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Abstract—The usual goal in implementing IPC is to make
a cross-thread procedure call look like a local procedure call.
However, formal specifications of IPC typically talk only about
data transfer, forcing IPC clients to use additional global in-
variants to recover the sequential function call semantics. We
propose a more powerful specification in which IPC clients
exchange knowledge and permissions in addition to data. The
resulting specification is polymorphic in the specification of
the service provided, yet allows a client to use IPC without
additional global invariants. We verify our approach using VCC,
an automatic verifier for (suitably annotated) concurrent C
code, and demonstrate its expressiveness by applying it to the
verification of a multiprocessor flush algorithm.

I. INTRODUCTION

Procedural abstraction—the ability for the caller of a pro-
cedure to abstract a procedure call to a relation between its
pre- and post-states—is one of the most important structuring
mechanisms in all of programming methodology. The central
role of procedural abstraction is reflected in the fact that it
is built into not only all modern imperative languages, but
also into most program logics and verifiers for such languages.
However, in a concurrent or distributed system, procedure calls
between threads are provided only indirectly through system
calls or libraries for interprocess communication (IPC). This
begs the question of how such libraries might be specified so as
to provide procedural abstraction to their clients, and how such
libraries can be verified to meet these specifications. In this
paper, we consider the problem in the context of multithreaded
C software, with threads executing in a single shared address
space.

To see why this problem is nontrivial, consider a simple im-
plementation where all data is passed through shared memory,
and where each ordered pair of caller-callee threads share a
mailbox at a fixed address. The caller makes a call by creating
a suitable call record in memory (including identification of
which procedure to execute, values of the call parameters,
and a place to put the return value), writes the address of
this record into the mailbox going to the callee, and calls an
IPC function to signal the callee. The callee, on receiving the
signal, reads the address of the call record from the mailbox,
reads the memory to get the call parameters, executes the
call, and signals the caller. Note that all memory accesses are

sequential; the only synchronization necessary is provided by
the IPC layer.

Now, it’s not hard to see that the IPC layer is providing
functionality similar to a split binary semaphore, with the call
records playing the role of the lock-protected data, and the
data invariant given by the semantics of the various procedure
calls. Thus, a specification for semaphores would provide a
natural starting point for a specification for IPC. However,
in classical program verification, semaphore operations are
specified by their effect on global ghost state; making use
of such a specification requires additional global invariants to
capture how the clients use each semaphore. Using this kind
of specification for IPC would force the client of the remote
procedure call to use these global invariants on both call and
return. This fails to faithfully capture the local character of
procedural abstraction.

A second possibility is to encapsulate these global invariants
inside the IPC layer. For example, the IPC specification could
be strengthened to include the pre- and post-conditions of the
procedure call. This is the sort of specification one would find
in a local logic, such as concurrent separation logic (CSL).
But such logics typically cannot specify generic semaphores,
because the semaphore code has to be polymorphic in both the
encapsulated data and the data invariant.1 Similarly, taking this
approach with the IPC code requires the specification of the
code to be polymorphic in the specification of the material
being passed between caller and callee.

We propose a different approach to specifying and verifying
IPC that allows the recovery of procedural abstraction. The key
idea is that IPC routines transfer ghost objects that own the
call records, and whose invariants capture the pre- and post-
conditions of the procedures. These ghost object invariants,
combined with the (fixed) specification of the IPC routine,
yields for the client the sequential procedural abstraction
provided by the application function. The IPC routines can
transfer ownership of these ghost objects without knowing
their types.

We have used this approach to specify and verify an

1A recent proposal [8] extends CSL with a facility similar to VCC ghost
objects, which should allow it to do constructions similar to the one in this
paper.



IPC layer, and illustrate its application to a multiprocessor
flush algorithm. The implementation was derived from a real
verification target, the inter-processor interrupt (IPI) routines
of Microsoft’s Hyper-VTM hypervisor. All specification and
proofs given here have been carried out using VCC, an
automatic verifier for (suitably annotated) concurrent C.2 VCC
provides the first-class ghost objects needed to carry out our
approach, while allowing the approach to be applied to real
implementation code.

A. Related Work

The correctness of IPC has been tackled in the context
of microkernel verification. For example, the IPC imple-
mentations of the seL4 [10] and VAMOS [7] kernels have
been formally verified against their respective ABIs. These
projects focused on implementation correctness rather than
client usability, and specify solely data transfer.

The application of VAMOS IPC provided in [1] shows the
shortcomings of this approach: there, correctness statements of
the remote procedure calling (RPC) library argue simultane-
ously on the sender/receiver pair instead of using thread-local
reasoning.

A number of formalisms were applied to specification
and verification of interprocess communication in the context
of the RPC-Memory Specification Case Study [3]. None of
the submitted solutions attempted to provide general-purpose
sequential procedural abstraction.

In [9] a verification framework for threads and interrupt
handlers based on CSL is described. This work is similar
to ours, as both the implementation of (thread-switching)
primitives and clients using them, are verified. When threads
switch, ownership is transfered and some global invariant on
shared data is checked. In contrast to our work the client code
is interactively verified in two different logics, whereas in our
approach both are verified seamlessly and automatically in the
same proof context.

B. Overview

The paper is structured as follows. In Sect. II we outline
main VCC concepts. Using these, in Sect. III we present an
IPC algorithm with polymorphic specification, which we use
in Sect. IV to implement and verify a TLB flush protocol.
In Sect. V we extend these results to multiple senders and
receivers as required for the implementation of interprocessor
interrupt (IPI) protocols used in real, multiprocessor hypervi-
sors. In Sect. VI we conclude.

II. VCC OVERVIEW

In this section, we give a brief overview of VCC. More
detailed information can be found through the VCC homepage
[11]. To understand the VCC view of the world, it is helpful
to think of verification in a pure object model, which is used
to interpret the C memory state. Thus, we first describe VCC
concepts in terms of objects, and then describe how this is
applied to C.

2The code and proofs will be made available for download.

A. Objects

In VCC, the state is partitioned into a collection of objects,
each with a number a fields. Objects have addresses, so fields
can be (typed) object references. Each object has a 2-state
invariant, which is expected to hold over any state transition.
These invariants can mention arbitrary parts of the state.
However, when checking an atomic update to the state, instead
of checking the invariants of all objects we want to check the
invariants of only the updated objects. This simpler check can
be made safe by requiring all object invariants to be partially
reflexive and admissible, cf. [6] for details. Both requirements
are checked for each object type when the type is defined; this
check makes use of type definitions, but not of program code.

Within an object invariant, the (2-state) invariant of other
objects can be referred to.3 A commonly used form of this is
approval: we say that an object o approves changes to another
object’s field p→f, if p has a 2-state invariant stating that
p→f stays unchanged or the invariant of o holds. In other
words, any change to p→f requires checking the invariant
of o. Approval is used to express object dependencies or build
object hierarchies, e.g., VCC’s ownership model.

Since it is unrealistic to expect objects to satisfy interesting
invariants always (e.g., before initialization or during destruc-
tion), we add to each object a Boolean ghost field closed
indicating whether the object is in a “valid” state. Implicitly,
the 2-state invariants declared with an object type are meant
to hold only across state transitions in which the object is
closed in the prestate and/or the poststate. Each object field
is classified as either sequential or volatile; volatile fields
can change while the object is closed, while sequential fields
cannot. (That is, for each sequential field, there is an implicit
object invariant that says that the field does not change while
the object is closed.)

Each object has an owner, which is itself an object. It is a
global system invariant that open objects are owned only by
threads, which are regular objects. In the context of a thread t, a
closed object owned by t is said to be wrapped, while an open
object owned by t is said to be mutable. Threads themselves
have invariants; essentially, the invariant of a thread t says
that any transition that does not change the state of t leaves
unchanged (i) the set of objects owned by t, (ii) the fields of
its mutable objects, (iii) the sequential fields of its wrapped
objects, and (iv) the (volatile) fields of closed objects approved
by t (we call such fields thread-approved). Each object o
implicitly contains an invariant that says that its owner (as
well as its owner in the prestate) approves any change to the
field o→closed and to the set of objects owned by o.4

The sequential domain of a closed object is the smallest set
of object fields that includes the sequential fields of the object
and, if its set of owned objects is declared as nonvolatile, the

3This implicitly makes object invariants recursive; to guarantee that all
object invariants have a consistent interpretation, we allow such references to
occur only with positive polarity.

4By default, the set of objects owned by o is nonvolatile, and so
cannot change while o is closed. This can be overridden by declaring
vcc(volatile owns) in the type definition of o.



elements of the sequential domains of the objects that it owns.
Intuitively, the values of fields in the sequential domain of o
are guaranteed not to change as long as o remains closed.

Within program code, each memory access is classified
as ordinary or atomic. An ordinary write is allowed only to
fields of mutable objects; an ordinary read is allowed only
to fields of mutable objects, to nonvolatile fields of in the
sequential domain of a wrapped object, and to volatile fields
of objects that are closed if changes to the field are approved
by the reading thread. In an atomic operation, all of the objects
accessed have to be known to be mutable or closed (i.e., not
open and owned by some other thread), only volatile fields of
closed objects may be written, and the update must be shown
to be legal.

B. Ghost Objects

VCC verifications make heavy use of ghost data and code
(surrounded by spec()), used for reasoning about the program
but omitted from concrete implementation. VCC provides
ghost objects, ghost fields of structured data types, local ghost
variables, ghost function parameters, and ghost code. C data
types are limited to those that can be implemented with bit
strings of fixed length, but ghost data can use additional
mathematical data types, specifically mathematical integers
(mathint) and maps. VCC checks that information cannot
flow from ghost data or code to non-ghost state, and that all
ghost code terminates; these guarantee that program execution
including ghost code simulates the program with the ghost data
and code removed.

C. Claims

A ghost object can be used as a first-class chunk of
knowledge about the state, because the invariant of the object is
guaranteed to hold as long as the object is closed. In particular,
the owner of the object doesn’t have to worry about the object
being opened by the actions of others, so it can make use of
the object invariant whenever it needs it. Being a first-class
object, the chunk can be stored in data structures, passed in
and out of functions, transfered from thread to thread, etc.
Because they are so useful, VCC provides syntactic support
for these chunks of knowledge, in the form of claims. Claims
are similar to counting read permissions in separation logic
[2], but are first-class objects; this allows claims to approve
changes, be claimed, or even claim things about themselves.

Typically, a claim depends on certain other objects being
closed; it is said to “claim” these objects. Since objects are
usually designed to be opened up eventually, these “claimed”
objects must be prevented from opening up as long as the
claim is closed. Concretely, this can be implemented in various
ways, the most obvious being for the dependee to track the
count ref cnt(o) of claims that claim o, and allowing o to be
opened only when ref cnt(0) is 0, cf. [6]. In constructing a
claim, the user provides the set of claimed objects and invariant
of the claim; VCC checks that this invariant holds and is
preserved by transitions under the assumption that the claimed
objects are closed (this check corresponds to the admissibility

check if the claim was declared with an explicit type). Any
predicate implied by this invariant is said to be “claimed” by
the claim; this allows a client needing a claim guaranteeing a
particular fact to use any claim that claims this fact (without
having to know the type of the claim); to make this convenient,
VCC gives all claims the same type (claim t); we can think of
an additional “subtype” field as indicating the precise invariant.

D. Function Contracts and Framing

Verification in VCC is function-modular; when reasoning
about a function call, VCC uses the specification of the
function, rather than the function body. A function specifi-
cation consists of preconditions (of the form requires(p)),
postconditions (of the form ensures(p), where p is a 2-state
predicate, the prestate referring to the state on function entry),
and writes clauses (of the form writes(o), where o is an object
reference or a set of object references).

When verifying a function, VCC first assumes the precon-
ditions of the function. On each sequential write to an object
field, VCC asserts (i.e., tries to prove statically) that the object
is mutable and that it is either listed in the writes clause
of the function or that the thread obtained ownership of the
object after function entry. Just before an atomic action, the
caller forgets everything it knows about the state except for
the values of fields in the sequential domain of its wrapped
objects not listed in the writes clause of the function, and the
values of fields of its mutable objects not listed in the writes
clause of the function.5 On an atomic write, VCC asserts that
the field written is either mutable or a volatile field of a closed
object, and checks that the entire atomic action preserves the
invariants of any modified objects. On each function call, the
caller first asserts that the preconditions of the function hold
(after evaluating the actual parameters and binding them to the
formal parameters), then forgets in the same way as before an
atomic action, and finally assumes the postconditions of the
function.

E. Binding to C

The discussion above assumed that we are in a world of
unaliased objects. To deal with the real C memory state, VCC
maintains in ghost state a global variable called the typestate
that keeps track of where the “real” objects are; these objects
correspond to instances of C aggregate types (structs and
unions). There are system invariants that (i) each memory cell
is part of exactly one object in the typestate, (ii) if a struct
is in the typestate, then each of its subobjects (e.g., fields of
aggregate type) are in the typestate, and (iii) if a union is in the
typestate, then exactly one of its subobjects is in the typestate.
These invariants guarantee that if two objects overlap, then
they are either identical or one object is a descendant of the
other in the object hierarchy. When an object reference is
used (other than as the target of an assignment), it is asserted

5The forgetting is not necessary after an atomic action, because standard
reduction techniques [4] can be used to show that we can pretend that thread-
local operations happen right after the atomic action, before other threads can
run [5].



that reference points to an object in the typestate. Thus, the
typestate gets rid of all of the “uninteresting” aliasing (like
objects of the same type partially overlapping).

Table I summarizes the VCC constructs required for our
IPC design presented in the following sections.

III. A POLYMORPHIC SPECIFICATION OF IPC

In this section we verify the implementation of a simple
communication algorithm between two threads. The threads
exchange data over a sequentially accessed, shared message
box to which they synchronize access with a Boolean volatile
notification flag. To verify the implementation’s memory
safety, an ownership discipline must be realized in which the
ownership of the message box is transferred back and forth
between the two threads. We extend this pattern by passing
claims between the two threads, which we store in the message
box. The properties of these claims can be configured by the
clients, thus providing the desired polymorphic procedure call
semantics for IPC.

There are various ways to structure annotations and, in
particular, the definitions of ghost objects and invariants. At
their core, all of these share information via volatile fields, pass
on knowledge via claims or object invariants, and make use
of thread-approved state for the two communication partners.
We chose here a way that is easy to present but also extends
cleanly to multiple senders and receivers (cf. Sect. V).

A. Scenario

We consider the scenario of two threads (0 and 1) ex-
changing data over a shared message box (of type Msg).
The message box contains two fields (in and out) which are
used for sending a request to the other thread and receiving
back a response, respectively. The fields of the message box
are nonvolatile and accessed sequentially. The message box
is contained in another structure (of type Mgr), which also
holds a volatile Boolean notification flag n used to synchronize
access to the message box. Given the canonical conversion
of Booleans to integers (where 0 and 1 are mapped to false
and true, respectively), this flag identifies the currently acting
thread. If it is set, thread 1 is acting, i.e., preparing a response
for thread 0 and posting a new request, and thread 0 may
not access the message box. Otherwise, thread 0 is acting and
thread 1 may not access the message box. Thread 0 may not
clear the flag, and thread 1 may not set it.

The implementation has two functions. Both take a Mgr
pointer and a thread identifier a. The function snd() is meant
to be called by thread a when the notification flag equals a.
It negates the notification flag, thus sending the response and
a new request contained in the message box at that time to
the other thread. The function rcv() waits in a busy loop until
the notification flag equals a again, thus receiving the other
thread’s response (to a preceding snd() call) and a new request.

B. Message Box

Listing 1 shows the annotated definition of the message box
type. As outlined above, we want to generalize information

spec(typedef struct vcc(record) InOut {
unsigned val; mathint gval; claim t cl; } InOut;)

typedef struct Msg {
unsigned in, out;
spec(InOut input, output;)
invariant(input.val≡ in ∧ output.val≡ out)
invariant(input.cl6= output.cl ∧

input.cl ∈ owns(this) ∧ ref cnt(input.cl)≡ 0 ∧
output.cl ∈ owns(this) ∧ ref cnt(output.cl)≡ 0) } Msg;

Listing 1: Message Box Type with Invariants

spec(typedef struct vcc(volatile owns) Actor {
struct Mgr ∗mgr;
volatile bool w;
volatile InOut l input, r input;
invariant(closed(this) ∨ ¬closed(mgr))
invariant(approves(owner(this), w, l input, r input))
invariant(approves(mgr, owns(this), w, l input, r input)) } Actor;)

Listing 2: Actor Type and Invariants

exchange to beyond the mere transferral of data (the fields
in and out in the message box). We therefore define an
abstract I/O type (InOut) that carries a ghost value gval of
unbounded integer type, and a claim pointer cl in addition to
the implementation data value val being transmitted.

An abstract input and output each are stored in ghost fields
of the message box. As an invariant we maintain that the
input’s and output’s val fields match their implementation
counterpart. We also require that the claims pointed to by the
input’s and output’s cl fields do not alias and are owned by
the message box with a zero reference count.

The latter fact is particularly important. Whoever owns the
message box also controls the contained claims, and may make
use of the knowledge / property they hold or destroy them.
The main functionality of the verified algorithm is thus the
transferal of ownership of the message box between the two
threads, making sure that the contained data has the desired
properties, as instantiated by the client.

C. Actors

The Actor type keeps track of the protocol state of a protocol
participant. Listing 2 shows the annotated definition of this
type. The actor has a nonvolatile pointer mgr to the manager,
which will hold all protocol invariants. For admissibility
reasons, the actor must promise to stay closed longer than mgr.
All others fields are volatile and may be atomically updated
while the actor remains closed. Such updates, however, must
be approved by two parties: the manager mgr, which checks
all the protocol invariants, and the owner of the actor, which is
one of the communicating threads and exclusive writer of the
fields. The actor is also used as an intermediate owner of the
message box during ownership transferral. For this purpose,
its owns set is also declared volatile as well as approved by
mgr but not thread-approved, to enable foreign updates (by
the other thread).

The three regular fields of the actor are used as follows.



VCC Keyword Description

Basics
this self-reference to object (used in

type invariants)
invariant(p) type invariant with property p
old(e) evaluates e in prestate (of function

or 2-state invariant)
closed(o) object o closed; invariants of o

guaranteed to hold
inv(o) evaluates to (2-state) invariant of o
approves(o, f1, . . . ,fn) changes of fields f1,...,fn require

check of o’s invariant:
old(fi)6= fi =⇒ inv(o)

atomic(o1, . . . ,on){s;} marks atomic execution of s;
updates only volatile fields of
o1, . . . ,on

ref cnt(o) number of claims that depend on o
claims(c,p) invariant of claim c implies p
spec(. . .) wraps ghost code and parameters

(a) Basic Keywords

VCC Keyword Description

Ownership
owner(o) owner of object o
owns(o) set of objects owned by object o
set closed owner(o,o’) sets owner of o to o’ and extends

ownership of o’ by o
wrapped(o) o closed and owned by current

thread
mutable(o) o not closed and owned by current

thread
Function Contracts

requires(p) precondition
ensures(p) postcondition
writes(o1, . . . ,on) function writes to objects oi

Spec Types
mathint mathematical integers
claim t claim type
T2 map[T1] map from T1 to T2

(b) Ownership, Function Contracts, Spec Types

TABLE I: VCC Keywords

typedef struct Mgr {
volatile bool n;
Msg msg;
spec(Actor A[2];

bool InP[bool][InOut];
bool OutP[bool][InOut][InOut];)

invariant(∀(unsigned a; a < 2 =⇒ closed(&A[a]) ∧ A[a].mgr≡ this))
invariant(A[¬n].w)
invariant(A[n].w

? (&msg ∈ owns(&A[n])) ∧ OutP[n][A[n].l input][msg.output] ∧
A[¬n].l input≡ msg.input ∧ InP[n][msg.input]

: A[n].r input≡ A[¬n].l input) } Mgr;
Listing 3: Manager Type and Invariants

The wait flag w is active when the thread owning the actor is
waiting for a response from the other thread. The fields l input
and r input buffer (abstract) local and remote inputs, i.e., input
to the last request sent to or received from the other thread
(or, in other words: the evaluation of the call parameters from
the caller’s and callee’s perspective, respectively). In contrast
to the input fields of the message box itself, which may be
opened and updated sequentially by the owning thread, these
buffers can be admissibly referred to all the time and used in
the protocol invariants.

D. Manager

Listing 3 shows the annotated declaration of the Mgr type.
It holds a volatile Boolean notification flag n that is used
to synchronize access to the message box msg. For the
verification, we also add some ghost components: the maps InP
and OutP encoding pre- and postconditions for the message
exchange, and a two-element array A of actors.

The predicates are declared as nonvolatile, which allows
clients to deduce that they remain unchanged as long as the
manager object is closed. They take a Boolean parameter
identifying the actor and one or two abstract input-outputs
values. The intention is that InP[a][i] is true iff i is a valid
request for thread a and OutP[a][i][o] is true iff o is a valid

&A[0] &A[1]

c1c0

claims

approves

ownsmgr

msg

Thread 1Thread 0

2. 3.4.1.

Fig. 1: Object Structure and Ownership Transfer

response to a (valid) request i made by thread a. The concrete
definition of these predicates can be provided by the client
during initialization time.

We now describe the manager’s invariants. As described
above, each protocol partner a owns its corresponding actor
&A[a]. The first invariant states that both actors remain closed
and point back to the manager, which (in combination with
the actor’s approval invariants) allows us to admissibly talk
about the actors in invariants here.

The remaining invariants define the protocol behavior. For
better overview, refer to Figure 1 depicting object structure
and a protocol run starting from thread 0. In phase 1, thread 0
owns the message box and may prepare its response and new
request. In phase 2, ownership of the message box has passed
from thread 0 to the actor of thread 1, waiting to be processed.
Phases 3 and 4 are symmetrical: in phase 3 thread 1 prepares
its response, which is then waiting to be processed in phase 4.

In addition to ownership, the protocol invariants restricts
values for the actor fields. The second invariant states the non-
acting thread, identified by the negated notification flag, must
be waiting, i.e., have the wait flag of its actor set.

The third invariant refers to the acting thread, given by the
notification flag. The fact that the acting thread is waiting
indicates that the message box is still waiting to be processed
by the acting thread. It holds a response to the acting thread’s



last request in the output field and a new request in the
input field. In the corresponding invariant we state that (i) the
message box is owned by the current actor, (ii) its output is
valid with respect to the acting thread’s last / locally-stored
request, and (iii) the new input equals the local input buffer
of the other thread and is valid for the acting thread. If the
acting thread is not waiting, we require local and remote input
buffers of the current and non-current actors, respectively, to
match. Note that these input buffers are approved by the acting
and non-acting threads, respectively. Thus, this condition states
that a request may not be changed while not yet processed.

E. Operations

Contracts for the send and receive function are given in
Figure 2. Both functions take a manager pointer mgr, an actor
identifier a, and a claim c supplied as a ghost parameter stating
that the manager is closed. They maintain that the identified
actor is wrapped. To send to the other thread, the current
thread’s actor must be flagged as non-waiting, the message
box must be wrapped and hold valid outputs and inputs to the
other thread, just as we have seen in the manager invariant for
the acting thread. Afterwards, the message box is unknown to
be wrapped (the writes clause on &mgr→msg destroys that
knowledge), but the input sent to the other thread is buffered
in the local input field of the actor.

Given a waiting actor, the receive function is guaranteed to
return a wrapped message box, that contains a valid response
for the old local request and a new valid request.

As an excerpt from the verification consider the body of
the snd() function, which consists of a single atomic update
on the actors and the manager (where the closedness of the
manager and the foreign actor is guaranteed by the claim c):

atomic (c, mgr, &mgr→A[0], &mgr→A[1]) {
assert(¬mgr→A[a].w ∧ mgr→A[¬a].w ∧ mgr→n≡ a);
mgr→n = ¬a;
spec(mgr→A[a].l input = mgr→msg.input;

mgr→A[a].w = true;
set closed owner(&mgr→msg, &mgr→A[¬a]);
. . .

}

The precondition on the wait flag, its thread-approval, and
the manager’s invariant allow to derive that the current thread
is still not waiting, the other thread is waiting, and the
notification flag equals a just before the atomic action.6 Also,
the message box, which is in the sequential domain of the
thread, must still be wrapped and continues to satisfy the com-
munication preconditions. The notification flag is then flipped
(changing the ‘acting’ thread) and the ghost updates ensure
that the atomic update satisfies the manager’s invariant. Note
that set closed owner() transfers ownership of the message
box from the current thread to the other thread’s actor, and
. . . stands for some VCC artifact which might go away in
future versions.

6The assertion is for informational purposes only; VCC deduces it auto-
matically.

spec(typedef struct Tlb {
volatile mathint invalid, current;
invariant(invalid ≤ current ∧

old(invalid) ≤ invalid ∧ old(current) ≤ current)
} Tlb;)

Listing 4: TLB Model

typedef struct FlushMgr {
struct Mgr mgr;
spec(struct Tlb tlb;)
invariant(&tlb ∈ owns(&mgr)))
invariant(mgr.InP≡ λ(bool a; InOut i;

a =⇒ claims(i.cl, i.gval ≤ tlb.current)))
invariant(mgr.OutP≡ λ(bool a; InOut i, o;

a ∨ claims(o.cl, i.gval ≤ tlb.invalid)))
} FlushMgr;

Listing 5: Flush Manager Type and Annotations

IV. TLB FLUSH EXAMPLE

We implement and verify a protocol for flushing transla-
tion look-aside buffers (TLBs) based on the communication
algorithm from the previous section, demonstrating the ex-
pressiveness of its polymorphic specification.

TLBs are per-processor hardware caches for translations
from virtual to physical addresses. These translations are
defined by page tables stored in memory, which are asyn-
chronously and non-atomically gathered by the TLBs (requir-
ing multiple reads and writes to traverse the page tables). Since
translations are not automatically flushed in response to edits
to page tables, operating systems must implement procedures
to initiate such flushes on their own.

We think of page-table reads being marked with unique (in-
creasing) identifiers and model each TLB as an object with two
volatile counters,7 cf. Listing 4. The current counter increases
as the TLB gathers new translations. The invalid counter is
a watermark for invalidated translations and is bumped (i.e.,
copied from the current field) when the associated processor
issues a TLB flush.

Consider the scenario of two threads, the caller (thread 0)
requesting the flush and the callee (thread 1) performing the
flush. We implement this as follows: the caller sends a flush
request by invoking the send primitive and subsequently polls
for the answer by calling the receive primitive. On callee side,
the thread polls via receive for new flush requests. When a
flush request has been received, the callee issues a TLB flush
operation, and signals back that the flush has been performed
using the send primitive. After a completed flush operation, the
flush client (e.g., the memory manager) wants to derive that
the callee TLB’s current invalid counter is larger or equal than
the callee’s current counter at the time of the flush operations.

We realize this scenario by embedding the communication
manager (and callee’s TLB) into a flush manager, as shown in
Listing 5. Apart from ownership, the invariants give meaning
to the input and output predicates of the communication

7While this model is sufficiently detailed to express the semantics of (full)
TLB flushes, extensions are needed for applications that go beyond that.



void snd(struct Mgr ∗mgr, bool a spec(claim t c))
requires(wrapped(c))
requires(claims(c,closed(mgr)))
requires(wrapped(&mgr→msg))
requires(mgr→OutP[¬a][mgr→A[a].r input][mgr→msg.output])
requires(mgr→InP[¬a][mgr→msg.input])
requires(¬mgr→A[a].w)
requires(wrapped(&mgr→A[a]))
ensures(wrapped(&mgr→A[a]))
ensures(mgr→A[a].w)
ensures(mgr→A[a].l input≡ old(mgr→msg.input))
writes(&mgr→msg,&mgr→A[a]);

void rcv(struct Mgr ∗mgr, bool a spec(claim t c))
requires(wrapped(c))
requires(claims(c,closed(mgr)))
requires(mgr→A[a].w)
requires(wrapped(&mgr→A[a]))
ensures(wrapped(&mgr→A[a]))
ensures(¬mgr→A[a].w)
ensures(wrapped(&mgr→msg))
ensures(mgr→OutP[a][old(mgr→A[a].l input))][mgr→msg.output])
ensures(mgr→A[a].r input≡ mgr→msg.input)
ensures(mgr→InP[a][mgr→msg.input])
writes(&mgr→A[a]);

Fig. 2: Send and Receive Contracts

manager. The ghost value i.gval transmitted from the caller
to the callee encodes which translations are meant to be
flushed. For the callee (a≡ true), the input predicate states
that this value is less or equal than the current field of its
TLB (since the callee could not possibly flush translation ‘from
the future’, i.e., such a request could not be handled the TLB
flush semantics). For the caller (a≡ false), the output predicate
then states that the invalid field of the callee’s TLB is greater
or equal than the value, i.e., the requested flush has been
performed. For the other cases the input and output predicates
are trivially true.

Based on this definition, the correctness of the functions
sendFlush() and receiveFlush() at caller and callee side, re-
spectively, can be proven. The main postcondition that is
established by sendFlush() for the flush manager fmgr then
is old(fmgr→tlb.current)≤ fmgr→tlb.invalid.

V. INTERPROCESSOR INTERRUPTS

Interprocessor interrupts (IPI) are used in multicore operat-
ing systems or hypervisors to implement different synchroniza-
tion and communication protocols. Via IPIs a thread executing
on one processor can trigger the execution of interrupt handlers
(here: NMI handlers) on other processors. Using IPIs, a
communication protocol can be implemented, in which a caller
thread sends work requests to other processors, the callees.
Such an IPI protocol is part of the Verisoft XT academic
hypervisor, where it may be used for different work types,
e.g., for TLB flushing. Thus a polymorphic specification is
desirable.

By expanding the simple communication pattern introduced
previously, we specified and verified the IPI protocol (and on
top of it a TLB flushing protocol) for the academic hypervisor.
There are several differences between the previous version of
the algorithm and the IPI protocol:

• More communication partners. In the simple case we
had a single sender and a single receiver. Now we have
multiple communication partners, where one sender may
invoke an IPC call on many receivers, and where each
receiver may be invoked by many senders at the same
time.

• No receiver polling. The callees in the IPI scenario do
not poll for messages. Rather the caller invokes the callee

by triggering an IPI. This is done by writing registers of
the advanced programmable interrupt controller (APIC),
which delivers the interrupts to other processors. In the
work at hand we do not yet model this hardware device.

• More concurrency. In the new setting we have another
source of concurrency, NMI handlers which may interrupt
the execution of ordinary threads. Basically, the NMI
handler code always acts as receiver or callee and the
thread code as sender or caller.

• Interlocked hardware operations. Interlocked bit oper-
ations are required to atomically access bit vectors which
may be written and read concurrently by many threads/
handlers.

A. Implementation

Since multiple senders can send requests to multiple re-
ceivers, we need a notification bit for each sender/receiver pair.
This is implemented by introducing one notification mask per
processor. Each bit of such a mask is associated with a specific
sending processor. Thus, a sender signals a request by setting
its bit in the receiver’s notification mask. When finishing the
work, the receiver clears that bit. Note, that many senders
and receivers can write the same notification mask in parallel,
requiring the use of interlocked bit operations.

Similarly, we need one mailbox for each sender/receiver
pair. Note, that for each processor pair we need two mailboxes,
since both may send messages to each other simultaneously.

In the sending code a while-loop iterates over the set of
intended receivers (encoded in a bit mask). In each iteration,
first the mailbox is prepared, and then by using an interlocked
OR-operation, atomically, the corresponding bit in the receiver
mask is set to 1 and the mask is compared with 0. If this check
evaluates to true, an IPI for the receiving processor is triggered
via the APIC. Otherwise, nothing has to be done, since some
other sender already triggered the interrupt, and the handler
hasn’t returned yet.

In the receiving code (implemented as an NMI handler) a
while-loop iterates on (possibly multiple) sender requests as
long as the receiver’s notification mask is not 0. Once the work
for one sender is done, the corresponding bit in the notification
mask is cleared by an interlocked AND-operation.



B. Specification

The specification pattern of Section III can be straight-
forwardly applied to the IPI protocol. The number of ghost
objects scales linearly with the number of processors. The
structure and the invariants of message boxes (with their ghost
fields encoding input/output claims) and actors introduced in
the simple protocol can be reused almost identically in the
new setting.

If n is the number of processors, 2 · n actor objects are
required, since each processor may act both as sender—
when running thread-code—or as receiver—when running
NMI handler code. Though executed on the same processor,
both code portions are two logically different entities, possibly
residing in different protocol states, and owning different sets
of mailboxes. That is also how we deal with thread and NMI
handler concurrency: each of the NMI handler and the thread
code own (and thus approve) separate actors. Note that in
the IPI case, a single actor may communicate with many
other partners, requiring it to maintain protocol state (the wait
flag, and the remote and local input fields) per processor. The
invariants of the manager are similar to those from the simple
protocol.

C. Multiprocessor TLB Flush

The TLB abstraction and specification is similar to the
previous section, but with a separate TLB for each processor.

D. IPIs in Microsoft’s Hyper-VTM Hypervisor

In the context of the Verisoft project we also studied the
correctness of the IPI mechanism implemented in Microsoft’s
Hyper-V hypervisor. Though comparable in complexity to
the IPI routine of the academic hypervisor, there are several
differences:

• Efficiency. By introducing additional protocol variables
sequential access to some of the shared data can be
ensured, and thus fewer (costly) interlocked operations
are required.

• Lazy work. The interrupt handler signals the receipt of
the request and the accomplishing of the work separately.
This allows for implementing less blocking caller code.

We have verified the implementation against a non-generic
specification in VCC and are confident that this effort can be
easily adapted to the generic spec used here.

VI. CONCLUSION

The proof presented here achieves the desired goal—
allowing IPC clients to treat IPCs like local procedure calls. As
future work, the structure presented in Sect. III can be made
modular even with respect to the set of functions provided
via IPC. We can improve the structure slightly by changing
the Mgr type; instead of the maps InP and OutP, the Mgr
could hold a mapping of function tags to function objects,
where each function object has its own InP and OutP maps.
This would allow function objects to be reused in different
managers, or even dynamically registered for IPC.

In principle, the technique presented here could also be
applied to RPC, where the caller and callee execute in different
address spaces. This requires translating the claims represent-
ing the pre- and post-conditions from one address space to the
other. One possible way to achieve this effect would be to take
the claim in the caller space, couple this to a second state in a
way that captures the guarantees of the RPC, and existentially
quantifying away the caller space.
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