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Chapter 1

Introduction

Nowadays computer systems seem to be really ubiquitous. Being involved in
many significant and even life-critical fields (e.g. nuclear power engineering,
the sector of medical technology, automotive engineering, banking, etc.),
they are supposed to work in the proper way, whatever happens. Actually
the reliability of such systems depends on how accurately the development
process of a computer system (both soft- and hardware) is carried out and
all design faults are fixed. Even despite the fact that manufacturers spend
time and money on testing and debugging, final versions of their products
happen to have any kinds of encapsulated errors.

Different bugs can have a wide variety of effects: from slight inconve-
nience to use a device or a programm to a total crash of a system. Some-
times the results can be extremely serious. So, the European Space Agency’s
US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after
launch in 1996 because of a bug in the on-board guidance computer program.
As one more example, the well-known flaw in Intel Pentium floating-point
division unit caused a loss of money to replace faulty microprocessors. Un-
fortunately, the consequences can concern not only money but human health
and life. A bug in the code controlling the Therac-25 radiation therapy ma-
chine was directly responsible for patient victims in 1996. Apparently, one
can find more examples.

Such incidents take place because of the so-called human factor and test-
ing limitations. The former means that the developers do not take into
account some details of a system behaviour or just make mistakes. The lat-
ter is a bottleneck caused by an increasing amount of input data and working
scenarios for more complex hard- and software to be tested on currently used
tools. In many cases application of only non-exhaustive tests is possible.

The only way to avoid such failures is to cover all possible cases of sys-
tem work. This turns to be feasible with formal verification, the technique of
proving or disproving the correctness of a system with respect to its formal
specification. The proofs are made on abstract mathematical models and
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2 CHAPTER 1. INTRODUCTION

involve either logical inference or exploring (model checking) all their states
and transitions in reduced computing time. In this approach guaranteeing
the absence of human errors and gaps in models is usually achieved by ap-
plying special proof assistant tools. However, in spite of many scientists’
efforts, the ideal methods of formal verification are left to be found.

Verisoft [Ver03] is a long-term research project, which aims at the perva-
sive formal verification of computer systems. A part of the Verisoft project
is an entire academic system covering all general-purpose computer system
layers: the gate-level hardware, system software, networking and communi-
cation, applications, and a compiler. The hardware platform is called Verified
Architecture Microprocessor (VAMP) [BJK+03].

This master thesis is devoted to the formal verification of the VAMP
memory unit (MU) and based on the work carried out in [Dal06]. The new
design of the MU , developed here, contains translation look-aside buffers
(TLB) for fast virtual address translation inside the memory management
units (MMU) and supports accesses to external devices.

A computer-aided verification tool used throughout the whole work
is an interactive theorem prover Isabelle/HOL1 bound [Tve05] with the
NuSMV [CCG+02] and SMV [McM99] model checkers. The results (cor-
rectness proofs and models of hardware blocks) are presented as Isabelle
mathematical theories. The work is described formally and paper-and-pencil
proofs are provided.

Outline

This thesis is organized in 5 chapters.

• In the rest of Chapter 1 we sketch the verification technique used in
this work. Besides, we give a short description of the VAMP.

• In Chapter 2 we introduce the notation, gates and basic circuits used
in this work. We also cover the foundations of the virtual memory
mechanism.

• In Chapter 3 we present a new construction of the memory manage-
ment unit that is a hardware supporting virtual memory. We also prove
its correctness with respect to assumptions for the processor, TLB, and
memory system.

• In Chapter 4 we describe the VAMP memory unit with the new MMUs
(Chapter 3) and an interface for external devices. Providing the MU
specification in the VAMP and correctness proofs we do not focus on
operations with external devices that are well considered in [Tve08].

1http://isabelle.in.tum.de
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• In Chapter 5 we summarize the results and give directions for future
work.

1.1 Verification Technique

The formal verification of the memory unit is naturally done with respect
to proof decomposition. This principle reasonably reflects the situation in
the real world: huge components are divided into relatively small and inde-
pendent pieces. Having been implemented and verified, such blocks can be
repeatedly utilized without further exploration of their behaviour.

For units that provide results of computations in one iteration (some
adders, shifters, logic circuits, etc.), modelling of their implementation and
specifying result properties are considered to be trivial with units’ complete
design.

As for hardware (like MMUs, whole MU) that has internal configuration
and requires one or more cycles to complete an operation, the implementation
is modelled with step functions:

δ(c, in) = (c′, out),

where c, c′ ∈ C - the current and the next configurations of a unit, in ∈ In
and out ∈ Out - its current input and output signals. A hardware configu-
ration is a content of registers and addressable RAMs that might be in the
unit’s construction. Particularly, the RAM configuration is considered as an
uninterpreted function mathematically updated in case of writing at a given
position.

The specification for such hardware is rather complicated. So, for the
memory management units it is based on signal sequences in time and mem-
ory updates. Furthermore, for the whole processor and the memory unit
as its component the specification corresponds to the programmer’s model.
In this model a programmer works with visible registers and memory. The
processor executes an instruction in each computation step. Hence, it is
specified with a step function based on the visible machine configuration,
external inputs, and specification computations for each instruction to be
executed.

Since the processor blocks covered in this work are detailed and fixed in
Isabelle/HOL theories, with translation tools they can be used to generate
real hardware. However, in the thesis for some memory unit components used
before in [Dal06] we do not provide their design description and correctness
proofs.

The correspondence between the specification and implementation for
the memory unit and its parts is presented in a set of lemmas proven in
Isabelle/HOL and accompanied with paper-and-pencil proofs. In both cases
(except as model checking is involved) we use the same standard techniques
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as primitive induction, natural deduction, rewriting and simplification, case
splitting, etc. This makes pencil-and-paper proofs conform with those driven
by the interactive theorem prover. Note that only crucial lemmata are cov-
ered in the paper. The reason is that a lot of claims are clear for human
reasoning and their formal proofs are only needed for complete verification
effort in Isabelle.

1.2 The VAMP in Brief

The VAMP is a pipelined 32-bit RISC processor with DLX-instruction
set [HP96,MP00] including IEEE-compliant floating point instructions.

It features a delayed PC with one delay slot, an out-of-order Tomasulo
scheduler exploiting a reorder buffer [Krö01], and provides support for virtual
memory [Hil05,Dal06,DHP05] and maskable precise interrupts.

The VAMP has five execution units: a fixed point unit (XPU), three
floating point units (FPU) [Ber01, BJ01, Jac02a, Jac02b], and the memory
unit.

The memory interface of the VAMP contains two MMUs that access
instruction and data caches [Bey05] respectively, as well as external devices
for data word retrieving and writing. The caches implementing a write-back
algorithm, in turn, work with the main memory via a bus protocol [MP00,
Bey05]. As device data accesses should not be cached, we provide a special
logic in the MU for direct accesses to devices via the bus protocol.



Chapter 2

Basics

This chapter begins with introducing a notation and definitions used in the
whole thesis. Then it covers virtual memory foundations underlying the
VAMP virtual memory support. At the end of the chapter the description
of gates and some basic circuits used in the MU construction is provided.

2.1 Notation

The notation and some definitions presented here are borrowed from
Dalingers’s work [Dal06].

For the whole thesis N defines the set of natural numbers including 0 and
N+ := N\{0}. The set of integer numbers is denoted by Z. For the set of
real numbers we use R. We start with a shorthand notation for subsets of
Z.

Definition 2.1.1 Let n, m ∈ Z be integer numbers. We define the following
integer intervals:

[n : m] := n, . . . ,m

]n : m] := n + 1, . . . , m

[n : m[ := n, . . . ,m− 1
]n : m[ := n + 1, . . . , m− 1

Zn := [0 : n[
Z≤n := [0 : n]
Z≥n := N \ Zn

Z>n := N \ Z≤n.

To argue about signals and computations in the processor we proceed
with defining standard notions such as words and vectors of bits.

5



6 CHAPTER 2. BASICS

Definition 2.1.2 Let Σ 6= ∅ be a set called alphabet. A word of length
n ∈ N over the alphabet Σ is a function w : Zn → Σ. A word w is uniquely
identified by the n-tuple of values (w(n − 1), w(n − 2), . . ., w(0)). For a
laconic style we also use wn−1wn−2 . . . w0 or just w[n− 1 : 0]. The set of all
words of length n over Σ we define as Σn := {w|w : Zn → Σ}.

Definition 2.1.3 For a nonempty word w of length n ∈ N+ and natural
numbers k ∈ Zn, l ∈ Z≤k a word part w[k : l] is a subword. For the case
w[k : k] we just use a shorthand notation w[k] denoting k-th element of the
word w.

Definition 2.1.4 The concatenation of words a ∈ Σn, b ∈ Σm for any
n,m ∈ N+ is defined as follows

◦ : Σn × Σm → Σn+m

a[n− 1 : 0] ◦ b[m− 1 : 0] := (a(n− 1), . . . , a(0), b(m− 1), . . . , b(0))

Instead of writing the infix operator ◦, we simply denote concatenation
by a[n− 1 : 0]b[m− 1 : 0].

Definition 2.1.5 We call an alphabet also a domain. In the scope of the
thesis we denote a domain consisting of bits by B := {0, 1}.

Definition 2.1.6 A bitvector of length n is a word of length n over the
domain B. A subword of a bitvector is a subbitvector. Analogously, for a
bitvector v of length n ∈ N+ and a number k ∈ Zn we call its k-th element
also the k-th bit of the bitvector v.

Note that to avoid conversions between bit and boolean values we asso-
ciate the bit values 1 and 0 with the values true and false of boolean type
correspondingly. This allows us to write more understandable predicates and
formulae. However, in Isabelle theories we use bitvectors without such a trick
because its standard libraries contain a plenty of already proven lemmas on
this type.

Definition 2.1.7 For any a ∈ Bn we define a function twicen : Bn → B2·n

of duplicating the bitvector:

twicen(a) := a ◦ a

If the length of a bitvector is devisable by 8 we can refer to its any 8
successive bits as a byte. For this purpose we introduce the next shorthand
notation:

Definition 2.1.8 For any B ∈ N+, b ∈ N, such that b < B, and a bitvector
w ∈ B8·B, the selection of the b-th byte of the bitvector w is denoted as

|w|b := w[8 · b + 7 : 8 · b]
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Definition 2.1.9 For any B, d ∈ N+, b ∈ N, such that b < B, d ≤ B,
b + d ≤ B and a bitvector w ∈ B8·B, the selection of d adjacent bytes of
the bitvector w is denoted as

|w|b,d := |w|b+d−1 . . . |w|b

We proceed with the standard interpretation of binary numbers [MP00].

Definition 2.1.10 Let n ∈ N+ and a ∈ Bn. We denote by

〈a〉 :=
n−1∑

i=0

a[i] · 2i

a natural number with a binary representation a. In this case the bitvector
a is called a binary number. Note that the function 〈·〉 : Bn → Z2n is
bijective.

Definition 2.1.11 A function

binn := 〈·〉−1, binn : Z2n → Bn

returns the n-bit binary representation of a natural number.

For the proofs we will need a few statements concerning the bitvectors.

Proposition 2.1.12 For n ∈ N+ and a ∈ Bn the following holds:

〈
a ◦ 02

〉
mod 8 = 0 ⇐⇒ ¬a[0]

Proposition 2.1.13 For n ∈ Z≥2 and a ∈ Bn the following holds:

binn−1(
⌊〈

a ◦ 02
〉
/8

⌋
) = a[n− 1 : 1],

where for k ∈ R the notation bkc is rounding down to the nearest integer.

Both the propositions are proven with the help of properties already
prepared in Isabelle/HOL.

Among bitvector operations we introduce addition returning a bounded
result.

Definition 2.1.14 For a, b ∈ Bn and n ∈ N+ a function +n : Bn×Bn → Bn

denotes n-bit binary addition and is defined as follows:

a +n b := binn(〈a〉+ 〈b〉 mod 2n)
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RAM

CPU

Virtual memory

storage
Secondary

Figure 2.1: Organization of Virtual Memory

2.2 Virtual Memory

Many software applications require larger physical memory than it is in-
stalled in the computer system. This takes on special significance when the
operating system supports multiple processes running seemingly in paral-
lel. The well known solution of this problem is exploiting virtual memory,
a memory management technique, used by multitasking computer operating
systems.

2.2.1 Virtual Memory Conception

Virtual memory (see Figure 2.1) was developed to automate the movement
of a programm code and data between the main memory and any secondary
storage to give the appearance of a single large store [JM98]. So, includ-
ing both the levels of the memory hierarchy, such a management extends a
process’s address space.

A well designed virtual memory system keeps only the most often used
portions of a process’s address space in the main memory whereas the left
burden is stored on a disk (so called swap memory) and retrieved as needed.
This is provided by the operating system and hardware found in the memory
unit with the MMUs supporting translating virtual addresses in the process’s
address space to their physical equivalents for the main memory. The whole
mechanism acts in a way that is invisible to the rest of the software running
on the computer.

Usually virtual memory allows to simulate the main memory of any size
limited only by the address width. So, for a 32-bit operating system, the
maximal size of the virtual memory is 232, or 4 gigabytes. This value can be
substantially increased in case of newer 64-bit computer systems with 64- or
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Figure 2.2: Example of Virtual Memory Allocation

48-bit addressable memory space.

Managing the memory hierarchy described above allows to share a small
amount of the physical memory among processes running at any instant
in time. Memory blocks are allocated to different processes that should be
restricted to accessing only their own portions of memory. The only approach
to achieve this is using some kind of a protection scheme.

In addition to the memory hierarchy management and sharing ad-
dress space, virtual memory also simplifies loading programmes for execu-
tion [HP96]. With relocation it is possible to run a programm in any location
in the main memory. The programm can be placed anywhere in the main
memory or on the secondary storage by just changing the address mapping
(e.g., Figure 2.2).

As one more point of using the virtual memory mechanism, one can figure
out reduction of the time for starting a programm. The reason is that not
the whole programm code and data are needed for that.

So, virtual memory makes the job of an application programmer sim-
pler. However, frequent requests to the hard disk in the virtual memory
mechanism greatly reduce the performance of applications. Therefore, the
programmer should take it into account and optimize the code to work with
memory in a better way.
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2.2.2 Implementation Details

The implementation of the virtual memory mechanism depends on a pro-
cessor architecture and involves different manufacturers’ features. Covering
industrial processors’ design is out of the scope of this thesis. Below, we
concentrate only on common principles, and point out the details underlying
the virtual memory support used in the VAMP.

Virtual memory systems can be categorized in two classes: with fixed-
size blocks, called pages, and variable-size segments. The first one is easier
to be maintained. Based on [Dal06] we proceed using paging with the page
size of 4 Kilobytes. Note, typically the page size is in the range of 4096 to
65536 bytes.

In paging, the low order bits of the binary representation of the virtual
address are considered as an offset within the page and used as the low order
bits (byte index ) of the translated physical address. So, for the page size
of 2n bytes, the byte index consists of n least significant bits of the virtual
address.

The high order bits, called virtual page index, are treated as a key to
one or more address translation tables (page tables) providing the mapping
to the physical memory addresses of the pages (physical page indices). The
physical page index retrieved is used as high order bits of the actual physical
address.

The page tables are maintained by the operating system and are stored
in the physical memory. However, in other industrial implementations they
are usually swapped because of their substantial size. The page table can
be organized in different ways [JM98]. In this work, we are bounded by the
simplest one: the table is just an array of page table entries, in short, pte.
Each pte contains the physical page index and some additional information,
such as:

• whether the page contains data or executable code,

• whether the data is protected and only for the system use,

• whether the page is stored in the physical memory or on the hard disk.

Since each page table is identified with a page table origin in the main mem-
ory, the address of a pte is computed as an offset (given by the virtual page
index) with regard to this starting position.

For the same running application the pages may be both in the physical
memory and on the hard disk in the swap area. If during a processor request
a page is not resident in the main memory, it must be copied from the
disk, or, in other words, paged in. This is known as demand paging. When
the memory space is needed for that, a page replacement policy [ASG04] is
applied to choose a particular page and write it back to the disk, so that the
space is freed up for more active pages.
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In the situation when a page is inaccessible in the main memory, an ex-
ception must be raised in the processor. The MMU generates a so called page
fault to signal about the problem (more detail in Chapter 3, Section 3.1.2).
As a result, a special handler is called. If the page resides in the swap mem-
ory, the handler invokes a swap operation to bring the page to the physical
memory. The details on how the page swap operation is performed are out
of the scope of this thesis. The algorithm and implementation depends on
the particular operating system.

2.2.3 Fast Address Translation

As one could notice in the implementation described above, to retrieve data
or an instruction from the memory the MMU must produce the memory
request twice. Following this scenario is costly indeed because of a substantial
latency in the memory.

A remedy for that is in minimizing the performance penalty of the ad-
dress translation. One way is to remember the last translation, so that the
mapping process is skipped if the request refers to the same page as the
last one. A more general way is based on exploiting the temporal locality
[MP00] for page table entries. Having been accessed, they are stored in a
distinct cache called a translation look-aside buffer (TLB).

The TLB entry is analogous to the cache one with the tag holding a part
of the pte address and the pte as data. When the processor generates a
request with a virtual memory address, the hardware searches the TLB for
the appropriate address mapping. If the translation exists, the request can
be continued without accessing the page table. Otherwise, the TLB must be
filled with the correct mapping information.

Refilling on the TLB miss is performed either by the operating system or
by the hardware. With a hardware-managed TLB, the hardware is responsi-
ble for generating an additional memory request to read the page table and
provide the information for the TLB. For the software-managed TLB, an
interrupt mechanism invokes a TLB miss handler to carry out refilling.

The drawbacks of the latter scheme are connected with the interrupt
handling. If the handle code is not in the instruction cache, this causes
an additional delay. Besides, there is a need to flush the pipeline. Obvi-
ously, removing many instructions from the reorder buffer affects the system
performance.

In this work the instruction and data MMUs are accompanied by the
hardware-managed TLBs. Such a choice is dictated not only by the reasons
covered above. The proof of the MMU local correctness is less complicated
this way. Otherwise, we would require the correctness of the operation sys-
tem software handling TLB’s misses.

The TLB is based on the direct mapped cache [Bey05] and refilled under
control of the MMU automation. Since the TLB acts like a buffer and does
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Figure 2.3: Symbols of the Basic Gates

not support write-back algorithm, it is cleared when the system rewrites the
page table. The proof of the TLB’s correct behaviour is out of the scope of
this work.

2.3 Gates

The basic gates composing all the circuits constructed in this work are de-
picted on Figure 2.3. With the standard notation we can represent them as
functions and specify their results.

For inputs a, b ∈ B, the gates AND, OR, XOR and the inverter (NOT):

• AND : B× B→ B, AND(a, b) = a ∧ b

• OR : B× B→ B, OR(a, b) = a ∨ b

• NOT : B→ B, NOT (a) = ¬a

• XOR : B× B→ B, XOR(a, b) = a⊕ b = ¬a ∧ b ∨ a ∧ ¬b

With an additional input sel ∈ B, the multiplexer (MUX) is

• MUX : B× B× B→ B,

MUX(a, b, sel) =

{
a if sel = 1
b otherwise

For input and output signals in, out ∈ B, a clock enable ce ∈ B, current
and the next configurations c, c′ ∈ B, the flip-flop can be described by a step
function:
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• FlipF lop : B× B× B→ B× B,
FlipF lop(in, c, ce) = (out, c′),

where out = c, and c′ =

{
in if ce = 1
c otherwise

Since an n-bit register consists of n flip-flops, it can be depicted and described
in the same way except its capacity.

Note, for a more concise description, in spite of exploiting the gate names
in formulae, we shall use only the corresponding logical connectives, i.e. ¬,
∧, ∨, and ⊕. As for the multiplexer, it is naturally substituted by the “if
clause”.

2.4 Basic circuits

In this section we provide definitions for basic circuits used in the MU con-
struction. Since their implementation details and correctness proofs were
covered in [Krö01,Dal06], we do not go into details. Now all the circuits are
realized and verified in Isabelle/HOL.

Definition 2.4.1 For n ∈ N+, inputs a, b ∈ Bn, and c ∈ B, an n-bit adder
is a circuit defined as

Addn : Bn × Bn × B→ Bn+1, such that
Addn(a, b, c) = binn+1(〈a〉+ 〈b〉+ 〈c〉).

Note that we use the carry lookahead adder [MP00] because of its low delay.

Definition 2.4.2 For n ∈ N+ and inputs a, b ∈ Bn, an n-bit less tester is
a circuit defined as

Lessn : Bn × Bn → B, such that
Lessn(a, b) = (〈a〉 < 〈b〉).

This circuit is just a part of the n-bit adder and subtractor, given in [Dal06].

Definition 2.4.3 For n ∈ N+ and an input bitvector a ∈ Bn, an n-bit
AND-tree is a circuit defined as

ANDn : Bn → B, such that

ANDn(a) =
n−1∧

i=0

a[i].

Such a tree for a particular size of the input bitvector is easily verified in
Isabelle/HOL with the help of NuSMV.
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Chapter 3

Memory Management Unit
with TLB

The work presented in this chapter is based on Dalinger’s work [Dal06] and
realizes the MMU extensions proposed in [Hil05,Dal06]. We introduce the
specification and the implementation of the memory management unit with
the translation look-aside buffer and show its local correctness, i.e. without
embedding the module into the processor. All the proofs are carried out in
Isabelle/HOL and provided in the pencil-and-paper form here.

3.1 Specification of the MMU

3.1.1 MMU Specification Configuration

Since the MMU communicates with the processor, the memory, and uses the
TLB, we specify corresponding interfaces (Figure 3.1). A set of all signals in
an interface is called an interface observation.

Note, that we do not ascribe an additional control signal purge for TLB
to one of three interfaces of the memory management unit. However, it is
needed for covering the MMU specification.

Definition 3.1.1 We define a set of MMU specification configurations as

Cspec := Iobsp × Iobst × Iobsm × B×Memory,

where

• Iobsp – processor interface observations,

• Iobst – TLB interface observations,

• Iobsm – memory interface observations,

• Memory – configurations of the physical memory.

15
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Figure 3.1: Interfaces of MMU with TLB

An element c ∈ Cspec is a tuple:

c := (iobsp ∈ Iobsp, iobst ∈ Iobst, iobsm ∈ Iobsm,

purge ∈ B,mem ∈ Memory)

The processor interface observation iobsp is a 13-tuple:

iobsp := (mode,mr,mw, fetch, mbw, addr,

ptea, ptl, dout, reset, din, busy, excp)

The following components of the tuple are inputs for the MMU from the
processor side:

• mode ∈ B – a memory access type. If this flag is set, the processor
performs a translated memory access and runs in user mode, otherwise
the processor is in kernel mode and an untranslated memory access is
in progress.

• mr ∈ B – a flag indicating a memory read operation.

• mw ∈ B – a flag indicating a memory write operation.

• fetch ∈ B – a flag indicating an instruction fetch access.

• mbw ∈ B8 – memory byte write signals. As each memory request
accesses a double word, the signals mbw indicate which bytes are to
be written. This component is used only in case of a write access.

• addr ∈ B29 – a memory access address. Depending on the flag mode,
the address is either a virtual or a physical one.
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• ptea ∈ B30 – a page table entry address. This address is used to access
an entry of the page table.

• ptl ∈ B20 – the page table length. It is used only for translated memory
accesses and shows the size of the page table.

• dout ∈ B64 – data to be stored in the memory. This data is used for
write accesses only.

• reset ∈ B – a flag of the processor reset.

The rest of the components are outputs from the MMU :

• din ∈ B64 – data read from the memory. The data output is used for
read accesses only.

• busy ∈ B – a busy flag. It signals that the MMU perform an operation
and is busy to the processor.

• excp ∈ B – an exception flag. This flag is set, if the memory operation
is terminated abnormally without updating the memory or providing
data retrieved.

The TLB interface observation is a 6-tuple:

iobst := (tr, tw, ptea, wpte, hit, rpte)

The inputs for the TLB are:

• tr ∈ B – a flag indicating a read access to the TLB.

• tw ∈ B – a flag indicating a write access to the TLB.

• ptea ∈ B30 – a page table entry address for reading/writing a page
table entry in the TLB. It is equal to the ptea from the processor.

• wpte ∈ B32 – a page table entry to be written into the TLB.

The rest of the components are outputs from the TLB:

• hit ∈ B – a hit flag. It is set, if the TLB contains a page table entry
addressed with ptea.

• rpte ∈ B32 – a page table entry read from the TLB. This output
presents appropriate data only if the signal hit is raised up.

The auxiliary input signal purge coming directly from the processor
causes purging the TLB when the content of the TLB happens to be in-
consistent with the page table.

The memory interface observation iobsm is a 7-tuple:

iobsm := (mr,mw,mbw, addr, dout, din, busy)

The inputs to the memory are:
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• mr ∈ B – a flag indicating a memory read access.

• mw ∈ B – a flag indicating a memory write access.

• mbw ∈ B8 – memory byte write signals equal to mbw supplied by the
processor.

• addr ∈ B29 – an address for a physical memory location.

• dout ∈ B64 – data to be written into the memory.

The rest of the components are outputs from the memory:

• din ∈ B64 – data read from the memory.

• busy ∈ B – a busy flag, which signals that the memory is busy to the
MMU .

We use a record notation for the defined interfaces as well as for the spec-
ification configuration in whole, e.g. the component din of iobsm is denoted
by iobsm.din.

Definition 3.1.2 Depending on the read, write and fetch signals we define
a new signal for the interface iobsp by

iobsp.req := iobsp.mr ∨ iobsp.mw ∨ iobsp.fetch

and similarly for the interface iobsm by

iobsm.req := iobsm.mr ∨ iobsm.mw.

Note also that we use a short notation iobsp.inputs (iobsm.inputs) for the
MMU (physical memory) inputs from the processor (MMU) respectively. We
also use similar abbreviations iobsp.outputs (iobsm.outputs) for the MMU
(memory).

Definition 3.1.3 We call a memory configuration mem a function that
maps 29-bit addresses to 64-bit data, i.e. the memory is organized in 229

double words:
mem ∈ Memory := {f : B29 → B64}

A function that maps the time t ∈ N to the configuration of the MMU
specification f(t) ∈ Cspec is called a trace.

Definition 3.1.4 We define the set of all specification traces as follows:

Trace := {f : N→ Cspec}
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For the further description and explanation of the MMU with the TLB
we will use a more convenient notation, namely:

Definition 3.1.5 Let s be any signal from the interfaces iobsp, iobsm or
iobst. We introduce a short notation st

x for trc(t).iobsx.s where t ∈ N de-
notes a hardware cycle, x denotes one of three interfaces (p, m, t for the
processor, memory and TLB interfaces correspondingly) and trc ∈ Trace,
e.g. trc(t).iobsp.busy and busyt

p are the same for us.

Definition 3.1.6 We use a short notation purget for the signal trc(t).purge
where t ∈ N denotes a hardware cycle, trc ∈ Trace, and purge ∈ B.

Analogously for the memory one defines the similar shorthand notation.

Definition 3.1.7 We use a short notation memt for trc(t).mem where
t ∈ N denotes a hardware cycle, trc ∈ Trace, and mem ∈ Memory.

3.1.2 MMU Operations

The MMU realizes four types of memory operations as requested by the
processor:

• Untranslated read and write – directly access the memory using 29-bit
physical addresses.

• Translated read and write – access the memory using 29-bit virtual
addresses. If the translation of the virtual address fails, the memory
operation invoked by the processor is not performed. In such a case
the MMU should signal an exception to the processor.

These operations will be precisely specified in the section 3.1.4. Now we
only consider the address translation mechanism used in the MMU .

For the translated operations we define an additional function similar to
the one described in [Dal06]. This is the decode implementation translation
function, or DecodeITr:

DecodeITr : B× B× B× B20 × B30 × B32 ×Memory → B× B32 (3.1)

Figure 3.2 shows the principle of the address translation done by DecodeITr
function.

This function takes the following inputs

• mr, mw, fetch ∈ B – a type of a memory access: read, write, fetch,

• ptl ∈ B20 – a page table length,

• ptea ∈ B30 – a page table entry address,
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Figure 3.2: Address Translation for Virtual Address

• va ∈ B32 – a virtual address,

• mem ∈ Memory – a memory configuration.

The function decodeitr has two outputs excp ∈ B and pa ∈ B32 where
excp indicates a translation exception and pa is a physical address. For the
calculation of excp and pa we define a few intermediate values. The virtual
address is decomposed into the page index px ∈ B20 and the byte index
bx ∈ B12:

va = px ◦ bx (3.2)

Each page table entry pte is 4 bytes wide. The number of page table
entries in the page table is equal to ptl + 1. The page table entry address
ptea ∈ B30 is precomputed in the processor using px and the address of the
page table origin.

Based on ptea we define the page table entry pte ∈ B32 as follows

Let

pteaddr = bin29(
⌊〈

ptea ◦ 02
〉
/8

⌋
)

in

pte :=

{
mem(pteaddr)[31 : 0] if

〈
ptea ◦ 02

〉
mod 8 = 0

mem(pteaddr)[63 : 32] otherwise
(3.3)

The page table entry pte ∈ B32 (see Figure 3.3) consists of several fields:

• ppx := pte[31 : 12] – a physical page index,
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• v := pte[11] – a valid bit indicating whether a page is in the physical
memory or on the secondary storage,

• p := pte[10] – a write protection bit,

• x := pte[9] – an execution bit,

• pte[8 : 0] – the last nine bits are not used.

During an address translation operation an exception happens in the
following cases:

• the page index is larger then the page-table length, i.e. such an access
would be outside the page table,

• there is a write access and a page is protected,

• there is an instruction fetch but a page is not executable,

• a page is not in the physical memory, as indicated by the valid bit.

We can formulate excp in the following equations:

lexcp := 〈px〉 > 〈ptl〉 (3.4)
pteexcp := (mw ∧ p) ∨ (fetch ∧ ¬x) ∨

((mr ∨mw ∨ fetch) ∧ ¬v) (3.5)
excp := lexcp ∨ pteexcp (3.6)

The physical address is calculated so that in case of ¬excp it is a con-
catenation of the physical page index and the byte index. Otherwise, pa is
set to 032:

pa :=

{
032 if excp

ppx ◦ bx otherwise
(3.7)
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Using the variable defined above we show the result of a translation tr
of a processor request starting in a cycle t as follows:

Let

dec = DecodeITr(mrt
p,mwt

p, fetcht
p, ptltp, pteat

p, addrt
p ◦ 03,memt)

in

tr(t).pa := dec.pa,

tr(t).excp := dec.excp,

tr(t).lexcp := lexcp,

tr(t).pteexcp := pteexcp, (3.8)
tr(t).pte := pte,

tr(t).ppx := ppx,

tr(t).bx := bx.

These results will be used for the further specification and correctness
proofs of the MMU .

3.1.3 Assumptions for the MMU

In this section we make assumptions on the input signals of the MMU . For
the further work we will need to prove these assumptions while integrating
the MMU into the processor.

First, we define properties for the processor interface. The properties
should be written as predicates on traces. For the whole section trc ∈ Trace
denotes a trace.

Definition 3.1.8 We call the signals read, write and fetch of the processor
interface mutually exclusive if the following predicate holds:

proc_mr_mw_fetch_mutexc(trc) :=
∀t ∈ N : ¬(mrt

p ∧mwt
p) ∧

¬(mrt
p ∧ fetcht

p) ∧
¬(mwt

p ∧ fetcht
p)

Definition 3.1.9 We call the input signals of the processor interface stable
if the following predicate holds:

proc_inputs_stable(trc) :=
∀t ∈ N : reqt

p ∧ busyt
p =⇒

inputst
p = inputst+1

p
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Definition 3.1.10 We define the predicate is_req_proc for a processor re-
quest in the following way:

is_req_proc(t, t′, trc) :=
(t > 0 =⇒ ¬busyt−1

p ) ∧
(t ≤ t′) ∧ reqt

p ∧ ¬busyt′
p ∧

∀t′′ ∈ [
t : t′

[
: busyt′′

p

Finally the predicate of the whole processor interface correctness criteria
is defined as follows:

Definition 3.1.11 The MMU inputs from the processor are called correct if
they are stable and the read, write and fetch signals are mutually exclusive.
Formally:

good_proc_interface(trc) :=
proc_mr_mw_fetch_mutexc(trc) ∧
proc_inputs_stable(trc)

For the interface between the MMU and the TLB we make an assumption
that guarantees in case of a hit the TLB provides consistent data: a page
table entry currently residing in the page table in the memory.

Definition 3.1.12 We call the TLB data consistent if the following predicate
holds:

tlb_data_consist(trc) :=
hittt =⇒ ∃t′ ∈ Zt : twt′

t ∧
rptet

t = wptet′
t ∧

pteat
t = pteat′

t ∧
∀t′′ : (t′′ ∈ [

t′ : t
[

=⇒ ¬purget′′
t ) ∧

(t′′ ∈ ]
t′ : t

[
=⇒ ¬(twt′′

t ∧ pteat′′
t = pteat′

t ))

Beside the interface between the TLB and the MMU , we provide a de-
scription for the signal purge. Since the page table origin, ptl, or the page
table can be modified in the kernel mode, we connect purge with the corre-
sponding signal.

Definition 3.1.13 We define the predicate tlb_purge_comp for the TLB in
the following way:

tlb_purge_comp(trc) :=
∀ ∈ N : ¬modet

p =⇒ purget
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We define the predicate for the TLB interface correctness in the following
way:

Definition 3.1.14 We call the TLB correct if the following predicate holds:

good_tlb_interface(trc) :=
tlb_data_consist(trc) ∧
tlb_purge_comp(trc)

For the interface between the MMU and the memory we make assump-
tions guaranteeing a correct result of any memory request.

We define a predicate for a memory request similar to the predicate
is_req_proc.

Definition 3.1.15 The predicate is_req_mem is defined in the following
way:

is_req_mem(t, t′, trc) :=
(t > 0 =⇒ ¬busyt−1

m ∨ ¬reqt−1
m ) ∧

(t ≤ t′) ∧ reqt
m ∧ ¬busyt′

m ∧
∀t′′ ∈ [

t : t′
[

: busyt′′
m

Note that this predicate slightly differs from is_req_proc. In case t > 0
a memory request can also start in a cycle t with busyt−1

m ∧ ¬reqt−1
m (see

Figure 3.4), i.e. for this definition the signal busy is allowed to be undefined
while no requests are generated.

Definition 3.1.16 We call the memory inputs live if the following predicate
holds:

mem_liveness(trc) :=
∀t ∈ N : reqt

m =⇒
∃t′ ∈ Z≥t : ¬busyt′

m

This predicate corresponds to the specification of the memory. We define
a more precise predicate convenient to use.
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Definition 3.1.17 The predicate mem_liveness_strong(trc) is defined in
the following way:

mem_liveness_strong(trc) :=
∀t ∈ N : reqt

m =⇒
∃t′ ∈ Z≥t : ¬busyt′

m ∧
∀t′′ ∈ [

t : t′
[

: busyt′′
m

One can easily conclude that mem_liveness_strong(trc) follows from
the predicate mem_liveness(trc).

Lemma 3.1.18 The implication below trivially holds:

∀trc : mem_liveness(trc) =⇒ mem_liveness_strong(trc)

Since the implication is obvious, we skip the proof of this lemma.
We split the consistency of the memory into three assumptions. The first

assumption concerns the page table and the other two cover terminating read
and write accesses, respectively. Note that we assume here that the MMU
has not an exclusive access to the memory.

Definition 3.1.19 For instants of time τ, τ ′ ∈ N as border points on the
trace the predicate mem_ack_pte(τ, τ ′, trc) specifies while the user mode is
set the page table entry does not change:

mem_ack_pte(τ, τ ′, trc) :=
∀t′, t′′ ∈ N : τ ≤ τ ′ ∧ t′ < t′′ ∧ t′′ ∈ [

τ : τ ′
] ∧

reqt′
p ∧ (∀t ∈ [

t′ : t′′
]

: modet
p) ∧〈

addrt′′
p [28 : 9]

〉
≤

〈
ptlt

′′
p

〉
=⇒

(pteat′′
p [0] =⇒ memt′′ [pteat′′

p [29 : 1]][63 : 32] =

memt′ [pteat′′
p [29 : 1]][63 : 32]) ∧

(¬pteat′′
p [0] =⇒ memt′′ [pteat′′

p [29 : 1]][31 : 0] =

memt′ [pteat′′
p [29 : 1]][31 : 0])

Recall that addrt′′
p [28 : 9] is the page index px and the inequality in the

predicate means the lexcp does not occur. The times τ, τ ′ are unnecessary
for the local correctness of the MMU and included into the predicate only
for using the proofs of the MMU while verifying the MU .

Definition 3.1.20 The predicate mem_read_consist(trc) holds if at the
end of any memory read access the correct data is provided on the output
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from the memory:

mem_read_consist(trc) :=
∀t, t′ ∈ N : is_req_mem(t, t′, trc) ∧mrt

m =⇒
dint′

m = memt′ [addrt
m]

Definition 3.1.21 The predicate mem_write_consist(trc) holds if at the
end of any memory write access the memory is updated in the following way:

mem_write_consist(trc) :=
∀t, t′ ∈ N : is_req_mem(t, t′, trc) ∧mwt

m =⇒
∀b ∈ Z8 :

∣∣∣memt′+1[addrt
m]

∣∣∣
b
=





∣∣douttm
∣∣
b

if mbwt
m[b]∣∣∣memt′ [addrt

m]
∣∣∣
b

otherwise

Analogously to the other interfaces we define the predicate for the overall
memory interface correctness:

Definition 3.1.22 We call the memory inputs and configuration correct if
the memory is consistent and live:

good_mem_interface(trc) :=
mem_liveness(trc) ∧
mem_read_consist(trc) ∧
mem_write_consist(trc)

Note that mem_ack_pte(trc, τ, τ ′) is not present among the parts of
good_mem_interface(trc) because it appears in predicates defined in the
next section.

3.1.4 Guarantees of the MMU

In this section we introduce properties modelling the correct behaviour of the
MMU . They cover operations performed by the unit as well as restrictions
for the MMU response.

As it obviously follows, the MMU must be able to handle any request it
is supplied with and perform the correct response without hanging during
the work. Therefore, one of the crucial properties of the unit is liveness.

Definition 3.1.23 The predicate proc_liveness(trc) holds if all of the pro-
cessor requests terminate in finite time, i.e., after setting read, write or fetch
signals on the inputs of the MMU , the MMU eventually releases busy:

proc_liveness(trc) :=
∀t ∈ N : reqt

p =⇒ ∃t′ ∈ Z≥t : ¬busyt′
p
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The MMU also has to guarantee that the read and write signals for the
memory interface are not set simultaneously.

Definition 3.1.24 The predicate mem_mr_mw_mutexc(trc) holds when
the signals read and write to the memory are mutually exclusive:

mem_mr_mw_mutexc(trc) :=
∀t ∈ N : ¬(mrt

m ∧mwt
m)

The MMU keeps the inputs for the memory stable during requests.

Definition 3.1.25 The predicate mem_inputs_stable(trc) holds if all the
input signals of the memory interface are stable in case the memory is busy:

mem_inputs_stable(trc) :=
∀t ∈ N : reqt

m ∧ busyt
m =⇒

inputst
m = inputst+1

m

In the rest of the section we provide the definitions of the MMU opera-
tions which were described above in the section 3.1.2

In case of an untranslated read the MMU does not translate the address
from the processor. The memory data at the processor address is returned
and the exception is not raised.

Definition 3.1.26 An untranslated read is specified by:

untr_read(trc) :=
∀t, t′ ∈ N : is_req_proc(t, t′, trc) ∧

(mrt
p ∨ fetcht

p) ∧ ¬modet
p =⇒

dint′
p = memt′ [addrt

p] ∧ ¬excpt′
p

In case of an untranslated write access the data from the processor is
written into the memory at the processor address. Depending on the memory
byte write signal it can be one, two, four, or eight bytes. As in case of the
untranslated write the exception is not raised as well.

Definition 3.1.27 An untranslated write access is specified by:

untr_write(trc) :=
∀t, t′ ∈ N : is_req_proc(t, t′, trc) ∧

mwt
p ∧ ¬modet

p =⇒
¬excpt′

p ∧
∀b ∈ Z8 :

∣∣∣memt′+1[addrt
p]

∣∣∣
b
=





∣∣douttp
∣∣
b

if mbwt
p[b]∣∣∣memt′ [addrt

p]
∣∣∣
b

otherwise
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Both the translated operations assume probable raising the exception
during a processor request. If there is no exception, the result reasonably
reflects the memory work. So, for the translated read request, the data of
the memory at the physical address is returned.

Definition 3.1.28 An translated read access is specified by:

tr_read(trc) :=
∀t, t′ ∈ N : is_req_proc(t, t′, trc) ∧

mem_ack_pte(t, t′, trc) ∧
(mrt

p ∨ fetcht
p) ∧modet

p =⇒
excpt′

p = tr(t).excp ∧
(¬tr(t).excp =⇒
dint′

p = memt′ [tr(t).pa[31 : 3]])

The last operation is the translated write. In case of exception the mem-
ory is not modified. Otherwise, the data from the processor is written into
the memory at the gained physical address.

Definition 3.1.29 A translated write access is specified by:

tr_write(trc) :=
∀t, t′ ∈ N : is_req_proc(t, t′, trc) ∧

mem_ack_pte(t, t′, trc) ∧
mwt

p ∧modet
p =⇒

excpt′
p = tr(t).excp ∧

(¬tr(t).excp =⇒
∀b ∈ Z8 :

∣∣∣memt′+1[tr(t).pa[31 : 3]]
∣∣∣
b
=





∣∣douttp
∣∣
b

if mbwt
p[b]∣∣∣memt′ [tr(t).pa[31 : 3]]

∣∣∣
b

otherwise
)

Finally we can define the overall correctness of the MMU .

Definition 3.1.30 We call a MMU specification trace correct if and only if
it fulfills the following predicate:

mmu_guarantee(trc) :=
proc_liveness(trc) ∧
mem_mr_mw_mutexc(trc) ∧
mem_inputs_stable(trc) ∧
untr_read(trc) ∧ untr_write(trc) ∧
tr_read(trc) ∧ tr_write(trc)
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Figure 3.5: Data Paths of MMU

3.2 MMU Design

In this section we introduce an implementation of the MMU .
Figure 3.5 shows the data paths of the MMU . All the components used

in the MMU construction are covered in Chapter 2. In order to compute the
lexcp the circuit Less21 is used. The data from the memory is saved in the
register dr. The address register ar is used for storing a physical address.
Since the memory supports only double word accesses and the page table
entry is only one word wide, two page table entries are read at the same time
and by using ptea[0] the appropriate one is chosen. Note that the MMU must
guarantee that the inputs for the memory are stable (Section 3.1.4) during
requests as needed by the memory components. Hence, in a digital model
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Figure 3.6: Control Automaton of MMU

the address addrm is constant. However, it may not be so as an electrical
signal due to glitches when we switch the multiplexers below the register
ar. To make addrm electrically constant we can latch it at the memory side.
The control automaton of the MMU is presented in Figure 3.6.

The rest of the signals we define using the interface signals and signals
from Figure 3.5:

mbwm = mbwp (3.9)
doutm = doutp (3.10)

pteexcp = (mwp ∧ p) ∨ (fetchp ∧ ¬x) ∨ (reqp ∧ ¬v)
excp = lexcp ∨ pteexcp

mrm = mrst ∨
idle ∧ (mrp ∨ fetchp) ∧
(¬modep ∨modep ∧ ¬excp ∧ hitt) (3.11)

mwm = mwst ∨
idle ∧mwp ∧ (¬modep ∨modep ∧ ¬excp ∧ hitt) (3.12)

trt = reqp ∧ idle (3.13)
pteat = pteap (3.14)
excpp = modep ∧

(lexcp ∧ idle ∨ pteexcp ∧ (comppa ∨ idle ∧ hitt)) (3.15)
busyp = ¬idle′ (3.16)
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where idle′ denotes the control state in the next cycle will be idle.

In Figure 3.6 for the control automation we use the shorthands:

rreq = mrp ∨ fetchp

A = ¬reqp ∨
(reqp ∧modep ∧ hitt ∧ ¬pteexcp ∧ ¬lexcp ∧ ¬busym) ∨
(reqp ∧modep ∧ hitt ∧ pteexcp) ∨
(reqp ∧modep ∧ lexcp) ∨
(reqp ∧ ¬modep ∧ ¬busym)

B = ((mrp ∨ fetchp) ∧modep ∧ hitt ∧ ¬pteexcp ∧ ¬lexcp ∧ busym) ∨
((mrp ∨ fetchp) ∧ ¬modep ∧ busym)

C = (mwp ∧modep ∧ hitt ∧ ¬pteexcp ∧ ¬lexcp ∧ busym) ∨
(mwp ∧ ¬modep ∧ busym)

D = reqp ∧modep ∧ ¬hitt ∧ ¬lexcp

The next state function of the MMU implementation takes as inputs the
following components:

• inputst
p – inputs from the processor in the current cycle t,

• inputst
m – inputs from the memory in the current cycle t,

• inputst
t – inputs from the TLB in the current cycle t,

• ct
mmu – a configuration of the MMU in the current cycle t. The con-
figuration cmmu contains the following components:

– ct
mmu.ar – the state of the address register ar in the cycle t,

– ct
mmu.dr – the state of the data register dr in the cycle t,

– ct
mmu.st – the state of the control automaton in the cycle t.

and based on the data path and control automaton produces outputs:

• outputst
p – outputs to the processor in the current cycle t,

• outputst
m – outputs to the memory in the current cycle t,

• outputst
t – outputs to the TLB in the current cycle t,

• ct+1
mmu – a configuration of the hardware in the next cycle t + 1.

Components inputst
p, inputst

m, inputst
t, outputst

p, outputst
m, and outputst

t

induce a trace trc ∈ Trace. Note that initial state of the control automaton
is idle, i.e. c0

mmu.st = idle.

Definition 3.2.1 For the components ct
mmu.ar, ct

mmu.dr, ct
mmu.st we use

abbreviation art, drt, and stt respectively.
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3.3 MMU Correctness

In this section we show the correctness of the MMU with the TLB.
For the whole section as before trc ∈ Trace is a trace induced by the

MMU implementation.
The correctness of the MMU means that if all the assumptions are ful-

filled the implementation satisfies the guarantees. Formally, we have to prove
the following theorem:

Theorem 3.3.1 The implementation of the MMU satisfies the specification
of the MMU in case the assumptions for all interfaces are fulfilled:

good_proc_interface(trc) ∧ good_tlb_interface(trc) ∧
good_mem_interface(trc) =⇒ mmu_guarantee(trc)

In order to prove this claim we need some intermediate lemmata. First,
we prove lemmata following directly from the specification.

Lemma 3.3.2 During the processor request all of the inputs from the pro-
cessor are stable:

∀t, t′, t′′ ∈ N : t ≤ t′ ≤ t′′ ∧ is_req_proc(t, t′′, trc) ∧
proc_inputs_stable(trc) =⇒
inputst

p = inputst′
p

Proof: We show the proof by induction on t′. For the base case t = t′ the
claim is trivially true. For the induction step t′ → t′ + 1 we assume that the
statement holds for t′ and with this premise one needs to prove the following:

t ≤ t′ + 1 ≤ t′′ ∧ is_req_proc(t, t′′, trc) ∧
proc_inputs_stable(trc) =⇒
inputst

p = inputst′+1
p

From t ≤ t′ + 1 ≤ t′′ the analogous t ≤ t′ ≤ t′′ does not follow directly.
So we consider the cases:

• If t = t′ + 1 then we obviously have the right result.

• If t < t′ + 1 then with the help of the indiction hypothesis we get

inputst
p = inputst′

p

According to the predicate is_req_proc(t, t′′, trc) for the processor
interface there is the signal reqt

p. Therefore, reqt′
p is set as well. More-

over, since t′ + 1 ≤ t′′, we have t′ 6= t′′ and busyt′
p . With the help of

proc_inputs_stable(trc) at the time t′ we conclude:

inputst′
p = inputst′+1

p
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This finishes the proof of the lemma. ut

One can prove a similar lemma for the memory interface, namely:

Lemma 3.3.3 All of the inputs in the memory are stable as long as the
memory is busy:

∀t, t′, t′′ ∈ N : t ≤ t′ ≤ t′′ ∧ is_req_mem(t, t′′, trc) ∧
mem_inputs_stable(trc) =⇒
inputst

m = inputst′
m

We omit the proof because it is similar to the proof of Lemma 3.3.2.

For simplicity we will use these lemmata further without referring on
them. Besides, we assume the control automation of the MMU initially is
in the state idle. The proof of the fact that it is always in one of its states
is not worth considering here because it is just bookkeeping.

Now we prove the simple property from Definition 3.1.24, which guaran-
tees that the read and write signals in the memory are mutually exclusive.

Lemma 3.3.4 Both the signals read and write in the memory can not be
active at the same time:

proc_mr_mw_fetch_mutexc(trc)
=⇒ mem_mr_mw_mutexc(trc)

Proof: This property follows from the control automation and the compu-
tation of the memory read mrm and memory write mwm signals according
to (3.11) and (3.12).

When the automation is in the states read or readpte only the sig-
nal mrm is active. In the write state the signal mwm is set but not
mrm. The automation in comppa does not generate requests to the mem-
ory. As for idle state both mrm and mwm can be set but not simul-
taneously because of mutually exclusive signals from the processor as in
proc_mr_mw_fetch_mutexc(trc) predicate.

ut
Next we are to prove the property from Definition 3.1.25. At first we will

prove only one part of this property, namely, for mrm.

Lemma 3.3.5 If in the same cycle both signals mrm and busym are active
then mrm is also active in the next cycle:

∀t ∈ N : mrt
m ∧ busyt

m =⇒ mrt+1
m



34 CHAPTER 3. MEMORY MANAGEMENT UNIT WITH TLB

Proof: The proof of this lemma also follows from the inspection of the
MMU control automaton and the computation of the memory read signal
mrm. The signal mrm can be active in one of the states: idle, read or
readpte. For the cycle t we consider the cases:

• The automation in the state read or readpte. Since the signal busyt
m

is active, the control automation does not change the state in the next
cycle. Therefore, mrt+1

m will also be active.

• The automation is in idle. Because of active mrt
m according to the

computation of this signal there is mrt
p ∨ fetcht

p and two variants are
possible: either ¬modet

p or modet
p ∧ hittt ∧ ¬lexcpt ∧ ¬ptexcpt. Hence,

in the next cycle the automation will be in readt+1 and mrt+1
m will also

be active.
ut

The proof for mwm is analogous, except that the signal can be active
only in idle and write states.

We proceed with the proof of the property from Definition 3.1.25.

Lemma 3.3.6 The memory inputs are stable:

proc_inputs_stable(trc) =⇒ mem_inputs_stable(trc)

Proof: From the computation of the memory read mrm and memory write
mwm signals according to formulae (3.11) and (3.12) one can conclude that
in case of a memory request in cycle t the control automation is in one of
the states: idle, readpte, read, or write.

Let us consider the inputs from the processor side in the cycles t and
t + 1. With respect to the states of the control automation in the cycle t we
split the cases:

• The automation is in idle. Since reqt
m is active, there is a processor

request reqt
p as well. Besides, the two variants are possible: either

¬modet
p or modet

p ∧ hittt ∧¬lexcpt ∧¬ptexcpt. As the memory is busy
in t, in the next cycle t + 1 the control automation will be in read or
write state depending on the processor request. Thus, the signal busyt

p

is set and according to proc_inputs_stable(trc) the inputs form the
processor are the same for the times t and t + 1.

• The automation is in readpte, read, or write state. Since it is initially
in the state idle, we find a cycle t′ before t when the processor request
starts. The automation leaves idle and all the time between t′ and t−1
the signal busyp is active. In the cycle t the automation receives busyt

m

from the memory interface side. Consequently, it does not change the
state in the next cycle. So, the signal busyt

p is set as well. With the
predicate proc_inputs_stable(trc) we obviously get the inputs from
the processor do not change between times t′ and t + 1.
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Therefore, the data input and the memory byte write input into the
memory (both come directly from the processor interface) do not change:

douttm = douttp = doutt+1
p = doutt+1

m

mbwt
m = mbwt

p = mbwt+1
p = mbwt+1

m

As for the memory address, it comes directly from the processor interface
or is given by the address register ar[31 : 3] clocked only in the states idle
and comppa.

If the processor runs in kernel mode, the flag modep is not raised at the
instants of time t and t + 1. In this case for both cycles addrm = addrp and
by the stability shown above it does not change.

If the processor is in user mode some cases appear for the cycle t, namely:

• The automation is in readpte. Since busyt
m is set, the automation

does not change the state. The MMU is designed so that in case of
readpte the output address is computed as addrm = pteap[29 : 1].
Since pteat

p = pteat+1
p , the memory address remains the same as well.

• The automation is in either read or write. Therefore, in the next cycle
it stays in the same node. For both times the address is addrm =
ar[31 : 3] and since ar is not clocked in these states, we go to the same
conclusion.

• The automation is in idle. As it is mentioned above the signal hittt is
active. Therefore, the memory address and ar content are computed
as:

addrt
m = (rptet

t[31 : 12] ◦ ((addrt
p ◦ 03)[11 : 0]))[31 : 3]

art+1 = rptet
t[31 : 12] ◦ ((addrt

p ◦ 03)[11 : 0])

Since in the next cycle t + 1 the automation is in read or write, the
memory address is addrt+1

m = art+1[31 : 3]. This obviously shows the
address addrm does not change.

So, all the cases concerned with the address for the memory interface
prove that the stability holds, namely:

addrt
m = addrt+1

m

For the last two signals mrm and mwm we have already proved this
property before in Lemma 3.3.5.

ut

Lemma 3.3.7 The processor liveness holds:

mem_liveness(trc) ∧ proc_inputs_stable(trc)
=⇒ proc_liveness(trc)
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Proof: To prove this claim recall the computation of the busy signal for the
processor interface according to the equation (3.16). Obviously, the processor
interface is live if the MMU control automation eventually reaches the state
idle.

We consider the situation when the processor request signal reqt
p is active.

Depending on the current state of the automation in the cycle t the following
cases are possible:

• The automation is in either read or write state. Then we conclude
that mrt

m ∨mwt
m holds. By mem_liveness_strong(trc) we get:

∃t′ ∈ Z≥t : ¬busyt′
m ∧ ∀t′′ ∈ [

t : t′
[

: busyt′′
m

Therefore, the automation does not change the state for the period
from t to t′. And for the next cycle t′+1 it reaches idle. Hence, busyt′

p

is inactive as it must be.

• The automation is in comppa. If the exception pteexcpt occurs, the
automation reaches idle in t+1, and the liveness property holds. Oth-
erwise, the next state is either read or write and, using the fact shown
above, we conclude that busyp will become inactive for some t′ ∈ Z≥t+1.

• The automation is in readpte. Analogously to the first case, we find
t′ ∈ Z≥t when busym becomes inactive. Therefore, for all t′′ ∈ [t : t′]
the automation is in readpte state and at the time t′ + 1 reaches the
state comppa. Obviously, ∀t′′ ∈ [t : t′] : busyt′′

p and by the predicate
proc_inputs_stable(trc) the signal reqt′+1

p is set as well. Thus, using
the previous case we conclude that busyp will become inactive for some
t′′′ ∈ Z≥t′+2.

• The automation is in idle state. The signal reqt
p is set and depending

on the inputs the automation in the next cycle could be in one of the
states: idle, readpte, read, or write. In case of idle the conclusion is
obviously proper. As for the rest of the variants, they are covered by
the cases considered above.

This complete inspection of the control automation’s work ensures that
the liveness property for the processor interface holds indeed.

ut
Now we proceed with the correctness proof of all memory operations

requested by the processor. But first, we need an auxiliary lemma to be
proven:

Lemma 3.3.8 The following statement is valid:

∀t ∈ N+ : stt = idle =⇒ ¬busyt−1
m ∨ ¬reqt−1

m
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Proof: Since in the cycle t the control automation is in the idle state, for
the time t−1 the control must be in one of the states: comppa, read, write,
or idle. Consider the cases:

• The automation is in the comppa state. Here the MMU does not
generate reqt−1

m .

• The automation is in either read or write. Since the next state is idle,
the signal busyt−1

m is inactive.

• The control is in idle. If the processor is in kernel mode, e.g. ¬modet−1
p ,

the memory is not busy because the next state is idle. In the other case
with modet−1

p being active, if any exception is raised, the request to
the memory interface is not produced. Otherwise, the signal busyt−1

m

must be inactive to allow the control to reach idle.

This all proves the statement. ut

Lemma 3.3.9 Any untranslated read request from the processor to the
MMU is performed correctly:

proc_inputs_stable(trc) ∧mem_liveness(trc) ∧
proc_mr_mw_fetch_mutexc(trc) ∧mem_read_consist(trc)

=⇒ untr_read(trc)

Proof: Let t, t′ ∈ N satisfy is_req_proc(t, t′, trc). Note that in both cycles
t and t′+1 the control is in idle state and in any cycle in between it is not in
idle. Recall also during the processor request all inputs from the processor
side are stable.

First, we can prove that the exception signal excpt′
p is not set. Since

¬modet
p holds, it is so in the instant of time t′ as well. By the computation

of excpt′
p according to the equation (3.15) the exception does not occur.

Next, we are concerned with the proof of the data output, namely:

dint′
p = memt′ [addrt

p]

Since the automation is in idle at t and the untranslated read request
is started by the processor, the signal mrt

m is active by the equation (3.11).
Using Lemma 3.3.8 one can state that the memory request is started at t as
well. For the further process two variants are possible:

• The memory is not busy, i.e. ¬busyt
m holds. Based on the facts above

the predicate is_req_mem(t, t, trc) is fulfilled and the memory request
finishes at the same time t. Thus, the data from the memory is

dint
m = memt[addrt

m]
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Obviously, the next state of the automation is idle and the signal busyt
p

is inactive. From the predicate is_req_proc(t, t′, trc) one can conclude
that t = t′ (if t 6= t′ then busyt

p is set). From the construction of the
MMU :

dint′
p = dint′

m = memt′ [addrt
m] = memt′ [addrt

p]

So, in this case the request from the processor is processed in the right
way.

• The memory is busy, i.e. busyt
m is active. Since the memory is live,

from the predicate mem_liveness_strong(trc) we find the moment
when the memory releases busym, namely:

∃t′′ ∈ Z≥t : ¬busyt′′
m ∧ ∀t′′′ ∈ [

t : t′′
[

: busyt′′′
m

Thus, is_req_mem(t, t′′, trc) holds and the memory request finishes
at cycle t′′. The date received by the MMU is:

dint′′
m = memt′′ [addrt

m]

One can easily show for the control:

∀t′′′ ∈ ]
t : t′′

]
: stt

′′′
= read

Since all the time from t+1 to t′′ the automation is in read and in the
last cycle the flag busyt′′

m gets inactive, the control reaches idle state
and:

¬busyt′′
p ∧ ∀t′′′ ∈ [

t : t′′
[

: busyt′′′
p

Therefore, based on the predicate is_req_proc(t, t′, trc) we get t′ = t′′.
Again from the construction of the MMU the result is:

dint′
p = dint′

m = memt′ [addrt
m] = memt′ [addrt

p]

So, the cases above cover the correct behavior of the MMU in case of any
untranslated read request from the processor side. This finishes the proof.

ut

Lemma 3.3.10 Any untranslated write request from the processor to the
MMU is performed correctly:

proc_inputs_stable(trc) ∧mem_liveness(trc) ∧
proc_mr_mw_fetch_mutexc(trc) ∧mem_write_consist(trc)

=⇒ untr_write(trc)
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Proof: The proof is similar to the proof of the previous lemma, except
some details concerned with the memory update.

Let t, t′ ∈ N satisfy is_req_proc(t, t′, trc). Note that in both cycles t
and t′ + 1 the control is in idle state and in any cycle in between it is not in
idle. Recall also during the processor request all inputs from the processor
side are stable.

First, we can prove that the exception signal excpt′
p is not set. Since

¬modet
p holds, it is so in the time t′ as well. By the computation of excpt′

p

according to the equation (3.15) the exception does not occur.
Next, we consider how the memory updates at the end of the write pro-

cessor request. Actually, we want to prove the following:

∀b ∈ Z8 :
∣∣∣memt′+1[addrt

p]
∣∣∣
b
=





∣∣douttp
∣∣
b

if mbwt
p[b]∣∣∣memt′ [addrt

p]
∣∣∣
b

otherwise

Since the automation is in idle at t and the untranslated write request
is started by the processor, the signal mwt

m is active by the equation (3.12).
Using Lemma 3.3.8 one can state that the memory request is started at t as
well. For the further process two variants are possible:

• The memory is not busy, i.e. ¬busyt
m holds. Based on the facts above

the predicate is_req_mem(t, t, trc) is fulfilled and the memory request
finishes at the same time t. Thus, the memory update is produced as
follows:

∀b ∈ Z8 :
∣∣memt+1[addrt

m]
∣∣
b
={∣∣douttm

∣∣
b

if mbwt
m[b]∣∣memt[addrt

m]
∣∣
b

otherwise

Obviously, the next state of the automation is idle and the signal busyt
p

is inactive. From the predicate is_req_proc(t, t′, trc) one can conclude
that t = t′ (if t 6= t′ then busyt

p is set). According to the equations
(3.9) and (3.10) and the datapaths of the MMU :

mbwt
m = mbwt

p

douttm = douttp

addrt
m = addrt

p

Therefore, the memory update is performed correctly as in the speci-
fication of the untranslated write request.
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• The memory is busy, i.e. busyt
m is active. Since the memory is live,

from the predicate mem_liveness_strong(trc) we find the moment
when the memory releases busym, namely:

∃t′′ ∈ Z≥t : ¬busyt′′
m ∧ ∀t′′′ ∈ [

t : t′′
[

: busyt′′′
m

Thus, is_req_mem(t, t′′, trc) holds and the memory request finishes
at cycle t′′. In this case the memory is updated as follows:

∀b ∈ Z8 :
∣∣∣memt′′+1[addrt

m]
∣∣∣
b
=





∣∣douttm
∣∣
b

if mbwt
m[b]∣∣∣memt′′ [addrt

m]
∣∣∣
b

otherwise

One can easily show for the control:

∀t′′′ ∈ ]
t : t′′

]
: stt

′′′
= write

Since all the time from t+1 to t′′ the automation is in write and in the
last cycle the flag busyt′′

m gets inactive, the control reaches idle state
and:

¬busyt′′
p ∧ ∀t′′′ ∈ [

t : t′′
[

: busyt′′′
p

Therefore, based on the predicate is_req_proc(t, t′, trc) we get t′ = t′′.

Again as in the previous case the memory is updated as:

∀b ∈ Z8 :
∣∣∣memt′+1[addrt

p]
∣∣∣
b
=





∣∣douttp
∣∣
b

if mbwt
p[b]∣∣∣memt′ [addrt

p]
∣∣∣
b

otherwise

This all proves the claim of the lemma. ut

Lemma 3.3.11 Any translated read request from the processor to the MMU
is consistent:

proc_inputs_stable(trc) ∧mem_liveness(trc) ∧
proc_mr_mw_fetch_mutexc(trc) ∧mem_read_consist(trc) ∧
tlb_data_consist(trc) ∧ tlb_purge_comp(trc)

=⇒ tr_read(trc)
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Proof: Let t, t′ ∈ N satisfy is_req_proc(t, t′, trc). In both cycles t and
t′+1 the control is in idle state and in any cycle in between it is not in idle.
Recall also during the processor request all inputs from the processor side
are stable.

Consider the computation of the exception lexcpt flag in the datapaths:

lexcpt = Less21(0 ◦ ptltp, 0 ◦ addrt
p[28 : 9])

By Definition 2.4.2 we have the exact meaning of lexcp flag:

lexcpt = (
〈
ptltp

〉
<

〈
addrt

p[28 : 9]
〉
)

This obviously corresponds to the specification in DecodeITr function,
namely:

lexcpt = tr(t).lexcp

The further work of the MMU depends on the value of lexcpt flag.
First, we consider the situation when the exception lexcpt occurs.

In this case the control is in idle state at the cycle t + 1. Based on
is_req_proc(t, t′, trc) one gets t′ = t. Because of lexcpt, we have tr(t).lexcp
as well. This concludes the case since we are not interested in data read from
the memory.

Next, if there is no lexcpt exception, a good deal of case splitting work
must be done. At the start t of the translated request the MMU sets the
read flag trt

t for the TLB interface according to (3.13) and catches the signal
hittt. So, the following cases are possible:

• The flag hittt is inactive. Thus, the TLB does not contain an appropriate
pte addressed with pteat

t = pteat
p. In this case the read operation of

the page table must be performed. The control automation changes
the state for readpte and only there starts reading the memory, i.e.
mrt+1

m becomes active. By mem_liveness_strong(trc) predicate we
find a moment when the memory releases busym, namely:

∃t′′ ∈ Z≥t+1 : ¬busyt′′
m ∧ ∀t′′′ ∈ [

t + 1 : t′′
[

: busyt′′′
m

Therefore, the predicate is_req_mem(t+1, t′′, trc) is fulfilled and the
memory read request finishes. The data received is clocked into the
data register dr. With respect to the MMU construction, we get the
following:

drt′′+1 = dint′′
m = memt′′ [addrt+1

m ] = memt′′ [pteat+1
p [29 : 1]]

So, the data register dr contains two adjacent page table entries with
addresses distinct in the last bit. Later on, the page table entry to be
used is chosen with the MUX select signal ptea[0].
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Now for the consistency with the specification we need to prove that
the received pte has not changed since the moment t until now. In-
stantiating the time in mem_ack_pte(t, t′, trc) by t and t′′, we have
to prove the premises inside it. The automation is in idle at the start
of the request. All the time from t + 1 to t′′ it is in readpte, and at
t′′ + 1 reaches comppa state. Hence, we conclude that

∀t′′′ ∈ [
t : t′′ + 1

[
: busyt′′′

p

So, reqt
p ∧ (∀t′′′ ∈ [t : t′′] : modet

p) holds because of the stability
of the inputs from the processor side. The other premises are obvious
except t′′ ≤ t′. If to assume that the time t′′ > t′, we get busyt′

p . This
contradicts is_req_proc(t, t′, trc). Therefore, t′′ ≤ t′ holds indeed.

Now using mem_ack_pte(t, t′, trc) and the the stability of the inputs
from the processor, we easily get

(pteat
p[0] =⇒ memt′′ [pteat+1

p [29 : 1]][63 : 32] =

memt[pteat
p[29 : 1]][63 : 32]) ∧

(¬pteat
p[0] =⇒ memt′′ [pteat+1

p [29 : 1]][31 : 0] =

memt[pteat
p[29 : 1]][31 : 0])

Moreover, using Propositions 2.1.12 and 2.1.13 we can state

bin29(
⌊〈

pteat
p ◦ 02

〉
/8

⌋
) = pteat

p[29 : 1]〈
pteat

p ◦ 02
〉

mod 8 = 0 ⇐⇒ ¬pteat
p[0]

Therefore, the pte read from the memory is the same as in the specifi-
cation:

tr(t).pte =

{
drt′′+1[31 : 0] if

〈
pteat

p ◦ 02
〉

mod 8 = 0
drt′′+1[63 : 32] otherwise

All the time from t + 1 to t′′ the control in the state readpte and at
t′′ + 1 reaches comppa state, where the physical address must be com-
puted. Since the processor inputs are stable, the following statement
is obvious:

〈
tr(t).ptea ◦ 02

〉
mod 8 = 0 ⇐⇒ ¬pteat′′+1

p [0]

In the state comppa in t′′ + 1 the physical address must be computed.
We know that pteat′′+1

p = pteat
p. The clock signal arcet′′+1 is active.
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So, from the datapaths it is easily seen that the address register is
updated in the following manner:

art′′+2[31 : 0] = tr(t).pte[31 : 12] ◦ (addrt′′+1
p ◦ 03)[11 : 0]

= tr(t).pte[31 : 12] ◦ (addrt
p ◦ 03)[11 : 0]

= tr(t).ppx ◦ tr(t).bx
= tr(t).pa

The further trace in the control automation depends on the flag
pteexcpt′′+1. Since the processor signals mrp, mwp, fetchp do not
change all the time from t to t′′+1, and the request is of the read sort,
the pteexcpt′′+1 computation is:

pteexcpt′′+1 = (fetcht′′+1
p ∧ ¬x) ∨ ¬v

= (fetcht′′+1
p ∧ ¬tr(t).pte[9]) ∨ ¬tr(t).pte[11]

= tr(t).pteexcp

Now we split cases on the value of pteexcpt′′+1:

– The exception pteexcpt′′+1 occurs. In this case the control changes
the state on idle at cycle t′′ + 2. Obviously, the MMU releases
busyp signal, i.e.:

¬busyt′′+1
p ∧ ∀t′′′ ∈ [

t : t′′ + 1
[

: busyt′′′
p

Based on the predicate is_req_proc(t, t′, trc) we get t′ = t′′ + 1.
With the equation (3.15) the signal excpt′

p becomes active. Ac-
cording to (3.6) tr(t).excp holds as well. So,

excpt′
p = tr(t).excp

Since in case of an exception the MMU does not read data from
the memory, all above concludes the case as we need.

– The exception pteexcpt′′+1 does not occur. Obviously, ¬tr(t).excp
holds as well. Since there is a read or fetch processor request
and all inputs are stable, the control automation goes into the
state read at the next cycle t′′ + 2. The MMU starts the request
to the memory, i.e. mrt′′+2

m is set. Since the memory is live,
from mem_liveness_strong(trc) we find the moment when the
memory releases busym, namely:

∃t′′′ ∈ Z≥t′′+2 : ¬busyt′′′
m ∧ ∀t̂ ∈ [

t′′ + 2 : t′′′
[

: busyt̂
m
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Thus, is_req_mem(t′′+2, t′′′, trc) holds and the memory request
finishes at cycle t′′′. The date received by the MMU is:

dint′′′
m = memt′′′ [addrt′′+2

m ]

One can easily show for the control:

∀t̂ ∈ ]
t′′ + 1 : t′′′

]
: stt̂ = read

Since in the last cycle the flag busyt′′′
m gets inactive, the control

reaches idle state and:

¬busyt′′′
p ∧ ∀t̂ ∈ [

t : t′′′
[

: busyt̂
p

Therefore, based on the predicate is_req_proc(t, t′, trc) we get
that t′ = t′′′. From the construction of the MMU the output
address to the memory is:

addrt′′+2
m = art′′+2[31 : 3] = tr(t).pa[31 : 3]

Hence,

dint′
p = dint′

m = memt′ [tr(t).pa[31 : 3]]

Besides, since in the cycle t′ the control is in read state, according
to the equation (3.15) the output signal excpt′

p is inactive, and this
is the same as in the specification. So, the facts above completely
cover the case.

• The flag hittt is active. Thus, the MMU receives the page table entry
rptet

t addressed with pteat
t = pteat

p as in (3.14) and prior written into
the TLB before the hit. With the predicate tlb_data_consist(trc) we
can find such a moment in the past when the page table entry was
saved in the buffer. Using tlb_purge_comp(trc) we get:

∃τ ∈ Zt : twτ
t ∧ rptet

t = wpteτ
t ∧ pteat

p = pteaτ
p ∧

∀τ ′′ : (τ ′′ ∈ [τ : t[ =⇒ modeτ ′′
p ) ∧

(τ ′′ ∈ ]τ : t[ =⇒ ¬(twτ ′′
t ∧ pteaτ ′′

p = pteaτ
p))

Besides, the data written into the TLB was:

wpteτ
t =

{
drτ [31 : 0] if pteaτ

p[0]
drτ [63 : 32] otherwise

So, we need to find the content of the data register dr at the cycle τ .
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Since the write flag twτ
t was active, the automation was in comppa

state at cycle τ and readpte at τ −1. Therefore, drceτ−1 was signalled
and the data register content changed as follows:

drτ = dinτ−1
m

It is easy to prove that if the control is in readpte state, then:

∃τ ′ ∈ Zτ−1 : stτ
′
= idle ∧ ∀τ ′′ ∈ ]

τ ′ : τ − 1
]

: stτ
′′

= readpte

Therefore, in the next cycle τ ′ + 1 the request to the memory
was started and mrτ ′+1

m held. It is obvious that all the time
from τ ′ + 1 to τ − 2 the memory was busy and then ¬busyτ−1

m

held. Hence, is_req_mem(τ ′ + 1, τ − 1, trc) is valid and according
to mem_read_consist(trc) the MMU read the data:

dinτ−1
m = memτ−1[addrτ ′+1

m ]

In the datapaths of the MMU the memory address was computed as:

addrτ ′+1
m = pteaτ ′+1

p [29 : 1]

Based on the input stability from the processor and pteat
p = pteaτ

p the
data input appears to be:

dinτ−1
m = memτ−1[pteat

p[29 : 1]]

All the time from τ−1 to t the processor runs in user mode and ¬lexcpt

holds. After instantiating the time in mem_ack_pte(t, t′, trc) by τ−1
and t, the premises inside this predicate are obviously true. Thus, we
get:

(pteat
p[0] =⇒ memτ−1[pteat

p[29 : 1]][63 : 32] =

memt[pteat
p[29 : 1]][63 : 32]) ∧

(¬pteat
p[0] =⇒ memτ−1[pteat+1

p [29 : 1]][31 : 0] =

memt[pteat
p[29 : 1]][31 : 0])

We conclude the page table entry received from the TLB is the same
pte the specification consider:

tr(t).pte = rptet
t

As the control in idle state the clock signal arcet is active. So, from
the datapaths it is easily seen that the address register is updated as:

art+1[31 : 0] = rptet
t[31 : 12] ◦ (addrt

p ◦ 03)[11 : 0]
= tr(t).ppx ◦ tr(t).bx
= tr(t).pa
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After the page table entry has been received from the TLB the com-
putation of pteexcp is correct. Since stt = idle ∧ hittt holds, rptet

t is
used. With the implementation and the equation (3.5) it is easy to
show that:

tr(t).pteexcp = pteexcpt

The further process depends on this flag. We split cases:

– The exception occurs, i.e. pteexcpt holds. The control automa-
tion does not change the state and the signal busyt

p is inactive.
Therefore this is a one-cycle processor request with t′ = t. Obvi-
ously, the exception signal excpt′

p is set as well as tr(t).excp. This
finishes the case.

– There is no exception, i.e. ¬pteexcpt holds. We proceed in anal-
ogy with the proof of the untranslated read. The signal mrt

m is
active by the equation (3.11). Using Lemma 3.3.8 one can state
that the memory request is started at t as well. Then, two variants
are possible:

∗ The memory is not busy, i.e. ¬busyt
m holds. The next state

of the automation is idle and the signal busyt
p is inactive.

From the predicate is_req_proc(t, t′, trc) one can conclude
that t = t′. Obviously, there is no exception and ¬tr(t).excp
is true.
Since the memory request finishes at the same time t, the
data form the memory is

dint
m = memt[addrt

m]

From the construction of the MMU :

addrt
m = (rptet

t[31 : 12] ◦ (addrt
p ◦ 03)[11 : 0])[31 : 3]

= tr(t).pa[31 : 3]

Therefore, the data provided by the MMU is:

dint′
p = dint′

m = memt′ [addrt
m] = memt′ [tr(t).pa[31 : 3]]

So, in this case the request from the processor is processed in
the right way.

∗ The memory is busy, i.e. busyt
m is active. As it is proved for

the untranslated read in Lemma 3.3.9, there exists such time
t′′ when the memory releases busym and the MMU receives:

dint′′
m = memt′′ [addrt

m]
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Since t′ = t′′, the conclusion on the data output is completely
the same as in the previous case.
Analogously to the previous case we have ¬tr(t).excp. Be-
sides, since the control is in read state at cycle t′, according
to the equation (3.15) the flag excpt′

p is not set, then

excpt′
p = tr(t).excp

Hence, this case is proved as well.

As one can see no other cases are possible. So, the consideration above
proves the consistency of any translated read request.

ut

Lemma 3.3.12 Any translated write request from the processor to the MMU
is consistent:

proc_inputs_stable(trc) ∧mem_liveness(trc) ∧
proc_mr_mw_fetch_mutexc(trc) ∧
mem_read_consist(trc) ∧mem_write_consist(trc) ∧
tlb_data_consist(trc) ∧ tlb_purge_comp(trc)

=⇒ tr_write(trc)

Proof: The proof of this lemma is very similar to the previous one. The
difference is that the computation of pteexcp takes into account the protec-
tion bit p of a page table entry. Besides, the request from the processor
is for writing data into the memory instead of reading. Thus, the control
automation reaches the state write and never read. The proof for updating
the memory is analogous to that covered in Lemma 3.3.10.

ut
At the final analysis we summarize all of the lemmata from 3.3.4 to 3.3.12

to prove Theorem 3.3.1.

Proof: [Theorem 3.3.1]
By now all the parts of the correctness predicate mmu_guarantee(trc) are
proved in the lemmata from 3.3.4 to 3.3.12. Each of the predicates for the
processor, TLB and memory interfaces, namely, good_proc_interface(trc),
good_tlb_interface(trc), good_mem_interface(trc), provide all the as-
sumptions needed for the lemmata. So, mmu_guarantee(trc) holds.

ut
The theorem proven covers the local correctness of the MMU . However,

a few other lemmata turn out to be needed for the proofs while integrating
the MMU into the memory unit and verifying the whole MU .

Two lemmata below shows that the MMU provides the proper address
for the memory.
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Lemma 3.3.13 At the end of any untranslated request from the processor
the memory address provided by the MMU is correct:

∀t, t′ ∈ N : proc_inputs_stable(trc) ∧
is_req_proc(t, t′, trc) ∧
¬modet

p =⇒ addrt′
m = addrt

p

Lemma 3.3.14 At the end of any translated request from the processor the
memory address provided by the MMU is correct:

∀t, t′ ∈ N : good_proc_interface(trc) ∧ good_tlb_interface(trc) ∧
mem_liveness(trc) ∧mem_read_consist(trc) ∧
is_req_proc(t, t′, trc) ∧mem_ack_pte(t, t′, trc) ∧
modet

p ∧ ¬tr(t).excp =⇒ addrt′
m = tr(t).pa[31 : 3]

We skip the proofs of both the lemmata because they are done in the
way as the address is considered in Lemmata 3.3.11 and 3.3.9



Chapter 4

The VAMP Memory Unit

The work presented in this chapter is devoted to a further development of
the VAMP memory unit described by Dalinger [Dal06]. The new extended
design of the MU includes the new MMU (Chapter 3) and supports an
interface for external devices [Tve08].

Since the MU was not considered as an independent module of the pro-
cessor in [Dal06], we follow the same line, but focus only on the VAMP
specification and construction points crucial for the MU .

4.1 Specification of the MU in the VAMP

To specify the memory unit we consider the specification configuration of the
whole VAMP. It consists of two programm counters, three register files and
the memory. A step of the processor computation is an execution of a single
instruction fetched from the memory at an address given by the programm
counter.

The programm counters realizes a so-called delayed PC mechanism with
one delay slot. An instruction is addressed with DPC ∈ B32, and PC ′ ∈ B32

is used to refer the next instruction to be accessed. The detailed definition
of this construction is provided by Müller and Paul in [MP00].

The register files of the VAMP are: general purpose registers
(GPR : B5 → B32), floating point registers (FPR : B5 → B32), and special
purpose registers (SPR : Z17 → B32). A description of all SPR registers
is provided in [Dal06]. We use only three of them, namely PTO, PTL, and
MODE, whose content is supplied to the MU for the address translation.

Formally, the VAMP specification configuration is:

cS := (cS .GPR, cS .SPR, cS .FPR, cS .M, cS .PC ′, cS .DPC)

Note that cS .M ∈ Memory. Since the VAMP is extended for accessing
external devices, the memory is a partial mapping in contrast to the defini-
tion of the memory in [Dal06]. We denote by MA a set of addresses where

49
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the memory is defined. The processor accesses an external device by per-
forming a word (32-bit) load/store operation at an address associated with
this device. The external devices are accessed with 30-bit addresses, the
higher 17 bits of which are set to ones. Specifying the processor interface for
the external devices and results of accessing them is out of the scope of this
thesis and is covered in [Tve08]

By analogy with [Dal06], we consider two specification configurations of
the VAMP. The first one cS can not be affected by interrupts, the second one
c̃S can change in case an interrupt occurs (indicated by JISR(c̃S)). We do
not concentrate on the VAMP specification step function that can be found
in [Dal06] (Chapter 3) as well, but provide only the results of computations
concerning the MU . Note, that cn

S (and c̃n
S) denote configurations before the

execution of an instruction n and after executing an instruction n− 1.
The current mode of the processor is indicated by the lowest bit of the

register MODE. If it is set to 1, the processor is in user mode, otherwise it
runs in kernel mode. We denote the processor mode by

mode(cS) := cS .SPR[MODE][0] (4.1)

For the page table length and origin we introduce bitvectors of the cor-
responding registers’ content used for the address translation:

ptl(cS) := cS .SPR[PTL][19 : 0] (4.2)
pto(cS) := cS .SPR[PTO][19 : 0] (4.3)

If the processor operates in user mode while fetching an instruction,
cS .DPC is treated as a virtual address and the address translation must
be performed. We denote by iptea(cS) the instruction page table address
computed as:

iptea(cS) := ((pto(cS) ◦ 012) +32 (010 ◦ px(cS .DPC) ◦ 02))[31 : 2] (4.4)

where px(va) is the page index for a virtual address va ∈ B32.
Regardless of the processor mode, an instruction address must be aligned

properly. Besides, the page table used in the user mode for fetching an in-
struction is not supposed to reside in the device address space. Otherwise, an
exception instruction misalignment occurs. We indicate it by the following
predicate:

imal(cS) := cS .DPC[1] ∨ cS .DPC[0] ∨
mode(cS) ∧ iptea(cS)[29 : 1] /∈ MA (4.5)

Provided that cS .DPC is aligned and iptea(cS) refers the physical mem-
ory, in the user mode we use the result of the translation and denote it by
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the shorthand:

iDecodeITr(cS) :=
DecodeITr(0, 0, 1, ptl(cS),

iptea(cS), cS .DPC, cS .M)

The result of the virtual address translation procedure can be the page
fault. If the exception is not raised, we employ the resulting physical address
ipa(cS), that is

ipa(cS) := iDecodeITr(cS).pa (4.6)

Otherwise, the translation is unsuccessful, and the address is considered to
be invalid and filled with zeros.

In the processor an exception instruction page fault ipf(cS) is raised if
the translation can not complete successfully or a fetch address points out
the physical memory.

ipf(cS) := mode(cS) ∧ (iDecodeITr(cS).excp ∨
ipa(cS)[31 : 3] /∈ MA) ∨

¬mode(cS) ∧ cS .DPC[31 : 3] /∈ MA (4.7)

Definition 4.1.1 For an adddress addr ∈ B30 we introduce an auxiliary
memory function Mem : B30 → B32 defined as:

Mem[addr] :=

{
cS .M [addr[29 : 1]][63 : 32] if addr[0]
cS .M [addr[29 : 1]][31 : 0] otherwise

Now we can define a function IR(cS) returning an instruction to be exe-
cuted in the configuration cS :

IR(cS) :=





Mem[cS .DPC[31 : 2]] if ¬mode(cS) ∧ ¬imal(cS) ∧ ¬ipf(cS)
Mem[ipa(cS)[31 : 2]] if mode(cS) ∧ ¬imal(cS) ∧ ¬ipf(cS)
032 otherwise

(4.8)
Based on the VAMP instruction set ( [Dal06], Appendix A) we can use a

set of functions decoding characteristics of the instruction IR(cS). Speaking
about the MU we are interested in the following values:

• imm(cS) - an immediate constant of the instruction IR(cS),

• RS1(cS) - contains the index of the first operand (source register) in a
register file;

• RD(cS) - contains the index of the destination register in a register file;

• mr?(cS) - holds for the instructions with a read access to cS .M ,
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• mw?(cS) - holds for the instructions with a write access cS .M ,

• byte?(cS) - holds for the memory instructions with a byte access;

• word?(cS) - holds for the memory instructions with a word access
(reading or storing 32-bit words);

• half?(cS) - holds for the memory instructions with a half word access;

• double?(cS) - holds for the memory instructions with a double word
access;

• u?(cS) - holds for the memory instructions with an unsigned read access
when the result is zero extended by an operation zext.

All data accesses for loading/storing from/to the physical memory or
devices are performed with the effective address computed as:

ea(cS) := cS .GPR[RS1(cS)] +32 sext(imm(cS)), (4.9)

where sext denotes an operation providing a sign extended result.
For the data page table address we define dptea(cS) as:

dptea(cS) := ((pto(cS) ◦ 012) +32 (010 ◦ px(ea(cS)) ◦ 02))[31 : 2] (4.10)

As in case of instruction fetching, for data accesses an exception data
misalignment is possible. We indicate it with dmal(cS).

dmal(cS) := (¬byte?(cS) ∧ ea(cS)[0]) ∨
(word?(cS) ∧ ea(cS)[1]) ∨
(double?(cS) ∧ (ea(cS)[1] ∨ ea(cS)[0])) ∨
(mode(cS) ∧ dptea(cS)[29 : 1] /∈ MA) (4.11)

If the data misalignment is not raised, in user mode one can use the
translation operation result dDecodeITr(cS):

dDecodeITr(cS) :=
DecodeITr(mr?(cS),mw?(cS), 0, ptl(cS),

dptea(cS), ea(cS), cS .M)

Analogously, we define the data physical address used for translated ac-
cesses to the physical memory or devices and the data page fault flag provided
by the memory unit:

dpa(cS) := dDecodeITr(cS).pa (4.12)



4.1. SPECIFICATION OF THE MU IN THE VAMP 53

dpf(cS) := mode(cS) ∧ (dDecodeITr(cS).excp ∨
dpa(cS)[31 : 3] /∈ MA ∧ ¬word?(cS)) ∨

¬mode(cS) ∧ ea(cS)[31 : 3] /∈ MA ∧ ¬word?(cS) (4.13)

Let d be a number of bytes to be read/written from/to the memory (1, 2,
or 4 depending on the instruction). By dest we denote the 64-bit data to be
written to the memory.

dest =





032 ◦ cS .GPR[RD(cS)] if byte? ∨ word? ∨ half?
cS .FPR[RD(cS)[4 : 1]1] ◦ cS .FPR[RD(cS)[4 : 1]0]

if double?
032 ◦ cS .FPR[RD(cS)] otherwise

(4.14)
Then a result data(cS) of reading and the next step computation of the
physical memory are specified in the following way:

data(cS) :=





cS .M [ea(cS)[31 : 3]] if double?(cS) ∧ ¬mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

cS .M [dpa(cS)[31 : 3]] if double?(cS) ∧mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

twice32

(
zext

(
|Mem[ea(cS)[31 : 2]]|〈ea(cS)[1:0]〉,d

))

if u?(cS) ∧ ¬double?(cS) ∧ ¬mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

twice32

(
zext

(
|Mem[dpa(cS)[31 : 2]]|〈dpa(cS)[1:0]〉,d

))

if u?(cS) ∧ ¬double?(cS) ∧mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

twice32

(
sext

(
|Mem[ea(cS)[31 : 2]]|〈ea(cS)[1:0]〉,d

))

if ¬u?(cS) ∧ ¬double?(cS) ∧ ¬mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

twice32

(
sext

(
|Mem[dpa(cS)[31 : 2]]|〈dpa(cS)[1:0]〉,d

))

if ¬u?(cS) ∧ ¬double?(cS) ∧mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

064 otherwise
(4.15)
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cS .M ′ :=





cS .M with cS .M [ea(cS)[31 : 3]] = dest

if mw?(cS) ∧ double?(cS) ∧ ¬mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

cS .M with cS .M [dpa(cS)[31 : 3]] = dest

if mw?(cS) ∧ double?(cS) ∧mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

cS .M with |Mem[ea(cS)[31 : 2]]|〈ea(cS)[1:0]〉,d = |dest|0,d

if mw?(cS) ∧ ¬double?(cS) ∧ ¬mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

cS .M with |Mem[dpa(cS)[31 : 2]]|〈dpa(cS)[1:0]〉,d = |dest|0,d

if mw?(cS) ∧ ¬double?(cS) ∧mode(cS)∧
¬dmal(cS) ∧ ¬dpf(cS)

cS .M otherwise
(4.16)

4.2 Implementation of the VAMP Memory Unit

Describing the implementation of the VAMPmemory unit and arguing about
its correctness require covering some of the VAMP design features. So, below
we dedicate a few words to the whole processor and proceed with the detailed
explanation of the MU construction.

4.2.1 The VAMP Design Overview

Figure 4.1 shows the top-level data paths of the VAMP with the out-of-order
instruction execution based on the Tomasulo algorithm [Tom67].

Using a special reorder buffer (ROB) guarantees that instructions leave
the pipeline in the same order they are fetched for the execution. This
allows to realize the precise interrupts mechanism, which assures that if
an instruction is interrupted, it is executed and written back and all the
following instructions are flushed.

Every register in the register file is extended with two fields from the
producer table: a valid bit and an instruction tag. A value of the valid bit
indicates whether in the pipeline there is an instruction updating a corre-
sponding register. If this value is set inactive, the tag points to the last
instruction that is about to modify the register.

The instruction fetch does not belong to the Tomasulo algorithm and
starts with loading a 32-bit instruction from the physical memory and saving
the results in S1 registers: the instruction register S1.IR, the exception flag
for the misalignment S1.imal, and the page fault flag S1.ipf . Note, that
accessing external devices for fetching is not allowed.
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After fetching the instruction is decoded and issued to the reservation
station (RS) with its source operands. Each functional unit has its own
reservation stations. According to [Dal06] the implementation of the Toma-
sulo algorithm for the VAMP provides eight reservation stations: four RSs
for the fix point unit and one for each other. Any memory access instruc-
tion has up to six source operands: one for the memory address, two 32-bit
operands for 64-bit data, and three ones for the page table origin, page table
length, and the mode bit. At the end of the issue phase a new non-used tag
is reserved for the instruction, its destination registers are marked with this
tag and get invalid. Besides, a new entry in the ROB is allocated for this
instruction.

The instruction is dispatched to the functional unit when all the operands
are available and the unit is ready to accept the instruction. Missing
operands are catched by snooping the common data bus (CDB) connected
with units’ producers (P ). The result of the instruction execution is stored
in the corresponding producer and gets available for other instructions wait-
ing for it. Moreover, the instruction with the result appears in the ROB. As
soon as it becomes the oldest one in the reorder buffer, the result is written
back to the register file. So, execution of all instructions affects the register
file in order.

There are a few instructions using no functional units. They are described
in [Dal06]. More details on the implementation of the Tomasulo algorithm
for the VAMP can be found in [Krö01].

Analogously to the specification of the processor, we pay attention only
on the VAMP implementation configuration components needed for describ-
ing the memory unit. Sticking to the work carried out in [Dal06], we consider
the whole processor implementation configuration as a 17-tuple:

cI := (PC ′, DPC, M, GPR, FPR, SPR, S1, RS, P, ROB,

ROBhead,ROBtail, ROBcount,MU,FPU1, FPU2, FPU3)

ROBhead and ROBtail point to the head and the tail of the reorder buffer
respectively. ROBcount shows the number of entries currently present in the
ROB. Being referred by the ROBhead, an entry of the ROB corresponds to
the oldest instruction issued and residing in the pipeline.

Through the memory unit the VAMP communicates with off-chip units:
the physical memory and the external devices. The component cI .M includes
this memory and the cache system [Bey05,Mül07] of the processor.

To distinguish among the reservation stations and the producers for func-
tional units, we mark them with a subscript containing a name of a particular
unit, e.g. RSMU and PMU are used for the memory unit. In the rest of the
work instead of writing cI .RSMU , we shorten it as RSMU .

Now we introduce a predicate stating that implementation configurations
of the MU and some VAMP components needed for arguing about the MU
are initial.
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Definition 4.2.1 We call an implementation configuration cI initial for the
MU if the memory unit is in an initial state, its reservation station, and the
decode stage are empty. Formally, we have:

init(cI) := initMU(cI .MU) ∧ ¬cI .RSMU .valid ∧ ¬cI .S1.full

The predicate initMU(cI .MU) is described in the next section.

4.2.2 Memory Unit Overall Design

The VAMP memory unit executes all the processor requests to the memory
and external devices for instruction fetching and data retrieving. The overall
design of the MU is depicted on Figure 4.2.

Signals generated by the MU are supplied to its subsystems containing
the data and instruction MMUs (IMMU and DMMU) and communicating
with the off-chip physical memory and external devices via the synchronous
bus protocol [MP00,Bey05]. Beside the inputs for the MMUs, there are a
few signals used for the environment logic. The whole MMU environment
(MMU_Env) is covered in the next section.

Since there is a requirement to guarantee the assumptions for the MMU ’s
inputs (Chapter 3, Section 3.1.3), the new design of the memory unit con-
tains the stabilizing circuits for interrupted memory requests as it was done
in [Dal06].

Figure 4.3 gives such a circuit for the instruction fetch. An additional
control bit irollback ∈ B is active in case an interrupt JISR(cI) ∈ B occurs
during a request to MMU_Env. It gets inactive in the next cycle after the
end of the access to the IMMU . Note that the input signal clear is actually
computed as

clear := JISR(cI) ∨ reset (4.17)

A register mPC ∈ B32 is used for storing an instruction fetch address
adr_i ∈ B32 so that mPC provides the stable address for fetching an in-
struction in case of an interrupt. The input iptea is computed as

iptea := Add30(PTO[19 : 0] ◦ 010, 010 ◦ iaddr[28 : 9], 0)[29 : 0] (4.18)

The request ifetch is only possible if the access address is properly aligned
and in user mode iptea does not refer to the external devices. The instruction
misalignment imal is

imal := iaddr[1] ∨ iaddr[0] ∨AND17(iptea[29 : 13]) ∧MODE (4.19)

The results of the instruction fetch are saved in the registers of the
pipeline stage IF , namely S1.

Load/store operations are performed in a more complicated way. There
is an inner stage m in the MU that contains all data and flags required
for generating and holding a request to MMU_Env. We denote all these
registers in the memory unit’s configuration as cI .MU.m.
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Figure 4.2: The VAMP Memory Unit
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Figure 4.3: Stabilizing Circuit pc_gen for the IMMU

Definition 4.2.2 Let r be a register in the stage m of the memory unit. We
introduce a short notation m.r for all such registers cI .MU.m.r.

A register m.ctrl contains a set of the following flags:

m.ctrl := (valid, stalled, rollback, inorder,

dmal, dpf, Ib, Ih, Iw, Iu, If, Is)

• rollback – a flag as the irollback flag but used for load/store requests;

• valid – a flag indicating that the MU processes an instruction and
rollback is inactive;

• stalled – a flag indicating that the producer could not receive the
results of an executed instruction in the previous cycle (the Tomasulo
scheduler signaled this by active stall_in) , the results were buffered
and the MU was stalled;

• inorder – a flag indicating that the current instruction is the oldest
one in the ROB and a store access to the cache memory system or an
access to the devices can be performed;

• dmal – a data misalignment flag;

• dpf – a data page fault exception received from MMU_Env;

• Ib, Ih, Iw, If – flags characterizing an operation performed by the cur-
rent load/store instruction: a byte, half word, word, or a double float
access correspondingly;
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• Iu – a flag indicating that the result of the current load instruction
must be zero extended;

• Is – a flag of a store instruction.

Definition 4.2.3 For each flag f in the register m.ctrl we write m.f instead
of a record notation m.ctrl.f .

The memory unit receives a new instruction with its operands if only the
MU does not perform a load/store operation, all the results are provided
and not required to be kept in the memory unit further, i.e. a flag stallout
is inactive.

stallout := m.valid ∨m.rollback (4.20)

During the instruction dispatch, the tag of the new instruction is copied
into the stage m from the reservation station so that

m′.tag :=

{
RSMU .tag if ¬reset ∧ ¬stallout

m.tag otherwise
(4.21)

On the same conditions the registers PTL ∈ B20, MODE ∈ B, and the flags
Ib, Ih, Iw, Iu, If , Is are updated from the reservation station, e.g. for the
flag Iw

m′.Iw :=

{
Iw(RSMU .IR) if ¬reset ∧ ¬stallout

m.Iw otherwise,
(4.22)

where Iw is a corresponding function. The byte write signals mbw ∈ B8 are
generated by the circuit gen_bw.

The effective address ea ∈ B32 and the page table entry address
ptea ∈ B30 are computed in addr_comp (Figure 4.4) using the reserva-
tion station fields: pto := RSMU .PTO[19 : 0], the sign extended imme-
diate constant imm := sext(imm(RSMU .IR)), and an RS1-operand addr.
The computation of ptea is taken away from the MMU as it was proposed
in [Dal06] (Chapter 4) so that the latency of the MMU designed in this
thesis (Chapter 3) is reduced by one cycle in comparison with the MMU ’s
construction in [Dal06]. However, in contrast to the proposition in that
work, using carry save adders [MP00] turned out to be infeasible for the
simultaneous computation of both addresses.

The data supplied in case of a store instruction is saved in the register
data ∈ B64 after shifting it in the circuit shift4store. This circuit is used
for shifting the data that has to be written to a correct byte position in the
input double word for the memory cache system.

A circuit shift4load is used for the similar shifting as shift4store but
only performed on the results of read accesses. Since both the signed and
unsigned loads are supported in the MU , the circuit shift4load also produces
the sign-extension and zero-extension of the loaded data.
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Figure 4.4: Data Paths of addr_comp

When the new instruction is dispatched all its operands are ready and
the instruction is marked with a set flag RSMU .valid. This value is moved
to the stage m as well if no interrupts occur. So, the flag valid of the stage
m is updated during the instruction dispatch and while holding a request.

m′.valid :=





0 if reset

RSMU .valid ∧ ¬clear if ¬reset ∧ ¬stallout

m.valid ∧ ¬clear if ¬reset ∧ ¬stallout ∧
(clear ∨m.rollback)

stall_in ∨ (¬m.dmal ∧
¬m.stalled ∧ dbusy) otherwise

(4.23)

The flags stalled and inorder are reset but can be changed later too.

m′.stalled :=





0 if ¬reset ∧ ¬stallout

stall_in if ¬reset ∧ stallout ∧
¬(clear ∨ rollback) ∧
(¬dbusy ∨m.dmal ∨
(stall_in ∧m.stalled))

m.stalled otherwise

(4.24)
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m′.inorder :=





0 if ¬reset ∧ ¬stallout

(ROBhead = m.tag ∧
¬m.stalled ∧ ¬m.dmal ∧
¬m.inorder) ∨
(m.inorder ∧ dbusy) if ¬reset ∧ stallout ∧

¬(clear ∨m.rollback)
m.inorder otherwise

(4.25)

The data misalignment flag is computed as

m′.dmal :=





¬Ib(RSMU .IR) ∧ ea[0] ∨
Iw(RSMU .IR) ∧ ea[1] ∨
If(RSMU .IR) ∧ (ea[1] ∨ ea[2]) ∨
AND17(ptea[29 : 13]) ∧
RSMU .MODE[0] if ¬reset ∧ ¬stallout

m.dmal otherwise
(4.26)

A data request to MMU_Env starts with generating request sig-
nals dmr or dmw if no data misalignment happened before. Similarly
to the instruction fetch, the load/store requests are stabilized in case
of JISR(cI) (Figure 4.5).

mr := m.valid ∧ ¬m.Is ∧
¬m.dmal ∧ ¬m.stalled (4.27)

mw := m.valid ∧m.Is ∧
¬m.dmal ∧ ¬m.stalled (4.28)

dmr := mr ∨ (m.rollback ∧ ¬m.Is) (4.29)
dmw := mr ∨ (m.rollback ∧m.Is) (4.30)

Note that now in contrast to [Dal06] a request is started for a store instruc-
tion even though the instruction is not the oldest in the pipeline. This is
done for eliminating an additional delay because in user mode while the flag
m.inorder is inactive the MMU can perform the address translation. When
a write request is generated by the DMMU , it waits for the active input
inorder := m.inorder (see also Figure 4.7) and only then it is provided to
the memory cache system or devices.

MMU_Env also receives additional signals required for the logic in-
side: a word request flag wordreq := m.Is and a word address bit
waddrbit := m.ea[2]. The signal waddrbit is provided since the external
devices are only word addressable.
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Figure 4.5: Stabilizing Circuit req_gen for the DMMU

At the end of the data request to MMU_Env the results are saved to the
stage m namely m.data and m.dpf . Simultaneously, the results are provided
to the producer in case the signal stall_in is not raised. Otherwise, they
remain buffered in the stage m until the Tomasulo scheduler can accept
them.

Definition 4.2.4 For any output signal x provided by the memory unit to
the producer PMU we introduce a short notation xPMU

.

A flag validPMU
generated by the memory unit indicates that an executed

instruction leaves it.

validPMU
:= ¬stall_in ∧m.valid ∧

(m.dmal ∨m.stalled ∨ ¬dbusy) (4.31)

Note, in case of the data misalignment the request is not generated and the
result of the instruction execution includes the active flag m.dmal.

Now, we can define the predicate initMU(cI .MU) for the MU initial
state.

Definition 4.2.5 The MU is considered to be in the initial state if:

• no instruction (that was not interrupted) is executed in the MU ;

• initial states of both the DMMU and IMMU control automata are
unique, i.e. the control can not be in a few states simultaneously (a
predicate unique_state holds in this case);

• TLBs for both the MMUs are empty, i.e. they do not contain valid
entries (a predicate tlb_empty holds in this case).
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Formally, we define the predicate initMU(cI .MU) as:

initMU(cI .MU) := ¬m.valid ∧
(¬m.rollback =⇒ cI .MU.DMMU.st = idle) ∧
(¬irollback =⇒ cI .MU.IMMU.st = idle) ∧
unique_state(cI .MU.DMMU) ∧
unique_state(cI .MU.IMMU) ∧
tlb_empty(cI .MU.DTLB) ∧
tlb_empty(cI .MU.ITLB)

4.2.3 MMU Environment Construction

The MMU environment MMU_Env combines both the memory management
units with an additional logic and provides accessing the physical memory
and external devices via the bus protocol.

The circuit MMU_Env is split into two parts corresponding to the IMMU
and DMMU . Both parts communicate with the common instruction/data
cache system. Along with caching this system generates inputs mifi for the
off-chip memory and processes its respond mifo. For managing accesses to
the devices and the cache system there is used prefetch control logic IPFCTRL
and DPFCTRL.

Since for the instruction fetch accessing the external devices is not per-
mitted, the construction of the IMMU environment (Figure 4.6) is straight-
forward.

In the DMMU environment (Figure 4.7) all load/store word requests to
the external devices bypass the cache system because their configuration can
change regardless of the processor actions. So, the memory unit communi-
cates directly with the devices according to the synchronous bus protocol.
It places a request on difi channel and waits for the result on difo (Fig-
ures 4.8 and 4.9 ). In contrast to the bus protocol described in [MP00], its
version considered here supports devices providing the result already in the
next cycle after the request [Tve08].

A decision whether an external device or the cache system is accessed is
done using an output prefetch control signal cach_enout computed on basis
of an input addr_high := addrm[28 : 12] that is the 17 higher bits of the
address from the DMMU .

Since the MMU provides and accepts the signals that correspond to the
memory cache system interface and do not match the bus protocol, an addi-
tional logic is used for generating signals to external devices and computing
the flag busy to the DMMU side. An external device is considered to be
busy in the first cycle of the request and while one of the handshake signals
difi.reqp and difi.brdy is raised. As for the output request signals, they are
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Figure 4.6: IMMU Environment
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Figure 4.7: DMMU Environment



4.2. IMPLEMENTATION OF THE VAMP MEMORY UNIT 67

clk

req

mw

addr

dout

reqp

brdy

din

�H�L�H�L�H�L�H�L�H�L�H�L�H�L�H�L�H�L�H�L�H�L�H
L�HHHH�LLLLLLLLLLLLLLLLLLLLLL�HHHH�LLLLLLLLLLLLLLLL�HHHH�LLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
U�VVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVVV�UUUU�VVVVVVVVVV�
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
LLLLLLL�HHHHHHHHHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLL�HHHH�LLLLLLLLLL�HHHH�LLLLLLLLLLLLLLLLLLLLLLLL
UUUUUUUUUUUUUUUUUUUUUUUUU�VVVV�UUUUUUUUUU�VVVV�UUUUUUUUUU�VVVV�

Figure 4.8: Timing of the device interface: read, fast read, and new fast read
accesses.
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Figure 4.10: Data Paths of devreq_gen

computed in a circuit devreq_gen (Figure 4.10):

difo.req := (mrout ∧mwout) ∧ ¬run ∧ ¬cache_enout (4.32)
difo.mw := mwout ∧ ¬cache_enout (4.33)

The register run allows to set difo.req only in the first cycle of the request
to an external device. It has an active value in case in the pervious cycle the
request was in progress and gets 0 after its end.

4.2.4 Prefetch Control Logic

The prefetch control logic circuit PFCTRL is designed so that it is used uni-
versally for the IMMU and DMMU . This circuit is included into the MU
construction because of two reasons. First, the MU communicates with ex-
ternal devices. Second, a store instruction can start a request to the DMMU
even in case the instruction is not the oldest in the pipeline.

In the prefetch control logic a device access is detected and a correspond-
ing flag dev_mem is generated inside:

dev_mem := AND17(addr_high) (4.34)

Hence, the output cache enable signal cache_enout is computed as

cache_enout := ¬dev_mem (4.35)



4.3. CORRECTNESS CRITERIA 69

0 1

0 1 0 1

0 1 0 1 0 1

0 1

0 1

0 1

mw 00

mw0

fetchmr 0

mrout

0

mr0

mwout

dev mem

fetch

inorder

word req

Figure 4.11: Computation of mrout and mwout Signals

Since external devices can be only word accessed and do not provide
instructions to be fetched from, an exception dvm_excpout is generated if
the MMU provides a request intended for an external device and these rules
are not abided by.

dvm_excpout := (((mr ∨mw) ∧ ¬word_req) ∨ fetch) ∧ dev_mem (4.36)

In case this exception is raised, neither mrout nor mwout are set to 1 by
PFCTRL. The same happens if an out-of-order instruction tries to access
an external device or to write to the cache memory system. For such cases
these outputs remain inactive until the instruction gets the oldest one in the
pipeline. The computation of both the signals is depicted on Figure 4.11.

An output signal busyout (Figure 4.12) allows to stall a request
req := mr ∨mw ∨ fetch from the MMU in such a situation with an out-
of-order instruction until the proper inorder is received. Besides, it gets
the value 0 in case of dvm_excpout so that for the MMU side it looks like
the access to an external device is finished though it is not even started. In
all other cases PFCTRL just redirects the input busy supplied by the cache
system or an external device to the MMU .

4.3 Correctness Criteria

In this section we provide lemmata to be proven, which cover the correctness
of the memory unit. We concentrate only on proofs that show how the local
correctness of the MMU can be used to verify the entire MU .

To organize correctness criteria for the memory unit we follow the same
concept used in [Dal06]. The correctness is covered with respect to scheduling
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Figure 4.12: Computation of busyout Signal

functions that map a pipeline stage in any cycle to the index of an instruction
being in this stage. The scheduling functions were introduced in [MP00,
BJK+03]. So, all the previous proofs of VAMP were based on this approach.

4.3.1 Scheduling Functions

A scheduling function sI(k, t) for a stage k is defined inductively over a
cycle t. To denote an empty stage initially the scheduling function possesses
the value 0, i.e.

sI(k, 0) = 0

If an instruction in the cycle t is passed from a stage k′ to k, the value is
changed as

sI(k, t + 1) = sI(k′, t)

Note that the scheduling functions used in VAMP considered in this thesis
are analogous to ones covered in [Dal06]. We describe only those crucial for
arguing about the MU correctness. More details on scheduling functions for
visible (included in the programmer’s model) and invisible registers can be
found in [Bey05, p. 126–132].

The issue scheduling function of the VAMP is incremented on a signal
issue.

sI(issue, 0) := 1

sI(issue, t + 1) :=

{
sI(issue, t) + 1 if issuet

sI(issue, t) otherwise
(4.37)
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This signal is computed as

issue := cI .S1.full ∧ ¬stall.1 (4.38)

and indicates that the instruction register is being issued into some reser-
vation station or directly into the reorder buffer. A flag cI .S1.full shows
that the instruction register contains a fetched instruction. A signal stall.1
is the same as introduced in [Bey05] and means that an instruction can not
be accepted by the decode stage and issued therefore.

The MU reservation station is updated on an active signal issueRSMU

computed as follows:

issueRSMU := cI .S1.full ∧
¬(full(ROBcount) ∧ ¬writeback) ∧
¬RSMU .valid ∧ Imem(cI .S1.IR), (4.39)

where full(ROBcount) shows that the reorder buffer is full, writeback is
an update enable signal for the writeback stage, and Imem identifies an
instruction to be executed in the memory unit. So, the scheduling function
for RSMU is defined in the following way:

sI(RSMU , 0) := 0

sI(RSMU , t + 1) :=

{
sI(issue, t) if issueRSt

MU

sI(RSMU , t) otherwise
(4.40)

For the inner stage m of the memory unit we use a scheduling function
returning an index of an instruction accepted by the the MU and executed
there in a given instant of time. Dispatching the instruction to the MU is
allowed on dispatchRSMU flag:

dispatchRSMU := RSMU .valid ∧ ¬stallout (4.41)

So, the definition of sI(m, t) is straightforward:

sI(m, 0) := 0

sI(m, t + 1) :=

{
sI(RSMU , t) if dispatchRSt

MU

sI(m, t) otherwise
(4.42)

For the visible memory cI .M a scheduling function is defined on basis
of sI(m, t) and possess a new value if the execution of an instruction in the
memory unit is finished.

sI(M, 0) := 1

sI(M, t + 1) :=

{
sI(m, t) + 1 if (mwt ∨mrt) ∧ ¬dbusyt

sI(M, t) otherwise
(4.43)
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The last scheduling function required for covering the MU correctness
concerns the writeback stage:

sI(wb, 0) := 1

sI(wb, t + 1) :=

{
sI(wb, t) + 1 if writebackt

sI(wb, t) otherwise
(4.44)

4.3.2 The MU Correctness for Load/Store

The correctness of the memory unit on load /store consists of two points:

• First, at the end of a request the memory cI .M is updated in the
proper way, i.e. the correct date is stored in the memory according to
the correct address in case of a store instruction.

• Second, the memory unit produces the same outputs as the correspond-
ing part of the specification.

Both the statements must hold between interrupts. We consider the
memory update in more detail. Other claims are just defined to be proven
later on.

So far we talked about the memory without covering how it is updated.
Using the cache memory system signals depicted on Figure 4.7 we can define
the VAMP configuration component cI .M .

Definition 4.3.1 Let init_mem ∈ Memory be the initial memory content.
We introduce a predicate bw(ad, b) specifying a write to a byte b ∈ Z8 at an
address ad ∈ B29.

bw(ad, b) := (ad = data.addr) ∧ data.mw ∧ data.mbw[b] ∧ ¬data.busy

The memory content cI .M at a cycle t ∈ N is recursively defined as

c0
I .M := init_mem

∣∣ct+1
I .M [ad]

∣∣
b

:=

{∣∣data.doutt
∣∣
b

if bw(ad, b)t

∣∣ct
I .M [ad]

∣∣
b

otherwise

Similarly to [Dal06], for the verification effort we use the correctness
criteria of the Tomasulo algorithm that guarantees the correctness of the
information in the reservation stations.

Definition 4.3.2 We introduce a predicate invRSMU (T ) for a RSMU invari-
ant stating that the reservation station content in any cycle T ∈ N corre-
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sponds to an instruction sI(RSMU , T ):

invRSMU (T ) := RST
MU .valid =⇒

RST
MU .IR = IR(csI(RSMU ,T )

S ) ∧
RST

MU .PTO = pto(csI(RSMU ,T )
S ) ∧

RST
MU .PTL = ptl(csI(RSMU ,T )

S ) ∧
RST

MU .MODE = mode(csI(RSMU ,T )
S ) ∧

RST
MU .addr = c

sI(RSMU ,T )
S .GPR[RS1(csI(RSMU ,T )

S )]

Using this invariant allows to conclude the correctness of the register
content in the stage m quite easily.

One more note crucial for the MU correctness is connected with using
the TLB. Since the processor allows the data cached in the TLB to become
inconsistent with the memory content, we introduce a software condition
that prohibits a programm running in user mode from modifying the page
table.

Definition 4.3.3 Let PT (cS) be a set of addresses belonging to the page
table:

startPT (cS) := pto(cS) ◦ 012

endPT (cS) := (pto(cS) ◦ 012) +32 (010 ◦ ptl(cS) ◦ 02)
PT (cS) := {x | 〈x〉 ∈ [〈startPT (cS)〉 : 〈endPT (cS)〉]}

We define a software condition stablePT that must always hold:

stablePT := ∀i ∈ N+ : mode(ci
S) ∧ dpa(ci

S) ∈ PT (ci
S) =⇒ ¬mw?(ci

S)

To use the MMU local correctness in the MU proofs, we have to define
a function composing a DMMU trace globally in the memory unit.

Definition 4.3.4 We introduce a function dtrc ∈ N→ Trace computing the
local trace dtrcT of the DMMU that starts at a cycle T ∈ N in the memory
unit so that each component returned by dtrcT (t) for a MMU local time t ∈ N
corresponds to a cycle T + t in the MU .

In contrast to [Dal06] the DMMU trace used here is not supposed to
start only at the beginning of a certain DMMU request and concern only
this request. We allow it to include a sequence of requests. Later on we
show that we can find a cycle for the MU , which can be used as an initial
cycle for the local DMMU trace. These changes are made because the MMU
exploits the TLB in this work.

Note that for the local DMMU trace we use the same notation as in
Chapter 3. However, we have to be able to denote the DMMU signals for
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each DMMU interface at any cycle globally in the memory unit. For example,
it is impossible to denote the output exception from the DMMU at a cycle
T ∈ N by the MMU_Env output dexcpT because it includes not only the
exception from the DMMU but the flag from DPFCTRL. To distinguish
between the time in the DMMU local trace and globally in the memory unit
we introduce the following record notation.

Definition 4.3.5 We use a short notation dinputsx for the DMMU input
signals and doutputsx for its output signals in each interface x in the memory
unit: p, t, and m for the processor, DTLB, and the interface between the
DMMU and DPFCTRL. For example, doutputsT

p .excp denotes an output
exception from the DMMU at a cycle T ∈ N in the memory unit.

We start with auxiliary lemmata used then in final proofs of the MU
correctness. First, we must prove that the assumptions used for the MMU
local correctness hold in the memory unit.

Lemma 4.3.6 The DMMU inputs composing a processor request are correct:

∀T ∈ N : good_proc_interface(dtrcT )

We split this lemma in two parts.

Lemma 4.3.7 The request signals for the DMMU are mutually exclusive:

∀T ∈ N : proc_mr_mw_fetch_mutex(dtrcT )

Proof: We have to prove that for any time t in the local DMMU trace dtrcT

the request signals fetcht
p, mrt

p, and mwt
p are mutually exclusive. Actually,

for the DMMU the signal fetcht
p = 0. The signals mrt

p and mwt
p are equal

to dmrT+t and dmwT+t in the MU correspondingly due to the DMMU trace
computation. According to (4.29) and (4.30) one easily conclude that these
signals are mutually exclusive. ut

Lemma 4.3.8 The DMMU inputs composing a processor request are stable:

∀T ∈ N : proc_inputs_stable(dtrcT )

Proof: The inputs for the DMMU are supplied from the stage m. The proof
follows directly from the memory unit construction since the registers used
for the DMMU inputs computation are updated only if dbusy is inactive. ut
Proof: [Lemma 4.3.6]
With both the Lemmata 4.3.7 and 4.3.8 the claim is obvious. ut

Lemma 4.3.9 The DTLB interface is correct:

∀T ∈ N : tlb_empty(cT
I .MU.DTLB) =⇒ good_tlb_interface(dtrcT )
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As in in the previous case we split the proof of this lemma.

Lemma 4.3.10 The DTLB is data consistent:

∀T ∈ N : tlb_empty(cT
I .MU.DTLB) =⇒ tlb_data_consist(dtrcT )

We omit the proof of this lemma because the TLB construction and its
correctness are out of the scope of this thesis. This lemma is proven in
Isabelle/HOL with respect to the TLB design based on the direct mapped
cache.

Lemma 4.3.11 The signal purge for the DTLB is computed correctly in the
memory unit:

∀T ∈ N : tlb_purge_comp(dtrcT )

Proof: This claim is true with respect to the computation of purge in the
DMMU environment (Figure 4.7)

ut
Proof: [Lemma 4.3.9]
With both the Lemmata 4.3.10 and 4.3.11 the claim is obvious.

ut
As for the predicate good_mem_interface(dtrcT ) for any T ∈ N, it

must hold under the following assumptions:

• the data is read correctly from the memory cI .M , i.e.

∀T ∈ N : data.mrT ∧ ¬data.busyT =⇒
data.dinT = cT

I .M [data.addrT ] (4.45)

• the memory cI .M is live, i.e.

∀T ∈ N : data.mrT ∧ data.mwT =⇒
∃T ′ ∈ Z≥T : ¬data.busyT ′ (4.46)

• any memory instruction becomes the oldest in the pipeline, i.e.

∀T ∈ N : dispatchRST
MU =⇒

∃T ′ ∈ Z>T : RSMU .tagT = ROBheadT ′ (4.47)

The first assumption is required because we formally defined only cI .M
update. Note that we do not consider requests to the external devices. The
other assumptions are used to prove the liveness of the interface between the
DMMU and DPFCTRL. Using the last assumption is caused by the follow-
ing. As was described in Section 4.2.4, the prefetch control logic stalls a store
request to the cache memory system until the memory instruction being ex-
ecuted gets the oldest in the pipeline. Therefore, since the DMMU memory
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interface observation consists of the signals received from and provided for
the prefetch control logic, we must guarantee that the flag m.inorder is ac-
tivated eventually. So, (4.47) allows to achieve this in the computation of
m.inorder according to (4.25). However, to use (4.47) we need the proces-
sor liveness that were not proven for the VAMP and must be used as an
assumption for the processor now.

With the assumptions above and Lemmata 4.3.6, 4.3.9 we can use The-
orem 3.3.1 that covers the local correctness of the MMU .

Definition 4.3.12 We introduce a signal dreq that stands for the data re-
quest to the DMMU in the memory unit, namely dreq := dmr ∨ dmw.

Now we define a predicate holding only in a cycle when a request to the
DMMU actually completes.

Definition 4.3.13 The predicate commits for any T, i ∈ N is defined in the
following way:

commits(T, i) := dreqT ∧ ¬dbusyT ∧mT.valid ∧ sI(m, T ) = i

Provided that this predicate holds, we can reconstruct the whole request
to the DMMU in the past.

Definition 4.3.14 We define the predicate is_req_proc_dmmu for the
processor request to the DMMU in the following way:

is_req_proc_dmmu(T, T ′) :=
(T > 0 =⇒ ¬dbusyT−1) ∧
(T ≤ T ′) ∧ dreqT ∧ ¬dbusyT ′ ∧
∀T ′′ ∈ [

T : T ′
[

: dbusyT ′′ ∧
∀T ′′ ∈ [

T : T ′
]

: mT ′′.valid

Lemma 4.3.15 If an instruction in the memory unit commits at a cycle T
then there is a cycle T ′ ≤ T such that from T ′ to T a processor request to
the DMMU is performed. Formally, we have:

initMU(c0
I .MU) =⇒

∀T, i ∈ N : commits(T, i) =⇒
∃T ′ ∈ Z≤T : is_req_proc_dmmu(T ′, T )

To prove this we first consider a couple of additional lemmata.

Lemma 4.3.16 If at any cycle T the DMMU is busy and handles a non-
interrupted request (as indicated by the signal m.rollback), then there exists
a cycle T ′ before T when the DMMU is not busy, all this time till T the
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stage m of the memory unit is valid and the DMMU responds with the active
dbusy.

initMU(c0
I .MU) =⇒

∀T ∈ N : dbusyT ∧ ¬mT.rollback =⇒
∃T ′ ∈ ZT : ¬dbusyT ′ ∧

∀T ′′ ∈ ]
T ′ : T

]
: dbusyT ′′ ∧mT ′′.valid

Proof: We show the claim by induction on T .
Induction base (T = 0): With help of the predicate initMU(c0

I .MU)
we have ¬m0.valid. Moreover, for the induction base we get ¬m0.rollback.
Therefore, according to Definition 4.3.12, the equations (4.29), and (4.30) we
compute dreq0 = 0. However, since dbusy0 (and in turn busy0

p for the trace
dtrc0) is active one can easily conclude that dreq0 = 1. This contradiction
completes the case.
Induction step (T → T + 1): With the induction hypothesis we are to
prove the claim:

∃T ′ ∈ ZT+1 : ¬dbusyT ′ ∧
∀T ′′ ∈ ]

T ′ : T + 1
]

: dbusyT ′′ ∧mT ′′.valid

We split cases on dbusyT ∧ ¬mT.rollback.

• Let dbusyT ∧ ¬mT.rollback hold. From the induction hypothesis we
have

∃T ′ ∈ ZT : ¬dbusyT ′ ∧
∀T ′′ ∈ ]

T ′ : T
]

: dbusyT ′′ ∧mT ′′.valid

Besides, we assume that dbusyT+1 ∧ ¬mT+1.rollback. Therefore, to
prove the statement above it is enough to show that mT+1.valid. So
far as ¬dbusyT ′ ∧ dbusyT ′+1, the request dreqT ′+1 to the DMMU is
active. Since the processor inputs are stable from the cycle T ′ + 1 to
T + 1, we also have dreqT+1. Obviously, one gets mT+1.valid because
of ¬mT+1.rollback.

• Let ¬(dbusyT ∧¬mT.rollback) hold. We consider two cases depending
on the value of dbusyT .

– If dbusyT is active, then mT.rollback is set, and as a result in the
next cycle we get mT+1.rollback. However, actually this flag is
inactive at T + 1. This is a contradiction.

– If dbusyT is inactive, the only claim to be proven is mT+1.valid.
Since ¬dbusyT ∧ dbusyT+1, the request dreqT+1 is set. The con-
clusion is obvious because of ¬mT+1.rollback.
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ut

Lemma 4.3.17 The flags m.valid and m.rollback in the memory unit are
mutually exclusive.

initMU(c0
I .MU) =⇒ ¬(mT .valid ∧mT .rollback)

Proof: It is easy to prove this assertion by induction on T .
Induction base (T = 0): With the help of the predicate initMU(c0

I .MU)
we have ¬m0.valid. This obviously proves the case.
Induction step (T → T + 1): To prove the claim

¬(mT+1.valid ∧mT+1.rollback)

it is enough to split the cases on the update conditions for m.valid in (4.23).
Using the computation of this flag, m.rollback update (Figure 4.5), and the
induction hypothesis, we easily obtain the appropriate values for mT+1.valid
and mT+1.rollback. This finishes the proof.

ut
With both the lemmata above we can proceed to the proof of

Lemma 4.3.15.
Proof: [Lemma 4.3.15]
The claim of the lemma can be proven by induction on T .
Induction base (T = 0): From commits(0, i) we get m0.valid. This
contradicts initMU(c0

I .MU).
Induction step (T → T + 1): We are to prove that

∃T ′ ∈ Z≤T+1 : is_req_proc_dmmu(T ′, T + 1)

We consider the cases depending on commits(T, i).

• Let commits(T, i) hold. Instantiating the existential quantifier in the
assertion with T + 1, one sees that all the parts of the predicate
is_req_proc_dmmu(T +1, T +1) hold with respect to commits(T, i)∧
commits(T + 1, i). This covers the case.

• Let ¬commits(T, i) hold. We split the cases on the value of dbusyT :

– The signal dbusyT is inactive. With this assumption and
commits(T + 1, i) the assertion is obviously true for a one cy-
cle processor request as in the previous case.

– The signal dbusyT is active. Since commits(T + 1, i) holds,
the flag mT+1.valid is set. Therefore, by Lemma 4.3.17 we get
¬mT+1.rollback. Moreover, the input signal resetT is not active
because otherwise we would have ¬mT+1.valid. With these all
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conditions the computation of m.rollback implies ¬mT .rollback.
Now, by Lemma 4.3.16 the following statement holds:

∃t′ ∈ ZT : ¬dbusyt′ ∧
∀t′′ ∈ ]

t′ : T
]

: dbusyt′′ ∧mt′′.valid

Hence, instantiating the existential quantifier of the original as-
sertion with t′ + 1, we obtain all the parts of the predicate
is_req_proc_dmmu(t′ + 1, T + 1) except dreqt′+1. From the
statement above we obtain ¬dbusyt′ ∧ dbusyt′+1. This is true in-
deed if only dreqt′+1 is set. So, the case is completely covered and
the proof is finished.

ut
To use the local correctness of the MMU we must turn the processor

request found in the memory unit into the form suitable for the local MMU
trace. For this purpose we provide a lemma.

Lemma 4.3.18 The following implication is valid:

∀t, T, T ′ ∈ N : t ≤ T ∧ T ≤ T ′ ∧
is_req_proc_dmmu(T, T ′) =⇒
is_req_proc(T − t, T ′ − t, dtrct)

We skip the proof of this lemma because it is obvious and requires only
expanding the definitions.

Next, we consider a few lemmata concerning the MU correctness. Note
that all the DMMU inputs and the registers of the stage m except m.inorder
are stable during a processor request in the memory unit. It is easily proven
with exploring the MU construction and the proofs are omitted. The same
is true for the scheduling function of this stage.

Lemma 4.3.19 The addresses m.ptea and m.ea are computed correctly in
the memory unit, namely for a cycle T ∈ N

invRSMU (T ) ∧ ¬stalloutT ∧mT+1.valid =⇒
mT+1.ea = ea(csI(m,T+1)

S )

mT+1.ptea = dptea(csI(m,T+1)
S )

Proof: The computation of the flag mT+1.valid (4.23) implies RST
MU .valid

because of ¬stalloutT ∧mT+1.valid. Therefore, the condition dispatchRST
MU

for the scheduling function sI(m,T + 1) holds by (4.41) and sI(m,T + 1) =
sI(RSMU , T ).

The signal ¬stalloutT also indicates that the values of mT+1.ea and
mT+1.ptea are supplied from the circuit addr_comp in the memory unit.
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With the help of invRSMU (T ) all the inputs for the circuit addr_comp cor-
respond to their equivalents in the specification. The correctness of the
computations in addr_comp is proven with the help of an integrated to Is-
abelle command [Tve08] calling the model checker SMV. So, the assertion of
the lemma is true indeed.

ut

Lemma 4.3.20 The data misalignment flag is computed correctly in the
memory unit at the end T ∈ N of the processor request. Formally, the fol-
lowing holds:

initMU(c0
I .MU) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) ∧
(∀t ∈ ZT : invRSMU (t)) ∧ is_req_proc_dmmu(T ′, T ) =⇒
mT .dmal = dmal(csI(m,T )

S ).

Proof: The stability of the stage m allows to conclude mT .dmal =
mT ′ .dmal. Moreover, during the processor request the memory unit does
not accept a new instruction, i.e. sI(m,T ) = sI(m,T ′). So, the assertion is
rewritten in the following way:

mT ′ .dmal = dmal(csI(m,T ′)
S ) .

The processor request is_req_proc_dmmu(T ′, T ) implies ¬stalloutT
′−1

and mT ′ .valid. Therefore, the flag RST ′−1
MU .valid is set, and in turn

sI(m, T ′) = sI(RSMU , T ′− 1) as in the previous lemma. Using the invariant
invRSMU (T ′ − 1), Lemma 4.3.19, m.dmal computation by (4.26), and the
definition of dmal in the specification, we finish the proof of the lemma.

ut

Lemma 4.3.21 If at a cycle T ∈ N the memory unit executes an instruction
not interrupted before, then there exists a moment in the past that can be
considered as an initial cycle of the local DMMU trace, i.e.

initMU(c0
I .MU) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) ∧mT .valid =⇒
∃t ∈ ZT : ct

I .MU.DMMU.st = idle ∧ tlb_empty(ct
I .MU.DTLB) ∧

(∀t′ ∈ Zt : mt′.rollback) ∧ (∀t′ ∈ [t : T ] : ¬mt′.rollback)

Proof: First, we start with the part of the lemma concerning m.rollback:

∃t ∈ ZT : (∀t′ ∈ Zt : mt′.rollback) ∧ (∀t′ ∈ [t : T ] : ¬mt′.rollback)

The proof proceeds depending on the following cases:

• ∃t ∈ ZT : mt.rollback ∧ (∀t′ ∈ ]t : T ] : ¬mt′.rollback)
Since there are no interrupts, the flag mt.rollback can be set only if it
is active initially. Therefore, the claim above holds.
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• ∀t ∈ ZT : ¬mt.rollback ∨ (∃t′ ∈ ]t : T ] : mt′.rollback)
The next case splitting is based on ∀t ∈ ZT : ¬mt.rollback:

– ∀t ∈ ZT : ¬mt.rollback holds. This trivially shows the claim is
true.

– Otherwise, one considers ∃t ∈ ZT : mt.rollback. The case im-
plies ∃t′ ∈ ]t : T [ : mt′.rollback. Then we can find a cycle with
m.rollback and ¬m.rollback after. Moreover, it must be set start-
ing from the initial configuration. This draws the conclusion.

Provided the claim holds, the rest of the lemma to be proven is

ct
I .MU.DMMU.st = idle ∧ tlb_empty(ct

I .MU.DTLB) .

If t = 0 the conclusion is obvious because of initMU(c0
I .MU). Oth-

erwise, the proof is in exploring the MU construction. We already
know that mt−1.rollback. Hence, the signal purget−1 is raised, and
tlb_empty(ct

I .MU.DTLB) holds. The flag m.rollback changes its value so
that mt.rollback holds. Using (4.23) we find out ¬dbusyt−1. Therefore, the
DMMU ’s control automation is in the state idle in the next cycle. This
finishes the proof of the lemma.

ut
Before considering the memory update we provide a lemma borrowed

from [Bey05]. It deals with the memory in the VAMP specification in case
a memory instruction commits in the implementation.

Lemma 4.3.22 If an instruction in the memory unit terminates its access
in cycle T ∈ N, the specification memory for the memory unit and the one of
the instruction identified by the visible memory register scheduling function
are identical. Formally, we have

(mwT ∨mrT ) ∧ ¬dbusyT =⇒ c
sI(M,T )
S .M = c

sI(m,T )
S .M

The proof of this lemma can be found in [Bey05, p. 148]. Note that we
translated a large amount of proofs concerning this lemma from the previous
PVS code into an Isabelle/HOL theory with slight modifications that do not
affect the pencil-and-paper proof.

The proofs of the lemmata and theorems described above in this thesis
were carried out and finished in Isabelle/HOL. The correspondence between
them and the proofs in Isabelle/HOL is given in Appendix A.

Now we pay attention on lemmata that are not complete in Isabelle/HOL.
We just provide a way for further reasoning about the verification of the
whole MU . The proof below shows how to use the MMU local correctness
for proving the MU correctness.
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Lemma 4.3.23 The exception flag from the DMMU is correct in the MU at
a cycle T ∈ N when a memory instruction being executed commits. Formally,
the following holds:

initMU(c0
I .MU) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) ∧
(∀t ∈ ZT : invRSMU (t)) ∧ (∀t ∈ Z≤T : ct

I .M = c
sI(M,t)
S .M) ∧

commits(T, sI(m,T )) =⇒
(¬dmodeT =⇒ ¬doutputsT

p .excp) ∧
(dmodeT =⇒ doutputsT

p .excp = dDecodeITr(csI(m,T )
S ).excp)

Proof: Using Lemma 4.3.15 we get

∃T ′ ∈ Z≤T : is_req_proc_dmmu(T ′, T )

With the stability of the stage m during the processor request we have

dmodeT = dmodeT ′ = mT ′.MODE

For the further proof we use the lemmas of the MMU local correctness.
So, we need to create a local DMMU trace in the memory unit. We fix a
starting cycle for the local trace according to Lemma 4.3.21, namely

∃t ∈ ZT ′ : ct
I .MU.DMMU.st = idle ∧ tlb_empty(ct

I .MU.DTLB) ∧
(∀t′ ∈ Zt : mt′.rollback) ∧ (∀t′ ∈ [

t : T ′
]

: ¬mt′.rollback)

Therefore, the local DMMU trace to be used is dtrct.
Now, we can split cases depending in the value of dmodeT .

• The processor runs in kernel mode, i.e. ¬dmodeT .

According to Lemmata 3.3.9 and 3.3.10 we have

good_proc_interface(dtrct) ∧
good_mem_interface(dtrct) =⇒
∀t′, t′′ ∈ N : is_req_proc(t′, t′′, dtrct) ∧

reqt′
p ∧ ¬modet′

p =⇒ ¬excpt′′
p

The premises concerning the MMU interfaces hold by Lemma 4.3.6
and considering good_mem_interface(dtrct) as it was done before.
By Lemma 4.3.18 there is a request is_req_proc(T ′ − t, T − t, dtrct)
for the local DMMU trace. From the MU construction one computes

reqT ′−t
p = dreqT ′

modeT ′−t
p = mT ′.MODE

excpT−t
p = doutputsT

p .excp

Therefore, ¬doutputsT
p .excp holds.
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• The processor runs in user mode, i.e. dmodeT holds.

First, we can show that dmodeT = mode(csI(m,T )
S ). Due to the stabil-

ity of the stage m during the processor request there is sI(m,T ) =
sI(m,T ′) for the scheduling function. The processor request im-
plies ¬stalloutT

′−1 and mT ′.valid. From the computation of the flag
mT ′.valid (4.23) it follows that RST ′−1

MU .valid. Therefore, the condition
dispatchRST ′−1

MU holds by (4.41) and sI(m, T ′) = sI(RSMU , T ′ − 1).
Consequently, sI(m,T ) = sI(RSMU , T ′ − 1). Besides, ¬stalloutT

′−1

implies mT ′.MODE = RST ′−1
MU .MODE. Using invRST ′−1

MU it is easy to
conclude

mT ′.MODE = RST ′−1
MU .MODE

= mode(csI(RSMU ,T ′−1)
S )

= mode(csI(m,T )
S )

Next, according to Lemmata 3.3.11 and 3.3.12 we have

good_proc_interface(dtrct) ∧
good_mem_interface(dtrct) ∧
good_tlb_interface(dtrct) =⇒
∀t′, t′′ ∈ N : is_req_proc(t′, t′′, dtrct) ∧

mem_ack_pte(t′, t′′, dtrct) ∧
reqt′

p ∧modet′
p =⇒ excpt′′

p = tr(t′).excp

The premises are proven in the same way as in the previous case but
with an additional Lemma 4.3.9. Hence, to use the assertion above we
have to prove only mem_ack_pte(T ′ − t, T − t, dtrct), that is for any
cycles t′, t′′ ∈ N of the local DMMU trace the following holds:

t′ < t′′ ∧ t′′ ∈ [
T ′ − t : T − t

] ∧
reqt′

p ∧ (∀t ∈ [
t′ : t′′

]
: modet

p) ∧〈
addrt′′

p [28 : 9]
〉
≤

〈
ptlt

′′
p

〉
=⇒

(pteat′′
p [0] =⇒ memt′′ [pteat′′

p [29 : 1]][63 : 32] =

memt′ [pteat′′
p [29 : 1]][63 : 32]) ∧

(¬pteat′′
p [0] =⇒ memt′′ [pteat′′

p [29 : 1]][31 : 0] =

memt′ [pteat′′
p [29 : 1]][31 : 0])

Since we consider the specification without interrupts we can prove the
following:
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– provided the processor is in user mode, the mode is not changed
for all next instructions, i.e.

∀i ∈ N+ : mode(ci
S) =⇒ ∀j ∈ Z≥i : mode(ci

S) (4.48)

– the page table origin and length are not changed in user mode,
formally

∀i ∈ N+ : mode(ci
S) =⇒

∀j ∈ Z≥i : pto(ci
S) = pto(cj

S) ∧
ptl(ci

S) = ptl(cj
S) (4.49)

Using the software condition stablePT and these two statements it is
easy to show that the page table remains unchanged in user mode,
namely

∀i ∈ N+ : mode(ci
S) =⇒

∀j ∈ Z≥i, ad ∈ PT (ci
S) : ci

S .M [ad[31 : 3]] =

cj
S .M [ad[31 : 3]] (4.50)

Since reqt′
p holds and the DMMU trace is computed so that mt+t′.valid

is set, we can find a cycle before t+t′ when m.MODE was updated and
then remained unchanged. Therefore, the invariant for RSMU allow us
to conclude

mt+t′.MODE = mode(csI(m,t+t′)
S )

So, we can consider the statements above for i = sI(m, t + t′).

Turning back to the assertion to be proven one sees that pteat′′
p

does not point outside the page table as indicated by the premise〈
addrt′′

p [28 : 9]
〉
≤

〈
ptlt

′′
p

〉
, where

ptlt
′′

p = mT ′.PTL = RST ′−1
MU .PTL

Moreover, pteat′′
p is computed on basis of RST ′−1

MU .PTO. We easily get

RST ′−1
MU .PTO = pto(csI(m,T ′)

S )

RST ′−1
MU .PTL = ptl(csI(m,T ′)

S )

Since sI(m, t + t′) ≤ sI(m,T ′) (as an increasing function on time),
the values of pto and ptl for these instructions are the same by (4.49).
Therefore, pteat′′

p ◦ 02 ∈ PT (csI(m,t+t′)
S ).

Let us examine the memory configurations memt′ and memt′′ . Using
the trace computation and the lemma’s premise concerning the memory
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we argue memt′′ = ct+t′′
I .M = c

sI(M,t+t′′)
S .M . During the processor

request the value of the scheduling function for the visible memory
is unchanged, i.e. sI(M, t + t′′) = sI(M, T ). Besides, for the cycle
T when the instruction commits we know c

sI(M,T )
S .M = c

sI(m,T )
S .M .

Therefore, we get
memt′′ = c

sI(m,T )
S .M

Analogously, there is memt′ = ct+t′
I .M = c

sI(M,t+t′)
S .M . Since dreqt+t′

and mt+t′.valid are active, one can find a cycle T ′′′ ∈ [t + t′ : T ] when
the instruction commits. So, the equality below holds:

memt′ = c
sI(m,T ′′′)
S .M

Since sI(m, t + t′) ≤ sI(m,T ′′′), by (4.50) the following is true:

∀ad ∈ PT (csI(m,t+t′)
S ) : c

sI(m,T ′′′)
S .M [ad[31 : 3]] =

c
sI(m,T )
S .M [ad[31 : 3]]

This proves mem_ack_pte(T ′ − t, T − t, dtrct) as it is required.

Now, we deal with

doutputsT
p .excp = excpT−t

p

= tr(T ′ − t).excp

In the same manner as it is done for dmodeT = mode(csI(m,T )
S ) we

reason:

mT ′.PTL = ptl(csI(m,T ′)
S )

mrT ′ = mr?(csI(m,T ′)
S )

mwT ′ = mw?(csI(m,T ′)
S )

and by Lemma 4.3.19

mT ′.ea = ea(csI(m,T ′)
S )

mT ′.ptea = dptea(csI(m,T ′)
S )

Moreover, for the memory one explores cT ′
I .M = c

sI(m,T ′)
S .M by the

lemma’s premise, the scheduling function stability, and Lemma 4.3.22.

Hence, we easily conclude

tr(T ′ − t).excp = dDecodeITr(csI(m,T ′)
S ).excp

Because of sI(m,T ′) = sI(m,T ) we finish the proof of the lemma. ut
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A similar lemma concerns the address provided by the DMMU for the
memory.

Lemma 4.3.24 The memory address is correct in the MU at a cycle T ∈ N
when a memory instruction being executed commits. Formally, the following
holds:

initMU(c0
I .MU) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) ∧
(∀t ∈ ZT : invRSMU (t)) ∧ (∀t ∈ Z≤T : ct

I .M = c
sI(M,t)
S .M) ∧

commits(T, sI(m,T )) ∧ ¬doutputsT
p .excp =⇒

dataT .addr =

{
dpa(csI(m,T )

S )[31 : 3] dmodeT

ea(csI(m,T )
S )[31 : 3] otherwise

Using Lemmata 3.3.13 and 3.3.14 this lemma can be proven in the same
manner as the previous one.

Now we can consider a lemma, which shows that the memory cI .M is
updated correctly for a case without interrupts.

Lemma 4.3.25 Provided no reset and interrupt occur before a cycle T ∈ N,
the memory content in the implementation till the cycle T corresponds to its
specification, namely

initMU(c0
I .MU) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) ∧
(∀t ∈ ZT : invRSMU (t)) =⇒ (∀t ∈ Z≤T : ct

I .M = c
sI(M,t)
S .M)

Proof: We prove this lemma by induction on T .
Induction base (T = 0): For this case the memory both in the specifica-
tion and in the implementation corresponds to its initial state init_mem.
This finishes the case.
Induction step (T → T + 1): For the induction step we are to prove that
the following holds:

∀t ∈ Z≤T+1 : ct
I .M = c

sI(M,t)
S .M

Owing to the induction hypothesis the only claim to be considered is

cT+1
I .M = c

sI(M,T+1)
S .M

We split cases depending on sI(M, T ) update.

• No instruction finishes its memory access: (¬mrT ∧¬mwT )∨ dbusyT .

Therefore, the value of the scheduling function is not changed, and
sI(M, T +1) = sI(M, T ). Using the induction hypothesis we conclude
c
sI(M,T+1)
S .M = cT

I .M .

Let us consider both the parts of the disjunction above.
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– If ¬mrT ∧¬mwT holds, it easy to show ¬data.mwT , and in turn
cT+1
I .M = cT

I .M . So, the case is proven.
– If dbusyT holds, then from the DMMU design we conclude

¬(doutputsT
m.mw ∧ ¬dinputsT

m.busy)

Therefore, the computation of the signals in DPFCTRL implies

¬(dataT .mw ∧ ¬dataT .busy)

and the memory in the implementation is not updated.

• An instruction finishes its memory access: (mrT ∨mwT ) ∧ ¬dbusyT .

We consider cases depending on mwT .

– Let ¬mwT hold. Obviously, the memory in the implementation
is not updated, namely cT+1

I .M = cT
I .M . Due to the fact that the

instruction commits, we get c
sI(M,T+1)
S .M = c

sI(m,T )+1
S .M .

Since there is a read instruction in the MU , one can prove
¬mw?(csI(m,T )

S ). Therefore, the memory remains unchanged and
c
sI(m,T )+1
S .M = c

sI(m,T )
S .M holds. Using the induction hypothesis

and Lemma 4.3.22 we finish the proof of this case.
– Let mwT hold. Using Lemma 4.3.20, it is easy to prove that
¬dmal(csI(m,T )

S ) holds.
If this is a request to the external devices, the memory cT

I .M is
not updated and the proof runs in the same way as in the previous
case.
Otherwise, the proof depends on the flag dpf(csI(m,T )

S ). By Lem-
mata 4.3.23 and 4.3.24 we can state

dexcpT = dpf(csI(m,T )
S )

Now, we consider the cases:

∗ If the flag dpf(csI(m,T )
S ) is set, the proof is similar to the case

with ¬mwT .
∗ Otherwise, we consider how the memory is updated. Since

the stage m contains the correct information for the instruc-
tion sI(m, T ) (the correctness of shift4store can be found
in [Bey05]), using Lemmata 3.3.10 and 3.3.12 we make sure
that the proper data is written into the memory correctly.
This finishes the proof of the lemma.

ut
Beside the memory update performed by the memory unit, we have to

cover the second point of the MU correctness. So, we provide the lemma
concerning the MU ’s outputs.



88 CHAPTER 4. THE VAMP MEMORY UNIT

Lemma 4.3.26 Provided no reset and interrupt occur before a cycle T ∈ N
when the results of the memory instruction execution are ready, the outputs
of the MU at this cycle are correct, namely

initMU(c0
I .MU) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) ∧
(∀t ∈ ZT : invRSMU (t)) ∧ validT

PMU
=⇒

dataT
PMU

= data(csI(m,T )
S ) ∧

dmalTPMU
= dmal(csI(m,T )

S ) ∧
dpfT

PMU
= dpf(csI(m,T )

S )

We omit the proof because it proceeds in a similar way as for the lemmata
above. All the lemmata considered before in this section can be used in this
proof.

As for the correctness with interrupts we are only interested in the mem-
ory update. So, we have to prove that if the first interrupt JISR(c̃T

I ) occurs
at a cycle T ∈ N, then the equality cT+1

I .M = c̃
sI(wb,T+1)
S .M is valid.

4.3.3 The MU Correctness for Instruction Fetch

In the pipelined processors we deal with a self-modifying code because an
instruction just has been fetched from the memory could be overwritten by
a store instruction being executed in the memory unit. To tackle such RAW
hazards in the VAMP there is used a so-called sync instruction [Bey05,Dal06]
before fetching from a modified position in the memory. The sync instruction
drains the pipeline of the processor.

The correctness of the instruction fetch for the VAMP is covered
in [Dal06, p. 74–86] on condition that the program code is synced. Here, we
only state a lemma without proofs for the instruction fetch in the memory
unit described in this work.

Lemma 4.3.27 Provided no reset and interrupt occur before a cycle T ∈ N
and the sync condition on the assembler code hold, the instruction fetch is
performed correctly till this cycle. Formally, we have

init(c0
I) ∧ (∀t ∈ ZT : ¬resett ∧ ¬JISR(ct

I)) =⇒
(∀t ∈ Z≤T : ct

I .S1.full =⇒ ct
I .S1.IR = IR(csI(issue,t)

S ) ∧
ct
I .S1.imal = imal(csI(issue,t)

S ) ∧
ct
I .S1.ipf = ipf(csI(issue,t)

S ))



Chapter 5

Conclusion

5.1 Summary

It this thesis we presented the implementation of the memory management
unit with the translation look-aside buffer for the fast address translation and
formally verified the correctness of the MMU . The MMU ’s design covered
in this work is based on the construction introduced in [Dal06] but contains
extensions proposed there.

• Because of using the TLB now the MMU is able to translate the virtual
address without accessing the physical memory if the buffer contains
an appropriate page table entry. This greatly decreases the latency of
MMU requests.

• Another extension allows to distinguish between memory pages con-
taining data and the executed code. The MMU prohibits the instruc-
tion fetch from the data region in the memory.

• The MMU is also optimized by taking the computation of the page ta-
ble entry address out the memory management unit so that the MMU ’s
latency is additionally reduced by one cycle in comparison with the
MMU covered in [Dal06].

As a next step, we integrated this new MMU into the memory unit of the
VAMP processor considered in [Dal06]. This required to develop a circuit
computing the effective and page table addresses simultaneously. For the
instruction fetch we also provided a trivial ptea computation circuit. Along
with these changes we made another couple of extensions for the MU .

• The extended design of the memory unit supports an interface for
the external devices [Tve08]. Any access to the external devices must
not be cached. So, the MU communicates directly with a device via
the synchronous bus protocol [MP00,Bey05] in case of a single word
load/store instruction.
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• The MU allows not to stall the execution of a store instruction while
it is not the oldest instruction in the pipeline. For such an instruction
the request to the DMMU is generated and only a write request to the
cache system or an external device is stalled. So, the read access for
the page table entry can be started earlier in contrast to [Dal06].

For these extensions we developed universal for both the MMUs prefetch
control logic and an additional logic for generating a request to a device on
basis of the DMMU output signals and detecting that the device is busy.

We also formally specified the memory unit in the context of the pro-
grammer’s model of the VAMP and showed the correctness criteria. Note
that we did not focus on accessing the external devices since that is a matter
of [Tve08]. In the proofs we paid attention to the memory update operation.
Though the proof of the overall MU correctness is not complete, it is seen
how to use the proofs of the MMU for the MU verification.

5.2 Future Work

The future work should be done in two directions: the formal verification
and the MU design extensions.

We need to finish the verification of the MU overall correctness. This is a
large amount of work due to a few reasons. Since this thesis is based on the
formal verification of the VAMP carried out in PVS, all the previous proofs
do not match the interactive theorem prover Isabelle/HOL and cannot be
used without translation. One more reason is the substantial modifications
made in this work for the previous MU design.

Most of the proofs in this thesis were done interactively in spite of cou-
pling Isabelle with external model checkers NuSMV and SMV. Actually, the
user’s involvement could be considerably reduced as reported in [Tve08].
Therefore, we should adapt the MU verification for automated methods.

The optimization and extensions were applied to the MMU and the mem-
ory unit in whole in this work to make them satisfy the requirements for the
industrial processors. However, the are still possible ways for the further
development.

• So, the multi-level address translation was proposed in [Hil05] as a
more space efficient extension. Now it could be realized at the next
step of the VAMP virtual memory support development.

• Pipelining the VAMPmemory unit is also reasonable because the mem-
ory accesses in user mode are performed in two steps. With this mod-
ification the MU could process more than one instruction at a time.

• One more possible extension is address space protection for processes
sharing the memory.



Appendix A

Mapping to Lemmata in
Isabelle/HOL

In this appendix we give a mapping from the lemmata and theorems consid-
ered in this thesis to corresponding proofs in Isabelle/HOL.

Number Thesis Page Name in Isabelle
3.1.18 25 mem_live_impl_mem_live_strong
3.3.1 32 mmu_local_correct_thm
3.3.2 32 proc_inputs_stable_for_req
3.3.3 33 mem_inputs_stable_for_req
3.3.4 33 mem_mr_mw_mutex_lem
3.3.5 33 mem_mr_stable
3.3.6 34 mem_inputs_stable_lem
3.3.7 35 proc_liveness_lem
3.3.9 37 untranslated_read_lem
3.3.10 38 untranslated_write_lem
3.3.11 40 translated_read_lem
3.3.12 47 translated_write_lem
3.3.13 48 untranslated_address_correct
3.3.14 48 translated_address_correct

Table A.1: Lemmata for the local MMU correctness
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Number Thesis Page Name in Isabelle
4.3.7 74 dmmu_proc_mr_mw_fetch_mutex
4.3.8 74 dmmu_proc_inputs_stable
4.3.10 75 dtlb_data_consist
4.3.11 75 dtlb_purge_comp
4.3.15 76 commits_imp_req_proc_data
4.3.16 76 commits_imp_req_proc_data_helper
4.3.17 78 rollback_valid_mutex
4.3.18 79 is_req_proc_dmmu_imp_is_req_proc
4.3.19 79 EA_PTEA_correct
4.3.20 80 mu_dmal_correct_for_req_proc
4.3.21 80 init_state_for_trace_exists
4.3.22 81 mem_conf_const_helper

Table A.2: Lemmata for the MU correctness
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