of how often ¢(ss) holds
in situations where (s ) holds, but this would require to update statistics about all
SRRs in the graph all the time. A faster way is to count how often e(s2) holds after
execution of 5;. Thus, implication is based on simple statistics and may of course
‘be unreliable. Inferences on the m-net are far less powerful than in logic-based or
common probabilistic approaches, but they are computationally inexpensive and
simple. They can be learned and executed in a very fast manner, and they allow -
~ anticipation and planning capabilities for the animat, which are far beyond simple
reactive behavior.
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2.3. The Statistical Measures

The statistical measures for the quality of rules and edges are based on the fact, that
both an SRR s and an edge (s1, 52) Tepreseit assumptions. It is easy to test these
assumptions by executing the SRR s or by trying to execute s; if the standpoint is
;. Thus, if the assumption holds very often, then we will consider the SRR, or the
" edge to be very relionble. Furthermdre, if the assumption is often used then we will
consider the SRR or the edge to be very applicable. '
Concretely, the execution of an SRR s is called successful iff after the executlon

1. the condition ¢(s) does not hold, i.e., the actlon a{s) has chzmged the percewed.
state of the enwronment and

2. the feedback f(s) became true before the action a was repeated more than
Te€Pmax times, and

3. the result r(s) holds.

Note that for a schema condition two and for a CAR condltmns two and three are
always fulfilled. Also note that in the common usage of CARs in classifier-systems,
it is usually not explicitly required that the action changes the state of the world
as perceived by the condition. :

SRL proceeds in iterated time steps t. We denote by mnet, = (Vi, By, sp;) the .
m-net after time step £. An edge e = (51, 52) is tfraversed in time-step t iff sy is
executed in time-step . This implies that the standpoint changes from s; to sq
during time-step ¢. The (traversal of the) edge is successful iff the execution of s,
is successful.

The reliability rel() of an SRR s, respectively edge e is defined as

number of successful executions of s (or e)
number of executions of s (or €)

rel(s (or ) =

Let the lifetime of s {or €) denote the number of time steps of the system since
creation of s, respectively e. The applicability a,pp() of an SRR s, respectively edge
e i3 defined as

number of executions of s (or e)
lifetime of s (or e)

app(s (Or e)) =
The score sco) of a SRR s, respectlvely edge e is defined as the product of
reliability and applicability: .

number of successful executions of s (or e)
lifetime of s (or €}

. sco(s (or e)) =

Let #V; and #5,; denote the number of SRRs-respecti\}ely edges in the present,
m-net. An SRR s, respectively edge e is considered to be a bad representation and
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'it is therefore removed from the m-net iff its score falls below a threshold tremove
with: ) . ‘
i’ =0.3: 1
rem.a'ue - #W( or #Et)
The threshold #.emeve can be motivated as follows. A useful SRR or edge should
have a reliability close to One. Furthermore, exactly one SRR and edge is executed
in one time-step by the system. So a “normal” SRR or edge is executed on average

every # Vi, respectively #E; time-steps. The empirically found constant 0 3 iz used
to weaken the condition for removing an SRR or edge.

2.4. Learning an M-Net _
The systém starts at time ¢t = 0 with an empty graph (14, £y) and an undefined
standpoint. In every following time step, the system randomly chooses between

° a training step using the current m-net
e creation of a new edge
+ creation of a new SRR

Let Ny = {s € Vi|(spz,s) € E;} denote the set of SRRs reachable in mnet; from -
the standpoint by a single edge, i.e., the immediate neighborhood of the standpoint
in the graph theorefic sense. A training-step on the current mnet; is done by
selecting an SRR 5 € N, with fulfilled condition c(s). If such an SRR s exists, it
is executed and the standpoint is set on s. Thus trammg is one way to upda.te the |
scores of SRRs and edges.

The creation of a new edge is done as follows. An SRR s € Vi \ Ny is searched,
such that its condition c(s) holds. If the search is successful, the edge {sp;,s) from
the standpeint to s is included in Eyqq, the SRR s is executed and the standpoint
is set on 5. - )

The creation of a new SRR is done via a novel type of on-line evolution.. In the
four standard classes of evolutionary computation, namely genetic algorithms [13,
11], genetic programming [16, 17], evolutionary strategies [21, 23] and evolutionary
programming [9], the fitness-function as a crucial element of the concrete algorithms
is task-dependent and has to be carefully designed. In SRI. in contrast, the fitness of
elements in the evolutionary process is defined via the general statistical measures
for rules and edges. -

Concretely, the basic elements for a new rule i.e., tests and action, are created
by an evolutionary process, which operates on basic elements of rules in the current
neighborhood of the standpoint. The fitness of the basic elements is simply based
on the scores of their rules. So, the fitness-function is general in the sense that it
is defined in respect to the task of world-modeling in general and that there is no
adaption needed to {it the animat’s concrete environment.
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2.5, Creating Tests and Actions

Asgsume the animat has n, sensor- and n,, motor-channels, each of which can take
at time step ¢ a single specific value from a finite set M, of sensor- and a finite set
. M of motor-values. Tests and actions are defined via vectors, which can contain
sensor- and respectively motor-values as well as the wild-card symbol ‘#°.

A vector vm[l : ny] with ng, entries from M, U {*} represents an action as
Tollows:, '

e . If the entry at place i is a legal motor value, i.6., v,,[i] € M, for i € {1, U T
then this value vnfi] is sent to the according motor channel, - :

e otherwise, i.e., if 'the entry vp[i] is a wildcard *+7, no value is sent to the motor-
_channel 4.

A vector u,[1 : ny] with n, entries from Mg U{*} represents a test as follows. The
predicate defined by v, is true if and only if for all places i € {1,...,n}

e the entry v.[7] is a wild-card “+", or -
o ‘w,[i] is equal to the current value of sensor-channel i.

Tests and action for a new SRR are created by one iteration of an on-line evolu-
tionary algorithm, The same algorithm is consecutively used to separately construct
the different basic elements of SRRs, i.e., conditions, actions, feedbacks, and results.
In doing so, their fitness is, as mentloned before, defined via the score of their SRR.
The algonthm or more premsely each of the up to four invocations of the algorithm
uses hasic elements from Ny as population 7.

The evolutionary algorithm uses following operators to create new tests:

Adaption produces & vector © which is a snapshot of the current ehvironment,'
i.e., vfi] = chfi] for all sensor—cha.-u.ne]s chli].

Mutation produces a new vector v from an emstlng one v by replacing an eutry
m v by a w11dca;rd at, a random place.

Crossover produces a new vector v. from two existing vectors v’ and v" by éopyin‘g
the head of v’ and the tail of v with respect to a random place 7, i.e. v[z] =v'[1]
for all i< j and ui] = []foralla>_7

The operators for the creation of new actions are exactly the same, except the
implementation of adaption. There, a vector v is created with randomly selected
motor-values. In addition, it is tested if v changes the currently perceived state of
the environment when v is sent to the motor-channels. If this is not the case, an
other vector is created in the same manner. '

Every time the system tries to create a new SRR s, the basic elements of s, i.e.,
the tests and action, are constructed with the above operators. In doing so, the
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probability to select a basic element from the population P as input of an operator
is proportional to the score of SRR from which the basic element is taken.

The likelihood with which an operator is used also depends on the scores of SRRs.
Let w,eores denote the sum of the scores of the SRRs in Vg, the neighborhood of the
standpoint. Note that N; can be empty, leading to an empty population P. Then,
only adaption can be used as mutation and crossover need a non empty population.
In this case, the corresponding probability probede, of using adaption must be One.
The probabilities probm.. of using mutation and probeyess of using crossover are
defined such that otherwise, i.e., when P # 0, their probabilities increaﬁé the more
and the better SRRs are in N;. Concretely, the probablhhes of using an operator

+ are defined as follows:

prob _ = Wseores
adep —
Wacares + Wadap
' Wheores
probuu = (]— - —““‘““"""'“""} T Wmaut

Wacores + Wadap

Wycores

Prabcross = (1 - - .
Wacores Wadap

) * Weross

‘The constant Wadap Weights the probabilify of using adaption against usage of
mutation or crossover. The constants wmys and weposs are used to weight the
probability of using mutation against crossover; they sum up to One. In all exper-
iments reported in this article, we used following settmgs Wadap = 0.5; Wyt =
) 02 wcruss—l 'i-"-)-n'ru.lﬁ—o8

Though some of these concepts resemble the common forms of evolumonary algo-
rithms, especially genetic algorithms (GA), there are some substantial differences:

e . The fitness-function is independent of the task in the sense that it is not adapted
" to the concrete animat or its environment, instead it is based on general statis-
tical scores.

e Initial populations in GA are purely random. Here, adaptmn boot-straps the
avolution with non-random), but usually much too spemﬁc tests as representatlon
of states of the environment.

e Mutation does not make a random charge on tests, but it increases their gen; ‘
erality by ignoring some information about the environment.

e Mutation and crossover do ot destroy their input when producmg a new test
or action.

e . The cardinality of the population is not fixed.



10 _ o o A. BIRK AND W.J, PAUL

2.6. In.f‘erenceron an M-Net

With a graph as world model, a simple form of inference on the m-net.is done ‘
via a path-search. The standpoint sp marks the system’s current position in the '
world. It is always set to the SRR executed last. Given a desirable state g of the
environment, the system can search the m-net for an SRR. s with a result r{s) which
is fulfilled on g. To achieve the goal g, the system can execute the SRRs along a
shortest path from the standpoint to.s. .Of course, it is also possible to search
paths from any SRR with a desired property; e.g. an SRR with a certain condition
¢ Tepresenting an environment staie, to any other SRR with a desired property.
Note that when this inference is used for planning, i:e., the SRRs along the path

" are actually executed to achieve a goal, the scores of these SRRs pet updated.

Therefore, the provision of goals and planning influences the further development
of the m-net. At this point, basic drives and other forms.of task-dependent bias
come into play, as they. are responsible for the “desire” to achieve a certain goal.
So, when the inference is followed by an execution of SRRs to achieve goals, the
scores of SRRs on paths that are used often are updated often. As a consequence,
_SRL refines the m-net in these regions, it so-to-say focuses on getting lmowledge
that helps to achieve the goals. At the same time, the unsupervised learning still
continues. So, despite the fact that for certain acquired lmowledge a “purpose” is
discovered, the system leeps on bmldmg a “general theory of the world” regardless
of its usage.

" Eye-Hand-Coordination as Example:
3.1. The Basic Set-Up

In this section, the basic concepts of SRL are described by examples based on unsu-
pervised learning of eye-hand-coordination. The concrete results from experiments
on this task are presented later on in section 5. .

Eye-hand-coordination is not a standard subject in the context of research on
animats, as normally mobile robots are preferred. We chose this task for two
reasons. I'irst, it 1S an interesting problem as it forms an important early stage in
the human cognitive development as reported by the Swiss psychologist Piaget [19].
Second, a real-world set-up with a robot-arm and vision formis a complex, but still’
somewhat controllable experimental framework. Infrastructural constraints are less
severe for this set-up, as for example space-requirements are rather small, energy-
supply is not a critical issue, and so on. Nevertheless, the set-up includes all the
basic problems of real-world perception and motor-control. :

Concretely, the experimental set-up consists of a robot ~arm and a camera as
illustrated in figure 3. Images from the camera are processed into a n % n grid
of averaged pixel values. These values are fed into a linear vector chil : n?] of
ns = n> sensor-channels. In doing so, there is no particular order on the sensor
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eye
with 25 channels

& < chnﬁnt;[ value = red
<= chamel value = hlack
" @D <> channel volue = biue

robot-arm
, (blsck)

touch =0 (hand reports no touch)

~touch =1 (hand reports touch)

background (black)

Figure 3. The basic set-up with a robot-arm and 25 vision-channels. The arm can move in the
plane and grip colored building-blocks. Starting from scratch, SRL evolves a network of rules
relating sensor values to possible actions and their consequences. Unlike common evolutionary
algorithms, the fitness function in this process is mdependent of the task as it is based on general
statistical measures. :

data, i.e., no information about the grid-structure is part of the representation of
the sensor-data. ‘

The camera is fixed approximately perpendicular to a black background without
any ca.hbiatwn or other positioning constraints. A blue building-block is sometimes
put o the hackground. A red robot-gripper, the so-called hand can move in the
four directions of the plane. Furthermore, the hand can grip the building block if
it is directly under the hand and carry it around. .

- Typical values for a serisor chamnel chfi](1 < i < n®) are therefore red, blue

or black. In our real-world experiments, each of the 8 colors used by the vision

can occur caused by reflexes, shadows, and so on. In addition, a sensor-channel

ch[n® + 1] is devoted to sensing touch. It reports the value 1 when the buﬂdmg—
* block is underneath the hand, otherwise it has the value 0.

The actions are based on a single motor-channel, which can take values to move
the hand in the four directions and to grip and ungrip. So, the set of actions is
= {north, south,west,east, grip, ungrip}. We also did experiments with two
motor-channels, one for movements and one for gripping. But as these two channels
“can not be activated in parallel in this set-up, the results are identical to experiments
. with a single channel. Notethat this is due to the semantics of the adaption operator
" for the creation of actions, which yields in the case of the two independent channels

to the action-vectors {north, ), (south, *), (west, %), (east, *), (+, grip), (*, ungrip).



12" C - . _ A. BIRK AND W._I. PAUL

'3.2. The Bye-Hand M-Net

The m-net representing. hand-movements with a 4 x 4 grid of vision-channels is
shown in figure 4. The following conventions are used:

A black frame is drawn around SRRs. Several edges are drawn fogether by one
symbol (figure §): n edges from a source-SRR sg to a set S = {s1,..., 5} of target-
SRRs are symbolized by a dotted box around S and one arrow leading from sg to
S. Actions are abbreviated by their first letter.

Let 4(z, y) be the sensor channel at position (z,y) of the grid. Following mnemon-
ics are used for a test vector v: ‘A{z,y) stands for

« ofifa,y) =red
o . v[i] ==+ for all other placea i.

Thus, A(z,y) stands for ‘hand (a.s red spot) at position (z,y)’. Note that the two
dimensional coordinates in this notation are only used for the convenience of the
reader. The system Just sees the sequence of sensor channels in some arbitrary but
fixed order.

The m-net for hand-movements plus taking, carrying and releasing a block con-
sists of two parts similar to the above “eye-hand-net”. One part is responsible for
movements of the empty hand. The other one is used for carrying a building-block
around. The two nets are interconnected by SRRs for proper taking and releasing
of the block, i.e., grip is only used if the block is under the hand, ungrip is only
. used if the block is held. So the SRRs of this m-net fall into the following groups:

o Movements of the empty hand
T = Alx, y)/nﬁrth/A(:z:,y +1)
—  A(w,y)/south/A(s,y —1)
—  A(z,y)/west/A(z - 1,y)
C— Az )/east/A(u: +1,9)

e Talking a building-block -
= Blay)/erip/Clz,y)
¢ Releasing a building-block
— Clz,y)/ungrip/Blz,y)
e Carrying a buildin-g-bloclc around -

- C(z,y)/torth/C{z, v + 1)‘
- Cz,y)/south/Clx,y — 1)
- C’(m,y}/wes#/()’.(a: -1,¥)
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Figure 4. An m-net representing hand-movements based on a 4 x 4—.gfid of vision-channels. A
detailed explahation can be found in the text. .

;_, C{z,y)/east/C(z + 1,y)

~where B(z,y) denotes the vector v testing whether the hand is at position (z,y)
and whether it feels a touch through the sensor channel n2 + 1, i.e.,

o ofi(o,p)] = red
o wn?+1]=1
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c/a'lf/rﬂ]-—-——ai clalflr

LFigure 5. Symbolization of several edges, each of them leading from the SRR sp to the SRRs 1
to 8y, in the dotted box.’ '

o ufi] =+ for all other places i

and C'(z,y) denotes the vector v testing whether the hand holds a block at position
(:81 y)! i‘e‘l ’ ) . )

e uli(z,y)] = blue
. .v[i] =+ for all other places i. |

Be again reminded that coordinates are used only in this mnemonic representation
for the convenience of the reader. Sensor channels and test vectors are linear, so
the grid structure of the vision is not “known” to the sysij,em. In ordér to learn the

" m-net described abaove, the system has to to discover this grid-structure.

Furthermore, the system has to solve an even more difficult task. It has to learn
that hand-movements are independent of the position of the block. Let us illustrate
the problem by describing the development of a proper SRR ¢ for a hand-movement.
Assume the hand is at position {2,1) and the block is at position (3,4) when s is
created with action west. If no SRRs have been created in similar situations before,
the condition ¢ and the result r of s are created via adaption. So c is a representation
of ‘red spot at (2,1), blue spot at (3,4} and the rest are black spots’. The result r.
is a representation of ‘red spot at (1,1); blue spot at (3,4) and the rest are black
spots’. - ' '

During the further run, the system creates copies of s with wild-cards in ¢ and
r due to the use of mutation and crossover. In doing so, the system finds out
what is essential for hand-movements. The red spot is important as SRRs have

" low relinbility if they ignore it. The blue and black spots are unimportant as SRRs
paying attention to them have low applicability. So, the SRR &' with condition “red
- spot at (2,1) and the rest does not matter”, action west and result “red spot at
{1,1) and the rest does not matter” will be the one getting a high score, and thus
. staying in the m-net as a proper representation of a hand-movement.

After the complete eye-hand m-net is learned, it can be used by the system for
planning via the simple inference mechanism based on a search of a shortest path
between rules in the net. It is for example possible to “tell” the system to move
the hand to a certain position, to grip a building-block, or to transport the block
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to a tertain position, by supplying an according vector v as goal. Of c'ourse,‘the
inference can already be tried while the system is still learning, i.e., while the eye-
hand m-net, is not yet complete and while it still contains a lot of “false” knowledge. ™
Then planning simply does not, always succeed,

4. Related Research and First Results

Learning Classifier Systems or short classifier -systems, introduced by Holland in
[13], are the within the field of evolutionary computation the approach which is
most similar to SRL. Classifier systems in general are described in some detail in
[15, 14, 11]." They &lready have been successfully used to learn several simple tasks
for animats, reported for example in [7, 6, 12, 5.

Though some of this work is quite impressive, it all relies on carefully designed,
task dependent fitness functions or even explicit information from a teacher. We
are in contrast interested in an unsupervised sdcquisition of an animat-“mind”. In
this respect, the worl of Drescher is the only directly related research up to our
Inowledge. He describes in [8] an approach, which is very close to SRL, at least in
respect to the basic motivations and intentions. '

—objectl‘
N e visual field
hand field
i ke
Dbject ] !
-'-(- Fea—
body - oy

Figure 6. The simulated world nsed by Gary L. Drescher.

As illustrated in figure 6, Drescher uses a simulated environment which is some-
what more complex than the one described in the previous section. The robot-hand
in his set-up and the center of & 5 x 5-grid of vision-channels can be placed on a
3 % 3-grid. So, hand- and eye-movements are possible. In addition, his environment
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features an extra, number, sdy 7 of mput nerves, Wthh are only used for specula-
tions and not to produce results. Furthermore, two objects are present, which move
occasionally. This eases their distinction from the background. -

Dréscher’s best run on a Thinking Machines CM2 (16K processors, 512 Mbyte
main memory) ended after one day with memory overflow. His system learned. .
approximately 70% of 2 world-model for eye-hand-coordination. A corresponding
world-model — including eye-movements and random signals on additional 5 extra
input nerves — is found with SRL in 25 seconds on a SUN Spare 10 completely :
The total amount of memory used is less than 250 Kbyte. .

We consider four peints to be the main reasons why we are able to outperform
Drescher’s system in such a significant way:

e Fitness functions. Drescher uses a complicated mechanism to rate the usefulness
of his rules. This mechanism requires a huge amount, of memory, approximately
32 Kbyte per rule. Our scores just need a few bytes per rule, because computa-
tion of applicability and reliability requires only two variables per rule, namely
the number of successful executions and the lifetime.

o Chaining. It is necessary to construct chains of rules which can be executed
consecutively. Drescher uses logical implication between predicates with a very
restricted set of tests and thien works hard to ‘embellish’ his mechanism. We
solve this problem by guick and easy statistical implication.

e Laocal learniﬁg. Most of our learning process takes place in a small subset of the
whole world-model, namely the neighborhood of the standpeint in the m-net.
. Drescher has to process all the rules learned so far. :

¢ Trying to change the perceived state of the environment. SRL creates only new
rules with actions affecting the tested senor-input. The condition must not be
fulfilled after execution of the action. This prevents the creation of rules like
tirue /G birue [tirue Where tiry, is the always fulfilled test and a s an arbitrary
action. Drescher’s system laclks such a mechanism,

Note that the first three items drastically affect the e Jmptotac runtnne of the
system as a function.of n,, i.e., the number of sensor channels.

5.  Further Results
5.1. Simulations

In addition to the experiments dealing with Drescher’s work, we did further research
with the simulated environment. An interesting aspect is of course SRI’s perfor- -
mance on a varying problem-size. In the Drescher-experiment from the previous
section, the hand can only be positioned on a 3 x 3-prid, leading to an accordingly
small m-net. By varying the size of the grid of vision-channels, which increments
" the number of possible, i.e., perceived hand-positions at the same time, it is possible
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to test SRL on different problem-sizes in respect to the number of sensor-channels.
Concretely, we did experiments with n x n grids of vision-channels, where n ranges
from 2 to 9. Note that the problem-size as number of sensor-channels n,, is quadratic
innasn, =n%+1

The search space in terms of possible SRRs and edges is exponential in the number

- of sensor-channels n, due to the combinatorial explosion of possible basic elements

for rules, i.e., tests and actions. The concrete numbers are shown in table 1 in the

columns ‘possible SRRs’ and ‘possible edges’. The number of SRRs and edges in

the desired m-net for eye-hand-coordination is in contrast quadratic in 7, i.e., linear

in the number of sensor-channels n;. The concrete numbers are showu in ta.ble 1
in the columns 'eye-hand SRRs’ and ‘eye-hand edges’.

Table 1 shows furthermore the run-times of SRL for the learning of a complete
m-net for proper hand-movements, grasping, and moving of building-blocks as de-
scribed in subsection 3.2. The experiments were run on a SGI Indy, a rather low-end
computer. The absolute time values given are averages of respec:tlvely five runs for
each n x n grid.

Table 1. Learning Hand-Movements and Grasping

gTid- posgible possible ) Eyé-hand eye-hand o-time

size SRRs edges SRRs | - edpges . him:s
2x2 3.0-10° : 1.5. 1011 24 : 72 0.7
Ix3 4.1.101 1.7-10% - 66 250 - 36
dxd 1.1.10%0 1.2.1p48 128 528 32.6
Ex35 9.6 . 1050 5.8 - 1062 ‘ 210 906 : { 1:53
"Bx6 1.5-10% 1.8.1088 312 ‘ 1384 5:04
TXT 6.0 - 1059 3.6.10118 434 1062 10:27
Bx8. 1.6 - 1058 2.6 -10136 576 2640 . d8:47

9x9 2.1-10%8 4.2 . 10196 738 : 3418 2:03:59

In each run, the systems succeeded in learning a complete and proper m-net.-
Figure 7 shows the run-times in terms of system-steps ¢ for different n % n grids.
They appear to be quadratic in n (left side), i.e., they appear to be linear in the
problem-size n, (right side). The absolute run- tune of a system-step ¢ — ¢+ 1
showed fo be rather constant within each particular learning experiment, This
observation can be explained by SRL’s local learning on a limited subset of the whole
m-net;, namely the neighborhood of the standpoint. Concretely, the absolute run-
time of a system-step is in the range of a few milli-seconds on low-end computers.
This is important as we are interested in using SRL for on-line learning, i.e., learning
tales place in real-time while an action is executed, on a.mmats ie.; on concrete
robotic devices. : :
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Figure 7. Runtimes of learning eye-hand-coordination with SRL on varying problem-sizes, i.e.,
with different n x n grids (lef side). Nate that the problem-size in terms of the number of sensor
channels ng 18 quadratic in n, therefore the run- mmes are also displayed in dependence of n, (right
side).

5.2. The Real-World Set-Up

In addition to the experiments with the simulated set-up, SRL was also tested
in real-world experiments with a camera and a COBRA robot-arm. A simple pre-
processor transfers the high-resolution camera images into data for the n x n vision-
channels. The image is partitioned in n? squares and color information is reduced
to tree bits, i.e., eight colors are possible. For each square the most frequent color
is determined and fed into the according sensor channel.

The run time of these expériments is clearly dominated by the speed of the robot-
arm. Compared with the simulated environment, the absolute Tun-time increases
by a factor of approximately 500. As mentioned before, the absolute run-time of
a learning-step is in the range of a few milli-seconds, so learning while performmg'
an action is obviously feasible. In all experiments with the real-world set-up, SRL
successfully dealt with noise and errors.

An additional interesting outcome of the real- world experiments is the usefulness
of the ‘feedback’ of TOTEs as SRRs. In the simulations, schemas with condition,
action, and result seemed to be sufficlent representations for SRRs. In simulations,
it is easy to let the hand “jump” from one field of the vision-grid to the next one.
In a real-world set-up this would require very careful calibration of the system,
- making a learning mechanism of very limited use. The feedback of TOTEs offers
an easy way out of this situation.

In the real-world set-up, an action a(s) of a SR.R s moves the ha.ud only a fractlon‘
‘of the lengih of a square of the vision preprocessor. If the feedback f(s) is the
negation of the condition <(s), then the calibration is not needed. Instead, it is
~ sufficient to set the constant repmag slightly higher than a rough upper bound‘ for
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the mumber of actions needed to move the hand from one feld of the vision grid to -
the next one. : .

situation A

5 N

4

3| wi -2 E

5

i 5 channel value
12345 = 'red’

. fgure 8. Using the ‘feedback’-test of TOTEs in the real-world set-up.

- The basic principle is illustrated in HBgure 8. It shows two situations where
.~ A(2,2) holds, because a part of the hand of sufficient size is in the correspond-,
ing square of the preprocessor. In situation A, the hand is in a southern part of
the square after execution of the TOTE “A(2,1)/N/notA(2,1)/A(2,2)". In sit-
uation B, the hand is in a “northern” part of the square after execution of the
TOTE “A(2,3)/5/not4(2,3)/A(2,2)". As shown in figure 8, the hand is moved
by the TOTE “A(2,2)/N/notA(2,2)/A(2,3)” to square (2, 3). In situation A, four
activations of the action north are needed, only two are sufficient in situation B.

6. Conclusion and Future ‘Work

In this article, stimulus response learning .or short SRL is presented. It allows
an embodied system or animat an unsupervised learning of the structure of its
environment. Fxperiences, as relations between arbitrary sensor and motor data,
are represented in a data-structure which consists of a dynamic directed graph,
the so-called m-net. The nodes of the m-net are simple rules for situated action
contral, the so-called stimulus response rules or short SRRs. An edge between two
rules represents possible consecutive execution of the rules." The rule executed last -
is called the standpoint. Its location in the m-net models the system’s current
(abstract) position in the world. A simple form of inference is done via a search of
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a shortest path between two SRRs with desired properties. This inference can be -

used for planning by executing rules along a path from the standpoint to a goal.

The basic elements of the rules are generated with an evolutionary algorithm.
This is done locally, i.e., in every time-step only a small portion of the world-
model learned so far-is processed to produce new rules. This process as well as
the evolution of edges is guided by the two simple measures, namely reliability
and applicability. Both measures are purely statistical and 1ndependent of the
environment,.

The experimental results presented deal with hand-eye-coordination, i.e., control
of a robot-gripper via a camera in a block world. One class of experiments is
done with a simulated environment in the spirit of Drescher [8]. Complete world
models are quickly found in situations were the original schema mechanism ran out
* of computational resources. This in a sense successfully completes the experiments

described in [8]. :

Further results from experiments in simulations and a réal—world set-up are pre-
sented. In these experiments, the problem-size is varied. Though the search-space
increases exponentially, the results with SRL are very encouraging.

The experiments described in this article deal with a single set-up. They are
complex, situated in’ the real world, and allow to demonstrate the potential of
simple planning. The next step is to use SRL in additional scenarios.

In the VUB Al-lab, autonomous mobile robots are situated in an artificial ecosys-
tem {25, 18], where they face concrete tasks. The robots have to autonomously
re-charge, they have to avoid physical damage, and so on. In [2] work is described
where the robots learn basic reactive behaviors including photo-taxis towards the
charging-station (which is marked by a white light}, obstacle-avoidance, etc. The
learning algorithm uses explicit reinforcement based on the energy-level of the robat.

The application of SRL within this framework bears 2 promising potential for
future research. Similar to the eye-hand-grid, a mobile robot can build up a kind
of “map” which dynamically relates “objects” (in terms of sensor-input) to motor-
activations through unsupervised leaining. ' .

Such -a world-model can significantly improve the performance of a robot. Take

for example the reactive behavior of photo-taxis towards the charging-station. Tt

is limited to a range of 1 to 2 meters around the charging-station where the white
light can be perceived by the sensors. Therefore, a “hungry” robot which is not
within this circle or has the wrong orientation has to perform a random-walk.
With a world-model this waste of energy could be avoided. Imstead, it would be
possible to infer a chain of actions that result in “being in the charging-station”,
an environment state which can be represented by a test on a sensor-channel for
in-flowing electrical current.
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