
Towards the Formal Verification of Lower System Layers in Automotive Systems

Sven Beyer ∗ Peter Böhm Michael Gerke Mark Hillebrand ∗ Tom In der Rieden ∗

Steffen Knapp Dirk Leinenbach ∗ Wolfgang J. Paul

Saarland University, Dept. of Computer Science, 66123 Saarbrücken, Germany
E-mail: wjp@cs.uni-sb.de

Abstract

The mission of the Verisoft project is (i) to develop tech-
niques, which permit the pervasive formal verification of
computer systems comprising hardware, system software,
communication systems, and applications, (ii) to apply
these techniques in an industrial context to verify prototyp-
ical systems. One such application is an emergency call,
which is automatically placed on the mobile phone net af-
ter the sensors of a car have detected that it was involved
in a crash. The application runs on a system of several
electronic control units (ECUs). The local application pro-
grams of the ECUs run on top of a simple real time operat-
ing system kernel like described in the OSEKTime standard.
ECUs are connected via a FlexRay bus. We outline the
structure of an overall correctness proof for such a parallel
system from the gate to the kernel level. For the communica-
tion system hardware one has to combine existing correct-
ness proofs for components of time triggered architectures
(e.g. clock synchronization) and arguments about hardware
correctness into a single theorem. Results on processor,
driver, and kernel correctness can to a large extent be im-
ported from existing research in the Verisoft project. Worst
case execution time bounds are derived with advanced in-
dustrial tools based on abstract interpretation.

1. Introduction

In recent years innovation in cars has come to an ever
increasing extent from the use of advanced computer tech-
nology. The most innovative electronics is found in luxury
cars. Unfortunately, complex computer systems have a ten-
dency to fail from time to time, and failures in the computer
system are presently the most frequent failures plaguing the
owners of new cars [6]. Indeed luxury cars have become
less reliable than other cars due to their more advanced—
and hence more error prone—electronics systems.

∗Work partially funded by the German Federal Ministry of Education
and Technology (BMBF) in Verisoft project under grant 01 IS C38.

Needless to say that industry is reacting with strong ef-
forts to improve the reliability of car electronics. At first
sight this does not look too promising: the computer sys-
tems in cars are distributed systems and the debugging of
distributed systems is known to be very difficult. So in-
creased testing alone will probably not solve the problem.

On the positive side, formal verification of distributed
algorithms (even automatically) has been demonstrated re-
peatedly. Isolated correctness proofs for algorithms are not
enough. They need to be embedded in a correctness proof
for the entire computer system of a car comprising (i) pro-
cessors, (ii) communication system and drivers, (iii) a real
time operating system, and (iv) safety critical applications.
This is a grand challenge problem in the sense of [17].

Based on results from Verisoft [26] we outline the struc-
ture of a pervasive correctness proof for all system layers
below applications. We identify the main system layers
in form of abstract computational models and sketch their
main correctness statements. In Sect. 2 we handle serial
interfaces and incorporate them in Sect. 3 into bus inter-
faces for a FlexRay like bus [8]. Sections 4 and 5 deal with
a real time operating system and the programming model
provided to the user. Section 6 surveys basic technology for
worst case execution time analysis. In Sect. 7 we conclude.

2. Serial interfaces

2.1. Detailed Timing Analysis

Clocks. Each ECU ECUu (with u ∈ [1:n]) has a clock
signal cku(t) with cycle time τu. Cycle times are assumed
to be roughly equal; in each cycle clocks are allowed to
drift by at most δ ≤ 0.15%, i.e. |τu − τv| ≤ τu · (1 + δ).
Let eu(i) denote the time of the i-th rising edge of cku(t);
the interval [eu(i), eu(i + 1)) is called cycle i of ECUu.
For signals Su(t) in the hardware of ECUu we define their
value Si

u during cycle i as the value of signal S immediately
before the end of cycle i when all hardware has stabilized.

As setup and hold times may be violated, copying reg-
ister contents between ECUs is nontrivial in this scenario.

ck(t) B(t)

R(t)

R

R̂

R̂(t)

B(t)

ck(t)

e(i)
τ − tp-max − ts tp-min − th

ts + th

R(t) Ω

R̂(t) Ω

tp-min tp-max

Figure 1. Sampling signals with two registers

cks(t)

es(i) es(i+1) es(i+2)

ckr(t)
er(cy(i)) er(cy(i+1)) er(cy(i+1))

Figure 2. Sampling by the receiver

This problem is solved by serial interfaces. We present a
serial interface in the spirit of the FlexRay standard [8].

Detailed timing. For the analysis of this interface we have
to argue about detailed timing diagrams (cf. [13]). Formally
we have to consider real valued time t. For the value s(t) of
a hardware signal at time t it suffices to consider values 0,
1, and Ω. Here Ω stands for voltages of the physical signal,
which cannot be recognized as logical 1 or 0.

The clocking of bits into a register R is described by the
detailed timing diagram of Fig. 1. We keep the input bus B
at a stable value x ∈ {0, 1} during a setup time ts < τs/10
before clock edges e(i) and a hold time th < τs/10 after
the edge: B(t) = x for t ∈ [e(i) − ts, e(i) + th]. This
interval is called the sampling interval at edge e(i). Then
the register output R is guaranteed to show its old value
y at least for a minimal propagation delay tp-min after the
clock edge and to show the new value x at the latest after a
maximal propagation delay tp-max after the clock edge. For
t ∈ [e(i) + tp-min, e(i) + tp-max] we have R(t) = Ω.

Meta stability. It is extremely likely that the register out-
put has a well defined digital value z ∈ {0, 1} after tp-max.
There is however a small likelihood that the register be-
comes meta stable in which case we can have R(t) = Ω for
certain t ≥ e(i)+ tp-max. This cannot be avoided [15]. The
standard remedy is to pipeline the output of R into a second
register R̂ at the next clock edge of the same clock (cf. Fig. 1
where B(t) violates the setup time). It is considered practi-
cally impossible that the second register turns meta stable,
too. Thus we always assume R̂(e(i+1)+ tp-max) ∈ {0, 1}.

Bus connection. The receiver ECUr is connected to the
bus as described before. The sender ECUs is connected
via an edge triggered flip flop and an open collector driver,
which is only enabled during transmission. The bus has
value 1 if all drivers connected to it are disabled. The flip
flop is only clocked if the sender puts a new logical value
on the bus. This avoids spikes on the bus when the sender
repeatedly sends the same bit. We assume the propagation
delay from the sender to the receiver to be in [0, τs/2).

Assume the sender puts a new value x on the bus at edge
es(i). Consider the last receiver edge er(j) whose sampling
interval ends before es(i), i.e. j = max{j | er(j) + th <
es(i)}. Sampling at er(j) is not affected by the new value,
but sampling at er(j)+1 is. We define cy(i) = j +1 as the
index of this following edge. Note that er(cy(i)) < es(i) is
possible (e.g. er(cy(i)) = es(i) − th/2). Thus we cannot
conclude R

cy(i)
r = x. However, the following lemmas hold.

Lemma 2.1 If the sender transmits x in cycles i to i + 7,
then the receiver samples during at least 7 consecutive cy-
cles the correct value x: R̂

cy(i)+k+1
r = R

cy(i)+k
r = x for

k ∈ [β:β + 6]. The value of β depends on the difference
between sender and receiver clock and is 0 or 1.

Proof. The sampling intervals of all receiver edges cy(i)+k
are in a region of time where the bus is stable.

Lemma 2.2 If the sender transmits ¬x in cycles i − 8 to
i− 1 and x in cycles i to i+7, then for the cycle i′ in which
x occurs for the first time in R̂r holds: i′ ∈ cy(i)+[0:1]+1.

Proof. Because clock drift is bounded to δ we know that for
adjacent intervals of Lemma 2.1 the value of β is the same.

Usually, we have cy(i + 1) = cy(i) + 1. But if τr is
greater than τs we can have cy(i + 1) = cy(i) (as in Fig. 2)
and cy(i + 1) = cy(i) + 2 if it is less. This can happen at
most once in 1/δ > 600 cycles, so we can show:

Lemma 2.3 If k < 600 then cy(i+k) ∈ cy(i)+k+[−1:1].

2.2. Message assembly

Due to clock drift a nontrivial protocol is required to
transmit via serial interfaces. We define the transmission
start sequence TSS = 0, the frame start sequence FSS =
1, the byte start sequence BSS = 10, and the frame end se-
quence FES = 01. With x[0:L − 1] we denote a bit string
consisting of L bits x[i] and with ◦ bit string concatenation.

A message m = m[0:` − 1] consisting of ` bytes m[i]
is embedded into a message frame f(m) ∈ {0, 1}l′ (with
l′ = 4 + 10 · `), which is defined by: f(m) = TSS ◦
FSS ◦ BSS ◦ m[0] ◦ · · · ◦ BSS ◦ m[` − 1] ◦ FES. In
the bit pattern F (m) transmitted by the sender every bit of
f(m) is repeated eight times; thus it consists of L = 8 · l′

R

maj. vote

R̂
ck
B

f [0:l′−1]
v

strobe

sh[0:3]
idle

1

TT

0
// TSS

1
// FSS

1��

BSS[0]

��

BSS[1]
0

oo

b[0] // ··· // b[7]

0
��

1
OO

FES[0]

@A

OO

FES[1]
1

oo

Figure 3. Receiver data paths and automaton

10101

0012345670123 5674 012345670123456700 00000000 012 43

1BSS[0]BSS[1]FSSTSS1

sync

cnt

strobe

R̂

ck

cks

Bs

Figure 4. Local clock synchronization timing

bits. We number sender cycles such that Bi
s = F (m)[i] for

i ∈ [0:L − 1]. For i ≥ L we have Bi
s = 1 due to the open

collector drivers. Lemma 2.1 entails the following lemma.

Lemma 2.4 For all f(m)[i] there is a β ∈ {0, 1} such that
for k ∈ [β:β + 6] the bit f(m)[i] is correctly sampled in
cycle cy(8 · i) + k: R̂

cy(8·i)+k+1
r = R

cy(8·i)+k
r = f(m)[i].

2.3. Message decoding

For message decoding three things are done simultane-
ously: (i) The bits sampled on the bus are filtered by a ma-
jority vote (Fig. 3). This is supposed to compensate for
missed setup and hold times and for certain spikes (we ig-
nore spikes in this paper). (ii) At certain strobe points the
voted signal is clocked into a shift register f which recon-
structs f(m). (iii) Strobe points are mostly 8 receiver clock
ticks apart. Their position is adjusted by a low level clock
synchronization to compensate for clock drift.

Hardware. We store the last four values of R̂ in a shift
register sh[0:3]. After reset we want sh = 14 and R̂ = 1.
By a majority vote we obtain the voted signal vj . The voted
signal matches each message bit during at least 7 cycles.

Lemma 2.5 For all f(m)[i] there is a β ∈ {0, 1} such that
for k ∈ [β + 2:β + 8] it holds: vcy(8·i)+k+1 = f(m)[i].

Proof. For k ∈ [β:β + 6] Lemma 2.4 entails that in cycles
cy(8 · i) + k + 1 we correctly receive f(m)[i] in R̂. Thus,

for k ∈ [β + 2:β + 8] at least three copies of f(m)[i] are in
R̂ and sh[0:3] and we have vcy(8·i)+k+1 = f(m)[i].

A 3-bit counter cnt is increased (modulo 8) every cycle
unless it is reset by the synchronization signal sync. A sig-
nal strobe is activated when cnt = 4 (cf. Fig. 4). Assume
that after reset the bus is idle and we start with an empty
reconstructed frame f̂0. In every cycle t with strobej , we
sample the voted signal vt and append it to the portion of
the frame f̂ t reconstructed so far.

The automaton in Fig. 3 keeps track of the bits the re-
ceiver expects. In states x /∈ {idle, b[i]}, the automaton is
meant to sample bit x of the message frame f(m); in states
b[i] it is meant to sample a bit m[x][i] of the message. The
transition function ∆ of the automaton induces a transition
function of a hardware automaton with state state. After
reset the hardware automaton is in state idle. State transi-
tions only occur in reaction to an active strobe signal. Thus,
statet+1 = ∆(statet, vt) if strobet and statet+1 = statet

otherwise. We activate the sync signal in all cycles j when
a falling edge on R̂j is expected and observed: syncj =
vj−1 ∧ ((statej = idle) ∨ (statej = BSS[1]) ∧ ¬vj).

Correctness. Let str(h) denote the cycle of activa-
tion (h + 1) of the strobe signal and sy(h) the (last) cy-
cle of activation (h + 1) of the sync signal. Let nb(h) be
the number of bits of f(m) sent in synchronization interval
[sy(h):sy(h + 1)] and set NB(h) =

∑
h′<h nb(h′). Be-

cause nb(h) · 8 � 600, sender and receiver clock may drift
by at most one cycle in one synchronization interval which
implies |sy(h + 1) − sy(h) + 8 · nb(h)| ≤ 1.

In the first interval, TSS, FSS, and BSS[1] are meant
to be sent, in the next ` − 1 intervals, BSS[0], eight bits
of m, and BSS[1] are meant to be sent, and in interval `,
BSS[0], eight bits of m, and FES[1:0] are meant to be
sent. Hence, we define nb(h) by nb(0) = 3, by nb(h) = 10
for h ∈ [1:`− 1], and by nb(`) = 11.

Inside synchronization interval [sy(h):sy(h+1)], a mes-
sage is sampled in each cycle sy(h) + 8 · y + 4 for y ∈
[0:nb(h) − 1]. After transmission of NB(h) bits, the re-
ceiver is meant to synchronize on the sender, which, by defi-
nition of F (m), transmits a falling edge in cycles 8·NB(h),
i.e., B

8·NB(h)−1
s ∧ ¬B

8·NB(h)
s . Assuming that sender cy-

cles NB(h) and corresponding receiver cycles are not too
far apart we can show the following lemma.

Lemma 2.6 Let k′ = NB(h′). If h′ maximal such that
str(k) = sy(h′)+8·(k−k′)+4 and if sy(h′) ∈ cy(8·k′)+
[2:3] + 1, then (i) vstr(k) = f(m)[k] and (ii) str(k) + 1 <
cy(8 · (k + 1)) + [2:3] + 1.

Proof. Using the assumption and Lemma 2.3 we conclude
str(k) = sy(h′) + 8 · (k − k′) + 4 ∈ cy(8 · k) + [5:8] + 1.
Then Lemma 2.5 implies Part (i): vstr(k) = f(m)[k].

We show Part (ii) using the assumption and Lemma 2.3:
str(k) + 1 ∈ cy(8 · k′) + 8 · (k − k′) + [8:9] ∈ cy(8 · (k′ +
k − k′ + 1)) + [−1:2] < cy(8 · (k + 1)) + [2:3] + 1.

Next, we proof the main technical lemma that states that
(i) the automaton correctly keeps track of the expected bits,
(ii) the message bits are correctly sampled, (iii) transitions
of the automaton occur fast enough, i.e. before the next bit
can be sampled, and (iv) sync and strobe signals are acti-
vated at the expected times.

Lemma 2.7 For any receiver cycle j, for any k =
NB(h′) + k′ with str(k) ≤ j and k′ ∈ [0:nb(h′) − 1],
and for any h with sy(h) ≤ j it holds: (i) If j ∈ [str(k) +
1:str(k + 1)] then the automaton is in a state statej as ex-
pected (cf. Fig. 3). In particular we have statej = BSS[1]
if h′ < ` and k′ = nb(h′) − 1. (ii) The sampled signals
satisfy vstr(k) = f(m)[k]. (iii) str(k) + 1 < cy(8 · (k +
1))+ [2:3]+1, (iv) sy(h) ∈ cy(8 ·NB(h))+ [2:3]+1, and
(v) str(k) = sy(h′) + 8 · (k − NB(h′)) + 4 .

Proof. In the induction step one concludes Parts (i), (ii),
and (iii) of the induction hypothesis from Lemma 2.6;
Parts (iv) and (v) are needed to show the hypotheses of
Lemma 2.6.

To conclude Part (iv) we have to show that (i) the falling
edge, which triggers the sync signal sy(h) is seen by the
receiver in the right cycle j and (ii) the automaton is in state
BSS[1] in cycle j. Lemma 2.2 combined with Lemmas 2.4
and 2.5 shows that the falling edge, which triggers sy(h) is
seen in vj for j ∈ cy(r; s, 8 · NB(k)) + [2:3] + 1. This
proves the first subgoal. Part (i) implies statej = BSS[1]
if k′ = nb(h′) − 1; outside these time intervals the sync
signal cannot become active. Part (iii) implies str(k)+1 <
cy(r; s, 8·(NB(h′)+k′+1))+[2:3]+1, thus the automaton
is in state BSS[1] one cycle before the first zero of BSS[0]
can possibly be sampled. This proves the second subgoal
and completes Part (iv).

For k′ > 0 Part (v) is obvious. For k′ = 0 we know from
above that sy(h′) ∈ sy(h′−1)+8 ·(nb(h′−1)−1)+[7:9].
The induction hypothesis implies str(k−1) = sy(h′−1)+
8 · (nb(h′−1)−1)+4. Thus str(k−1) is definitely before
sy(h′) and there is no additional strobe between them.

Lemma 2.7 allows to show:

Theorem 2.8 f̂ d(1+δ)·Le+8 = f(m).

3. Bus interface

Now we show how to integrate the results of Sect. 2 into
a bus interface for a FlexRay like bus. As we have omitted
all features regarding fault tolerance, the interface does not
comply with the standard. However, we will show which
theorems become more complex in a fault tolerant design.

The interface is connected to a bus via a serial interface
as described in Sect. 2. The interface is capable of sending
messages m from a word addressable send buffer sb to the
bus or of storing messages from the bus into a word address-
able receive buffer rb. Pointers sbp and rbp point into the
send and receive buffers. Each ECU has a hardware timer
tiiu, which is incremented every 8 clock ticks. Based on it
we define an abstract timer atiu(t) for continuous time t by
atiu(t) = tiiu if t ∈ [eu(i), eu(i + 1)). Timers on different
ECUs are periodically synchronized by another (high level)
hardware clock synchronization algorithm, as described be-
low. Timer interrupts for the processors come from these
timers, which are kept synchronized.

The interface is connected to the processor’s memory
system by a set of I/O-ports, each 32 bits wide. Command
and status registers are used to issue special requests and
check the status of the interface.

Send and receive buffer are accessed by the processor
via the data port. Writing to this port copies the store
operand into the send buffer at address sbp and increments
sbp. Reading this port returns the content of the receive
buffer at address rbp and increments rbp. Hence, succes-
sive accesses to the data port fill or read out the buffer.

Configuration registers are written only during the
startup phase of the system; they are considered constant
here. Register u stores the number of the ECU that the in-
terface is attached to. The others store the components of
the global bus schedule S = (ns, ecu, st, mlen).

Global communication proceeds in so called bus rounds,
each with an identical schedule. If we have n processors and
ns bus slots per round, then the ECU sending during slot
σ ∈ [0:ns−1] is specified by ecu(σ) ∈ [1:n]. During slot σ
the sending ECU starts the transmission of a message frame
at time st(σ), i.e., if titu = st(σ) and ecu(σ) = u. The
transmitted frame contains the first mlen(σ) bytes in the
send buffer of ECUu. Message lengths have to be bounded
by the buffer size. In every slot every serial interface writes
the transmitted data into its receive buffer.

This mechanism will only work if (i) a processor does
not access its data port while its interface is transmitting
or receiving a message and (ii) transmission time of differ-
ent slots does not overlap. Condition (i) arises in similar
form for all kinds of I/O devices [12]. Additional config-
uration registers wakeupu(σ) help satisfy this constraint
efficiently. They serve to activate local timer interrupts at
cycle t if titu = wakeupu(σ). Message transmission on
the bus is meant to take place in the interval from st(σ) to
wakeupu(σ); the processor is only allowed to access the
data port from wakeupu(σ) to st(σ + 1). Times st(σ) and
wakeupu(σ) must be carefully chosen to account for clock
drift. High level clock synchronization and restrictions on
the global bus schedule will guarantee Condition (ii).

High level clock synchronization. We do not handle
fault tolerance; thus we assume that all ECUs are working
and can use a simple clock synchronization algorithm. It
is triggered by the transmission of the last message in each
round. The sending ECU in the last slot resets its timer af-
ter it has put the last copy of FES[0] on the bus. All other
ECUs reset their timers 3 cycles after they sample FES[0].
At the beginning of slots, the automata from Sect. 2 are
forced into idle state.

To estimate the local time on interface v at local time T
on interface u, we define time(v; u, T) as the smallest value
taken by the abstract timer ativ(t) for a t with atiu(t) = T .
After clock synchronization we have time(v; u, 0) ∈ {0, 1}
for all u and v. The following lemma holds.

Lemma 3.1 For all u and v and times T the clock drift is
bounded by |time(v; u, T)− T | ≤ T · δ + 2.

In case one deals with fault tolerance, more complex
clock synchronization algorithms must be used. Correct-
ness proofs of such algorithms [22–24] can be integrated
into the theory in a similar way as the simple argument
above. However, this is complicated by the fact that the
interaction of the clock synchronization with membership
algorithms has to be considered (cf. [23, Sect. 5]).

Start and wakeup times. We define the intended abstract
start and end times of message transmission on the bus. The
abstract start time of the first slot is set to zero. The abstract
end time in slot σ is set to eta(σ) = sta(σ)+10·mlen(σ)+
4. Before transmission of the next message, we leave tp(σ)
timer ticks for each ECU to access the interface: sta(σ +
1) = eta(σ) + tp(σ). On the hardware we take clock drift
into account. We set et = eta ·(1+δ) and st = sta ·(1+δ).

In Sect. 6, we use wakeup timer interrupts to notify
the processor that it may access the serial interface. In
Lemma 3.2 we state that the interface is idle at these times if
we have wakeupu(σ) ≥ et(σ) + 3. In Lemma 3.3 we state
that message transmission is completed in these intervals
and the receive buffers hold the message just transmitted.
This can be shown using Theorem 2.8 and standard tech-
niques from hardware correctness proofs [2]. In Lemma 3.4
we show that bus contention is avoided if tp(σ) ≥ 1.

Lemma 3.2 On any ECU in the timer interval [et(σ) +
3:st(σ + 1)] the serial interface is in state idle .

Lemma 3.3 For any cycle t with timert
u ∈ [et(σ) +

3:et(σ) + tp(σ) + 2] the receive buffer of ECUu holds
the message last transmitted in slot σ. Formally, for ` =

mlen(σ) we have rbt
u[0:` − 1] = sb

8·st(σ)
ecu(σ) [0:` − 1].

Lemma 3.4 If tp(σ) ≥ 1, then transmission times of adja-
cent slots are separated by at least 8 cycles on any interface.

Integration into ECUs. One obtains a verified ECU by
connecting a verified bus interface to a verified processor as
an I/O device. As processor we use the VAMP processor
with memory management units and DLX instruction set
[10,18]. The formal verification of this processor is already
complete [2, 5]. The mathematical theory needed for the
integration of I/O devices is outlined in [12].

4. The generic operating system kernel CVM

A simple operating system kernel named Kit was for-
mally verified already back in 1989 as part of the CLI stack
project [1]. The complexity of this kernel is not so far away
from what we need here. Unlike Kit, which was written
in machine language and did not provide virtual memory
simulation, the kernel, on which we base our work here is
written in C and provides virtual memory simulation mak-
ing use of the address translation hardware of the VAMP.
Dealing formally with this requires serious machinery.

C0 semantics and inline assembler. Formal semantics
for very large subsets of C exist [19, 21]. They are com-
plex and the generation of correctness proofs based on these
semantics seem to be difficult. In the Verisoft project, pro-
gram verification is based on a subset of C called C0 [14],
which is similar to MISRA C [16].

An operating system kernel written in C or C0 cannot ac-
cess processor registers, user processes, or I/O devices with
its own variables. Hence, if not written altogether in assem-
bler language, implementations of operating system kernels
and device drivers necessarily contain portions of inline as-
sembler code. One can keep these portions down to a few
hundred instructions. Nevertheless they are present, and in
order to argue about their effect we define the semantics of
inline assembler code and call the extended language C0A.
Because inline assembler code can change the value of C0
variables we need to know how the compiler allocates vari-
ables in order to define the semantics of C0A (cf. [9]).

For a compiler for common LISP, the correctness of both
the code generation algorithm and its implementation was
formally shown in the Verifix project [25]. In the Verisoft
project a corresponding effort for a (nonoptimizing) C0
compiler is under way [14]. The target machine for this
compiler is the verified VAMP processor.

CVM semantics. While the implementation of an oper-
ating system kernel necessarily contains inline assembler
code, its semantics can be described without reference to
inline assembler code: we make the user processes ex-
plicitly visible by the introduction of a pseudo parallel
model of computation called communicating virtual ma-
chines (CVM). Configurations ccvm of this model have four

components: (i) a C0 configuration ccvm.ca describing the
current state of the so-called abstract kernel, (ii) a fixed
number p of DLX machine configurations ccvm.vm(u) de-
scribing the current state of the user processes, (iii) the num-
ber ccvm.cp ∈ [0:p] of the current process (for ccvm.cp = 0
the kernel is active), and (iv) the state ccvm.d(j) of a fixed
number of I/O devices. For our purposes here the memory
size of each user process is fixed and all user memories fit
into the physical memory of the processor. Thus, we have
address translation in user mode but no page faults.

The definition of the next state function δCVM(ccvm) =
c′cvm formalizes the user manual of the kernel. Typical por-
tions of the definition are: (i) If ccvm.cp = 0, then the kernel
executes the next C0 statement (as prescribed by the C0 se-
mantics) unless it is one of several special functions. The
user processes are frozen. (ii) If ccvm.cp = u > 0 and no
interrupt occurs, then user process u executes one instruc-
tion: c′cvm.vm(u) = δDLX(ccvm.vm(u)). The kernel and
the other user processes are frozen. Thus the parallelism in
the CVM model is not real, because at any time either the
kernel or exactly one user is making progress.

The kernel contains some special functions whose se-
mantics can only be defined in the parallel model. Most
important are (i) copy functions permitting to copy regions
of memory between user processes or between an user pro-
cess and I/O devices and (ii) a function startp(), which sus-
pends the kernel and activates user process u, where u is the
current value of a C0 variable CP of the kernel.

User processes can invoke kernel calls by executing trap
instructions. This produces an interrupt and thus turns con-
trol over to the kernel, which executes, depending on the
immediate parameter of the trap instruction, a function f .

Concrete kernel and correctness. The kernel is imple-
mented by a C0A program called the concrete kernel, which
is obtained by linking the source code of the abstract kernel
together with code for (i) the special functions (using inline
assembler), (ii) for context switching and data structures
for saving processor registers, and (iii) for a so called dis-
patcher, which, after an interrupt, calls a kernel function f
that is supposed to handle the interrupt. In [9] a correctness
proof for CVM is presented, which uses compiler correct-
ness [14] and a theory for virtual memory simulation [5,11].

C0 programs and CVM. It is not hard to integrate C0
user programs into CVM, which yields a new model, called
CCVM. In CCVM the C0 user programs can execute cer-
tain special functions, which allow to call kernel functions
and are implemented using inline assembler code.

We have not yet a correctness proof for a simulation of
CCVM by CVM. Besides compiler correctness [14] this
proof will require an extra argument concerning interrupts.
User C0 programs are either interrupted (i) by kernel calls

or (ii) by external interrupts. Case (i) is safe as long as the
compiler does not optimize across kernel calls. For Case (ii)
extra arguments are needed as the compiled program may
be interrupted in the middle of the code of a C0 statement.

5. Application programs

In this section we first specify the application pro-
grammer’s view on an OSEKTime / FlexRay like system.
Then we construct, based on the generic CVM kernel, an
OSEKTime like operating system kernel [20] by using a
specific scheduler and adding the kernel calls and a driver
for the interface. As we go along we state the main invari-
ants for the correctness proof. The invariants hold only if
certain timing constraints are met (cf. Sect. 6).

Specification. On each ECU ECUu runs a fixed number
nau of C0 applications A(u, a) with a ∈ [1:nau]. Global
computation is done in system rounds with identical sched-
ule. Here we assume that one system round equals a bus
round. Applications A(u, a) are scheduled to run for a
schedule interval of scnt(u, a) subsequent slots; they are
assumed to signal the end of their computation for such an
interval by calling the C0 function ttDone. The function
scd(u, σ) designates the application to be run on ECUu

during slot σ. The end of an interval is indicated by the
predicate lsl(u, σ) = (scd(u, σ) 6= scd(u, σ + 1)). The
functions scd and scnt must correspond in a natural way.

Applications communicate via a fixed number nsv of
shared variables V̂ [x]. They are allowed to sample the value
of any variable V̂ [x] into a C0 variable Y and to update a
single shared variable with index z = sv(u, a). This is done
via C0 functions ttRcv(x, Y) and ttSnd(z, Y), resp. Up-
dates are delayed and only visible two slots after the last slot
of the schedule interval of the updating application. Only
one shared variable may be updated in a given slot; thus at
most one application may have its last slot in a given slot.
Here, we assume that in each slot σ exactly one application
A(u, a) ends its schedule interval; we denote this ‘sending’
application by SA(σ) = (u, a).

For applications A(u, a) with scnt(u, a) > 1 we still
might have nondeterminism at the implementation level: it
might be hard to predict whether a call ttRcv(x, Y) is near
the end of slot σ or near the beginning of slot σ + 1. As we
aim for a deterministic communication model, we impose
additional schedule restrictions. If [σ′:σ] is a schedule in-
terval for an application, which samples variable V̂ [x], then
for all σ′′ ∈ [σ′ − 1:σ − 2] we require sv(SA(σ′′)) 6= x.
For scnt(u, a) = 1, this condition trivially holds.

For the formal definition of the semantics of our model,
we introduce an intermediate set V [x] of shared variables.
In slot σ, the result of running application SA(σ) for its

SR

tAtlAtlA

WCETactual ET

R

σ+1 σ+2 σ+3

start

R

sch. ET

σ

Figure 5. Schedule interval of an application

schedule interval is computed. Updates to the shared vari-
able x in cycle σ take effect for V [x] in cycle σ + 1 and for
V̂ [x] in cycle σ + 2. We set V̂ [x]σ+1 = V [x]σ .

The paper [3] reports about correctness proofs of appli-
cations in a model very similar to the one we just explained.

Implementation. On each ECU copies of the shared vari-
ables are locally maintained in C0 variables V̂ [x]u of the
kernel. A set of intermediate copies V [x]u is also main-
tained for technical reasons. The functions ttSnd(x, Y) and
ttRcv(x, Y) are realized as kernel calls, they copy the cur-
rent value of Y into V [x]u or the current value of V̂ [x]u into
Y , resp. The function ttDone is implemented with a kernel
call that passes control back to the kernel, which then sched-
ules a special idle process. The kernel includes a function
R(x), which copies the content of the receive buffer rbu to
V̂ [x]u and a function S(x), which copies the variable V [x]
for x = sv(u, scd(u, σ)) to the send buffer. The functions
R(x) and S(x) form the essential part of the device driver
for the interface. For details about (pervasive) correctness
proofs of device drivers see [12]. Apart from being called
by the application, the kernel is also entered if the wakeup
timers described in Sect. 3 trigger. In its last slot an appli-
cation has to call ttDone before the timer triggers (cf. 6).

Fig. 5 depicts the execution of an application over a
schedule interval of length 3 starting in slot σ. The white
boxes indicate application execution, the shaded boxed in-
dicate kernel execution. Kernel execution starts and ends
with context switches, indicated by the slim shaded boxes.
Timer interrupts are indicated with small black circles. For
all slots but the last in a schedule interval, the kernel is en-
tered to execute R(x) for certain x. In the last slot σ of a
schedule interval the interrupt is caused earlier and the ker-
nel additionally executes S(sv(u, scd(u, σ))).

Let TA(σ) denote a time interval in which
A(u, scd(u, σ)) is scheduled to run, TS(σ) an inter-
val in which the send function S(x) is called on ECUu,
i.e. lsl(σ) and x = sv(u, scd(u, σ)), and TR(σ + 1)
an interval in which the receive function R(x) is called
on ECUu, i.e. x = sv(SA(σ)). Three invariants hold:
(i) While an application is executed, i.e. titu ∈ TA(σ), we
have V̂ [x]tu = V̂ [x]σ for all x. (ii) If titu ∈ TS(σ) we have,
by the implementation of ttSnd(x, Y), that V [x]tu holds
the last value written by A(u, scd(u, σ)) into V̂ [x]. In the
specification, this will be the (σ + 1)-value of V [x] or the

(σ+2)-value of V̂ [x]. Thus, V [x]tu = V [x]σ+1 = V̂ [x]σ+2.
By implementation of S(x), the same holds for the last
cycle t such that titu ∈ TS(σ) for the send buffer:
sbt

u = V [x]σ+1 = V̂ [x]σ+2. (iii) If TR(σ) does start
only after the transmission of the message on the bus
is complete and if titu = TS(σ + 2), then we find the
transferred message in all receive buffers, rbt

u = V̂ [x]σ+2

(cf. Theorem 2.8). By the implementation of R(x) we can
show Invariant (i) for slot σ + 2.

6. Worst case execution times and scheduling

Worst case execution times. We want to talk about worst
case execution times (WCET) of compiled programs on
pipelined machines. We say that a sequence of DLX in-
structions starts in hardware cycle ti, when the first instruc-
tion is in the issue stage and it completes in the cycle tc,
when the last instruction is in the write back stage. The
execution time measured in timer ticks is then defined as
Tc − Ts + 1 for Tc = titc and Ti = titi .

Obtaining precise estimates for WCET of programs run-
ning on complex processors is highly nontrivial because one
has to carefully analyze the pipeline structure and one has to
be able to predict cache hits and misses very precisely. The
company AbsInt is a member of the Verisoft consortium and
is marketing tools for exactly this purpose [7]. These tools
are based on the theory of abstract interpretation [4] and,
once adapted to a processor, permit to obtain amazingly ac-
curate estimates with a very high degree of automation.

We denote (i) by γ an upper bound of the WCET of
a context switch, (ii) by tS and tR upper bounds of the
WCET of function S and R, resp., (iii) by tmisc an up-
per bound of the WCET for miscellaneous kernel compu-
tations, and (iv) by tkc an upper bound of the WCET of ker-
nel calls. According to Sect. 5 and Fig. 5, we have an upper
bound of the WCET for an application: WCET (u, a) =
(scnt(u, a) − 1) · tlA + tA. In this setting, tlA = tA + tS.

Satisfying timing constraints. Recall that a global bus
schedule was defined as S = (ns, ecu, st , mlen). Here,
we consider the number of slots ns, the length mlen(σ) =
mlen of each message, and the times tp(σ) = tp reserved
for interface access (cf. Sect. 3) fixed. The sending ECU
in slot σ corresponds to that of the sending application in
the preceding slot σ − 1. For (u, a) = SA(σ − 1), we set
ecu(σ) = u. Let l′ = 10 · mlen + 4. Then, we can de-
rive closed formulas for the start and end times of message
transmission, st(σ) = (1 + δ) · ((l′ + tp) · σ) and et(σ) =
(1+δ) · ((l′ + tp) ·σ + l′); thus et(σ)− st(σ) = (1+δ) · l′.

To guarantee that the kernel does not access the serial
interface during the message transmission on the bus we
require tA + 2 · γ + tmisc ≥ (1 + δ) · l′ + 3. The kernel
runs noninterruptibly. Hence, if an application performs a

kernel call just before a timer interrupt, the delivery of that
interrupt is delayed by the execution time of that kernel call,
which is bounded by tkc. To allow the kernel the execution
of S(x) and R(x) in the remainder of the slot we have to set
tp = tS + tR + tkc. Finally, all slot length tsl are equal; we
define tsl = tS + tR + 2 · γ + tkc + tA + tmisc.

7. Conclusion

We have built on a unified mathematical framework for
pervasive correctness proofs already existing in the Verisoft
project. Arguments concerning the verification of proces-
sors, memory management units, compilers, operating sys-
tem kernels, devices, and device drivers have already been
formulated in a single uniform mathematical theory. We
have extended this theory by three results.

1. A mathematical correctness proof for a serial inter-
face (Sect. 2). The construction of such an interface con-
tains a low level clock synchronization algorithm. For this
proof we had to argue about detailed timing diagrams.

2. In Sect. 3 we have analyzed and used a second clock
synchronization algorithm. This is the kind of clock syn-
chronization commonly studied in the literature about dis-
tributed systems. The existing correctness proofs for fault
tolerant and more complex algorithms can be integrated into
the theory and the hardware at exactly the same place.

3. Building only on components, which are already ver-
ified or for which a formal verification effort is under way,
we have constructed from the gate level up a parallel real
time system connected by a FlexRay like bus and using an
OSEKTime like operating system kernel. We have outlined
a proof that this system provides to the application program-
mer an OSEKTime like programming model.

The system described here is far from being perfect,
mainly because the underlying components we are build-
ing on were not designed for real time applications and we
have not yet optimized the design. Also notation and proofs
are still less polished than in established theories. On the
positive side we have for the first time outlined on paper
and pencil a pervasive correctness proof of an entire par-
allel computer system covering hardware, system software,
communication mechanism, and at least the programming
model for the applications. We expect to build and formally
verify a similar system within the next few years.

References

[1] W. R. Bevier. Kit and the short stack. JAR, 5(4), 1989.
[2] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and

W. Paul. Instantiating uninterpreted functional units and
memory system: Functional verification of the VAMP.
In D. Geist and E. Tronci, editors, CHARME’03, LNCS.
Springer, 2003.

[3] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova. To-
wards verified automotive software. In Software Engineer-
ing for Automotive Systems’05. ACM Press, 2005.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL. ACM Press, 1977.

[5] I. Dalinger, M. Hillebrand, and W. Paul. On the verification
of memory management mechanisms. In D. Borrione and
W. Paul, editors, CHARME’05, LNCS. Springer, 2005.

[6] F. Dudenhöffer, M. Krüger, and H. Schmaler. Ausfall-
Sicherheit Fahrzeug-Elektronik. Technical report, Center of
Automotive Research (CAR), 2002.

[7] C. Ferdinand and R. Heckmann. Verifying timing be-
havior by abstract interpretation of executable code. In
CHARME’05, LNCS. Springer, 2005.

[8] FlexRay Consortium. http://www.flexray.com.
[9] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On

the correctness of operating system kernels. In J. Hurd and
T. F. Melham, editors, TPHOLs’05, LNCS. Springer, 2005.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1996.

[11] M. Hillebrand. Address Spaces and Virtual Memory: Speci-
fication, Implementation, and Correctness. PhD thesis, Saar-
land University, Computer Science Department, June 2005.

[12] M. Hillebrand, T. In der Rieden, and W. Paul. Dealing with
I/O devices in the context of pervasive system verification.
In ICCD ’05. IEEE Computer Society, 2005. To appear.

[13] J. Keller and W. Paul. Hardware Design. Teubner-Texte zur
Informatik. Teubner Verlag, 1995.

[14] D. Leinenbach, W. Paul, and E. Petrova. Towards the formal
verification of a C0 compiler: Code generation and imple-
mentation correctness. In SEFM’05, 2005.

[15] R. Männer. Metastable States in Asynchronous Digital Sys-
tems: Avoidable or Unavoidable? Microelectronics Relia-
bility, 28(2):295–307, 1988.

[16] The Motor Industry Software Reliability Association.
MISRA-C:2004. MIRA, Ltd., UK, 2004.

[17] J. S. Moore. A grand challenge proposal for formal methods:
A verified stack. In B. K. Aichernig and T. S. E. Maibaum,
editors, 10th Anniversary Colloquium of UNU/IIST, volume
2757 of LNCS, pages 161–172. Springer, 2003.

[18] S. M. Mueller and W. J. Paul. Computer Architecture: Com-
plexity and Correctness. Springer, 2000.

[19] M. Norrish. C Formalised in HOL. PhD thesis, University
of Cambridge, Computer Laboratory, Dec. 1998.

[20] OSEK/VDX time-triggered operating system, 2001. http:
//www.osek-vdx.org/mirror/ttos10.pdf.

[21] N. Papaspyrou. A Formal Semantics for the C Programming
Language. PhD thesis, Nat. Tech. Univ. of Athens, 1998.

[22] J. Rushby. A formally verified algorithm for clock synchro-
nization under a hybrid fault model. In Principles of dis-
tributed computing’94, pages 304–313. ACM Press, 1994.

[23] J. Rushby. An overview of formal verification for the time-
triggered architecture. In W. Damm and E.-R. Olderog, ed-
itors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, LNCS, pages 83–105. Springer, 2002.

[24] F. B. Schneider. Understanding protocols for byzantine
clock synchronization. Technical report, 1987.

[25] The VERIFIX Project. http://www.verifix.de/.
[26] The Verisoft Project. http://www.verisoft.de/.

