
Schemas and Genetic Programming

Andreas Birk∗ Wolfgang J. Paul†

final version:
Prerational Intelligence,
Adaptive Behavior and Intelligent Systems Without Symbols and Logic,
Ritter, Cruse, Dean (Eds.),
Volume II, Studies In Cognitive Systems 36, Kluwer, 2000

previously as:
Conf.proc. "Integration of Elementary Functions into Comp lex Behavior"
Ritter, Cruse, Dean (Eds.),
Zentrum f ür interdisziplin äre Forschung (ZiF)
Bielefeld, Germany, July, 1994

Abstract

With the help of schemas and genetic programming we describesystems which

• interact with the real world

• make theories about the consequences of their actions and

• dynamically adjust inductive bias.

We present experimental data related to learning geometricconcepts and mov-
ing a block in a microworld.

1 Introduction

To investigate the mechanisms which enable systems to learnis among the most
challenging of research activities. In computer science alone it is pursued by at
least three communities [Car90], [Nat91], [Rit91]. The overwhelming majority of
all studies treats situations with stronginductive bias, i.e. there is a fairly narrow
classH of algorithms and the concept or algorithm to be learned is knowna priori
to lie in that classH .

With the help of schemas in the sense of Drescher [Dre91] and genetic program-
ming [Koz92] we will describe here systems which

1. interact with the real world via effectors and sensors,

2. make theories about the consequences of their actions and

3. dynamically adjust inductive bias.

A typical example is a system equipped with a robot arm and a camera which
learns to ‘play’ with wooden blocks. The initial program of the systemdoes not
refer to cameras, arms or blocks. ‘Playing’ should involve looking at the blocks,
rotating them and eventually building towers. We will report experimental results
from a partial implementation.

The remainder of this paper is organized as follows. In section 2 we briefly
review genetic programming. We point out some relations to the work of Piaget

∗Vrije Universiteit Brussel, AI-Lab, Pleinlaan 2, 1050 Brussels, Belgium; cyrano@arti.vub.ac.be
†Universität des Saarlandes, Computer Science Department, Im Stadtwald, 66123 Saarbrücken, Ger-

many; wjp@cs.uni-sb.de

[Pia91] and Occam’s razor. In section 3 we briefly review the schema mechanism
from Drescher [Dre91]. In sections 4, 5 and 6 we modify this mechanism in three
crucial ways:

1. we change the mechanism by which schemas are chained

2. we treat a network of schemas as aspatial modelof the world. This permits us
to introduce astandpoint, which models the system’s own place in the world
and

3. we change the mechanisms for valuating knowledge.

In section 7 we report experimental results. The modified mechanism finds several
networks of schemas which were not or only partially found bythe original schema
mechanism. We also report times required to discover basic geometric shapes with
the help of genetic algorithms.

2 Genetic Programming

2.1 Definitions

Genetic Programming is a heuristic technique for searches in setsL of programs or
numbers which are large and poorly structured. In order to apply it one first defines
a so-calledfitness functionf : L → R and a setT of transformations, where each
transformationt ∈ T is a mappingt : L∗ → L, i.e. a transformation produces an
elementt(p1, . . . , pr) ∈ L from elementsp1, . . . , pr ∈ L.

The search then proceeds in iterations usually calledgenerations. In each gener-
ationi a subsetPi of L of a certain cardinalitys is generated. Such a subset is called
a populationand its elements are calledindividuals. Typically, the first population
is generated in a random fashion and elements in populationPi are generated by ap-
plying transformationst ∈ T to elementsp1, . . . , pr ∈ Pi−1 in a random fashion. In
this step individualspj ∈ Pi−1 with high fitness are chosen with higher probability
than individuals with low fitness.

If L is a set of programs, then typical transformations are

1. Mutation: the syntax tree of a single program inPi−1 is changed at a small
number of places in a random fashion.

2. Crossover: two subtrees are swapped between two syntax trees of programs
in Pi−1.

3. Hierarchy: a small new syntax tree is generated in a random fashion. Some
leaves of this tree are replaced by syntax trees of programs in Pi−1.

For populationsP ⊂ L we denote byT (P) the set of all elements ofL which
can be generated with a single transformation from elementsin P . In order to

2

motivate the use of genetic programming we show that severalobservations from
psychology can be interpreted in a rather natural way with the help of genetic algo-
rithms.

2.2 Relations to Piaget’s Work

Around the year 1900 the Swiss psychologist Piaget published his famous work
[Pia91] on child development. Piaget claimed that childrenacquire new skills in a
succession ofstagesand that a new stage can only be entered when the skills of the
previous stage have been mastered. A typical example is thatmovements learned in
stagei are repetitively executed in stagei + 1. Critics objected that the separation
between stages was not clean and that children occasionallydo learn skills from a
later stage before mastering all skills of the previous stage.

Around 1900 computers and programming languages did not exist. With these
concepts at hand it is tempting to rephrase Piaget’s claim asfollows: a stageis a
set of programs andstagei+1 ⊂ stagei ∪ T (stagei) for all i and an appropriate set
T of transformations. Learning the repetitive execution of amovement learned in
stagei then corresponds to the construction of a loop around a program from stage
i via the hierarchy transformation.

Let S be a set of programs which correspond to the skills observed by Piaget.
For programsp, p′ ∈ S we definep < p′ iff p′ is generated by a transformation
which usesp. Then the transitive closure<∗ of relation< is a partial order on
S which models in a very natural way the order in whichcertainskills have to be
acquired.

2.3 Building Theories

In the spirit of [Pau94] we view theories as programsq which reproduce dataD
from the real world. A theory is nontrivial if it is ‘simpler’than the data it describes.
A good example are the so-called intelligence tests like

D = 2, 3, 4, 6, 8, 12, 14, 18, 20, 24, . . .

The goal is to continue the series. This requires finding as ‘simple’ as possible a
programq, which reproduces the given data.

We consider two candidate solutions for the above example, namely

2, 3, 4, 6, 8, 12, 14, 18, 20, 24, 1, 1, 1, . . .

and
2, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38 . . .

In all common programming languagesL a programq which simply prints the above
dataD one by one and then outputs 1’s is considerably shorter than aprogram which
enumerates the prime numbers + 1. Nevertheless we prefer thesecond solution. This
illustrates two things:

3

1. The ‘Simplicity’ of solutionq is not simply measured by the length|q| of
programq alone.

2. There is apparently a setP ⊂ L of programs - corresponding to mathematical
concepts we are already familiar with - that we are allowed touse free of
charge. This subsetP defines the current inductive bias. Candidate solutions
are apparently sought in the setT (P) for some setT of transformations. With
hints like: ‘Think of prime numbers !’ the biasP can be narrowed. Because
of the combinatorics involved this in general dramaticallynarrowsT (P) and
accordingly solutions are found much faster.

Let LT be a programming language for specifying programs obtainedby trans-
formations inT , i.e. programs inLT take as input a setP of programs and produce
as output a program of the formt(p1, . . . , pr) with t ∈ T andpj ∈ P for all j. For
programst ∈ LT and setsP ⊂ L we denote byt(P) the output of programt started
with input P . This output is an element ofT (P). Then the building of theories
with inductive biasP can be formulated as an optimization problem: Find a trans-
formationt ∈ LT such that programt(P) reproduces the given dataD. Minimize
|t|!

This formal definition captures twosubjectiveaspects of ‘simplicity’: what we
consider simple depends on what we know (P) and how we generate new concepts
from old ones (LT).

2.4 Occam’s Razor

The condition ‘Minimize|t|!’ above is one possible formalization of Occam’s Ra-
zor.1 Without a formal model of how new theories are found there is no hope to
prove or disprove one or another version of a principle like Occam’s Razor. But if
we assume that theories are formed by searching a set of the form T (P), then we
can indeed derive the above form of Occam’s Razor from simpler principles:

If programming languagesL andLT are sufficiently rich, then there is no uni-
versally good strategy to search the setT (P) for anyprogram that reproduces data
D. In this case the fastest strategy is to try as many programs as possible as quickly
as possible. If the search is sequential, then short programs should be enumerated
before long ones. If the search is performed by parallel units which communicate
only after one of them has found a solution, then programs should be tried randomly,
but short programs should be tried with a higher probabilitythan long programs. In
any caseshort solutions tend to be found first. If we have found a long solution
and then are confronted with a short solution we tend to ask:‘Why didn’t I think of
this first ?. The criterion ‘Prefert over t′ if t is shorter thant′’ now immediately
follows from the simpler principle: ‘Prefer the solution which younormallywould
have found first’ or equivalently: ‘Prefer the solution which would be found first

1It ignores the run time of programs, but that is easily fixed: restrictT (P) to programs with short run
time.

4

most often, if several persons with the same education simultaneously tried to find
a solution’.

3 Schemas

In the spirit of microcomputer architecture we view our learning systems as a bus,
which is connected to the outside world via I/O-ports for sensor input and effector
output. Internally there is read-only memory containing the initial ‘native’ program,
one or more CPU’s and main memory in which aninternal data structureis built. At
each time this data structure is the system’s model of the world. The system works in
two modes: inpassivemode the system makes theories about the sensor input using
genetic programming. Inactivemode the system performs actions and models the
effect of its action using a kind of schema mechanism in the spirit of [Dre91]. A
third introspectivemode has not yet been implemented. In this mode the system
should make theories about the internal data structure. This permits planning, and
it is at least not completely implausible that the system at some point generates a
model of itself.

According to [Dre91] aschemais a triples = pre/action/post, where

• pre (precondition) andpost (postcondition) are programs which depend on
sensor input and compute predicates and

• action is an elementary or composite program which activates effectors.

The semantics of a schema is: Ifpre holds andaction is executed, then possibly
post holds; iff the postconditionpost holds the activation of the schema is called
successful. The reliability of schemas is defined as

rel(s) = #successful activations ofs/#activations ofs,

and the applicability of schemas is defined as

app(s) = #activations ofs/lifetime of s

where lifetime ofs is the number of steps2 the system has made since the schema
was generated; the#-sign should be read as ‘number of’.

4 Statistical Implication

One of the key operations that can be performed with schemas is chaining. If the
postconditionpost1 of schemas1 implies the preconditionpre2 of a second schema
s2 then we can chain the two schemas and obtain a schema

pre1/action1/post1 → pre2/action2/post2

2to be defined in section 5

5

with the obvious semantics: ifpre1 holds and actionsaction1 and action2 are
performed, then possiblypost2 holds. Of course one can build whole graphs of
schemas in this way. Such a graph is a spatial model of the world.

Determining when predicatepost1 implies predicatepre2 of course is not a
trivial matter. If we allow arbitrary computable predicates, the question is unde-
cidable. Even if we treat sensor inputs as boolean variablesand restrict predicates
to boolean formulae of these variables the question remainsNP-complete. The so-
lution in [Dre91] is to allow only monomials formed with suchvariables as predi-
cates. In this case ifpost1 impliespre2 iff pre2 is a submonomial ofpost2. Thus
a simple syntactic check decides, if two schemas can be chained. Unfortunately the
restriction to monomials turns out to be too severe, and in [Dre91] many technical
so-called ‘embellishments’ are necessary in order to partially fix this problem.

The easy way out is to allow unreliable edges between schemas. Thus we create
an edges1 → s2 if after activation of schemas1 the precondition of schemas2

holds.

5 Standpoint

Chaining permits building directed graphs of schemas, which are spatial - but in
general not Euclidean - models of the world. In this graph we introduce a pointer
to the schema which was executed last. This pointer is calledthe standpointand
models the system’s present position in the world.

The system works in steps in which it randomly chooses between

1. Creating knowledge by generating a new schema

2. Creating knowledge by generating a new edge

3. Testing created knowledge by activating a schema, chosenfrom the successor
schemas of the standpoint with fulfilled preconditions

An edgee = (s1, s2) is traversediff the standpoint changes froms1 to s2 in one
step by choosings2 for activation. A traversal is successful iff the activation of s2

is successful. The reliability of an edgee is defined as

rel(e) = #successful traversals throughe/#traversals throughe

An edgee = (s1, s2) is applicable iff the standpoint points tos1 and the precondi-
tion of s2 holds. The applicability ofe is defined as

app(e) = #Situations in whiche is applicable/lifetime of e

6

6 Quality and Boredom

Because the created knowledge will contain errors there is the need for a mechanism
to delete “bad” knowledge. The quality of a schemas is defined as

qual(s) = rel(s) ∗ app(s)

and the quality of an edgee is defined as

qual(e) = rel(e) ∗ app(e)

If the quality of a schema/edge is below a certain threshold called schema/edge-
death, then the schema/edge is deleted. The schema-death isdefined as

schema-death= c1/#schemas in the graph

and edge-death is defined as

edge-death= c2/#edges in the graph

wherec1, c2 are constants∈]0; 1]. Furthermore the Quality influences the ran-
dom selection of the next schema for activation. The probability of traversing
e = (s1, s2) and activatings2 is proportional toqual(e) ∗ qual(s2).

A cycle in the graph with high quality knowledge leads to a ”fidget-behavior”,
i.e. traversing the edges of the cycle and activating its schemas increase the qualities
of those edges and schemas which in turn increases the probability of staying in the
cycle. To prevent the system from getting stuck in such a cycle we introduce a
variable which measures how long ago the last new knowledge was generated. This
variable is calledboredom. If boredom is high the meaning of quality is turned
upside down, i.e. higher quality of the edgee = (s1, s2) and schemas2 leads to a
lower probability of traversinge and activatings2.

7 Experiments

So far, we have tested the techniques described above in three kinds of experiments.
Some of them are pure simulations, some use a real robot arm and camera.

7.1 Microworlds

The microworlds we have simulated are 2-dimensionaln × n-grids with a single
block and a robot hand in a black workspace. The block as well as the hand can
be at one of the positions(i, j) with i, j ∈ {1, . . . , n}. For each grid positioni, j
there is a sensorhand(i, j) which is active when the hand is at positioni, j as well
as a sensorblock(i, j) which is active if the block is at position(i, j). Moreover
there is a single sensorblockinhand. The logical negation of the precondition of a

7

schema is used as postcondition because the system should find out which actions
in which situations produce any changes. There are 4 elementary actionshand(d)
with d ∈ {N, S, E, W} for incrementally moving the hand one grid position to
the north, south, east or west. Moreover there are 2 elementary actionsgrasp and
ungrasp for grasping and releasing the block if it is at the position of the hand.

If the block is absent from the microworld the system learns hand-eye coordina-
tion by discovering schemas of the form

hand(i, j)/hand(N)/not(hand(i, j))

which are chained together in a grid like fashion. For the case n = 4 the resulting
graph is shown in figure 1.

In order to simplify the drawing schemas with identical preconditions are en-
closed in dotted rectangles, but the system does not use suchsyntactical information.
A edge drawn towards a rectangle symbolizes edges to all enclosed schemas. Fur-
thermorehand(i, j)/hand(d)/not(hand(i, j)) is abbreviatedi, j/d. The system
discovers this structure by a kind of random walk over ann×n-grid. Analyzing the
expected time for this walk is not easy, because explorationof new actions depends
on the variable boredom. Mean run times from 10 runs on an 20 MHz SPARCsta-
tion 1 are reported in table 1. If the block is present, then additional schemas of the
following flavor are found

hand(i, j) ∧ block(i, j) ∧ not(blockinhand)/grasp/not(precondition)

An complication arises, because it is a priori not clear thathand motion is indepen-
dent of the block. Thus schemas of the form

hand(i, j) ∧ block(k, l)/hand(d)/not(precondition)

are created. These schemas have high reliability. But as theblock is moved around
their applicability falls below that of the more general schemas which ignore the
block and they eventually die. Table 2 shows mean run times for 10 runs for this
simulation on a 40 MHz SPARCstation 10/51.

In [Dre91] a similar but somewhat richer microworld was simulated on a CM-
2 parallel machine for the casen = 5. There the simulation stopped after 1 day
because of memory overflow before the entire structure for hand-eye coordination
was found, and no schemas for grasping/ungrasping were discovered.

7.2 Interfacing to the Real World

The experiment with hand-eye coordination was repeated with a real robot arm and
a camera for the casen = 5. Preprocessors for the vision system and the robot con-
trol were written in such a way that the real system could interface to the learning
mechanism like the sensor inputs and actor outputs of the microworld. Not sur-
prisingly learning hand-eye coordination worked as expected. Run time was now
dominated by the speed of the robot arm and went up a factor of approximately 500.

8

1,1/O

1,1/N

1,2/S

1,2/O

1,2/N

1,4/O

1,4/S

1,3/N

1,3/O

1,3/S

2,4/O2,4/W

2,4/S

2,3/N

2,3/W 2,3/O

2,3/S

2,2/N

2,2/O2,2/W

2,2/S

2,1/N

2,1/O2,1/W

3,4/W 3,4/O

3,4/S

3,3/N

3,3/S

3,3/O3,3/W

3,2/N

3,2/S

3,2/O3,2/W

3,1/N

3,1/O3,1/W

4,4/W

4,4/S

4,3/N

4,3/W

4,3/S

4,2/N

4,2/W

4,2/S

4,1/N

4,1/W

Figure 1: The hand-eye coordination graph for the casen = 4

gridsize 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8
time 0.1 0.7 2.1 7.7 24.5 47.7 1:31.2

gridsize 9 × 9 10 × 10 11 × 11 12 × 12 13 × 13 14 × 14 15 × 15
time 2:55.1 5:37.1 11:0.5 18:16.5 29:42.4 43:29.2 1:07:46.0

Table 1: Run times (hh:mm:ss) to learn hand-eye coordination

gridsize 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9
time 0.2 0.9 6.8 22.6 54.7 1:41.3 6:55.9 13:35.5

Table 2: Run times (mm:ss) to learn hand-eye coordination including grasping

9

This experiments allowed to exercise the mechanism for getting rid of unreliable
edges. For example, holding an object with the shape of the robot hand at position
(x, y) under the camera while the real hand moved from position(i, j) created un-
desired edges like

hand(i, j)/hand(d)/not(hand(i, j)) → hand(x, y)/hand(d′)/not(hand(x, y)).

Subsequently these edges proved unreliable and died.

7.3 Discovering Geometric Shapes

The experiments reported so far grossly oversimplify the real world and hardly ex-
ercise the mechanism for genetic programming. The next stepis to get rid of much
of the preprocessing for the vision system and the robot control. For an experiment
with a black background, a red triangular robot hand and (nonreflecting) blocks
the preprocessor of the vision system only classifies each ofthe100 × 100 pixels
coming from the camera as having one of 16 colors.

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7

8
9

: move : line

: draw

 draw 75 1 redO

move 0 1 red

for i = 11 to 1 step - 2

end

{

}

 line 30 i redO

Figure 2: A program producing a red triangle

The system now tries in passive mode (see section 3) to find programs which de-
scribe the camera input. This is done with genetic programming and can be viewed
as a process of symbol creation. When a programp is used as conditioncond in a
schema,cond holds if and only if the output ofp equals the current camera input.

As the programming languageLp for describing preprocessed pictures we use
turtle graphics. This is a simple imperative programming language for drawing
pictures on ann × n-array of pixels. The specific instruction for drawing lineshas

10

the formdraw α l c. This command moves an imagined hand holding a pen with
color c from its current position on the array forl units in direction of angleα.
The instructionline α l c draws the same line asdraw α l c and then returns
the imagined hand to its original position. We use 72 anglesα. The instruction
move x y c puts the imagined hand on position(x, y) and assigns colorc to this
point. Loops can be done with afor command. For programsp ∈ L we denote by
a(p) the picture drawn by programp. Figure 2 shows an example program which
produces a red triangle as output.

We use the following functionD to measure the difference between two pixel
arraysa anda′:

D(a, a′) =
∑

c

d1(a, a′, c) + d2(a′, a, c)

d1(a, a′, c) =

∑
a[X]=c min{md(X, Y)|a′[Y] = c}

#c(a)

d2(a, a′, c) =
max{0, #c(a) − #c(a

′)}

#c(a)

where#c(a) = #{X |a[X] = c} anda[X] denotes the color of pixel arraya at
positionX = (x1, x2) andmd(X, Y) = |x1 − y1| + |x2 − y2| is the Manhattan-
distance between positionsX andY . D has two important properties. It is com-
putable fast in time linear in the number of pixels. And it hasexpressive gradients
with regard to translation, rotation and expansion of objects. More precisely, given
a picturea showing an object and a picturea′ showing the same object translated,
rotated or expanded. A decrease in the euclidean distance, the rotation angle or
expansion factor of the object ina′ with regard to its representation ina leads to a
decrease ofD(a, a′).

The task of the genetic programming in the passive mode can now be formulated
as the following optimization problem: Given the current camera input as a pixel
arraya. Find a programp which minimizesD(a, a(p)) + |p|. In the following
round of the active mode, programp can be used as condition in a newly created
schema.

The genetic programming proceeds in the following way: We use as the initial
populationP ⊂ Lp randomly generated programs and programs used as conditions
in schemas with high quality. PopulationPi is generated from populationPi−1 as
described in section 2.1 by using the transformationsreproduction, hill-climbing,
concandsplit. Reproductionpasses an individual fromPi−1 to Pi unaltered.Hill-
climbing randomly chooses a constant in a program and performs a hill-climbing-
step on it. In doing so the probability of stepping widthw is inversely proportional
to w. Concconcatenates two programs andsplit splits a program in two new ones
at a randomly chosen place. We presently do not use crossover.

11

The passive mode of system discovers various geometric figures [Bir96]. On
a 40MHz SPARCstation 10/51 using100 × 100 pixel arrays, population size 50,
a triangle is found on the average in 23 hours and a quadranglein 7 hours (both
in arbitrary form and orientation). Once the right program (but with the wrong
parameters) is in populationP , fitting parameters is for example done for a triangle
in 5 minutes and for a quadrangle in 4 minutes. These times indicate that once
the programs foronequadrangle, triangle etc. are found, then recognition ofany
rectangle, triangle etc. will be fast.

Experiments with the complete system, i.e. including active mode, confirm this
observation. The hand-eye coordination graph (see figure 1)for the casen = 5
was found e.g. in 36 hours when using a graphical simulation of the robot hand.
During this run a first schema of the grid was discovered afterapproximately 27
hours. Thereafter it took on average only 8:30 minutes to findeach of the 79 missing
schemas.

8 Conclusion and further Work

We described a very general kind of learning systems which simultaneously explore
and describe their environment. When they start out, they hardly have any a priori
knowledge at all. In these systems the basic units of knowledge are schemas in
the sense of [Dre91]. Technically we have modified Drescher’s original schema
mechanism in three ways:

1. Implication between predicates is purely statistical.

2. The introduction of a standpoint permits to interpret a network of schemas as
a spatial model of the environment.

3. Predicates are generated with the help of genetic programming. This is sup-
posed to open the way to process raw input from video cameras.

We have reported the results of computer simulations and of real experiments
which successfully exercised different parts of the system. In particular our system
discovered several networks of schemas which were not discovered by Drescher’s
original system, and it got rid of unreliable knowledge.

The obvious next steps are to integrate the whole system, runrobot arm and
camera with inputs coming directly from the vision system and see what happens.
The related experiments and results are described in [?].

References

[Bir95] Andreas Birk; Stimulus Response Lernen, ein neues Machine Learning
Paradigma; PhD thesis, Universität des Saarlandes, Saarbrücken, 1995

12

[Bir96] Andreas Birk; Learning Geometric Concepts with an Evolutionary Algo-
rithm; Proc. of The Fifth Annual Conference on EvolutionaryProgram-
ming; The MIT Press, Cambridge, 1996

[Car90] Jaime Carbonel [Ed.]; Machine Learning, Paradigmsand Methods; The
MIT Press, Cambridge, 1990

[Dre91] Gary L. Drescher; Made-up minds, A constructivist approach to artificial
intelligence; The MIT Press, Cambridge, 1991

[Koz92] John R. Koza; Genetic programming; The MIT Press, Cambridge, 1992

[Nat91] Balas K. Natarajan; Machine Learning, A theoretical approach; Morgan
Kaufmann, San Mateo, 1991

[Pau94] Wolfgang J. Paul, R. Solomonoff; Autonomous TheoryBuilding Systems;
Annals of Operations Research, Kluwer, 1995

[Pia91] Jean Piaget; Gesammelte Werke; Klett-Cotta, Stuttgart, 1991

[Rit91] Helge Ritter, Klaus Schulten, Thomas Martinetz; Neuronale Netze; Addi-
son Wesley, 1991

13

