
Reordering and Simulation
in Concurrent Systems

Dipl.-Ing. Christoph Baumann

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Institute for Computer Architecture und Parallel Computing
Department of Computer Science, Saarland University

September 19, 2012

TECHNICAL REPORT

Abstract

In this document we present intermediate results of our ongoing work
in the field of the formal specification and verification of concurrent sys-
tems with shared memory. In particular here we focus on the specification
of such systems and develop a generic framework to model their opera-
tional semantics. Every participant in the concurrent system is represented
by an abstract state machine that can be instantiated individually, e.g.,
with instruction set architectures, device descriptions or higher-level lan-
guage semantics. Machines of the system may access shared memory asyn-
chronously and additionally communicate with each other using Moore
and Mealy output signals. In order to justify the application of verification
techniques on a higher level we provide a concurrent simulation theorem
that allows transfering correctness properties to a lower-level specification
of the overall system. The simulation theorem is based on a reordering
theorem that reduces arbitrary system executions to orderly ones where
we interleave machines executing blocks of steps containing at most one
shared memory acccess. Memory safety is guaranteed by a simple owner-
ship policy which all participants must be proven to obey.

1

1 Introduction

There is no such thing as sequentiality. In fact, as far as we can tell, the whole
universe is inherently a parallel system. Galaxies, stars and planets are roam-
ing space in parallel, steering each other by gravity and “communicating” by
the emission and reflection of light. All lifeforms on Earth exist in parallel
and influence each other, e.g. by producing sound waves, performing mo-
tions or applying force. On the gate level of a processor signals change their
logical value in parallel and interact with each other through logic circuitry.
Every electron of an atom is revolving around the atomic core in parallel with
all other electrons. They are affecting each other by their electromagnetism.
On any level of abstraction processes in the real world are running concur-
rently. Nevertheless in computer science (and possibly elsewhere) we are usu-
ally modelling this kind of concurrency in a different way.

Firstly, we look at systems in an isolated way. We encapsulate a certain
number of components that make up the system we want to describe and sep-
arate it from its environment. The components can communicate with each
other via shared variables or messages. Communication with the environment
occurs only via defined input and output channels. Secondly, in case we do
not speak about lockstep parallel systems, we interleave the steps of individ-
ual components in some arbitrary order. Thus we assume the rest of the sys-
tem to pause during the step of one participant. What computer science has
in common with the examples above is that systems are described at a level of
detail that is appropriate to make meaningful statements about a system and
to predict its behaviour.

Following these three principles seems to make it easier for the human
mind to conceive the functionality of concurrent systems and to argue about
them. One must however not forget that all these abstractions have prerequi-
sites and rely on certain assumptions on lower-level properties of the system as
well as the environment. For instance it is a common assumption that the envi-
ronment does not interfere with the system via hidden channels. These include
also physical side-channels and we assume, for instance, that bits in our system
are not flipped due to electromagnetic radiation, or that the computer system
running programs we are examining is not being destroyed during execution.
A specification of a system is therefore only complete if one expresses also the
underlying assumptions on the behaviour of its environment. Moreover the
interleaving of component steps usually assumes some sequential consistent
shared memory, which is not provided by default in modern computer sys-
tems. Configuring caches and address translation in a proper way and using a
certain programming discipline are means to reduce caches, memory manage-
ment units and store buffers. To ensure sequential consistency of the shared
memory one additionally needs the absence of data races on shared variables.
Memory safety conditions must guarantee that atomic updates of shared mem-
ory stay atomic until the lowest layer of specification.

In general all abstractions we make should be justified. The best justifi-
cation we can have is a formal simulation proof between the abstract system
and its low-level implementation. This document provides (1) a framework to
model concurrent systems with shared memory and communication signals at
any level of abstraction (2) a simulation theorem to relate different abstraction
layers (3) a general order reduction theorem for concurrent systems that en-

2

ables applying the simulation theorem (4) verification conditions for memory
safety (5) a complete correctness proof of our approach including the afore-
mentioned theorems in paper and pencil mathematics.

1.1 Overview

As motivated above we want to look at asynchronous concurrent systems on
different layers of abstraction and connect these layers formally using simu-
lation relations, or refinement mappings respectively. This requires defining
formal semantics for every layer and we want to be able to do so in a uniform
manner. To this end we introduce a framework that allows to define instances
of what we call a Concurrent System with Shared Memory and Ownership, abbrevi-
ated by the acronym Cosmos. A Cosmos model consists essentially of a number
of infinite state machines which can be instantiated individually, and a shared
memory. What is special is additional specification components representing
the dynamic ownership state.

We use a simple ownership model to keep track which memory addresses
are owned by a particular machine in the system and which addresses are
shared by all participating machines. We specify ownership invariants and
a memory access policy based on ownership that provably guarantees mem-
ory safety if all machines adhere to it. Moreover we can use ownership later on
to prove commutativity of certain machine steps. Thus it is a cornerstone prin-
ciple of our approach. In fact every instantiation of a machine in the Cosmos
model must come with a program logic containing individual safety condi-
tions for operations of that machine. We require that safe operations preserve
ownership invariants and perform only sound memory accesses wrt. the own-
ership model, i.e., they must obey the ownership policy. This policy demands,
e.g., that one machine does not write addresses owned by other machines or
that shared memory may only be accessed by steps that are recognized by the
program logic as so-called IO steps, where IO stands for input/output. Every
machine instantiation must specify which of its state transitions are considered
IO1. Intuitively an IO step represents a communication between machines in
the Cosmos model and is usually implemented via shared memory.

In addition to shared memory we allow the machines also to have Moore
and Mealy output signals for communication with each other as well as ex-
ternal inputs. These signals are useful to model interrupt lines in case of ISA
models but also message protocols in case of higher-level models. Activations
of internal outputs and reactions to internal inputs are considered IO steps.
External inputs provide an interface with the environment but also means to
model nondeterminism. Thus by definition we can require all machines in a
Cosmos model to be deterministic automata, and their transition functions rely
only on (a portion of) the system state as well as internal and external inputs.
We execute a Cosmos model consuming a sequence of external inputs and an
explicit schedule determining the interleaving of machines.

Now we can have different instantiations of Cosmos models describing the
same system at different levels of detail. For instance we might look at a com-
puter system were C programs are executed concurrently on multiple proces-
sor cores. In the real world these programs are compiled to a certain multicore

1The individual definition of IO must be however consistent with memory safety conditions

3

instruction set architecture (ISA) which we can also model as a Cosmos (pos-
sibly a reduced version under certain software conditions). Each program is
compiled separately and there exists a local simulation relation and a theorem
that links C and ISA execution on one machine. It would be desirable to com-
pose the local simulation theorems to one global simulation theorem spanning
all machines in the Cosmos. Naturally this would base on the local theorems
stating that for every particular machine its local simulation relation is pre-
served by executions of the overall system. However we can not prove such a
theorem for arbitrary interleavings of machine steps because a simulation rela-
tion need not generally hold for all states of an execution on the abstract level
and usually only holds for a few steps on the concrete level where the steps are
refined2. In fact we need to assume schedules on the low level where machines
are executing blocks of steps from one consistency point (a configuration that
is consistent to/simulates an abstract one) until the next one. Furthermore we
cannot just combine arbitrary programs in a concurrent fashion. There is a
number of requirements on the nature of the simulation theorems under con-
sideration and the notion of the shared resources on both levels. We list all
the necessary assumptions including memory safety on the abstract level and
prove the global Cosmos model simulation theorem based on the correctness of
the local simulations which have to be verified individually. The assumption
of block scheduling is justified by an order reduction theorem.

In order reduction we reduce the number of possible interleavings of dif-
ferent processor steps. The core argument to enable reduction is that the effect
of a safe concurrent system execution does only partly rely on the scheduling
on machine steps. In fact it relies only on the external input sequence and the
schedule of IO steps. All non-IO actions can be reordered arbitrarily as long as
program order is maintained. The reordering preserves the effect of the orig-
inal trace because non-IO steps only modify local information. This can be
enforced by the ownership policy and is the main lemma of the proof. Instead
of non-IO operations we also speak of local steps and we call the configuration
from which an IO step origins IO point.

For the reduction theorem we reduce arbitrary interleavings to so-called IO
block schedules, which are interleavings of blocks of steps of same machine. Each
IO block usually contains exactly one IO step at the beginning of the block.
We construct the blocks in a way that we are later on able to apply the local
simulation theorems on them. Here we assume for simplicity that all IO points
are consistency points3. The reduction requires that all IO block schedules
are proven to obey the ownership policy and preserve ownership invariants.
Then this also holds for all arbitrary schedules and for each of them we can
find a consistent IO block schedule. Additionally we prove that the reduction
preserves safety properties. We do not consider liveness in this report. Apart
from memory safety conditions the theorem also relies on certain constraints
on the Cosmos model components and parameters that must be fulfilled by all
instantiations.

The subsequent sections are structured as follows. In Section 2 we intro-
duce the Cosmos model. For clarity we first develop a simplified version which

2The only exception to this is one-step simulations where one abstact step maps to a single
concrete one.

3This assumption can be relaxed for more general simulations relations. A necessary precondi-
tion is that between two IO points of the same machine it passes at least one consistency point.

4

is extended in Section 3 with additional communication channels. We procede
in Section 4 to define the order reduction theorem and prove it. In Section 6 we
give a semantics for a machine which only executes IO blocks. In the sixth Sec-
tion we first set up a framework to define local simulation theorems in a unified
way. We then list the requirements needed to combine all local simulations into
a global one. We conclude this report with the proof of that simulation theo-
rem.

1.2 Related Work

The first formal approaches for the specification and verification of sequen-
tial programs date back to the 60s [Flo67, Hoa69]. In the subsequent decades
myriads of different tools and languages have been developed to tackle the
problem in a more efficient way and to apply techniques to more and com-
plex systems. The most challenging targets for formal methods may be oper-
ating systems, and recent history has seen several attempts on the verification
of sequential OS microkernels [Kle09]. The approach of the Verisoft project
[AHL+09] however comes probably closest to our vision of modelling com-
puter systems on various abstraction levels that are linked by simulation the-
orems, thus enabling pervasive verification. There a semantics stack was de-
veloped spanning abtraction layers from the gate level hardware description
up to the user application view. Nevertheless only a sequential, academic sys-
tem was considered. The succeeding Verisoft XT project aimed at transferring
this approach to the real world and developed tools and methods for the for-
mal verification of inductrial concurrent operating systems and hypervisors
[CAB+09, LS09, BBBB09]. The theory presented in this report was conceived
in an effort to justify the specification and verification approach used in the
Verisoft XT project, were the automated verifier VCC [CDH+09] was employed
to prove code correctness on the concurrent C level.

The VCC tool is just milestone in the long history of specification and ver-
ification methods for concurrent systems [Lam93]. As early as 1975 Ashcroft
[Ash75] and Owicki/Gries [OG76] extended Floyd’s and Hoare’s methods to
the concurrent case. The approach was based on assertions that were added
to programs in order to show the preservation of global invariants. Instead of
using programs to specify other programs Lamport suggested to use state ma-
chines and mathematical formulas as a universal specification language. His
Temporal Logic of Actions (TLA) [Lam94] allows to define safety and live-
ness properties of programs and algorithms in a uniform and well-defined
way. Systems can be composed by disjunction of TLA specifications [AL95]
and specified at different levels of abstraction. In case a refinement mapping
exists between two layers it can be shown that one specification implements
the other by showing an implication in TLA [AL91]. However, this simulation
approach seems only to be suitable for the program refinement or simple sim-
ulation theorems where the concrete specification makes steps in parallel with
the abstract one (which might stutter). For general simulation theorems where
n abstract steps simulate m concrete ones we can not use TLA.

In 1978 Hoare introduced an algebraic method to model communicating se-
quential processes [Hoa78]. Subsequently the language he proposed evolved
into the well-known CSP process algebra [Hoa85] and a whole community
following his his approach was formed. Several other process algebras fol-

5

lowed in the wake of CSP, most prominently Milner’s π-calculus. However
this methodology seems only appropriate to model systems at a very abstract
level, e.g., to specify algorithms and protocols. Modelling complex systems by
algebraic structures and their transformations is at best messy, if not infeasible.

Another approach to concurrent system specification are I/O Automata
as introduced by Lynch and Tuttle [LT87]. I/O Automata are basically infi-
nite state machines which are characterized by actions they can perform. In-
ternal actions are distinguished from externally visible input and output ac-
tions that are employed for communication between automata. Lynch uses
these automata to model sequential, parallel and asynchronously concurrent
shared memory systems and algorithms [Lyn96]. It is possible to compose sev-
eral automata into a bigger one given certain composability requirements on
their actions. Moreover it was shown how to prove simulation theorems be-
tween automata. However it was not treated how the automatas working on
shared variables should be composed (an overall automaton containing all sub-
automata was assumed) nor how simulation is maintained by composition of
I/O automata. Finally the need to list all actions of an automaton and divide
them into input, output and internal ones appears to be feasible for small-scale
systems and algorithms. Modelling a realistic system like a modern instruction
set architecture working massively on shared memory as an I/O automaton,
in contrast, seems to be a rather tedious task. Nevertheless we feel that using
composable state machines is the the right methodology in order to obtain a
formally linked semantics stack. In this way we are inspired by the work of
Lynch and Lamport. Gurevich also followed the idea of modelling systems as
Abstract State Machines (ASMs) [Gur00, BG03] and a programming language ex-
ists to specify and execute such models [GRS05]. However the ASM approach
does not support asynchronous concurrency [Gur04].

As to the best of our knowledge there is no prominent formalism in lit-
erature general enough to serve our purposes we define our own framework
for modelling concurrent systems using well-known concepts like automata
theory and simulation relations. Concerning (order) reduction a multitude of
related work exists. Lipton was the first to describe how several steps of an op-
eration could be aggregated into a monolithic atomic action, given that it con-
tained only one access to shared memory [Lip75]. His results were improved
by Doeppner [Doe77] and Lamport [LS89], who showed that safety properties
are preserved by the reduction. Later Lamport [Lam90] specialized his results
for systems with explicit message passing, ruling out interrupts along the way.
Generally these approaches had in common that a particular program is ex-
amined and the specific operation with its sub-steps that shall be reduced is
perfectly well-defined. In our case we would like to show a general reduction
theorem for arbitrarily instantiated Cosmos models using the memory safety of
all traces. In order to do so we have to reorder local steps of machines forming
a schedule of IO blocks. The structure of these blocks is only constrained in
that they have to start in an IO block and depending on the inputs the length
of a block may vary even if it starts in the same configuration. However in
the approaches above one must exactly identify the consecutive steps to be re-
duced into one operation and one must define predicates to tell, e.g., whether
one is within this operation or not. Thus it is hard (though not impossible) to
fit the aforementioned program-based reordering approach to our execution-
based scenario where basically all local steps may be reordered.

6

Moreover the reduction theorems presented above require commutativity
for steps of a certain program unconditionally and they preserve only global
safety properties that may not be influenced by the local reordered steps. Local
properties of the program are thus not transferred down. On the other hand in
our case reordering can only be done if the steps are local and memory-safe. As
memory safety depends on global (the ownership state) and local information
(the program state), this property cannot be transferred by the existing reduc-
tion theorems. This also holds for the work of Cohen and Lamport [CL98] on
reduction in TLA. The latter however introduced the preservation of liveness
properties which we do not touch within the frame of this report. It should be
also noted that commutativity arguments like the ones we use in the proof of
our reduction theorem are closely related to the notion of non-interference in
information flow theory [GM82, Rus92]. Simply put, it is argued that an action
does not interfere with a certain domain if it can be pruned from a computa-
tion without changing results visible in that domain. If this is the case it can be
placed elsewhere in the computation, yielding commutativity.

Besides the classic theorems there is more recent work on order reduction.
Several specific approaches have been proposed to employ reduction in model
checking in order to tackle the problem of state explosion [FQ04, FFQ05, FG05].
Also the formal verification tool VCC [CDH+09] used in the Verisoft XT project
relies on order reduction. Threads are verified as if they run sequentially and
concurrent actions of other threads are only interleaved before shared memory
accesses. A reduction theorem to justify this “coarse scheduling” was proposed
and proven [CMST09], however it only covered the existence of a safe equiva-
lent coarse schedule for a given arbitrary safe schedule. The soundness of the
methodology, i.e., that also for every unsafe trace there exists an unsafe coarse
schedule, remained open. Nevertheless this approach was the inspiration for
the reduction theorem presented below. In fact, the VCC reduction theorem
can be derived from an instantiation of our general reduction theorem. In con-
trast we use a different ownership model then the VCC tool. There ownership
is based on typed objects while in our model ownership is based on memory
addresses. Our ownership model is a simplified version of the one presented
by Cohen and Schirmer in order to justify sequential consistent memory for
a memory system implementing Total Store Order [CMST09]. Ownership of
memory and ownership transfer is not a new concept. It is also used in Con-
current Separation Logic [Bro04].

1.3 Notation and Conventions

In the scope of this document we use the following notation and conventions.

1.3.1 Types and Records

Types are usually identified by blackboard bold or blackletter font in case their
names consist of a single letter. The natural numbers N = {0, 1, 2, 3, . . .} contain
zero. N+ = N \ {0} denotes the strictly positive natural numbers. Ni ⊂ N with
i > 0 and #Ni = i defines the set of the i smallest natural numbers.

Ni = {0, . . . , i− 1}

7

The set of Boolean values {0, 1} is represented by B. We define new types using
the standard mathematical notation where× creates tuples and→ creates total
functions. Partial functions are identified by a ⇀ arrow in their type signature.
We treat record types as n-tuples where each component ci can have a different
type ti. Let r ∈ R be such a record. We can declare it in two equivalent ways:

r = (r.c0 : t0, . . . , r.cn−1 : tn−1) R = {c0 : t0 ; . . . ; cn−1 : tn−1}

Record component can have any type — also records — but we forbid recursive
types here. Sometimes we use ci ⊆ ti instead of ci : ti to denote that ci is
a powerset of ti do We introduce a handy record update notation that allows
modifying single record components. Let U =

⋃m−1
i=0 idi be a set of m different

component identifiers, representing the components of record r to be updated,
i.e., ∀i, j < m. i 6= j =⇒ idi 6= idj . and ∀i < m∃j < n. idi = cj . The new values
for the respective components shall be v0 to vm−1. Then the updated record r′

is defined by:

r′ = r[[id0 := v0; id1 := v1; . . . ; idm−1 := vm−1]]
m

∀i < m. r′.idi = vi ∧ ∀c /∈ U. r′.c = r.c

1.3.2 Propositional Logic

Logical propositions contain conjunction ∧, disjunction ∨, negation, implica-
tion =⇒, equivalence⇐⇒ and brackets. For negation literature knows several
symbols.

/x ≡ ∼x ≡ ¬x ≡ x

Here we will use mostly /x and sometimes x where it saves brackets. Defini-
tions and identity is denoted by ≡. The priority order ≺ of logical operators
used in this document is defined below from weakest to strongest binding.

⇐⇒ ≺ =⇒ ≺ ∨ ≺ ∧ ≺ /

To display voluminous conjunctions and disjunctions in a clear and compact
style we introduce a notation to combine all propositions pi from a finite set P .
For P = ∅we have

∧
P = 1 and

∨
P = 0. Otherwise:∧

P =
∧{

p0, p1, . . .
}
≡ ((p) ∧∧(P \ {p})) s.t. p = εP∨

P =
∨{

p0, p1, . . .
}
≡ ((p) ∨∨(P \ {p})) s.t. p = εP

Here ε is Hilbert’s choice operator that chooses one element out of a given set.

1.3.3 Set Notation

In general we use standard set theory, however we extend it by a few shorthand
definition. The disjoint union of sets is denoted by ·∪. Let A,B,C be sets of the
same type, then:

C = A ·∪B ⇐⇒ C = A ∪B ∧ A ∩B = ∅

8

To express that two sets are equal for some element α, i.e. that α is either
contained or not contained in both sets, we choose the following notation

A =α A
′ ≡ α ∈ A⇔ α ∈ A′

If both sets are subset of some superset B, i.e., A,A′ ⊆ B, we can easily show
the property, that if A and A′ agree on all elements of B, they must be equal.

(∀α ∈ B. A =α A
′)⇐⇒ A = A′

1.3.4 Sequences

Moreover in this docoument we will deal excessively with computation se-
quences. An arbitrary lengthy sequence of elements ai ∈ A has type A∗ and is
represented by a−→.

a−→ : A∗ ⇐⇒ a−→ = ε ∨ ∃a0 ∈ A, a′−→ : A∗. a−→ = a0, a′−→
Let ε be the empty sequence, then we define the length of sequences as follows.

|ε| = 0 |a0, a′−→| = |a
′
−→|+ 1

For manipulating sequences we define the function popwhich removes the first
i members of a sequence.

pop(a−→, i) =

a−→ : i = 0

pop(a′−→, i− 1) : i > 0 ∧ a−→ = a0, a′−→
ε : otherwise

Function tail yields the remainder after removing the head of a sequence.

tl(a−→) = pop(a−→, 1)

Furthermore we can number the members of a sequence in ascending order
starting from the beginning.

a−→ = a0, a1, a2, . . .

Consequently we can select finite subsequences of a sequence via interval no-
tation. First of all for a ≤ b we introduce the following integer intervals.

[a : b] ≡ {a, a+ 1, . . . , b} [a : b) ≡ [a : b− 1]
(a : b] ≡ [a+ 1 : b] (a : b) ≡ [a+ 1 : b− 1]

Now subsequences of x−→ are easily defined recursively. Let 0 ≤ a ≤ b, then:

x−→[a : b] ≡
{
xa : a = b

xa, x−→[a+ 1 : b] : otherwise

For open intervals, e.g., x−→[a : b) the equivalent closed interval from above shall
be used.

9

1.3.5 Computations

Computations are sequences of configurations from a state space S. They rely
on transition function δ that transform the state using inputs from some do-
main I:

δ : S× I→ S

A computation s−→ : S∗ for input sequence in−→ = in0, in1, in2, . . . : I∗ is repre-
sented by the shorthand s−→δ,in.

s−→δ,in ≡ s0, s1, s2, . . . s.t. ∀j ≥ 0. sj+1 = δ(sj , inj)

To denote state transitions we us the following arrow notation for i, n ∈ N.

si −→n
δ,in s

i+n ≡
{
si+1 = δ(si, ini) ∧ si+1 −→n−1

δ,in si+n : n > 0

1 : n = 0

It can be generalized for states s, s′ ∈ S omitting the index i.

s −→n
δ,in s

′ ≡ ∃ a−→ : S∗. a0 −→n
δ,in a

n ∧ s = a0 ∧ s′ = an

There are two special versions of this:

s −→δ,in s
′ ≡ s −→1

δ,in s
′ s −→∗δ,in s′ ≡ ∃n. s −→n

δ,in s
′

Given some particular input x ∈ I we also use s −→δ,x s
′ instead of s′ = δ(s, x).

Implicite conversion is possible between n + 1-tuples of sequences and se-
quences of n+ 1-tuples with the same length m+ 1.

(in0−→, . . . , inn−→) = ([in0
0, . . . , in

m
0], . . . , [in0

n, . . . , in
m
n])

l l
(in0, . . . , inn)−−−−−−−−−→ = (in0

0, . . . , in
0
n), . . . , (inm0 , . . . , in

m
n)

This is useful for transition functions that take more than one input. If in is
for instance a triple (a, b, c) by the implicite conversion (l) we can still use the
arrow notation to denote an n-step transition from s to s′ under the input se-
quences a−→, b−→, c−→ and so forth. We write:

s −→n
δ,a,b,c,... s

′

2 Concurrent Machine Model with Shared Memory
and Ownership

In order to model multiprocessor systems later we first introduce a general
model for machines that are concurrently accessing a shared memory. We
speak of a Concurrent system with shared memory and ownership (Cosmos).
Accesses are governed by an ownership policy guaranteeing sound memory
accesses i.e., the absence of data races on the shared memory. The ownership
model builds on previous work by Cohen and Schirmer. There it was used to

10

ensure sequential consistency for a shared memory system with store buffers
(TSO). Here we use it to show a reordering theorem were arbitrary interleav-
ings of machine steps are reordered into a coarse schedule of blocks of machine
steps, were each block starts with a shared memory access and may be fol-
lowed by local computations. In the model presented below each machine can
be instantiated arbitrarily. However for each instantiation a program logic has
to be provided in terms of safety conditions on the machine transitions in or-
der to ensure memory soundness and maintain ownership invariants. We first
define the Cosmos model in general where machines are only communicating
via shared memory. Later on we extend the model with inputs, outputs and
visible components. Afterwards we will formulate and proof the reordering
theorem and instantiate the Cosmos model with a generic ISA model to obtain
a Multiprocessor ISA Model with Ownership.

2.1 Configuration and Parameters

We consider a Cosmos model with type C, which is a concurrent system of
np ∈ N generic machines and a shared memory with the address range A.
Note that on the top level we only consider the memory shared between the
machines in the Cosmos model . Other communication must be handled inter-
nally.
A machine p is modelled as an Moore Automata without inputs or outputs for
now as explained above. Machines could be devices, processors or even Cosmos
models themselves. To develop a model as general as possible we parametrize
it by a number of system parameters and types. These polymorphic types shall
be identified by gothic font. Functions and values declared based on these
types are also polymorphic and must be instantiated for a particular system.
All components related to ownership or program logics are printed using cal-
ligraphic font.
A configuration C ∈ C has three components (C.s, C.m,C.S):

• C.s : Nnp → S - the state of each machine in the system, state C.s[p] of
machine p is a record with two components:

– C.s[p].O ⊆ A - the set of addresses owned by machine p. Owned
addresses may only be modified by their owner.

– C.s[p].c ∈ Cp - the configuration of machine p, where Cp is an instan-
tiable machine configuration type. Some components in Cp may be
defined to be visible to (but not modifiable by) other machines.

• C.m : M - the memory shared by all machines in the system, M = A→ V,
where V denotes the range of values for memory cell contents.

• C.S ⊆ A - the set of shared writable addresses. Shared addresses can be
owned or unowned. In the first case they can only be read by machines
other than the owner.

We use the following shortcuts for state components:

Op(C) ≡ C.s[p].O cp(C) ≡ C.s[p].c
Op ≡ Op(C) cp ≡ cp(C)

11

Primed, accented or indexed versions of these abbreviations translate in the
obvious way to the functions taking the corresponding version of argument C
e.g., ĉip = cp(Ĉ

i).
In addition to np, A, V and the configuration types Cp we have the following
Cosmos model system parameters:

• δp : C× Nnp → Cp for p ∈ Nnp - a transition function for machine p.

• σ−→ : N∗np - a schedule determining the interleaving of machine steps.

• R ⊆ A - the set of read-only addresses. Such addresses are neither shared
writable, nor owned by any machine

• √p : C → B for p ∈ Nnp - a program logic to determine safe steps of
machine p wrt. ownership and further safety conditions

• IOp : C× Nnp → B for p ∈ Nnp - a predicate based on the program logic
of machine p identifying IO steps in the next transition of p depending
on its inputs. For example IO steps include but are not limited to all
reads or writes on shared writable memory.

• readsp, writesp : C×Nnp → 2A for p ∈ Nnp - functions yielding the sets of
memory addresses read and written by machine p in its next step under
the specified inputs.

In the declarations above Cp stands for the records type of the configuration
that transition function δp produces. It is a projection of a full configuration
C containing all machine states to a configuration C|p which only contains the
state for machine p. The projection function ·|p : C × Nnp → Cp is formally
defined as:

C|p = {C|p.s, C|p.m,C|p.S} s.t.
∧C|p.s = C.s[p],

C|p.m = C.m,
C|p.S = C.S

Note that in the Cohen-Schirmer theory IO memory instructions are denoted
as volatile accesses. However to avoid confusion with the notion of volatile
accesses on the C level we rename the concept here. Actually there is a close
connection between volatile and IO accesses, as there are certain compiler re-
quirements for all accesses that are compiled to ISA IO operations. In fact all
volatile accesses on the C level become IO accesses on the ISA level. Never-
theless they are not congruent i.e., there might be more IO accesses which do
not stem from volatile memory operations. We will see this later on.

In contrast to the Cohen-Schirmer model we also confined ourselves to treat
the read-only addresses as a fixed parameter of the system. In the scope of this
thesis we assume that the concurrent system we are focussing on is already
initialized and after that point the read-only addresses should be constant. This
implies a restriction of ownership transfer after the initialization phase i.e., no
read-only addresses may be acquired by machines and all released addresses
must stay writable. The restriction is motivated by the reordering proof further
below. If addresses may be put in or taken out of the R set, there needs to be
a synchronization policy between the machines governing when it is safe to

12

acquire or release read-only addresses. If the set of read-only addresses was
not fixed we would actually have to deal with an ordinary shared memory and
all the complexity it is accompanied by. As we can think of little application
scenarios of temporary read-only addresses, besides self-modifying code, we
just omit this possibility here. Note that the initialization of concurrent systems
is usually achieved in a sequential manner where only a single processor is
active. Hence a different model must be considered to treat this case anyway.

2.2 Semantics

Now we will define the transition function ∆ of the overall system. It computes
the next state for a system step in a computation C−→ which is based on the
schedule σ−→We need a notation Cddep to embed projected configurations d ∈
Cp in Cosmos model configurations C ∈ C.

Cddep = C[[m := d.m; s[p] := d.s; S := d.S]]

Then we define ∆ for a step of p as follows.

∆(C, p) = Cdδp(C, p)ep

Machine p is chosen according to schedule σ−→ and transition function δp is com-
puting the resulting projected configuration. The components of the Cosmos
model configuration are updated accordingly. By construction a machine can-
not alter the states of other machines including their ownership sets. There are
more restrictions on the instantiation of Cosmos model parameters and their
interaction defined in the next section.

2.3 Parameter Constraints

Not all parameters of a Cosmos model can be instantiated arbitrarily, in fact
there are several constraints that must be discharged by an instantiation. The
constrained instantiable parameters for the system without inputs, outputs and
visible components are δp, IOp, writesp and readsp.
Firstly, the step functions should be deterministic, i.e., no δp should make any
non-deterministic choices. Secondly steps of p must not depend on compo-
nents in other machines. Formally we collect these conditions in constrδ(p). In
the following let R = readsp(C, p) and W = writesp(C, p).

C ∼Rp C ′ =⇒ Cdδp(C, p)ep ∼Wp C ′dδp(C ′, p)ep
C,C ′ ∈ C ` constrδ(p)

Here the equality of information accessed by p (excluding visible components
of other machines) is denoted by the relation C ∼Ap C ′ for sets of memory
addresses A ⊆ A. Below we define several equivalence relations for different

13

Cosmos model components.

C
m∼(A) C ′ ≡ ∀adr ∈ A. C.m(adr) = C ′.m(adr)

C ∼Ap C ′ ≡ C.s[p] = C ′.s[p] ∧ C m∼(A) C ′

C ∼p C ′ ≡ C ∼Op∪R
p C ′

C
s∼ C ′ ≡ C.S = C ′.S ∧ C m∼(C.S) C ′

C
o∼ C ′ ≡ ∀p ∈ Nnp. Op = O′p ∧ C.S = C ′.S

C
o∼p C ′ ≡ Op = O′p ∧ Op ∩ C.S = O′p ∩ C ′.S

The relation C ∼p C ′ denotes the equality of machine state and locally visible
memory. The equality of shared memory is given by C

s∼ C ′, while C o∼ C ′

talks about the ownership state. The local versions of this relation for machine
p is denoted by C

o∼p C ′. It states that the ownership configuration of p is
equivalent in to systems C and C ′ iff p owns the same addresses and these are
partitioned identically into shared and local addresses. We quickly observe:

Corollary 1 Examining the definitions of o∼ and o∼p we see that C o∼ C ′ implies
C

o∼p C ′ for all p.

Moreover we require that the functions readsp and writesp should only rely on
the local configuration of machine p

C ∼Rp C ′ =⇒ ∧{ readsp(C, p) = readsp(C
′, p),

writesp(C, p) = writesp(C
′, p)

}
C,C ′ ∈ C ` constrpred(p)

In the same way we demand that IOp depends only on the state and local
memory of machine p. Thus the program logic for p does not rely on the state
of other machines or the contents of shared writable memory.

C ∼Rp C ′ =⇒ IOp(C, p) = IOp(C ′, p)
C,C ′ ∈ C ` constrIO(p)

Finally we are revisiting the writesp predicate. Naturally all memory cells not
written by a machine step should maintain their values.

∀adr ∈ A \ writesp(C, p). δp(C, p).m(adr) = C.m(adr)

C ∈ C ` constrmem(p)

2.4 Sound Memory Accesses and Ownership Invariants

With the ownership model consisting of A, Op, R and S we are imposing re-
strictions on the possible execution traces C−→∆,σ in order to be able to perform
reordering later. The predicate sound(C, p) collects all necessary conditions,
i.e., the access policy enforced by a consistent ownership configuration for
memory accesses. We treat the cases of IO and local steps separately and start
with the local, i.e., non-IO steps of machine p.

/IOp(C, p) readsp(C, p) ⊆ Op ∪R writesp(C, p) ⊆ Op \ C.S
Op(∆(C, p)) = Op(C) ∆(C, p).S = C.S

sound(C, p)

14

All addresses being accessed in a local machine step must be either owned or
read-only. To shared writable addresses which are owned by p and read-only
addresses just reads are allowed in case of non-IO steps. Also the ownership
configuration must stay constant for local operations.
IO step memory accesses may additionally target all shared read-write ad-
dresses but must not write them if they are owned by another machine. Own-
ership transitions of p are enabled but must not modify the sets of shared ad-
dresses owned by other machines.

IOp(C) ∀p′ 6= p. Op′ ∩∆(C, p).S = Op′ ∩ C.S
readsp(C) ⊆ Op ∪ C.S ∪R writesp(C) ⊆ Op ∪ C.S \

⋃
p′ 6=pOp′

sound(C, p)

Additionally there are aforementioned consistency conditions between the own-
ership sets and the sets of shared addresses, which must be maintained by all
transitions of the ownership configuration. For Cosmos models we denote these
invariants by the predicate inv : C→ B:

∀p, p′. p 6= p′ =⇒ Op ∩ Op′ = ∅ ∀p. Op ∩R = ∅
∀adr ∈ A. (@p. adr ∈ Op) =⇒ adr ∈ C.S ∪R C.S ∩R = ∅

inv(C)

The consistency conditions here include the disjointness of ownership sets and
that shared read-only addresses can not be owned or shared read-write. Also
all unowned addresses must be either shared writable or read-only.

2.5 Safety Conditions

Similar to the safety conditions in the store buffer reduction theorem every
instantiation has to define constraints on the instructions and their effects on
the ownership model in order to guarantee valid configurations of the ghost
components and to enforce among others sound memory accesses wrt. owner-
ship. These safety conditions can be defined similarly to the ones in the Cohen-
Schirmer model. For every machine p we require a safety judgement

√
p on

configurations C ∈ C depending on a set R ⊆ Ad of read-only addresses as
well as the total number of machines in the system. The safety conditions are
defined wrt. an address space Ad ⊆ A.

R,Ad, n ` C√p
Whenever a configuration is considered safe according to the safety judgement
all possible steps out of that configuration must preserve the ownership invari-
ants of the system and perform only sound transitions. Hence the correctness
of the individual safety conditions must be proven for each instantiation. Let
safe(C, p) denote the safety wrt.

√
p of a step of machine p in configuration C

under external inputs ext.

safe(C, p) ≡ R,A, np ` C√p
For the safety conditions we have to prove aforementioned lemma that all safe
steps are sound and are preserving ownership invariants.

∀p < np. inv(C) ∧ safe(C, p) =⇒ sound(C, p) ∧ inv(∆(C, p))

15

On the top level it is not defined how the ownership can be transfered between
machines, however the safety conditions of p must guarantee that inv(C) is
preserved when p manipulates the ownership configuration. Similar to the
IOp predicate there is a constraint on the safety judgement that it should rely
on system components and visible memory as well as the ownership configu-
ration and machine outputs during steps of p.

constrsafe(p) ≡
∀C,C ′ ∈ C.

C ∼p C ′ ∧
{
C

o∼p C ′ : /IOp(C)

C
o∼ C ′ : IOp(C)

=⇒ safe(C, p) = safe(C ′, p)

Thus we have a model that governs a concurrent execution C−→δ,σ by ownership
and safety conditions. Accesses to shared resources must be marked as special
IO operations representing, e.g., atomic memory instructions in case of multi-
core processor systems. Local operations can only target owned unshared data
that is not observable by other machines. Therefore it is possible to reorder
these local steps as will be seen later on. First we extend our system with
further means of communication.

3 Inputs, Outputs and Visible Components

Until now the only way for machines in our system to communicate is via the
shared memory. While this is a convenient model it does not reflect the reality
of many existing concurrent systems. In fact there might also be communica-
tion via interrupts, bus connections, I/O port registers and the like. Last but
not least there may be external inputs and outputs of the system. In the follow-
ing we strive to model these means of communication in a way as general as
possible, so that it can be instantiated arbitrarily afterwards.

3.1 Additional Parameters

We extend our automaton model for a machine p with inputs in Ip ⊆ O ∪ E
and outputs using the alphabet Op. Here E represents external inputs to the
system while O is the union of the outputs of all machines inside the system.

O ≡
⋃

p∈Nnp

Op

For the new setting we have to update the following Cosmos model system
parameters, as they also depend on inputs now.

• δp : C× Nnp × 2Ip → Cp for p ∈ Nnp

• IOp : C× Nnp × 2Ip → B for p ∈ Nnp

• readsp, writesp : C× Nnp × 2Ip → 2A for p ∈ Nnp

We introduce new parameters below.

16

• ωp : C→ 2Op for p ∈ Nnp - the output function for machine p which may
depend not only on C.m and cp but also on visible components of other
machines’ states.

• v∼p ⊆ Cp × Cp for all p ∈ Nnp - an equivalence relation implicitely encod-
ing which components of machine configuration cp are visible to other
machines. Iff all these components are equal in two configurations of
machine p then the relation holds.

• visp : C × Nnp × 2Ip → B - predicate signaling that the next step of
machine p accesses visible state components of any other machine.

We have introduced visible components above, on which the execution of other
machines may depend. Thus we are extending the notion of sharing from
memory addresses to machine components. This is useful when we consider,
e.g., virtual machines that are not virtualized completely, i.e., some compo-
nents of the underlying hardware are shared explicitely. Also for interrupts
we will see later on that certain processor registers can be shared between the
interruptible program and its interrupt handler. Thus for every machine p a
subset of components may be visible and each update of these components by
p or steps by other machines depending on them must be considered IO steps.

Furthermore observe that the function ωp is defined on the complete state of
the system. We will later restrict the outputs generated by it to depend on the
visible compents and shared memory. Nevertheless they are inherently Mealy
output signals of machine p wrt. the inputs of other machines, i.e., they might
change even if p is not making a step. In contrast the visible components of p
can only change in a (IO) step of p. Hence we can consider them as the Moore
outputs of machine p.

3.2 Extended Semantics

We also have to extend the transition function ∆ of the overall system. A com-
putation C−→ of a CSO now also depends on an external input sequence ext−→.
Moreover we have to map the corresponding inputs to the machine p that takes
the next setp. We define Delta for a step of p under external input ext as fol-
lows.

∆(C, p, ext) = Cdδp(C, p, in(C, p, ext))ep

The inputs to machine p are calculated from the outputs of all machines and
the external inputs by the function in(C, p, ext) as defined below.

in(C, p, ext) ≡

 ⋃
p′∈Nnp

ωp′(C) ∪ ext

 ∩ Ip

Considering computations C−→, σ−→, ext−→ we also write inp(Ci) for in(Ci, p, exti).
Note that ext−→ may contain external inputs for machines that are not currently
scheduled. These inputs do not influence the execution of the system and are
thus redundant. However to keep the model simple we do not restrict the
external input sequence but allow it to contain arbitrary irrelevant inputs.

17

3.3 Updated Parameter Constraints

The constraints on the parameters introduced before must be adapted to the
new situation where we have input and output signals as well as visible com-
ponents. Furthermore we need to constrain the new parameters Ip, Op, ωp, v∼p
and visp.
The step function of p may now also depend on visible components of others.
Such accesses are denoted by the visp predicate. We update constrδ(p) using
the abbreviations R = readsp(C, p, in) and W = writesp(C, p, in).

∧{C ∼Rp C ′,
visp(C, p, in)⇒ C

v∼ C ′

}
=⇒ Cdδp(C, p, in)ep ∼Wp C ′dδp(C ′, p, in)ep

C,C ′ ∈ C, in ⊆ Ip ` constrδ(p)

Here the equality of all visible components is denoted by the relation C v∼ C ′.
We also define the relation C sv∼ C ′ which states the consistency of the shared
state in the system (excluding read-only addresses).

C
v∼ C ′ ≡ ∀p ∈ Nnp. cp

v∼p c′p
C

sv∼ C ′ ≡ C
s∼ C ′ ∧ C v∼ C ′

In same way the functions and predicates readsp, writesp and visp should only
rely on the local configuration of machine p

C ∼Rp C ′ =⇒ ∧ readsp(C, p, in) = readsp(C
′, p, in),

writesp(C, p, in) = writesp(C
′, p, in),

visp(C, p, in) = visp(C
′, p, in)

C,C ′ ∈ C, in ⊆ Ip ` constrpred(p)

As another parameter constraint v∼p has to be an equivalence relation.

cp
v∼p cp cp

v∼p c′p =⇒ c′p
v∼p cp cp

v∼p c′p ∧ c′p
v∼p c′′p =⇒ cp

v∼p c′′p
C,C ′, C ′′ ∈ C ` constrv(p)

Moreover we assume that every output or external input is at most handled by
one machine in the Cosmos model so that there are no races on the reaction to
input signals i.e.:

∀p′ ∈ Nnp. p 6= p′ =⇒ Ip ∩ Ip′ = ∅
constrI(p)

Similarly we demand that all outputs and external inputs are unique. We only
consider internal Mealy output signals here.

Op ∩ E = ∅ ∀p′ ∈ Nnp. p 6= p′ =⇒ Op ∩Op′ = ∅
∀α ∈ Op. ∃p′ ∈ Nnp. α ∈ Ip′

constrO(p)

We restrict the output functions as follows.

cp = c′p ∧ cp′
v∼p′ c′p′ =⇒ ωp(C) =α ωp(C

′)

ωp(C) =α ωp(C
′) ∧ cp = c′′p ∧ c′p = c′′′p ∧ c′′p′

v∼p′ c′′′p′ =⇒ ωp(C
′′) =α ωp(C

′′′)

C,C ′, C ′′, C ′′′ ∈ C, p′, α ∈ Op ∩ Ip′ ` constrω(p)

18

In general the constraint implies that the generated outputs of p for any ma-
chine p′ depend only on the machine state of p and the visible components of
p′.4 Additionally the behaviour of output signals in case p does not make a step
must be predictable from the changes in the visible components of the receiver.
Later on we will also demand that outputs must be kept active until a reaction
of a receiver via a change in the visible components is detected.

In order to identify situations when machine p reacts to an input (e.g. by
starting an interrupt handler) we introduce the following predicate.

reacts(C, p, in) ≡ δp(C, p, in) 6= δp(C, p, ∅)

We detect such a situation by comparing the next configuration wrt. the actual
inputs to one where all inputs are deactivated. When a deterministic machine
changes its configuration differently for a given input, then it must have been
in reaction to that input. Such situations represent a communication with the
environment, therefore we consider them as IO steps, too.

Another property we will need is that reactions for the same inputs only
depend on the configuration of machines (e.g. interrupt mask registers, APIC
state etc.). Also inputs do not cancel out each other i.e., whenever there is a
reaction to an input, no matter how much more inputs we add the machine
will still react to one of them. Note that by construction machines only react to
their personal inputs.

cp = c′p =⇒ reacts(C, p, in) = reacts(C ′, p, in)
/reacts(C, p, in) ∧ in′ ⊆ in =⇒ /reacts(C, p, in′)

C,C ′ ∈ C, in, in′ ⊆ Ip ` constrreact(p)

In addition IOp must be redefined such that all reactions to inputs are also con-
sidered IO steps. Reacting to an input is part of a machine’s communication
with its environment, thus we model it as an IO operation. Moreover local
steps stay local if their configurations are locally equivalent and there are not
more inputs than in the original step. With R defined as above:

C ∼Rp C ′ =⇒ IOp(C, p, in) = IOp(C ′, p, in)
reacts(C, p, in) =⇒ IOp(C, p, in)

∀in′ ⊆ in. /IOp(C, p, in) ∧ C ∼Rp C ′ =⇒ /IOp(C ′, p, in′)
C,C ′ ∈ C, in ⊆ Ip ` constrIO(p)

At last we add inputs to the constraint on the writesp predicate.

∀adr ∈ A \ writesp(C, p, in). δp(C, p, in).m(adr) = C.m(adr)

C ∈ C, in,⊆ Ip ` constrmem(p)

With the updated parameter constraints defined we can now turn to the sound-
ness conditions for the extended Cosmos model with inputs, outputs and visible
components.

4This means that we do not consider memory mapped I/O ports to be part of shared memory.
Such ports shall be part of the visible components of machines so that other machines may react
to changes of them by their outputs also when they are not stepped. Note that this setting restricts
Cosmos models to systems where I/O ports are not shared between different machines and there
are fixed pairs of communication partners.

19

3.4 Soundness for Inputs, Outputs and Visible Components

The predicate sound(C, p, ext) collects all necessary soundness conditions for
the new system with (external) inputs, outputs and visible components. It is an
extension of sound(C, p) which is implied by sound(C, p, ext). Again we treat
the cases of IO and local steps separately. First we define a shorthand pattern
for commonly used predicates of the form predp(C, p, in).

predp(C) ≡ predp(C, p, in(C, p, ext))

Now we consider the local i.e. non-IO steps of machine p.

/IOp(C) readsp(C) ⊆ Op ∪R writesp(C) ⊆ Op \ C.S
cp(∆(C, p, ext))

v∼p cp ωp(∆(C, p, ext)) = ωp(C) /visp(C)
Op(∆(C, p, ext)) = Op(C) ∆(C, p, ext).S = C.S

sound(C, p, ext)

In addition to the shared memory access restrictions for non-IO steps, ma-
chines in this case may not alter visible components. Also local steps may not
depend on visible components of others. In general the outputs of all machines
in the system are not allowed to change for local steps of p and by construction
p does not react to the inputs from other machines.

IOp(C) α ∈ ωp(C) \ Ip =⇒ α ∈ ωp(∆(C, p, ext))
∀p′ 6= p. Op′ ∩∆(C, p, ext).S = Op′ ∩ C.S

readsp(C) ⊆ Op ∪ C.S ∪R writesp(C) ⊆ Op ∪ C.S \
⋃
p′ 6=pOp′

sound(C, p, ext)

In IO steps machine outputs must not be deactivated unless they are targetting
themselves only which is benign. Besides that we have the same restrictions
for IO steps as before. The ownership invariants are not touched by the intro-
duction of the additional ways of communication.

3.5 Extended Safety Conditions

We also have to consider inputs in ⊆ Ip in the program logic for p now.

R,Ad, n, in ` C√p
Furthermore safe(C, p, ext) denotes the safety wrt.

√
p of a step of machine p

in configuration C under external inputs ext.

safe(C, p, ext) ≡ R,A, np, inp(C) ` C√p

We write safep(Ci) instead of safe(Ci, p, exti) for all i whenever it is unam-
biguous and we are considering computations C−→, σ−→, ext−→with σi = p. Similarly
safep(C) and safep(C ′) is short for safe(C, p, ext), and safe(C ′, p, ext) respec-
tively. The safety lemma to be proven for every instantiation is stated below.

Lemma 1 (Correctness of Safety Conditions) We consider a Cosmos model configu-
ration Ci and its next state Ci+1 that was reached by a step of any machine p under

20

external inputs exti obeying its safety conditions. If ownership invariants were ful-
filled before the step, all memory accesses of the step are sound and we again have a
configuration where invariants hold.

∀p < np. inv(Ci) ∧ safep(Ci) =⇒ sound(Ci, p, exti) ∧ inv(Ci+1)

We also update constrsafe(p) by taking inputs into account. As local steps are
by definition never reacting to inputs safety can in this case be transferred to
systems where we have the same local configuration but potentially less inputs
using constrreact(p). Only if we have more inputs a local step can become an
unsafe (IO) step. When examining the safety of IO steps in related system
configurations identical inputs must be taken into account.

constrsafe(p) ≡
∀C,C ′ ∈ C, ext ⊆ E.

C ∼p C ′ ∧
{
C

o∼p C ′ ∧ in(C ′, p, ext) ⊆ inp(C) : /IOp(C)

C
o∼ C ′ ∧ in(C ′, p, ext) = inp(C) : IOp(C)

=⇒ safep(C) = safe(C ′, p, ext)

This finishes the Cosmos model definition and we focus on reordering in the
following.

4 IO-Block Schedule Reordering

The ownership model introduced for Cosmos models allows us not only to im-
pose safety conditions for sound concurrent memory accesses by the machines
of the system. It also allows for a reordering of machine steps in the concurrent
model. In the following we will provide theorems exploiting this fact in or-
der to reduce the interleaving of machines and justify the assumption of coarse
scheduling. We want to consider schedules where there are interleaved blocks
of execution steps of a single machine p. Each such block starts with p perform-
ing an IO operation which is followed by a sequence of local computations.
Such blocks we call IO-blocks. Having a schedule interleaving only such IO-
blocks is convenient for Multiprocessor ISA machines when we want to apply
compiler consistency and go up to the C and Assembly level later on. However
it also applies to the modelling of systems with devices as well as preemptive
threads running concurrently on the same processor. Moreover it justifies the
concurrent verification approach of tools like VCC.

4.1 IO-Block Schedules

Given a Cosmos model computation C−→∆,σ,ext and a machine p we already de-
fined the predicate IO(Ci, σi, exti) which states that in configuration Ci ma-
chine σi is at an IO-point. Such IO accesses are usually used to access memory
shared with other machines and for other atomic actions that have system-
wide effects. As there are specific compiler optimization restrictions for these
operations we will later on be able to apply compiler consistency at IO-points
and lift the execution from the machine to the C-Level for an Multiprocessor
ISA instantiation.

21

Now we will define the structure of our desired schedule. Taking computa-
tion C−→, schedule σ−→ and external input sequence ext−→we denote by the predicate
IOsched(C−→, σ−→, ext−→, n) that for the first n ∈ N steps the computation exhibits a
valid IO-block schedule. For n ≤ 1 we have:

IOsched(C−→, σ−→, ext−→, 0) ≡ 1 IOsched(C−→, σ−→, ext−→, 1) ≡ 1

Each IO-block schedule must start in an initial configuration with the first
instruction of one machine. For n > 1 the predicate is defined recursively as
follows using the shorthand IOσi(Ci) ≡ IOσi(Ci, σi, in(Ci, σi, exti)) for any
computation C−→, σ−→, ext−→ and index i:

IOsched(C−→, σ−→, ext−→, n) ≡
IOsched(C−→, σ−→, ext−→, n− 1) ∧
(σn−1 6= σn−2 =⇒ (IOσn−1(Cn−1) ∨ ∀i < n− 1. σi 6= σn−1))

This means an IO-block schedule can be extended by adding a step of

1. the same currently running machine, or

2. another machine which

(a) is currently at an IO-point i.e., will be executing an IO step, or

(b) was never scheduled before.

Thus the schedule consists of blocks of steps by the same machine which start
with an IO step (or its first step) and are followed by instructions on the same
machine which are not IO steps.

4.2 Reordering Theorem

Every trace of steps in a multiprocessor system can be reordered into an equiva-
lent IO-block schedule independent of its safety with respect to the ownership
model. We introduce the predicate safety(C−→, σ−→, ext−→, n) which takes as inputs
a CSO computation sequence C−→, an arbitrary schedule σ−→ and an external in-
put sequence ext−→. It denotes the safety of all states that are reachable by n steps
of the concurrent system.

C0 −→n
∆,σ,ext C

n inv(C0) ∀i < n. safeσi(Ci)

safety(C−→, σ−→, ext−→, n)

That means that the trace is safe iff its initial configuration C0 fulfills the own-
ership invariants and all steps from there leading into a configuration Cn are
safe. For such safe traces we can construct a simulating trace of the same length
which is an IO-block schedule and also safe. Moreover we need to show that
also for unsafe traces we are able to construct an unsafe IO-block schedule
starting in the same configuration.

When constructing equivalent IO-block schedules it does not suffice to end
up in the same configuration. We need to make sure that the new schedule is
actually a reordering of the other. We capture this property and the relation
between the reordered steps in the following judgement where we introduce

22

a permutation function u : N ↔ N which encodes the inverse reordering of
machine steps thus yielding the original order. The shorthand in(Ci) replaces
in(Ci, σi, exti) for any computation C−→, σ−→, ext−→ and index i.

σ̂i = σu(i) Ĉi ∼σ̂i Cu(i) IOσ̂i(Ĉi) = IOσu(i)(Cu(i))

Ĉi
o∼σ̂i Cu(i) in(Ĉi) ⊆ in(Cu(i)) ex̂ti = extu(i)

IOσ̂i(Ĉi) =⇒ Ĉi
sv∼ Cu(i) ∧ Ĉi o∼ Cu(i) ∧ in(Ĉi) = in(Cu(i))

C−→, σ−→, ext−→, Ĉ−→, σ̂−→, ex̂t−→, i ` u
√
reord

Step i of the new schedule is part of a reordered schedule according to u−1 if
the schedules are consistent and IO steps are preserved. Moreover associated
steps generally must be equivalent wrt. local components and ownership. For
IO operations we also require that the same shared and ownership state is
visible and these steps must observe identical inputs in both traces. For local
steps we only demand that there are no more inputs than in the original trace
as non-IO steps do not react to their internal inputs anyway. External inputs
however are observed identically in corresponding states.

In the following for clarity we abbreviate inputs to predicates of the form
C−→, σ−→, ext−→ by the first sequence (here: C−→) wherever this is possible. Assum-
ing that a Cosmos model instantiation fulfills all parameter constraints we can
now formulate our reordering theorem for IO-block schedules, which justifies
considering only such interleavings of machine steps. It consists of two parts.

Theorem 1 (IO-Block Schedule Reordering)

1. (Existence) For any safe Cosmos model computation C−→, σ−→, ext−→ which starts in
a consistent state we can find a safe IO-block schedule Ĉ−→, σ̂−→, ex̂t−→ simulating
the original one. The new schedule is a valid reordering of C−→.

∀C−→, σ−→, ext−→, n . safety(C−→, n)

⇓

∃Ĉ−→, σ̂−→, ex̂t−→, u .
∧

safety(Ĉ−→, n), IOsched(Ĉ−→, n),

Ĉ0 = C0, Ĉn = Cn,

∀i < n. C−→, Ĉ−→, i ` u
√
reord

2. (Soundness) For any unsafe schedule we can find an unsafe IO-block schedule

which starts in the same initial configuration.

∀C−→, σ−→, ext−→, n . C0 −→n
∆,σ,ext C

n ∧ /safety(C−→, n)

⇓

∃Ĉ−→, σ̂−→, ex̂t−→, n̂ ≤ n .
∧{ Ĉ0 −→n̂

∆,σ̂,ex̂t Ĉ
n̂, Ĉ0 = C0,

/safety(Ĉ−→, n̂), IOsched(Ĉ−→, n̂)

}

An illustrating example of the reordering can be found in Figure 1. The external
inputs can be interpreted as external interrupts which are triggered by a device
or interrupt controller and handled by processor machines 2 and 3. The grey
boxes represent IO steps which keep their order. Local steps of some machine

23

I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3

I3 I3 I3 I3 I3 · · ·I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2

1 1 1 1 10 0 0 0 0 02 2 2 2 2 · · ·2

02 · · ·2

3 3 3 3 3

13

σ−→

σ̂−→

ext−→ · · ·

ex̂t−→

0

23

13

1

1

I2

23

Figure 1: Example for reordering an arbitrary Cosmos model schedule σ−→, ext−→
into an IO-block schedule σ̂−→, ex̂t−→ with np = 4; boxes marked with 0 to 3 are
steps of machines with the respective identifier; greyish steps are representing
IO steps; lightnings denote reactions to external inputs; I2 and I3 are singleton
sets containing input signals handled only by machine 2 and 3 respectively;
arrows illustrate the reordering of IO steps

p can be reordered across steps of other machines. Nevertheless the order in
which p executes them is preserved.

Note also that in the figure it appears that external inputs obey the common
external interrupt convention which states that interrupt signals should be sta-
ble until they are acknowledged by the receiver. We maintained this conven-
tion in both schedules σ−→ and σ̂−→ for the steps where the respective receiving
machines where not scheduled. As we mentioned before external inputs for
machine p in ext−→ at step i are redundant when σi 6= p and we can actually omit
them. However in the example we kept active the inputs for 2, and 3 respec-
tively, also during steps of other machines in order to keep the picture simple
and convey the actual continuity of the input in a real application where all
machines are truly running in parallel. In a concurrent system with a schedul-
ing function there is only an abstract notion of timing for inputs and interrupts,
tied to the steps of machines reacting to them. This connection between ma-
chine steps and external inputs wrt. C−→ and Ĉ−→ is formulated in u

√
reord.

Observe that we do not need the valid reordering property for soundness.
In our setting Cosmos model executions must be safe for all schedules and ex-
ternal input sequences, hence it is sufficient to find an arbitrary unsafe IO-
block schedule starting in the same configuration to guarantee soundness. We
believe that our formulation of this order reduction theorem is correct and us-
able. For demonstration in Section 4.5 we will show how to apply it in a system
verification task and transfer safety and verified program properties from IO-
Block schedules to arbitrary ones. Before we give the proof of the theorem we
have to introduce some helpful notation and lemmata.

24

4.3 Auxilliary Definitions and Lemmata

In order to prove the theorem we split the equality between CSO configura-
tions into two subrelations≈p and≈p which distinguish the machine-local and
the global state wrt. some machine p. Based on these relations we introduce
helpful lemmata which we will use in the reordering proof later on. Firstly we
define the two equivalence relations≈p and≈p on the set of Cosmos model con-
figurations taking into account the memory contents of the ownership domain
and the register values of a certain machine p < np.

C ≈p C ′ ≡ C ∼p C ′ ∧ C o∼p C ′
C ≈p C ′ ≡ ∀p′ 6= p. C ∼p′ C ′ ∧ C sv∼ C ′ ∧ Op = O′p

The relations shall imply that from equivalent configurations a machine p will
take the same local step for ≈p, or any other machine than p will take the same
step for ≈p respectively. Below we make some useful observations.

Corollary 2 From the definitions it directly follows for any p ∈ Nnp that

1. C ≈p C ′ ∧ C ≈p C ′ is equivalent to C = C ′.

2. C ≈p C ′ implies C ≈p′ C ′ for all p′ 6= p.

3. C ≈p C ′ implies C o∼ C ′.

4. C ≈p C ′ and ωp(C) = ωp(C
′) implies in(C, p′, ext) = in(C ′, p′, ext) due to

constrω(p′) for all p′ ∈ Nnp and ext ⊆ E.

5. C ≈p C ′ and C sv∼ C ′ implies C ∼Ap C ′ for the set A = Op ∪ C.S ∪R.

Assuming the parameter constraint we can prove the following lemmata for
our relations ≈p and ≈p.

Lemma 2 The relations C ≈p C ′ and C ≈p C ′ are equivalence relations for any
machine p ∈ Nnp.

PROOF: Obviously C ∼p C ′ is reflexive. Moreover it is symmetric and transi-
tive in conjunction with Op = O′p which is guaranteed by C o∼p C ′. The latter
is an equivalence relation because it only uses unquantified equalities in its
definition. Hence C ≈p C ′ is an equivalence relation as well. C ≈p C ′ is an
equivalence relation because its definition is based exclusively on equalities,
C

o∼p C ′ and the equivalence relation v∼p. �

We need a lemma on the safety of steps in equivalent Cosmos configurations.

Lemma 3 (Safety of Equivalent Configurations) Given two related CSO configura-
tions Ci and Ĉi and sets of external inputs exti, ex̂ti ⊆ E. If any machine p performs
a safe step wrt. Ci and exti, then the same step is also safe wrt. Ĉi and ex̂ti according
to the following statements.

1. If p takes a safe local step, then the same step is safe and local in an equivalent
system if there the machine does not see more inputs.∧{

Ci ≈p Ĉi, /IOp(Ci),
safep(C

i), inp(Ĉ
i) ⊆ inp(Ci)

}
=⇒ safep(Ĉ

i) ∧ /IOp(Ĉi)

25

2. If two system configurations are equivalent with respect to all machines p′ 6= p,
and such a machine takes a safe step in one system, then the same step is also
safe in the other one if the same outputs of p are seen.

∧{
Ci ≈p Ĉi, safep′(C

i),

ωp(C
i) = ωp(Ĉ

i)

}
=⇒

∧{
safep′(Ĉ

i),

IOp′(Ci) = IOp′(Ĉi)

}
PROOF: There are two parts of the Lemma to be shown.

1. Machine p is performing a local step and Ci ≈p Ĉi holds. By Lemma 1
we know that the step of p from Ci is sound, in particular it does not
react to any of the active inputs. Since machine p sees in Ĉi at most
the same inputs as in Ci, we have /reacts(Ci, p, in(Ĉi, p, ex̂ti)) by con-
straint constrreact(p) and because cip = ĉip is implied by Ci ≈p Ĉi also
/reacts(Ĉi, p, in(Ĉi, p, ex̂ti)). Thus in Ĉi machine p does not react to any
input, too. With the definition of reacts we obtain:

δp(C
i, p, in(Ci, p, exti)) = δp(C

i, p, ∅)
δp(Ĉ

i, p, in(Ĉi, p, ex̂ti)) = δp(Ĉ
i, p, ∅)

Therefore we can assume in(Ci, p, exti) = ∅ = in(Ĉi, p, ex̂ti) in the fol-
lowing. Then in Ĉi machine p also does not perform an IO step ac-
cording to constrIO(p). From constrsafe(p) and Ci

o∼p Ĉi we deduce
safep(Ĉ

i) and our claim holds.

2. From Ci ≈p Ĉi we get Ci ≈p′ Ĉi by Corollary 2.2 and thus Ci ∼p′ Ĉi.
Consequently the IO predicate has the same value in both configura-
tions due to constrIO(p′). By Corollary 2.4 we know that p′ sees the same
inputs in both systems. Since Ci o∼ Ĉi holds by Corollary 2.3, the owner-
ship configuration is equal. Finally we obtain the safety of the step in the
equivalent system safep′(Ĉ

i) from constrsafe(p
′). �

Furthermore we can prove two lemmata concerning machine steps on equiva-
lent configurations wrt. ≈p and ≈p.

Lemma 4 (Local Processor Step) Assuming machine p takes a safe, local step under
external inputs exti in a configuration Ci where inv(Ci) holds, we execute the same
step under inputs ex̂ti on a configuration Ĉi which is equivalent wrt. processor p.
Then the resulting configurations are equivalent again and the environment is unaf-
fected by the local step of p if in Ĉi not more inputs that in Ci are seen by p.

∧
/IOp(Ci), Ci ≈p Ĉi, inp(Ĉ

i) ⊆ inp(Ci)
Ci −→∆,p,exti C

i+1, Ĉi −→∆,p,ex̂ti Ĉ
i+1,

inv(Ci), inv(Ĉi), safep(C
i)

 =⇒
∧Ci+1 ≈p Ĉi+1,

Ci ≈p Ci+1,

Ĉi ≈p Ĉi+1

PROOF: By Lemma 3.1 the step of p in Ĉi is also safe and local. From the
soundness of both steps (Lemma 1) and the definition of ≈p we see that all
information accessible to the machines in a local step is equal. By constrδ(p)
the same local operation is executed by p in both system configurations Ci and
Ĉi. Subsequently we prove the three claims one by one.

26

1. Ci+1 ≈p Ĉi+1 - Inserting the definitions for Ci ≈p Ĉi we obtain:

cip = ĉip Ci
o∼p Ĉi ∀adr ∈ Oip ∪R. Ci.m(adr) = Ĉi.m(adr)

Both systems perform a local step according to δp. Sound accesses may
only access memory addresses from the set Oip ∪ R which is equal to
Ôip ∪ R due to Ci o∼p Ĉi. However all these memory cells have the same
content. Additionally both machines may only access their own machine
configurations cip = ĉip. Therefore by the constrδ(p) we know that both
machines will perform the same local step. Hence we have:

ci+1
p = ĉi+1

p , ∀adr ∈ Oip ∪R. Ci+1.m(adr) = Ĉi+1.m(adr)

The ownership state also does not change for local steps. From this ob-
servation Ci o∼ Ci+1, Ĉi o∼ Ĉi+1 follows Ci o∼p Ci+1 and Ĉi

o∼p Ĉi+1 by
Corollary 1. As we have Ci o∼p Ĉi and o∼p is an equivalence relations we
obtain:

Ci+1 o∼p Ĉi+1

Since also Oip ∪R = Oi+1
p ∪R the condition on local memory above now

matches the definition of Ci+1 ∼p Ĉi+1 and we conclude Ci+1 ≈p Ĉi+1.

2. Ci ≈p Ci+1 - Again we know that the ownership state does not change
for local steps i.e., Ci o∼ Ci+1 and in particular Oip = Oi+1

p . Furthermore
the step of p is sound wrt. the ownership policy. We prove the memory
consistency condition first. Memory soundness conditions forbid local
writes to shared addresses. Hence Ci s∼ Ci+1 holds and also Ci sv∼ Ci+1

as a sound local step of p cannot alter its visible components or other
machine states. Moreover it is forbidden to write to addresses owned
by other processors. Ownership invariants guarantee that these sets are
disjoint from the owned addresses of p. Therefore

∀adr, p′ 6= p. adr ∈ Oip′ =⇒ Ci.m(adr) = Ci+1.m(adr)

and also ∀adr ∈ R. Ci.m(adr) = Ci+1.m(adr) as read-only memory is
never modified. Additionally ∀p′ 6= p. Ci.s[p′] = Ci+1.s[p′] holds because
other machine states cannot be altered by steps of p, thus

∀p′ 6= p. Ci ∼O
i
p′∪R

p Ci+1

which is the definition of:

∀p′ 6= p. Ci ∼p Ci+1

Now our claim Ci ≈p Ci+1 follows from the definition of ≈p.

3. Ĉi ≈p Ĉi+1 - Lemma 3 yields safep(Ĉi) and /IOp(Ĉi). The rest of the
proof is analogous to the one above. �

27

Lemma 5 (Environment Steps) Given is a Cosmos model performing n consecutive
steps according to schedule σ−→ under external inputs ext−→ starting in the consistent
configuration Ci with inv(Ci).

Ci −→∆,σi,exti C
i+1 −→∆,σi+1,exti+1 · · · −→∆,σi+n−1,exti+n−1 Ci+n

Now assume that ∀j ∈ [i : i + n) = I. σj 6= p i.e., machine p is never scheduled in
the interval I , and all steps of the other machines are safeσj (Cj), then it holds:

1. Ci ≈p Ci+n ∧ inv(Ci+n)

2. ∀Ĉ−→.
∧

Ĉi ≈p Ci, inv(Ĉi),

Ĉi −→n
∆,σ,ext Ĉ

i+n,

ωp(Ĉ
i) = ωp(C

i)

 =⇒ ∧
Ĉi+n ≈p Ci+n, inv(Ĉi+n),

∀j ∈ I. safeσj (Ĉj),

ωp(Ĉ
i+n) = ωp(C

i+n)

PROOF: Both parts can be proven by induction on n.

1. Induction Start: n = 0. The claim becomes trivial:

Ci = Ci+0 =⇒ Ci ≈p Ci+n
inv(Ci) =⇒ inv(Ci+n)

Induction Hypothesis: The claim holds for an arbitrary but fixed n.∧{
Ci −→n

∆,σ,ext C
i+n, inv(Ci),

∀j ∈ [i : i+ n). σj 6= p ∧ safeσj (Cj)

}
=⇒

∧{
Ci ≈p Ci+n,
inv(Ci+n)

}
Induction Step: n→ n+1. We can directly apply the induction hypothesis
on the first n steps of Ci −→n+1

∆,σ,ext C
i+n+1 obtaining:

Ci ≈p Ci+n ∧ inv(Ci+n)

By Lemma 1 and the prerequisite safeσi+n(Ci+n) we get the invariant
inv(Ci+n+1) and the definition of ≈p gives us:

IH =⇒
∧{

cip = ci+np , Ci
o∼p Ci+n,

∀adr ∈ Oip ∪R. Ci.m(adr) = Ci+n.m(adr)

}
Since σi+n = p′ 6= p we immediately have cip = ci+n+1

p and Oip = Oi+n+1
p .

The step of machine p′ 6= p is safe, thus it is also sound by Lemma 1 and
p′ cannot alter data which is owned by p. We know also that read-only
addresses are never written by sound accesses, therefore

∀adr ∈ Oip ∪R. Ci.m(adr) = Ci+n+1.m(adr)

and Ci ∼p Ci+n+1 holds. The equivalence of the terms Oip ∩ Ci.S and
Oi+n+1
p ∩ Ci+n+1.S is left to show. From induction hypothesis we have:

Oip ∩ Ci.S = Oi+np ∩ Ci+n.S
Again we argue using the soundness of the n+1-st step and the owner-
ship invariants. Then it follows:

Oi+n+1
p ∩ Ci+n+1.S = Oi+np ∩ Ci+n.S = Oip ∩ Ci.S

Only p can share or unshare the addresses it owns, consequently we have
Ci

o∼p Ci+n+1 and thus Ci ≈p Ci+n+1 which completes our proof of the
first part of the lemma.

28

2. Induction Start: n = 0. We directly have:

Ci = Ci+0 ∧ Ĉi = Ĉi+0 ∧ Ci ≈p Ĉi =⇒ Ci+n ≈p Ĉi+n
Ĉi = Ĉi+0 ∧ inv(Ĉi) =⇒ inv(Ĉi+n)

The safety statement becomes trivial as there is no step taken at all.
Induction Hypothesis: The claim shall hold for an arbitrary but fixed n

given that the steps from configuration i to i + n are safe. For all Ĉ−→ we
then have:

∧
Ĉi ≈p Ci, inv(Ĉi),

Ĉi −→n
∆,σ,ext Ĉ

i+n,

ωp(Ĉ
i) = ωp(C

i)

 =⇒
∧

Ĉi+n ≈p Ci+n, inv(Ĉi+n),

∀j ∈ [i : i+ n). safeσj (Ĉj),

ωp(Ĉ
i+n) = ωp(C

i+n)

Induction Step: n → n + 1. by Induction Hypothesis the claim already
holds for configuration Ĉi+n and the steps from i to i + n − 1. From
Lemma 3.2 we get the safety of step i+ n. Hence:

∀j ∈ [i : i+ n+ 1). safeσj (Ĉj)

With inv(Ĉi+n) and Lemma 1 we have inv(Ĉi+n+1). The definition of≈p
gives us:

∀p′ 6= p. Ci+n ∼p′ Ĉi+n Ci+n
sv∼ Ĉi+n Oi+np = Ôi+np

Let p′′ 6= p perform the n+1-st step in the computation starting inCi or Ĉi

respectively. For any safe step of p′′ we get by Lemma 5.1 that relation≈p′
is preserved for all p′ /∈ {p, p′′}, thus by Corollary 2.2 and the transitivity
of ≈p′ we have:

∀p′ /∈ {p, p′′}. Ĉi+n+1 ≈p′ Ci+n+1

Conforming to constrω for p′ and p′′ all these machines have the same
outputs to other machines in both configurations Ĉi+n and Ci+n since
their local state and all visible machine components are consistent. Also
for p outputs are identical by IH . Using the same external input sequence
inputs to p′′ are identical by Corollary 2.4. Since all state and memory
accessible to p′′ is equal in both systems, we know that the same step is
executed according to constrδ(p

′′), yielding the same results Ci+n+1 sv∼
Ĉi+n+1 and Ci+n+1 ∼p′′ Ĉi+n+1. In combination we have:

∀p′ 6= p. Ĉi+n+1 ∼p′ Ci+n+1 Ci+n+1 sv∼ Ĉi+n+1

Note that we are applying soundness of the step of p′′ here. By induction
hypothesis all values that p′ may safely read have the same value, there-
fore the same results are written. All other memory contents preserve
their value by constrmem(p′′). In the construction of ∆ we see that the
owned set of p can not be altered by p′′, hence:

Oi+n+1
p = Oi+np

IH
= Ôi+np = Ôi+n+1

p

29

Consequently we can apply the definition of ≈p again and conclude:

Ĉi+n+1 ≈p Ci+n+1

By the construction of ∆ we get ci+np = ci+n+1
p and ĉi+np = ĉi+n+1

p as well
as ci+np′

v∼p′ ci+n+1
p′ and ĉi+np′

v∼p′ ĉi+n+1
p′ for p′ 6= p′′. Thus by constrω(p)

we get for all α ∈ Op \ Ip′′ :

ωp(C
i+n+1) =α ωp(C

i+n) = ωp(Ĉ
i+n) =α ωp(Ĉ

i+n+1)

For outputs α ∈ Op ∩ Ip′′ targetting machine p′′ we have by the second
condition of constrω(p) and ci+n+1

p′′
v∼p′′ ĉi+n+1

p′′ :

ωp(C
i+n)

IH
= ωp(Ĉ

i+n) =⇒ ωp(C
i+n) =α ωp(Ĉ

i+n)

=⇒ ωp(C
i+n+1) =α ωp(Ĉ

i+n+1)

As ωp(Ci+n+1) =α ωp(Ĉ
i+n+1) holds for all α ∈ Op we can deduce the

desired ωp(Ci+n+1) = ωp(Ĉ
i+n+1).

Having shown its two parts to be correct the lemma holds. �

4.4 Reordering Proof

In the following we will present proofs of the two parts of our IO-block sched-
ule reordering theorem.

4.4.1 Existence

First we need to show that there is a valid reordering for all possible safe ISA
traces. Later we can use this property in the soundness proof.

∀C−→, σ−→, ext−→, n . safety(C−→, n)

⇓

∃Ĉ−→, σ̂−→, ex̂t−→, u .
∧

safety(Ĉ−→, n), IOsched(Ĉ−→, n),

Ĉ0 = C0, Ĉn = Cn,

∀i < n. C−→, Ĉ−→, i ` u
√
reord

PROOF: By induction on n.

Induction Start: For n = 0 the IOsched, extconv and u
√
reord claims hold triv-

ially for arbitrary σ̂, ex̂t and u. Since no step is taken at all the safety claim
reduces to inv(Ĉ0). It holds by construction C0 = Ĉ0 which also proves the
remaining Ĉn = Cn.

Induction Hypothesis: Given an arbitrary schedule σ−→ and external interrupt se-
quence ext−→we assume a safe Cosmos model computation C−→, then we can obtain
the induction hypothesis.

∃C̄−→, σ̄−→, ex̄t−→, ū.
∧

safety(C̄−→, n), IOsched(C̄−→, n),

C̄0 = C0, C̄n = Cn,
∀i < n. C−→, C̄−→, i ` ū

√
reord

30

Induction Step: n → n + 1, Let us now consider a safe n+1-step execution trace
C−→ under external interrupts ext−→ and the schedule σ−→. By induction hypothesis,
for the n-step subsequence

C0 −→∆,σ0,ext0 C
1 −→∆,σ1,ext1 · · · −→∆,σn−1,extn−1 Cn

we can find a safe and equivalent IO-block schedule C̄−→, σ̄−→ under external in-
puts ex̄t−→ and inverse reordering function ū according to induction hypothesis.
Now we perform a case distinction over the nature of the operation to be exe-
cuted on machine σn in the n+1-st step of the execution sequence.

1. IOσn(Cn): The n+1-st step starts a new IO-block. Independent of the
machine previously executing this is always allowed in an IO-block sched-
ule. Thus σ̂n = σn and the same step is executed in both schedules. The
new inverse reordering function u is defined as follows.

u(i) =

{
ū(i) : i < n

i : otherwise

We create the new schedule and external event sequence

σ̂−→ = σ̄−→[0 : n), σn ex̂t−→ = ex̄t−→[0 : n), extn

by appending the final step of σ−→. Thus Ĉ0 = C0 holds by construction.
We can easily show the remaining five claims.
Because the first n steps of our reordered schedule are identical to the
IH execution trace we get Ĉ0 −→n

∆,σ̂,ex̂t Ĉ
n for free. Naturally we can

extend the trace for one more step using ∆, σ̂ and ex̂t.

∧{ Ĉ0 −→n
∆,σ̂,ex̂t Ĉ

n (IH),

Ĉn+1 = ∆(Ĉn, σ̂, ex̂t)

}
=⇒ Ĉ0 −→n+1

∆,σ̂,ex̂t Ĉ
n+1

By induction hypothesis the configuration Ĉn is identical to Cn and the
n+1-st step is scheduled on the same processor under the same external
interrupts. Since machine execution is deterministic also the resulting
configurations are equal after n+ 1 steps for the two different schedules.

∧ Ĉn = C̄n
IH
= Cn,

σ̂n = σn,
ex̂tn = extn

 =⇒ Ĉn+1 = Cn+1

All steps in the IH schedule are safe and the reordered schedule equals
the former for the first n steps. Hence this part is safe. As the last step
equals the safe step in the original schedule the complete new one is safe.

∧
∀i < n. safeσ̂i(Ĉi) (IH),

Ĉn
IH
= Cn, σ̂n = σn,

ex̂tn = extn, safeσ̂n(Cn)

 =⇒ ∀i < n+ 1. safeσ̂i(Ĉi)

31

By construction Ĉ0 = C0 we also have inv(Ĉ0). What is left to show
is that the resulting interleaving of processor steps is a valid IO-block
schedule reordering. For the first n steps this holds trivially by IH.

∧

IOsched(C̄−→, n) (IH),

Ĉ−→[0 : n) = C̄−→[0 : n)

σ̂−→[0 : n) = σ̄−→[0 : n)

ex̂t−→[0 : n) = ex̄t−→[0 : n)

 =⇒ IOsched(Ĉ−→, n)

Since the last step starts a new IO-block on machine σn with an IO step
and both traces perform the same step, the IOsched property holds also
for the complete reordered trace.

∧
IOsched(Ĉ−→, n), IOσn(Cn),

Ĉn
IH
= Cn, σ̂n = σn,

ex̂tn = extn, Def. IOsched

 =⇒ IOsched(Ĉ−→, n+ 1)

By induction hypothesis and construction of u we know already that
the first n steps of the new schedule are a valid reordering. Due to the
identity of configurations and external inputs and since the same step is
scheduled the last claim holds trivially:

∀i < n+ 1. C−→, Ĉ−→, i ` u
√
reord

2. /IOσn(Cn) ∧ σn = σ̄n−1: The additional n+1-st step belongs to the same
machine as the last one in the reordered IH schedule. According to the
definition of IO-block schedules we can add it to the last IO-block in the
induction hypothesis schedule with no need for further reordering. We
construct the IO-block schedule and prove all claims analogously to the
previous case. The only difference is made for the proof of the property
IOsched(Ĉ−→, n+ 1). The definition of IOsched gives us here:

IOsched(Ĉ−→, n) ∧ (σ̂n 6= σ̂n−1 =⇒ (IOσ̂n(Ĉn) ∨ ∀i < n. σ̂i 6= σ̂n))

The first requirement is fulfilled by induction hypothesis and the con-
struction Ĉ−→[0 : n) = C̄−→[0 : n). The second requirement is irrelevant for
our case since:

σ̂n = σn = σ̄n−1 = σ̂n−1

Therefore the first part of the reordering theorem holds for this case, too.

3. ∀i < n. σn 6= σ̄i: The n+1-st step is executed by a machine which was
never scheduled before. Since the first n steps of the IH schedule are
already representing an IO-block schedule, we can simply append the
additional step to the IH trace and obtain a valid IO-block schedule of
n + 1 steps. This case is explicitely treated in the definition of IOsched.
The claims of the theorem are proven completely alike to the above cases.

32

4. /IOσn(Cn) ∧ σn 6= σ̄n−1 ∧ ∃j. j = max{k + 1 | k < n ∧ σ̄k = σn}:
The n+1-st step does not belong to the previous IO-block in the IH sched-
ule, it does not start a new IO-block and machine σn was run before al-
ready. Hence we have to reorder the step to the end of the last IO-block
of σn, namely we insert it before step j in σ̄−→ which is the first step after
the last IO-block of σn = p.

u(i) =

ū(i) : i < j

n : i = j

ū(i− 1) : otherwise

We construct our IO-block schedule with σ̂ and ex̂t as follows.

σ̂i =

σ̄i : i < j

σn : i = j

σ̄i−1 : i > j

ex̂ti =

ex̄ti : i < j

extn : i = j

ex̄ti−1 : i > j

The reordering is implemented by setting σ̂j = σn = p in the schedule
and using the same external inputs as in the original schedule. Recall
that the external inputs for other machines are redundant in this step
and also no other mahine than the dedicated receiver p can react to or
acknowledge its external inputs .Thus we can just move them to step j in
the new schedule such that p observes the same external inputs. We will
later argue that due to soundness conditions machine p will also see at
most the same (if not less) internal inputs from other machines.

The execution sequence Ĉ−→ is computed accordingly.

Ĉ0︸︷︷︸
=C̄0

−→j
∆,σ̄,ex̄t Ĉ

j︸︷︷︸
=C̄j

−→∆,σn,extn Ĉ
j+1 −→n−j

∆,σ̂,ex̂t Ĉ
n+1

In order to show the validity of the new schedule we compare it to an-
other schedule created by just appending the n+1-st step of σ−→ to the IH

schedule σ̄−→ as in the three previous cases.

σ̄n = σn ex̄tn = extn C̄n+1 = Cn+1

For such a trace all desired properties besides IOsched obviously hold
as shown before. On the other hand Ĉ−→, σ̂−→ and ex̂t−→ represent an IO-
block schedule. We conduct the reordering proof below in five consecu-
tive steps as shown in Figure 2.

I. We have to show the safety and equivalence of Ĉ−→ wrt. C̄−→. For all
i < j we have σ̂i = σ̄i and ex̂ti = ex̄ti by construction. Since also
Ĉ0 = C̄0 induction hypothesis gives us Ĉj = C̄j and safety(Ĉ−→, j).
Examining the recursive definition of IOsched we see that in gen-
eral we have the following inductive property.

(∃x > 0. IOsched(C−→, x)) =⇒ ∀y < x. IOsched(C−→, y)

33

D̂0

D̄0

=

σ̄[0 : j − 1]

ex̄t[0 : j − 1]

D̄j

D̂j

=

D̂j+1
ex̄tj

D̄n

D̂n+1

D̄n+1

σ̄[j : n − 1]

ex̄t[j : n − 1]

σ̄[j : n − 1]

ex̄t[j : n − 1]

≈p ≈p

≈p

≈p

≈p

≈p

≈p

≈p

III.

III.

I.

II.

III.

III.

IV.

II.

V.

=
V.

σ̄[0 : j − 1]

ex̄t[0 : j − 1] extn

p

p

Figure 2: Proof sketch for consistency and safety of the lower reordered Cosmos
model trace Ĉ−→, σ̂−→, ex̂t−→ wrt. the upper extended IH trace C̄−→, σ̄−→, ex̄t−→. Step I. re-
lies on the induction hypothesis and the equality of the traces, Step II. applies
Lemma 5.1, in Step III. we use Lemma 3.1 and 4, Lemma 5.2 enables Step IV., we
conclude by applying Lemma 5.1 on the IO-block schedule in Step V. Straight
arrows indicate ∆ state transitions using the given schedule and external input
parameters. Dashed arrows represent equivalence relations as annotated.

Thus IOsched(C̄−→, j) holds by IH i.e., the first j steps of the trace

leading into configuration Ĉj are an IO-block schedule and since
these steps are identical for both schedules we immediately obtain
IOsched(Ĉ−→, j). Also we know that j − 1 was the last step when p

was running in the IH schedule. As we now schedule the original
n+1-st step we have σ̂j = p = σ̂j−1. Therefore IOsched(Ĉ−→, j + 1)

holds by the definition of IOsched.
Similarly we know that the first j steps of the new schedule are a
valid reordering according to induction hypothesis and the identity
of the execution traces.

II. From Ĉj = C̄j we directly obtain Ĉj ≈p C̄j and Ĉj ≈p C̄j using
Corollary 2.1. In the current case we know that p is not scheduled
in σ̄ until the n+1-st step and from the safety of the steps until j − 1
we deduce inv(C̄j) by inductive application of Lemma 1. Therefore
and since the next n− j steps in C̄−→ are safe by induction hypothesis
we can apply Lemma 5.1 obtaining:

Ĉj ≈p C̄n inv(C̄n)

Also Ĉj ∼p C̄n holds by definition of ≈p. Since the steps j to n − 1
are safe in C̄−→ other machines p′ 6= p do not deactivate any outputs
that p observes during their steps. They might activate outputs for p
though. When they are not stepped their outputs for p are constant
due to constrω(p′) and the fact that p’s visible components do not
change. Therefore and by ex̂tj = ex̄tn we have in(Ĉj , p, ex̂tj) ⊆
in(C̄n, p, ex̄tn). The construction σ̂j = σ̄n = σu(j) = p and the third

34

condition of constrIO(p) then gives us:

IOσ̂j (Ĉj) = IOσ̄n(C̄n) = IOσu(j)(Cu(j))

Since the step is local we deduce that the first j + 1 steps of the
schedule are a valid reordering of the original trace.

∀i < j + 1. C−→, Ĉ−→, i ` u
√
reord

III. In both systems p is performing the next step in these configurations
because σ̂j = σ̄n = p. Moreover safeσ̄n(C̄n) holds by precondi-
tion, IH and Lemma 3.1. We already argued above that inp(Ĉj) =
inp(C̄

j) ⊆ inp(C̄n) thus by Lemma 4 we know:

Ĉj+1 ≈p C̄n+1 Ĉj ≈p Ĉj+1 C̄n ≈p C̄n+1

From Lemma 3.1 we get safeσ̂j (Ĉj) and Lemma 1 yields inv(Ĉj+1).
With the soundness of the local step and constrω(p′) we also see that
∀p′ ∈ Nnp. ωp′(Ĉj+1) = ωp′(Ĉ

j) = ωp′(C̄
j) as we have Ĉj v∼ Ĉj+1.

IV. For i ≤ j we already have safe(Ĉi, σ̂i, ex̂ti) as shown above. From
Ĉj+1 or C̄j , respectively, both systems perform the same n− j steps
as σ̂(i) = σ̄(i−1) and ex̂ti = ex̄ti−1 holds for all i ∈ [j+1 : n]. Using
Ĉj+1 ≈p Ĉj = C̄j Lemma 5.2 implies Ĉi ≈p C̄i−1 and ωp(Ĉ

i) =

ωp(C̄
i−1) for each i. The former yields Ĉi ∼σ̂i−1 C̄i−1 hence ĉiσ̂i =

c̄i−1
σ̄i−1 and for all p′ 6= p also ωp′(Ĉi) = ωp′(C̄

i−1) by definition of ≈p
and constrω(p′).
Thus in the corresponding configurations all machines but p have
the same configuration and the same inputs are observed in the sys-
tem. Consequently we have IOσ̂i(Ĉi) = IOσ̄i−1(C̄i−1) by the first
condition of constrIO(σ̂i) and with IH as well as the definition of
IOsched induction on i yields:

IOsched(Ĉ−→, i+ 1)

For i = n we finally obtain the desired IOsched(Ĉ−→, n + 1) and by
Lemma 5.2 we obtain:

Ĉn+1 ≈p C̄n safety(Ĉ−→, n+ 1)

As stated above we have Ĉi ∼σ̂i−1 C̄i−1 and the steps i in Ĉ−→ and
steps i − 1 in C̄−→ are consistent wrt. predicate IO. By induction hy-
pothesis and construction, consistency holds also with the original
schedule steps u(i) = ū(i − 1). Hence Ĉi ≈p Cu(i). By Lemma
5.2 we have ωp(Ĉi) = ωp(C

u(i)), i.e., outputs are consistent and by
ex̂ti = extu(i) the respective machines see the same inputs during
these steps.

inσ̂i(Ĉi) = inσ̂i(C̄i−1)
IH
= inσ̂i(C ū(i−1)) = inσ̂i(Cu(i))

35

With the construction σ̂i = σ̄i−1 and u(i) = ū(i− 1) for j < i ≤ n we
get the desired σ̂i = σu(i) by induction hypothesis.

σ̂i = σ̄i−1 IH
= σū(i−1) = σu(i)

From Ĉi ≈p C̄(i−1) we deduce Ĉi
sv∼ Cu(i−1) and Ĉi

o∼ Cu(i−1)

by Corollary 2.3. From Ĉi ∼σ̂i−1 C̄i−1 we get Ĉi ∼σ̂i−1 Cu(i−1).
Moreover Ĉj ≈p C̄n = Cn = Cu(j) yields Ĉj ∼p Cu(j) as well as
Ĉj

o∼p Cu(j). Thus we obtain the validity of the reordered schedule.

∀i < n+ 1. C−→, Ĉ−→, i ` u
√
reord

V. By applying Lemma 5.1 on Ĉj+1 ≈p C̄n+1 for the steps from con-
figuration Ĉj+1 to Ĉn+1 we get Ĉn+1 ≈p C̄n+1 using the safety
of all these steps shown above. For the last step in C̄−→ we know
the environment is preserved from the invocation of Lemma 4 in
Step III. yielding C̄n ≈p C̄n+1. By the transitivity of ≈p we obtain
Ĉn+1 ≈p C̄n+1. Consequently by Corollary 2.1 we conclude:

Ĉn+1 ≈p C̄n+1 ∧ Ĉn+1 ≈p C̄n+1 ⇐⇒ Ĉn+1 = C̄n+1

Since all four cases are correct we have shown that for every safe n+1-step Cos-
mos model computation C−→ we can find a safe and equivalent IO-block sched-

ule Ĉ−→, σ̂−→, ex̂t−→ that is a valid reordering of the original one. �

4.4.2 Soundness

We have to show the following statement to ensure soundness of reordering.

∀C−→, σ−→, ext−→, n . C0 −→n
∆,σ,ext C

n ∧ /safety(C−→, n)

⇓

∃Ĉ−→, σ̂−→, ex̂t−→, n̂ ≤ n .
∧{ Ĉ0 −→n̂

∆,σ̂,ex̂t Ĉ
n̂, Ĉ0 = C0,

/safety(Ĉ−→, n̂), IOsched(Ĉ−→, n̂)

}
PROOF: We distinguish the cases n = 0 and n > 0. In the first case the term
/safety(C−→, n) collapses to /inv(C0) by definition which follows for Ĉ−→ from

construction Ĉ0 = C0. The IOsched condition holds trivially for arbitrary σ̂−→,
ex̂t−→ and u as no step is taken if n̂ = 0.

For n > 0 we examine the trace closer and search for the first step j that is
unsafe assuming that inv(C0) holds. Otherwise we set n̂ = 0 and conclude
analoguously to the first case.

j = min{i | /safeσi(Ci)}

Observe that safety(C−→, j) holds, thus we can apply the existence theorem we
proved above on the first j steps. We obtain inverse reordering function u and
a safe IO-block schedule C̄−→, σ̄−→, ex̄t−→ with C̄0 = C0:

C̄0 −→∆,σ̄0,ex̄t0 C̄
1 −→∆,σ̄1,ex̄t1 · · · −→∆,σ̄j−1,ex̄tj−1 C̄j

36

Again we have safety(C̄−→, j) and in addition IOsched(C̄−→, j) and C̄j = Cj .
Because of the latter we also have /safeσ̄j (C̄j) if we set σ̄j = σj and ex̄tj =
extj . Now there are two cases.
Either IOsched(C̄−→, j + 1), then our soundness claim holds with

Ĉ−→ = C̄−→, C
j+1 σ̂−→ = σ̄−→, σ

j ex̂t−→ = ex̄t−→, ext
j

and n̂ = j + 1 using induction hypothesis.
Otherwise we have to reorder the unsafe j+1-st step to get an IO-block sched-
ule. Note that by the definition of IOsched this step must be a local operation
of a processor p = σj 6= σ̄j−1 which was scheduled before already. We reorder
it after the last preceding step k − 1 of p in the schedule.

k = max{i+ 1 | i < j ∧ σ̄i = p}

The reordered schedule σ̂−→ and the corresponding external input sequence ex̂t−→
are defined as follows.

σ̂i =

{
σ̄i : i < k

p : i = k
ex̂ti =

{
ex̄ti : i < k

extj : i = k

For the resulting system trace Ĉ−→ we have Ĉi = C̄i for i ≤ k. Configuration

Ĉk+1 is the result of the first unsafe step on processor p and we do not care
about any subsequent system states. Obviously Ĉ−→, σ̂−→, ex̂t−→[0 : k − 1] is an IO-

block schedule and from σ̂k = σ̂k−1 we obtain IOsched(Ĉ−→, k+ 1). By Ĉk = C̄k

and Corollary 2.1 we have Ĉk ≈p C̄k. Since all steps until j are safe in schedule
σ̄−→ we can apply Lemma 5.1 and it follows:

Ĉk ≈p C̄j IH
= Cj

Def.
=⇒ Ĉk ∼p Cj ∧ Ĉk o∼p Cj

We have a soundness condition for outputs of machines p′ 6= p. Thus all ma-
chines keep their active outputs for p stable during the steps σ̄−→[k : j − 1] be-
cause p is not running then and the steps are safe.

∀i ∈ [k : j − 1], p′, α ∈ Op′ . α ∈ Ip ∩ ωp′(C̄i) =⇒ α ∈ ωp′(C̄i+1)

By construction p also sees the same external inputs in Ĉk and Cj . Then we
have inp(Ĉk) ⊆ inp(Cj) and constrsafe(p) yields the unsafeness of step k in σ̂−→.

We conclude /safety(Ĉ−→, n̂) with n̂ = k + 1. �

4.5 Application in System Verification

The value of a theorem shows itself in its application. As a sanity check, i.e.,
to prove that the order reduction theorem we have just presented is useful, we
consider a scenario where we have verified the safety of all system traces that
are IO-block schedules of length n̂. In addition we assume that an invariant P

37

has been shown for all configurations of the trace. We sum up the verification
result in the following predicate for an initial state Ĉ0 and the property P .

verifiedIO(C0, n̂, P) ≡
∀Ĉ−→, σ̂−→, ex̂t−→.∧{ Ĉ0 −→n̂

∆,σ̂,ex̂t Ĉ
n̂, Ĉ0 = C0,

IOsched(Ĉ−→, n̂)

}
=⇒ ∧{ safety(Ĉ−→, n̂),

∀i ≤ n̂. P (Ĉi)

}
Observe that verifiedIO(Ĉ0, n̂, P) implies ∀i ≤ n̂. verifiedIO(Ĉ0, i, P). Also
among the most interesting properties are invariants on shared resources. Hence
we assume for P here that it only depends on shared memory, the ownership
configuration and visible machine components.

∀C,C ′. C sv∼ C ′ ∧ C o∼ C ′ =⇒ P (C) = P (C ′)

Now it would be desirable if we could use the reordering theorem to infer the
safety as well as the validity of P for all traces independent of scheduling.

∀C−→, σ−→, ext−→, n.∧{ verifiedIO(C0, n, P),
C0 −→n

∆,s,ext C
n

}
=⇒ ∧{ safety(C−→, n),

∀i ≤ n. P (Ci)

}
PROOF: We concentrate on the safety property first. If we look at the soundness
part of our reordering theorem and take the complement we get:

∀C−→, σ−→, ext−→, n. ∀n̂ ≤ n.∀Ĉ−→, σ̂−→, ex̂t−→, u. ∧
{
Ĉ0 −→n̂

∆,σ̂,ex̂t C
n̂, Ĉ0 = C0,

IOsched(Ĉ−→, n̂)

}
=⇒ safety(Ĉ−→, n̂)

⇓

safety(C−→, n) ∨ C0 −→n
∆,σ,ext C

n

The implication in the bracket term above is derived from the negation of the
big conjunction and by application of DeMorgan’s Law pulling out the safety
term. The term C0 −→n

∆,s,ex̂t C
n can be transformed into an antecedent of the

overall implication as well. For all logical propositions A, B and C the follow-
ing implication holds.

(A⇒ B ∧ C) =⇒ (A⇒ B)

Then the bracket implication is implied by verifiedIO(Ĉ0, n̂, P) for all n̂ ≤ n if
we replace C with ∀i ≤ n. P (Ci). Hence the soundness theorem implies:

∀C−→, σ−→, ext−→, n.∧{∀n̂ ≤ n. verifiedIO(Ĉ0, n̂, P),
C0 −→n

∆,σ,ext C
n

}
=⇒ safety(C−→, n)

As ∀n̂ ≤ n. verifiedIO(Ĉ0, n̂, P) is implied by verifiedIO(Ĉ0, n, P) we have:

∀C−→, σ−→, ext−→, n.∧{ verifiedIO(C0, n, P),
C0 −→n

∆,σ,ext C
n

}
=⇒ safety(C−→, n)

38

For the proof of property transfer we can use the safety of all traces of the
system which follows from the verified safety of all IO-block schedules as we
just have shown. Now for the sake of contradiction we assume a safe trace
C−→ and search the minimal index j ≤ n for which P (Cj) does not hold. Then
by existence of the reordering there must exist an equivalent n-step IO-block
schedule with configurations Ĉ−→ such that Ĉ0 = C0 and Ĉn = Cn. Moreover
that schedule is a valid reordering of the original one and with the inverse
reordering function u we have:

∀i < n. C−→, Ĉ−→, i ` u
√
reord

If j = 0 or j = n we immediately have Ĉ0 = C0 and ¬P (Ĉ0) or Ĉn = Cn and
¬P (Ĉn) respectively.

If 0 < j < n and the next machine σj in the original schedule is about
to perform an IO step i.e. IOσj (Cj) holds, then we know that there exists a
corresponding IO step k < n in the reordered schedule such that u(k) = j.
Also from u

√
reord we get Ĉk sv∼ Cj and Ĉk o∼ Cj and it follows ¬P (Ĉk).

In the case of a local step the shared and visible system state must have
been altered by a preceding IO step of machine σj−1, since Cj is the earliest
configuration where P does not hold and only IO steps may modify shared
information. Thus IOσj−1(Cj−1) and we search for the step k− 1 such that we
have u(k − 1) = j − 1. Application of u

√
reord gives us:

Ĉk−1 ∼σ̂j−1 Cj−1 σ̂k−1 = σ̂j−1 Ĉk−1 sv∼ Cj−1

Consequently we have Ĉk
sv∼ Cj by constraint constrδ(σj−1) and since the

ownership sets of other machines remain unchanged due to construction of
∆ we have Ĉk o∼ Cj , too. Hence we obtain again that P doesn’t hold in the
IO-block schedule. Overall we have:

∃k ≤ n. ¬P (Ĉk)

However the verifiedIO(C0, n, P) predicate gives us

∀i ≤ n. P (Ĉi)

exposing the contradiction. Thus a trace C−→ with ¬P (Cj) cannot exist and the
verified property P holds for all schedules and configurations. �

5 IO-Block Machine Semantics

Based on the order reduction we now want to explore how to apply local simu-
lation theorems in a concurrent context. Our goal is to state and prove a global
Cosmos model simulation theorem which argues that the local simulation the-
orems still hold on individual machines. In particular the simulation relation
holds for a machine when it reaches an IO point. Since we may assume IO
block schedules, semantics can first be simplified. When introducing simula-
tion theorems on Cosmos models later on it is convenient to define semantics
where we consecutively execute IO-blocks. We call the machine implementing
such semantics the IO-block machine or short the block machine.

39

5.1 Definition

The block machine execution depends on the follow parameters.

• κ−→ : N∗np - the block schedule

• λ−→ : N∗ - the length of the blocks to be executed

• ext−→ :∗ 2E - a sequence of external inputs for every block

The transition function ∆B : C× Nnp × 2E × N→ C is defined as follows.

∆B(C, p, l, ext) =

{
∆B(∆(C, p, ext), p, l − 1, ∅) : l > 0

C : l = 0

We simply execute step by step until the end of the block. The first step of the
block is usually an IO step so it might depend on the external input. All other
steps must be non-IO steps which do not need any inputs because they are
by construction never reacting to them. We define a validity prdicate for block
machine executions C−→, κ−→, ext−→, λ−→ by defining the IOschedB predicate.

IOschedB(C−→, κ−→, λ−→, ext−→, n) ≡

∀i < n.
∧{ IOκi(Ci) ∨ ∀j < i. κj 6= κi, λi 6= 0,
∀j ∈ (0, λi). /IOκi(∆B(Ci, κi, j, exti), p, ∅)

}
For further definitions we introduce some notation to talk about IO steps of
machines p in Cosmos model computations.

nio(C−→, σ−→, ext−→, n) =

0 : n = 0

nio(n− 1) + 1 : n > 0 ∧∨{ IOσn−1(Cn−1),

∀i < n− 1. σi 6= σn−1

}
nio(n− 1) : otherwise

iop(C−→, σ−→, ext−→, i) = max{j | nio(j) = i}

Here nio counts the IO steps passed until configuration n in a computation
C−→, σ−→, ext−→. Conversely iop returns the step index of the IO step i. Note that in
this definition first steps of machines are also counted as IO steps. Basically
nio(n) tells us how many blocks must be formed out of an n-step IO-block
schedule. We use the following shorthands.

iop(i) =̂ iop(C−→, σ−→, ext−→, i) nio(n) =̂ nio(C−→, σ−→, ext−→, n)

Also here predicate parameters of the form C−→, κ−→, λ−→, ext−→ are abbreviated by C−→.

5.2 Simulation Theorem and Proof

In order to justify the block machine semantics we conduct a simulation proof
between safe IO-block schedules and safe executions of the block machine.

40

Furthermore we show that for every unsafe IO-block trace there exists a con-
sistent unsafe block execution. First we need to introduce safety for the block
machine.

safeB(C0, p, l, ext0) ≡
∀C−→, σ−→, ext−→.

∧{C0 = C0, σ
0 = p, ext0 = ext0,

∀i ∈ (0, l). σi = p ∧ exti = ∅

}
=⇒ safety(C−→, l)

According to the definition a block step out of a configuration C0 is safe if all
fine-grained steps inside the executed block are safe. The safety predicate is
then defined similarly to the one for Cosmos model traces.

C0 −→n
∆B ,κ,λ,ext

Cn inv(C0) ∀i < n. safeB(Ci, κi, λi, exti)

safetyB(C−→, κ−→, λ−→, ext−→, n)

Theorem 2 (Block Machine Simulation) We consider the simulation between an n-
step IO-block schedule C−→, σ−→, ext−→ and a corresponding IO-block machine computa-
tion Ĉ−→, κ−→, λ−→, ex̂t−→ starting in the same configuration and show the properties below.

1. (Existence) For any safe IO-block schedule we can find a safe block machine
execution trace that simulates the first one at all passed IO points.

∀C−→, σ−→, ext−→, n . safety(C−→, n) ∧ IOsched(C−→, n)

⇓

∃Ĉ−→, κ−→, λ−→, ex̂t−→ .
∧

Ĉ0 = C0, safetyB(Ĉ−→, nio(n)),

IOschedB(Ĉ−→, nio(n)),

∀i < nio(n).∧{ Ĉi = Ciop(i), κi = σiop(i),

ex̂ti = extiop(i),
∑i−1
j=0 λ

j = iop(i)

}

2. (Soundness) For any unsafe IO-block schedule there exists an unsafe block ma-
chine execution starting in the same configuration consisting of at most the same
total number of machine steps.

∀C−→, σ−→, ext−→, n .
∧{∀i < n. C0 −→i

∆,σ,ext C
i,

/safety(C−→, n), IOsched(C−→, n)

}
⇓

∃ Ĉ−→, κ−→, λ−→, ex̂t−→,
n̂ ≤ nio(n)

.
∧

∀i < n̂. Ĉ0 −→i
∆B ,κ,λ,ex̂t

Ĉi,

/safetyB(Ĉ−→, n̂), IOschedB(Ĉ−→, n̂),∑n̂−1
i=0 λ

i ≤ n

PROOF: We prove the simulation by induction on n and construct κ−→ and ex̂t−→ as
follows. For the schedule of the block machine we simply schedule machines
in the order of their IO steps in the IO schedule with the same external inputs.

κi = σiop(i) ex̂ti = extiop(i)

The existence property becomes trivial in the induction start with n = 0. Ob-
serve that we also have nio(n) = 0 and iop(0) = 0 by definition. All claims are

41

discharged by the identity of the initial configurations and the fact that no step
is taken. For induction hypothesis we assume the claims to hold for a fixed but
arbitrary n. In the induction step from n → n + 1 we assume a new IO-block
schedule with one step more. We have to make a case distinction on the new
last step of the n+ 1-step trace.

1. /IOσn(Cn) - the IO-block schedule was extended by a local step of some
machine. Because every prefix of a safe IO-block schedule is also a safe
IO-block schedule, for the n steps into configuration Cn all claims hold
by induction hypothesis. As no new IO step is added to the schedule the
block machine can not make another step and there is nothing further to
prove. In particular we have nio(n + 1) = nio(n) and the block machine
schedule, step numbers and external input sequence equal the ones we
get from induction hypothesis.

2. IOσn(Cn) - Machine σn = p′ performs an IO step, therefore we have
nio(n + 1) = nio(n) + 1. For all IO steps iop(i) < n we have simula-
tion and safety as well as the IO-block schedule property for the block
machine execution Ĉ−→, κ−→, λ−→, ex̂t−→ by induction hypothesis.

IH =⇒
∧{

Ĉ0 = C0, safetyB(Ĉ−→, nio(n)), IOschedB(Ĉ−→, nio(n)),

∀i < nio(n). Ĉi = Ciop(i) ∧∑i−1
j=0 λ

j = iop(i)

}

In the block machine execution we set κnio(n) = p′, ex̂tnio(n) = extn and
examine the last executed block step m = nio(n) − 1. By induction hy-
pothesis we also have Ĉm = Ciop(m) for the start of that last block by
machine κm = p. Because we have an IO-block schedule, all l steps from
Ciop(m) into Cn are executed by p, hence we set λm = l = n− iop(m) > 0.
Let C̄−→, σ̄−→, ex̄t−→ be the internal computation of the block starting in C̄m.

∀i ∈ [0 : l]. Ĉm −→i
∆,σ̄,ex̄t C̄

i ∧ σ̄i = p ∧ ex̄ti =

{
extm : i = 0

∅ : i > 0

Note that by the definition of ∆B we have

∀i ∈ [0 : l]. C̄i = ∆B(Ĉm, p, i, ex̂tm)

and consequently:

C̄l = ∆B(Ĉ, κm, λm, ex̂tm) = Ĉm+1 = Cnio(n) = Cnio(n+1)−1

Repeated applications of Lemmata 3.2 and 3.1 yield the safety of these
steps as we execute the same number steps of p as in C−→ with consistent
inputs. For the starting IO step into C̄1 we have the same inputs by
construction and IH. Hence by constrδ(p) and the identity Cm = Ciop(m)

it follows:

C̄1 = Ciop(m)+1

42

As the following non-IO steps are safe and the inputs are consistent we
can repeatedly apply Lemma 4 giving us:

∀i ∈ [0 : l].
∧

C̄i ≈p Ciop(m)+i,

Ciop(m)+i ≈p Ciop(m),

C̄i ≈p Ĉm

Thus from Ĉnio(n) = C̄l ≈p Ciop(m)+l = Cn and

Ĉnio(n) = C̄l ≈p Ĉm IH
= Ciop(m) ≈p Ciop(m)+l = Cn

we conclude Ĉnio(n) = Cn = Ciop(nio(n)) by Corollary 2.1. Also we have:

nio(n)−1∑
j=0

λj =

m∑
j=0

λj =

m−1∑
j=0

λj + l
IH
= iop(m) + l = n = iop(nio(n))

Recall that nio(n) = nio(n + 1) − 1. The safety safeB(Cm, p, l, extm) of
block step m follows from the observation derived before from induction
hypothesis.

∀i ∈ [0 : l). safep(C̄
i)

If we set λnio(n) = 1 the safety of the last block step follows directly from
the equality of configurations and inputs by constrsafe(p). Therefore we
also have the block trace safety property for nio(n+ 1).

Similarly ∀i ∈ (0 : l). /IOp(C̄i, p, ∅) due to Lemma 3.1, IOp(Ĉm) by in-
duction hypothesis, and by constrIO(p′) we have IOp′(Ĉnio(n)) because
Ĉnio(n) = Cn and ex̂tnio(n) = extn. Hence also IOschedB(Ĉ−→, nio(n+ 1))

holds. This finishes the block machine existence proof.

For the soundness proof we proceed in a way similar to that of the IO-block
reordering soundness proof. We need to find the first step j < n in C−→ that
is unsafe and use the existence theorem to build an equivalent block machine
trace Ĉ−→, κ−→, λ−→, ex̂t−→ leading into configuration Ĉk where:

k =

{
nio(j) : IOσj (Cj)

nio(j)− 1 : otherwise

k−1∑
i=0

λi = iop(k)

In the IO-block schedule C−→machine σj = p executes l = j − iop(k) steps from
Ciop(k) until the unsafe step j, hence we set λk = l+1. By the existence theorem
we have Ĉk = Ciop(k). By Lemmata 3.1 and 3.2, the remaining l steps are safe
and with constrδ(p) as well as Lemma 4 we deduce for C ′ = ∆B(Ĉk, p, l, ex̂tk):

C ′ ∼p Cj C ′
o∼ Cj

As also the inputs are consistent by construction, constrsafe(p) yields that the
next step is /safe(C ′, p, ∅). Consequently we set n̂ = k + 1 and get:

/safetyB(Ĉ−→, k + 1)

n̂−1∑
i=0

λi = iop(k) + l + 1 = j + 1 ≤ n

All other claims follow analoguously to the existence proof and from the con-
struction of the block trace. This completes our proof. �

43

5.3 Property Transfer

To demonstrate the usefulness of the block simulation theorem we again con-
sider its application in a property transfer scenario. In particular we want to
focus on safety as well as local functional properties Pf : C×Nnp×C→ B and
global invariants on shared and visible state Pg : C → B. The functional prop-
erties shall specify transitions on local state, e.g., the effect of one complete IO
block of a machine p. In contrast the global invariants should hold at all times
and be only dependent on shared memory and visible system components.

∀C,C ′. Pg(C) ∧ C sv∼ C ′ =⇒ Pg(C
′)

By the predicate verifiedB we denote to have verified safety and above prop-
erties for all blocks of block machine computations going out of start configu-
ration C0 with a total number of at most n machine steps.

verifiedB(C0, n, Pf , Pg) ≡

∀Ĉ−→, κ−→, λ−→, ex̂t−→, n̂ .
∧{C0 −→n̂

∆B ,κ,λ,ex̂t
Ĉn̂,

∑n̂−1
i=0 λ

i ≤ n,
IOschedB(Ĉ−→, n̂),

}
⇓

∀i ≤ n̂ .
∧{ safetyB(Ĉ−→, n̂), Pg(Ĉ

i),

Pf (Ĉlast(κ
i,i), κi, Ĉi)

}

Here last(κi, i) is an abbreviation for the function last(Ĉ−→, κ−→, ex̂t−→, κ
i, i) which

searches the last IO step of machine κi before step i and is defined as follows.

last(Ĉ−→, κ−→, ex̂t−→, p, i) ≡

0 : i = 0

i− 1 : i > 0 ∧ κi−1 = p ∧∨{ IOp(Ĉi−1),

∀j < i− 1. κj 6= p

}
last(p, i− 1) : otherwise

We demand that the functional properties hold for all finished IO blocks. Now
we would like to conclude from the verification of all block traces with a total
machine step number of n, that also all IO-block schedules of this length are
safe and fulfill the verified properties. We formalize this claim by

∀C−→, σ−→, ext−→, n.

∧
verifiedB(C0, n, Pf , Pg),
C0 −→n

∆,σ,ext C
n,

IOsched(C−→, n)

 =⇒ ∧

safety(C−→, n),

∀i ≤ iop(nio(n)− 1). Pg(C
i) ∧

(IOσi(Ci) =⇒
Pf (Clast(σ

i,i), σi, Ci))

where last(σi, i) is an abbreviation for last(C−→, σ−→, ext−→, σ

i, i).

PROOF: The safety property is proven by assuming the contrary in order to
show a contradiction. If there existed an unsafe computation C−→, σ−→, ext−→ of
length n although we have verified all block computations containing up to
that number of individual machine steps, by the soundness property of out

44

block simulation theorem we know that there exists a corresponding block
machine computation C̃−→ of length ñ ≤ nio(n) that is also unsafe. Addition-

ally
∑ñ−1
i=0 λi ≤ n holds and we have verified that all block machine compu-

tations are safe which are starting in C0 and are taking up to n̂ steps where∑n̂−1
i=0 λ

i ≤ n. Hence we see that traces of length ñ are included in this set
of safe traces and there cannot exist an unsafe block machine computation C̃−→.
Consequently all IO schedules of length n must be safe.
Then we can apply the existence part of the block simulation theorem yield-
ing for every n-step IO-block schedule an equivalent block machine execution
Ĉ−→, κ−→, λ−→, ex̂t−→ of length nio(n) where we have corresponding configurations

Ĉi = Ciop(i) at all IO and first steps of machines in the system with i < nio(n).
By the condition on the sum of the step numbers in the existence theorem we
see that the first nio(n) blocks in verified block machine computations contain
iop(nio(n)−1) small steps including all IO steps of the n-step IO-block sched-
ule. In the theorem we claim to transfer the verified properties exactly for this
range of steps.

∀i < nio(n). Pg(C
iop(i))

The global properties directly hold for all the corresponding IO and first steps.
For all local steps before the last IO point they are preserved by Lemma 4 and
the definition of≈p implying that shared and visible contents are not modified
by non-IO steps. For the functional properties we see that

∀i < nio(n), j ∈ [0, i). j = last(κi, i) =⇒ iop(j) = last(σiop(i), iop(i))

because the number and order of IO points is preserved by the block machine
simulation as well as the scheduling of machines. All these corresponding con-
figurations are identical by the simulation theorem and by the precondition
C0 = Ĉ0. Thus from ∀i < nio(n). Pf (Ĉlast(κ

i,i), κi, Ĉi) we can deduce:

∀i < nio(n). Pf (Clast(σ
iop(i),iop(i)), σiop(i), Ciop(i))

Moreover the definitions of iop(i) and nio(n) are consistent, that means that
any IO point up to nio(n)− 1 must be one of the first nio(n) IO points.

∀j ≤ iop(nio(n)− 1). IOσj (Cj) =⇒ ∃i < nio(n). j = iop(i),

Then we also get

∀j ≤ iop(nio(n)− 1). IOσj (Cj) =⇒ Pf (Clast(σ
j ,j), σj , Cj)

completing the proof of property transfer. �

6 Simulation Theorems for Concurrent Systems

In computer systems we find several layers of abstractions. For instance we can
look on programs on the C or the compiled assembly level or even go down
to the level of ISA execution. Between different levels there are simulation

45

theorems justified by e.g. compiler correctness. Such simulation theorems are
usually proven locally for an execution trace where no environment steps are
interleaved. However it is desirable to have the simulation relation hold also in
the context of the concurrent system. Thus we need to be able to transfer local
simulation theorems into a system wide simulation proof between two Cosmos
model instantiations.

6.1 Local Simulation Theorems

In the following we develop a generalized theory of local simulation theorems.
We consider the simulation between computations D−→ : Cd∗ and E−→ : Ce∗ with
inputs din−→, ein−→ : I∗p for every machine p. For simplicity we assume that the two
systems have compatible memory and the same input types.

Ad ⊇ Ae Vd = Ve

Observe that the address range of D−→ might be larger than that of E−→. This
means, that the latter may abstract from certain memory regions in the former.
For example a stack region might be abstracted to a stack of local memories
when we consider compilation.
To specify a local simulation theorem for machine p we need the following
ingredients.

• simp : Cd ×Pp ×Ce → B - a simulation relation between the two instan-
tiations of p, depending on

• Pp - the set of simulation parameters,

• CPp : Cep → B - a predicate identifying consistency points of machine p,

• validep : Ce → B - a validity predicate, collecting all constraints on the
configuration of p in E−→ so that execution and simulation is possible,

• validdp : Cd → B - a similar predicate for p in D−→
• δp, ηp - Cosmos model transition functions for machine p in D−→, or E−→ re-

spectively

The simulation relation shall hold on all consistency points. We demand that
all IO-points are also consistency points.

∀ein ∈ Ip. IOp(E, p, ein) =⇒ CPp(cp)

That means that we only consider such systems where reactions to inputs, e.g.,
interrupts occur at consistency points exclusively. Thus there is some addi-
tional reordering necessary to instantiate this theorem for proving simulation
on systems where this condition is generally not fulfilled. We define local se-
mantics ∆p for configurations D ∈ Cd, E ∈ Ce, and inputs din, ein ⊆ Ip.

∆p(D, din) = Ddδp(D, p, din)ep ∆p(E, ein) = Edηp(E, p, ein)ep
Similarly we need a local definition of safety:

safetyp(D−→, din−→, n) ≡ inv(D0) =⇒ ∀i < n.R,A, np, p, dini ` Di√
p

46

In order to be able to integrate the simulation proof into the concurrent system
later on all IO-points must be preserved and there may not be extra IO-points
within the simulation steps according to step numbers s and t.

IOp(Ds) =⇒ IOp(Et) ∀j ∈ (0, s). /IOp(Dj)
∀j ∈ (0, t). /CPp(cp(Ej))
IOatCPp(D−→, din−→, E−→, ein−→, s, t)

For clarity we abbreviate safetyp(D−→, din−→, n) by safetyp(D−→, n) and we use the
shorthand IOatCPp(D−→, E−→, s, t) in place of IOatCPp(D−→, din−→, E−→, ein−→, s, t). Also
here IOp(Di) ≡ IO(Di, p, dini) for all i and local computations D−→, din−→. The
generalized local simulation theorem is then formulated as follows.

Theorem 3 (Generalized Local Simulation Theorem) For every two consistent start
configurations D0 and E0 which are valid for machine p and any input sequence din−→
for D we can find an input sequence ein−→ for E, non-trivial step numbers s, t and a
simulation parameter par such that the corresponding execution traces D−→, E−→ of p out
of D0 and E0 preserve the simulation relation of p at all consistency points. There we
have consistent inputs. Moreover all reached configurations are valid for p and IO-
points do only occur at consistency points. Finally the safety of E−→ implies the safety of
the simulated trace.

∀
D0 ∈ Cd,
E0 ∈ Ce,
par0 ∈ Pp,

din−→ : 2Ip
∗

.
∧{ validdp(D0), validep(E0),
CPp(cp(E0)), simp(D0, par0, E0)

}

⇓

∃

s, t ∈ N,
D−→ : Cd∗,
E−→ : Ce∗,
ein−→ : 2Ip

∗
,

par ∈ Pp

.
∧

D0 −→s
∆p,din

Ds, E0 −→t
∆p,ein

Et,

∀j ≤ s. validdp(Dj), ∀j ≤ t. validep(Ej),
simp(D

s, par, Et), din0 = ein0,
CPp(cp(Et)), IOatCPp(D−→, E−→, s, t),
s > 0, IOp(D0) =⇒ t > 0,
safetyp(E−→, t) =⇒ safetyp(D−→, s)

Note that for the abstracted computation E−→ we only demand progress in case
of IO steps. In contrast we only consider such computations D−→ that are pro-
gressing in every step.

6.2 Cosmos Model Simulation Theorem

Now if we assume that for all machines in a concurrent system we have proven
local simulation theorems as stated above, we want to combine them to ob-
tain a system-wide simulation for all interleaved execution traces. For this
simulation we consider two block machine computations D−→, κ−→, λ−→, ext−→ and
E−→, σ−→, τ−→, ext−→. Note that the simulation uses the same external input sequence.
First we define the simulation relation between two configurationsD ∈ Cd and
E ∈ Ce which are at the start of a block of machine p.

sim(D, par, p, E) ≡ simp(D, ε(par ∩Pp), E)

47

Here par ∈ P is the union of all local simulation parameters where for each
machine there is at most one parameter given.

P =
⋃

p∈Nnp

Pp s.t. ∀par ∈ P, p ∈ Nnp. #(par ∩Pp) ≤ 1

Thus at the beginning of each block we demand the local simulation relation
for that particular proof to hold. In a concurrent system all participants should
agree on the set of shared resources. Moreover there may be an abstraction of
these resources between the two simulation layers we are considering and an
access policy for the shared resources. To capture this notion we introduce a
shared simulation relation glob on the shared and visible components, as well
as the ownership configuration. The global properties covered by this rela-
tion must be maintained by all local simulation relations and must be defined
individually for a given system.

glob : Cd × Ce → B

For a successful integration of local simulation theorems we need several fur-
ther constraints on the predicates and the simulation relation introduced above.

Assumption 1 The shared simulation relation glob may only depend on the shared
memory, visible components and ownership configuration.

∀D,D′ ∈ Cd, E,E′ ∈ Ce.
∧

glob(D,E),

D
sv∼ D′, E

sv∼ E′,

D
o∼ D′, E

o∼ E′

 =⇒ glob(D′, E′)

Thus glob encodes the relation between the shared memories, the visible com-
ponents and ownership in both systems. Ideally shared memories are identical
or there is only a subset of the addresses visible in the abstract simulation layer,
however if two addresses are present in both systems their memory contents
should be consistent. The shared simulation relation is a meant to encapsulate
these system-specific properties in an instantiable entity. Moreover here we
can state specific ownership system invariants, e.g., restrict the ownership on
private memory regions or specify lock-protected data structures.

Assumption 2 We assume that the consistency statement implies the relation on
shared memory, visible components and ownership between D and E.

∀p ∈ Nnp, D ∈ Cd, E ∈ Ce, par ∈ Pp. simp(D, par, p, E) =⇒ glob(D,E)

Note that we do not demand that the owned sets and shared memory is equal.
As E−→might be an abstraction of D−→where we hide certain portions of memory
it is enough if the consistency only depends on local parts of p and consistent
shared components.

Assumption 3 The simulation relation for machine p only depends on p’s local state
and the shared simulation relation.

∀D,D′ ∈ Cd, E,E′ ∈ Ce, par ∈ Pp.∧
simp(D, par,E),
validdp(D), validep(E),
D ≈p D′, E ≈p E′, glob(D′, E′)

 =⇒ simp(D
′, par, E′)

48

This assumption allows us to maintain simulation during environment steps.
Additionally all IO-steps should be atomic wrt. the shared simulation relation
and consistent IO steps should agree on safety.

Assumption 4 IO steps of machine p preserve the shared simulation relation. A
consistent IO step is safe in D−→ if it is safe in E−→.

∀D ∈ Cd, E ∈ Ce, ext ⊆ E, par ∈ Pp.

∧

simp(D, par,E),
validdp(D),
validep(E),
IOp(D), IOp(E)

 =⇒ ∧{ glob(∆(D, p, ext),∆(E, p, ext)),
safep(E) =⇒ safep(D)

}

This means, if we consider for instance C compiler consistency, that an IO C
statement either needs to be compiled into a single IO instruction, or in case it
is implemented by more than one instruction the first one needs to implement
the IO access. If this is not the case, IO points do not match consistency points
and the simulation relation may need to be relaxed.

Assumption 5 Validity predicates only depend on the local state of their respective
machines. For all par ∈ Pp:

∀D,D′ ∈ Cd . validdp(D) ∧D ≈p D′ =⇒ validdp(D
′)

∀E,E′ ∈ Ce . validep(E) ∧ E ≈p E′ =⇒ validep(E
′)

Consequently validity cannot be broken by safe steps of other participants in
the system.

Assumption 6 The safety of execution has to be verified for every machine in the
system separately. We encapsulate this idea in the predicate verifiede(p) which is
defined below for p ∈ Nnp.

∀E0 ∈ Ce, E−→ : C∗e, ein−→ : I∗p, n ∈ N.∧{E0 −→n
∆p,ein

En, validep(E0),

CPp(E0), n = min{i > 0 | CPp(Ei)}

}
=⇒ safetyp(E−→, ein−→, n)

This is a crucial prerequesite to enable a safe composition of computations.
From a valid consistency point a stand-alone computation of p into the next
consistency point must be safe. As the validity predicate only depends on the
local state no assumptions on the shared unowned memory can be made be-
sides the properties guaranteed by glob and the safety has to be proven for all
possibilities.
Assuming all local simulation theorems to be proven for the simulation rela-
tions and validity predicates constrained as presented above and all machines
to be verified, we can now show the desired global simulation theorem.

Theorem 4 (Cosmos Model Simulation Theorem) For all consistent and valid Cos-
mos model start configurations D0 and E0 which fulfil ownership invariants and any
computation D−→ going out of D0 under block schedule κ−→, λ−→ and external input se-
quence ext−→, we can find an equivalent block schedule κ−→, ν−→ as well as a sequence of
simulation parameters par−→, s.t. we have a simulation between D−→ and the resulting

49

computation E−→ out of E0 at the beginning of all blocks. The validity properties still
hold after every simulation step and D−→ is safe wrt. ownership if we have verified all
machines of E0 separately.

∀

D−→ : C∗d, κ−→ : N∗np,
λ−→ : N∗, ext−→ : 2E

∗
,

E0 ∈ Ce, n ∈ N,
par0 ∈ P

.
∧

D0 −→n

∆B ,κ,λ,ext
Dn, inv(D0), inv(E0),

IOschedB(D−→, n),

∀p ∈ Nnp.
∧

validdp(D
0), validep(E0),

sim(D0, par0, p, E0),
verifiede(p)

⇓

∃
E−→ : C∗e,
ν−→ : N∗,
par−→ : P∗

.
∧

E0 −→n

∆B ,κ,ν,ext
En, par0 = par0,

∀i < n.
∧{ validdκi(Di), valideκi(Ei),

sim(Di, pari, κi, Ei)

}
,

IOschedB(E−→, n), safetyB(D−→, n)

Observe that from the safety of all block schedules for Cd we can deduce the
verified property for all p in any new simulation where Cd is on top. This is
because wherever the consistency points lay for this new simulation, they must
be at least at the IO points. As we prove the safety for any IO-block schedule
of Cd we also cover all traces from any consistency point to the next one.

PROOF: By induction on n. For n = 0 we set E0 = E0 and par0 = par0 to con-
clude the first line of the claim. Validity and simulation follows directly from
the precondition. All other claims are trivial for n = 0.
As the induction hypothesis we assume the claim to hold for an arbitrary but
fixed n. Thus for the n-step prefix of D−→ a computation Ê−→, κ−→, ν̂−→, ext−→ exists such

that all desired properties already hold until Ên and D−→ is safe until config-
uration Dn. Taking the induction step n → n + 1 we construct a new trace
E−→, κ−→, ν−→, ext−→ by extending Ê−→ with a block step of machine κn = p. Now let
the last block executed by p before step n be scheduled at step j.

j = max{i | i < n ∧ κi = p}
In case no such j exists than p is scheduled for the first time and we see that
ν−→[0 : n) = ν̂−→[0 : n), thus E−→[0 : n] = Ê−→[0 : n]. By Lemma 5.1 we have

Dn ≈p D0 En ≈p E0

and from the precondition simp(D
0, par0, E

0) as well as validdp(D0) and validep(E0).
Therefore with Assumption 5 we obtain

validdp(D
n) validep(E

n)

Let the previous block fromDn−1 toDn orEn−1 toEn be executed by machine
κn−1 IH

= κn−1 = p′. By induction hypothesis we have

simp′(D
n−1, par′, En−1)

with par′ = ε(parn−1 ∩ Pp′). Moreover we know from the IOsched property
that p in both systems is about to execute an IO step and that both configura-
tions are valid wrt. machine p. Therefore we have by Assumption 4:

glob(D′, E′) D′ = ∆(Dn−1, p′, extn−1) E′ = ∆(En−1, p′, extn−1))

50

Since we know from IH and Assumption 6 that D−→ and E−→ are safe until config-
uration n the following λn−1 − 1 steps, or νn−1 − 1 steps resp., are safe as well.
Thus we can apply Lemma 4 obtaining

Dn ≈p′ D′ En ≈p′ E′

By the definition of ≈p′ as well as Assumptions 1 and 2 we then know that the
shared and visible components between these configurations are consistent.
Moreover safe local steps do not alter the ownership configuration.

glob(D′, E′) ∧
∧{

Dn sv∼ D′, Dn o∼ D′,

En
sv∼ E′, En

o∼ E′

}
=⇒ glob(Dn, En)

Thus by Assumption 3 and with parn = par0 we conclude:

sim(Dn, parn, p, En)

Since κn = p was not scheduled before and by induction hypothesis, E−→ is
a valid IO-block machine computation. We set λn = s and νn = t to the
step numbers we obtain from the local simulation theorem. The safety of the
new block in D−→ then follows directly from the safety transfer property and
verified(p)e. Combination with IH yields:

safetyB(D−→, n+ 1)

If p was scheduled before, i.e., j is well-defined, we know by induction hy-
pothesis that simp(D

j , parj |p, Ej) holds. In order to apply the local simulation
theorem for p we need to construct an input sequence din−→ for the steps in the
block under consideration. We assume that machine p performs l = λj > 0
steps in this block and set up the sequence of length l + 1 as follows.

dini =

inp(D

j) : i = 0

in(∆(Dj , p, extj), p, ∅) : i ∈ (0, l)

inp(D
n) : i = l

If we execute l steps of machine p from Dj using these inputs we get a trace D̃−→,
such that

∀i ∈ [0 : l]. Dj −→i
∆p,din D̃

i

and where we have ∀i ∈ [0 : l]. D̃i = ∆B(Dj , p, i, extj) by D̃0 = Dj and the
determinism of ∆. Consequently D̃l = Dj+1 and since we have Dj+1 ≈p Dn

by Lemma 5.1 and machine p is at an IO point in the latter configuration we
know due to constrIO(p) that IOp(D̃l) holds, too. From the local simulation
theorem we know by induction that there exists step functions s, t, a computa-
tion Ẽ−→, ein−→, and simulation parameters parp−−→

such that for all i > 0:

∧

Êj −→t(i)
∆p,ein

Ẽt(i), dins(i−1) = eint(i−1), par0
p = ε(parj ∩Pp),

validdp(D̃
s(i), parip), validep(Ẽ

t(i), parip), simp(D̃
s(i), parip, Ẽ

t(i)),

IOatCPp(pop(D̃−→, s(i−1)), pop(Ẽ−→, t(i−1)), s(i)−s(i−1), t(i)−t(i−1)),

CPp(cp(Ẽt(i))), IOp(D̃s(i−1)) =⇒ t(i) > 0, s(i) > 0,

safetyp(Ẽ−→, t(i)) =⇒ safetyp(D̃−→, s(i)),

51

Note that here we know due to IH that the simulation also holds initially for
i = 0 where s(0) = t(0) = 0. Furthermore by IOatCP we know that simulation
must hold at all IO points of D̃−→. Since D̃l is such an IO point and since the
simulation always makes progress, we know that there must exist a simulation
step number x such that s(x) = l and we set the length of the simulating trace
Ẽ into that consistency point as m = t(x).

simp(D̃
l, parxp , Ẽ

m)

We construct the simulating block machine computation E−→, κ−→, ν−→, ext−→ from the

IH trace Ê−→, κ−→, ν̂−→, ext−→ by inserting the completed block of p and appending the
new unfinished block, where we only execute the starting IO step.

νi =

ν̂i : i ∈ [0 : j) ∪ (j : n)

m : i = j

1 : j = n

As a direct result we get Ei = Êi for all i ∈ [0 : j]. Also we have:

∆(Ej , p, extj) = ∆(Êj , p, extj)

With Assumption 6 we know that the both the new block starting in Ej and
the old block starting in Êj are safe. As m ≥ 1 due to the progress property of
the local simulation theorem and since ν̂j ≥ 1 by the IOschedB property we
deduce

Ej+1 ≈p ∆(Ej , p, extj) = ∆(Êj , p, extj) ≈p Êj+1

by inductive application of Lemma 4. Applying Lemma 5.2 for the remaining
block steps we see that:

∀i ∈ (j : n]. Ei ≈p Êi

Since the definition of ≈p implies Ei ≈p′ Êi and Ei sv∼ Êi for all p′ 6= p and the
ownership state is not affected by local steps of p, i.e., Ei o∼ Êi, it follows

∀i < n. sim(Di, pari, κi, Ei)

by Assumptions 1 and 3 and induction hypothesis. Similarly we deduce the
validity of all configurations using Assumption 5. We obtain glob(Dn, En) from
En−1 in the same manner as above for the case where p was not scheduled
before. Lemma 5.1 yields En ≈p Ej+1 = Ẽm and Dn ≈p Dj+1 = D̃l. Thus
using the consistency between D̃l and Ẽm as well as Assumption 3 we have
also sim(Dn, parn, κi, En) where we set parn = parxp .
It remains to be shown that D−→ is safe and that E−→ is a correct IO schedule block
execution. Concerning safety we get the desired property until block step j
directly from IH. The safety of the finished block j is transfered from E−→ as
shown above via the safety transfer property of the local simulation theorem
and verified(p)e. For the steps i ∈ (j : n) we have already seen that Ei ≈p Êi

52

which implies Ei ≈κi Êi and Ei
o∼ Êi. Furthermore by construction these

steps have the same inputs thus their safety follows from IH and constrsafe(κi).
For the last step by Assumption 4 we know that consistent configurations at IO
points agree on safety. Since by Assumption 6 we have safep(En) Assumption
4 yields safep(Dn) and safeB(Dn, p, λn, extn) with λn = 1 . Therefore the
complete trace is safe.

safetyB(D−→, n+ 1)

As we showed above the computation E−→ is consistent to Ê−→ for all blocks except
those with indices j and n. Therefore the IOschedB property holds for these
blocks by IH. For block j we see that only the first step is an IO operation
with the IOatCP property and the fact that D−→ is a correct IO schedule block
computation. For the last block we only schedule the initial IO step, thus we
have for the complete trace:

IOschedB(E−→, n+ 1)

This finishes the overall Cosmos model simulation proof. �

Thus we have shown how to lift up local simulation theorems fulfilling As-
sumptions 1 to 6 forming a system-wide concurrent simulation. If the sim-
ulation theorems hold locally, any IO-blockwise interleaving of steps on the
implementation level (D−→) will be consistent to some simulating block trace on
the abstract level (E−→). Also it suffices to show the safety on the abstract level
when it can be transfered down, guaranteeing the safety of all implementa-
tion block schedules. By the reordering theorem we then know that arbitrarily
interleaved executions on this level are safe. Global properties proven on the
abstract level hold in all IO points on the lower level in conjunction with the
simulation relation. Whatever can be deduced from this conjuction holds for
all implementation executions, since between IO points there are only safe lo-
cal steps which do not interfere with shared data.

7 Conclusion

We have presented our approach to facilitate the formal specification and ver-
ification of concurrent systems with shared memory. It is based on the instan-
tiable Cosmos model model of concurrent state machines and the principle of
ownership which defines a policy to enforce memory safety. We have used
these safety properties to prove a reduction theorem which enables us to as-
sume coarse scheduling. Machines may thus be assumed to take turns in ex-
ecuting blocks of steps, where each block starts with an IO step, i.e., a step
that implements communication with other machines, e.g., by a shared mem-
ory access. In addition for simulation theorems where each IO point is also a
consistency point we have shown how and under which assumptions one can
combine local simulation theorems into a system-wide Cosmos model simula-
tion theorem that states that the individual simulation relation of a machine
holds as soon it reaches another IO point. Our results lay an important foun-
dation for the development of a semantics stack for system specification. More-
over our reduction theorem generalizes existing ones and can be instantiated

53

to show the soundness of coarse scheduling assumed, e.g. by the verification
too VCC.

Further applications of our theorem exist, e.g., in the treatment of interrupts
as ordinary concurrent threads. Here the execution of the interrupt handler can
be reordered to occur only when the interrupted program is in a consistency
point. Moreover we have not yet shown how to instantiate our models with ex-
isting machine and programming languages. This is ongoing work and results
will be published elsewhere.

We would like to thank Prof. Wolfgang J. Paul and Sabine Schmaltz for
fruitful discussions and valuable advice during the development of the theory
presented above.

References

[AHL+09] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach, N. W. Schirmer,
A. Starostin, and A. Tsyban. Balancing the load: Leveraging se-
mantics stack for systems verification. Journal of Automated Rea-
soning: Special Issue on Operating Systems Verification, 42, Numbers
2-4:389–454, 2009.

[AL91] Martı́n Abadi and Leslie Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–284, 1991.

[AL95] Martı́n Abadi and Leslie Lamport. Conjoining specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–534,
1995.

[Ash75] E. A. Ashcroft. Proving assertions about parallel programs. Journal
of Computer and System Sciences, 10(1):110 – 135, 1975.

[BBBB09] Christoph Baumann, Bernhard Beckert, Holger Blasum, and
Thorsten Bormer. Formal verification of a microkernel used in de-
pendable software systems. In Bettina Buth, Gerd Rabe, and Till
Seyfarth, editors, Computer Safety, Reliability, and Security (SAFE-
COMP 2009), volume 5775 of Lecture Notes in Computer Science,
pages 187–200, Hamburg, Germany, 2009. Springer.

[BG03] Andreas Blass and Yuri Gurevich. Abstract state machines cap-
ture parallel algorithms. ACM Transactions on Computation Logic,
4(4):578–651, 2003.

[Bro04] Stephen D. Brookes. A semantics for concurrent separation logic.
In CONCUR 2004 - Concurrency Theory, 15th International Conference,
London, UK, August 31 - September 3, 2004, Proceedings, volume 3170
of Lecture Notes in Computer Science, pages 16–34. Springer, 2004.

[CAB+09] E. Cohen, A. Alkassar, V. Boyarinov, M. Dahlweid, U. Degen-
baev, M. Hillebrand, B. Langenstein, D. Leinenbach, M. Moskal,
S. Obua, W. Paul, H. Pentchev, E. Petrova, T. Santen, N. Schirmer,
S. Schmaltz, W. Schulte, A. Shadrin, S. Tobies, A. Tsyban, and
S. Tverdyshev. Invariants, modularity, and rights. In Amir Pnueli,

54

Irina Virbitskaite, and Andrei Voronkov, editors, Perspectives of Sys-
tems Informatics (PSI 2009), volume 5947 of Lecture Notes in Computer
Science, pages 43–55. Springer, 2009.

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinen-
bach, Michał Moskal, Thomas Santen, Wolfram Schulte, and
Stephan Tobies. VCC: A practical system for verifying concur-
rent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Markus Wenzel, editors, Theorem Proving in Higher Order Logics
(TPHOLs 2009), volume 5674 of Lecture Notes in Computer Science,
pages 23–42, Munich, Germany, 2009. Springer. Invited paper.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in tla. In CONCUR’98
Concurrency Theory, volume 1466 of Lecture Notes in Computer Sci-
ence, pages 317–331, 1998.

[CMST09] Ernie Cohen, Michał Moskal, Wolfram Schulte, and Stephan To-
bies. A practical verification methodology for concurrent pro-
grams. Technical Report MSR-TR-2009-15, Microsoft Research,
February 2009. Available from http://research.microsoft.
com/pubs.

[Doe77] Thomas W. Doeppner Jr. Parallel program correctness through re-
finement. In Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California, USA,
January 1977, pages 155–169, 1977.

[FFQ05] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Exploit-
ing purity for atomicity. IEEE Transactions on Software Engineering,
31(4):275–291, 2005.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order
reduction for model checking software. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14,
2005, pages 110–121, 2005.

[Flo67] R. W. Floyd. Assigning meaning to programs. In Proceedings of the
Symposium on Applied Maths, volume 19, pages 19–32. AMS, 1967.

[FQ04] Stephen N. Freund and Shaz Qadeer. Checking concise specifi-
cations for multithreaded software. Journal of Object Technology,
3(6):81–101, 2004.

[GM82] Joseph A. Goguen and José Meseguer. Security policies and se-
curity models. In IEEE Symposium on Security and Privacy, pages
11–20, 1982.

[GRS05] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic
essence of asml. Theoretical Computer Science, 343(3):370–412, 2005.

[Gur00] Yuri Gurevich. Sequential abstract-state machines capture sequen-
tial algorithms. ACM Transactions on Computation Logic, 1(1):77–111,
2000.

55

http://research.microsoft.com/pubs
http://research.microsoft.com/pubs

[Gur04] Yuri Gurevich. Abstract state machines: An overview of the project.
In Foundations of Information and Knowledge Systems, Third Interna-
tional Symposium, FoIKS 2004, Wilhelminenberg Castle, Austria, Febru-
ary 17-20, 2004, Proceedings, pages 6–13, 2004.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Kle09] Gerwin Klein. Operating system verification — an overview.
Sādhanā, 34(1):27–69, February 2009.

[Lam90] Leslie Lamport. A theorem on atomicity in distributed algorithms.
Distributed Computing, 4:59–68, 1990.

[Lam93] Leslie Lamport. Verification and specifications of concurrent pro-
grams. In A Decade of Concurrency, Reflections and Perspectives, REX
School/Symposium, pages 347–374, 1993.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, 1994.

[Lip75] Richard J. Lipton. Reduction: A method of proving properties of
parallel programs. Commun. ACM, 18(12):717–721, 1975.

[LS89] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Tech-
nical report, SRC Research Report 44, 1989.

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft
Hyper-V Hypervisor with VCC. In Formal Methods (FM 2009), vol-
ume 5850 of Lecture Notes in Computer Science, pages 806–809, Eind-
hoven, the Netherlands, 2009. Springer. Invited paper.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing, Vancouver,
British Columbia, Canada, pages 137–151, 1987.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[OG76] Susan S. Owicki and David Gries. An axiomatic proof technique
for parallel programs i. Acta Informatica, 6:319–340, 1976.

[Rus92] John Rushby. Noninterference, transitivity, and channel-
control security policies. Technical report, dec 1992.
http://www.csl.sri.com/papers/csl-92-2/.

56

	Introduction
	Overview
	Related Work
	Notation and Conventions
	Types and Records
	Propositional Logic
	Set Notation
	Sequences
	Computations

	Concurrent Machine Model with Shared Memory and Ownership
	Configuration and Parameters
	Semantics
	Parameter Constraints
	Sound Memory Accesses and Ownership Invariants
	Safety Conditions

	Inputs, Outputs and Visible Components
	Additional Parameters
	Extended Semantics
	Updated Parameter Constraints
	Soundness for Inputs, Outputs and Visible Components
	Extended Safety Conditions

	IO-Block Schedule Reordering
	IO-Block Schedules
	Reordering Theorem
	Auxilliary Definitions and Lemmata
	Reordering Proof
	Existence
	Soundness

	Application in System Verification

	IO-Block Machine Semantics
	Definition
	Simulation Theorem and Proof
	Property Transfer

	Simulation Theorems for Concurrent Systems
	Local Simulation Theorems
	Cosmos Model Simulation Theorem

	Conclusion

