
Noname manuscript No.
(will be inserted by the editor)

Balancing the Load

Leveraging a Semantics Stack for Systems Verification

Eyad Alkassar · Mark A. Hillebrand ·
Dirk C. Leinenbach · Norbert W. Schirmer ·
Artem Starostin · Alexandra Tsyban

Received: date / Accepted: date

Abstract We have developed a stack of semantics for a high-level C-like language

and low-level assembly code, which has been carefully crafted to support the perva-

sive verification of system software. It can handle mixed-language implementations and

concurrently operating devices, and permits the transferral of properties to the target

architecture while obeying its resource restrictions. We demonstrate the applicability

of our framework by proving the correct virtualization of user memory in our microker-

nel, which implements demand paging. This verification target is of particular interest

because it has a relatively simple top-level specification and it exercises all parts of

our semantics stack. At the bottom level a disk driver written in assembly implements

page transfers via a swap disk. A page-fault handler written in C uses the driver to im-

plement the paging algorithm. It guarantees that a step of the currently executing user

can be simulated at the architecture level. Besides the mere theoretical and technical

difficulties the project also bore the social challenge to manage the large verification

effort, spread over many sites and people, concurrently contributing to and maintaining

a common theory corpus. We share our experiences and elaborate on lessons learned.

Keywords Pervasive formal verification · systems verification · software verification

1 Introduction

The context of this work is the German Verisoft project, a large scale effort bringing

together industrial and academic partners to push the state of the art in formal verifi-

Work supported by the German Federal Ministry of Education and Research (BMBF) under
grant 01 IS C38. Work of the first and the third author supported by DFG Graduiertenkolleg
“Leistungsgarantien für Rechnersysteme”. Work of the fifth author supported by the Interna-
tional Max Planck Research School for Computer Science (IMPRS-CS).

M. A. Hillebrand · D. C. Leinenbach · N. W. Schirmer
German Research Center for Artificial Intelligence (DFKI), P.O. Box 15 11 50, 66041
Saarbrücken, Germany
E-mail: {mah, Dirk.Leinenbach, Norbert.Schirmer}@dfki.de

E. Alkassar · A. Starostin · A. Tsyban
Saarland University, Computer Science Dept., P.O. Box 15 11 50, 66041 Saarbrücken, Germany
E-mail: {eyad, starostin, azul}@wjpserver.cs.uni-sb.de

2

Apps

SOS

VAMOS

CVM

VAMP Devices

Userland

System software

User mode

System mode

Machine-independent

Machine-dependent

Software

Hardware

External
environment;
other systems

Fig. 1 Implementation layers of the academic system (Verisoft subproject 2)

cation for realistic computer systems, comprising hard- and software. In this article we

present parts of Verisoft’s ‘academic system’, which is a computer system for writing,

signing, and sending emails. As it covers all implementation layers from the gate level

hardware up to communicating user processes it is a representative of a vertical slice of

a general-purpose computer system. We pay special attention to pervasive verification,

which means that at the end of the day we obtain a correctness result for the actual

system, which is the hardware running the system. We do not only verify isolated por-

tions on different abstraction layers but make sure that we can combine and preserve

the results for the actual system.

One key obstacle in a large formal and layered artefact as the Isabelle/HOL theo-

ries of our project is the seamless integration of the abstraction layers. This is achieved

through simulation and transfer theorems, gluing together the layers. The results pre-

sented in conference articles are often simplified since they focus on a certain point

and have to fit into the page limit. With this article we attempt to overcome a popular

demand and present key theorems of the Verisoft system stack up to the microkernel

level in great detail. We do not present all the underlying definitions. Here we refer to

previous work and our repository.1 Instead we discuss the shape of the theorems and

the nature of various assumptions with regard to their role in the overall verification.

System stack. The hardware architecture is called VAMP, a DLX like processor that

supports address translation and memory-mapped I/O devices. With the next level of

communicating virtual machines (CVM) a hardware-independent programming in-

terface for a microkernel is provided, that establishes the notion of separate concurrent

user processes. Parts of the CVM are implemented in assembly, because C0, our main

implementation language and a subset of C, lacks some low-level programming con-

structs. On the basis of the CVM our microkernel VAMOS [DDB08] is programmed

in pure C0. The simple operating system (SOS) is implemented as a (privileged)

user process of VAMOS [Bog08]. It offers file I/O, network access and inter-process

communication. On top of it user applications are provided with a client / server ar-

chitecture based on remote procedure calls [ABP09]. Finally these user applications

implement the functionality of the academic system: signing software, SMTP client

and server [LNRS07], and a simple mail user agent [BHW06]. The implementation

stack is also depicted in Figure 1.

1 The Isabelle theories of all models and proofs of this article are available in the published
portions of the Verisoft repository [HP08] at http://www.verisoft.de/VerisoftRepository.html.

http://www.verisoft.de/VerisoftRepository.html

3

C0 Hoare logic XCalls

C0 big-step semantics XCalls

C0 small-step semantics XCalls

VAMP assembly Devices

VAMP ISA Devices

VAMP hardware Devices

transfer (cf. Sect. 3.4.1)

transfer (cf. Sect. 3.4.2)

compiler correctness (cf. Sect. 5)
XCall implementation (cf. Sects. 8)

simulation (cf. Sect. 4.4)

processor correctness [TS08]

Fig. 2 Semantics stack

The computational models we introduce to specify and verify the academic system

are assembled along the implementation layers. In this article we focus on the layers up

to the CVM, where the challenging aspect is the integration of concurrent computations

of the processor and devices at the architecture level into the sequential view provided

by the C0 (and assembly) language. We introduce the C0 semantics stack which is

orthogonal to the system stack described before. With the semantics stack we establish

a convenient Hoare logic to reason about the sequential parts of C0 programs (without

inline assembly code) and simultaneously provide the means to compose the results to

deal with assembly code and to integrate devices.

Semantics stack. The C0 semantics stack comprises a Hoare logic, a big-step seman-

tics, and a small-step semantics. It can be continued to the VAMP machine level, which

is divided further into assembly layer, instruction set architecture, and gate level hard-

ware. An overview is depicted in Figure 2. By a higher level of abstraction in the Hoare

logic compared to the small-step semantics, we gain efficiency for the verification of

individual C0 programs. However, since the semantics stack is merely a proof device

for C0 programs we have to integrate the results obtained in the Hoare logic to our

systems stack. We supply soundness and simulation theorems that permit the trans-

ferral of program properties from the Hoare logic down to the small-step semantics.

Applying compiler correctness we map those properties to assembly machines. We can

get further down to the ISA layer by employing a simulation theorem and finally to

the hardware by employing a processor correctness result.

The Hoare logic provides sufficient means to reason about pre and postconditions

of sequential, type-safe, and assembly-free C0 programs. Compiler correctness, though,

is formulated at the small-step semantics level. This allows the integration with inline

assembly code or concurrent computations, e.g., introduced by devices. The big-step

semantics is a bridging layer, which is convenient to express the results of the Hoare

logic operationally. The differences reflect the purpose of the layers. The Hoare logic is

tuned to support verification of individual programs, whereas the small-step semantics

is better suited for arguments about interleaving programs at the system level.

4

Up to now we have argued how to bring the results down to the lower levels such

that we can conduct reasoning at a comfortable abstraction level. However, this comes

at the cost of expressiveness. Most prominently only the levels below C0 allow the

integration of devices, which are a concurrent source of computation. As soon as we

attempt to reason about C0 programs that use these devices we either have to be able

to express device operations at the Hoare logic level or we are forced to carry out the

whole verification at the assembly level. Our approach is to abstract the effect of those

low-level computations into atomic ‘XCalls’ (extended calls) in all our semantic layers.

The state space of C0 is augmented with an additional component that represents the

state of the external component, e.g., the device. An XCall is a procedure call that

makes a transition on this external state and communicates with C0 via parameter

passing and return values. With this model it is straightforward to integrate XCalls

into the semantics and into Hoare logic reasoning. The XCall is typically implemented

in assembly. An implementation proof of this piece of assembly justifies the abstraction

to an atomic XCall.

Somewhat similar to the XCalls in the C0 semantics layers, devices are added to

all the semantic layers of the VAMP. Their state and transition functions are shared

between all layers. These transition functions as well as the VAMP semantics describe

small-step computations, which are interleaved to obtain the concurrent computation

of the combined system. One central prerequisite to use our individual transfer results

to prove a global property for the combined system is to disentangle the different

computations by means of reordering.

Related work. As Klein [Kle09] provides an excellent and comprehensive overview of

the history and current state of the art in operating systems verification we limit this

paragraph to highlight the peculiarities of our work. We extend the seminal work

on the CLI stack [BHMY89] by integrating devices into our model and targeting

a more realistic system architecture regarding both hard and software. The project

L4.verified [HEK+07] focuses on the verification of an efficient microkernel, rather than

on formal pervasiveness, as no compiler correctness or an accurate device interaction is

considered. In the FLINT project, an assembly code verification framework is developed

and code for context switching on a x86 architecture was formally proven [NYS07]. A

program logic for assembly code is presented, but no integration of results into high-

level programming languages is undertaken. Relevant references to our own work are

given at the beginning of each section.

Outline. In Section 2 we introduce Isabelle/HOL and notational conventions. In Sec-

tion 3 we introduce the language C0 and the associated semantics stack. We present

theorems that permit the transferral of properties from the Hoare logic down to the

small-step semantics. In Section 4 we present models for the assembly language and

instruction set of the VAMP architecture. We also show how to integrate devices into

these models. Section 5 deals with verified compilation from C0 to VAMP. In Sections 6

to 8 previous results are employed and combined to establish a correctness result for

CVM. Going top-down we first present the theorem for CVM user step correctness in

Section 6. One case in the proof of this theorem is the correct handling of page-faults.

In Section 7 we present the page-fault handler that implements demand paging for

CVM. For paging operations it uses a disk driver, which is presented in Section 8. We

wrap up our experience and ‘lessons learned’ in Section 9. In the appendix we provide

a glossary on important constants and notations.

5

2 Preliminaries

The formalizations presented in this article are mechanized and checked within the

generic interactive theorem prover Isabelle [Pau94]. Isabelle is called generic as it

provides a framework to formalize various object logics that are declared via natural

deduction style inference rules within Isabelle’s meta-logic Pure. The object logic that

we employ for our formalization is the higher order logic of Isabelle/HOL [NPW02].

This article is written using Isabelle’s document generation facilities, which guar-

antees that the presented theorems correspond to formally proven ones. We distinguish

formal entities typographically from other text. We use a sans serif font for types and

constants (including functions and predicates), e.g., map, a slanted serif font for free

variables, e.g., x, and a slanted sans serif font for bound variables, e.g., x . Small capi-

tals are used for data type constructors, e.g., Foo, and type variables have a leading

tick, e.g., ′a. HOL keywords are typeset in type-writer font, e.g., let. We also take the

freedom to borrow C notation, e.g., unsigned when presenting C0.

As Isabelle’s inference kernel manipulates rules and theorems at the Pure level the

meta-logic becomes visible to the user and also in this article when we present theorems

and lemmas. The Pure logic itself is intuitionistic higher order logic, where universal

quantification is
∧

and implication is =⇒. Nested implications like P1 =⇒ P2 =⇒ P3

=⇒ C are abbreviated with [[P1; P2; P3]] =⇒ C , where one refers to P1, P2, and P3 as

the premises and to C as the conclusion. To group common premises and to support

modular reasoning Isabelle provides locales [Bal03,Bal06].

In the object logic HOL universal quantification is ∀ and implication is −→. The

other logical and mathematical notions follow the standard notational conventions with

a bias towards functional programming. We only present the more unconventional parts

here. We prefer curried function application, e.g., f a b instead of f (a, b). In this setting

the latter becomes a function application to one argument, which happens to be a pair.

Isabelle/HOL provides a library of standard types like Booleans, natural numbers,

integers, total functions, pairs, lists, and sets and packages to define new data types

and records. Isabelle allows polymorphic types, e.g., ′a list is the list type with type

variable ′a. In HOL all functions are total, e.g., nat ⇒ nat is a total function on natural

numbers. Function update is f (y := v) ≡ λx . if x = y then v else f x and function

composition is f ◦ g ≡ λx . f (g x). To formalize partial functions the type ′a option is

used. It is a data type with two constructors, one to inject values of the base type, e.g.,

bxc, and the additional element ⊥. A base value can be projected with the function

the, which is defined by the sole equation the bxc = x. Since HOL is a total logic the

term the ⊥ is still a well-defined yet un(der)specified value. Partial functions can be

represented by the type ′a ⇒ ′b option, abbreviated as ′a ⇀ ′b.

The syntax and the operations for lists are similar to functional programming

languages like ML or Haskell. The empty list is [], with x · xs the element x is ‘consed’

to the list xs, the head of list xs is hd xs and the remainder, its tail, is tl xs. With

xs @ ys list ys is appended to list xs. With map f xs the function f is applied to all

elements in xs. The length of a list is |xs|, the n-th element of a list can be selected

with xs[n] and updated via xs[n := v]. An entry of a two-dimensional list is updated

by xs[n, m := v]. With set xs we obtain the set of elements in list xs. Filtering those

elements from a list for which predicate P holds is achieved by [x∈xs . P x]. With

replicate n e we denote a list that consists of n elements e.

6

Table 1 C0 Expressions e

Lit v literal values v
VarAcc vn access of variable vn
ArrAcc ea e indexing array ea with index e
StructAcc e cn selecting component cn of structure e
BinOp bop e1 e2 binary operation
LazyBinOp lbop e1 e2 lazy binary operation
UnOp uop e unary operation
AddrOf e address of (left-) expression e
Deref e dereferencing e

Sets come along with the standard operations for union, i.e., A ∪ B, intersection,

i.e., A ∩ B and membership, i.e., x ∈ A. The set image f ‘ A yields a new set by

applying function f to every element in set A.

Partial functions ′a ⇀ ′b are commonly used as maps. With map-of xs we construct

a map from an association list, i.e., a list of key / value pairs. We denote the domain

of map m by dom m. With m1 ++ m2 we add the map m2 to map m1, where entries

of m1 are overwritten if necessary. We can restrict the domain of a map m to a set A
by m�A. Subsumption of maps is defined as m1 ⊆m m2 ≡ ∀ a∈dom m1. m1 a = m2

a and composition of maps as m1 ◦m m2 ≡ λk. case m2 k of ⊥ ⇒ ⊥ | bvc ⇒ m1 v .

A record is constructed by assigning all of its fields, e.g., (|fld1 = v1, fld2 = v2|).
Field fld1 of record r is selected by r.fld1 and updated with a value x via r(|fld1 := x|).

The first and second component of a pair can be accessed with the functions fst
and snd. Tuples with more than two components are pairs nested to the right.

3 C0

C0 is a type safe subset of C designed with verification in mind. An elaborate de-

scription of the big-step semantics is given in [Sch06] and the small-step semantics is

introduced in [Lei08]. An overview on the simulation theorems between the semantical

layers can be found in [AHL+08], the transfer from the Hoare logic to the big-step

semantics is detailed in [Sch06].

The primitive values are signed and unsigned integers (32 bit), 8-bit chars, Booleans,

and typed pointers. Aggregate values comprise structures and arrays. Unions and

pointer arithmetic are not supported. C0 Expressions e and statements s are defined

as data types (cf. Tables 1 and 2). Binary operations are arithmetic operations (+,

-, *, /, %), bitwise operations (|, &, ^, <<, >>), and comparisons (>, <, ==, !=, >=,

<=). Lazy binary operations are Boolean conjunction && and disjunction ||. Unary

operations are unary minus -, bitwise negation ~, logical negation !, and operations

to convert between integral values (integers, unsigned integers, and chars). Left ex-

pressions are the subset of expressions that refer to memory objects (e.g., VarAcc,

ArrAcc, StructAcc, and Deref).

Statement identifiers sid are used in the compiler correctness theorem. Procedures

assign the return value to a (global or local) variable specified by variable name vn.

External procedure calls (ESCall) are stubs for a linker that eventually replaces them

by ordinary procedure calls. Extended procedures (XCall) can return multiple values

to a list of left-expressions. This is the only way for an XCall to manipulate the ordinary

7

Table 2 C0 Statements s

Skip the empty statement
Comp s1 s2 sequential composition
Assign el e sid assignment of expression e to left-expression el

PAlloc el tn sid allocation of object of type name tn and assignment to
pointer el

SCall vn pn es sid procedure call of pn with parameters es and result vn
Return e sid return from procedure
Ifte e s1 s2 sid if-then-else with condition e
Loop e s sid while loop with condition e and body s
Asm ls sid inline assembly with instruction list ls
ESCall vn pn es sid external procedure call
XCall pn es esr sid extended procedure call of pn with parameters es and

result left-expressions esr

C0 state, since it only operates on the extended state directly. Multiple return values

nevertheless allow us to model updates to global variables or heap updates via pointers.

The extended state component on which XCalls operate is the same for all semantic

layers. An extended procedure is defined semantically as a function that takes a list of

parameter values and an extended state component and returns the new extended state

component and a list of result values. This definition is then consulted to perform an

XCall. Evaluating parameter expressions and returning the result values is handled by

the C0 semantics itself. It depends on the semantical layer how the parameter and result

values are represented. The small-step semantics flattens aggregate values to a list of

bytes, whereas the big-step semantics and Hoare logic keep them together. Nevertheless,

the definitions of the extended procedure definitions on the different layers have a lot

in common since the core part is the transition on the extended state component. This

makes the transfer of those definitions between the layers straightforward.

The different C0 semantics do not handle all statements. Neither of the C0 se-

mantics handle assembly statements Asm, which are only meaningful in the assembly

machines. We deal with C0 programs with inline assembly code by combining the C0

small-step semantics and the assembly semantics, both of which are tied together via

compiler correctness. The small-step semantics describes the computation of the C0

program up to the point where an assembly statement is reached. The compiler cor-

rectness theorem allows us to relate the C0 small-step configuration to the assembly

machine, which can then continue computation of the assembly parts. If the assembly

part does not destroy any of the C0 invariants, the final assembly configuration can be

mapped back to a C0 configuration from which the C0 computation can continue.

Furthermore, the Hoare logic and the big-step semantics do not support AddrOf
expressions. This simplifies the memory model for global and local variables.

Regarding initialization of memory, C0 is quite strict. Heap memory is initialized

by the (implementation of the) PAlloc statement. Global variables are initialized

by the compiler. For local variables we employ a definite assignment analysis, which

statically ensures that we only read from variables that were previously assigned to.

Definition 1 (Definite assignment analysis) The analysis has two parts:

A s: is the set of variables that are guaranteed to be assigned to by any execution of

statement s.
D s L A: means that statement s passes the definite assignment check, with respect

to the set of local variables L and the initially assigned variables A.

8

The analysis A s collects assignments to local as well as global variables. That is why

this set is often intersected with the local variables L.

The typing constraints on C0 programs are not only employed for static typing,

but are also used as typing invariants during execution of a statement. Hence they do

not solely depend on static information but also on the dynamic configuration, e.g., to

determine the type of a heap location. Since configurations are different for the big-step

and the small-step semantics we postpone the definitions until Sections 3.2 and 3.3.

The core differences of the semantical layers of C0, which we introduce in the

following sections, can be summarized as follows:

Hoare: split heap, aggregate values, implicit typing

Big-step: single monolithic heap, aggregate values, explicit typing

Small-step: single monolithic heap, flat values, explicit typing

These design decisions reflect the purpose of the layers. The Hoare logic is tuned to

support verification of individual programs, whereas the small-step semantics is better

suited for arguments about interleaving programs at the system level. C0 supports

aggregate values, i.e., structures and arrays. As in hardware those values are broken

down to a sequence of bytes in the small-step semantics. This allows us to calculate

addresses of subcomponents in memory. At the big-step and the Hoare-level however,

those aggregate values are stored in one ‘memory cell’. One can still assign to sub-

components via ordinary left-expressions, but one cannot calculate the address of a

subcomponent. The ‘address-of’ operator is not supported at the big-step and Hoare

level. This rules out aliasing between different types and structure components. We

exploit this guarantee by using a split heap memory model in the Hoare logic. Every

component of a structure is stored in a separate heap [Bur72]. An assignment to one

component does not affect any other components (of the same structure or other struc-

tures), which simplifies program verification. Type safety of C0 guarantees that this

model can be mapped to the single monolithic heap of the other semantic layers.

Since we do not need a general theory of the C0 language at the Hoare logic level, we

take the freedom to supply an individual state space for each program we verify. Every

variable (and every split heap) becomes a field in a state space record, with its own

HOL type. We employ the HOL type system to model C0 programming language types.

Isabelle’s type inference then takes care of typing constraints that would otherwise have

to be explicitly maintained in the assertions. Again, type safety of C0 is the reason

that allows us to connect the Hoare logic layer with the big-step semantics.

3.1 Hoare logic

The Hoare logic layer is somehow special compared to the big-step and small-step layer,

since it is not C0 specific. It uses a general framework for the verification of sequential

imperative programs within Isabelle/HOL [Sch05,Sch06]. The language model is called

Simpl, and we embed C0 into it. The framework comes along with syntax, big- and

small-step semantics, Hoare logics for partial as well as total correctness and an auto-

mated verification condition generator for Simpl. Soundness and completeness of the

Hoare logic with respect to the operational semantics of Simpl is proven. We use the

soundness theorem to transfer a Hoare triple about a C0 program to the operational

semantics of Simpl. A correctness theorem about our embedding of C0 into Simpl then

allows us to map these results to the big-step semantics of C0 [AHL+08].

9

Since Simpl is generic it does not stipulate the representation of the state space,

which is just a type variable. For our C0 instantiation we use a HOL record as state

space, that we construct for a given program. The basic notions we need are big-step

execution and guaranteed termination of Simpl programs.

Definition 2 (Big-step execution for Simpl) The judgment G`h 〈s, sv〉 ⇒ t

means that in context of program G the statement s started in initial state sv executes

to the final state t, where G maps procedure names to their bodies and sv and t are

states of the form Normal sv
′ or Fault f , where f is an error flag.

Definition 3 (Guaranteed termination for Simpl) The judgment G`h s↓sv
means that in context of program G execution of statement s from initial state sv is

guaranteed to terminate.

In this article we are concerned with total correctness properties of the form G |=h

P s Q. Starting in a state that satisfies the precondition, execution of the statement is

guaranteed to terminate without error and the final state satisfies the postcondition.

Definition 4 (Total correctness for Simpl)

G |=h P s Q ≡ ∀sv∈Normal ‘ P. G`h s↓sv ∧ (∀ t. G`h 〈s, sv〉 ⇒ t −→ t ∈ Normal ‘ Q)

3.2 Big-step semantics

A state sv in the big-step semantics is parametrized over the state extension ′x and is a

record with the following components: the heap sv.heap maps locations to values, local

variables sv.lcls and global variables sv.glbs map variable names to values, the natural

number sv.free-heap indicates the available heap memory, and sv.ext is placeholder of

type ′x for the extended state for XCalls.

A program P is a four-tuple containing association lists for the various declarations

of types, global variables, procedures, and extended procedures (for XCalls). We access

this declaration information via the following functions: tnenv P to resolve type names,

genv P to obtain type information for global variables, plookup P and xplookup P to

lookup the definitions of procedures and XCalls.

Definition 5 (Big-step execution for C0) Judgment P,sz,L`bs 〈s, sv〉 ⇒ t

means, that in context of program P, the size function sz (to measure heap memory

consumption of a type), and the set of local variables L, execution of the statement s
in initial state sv leads to the final state t.

The states sv and t are of the form bsv ′c in case of normal execution or ⊥ if an error

occurred. The set of local variable names L is used to disambiguate accesses to local or

global variables (local names hide global names). It is set to the local variables during

a procedure call, whereas program P and size function sz stay the same during the

whole execution.

The size function sz is considered when allocating new heap memory. If enough

memory is available a new object is created otherwise we nondeterministically return

the null pointer or create a new object. We keep the size function as a parameter of the

execution relation to gain some flexibility in when to discharge resource limitations. It

shows up in variations also in the small-step semantics and in the compiler correctness

theorem (cf. Sections 3.3 and 5.2) where it finally has to be discharged. If we choose to

10

take a trivial size function (i.e., one that is constantly 0) we have to argue harder about

memory restrictions later. Using a more appropriate size function allows us to carry

out reasoning about memory restrictions already at the Hoare logic level (cf. Page 18).

Typing. The typing judgment for statements takes the static declaration information

of the program into account. Moreover, as we also use typing to describe execution

invariants it considers a heap typing HT, which maps locations to type names. In

the big-step semantics the type information of heap locations is not maintained in the

heap. This is not necessary for the execution of a C0 program since there is no runtime

type information. For expressing type safety however we need this type information

and introduce it via the heap typing.

Definition 6 (Typing of a statement) Judgment xpt,pt,tt,VT,HT `bs s
√

ex-

presses that statement s is well-typed with respect to the extended procedure table

xpt, procedure table pt, type table tt, variable typing VT, and the heap typing HT.

For a given program P usually tt is obtained by tnenv P, pt by plookup P, and

so forth. The variable typing VT is typically constructed by overwriting the global

variable environment genv P with the active local variable environment.

As a statement has to be well-typed the memories have to conform to the typing

information. First we introduce a typing judgment for values, which we then extend to

memories, by ensuring that every value is typed according to a memory typing MT.

Definition 7 (Typing of a value) The judgment HT,tt `bs v ::vT means that

value v has type T in the context of heap typing HT and type table tt.

Definition 8 (Typing of memory)

HT,tt `bs m::MT ≡ ∀ p v T . m p = bvc ∧ MT p = bTc −→ HT,tt `bs v ::vT

Finally, we extend well-typedness to complete states. Local and global variables as

well as the heap have to respect typing. For the heap, type information is obtained

by composition of the type table tt and the heap typing HT. For global variables

and the heap we additionally demand that at least as much locations or variables are

initialized as in the typings. Global variables are always initialized and typing GT is

constant during program execution. The heap typing HT gets extended as new objects

are allocated. The number of allocated locations stays finite during execution. Local

variables do not have to be initialized from the beginning of the procedure. However,

the definite assignment analysis ensures that we only read initialized variables. In the

invariants we use restricted local typings LT that correspond to the approximation of

the definite assignment analysis.

Definition 9 (Typing of state)

tt `bs sv::HT,LT,GT ≡ HT,tt `bs sv.heap::(tt ◦m HT) ∧ dom HT ⊆ dom sv.heap ∧
finite (dom sv.heap) ∧ HT,tt `bs sv.lcls::LT ∧ HT,tt `bs sv.glbs::GT ∧ dom GT ⊆ dom sv.glbs

Definition 10 (Valid programs) We define the predicate valid-prog P to ensure

basic well-formedness and typing properties for programs. In particular we require:

– identifiers within the different name spaces of type names, global variable names,

local variable names, procedure names and extended procedure names are unique,

– every procedure body is well-typed and passes the definite assignment check, and

– the semantic definitions of the extended procedures respect their signature.

11

3.3 Small-step semantics

In contrast to a big-step semantics that only relates the initial to the final state of a

statement execution, a small-step semantics describes single computation steps operat-

ing on configurations. A configuration c is a record with two components: the memory

c.mem and the program rest c.prog, which is a C0 statement. The memory configu-

ration is a record with three components: the memory for global variables c.mem.gm,

the heap memory c.mem.hm, and the frame stack c.mem.lm. Each frame is a pair

containing the memory of local variables and the destination for the return value.

A memory m not only contains the values but also type and initialization infor-

mation: the word addressable memory content m.ct, a symbol table m.st associating

variable names to types, and the set m.init-vars of initialized variables. Single memory

cells of the small-step semantics are represented as an abstract data type and can store

a single value of basic type. We have a constructor for every basic type, e.g., unsigned

n for storing unsigned value n in a memory cell. In case of the heap memory the set of

initialized variables and the variable names in the symbol table are meaningless, but

the type information describes the objects in the heap.

We introduce a record for monolithic C0 small-step configurations cm combining a

small-step configuration cm.conf, a type table cm.tt and a procedure table cm.pt.
We refer to the memory objects of a C0 small-step configuration by the term

generalized variables (or short: g-variable). This also includes all heap objects. Formally,

g-variables are represented as a data type, e.g., gvar-hm i for the i-th heap variable

or gvar-arr g i for the i-th array element of g-variable g . Pointers are null (Null)

or point to a g-variable (ptr g).

Definition 11 (Transition function d) The small-step transition function d tt
pt enough-heap c gets the type table tt, the procedure table pt, and the predicate

enough-heap which takes the memory and a type as parameter and decides whether

the allocation of a new object of that type succeeds. For property transfer between the

big-step and the small-step semantics this has to be compatible with the sz function

used there. If no fault occurs the result of the transition from the old configuration c
is of the form bc ′c, otherwise it is the error configuration ⊥. We execute n steps by dn.

The transition function d describes the C0 source level semantics of the compiler

correctness theorem. It does not properly handle XCalls but returns a final configura-

tion (where the program rest is Skip). Hence, we extend it to handle XCalls:

Definition 12 (Transition function dx) The transition dx tt pt enough-heap c
x xpt extends d to handle XCalls on state extension x, according to the extended

procedure table xpt. We execute n steps by dnx .

A final configuration is reached when the program rest is Skip. In this case the

transition function is the identity. We define a relational view of the transition function

that really stops in this configuration by a single introduction rule:

Definition 13 (Transition relation)

c.prog 6= Skip

tt,pt,enough-heap,xpt `ss b(c, x)c → dx tt pt enough-heap c x xpt

We refer to the reflexive transitive closure by substituting the arrow → by →∗.

As the symbol tables of the memories store typing information we do not need

further components to describe well-typed configurations.

12

Definition 14 (Valid configurations) A configuration c is in set valid-C0SS tt
pt validasm xpt if basic well-formedness and typing constraints hold, in particular:

– unique identifiers (cf. Definition 10),

– procedure bodies are well-typed and contain a single return statement at the end,

– the predicate validasm holds for all instructions in inline assembly statements, i.e.,

these instructions are well-typed,

– all memory frames are well-typed and contain only valid pointers, i.e., pointers

which point to existing g-variables,

– the program rest conforms with the procedure table, i.e., all statements in the

program rest are from one of the procedures and their order follows certain rules

(cf. [Lei08, Section 5.4]), and

– the number of return statements in the program rest is strictly smaller than the

number of stack frames.

3.4 Property transfer

Because the level of detail increases towards the lower layers, typically the amount

of invariants on the configurations increases. For example take procedure calls. In the

small-step semantics we explicitly maintain a frame stack. In a valid configuration

there are at least as many frames on the stack as there are open return statements

in the program rest. Already in the big-step semantics there is no need for a frame

stack, because it abstracts the whole procedure call to one single step in the execution.

In the light of property transfer the invariants of lower layers can be divided into

two categories: (i) constraints necessary to establish the abstraction and to justify the

property transfer and (ii) additional invariants only meaningful for the lower layers.

When composing results at the lower layer we have to ensure that the first cate-

gory of invariants hold as a prerequisite to apply the transfer theorem. Moreover, the

transferred result must maintain the second kind of invariants since those properties

may be needed for further reasoning at the lower layer. For example consider reasoning

about a procedure call on the small-step semantics. We are in a valid configuration

with a certain frame stack and attempt to use a functional property of the procedure

that we have proven using Hoare logics. Since the transfer theorem only works for well-

typed configurations we have to know that in our current configuration the program is

well-typed and that the memory also respects this typing. If also the precondition of

the Hoare triple holds we can apply the property transfer theorem and derive that the

postcondition holds for the final state of the procedure call. The postcondition itself

only refers to the topmost frame, since the frame stack is no longer visible in the Hoare

logic. Additionally, we want to ensure that the final configuration is still well-typed

(type safety) and that the procedure call has only affected the topmost frame, so that

properties on the lower frames still hold. These additional invariants appear in the

following transfer theorems to preserve state information used for seamless integration

and reasoning at the lower level.

The granularity on which we transfer Hoare triples down to the small-step semantics

is procedure calls. As the transfer theorems employ constraints on the procedures, we

have to be careful not to become too restrictive. Especially the step from the Hoare

logic layer to the big-step semantics is critical since we switch from a shallow to a deep

embedding of the state space. It would make no sense to define abstractions and prove

properties about procedures, variables and types that are not subject of the transfer.

13

The transfer theorems are defined relative to the program context which consists of

the type table, the procedure table, and the symbol table for global variables. At the

Hoare layer we start with a minimal program context that is necessary to define the

procedure we attempt to transfer. After transferring the result to the big-step layer we

extend this minimal context to the target context. This way constraints on procedures

only have to hold for the minimal context.

3.4.1 Hoare to big-step

The transfer of results from the Hoare logic level to the big-step level has one pecu-

liarity: we switch from a shallow embedding of the state space to a deep embedding.

At the big-step level all programming language values are embedded into a single data

type and memory is formulated as a partial function from variable names to those val-

ues. This uniform representation is quite natural for the formulation of the language

semantics. For the verification of individual programs within the Hoare logic however,

every variable becomes an own field in the state space record, with its own HOL type.

This unification of programming language typing with HOL typing brings the crucial

benefit of automatic type inference to the Hoare logic, which relieves us from maintain-

ing explicit typing constraints in the pre- and postconditions of Hoare triples. However,

it comes at a cost that shows up when transferring results to the big-step level. As the

state representation depends on the individual program we cannot generically define

an abstraction function from a big-step memory configuration to a Hoare logic mem-

ory configuration. However, we can still develop a general property transfer theory by

employing Isabelle’s locales. We introduce abstraction functions for the core operations

(lookup and update of atomic state components) as locale parameters, for which we

assume commutativity properties. On the basis of these functions we can define fur-

ther abstractions that allow the simulation of expression evaluation, left-expressions,

assignments, and finally statements. This gives us an abstract theory of property trans-

fer based on the assumptions of the locale. For any concrete program, where the state

space in the Hoare logic is fixed, we can actually define the basic abstraction functions

and discharge the assumptions of the locale by proving the commutativity properties.

As the definition of these functions and the proofs are schematic we have automated

the proofs with tactics.

In the course of building derived abstractions and proving properties on them

more and more information about the big-step configuration has to be made available,

in particular variable declarations with their type information. This information is

made available via the following locale parameters: the type table tt, typing for global

variables GT, local variables LT, and heap locations HT, and finally the C0 program

P, declared at the more detailed big-step level. The requirements on the parameters

are straightforward (e.g., tt = tnenv P) and the intuition about them is sufficient for

the course of this article. A thorough treatment can be found in [Sch06].

Both the abstraction function abss for a C0 statement and the abstraction function

abssv for a big-step state are parametrized by a procedure name pn. Thereby the

abstraction functions can discriminate between local and global variables. Moreover, a

big-step state can correspond to several states in the Hoare logic. The reason is that

the Hoare logic does not distinguish global and local variables, they lie side by side

in the same state record. A big-step state only constrains the value of the active local

variables, the variables of other procedures are irrelevant and hence any valuation of

them in the Hoare logic is fine. Thus the function abssv yields a set of abstract states.

14

The main constraints we put on the program and the big-step configurations for

which we attempt to transfer Hoare triples are type constraints. Only in a well-typed

C0 setting the abstraction works out, since at the level of the Hoare logic typing is

already enforced by Isabelle’s type inference, due to the shallow embedding.

The cornerstone of the following transfer theorem is to strengthen the precondition

from the abstract Ph to the big-step variant P and similarly to weaken the post-

condition from the abstract Qh to Q. These basic steps are decorated with validity

constraints and frame conditions. The Hoare triple we attempt to transfer depends on

the universally quantified auxiliary variable Z . By this the pre- and postcondition can

be connected with each other [Kle99]. Typically Z fixes (parts of) the pre-state such

that the post state can refer to it, e.g., to express frame conditions. Note that in the

last premise of the theorem the auxiliary variable Z is existentially quantified and can

depend on both versions of the initial state svh and sv, respectively.

The program has to be valid and the set of local variables L is determined by the

current procedure pn. Most of following preconditions can rely on a big-step state sv

that satisfies the precondition. For those constraints that directly refer to sv the reason is

obvious. For the typing constraint on the statement s the dependency on sv is introduced

via the heap typing HT. Imagine a pointer value as parameter of a procedure call

specification. From the type constraints of the procedure we can infer the type name

the pointer points to, which has to coincide with the heap typing HT at the location

of the pointer. This location is part of the heap which also has to conform to the heap

typing HT. For definite assignment the locations we assume to be assigned must be

subset of the actually assigned values in the initial state. As the statement s we transfer

is usually a procedure call, the definite assignment check can already be passed by an

empty set A. This makes the subsumption test A ⊆ dom sv.lcls trivial and also imposes

no constraints on the typing of local variables since LT pn�A becomes the empty map

for A = {}. The way we construct the state abstraction ensures ∀ sv. abssv pn sv 6= {}.
The last premise is the promised connections between the preconditions P and Ph and

the postconditions Q and Qh. During execution of the statement s the heap may grow

due to new memory allocations. Hence the heap typing for the final state HT ′ is an

extension of the initial heap typing. Similar the statement may assign local variables

which are predicted by A s, and hence the final state must respect the typing of those

additionally initialized variables. The last two conjuncts of the precondition in the

final implication are pure frame conditions. All global variables that are not mentioned

in the global typing GT and all heap locations that are not typed according to heap

typing HT and the type table tt stay the same. These frame conditions are useful when

we extend the typing environments, e.g., to embed the result in a bigger program.

Theorem 1 (Property transfer from Hoare to big-step)

[[∀Z . G |=h (Ph Z) abss pn s (Qh Z); valid-prog P; L = dom (LT pn);
∀sv∈P. xplookup P,plookup P,tt,GT ++ LT pn,HT `bs s

√
; D s L A; ∀sv∈P. A ⊆ dom sv.lcls;

∀sv∈P. tt `bs sv::HT,LT pn�A,GT; ∀sv∈P. abssv pn sv 6= {};
∀sv∈P. ∀svh ∈abssv pn sv.

∃Z . svh ∈ Ph Z ∧
(∀HT ′. HT ⊆m HT ′ −→

(∀ t th.
th ∈ abssv pn t ∧ th ∈ Qh Z ∧ tt `bs t::HT ′,LT pn�(A ∪ A s),GT ∧
A ∪ L ∩ A s ⊆ dom t.lcls ∧
(∀ n. n /∈ dom GT −→ t.glbs n = sv.glbs n) ∧
(∀ l tn. HT l = btnc ∧ tn /∈ dom tt −→ t.heap l = sv.heap l) −→
t ∈ Q))]]

=⇒ P,sz,L |=bs P s Q

15

This theorem is a corollary from simulation properties between the operational seman-

tics of Simpl and C0, which are outlined in [AHL+08] and detailed in [Sch06]. The core

theorems are the correspondence of a C0 big-step execution and a Simpl execution

and preservation of termination from Simpl to C0.2 The simulation theorem is built

from a couple of lemmas along the syntactic entities of C0: expression evaluation, left-

expression evaluation, assignment, and statement execution. The latter one is proven

by rule-induction on the big-step semantics, the former ones by induction on the (left-)

expressions or the structure of the involved types. Most effort goes into the simulation

of assignment. The reason for this are the differences in the representation of aggre-

gate C0 values, which are broken down to their components in the split heap model

of Simpl. Preservation of termination builds on the simulation theorem and is proven

by induction on the termination relation. Altogether the verification effort sums up to

about 0.75 person years. Some examples for applying the transfer theorems to simple

procedures can be found in Section 8.8 of [Sch06].

3.4.2 Big-step to small-step

In addition to the standard constraints on configurations valid-C0SS we impose further

restrictions for the purpose of property transfer. (i) Certain statements and expressions

are not allowed since they are not supported by the big-step semantics or the Hoare

logics, namely AddrOf, ESCall, and inline assembly. The function scalls collects

the procedure calls of a statement and the set SCalls inductively collects further calls

in the procedure environment for the given initial set. (ii) The global variables have to

be initialized and we only allow pointers to (root) heap locations in memory (the small-

step semantics additionally allows pointers to global variables or to subcomponents of

an aggregate value).3 (iii) Moreover, every type in the heap has to have a proper type

name in the type environment. This is attributable to a subtle deviation in the different

semantic formalizations. Whereas the small-step semantics directly maps pointers to

types, the big-step semantics makes an indirection via type names. (iv) The small-step

semantics maintains a frame stack for procedure calls where the destination for the

return value is located (the second component of a frame). In the big-step semantics

we directly store the return value within the local variables. For this purpose we reserve

the variable name Res, which has to be distinct from other local and global variable

names. Only root positions of local and global variables are valid return destinations.

In case the return destination is a local variable it has to be defined in the frame stack

below, formalized by the predicate valid-retvars. (v) Each procedure in the procedure

environment has to pass the definite assignment check, where we assume parameters,

local variables, and variable Res to be local, and the parameters to be initialized.4

(vi) Similarly, the program rest has to pass the definite assignment check. However,

as the program rest gets expanded during the small-step computation it may contain

multiple returns and hence the program rest is split into several regions that correspond

to procedure invocations on the frame stack. This generalization is formalized by Ds
and LAs.

2 Guaranteed termination form an initial configuration is formalized on top of the big-step
semantics as an inductive definition.

3 This can be liberated by only enforcing it for the pointers to known types, such that one
can allow all kind of pointers to new types when embedding the result into a bigger context.

4 We could liberate this by only enforcing it for the procedures in SCalls pt (scalls c.prog).

16

Definition 15 (Valid small-step configurations for property transfer)

valid-cfgss tt pt xpt validasm c x ≡ c ∈ valid-C0SS tt pt validasm xpt ∧
noAddrOf-Asm-ESCall c.prog ∧
(∀ p ∈SCalls pt (scalls c.prog). noAddrOf-Asm-ESCall (the (map-of pt p)).proc-body) ∧
globals-initialized c.mem.gm ∧ only-heap-pointer c.mem ∧ named-types tt (hm-st c.mem) ∧
Res /∈ fst ‘ set c.mem.gm.st ∧ Res /∈ fst ‘

⋃
set ‘ st ‘ fst ‘ set c.mem.lm ∧

(∀ gv ∈snd ‘ set c.mem.lm. is-root-gvar gv) ∧
valid-retvars (snd (hd c.mem.lm)) (tl c.mem.lm) ∧
(∀ p ∈snd ‘ set pt.

let pns = map fst p.proc-parameters; lns = map fst p.proc-local-vars
in D p.proc-body (set (pns @ lns @ [Res])) (set pns) ∧ Res /∈ set pns ∪ set lns) ∧

Ds c.prog ((vnames c, init-vnames c) · LAs (snd (hd c.mem.lm)) (tl c.mem.lm))

Our notion of a Hoare triple at the level of the small-step semantics is biased

towards property transfer from the big-step level. We encode validity of configurations

and transition invariants right into this notion and also carry some leftovers of the

big-step configurations around, namely the set of local variables L and the program P.

The reason for this peculiarity is that the set of local variables and even the program

declarations are directly encoded into each configuration in the small-step semantics.

Hence we cannot relate those entities between the big- and the small-step semantics

without referring to a small-step configuration which is only accessible within the pre-

and postconditions of the Hoare triple.

We consider an initial configuration (c, x). The memory of the configuration and

the extended state fulfill the precondition. Moreover the initial configuration is valid,

the program rest corresponds to statement s which does not contain a return statement.

As we typically transfer a single procedure call this is trivially the case. The abstraction

relations between the small-step configuration and the set of local variables L, as well

as the program P hold. Since we define total correctness non-terminating computations

are ruled out, which is denoted by the precondition ¬ tt,pt,enough-heap,xpt `ss b(c,
x)c → . . . (∞). For every computation the final configuration cx ′, must not be the

error configuration, the postcondition has to hold, and it has to be valid. Moreover,

the transition invariant between initial and final configuration has to be satisfied.

Definition 16 (Total correctness on small-step semantics)

tt,pt,enough-heap,xpt,validasm,L,P |=ss P s Q ≡
∀ c x . (c.mem, x) ∈ P ∧ valid-cfgss tt pt xpt validasm c x ∧ c.prog = s ∧

nr-returns s = 0 ∧ L = {Res} ∪ fst ‘ set (toplm-st c.mem) ∧
absProg tt pt (gm-st c.mem) P −→ ¬ tt,pt,enough-heap,xpt `ss b(c, x)c → . . . (∞) ∧
(∀ cx ′. tt,pt,enough-heap,xpt `ss b(c, x)c →∗ cx ′ ∧ final cx ′ −→

(∃ c ′ x ′ xs. cx ′ = b(c ′, x ′)c ∧ (c ′.mem, x ′) ∈ Q ∧
valid-cfgss tt pt xpt validasm c ′ x ′ ∧
transition-invariant tt pt xpt validasm s xs c x c ′ x ′))

The transition invariant captures essential invariants of the small-step computation

that hold between the initial and final configuration of the procedure call that we

transfer. First of all the computation only affects the topmost frame of local variables.

Moreover, neither the type information of this frame nor of the global variables is

changed. The type information for the heap memory may only grow. The second com-

ponent of a frame stores the left-value of the return variable. This is also not modified

by the current procedure call. Finally the increasing set of initialized local variables

is approximated by the definite assignment analysis A. In particular this ensures that

the result variable of the procedure call is initialized in the final configuration.

17

Definition 17 (Transition invariant)

transition-invariant tt pt xpt validasm s xs c x c ′ x ′ ≡ tl c ′.mem.lm = tl c.mem.lm ∧
toplm-st c ′.mem = toplm-st c.mem ∧ gm-st c ′.mem = gm-st c.mem ∧
hm-st c ′.mem = hm-st c.mem @ xs ∧ snd (hd c ′.mem.lm) = snd (hd c.mem.lm) ∧
(fst (hd c.mem.lm)).init-vars ∪ vnames c ∩ A s ⊆ (fst (hd c ′.mem.lm)).init-vars

At its core the single premise of the following transfer theorem is a variant of an

adaption theorem in Hoare logics. We strengthen the precondition and weaken the

postcondition. Additionally, we take the different layers and the system invariants of

the small-step layer into account. For an arbitrary initial configuration that fulfills the

constraints of small-step validity and the precondition P we have to supply a big-step

Hoare triple P,sz,L |=bs Pbs s Qbs such that the big-step abstraction of the configura-

tion fulfills the precondition Pbs. For a final valid small-step configuration, that fulfills

the transition invariant and for which the big-step abstraction fulfills the postcondition

Qbs we have to derive the small-step postcondition Q. Note the existential quantifi-

cation on the big-step pre- and postcondition. It is under the universal quantification

of the initial configuration and hence can depend on this configuration. The function

absState is used to abstract a small-step configuration to a big-step state.

Theorem 2 (Property transfer from big-step to small-step)

∀ c x . valid-cfgss tt pt xpt validasm c x ∧ c.prog = s ∧ nr-returns s = 0 ∧ (c.mem, x) ∈ P ∧
L = {Res} ∪ fst ‘ set (toplm-st c.mem) ∧ absProg tt pt (gm-st c.mem) P −→
(∃Pbs Qbs. P,sz,L |=bs Pbs s Qbs ∧ absState hs sz c.mem x ∈ Pbs ∧

(∀ c ′ x ′ xs.
valid-cfgss tt pt xpt validasm c ′ x ′ ∧
transition-invariant tt pt xpt validasm s xs c x c ′ x ′ ∧
absState hs sz c ′.mem x ′ ∈ Qbs −→ (c ′.mem, x ′) ∈ Q))

=⇒ tt,pt,enough-heap,xpt,validasm,L,P |=ss P s Q

As for the transfer from Simpl to the C0 big-step semantics, the above theorem is a

corollary from simulation properties between the big-step and the small-step semantics.

To separate data-refinement arguments from computation steps, we introduce an in-

termediate small-step semantics [AHL+08] that on the one hand shares the state space

with the big-step semantics and on the other and has the same granularity of com-

putation as the small-step semantics. We first prove that termination in the big-step

semantics implies a terminating computation in the intermediate small-step semantics

and that a terminating computation in the intermediate semantics has a corresponding

execution in the big-step semantics. The second half is to prove that every computation

step in the small-step semantics has a corresponding step in the intermediate seman-

tics. Analogous to the simulation proofs behind Theorem 1 we build our lemmas along

the syntactic entities of C0. As before the simulation of the assignment was the most

time-consuming task, for similar reasons: the transition from aggregate values on the

big-step level to flat values on the small-step level. The simulation between the big-step

semantics and the intermediate semantics accounted to two weeks of work, whereas the

second half from the intermediate semantics to the small-step semantics consumed al-

most one person year. The reason is both due to some technically involved arguments

and intermediate notions, especially regarding the assignment, but also due to some

minor deviations in the formalizations of corresponding aspects in the various seman-

tics, which were developed at different sites. Some were adjusted and others were just

bridged, because an accommodation of existing theories built on top of the semantics

would have been too expensive.

18

Reasoning about heap consumption. In Theorem 2 we have hidden a precondition,

which relates the enough heap predicate enough-heap and the size function sz:

¬ enough-heap m T =⇒ free-heap-size hs sz (hm-st m) < sz T

If according to enough-heap insufficient heap memory is available to allocate an object

of type T in memory m, then this is consistent with the size function sz. The auxiliary

function free-heap-size subtracts all the sizes of the type entries in the symbol table

of the heap from the initial heap size hs. Note that we do not demand anything for

the case that enough-heap is successful. The reason is that in the big-step semantics

and the Hoare logic we treat memory allocation ‘semi’-nondeterministically: if enough

memory is left allocation always succeeds and returns a new pointer, otherwise it

nondeterministically returns a new pointer or the null pointer. The motivation is the

integration of garbage collection into the picture. In this scenario the Hoare logic only

has an approximate knowledge about the free heap, since it just maintains a counter

that is decremented by the size of the type for the freshly allocated object. The Hoare

logic cannot compute heap consumption exactly because it only sees the current stack

frame and, thus, does not know the set of reachable heap objects. So in case insufficient

memory is predicted, this might not be the case in the implementation, since a garbage

collector could have made more heap available in the meantime. This can be captured

in a garbage collector aware enough-heap predicate.

Employing Hoare triples in redex position. At this point we are able to transfer a

Hoare triple for a single procedure call to the small-step level. However, we typically

attempt to integrate this procedure call into a bigger computation and hence the pro-

gram rest in an intermediate configuration is not just this single procedure call, but

rather the procedure call is at the redex position in the program rest. The following

theorem allows us to employ the Hoare triple in such a configuration.

Theorem 3 (Employ Hoare triple in redex position)

[[tt,pt,enough-heap,xpt,validasm,L,P |=ss P s Q; redex c.prog = s; (c.mem, x) ∈ P;
valid-cfgss

′ tt pt xpt validasm c x; noAddrOf-Asm-ESCall (redex c.prog);
∀ p ∈SCalls pt (scalls (redex c.prog)). noAddrOf-Asm-ESCall (the (map-of pt p)).proc-body;
nr-returns s = 0; L = {Res} ∪ fst ‘ set (toplm-st c.mem); absProg tt pt (gm-st c.mem) P]]

=⇒ ∃ c ′ x ′ xs. tt,pt,enough-heap,xpt `ss b(c, x)c →∗ b(c ′, x ′)c ∧
c ′.prog = subst-redex Skip c.prog ∧ valid-cfgss

′ tt pt xpt validasm c ′ x ′ ∧
transition-invariant tt pt xpt validasm s xs c x c ′ x ′ ∧ (c ′.mem, x ′) ∈ Q

Note the subtle change in validity of a configuration. Whereas valid-cfgss demands

that the whole program rest does not contain assembly, address-of or external calls

(cf. Definition 15), valid-cfgss
′ drops this restriction. We ensure in the precondition

that it holds for the redex though. One basic motivation of reasoning at the low ab-

straction level of the small-step semantics instead of the convenient Hoare logic level

is the ability to combine ordinary C0-computation with inline assembly code. Hence,

it would be worthless if we were incapable of using the transferred result in a situation

where inline assembly code is part of the program rest. We start in a configuration

where the redex of the program rest agrees with the statement in the Hoare triple. As

we have total correctness we know that the computation leads to a state where the

statement is completely executed, i.e., has evaluated to Skip.5 The program rest of

5 Note that the small-step semantics is deterministic. Hence, restricting ourselves to one
particular final configuration via the existential quantification is sufficient.

19

this configuration is obtained by substituting the redex position of the initial program

rest with Skip. In the remainder of the theorem the usual properties about the initial

and final configuration show up. The main argument in the proof is a straightforward

consequence from the transition function extending the computation by unfolding the

program rest in the redex position.

4 VAMP

The VAMP architecture is based on the DLX architecture [HP96] and was initially

presented in [MP00]. An implementation of the VAMP has been formally verified

in 2003 [BJK+03, BJK+06]. Since then, the VAMP has been extended with address

translation and support for I/O devices [DHP05,AHK+07,TS08].

There are three models related to the VAMP architecture; from concrete to abstract

ones these are the VAMP’s gate-level implementation, its instruction set architecture

(ISA) specification, and its assembly language specification. For each model, one variant

with device support and one variant without device support is defined. Simulation

proofs relate two models of adjacent layers.

In this section we sketch the definitions of the models above the gate level and the

relevant simulation results. Details on the gate-level implementation of the VAMP and

its verification can be found elsewhere [TS08].

4.1 Assembly

The VAMP assembly language specification is intended to be a convenient layer for im-

plementation and verification of low-level applications. Thus, it abstracts from certain

aspects of lower layers which are irrelevant for most applications.

In the VAMP assembly machine, data is represented as integers while addresses

are represented as naturals. This representation is optimized for applications working

with integers; arguments regarding naturals and bit vector operations requires the use

of conversion functions from / to integers. For example, the two functions to-nat32 and

to-int32 convert between 32-bit integers and naturals.

A VAMP assembly configuration asm is a record with the following components:

two program counters asm.dpc and asm.pcp for implementing the delayed branch

mechanism, which hold the addresses of the current and next instruction, the general-

purpose and special-purpose register files asm.gprs and asm.sprs, which are both lists

of data, and the main memory asm.mm, which is a map from addresses to data. With

m[a, d] we obtain from memory m the content of length d starting at address a.

Definition 18 (Valid assembly configuration) A VAMP assembly configura-

tion is called valid, denoted by the predicate valid-asm, if it fulfills certain basic well-

formedness conditions: the program counters must be 32-bit naturals, register files must

contain 32 registers, and all registers and memory cells must be 32-bit integers.

Instructions are represented with an abstract data type and converted between

memory cells with conversion functions, e.g., with the function to-instr on instruction

fetch. Thus, the function current-instr asm ≡ to-instr (asm.mm (asm.dpc div 4))

denotes the instruction that will be executed next in the assembly machine. A VAMP

20

assembly instruction is said to be valid if its register names and immediate constants

are in the correct range. We denote this fact by the predicate is-instr.
The VAMP assembly transition function dasm computes for a given assembly con-

figuration asm the next configuration asm ′. The transition is specified by a simple case

distinction over current-instr asm. We use the notation dnasm asm to denote n steps of

the assembly machine starting in configuration asm.

Definition 19 (Legal instructions) The assembly machine does not model ex-

ecution of all instruction of the underlying ISA (cf. next section). Interrupt related

instructions (rfe and trap) are handled by dummy transitions and we assume that

they do not occur in the programs executed by the assembly machine (cf. Section 4.4).

Access to special purpose registers is only supported in system mode. We formalize

these restrictions with the predicate legal-asm-instr which is false for rfe and for

instructions accessing a special purpose register in user mode.

4.2 Instruction set architecture

The VAMP instruction set architecture (ISA) serves as a specification of the VAMP

gate-level hardware. There are three key differences of the VAMP ISA with respect

to the more abstract VAMP assembly language: the VAMP ISA supports execution

modes, address translation, and interrupt handling.

In system mode, programs can directly access the memory and fully control the

architecture via a number of privileged instructions. In user mode, memory accesses

are subject to address translation and attempts to execute a privileged instruction

will result in an exception. The architecture responds to such exceptions, page-faults,

and other interrupts by entering system mode and continuing execution at address 0,

the start of the interrupt service routine (ISR). Normally, user mode is re-entered,

continuing execution at the interrupted location, by issuing the privileged instruction

rfe, which marks the end of the ISR.

Another, rather technical difference of the VAMP ISA is that some parts of its

configuration and operation are defined in terms of bit vectors rather than naturals

and integers, which is closer to the actual hardware implementation.

By design of the VAMP assembly model, no general simulation theorem can be

established with respect to the VAMP ISA. However, equivalence can be established

for system mode computations in which no interrupts occur, cf. Section 4.4. Similarly,

when user mode computation is virtualized by the system software an equivalence

result can also be established; this is an important part of the correctness of our CVM

model discussed later in this article (cf. Section 6).

A configuration isa of the VAMP instruction set architecture is a record, which has

the same components than a VAMP assembly configuration has, although differently

typed:6 the program counters isa.dpc and isa.pcp are bit vectors, the general-purpose

and special-purpose registers isa.gprs and isa.sprs are functions from bit vectors to bit

vectors, the main memory isa.mm is a function from bit vectors to pairs of bit vectors.

Although bit vectors can have variable length in Isabelle, all bit vectors in the VAMP

ISA have constant length, which is an invariant preserved during computation: register

addresses are 5-bit bit vectors, register values are 32-bit bit vectors, which we also call

words, and the main memory maps 29-bit double-word addresses to pairs of words.

6 Older VAMP versions had floating-point registers and units [BJK+03], not needed here.

21

Transition function. The transition function of the VAMP instruction set architecture

is denoted disa isa eev mifo. It takes a current configuration isa, a bit vector of external

interrupts (including a reset line), and a device output mifo as inputs. The latter two

parameters mostly make sense if the VAMP is connected to devices (as sketched below).

The transition function returns an updated configuration asm ′.

Address translation. The VAMP provides a single-level address translation mecha-

nism, which our CVM implementation uses to virtualize user process execution (cf.

Sections 6 ff.). We sketch the relevant definitions of functions based on natural num-

bers, which is the form in which we will use them later.

VAMP’s main memory is organized in pages, which are aligned chunks of data of

size 212 bytes. Two special purpose registers are relevant to address translation: The

page table origin register PTO and the page table length register PTL designate a

special region in main memory called page table consisting of word-sized page-table

entries (PTEs). The page index px va ≡ va div 212 of a virtual address va is used as

an index into this table. If va > PTL a page-fault exception is generated. Otherwise

let pte denote the page table entry with index px va. It consists of three components:

(i) the physical-page index ppx = pte div 212, (ii) the valid bit v = pte div 211 mod 2,

and (iii) the protection bit p = pte div 210 mod 2. If the valid bit is on, read accesses

to the virtual address are allowed. If additionally the protection bit is cleared, also

writes are allowed. If these conditions are met, an access to a virtual address va will

be performed on the physical address ppx ∗ 212 + va mod 212.

4.3 Devices and their integration

Devices. We model devices as deterministic finite-state machines communicating with

an external environment and the processor. The external environment is used to model

non-determinism and communication; a network interface card, for example, sends and

receives network packets. The processor accesses a device by reading or writing special

addresses. The devices, in turn, can signal interrupts to the processor; Direct memory

access (DMA) is not considered.

Formally, the interface between the processor and devices is defined by memory

interface inputs mifi and outputs mifo, which encode the processor’s request and the

device’s response to the request. A device of type x is represented by (i) types for

its external input, external output, and configuration, (ii) a predicate intrx on its

configuration that indicates pending interrupts, and (iii) a transition function dx, which

takes an input from the external environment, an input from the processor, and a device

configuration as parameters and returns an updated configuration, an output to the

processor, and an output to the external environment.

To generalize over different device types (hard disk, network card, etc.) we define

a generalized external environment and device configurations as abstract data types.

The transition function ddev eifi mifi d = (d ′, mifo, eifo) can be used for multiple

device types. Likewise, the predicate intr d indicates pending interrupts.

For the definition of non-interference predicates (and also for block operations,

which are not needed here) we also need a transition functions d∗dev eifis mifis d for

many device steps, which consumes a list of memory and externals inputs.

22

Models with devices. At the gate-level hardware, up to eight devices operate in lock-

step with the processor, running with the same clock. However, moving to the instruc-

tion set architecture and to assembly, we lose granularity and hence timing information.

We compensate for this loss by introducing interleaved execution of devices and the

processor. An oracle, called execution sequence, determines when some device or the

processor takes a step.

Definition 20 (Execution sequence) An execution sequence element is equal to

⊥ if at a certain point the processor takes a step or equal to b(DID, eifi)c if the device

with identifier DID and external input eifi takes a step. An execution sequence seqasm

is a map from natural numbers to execution sequence elements.

First, we define the model VAMP assembly with devices.

Definition 21 (Configuration of VAMP assembly with devices) A config-

uration asmD of the VAMP assembly with devices model is a record with two fields:

asmD.proc, the assembly state of the processor and asmD.devs, a map from device

identifiers to device configurations.

Definition 22 (Transitions of VAMP assembly with devices) Given the

execution sequence seqasm, the current VAMP assembly with devices state asmD and

the number N , the transition D
N
asm seqasm asmD returns the state reached after the

execution of N steps of the sequence seqasm.

Second, we define the model VAMP ISA with devices.

Definition 23 (Configuration of VAMP ISA with devices) A configuration

isaD of the model VAMP ISA with devices is a record with two fields: isaD.proc,
the ISA state of the processor and isaD.devs, a map from device identifiers to device

configurations.

In the transition function of the VAMP ISA with devices the previously defined

execution sequence is split into two separate functions, seqisa and eifis. This is closer

to the gate-level implementation and eases the correctness proof for the hardware. The

first function determines for step N whether the processor or one of the devices is

executing, the second function maps step numbers to inputs from the external environ-

ment. To convert both functions into a VAMP assembly execution sequence, we define

the conversion function to-seqasm seqisa eifis N = ⊥ iff seqisa N = ⊥, and to-seqasm

seqisa eifis N = b(DID, eifi)c otherwise where seqisa N = bDIDc and eifis N = eifi.

Definition 24 (Transitions of VAMP ISA with devices) Given a step num-

ber N , the execution sequence seqisa, the current state of VAMP ISA with devices isaD,

and a sequence of external inputs eifis, the transition DN
isa seqisa eifis isaD returns the

state reached after the execution of N steps.

4.4 Simulation theorems

As mentioned above the VAMP assembly model deliberately abstracts from modes and

mode switches. Therefore, correctness of the VAMP assembly-ISA simulation could be

described by two formal statements: for the system and user modes, respectively. In

the following we present the simulation theorem only for the execution in the system

mode, which will be used later on during kernel verification. For a user mode version,

which requires virtualizing execution via address translation, see Section 6.

23

Abstraction relations. Both VAMP configurations (assembly and ISA) consist of the

same components, but as their types are different we relate them by a type conversion.

Definition 25 (Assembly-ISA configuration equivalence) A VAMP assem-

bly configuration asm and a VAMP ISA configuration isa are equivalent if (i) the con-

tents of most registers in asm converted to bit vectors are equal to the corresponding

values in isa,7 and (ii) reading two consecutive cells in the assembly memory delivers

the same pair as an ISA memory access:

equiv-asm-isa asm isa ≡ isa.dpc = to-bv32 asm.dpc ∧ isa.pcp = to-bv32 asm.pcp ∧
gprs-equiv asm.gprs isa.gprs ∧ sprs-equiv asm.sprs isa.sprs ∧
(∀ a<232. isa.mm (to-bv29 (a div 8)) = double-word-read asm.mm a)

Definition 26 (Assembly-ISA program equivalence) Since one assembly in-

struction could be represented by many ISA instructions instr-equiv requires that the

program in the VAMP ISA is obtained via an assembler:

instr-equiv asm isa start-addr prog-len ≡
isa.mm[4 ∗ start-addr, prog-len] =
instr-prog-to-VAMP-prog (get-instr-list asm.mm (4 ∗ start-addr) prog-len)

Since no system code is written directly in the VAMP ISA language the code of our

kernel program satisfies this requirement.

Definition 27 (Assembly-ISA abstraction relation) Combining VAMP con-

figuration and program equivalence relations together we obtain the abstraction rela-

tion between VAMP assembly and VAMP ISA.

equiv-asm-isa-with-instr asm isa start-addr prog-len ≡
equiv-asm-isa asm isa ∧ instr-equiv asm isa start-addr prog-len

In case both models have devices an additional relation for the latter is introduced:

the equality in our case.

Definition 28 (Assembly-ISA abstraction relation with devices) The ab-

straction relation equiv-asm-isa-with-instr-dev extends the VAMP abstraction relation

with an equivalence statement for devices:

equiv-asm-isa-with-instr-dev asmD isaD start-addr prog-len ≡
equiv-asm-isa-with-instr asmD.proc isaD.proc start-addr prog-len ∧ asmD.devs = isaD.devs

Next, we introduce necessary restrictions for the simulation.

Definition 29 (Preconditions for simulation) For an assembly configuration

asm and a program of length prog-len stored starting at address start-addr the nec-

essary preconditions for the simulation during n steps are given by the predicate

precond-asm-isa which comprises the following facts: (i) the program is placed in non-

device memory, (ii) the instructions of the program are valid, and (iii) for the whole

computation the code region is not written to (i.e., there is no self-modification), all

instruction and data accesses are aligned, the code does not jump outside the code

region, the system mode is on and all external interrupts are masked, the instruction

to be executed is neither rfe nor trap, and no devices are accessed. Formally:

7 The contents of general-purpose register 0 (which is constantly zero for the VAMP) and
some special-purpose registers are irrelevant.

24

precond-asm-isa asm start-addr prog-len n ≡
4 ∗ (start-addr + prog-len − 1) < devices-border ∧
prog-properties asm start-addr prog-len ∧ dynamic-properties asm start-addr prog-len n

where

dynamic-properties asm start-addr prog-len n ≡
∀ n ′<n. step-properties (dn

′
asm asm) start-addr prog-len ∧ no-dev-touch-step (dn

′
asm asm)

Note that in case some device is accessed the restrictions are defined by the pred-

icate precond-asm-isa-dev asm start-addr prog-len seqasm N which differs from the

one above in the term about devices; instead of dynamic-properties we use

dynamic-properties-dev asmD start-addr prog-len seqasm N ≡
∀N ′<N . step-properties (fst (DN ′

asm seqasm asmD)).proc start-addr prog-len ∧
dev-touch-correct-step (fst (DN ′

asm seqasm asmD)).proc

Here, the predicate dev-touch-correct-step ensures word access to devices.

Finally, we introduce validity assumptions over execution sequences and sequences

of inputs from the external environment.

Definition 30 (Sequences assumption) The predicate precond-seq-isa states

that (i) an execution sequence seqisa is live with respect to the process and all de-

vices, and (ii) each element of external inputs eifis has the type suitable for the device

which is supposed to make a step at the corresponding position of seqisa:

precond-seq-isa seqisa eifis devs ≡ proc-live-input-seq-isa seqisa ∧
dev-live-input-seq-isa seqisa ∧ eifis-welltyped-isa seqisa devs eifis

Next, we present simulation theorems between VAMP assembly and VAMP ISA

for the system mode. They come in two flavors – without and with devices access.

Regardless of the case the target model of the simulation is VAMP ISA with devices.

The idea behind the theorems is as follows. We start with an assembly and an ISA

machine between which the appropriate abstraction relation holds. We execute an

assembly program on the assembly machine (with devices, in the second case) and find

the corresponding number of steps of the ISA machine with devices, such that the

abstraction relation is preserved.

VAMP assembly-ISA simulation without device access. The theorem about simula-

tion of an assembly machine without devices by an ISA machine with devices is used

to reason about assembly programs not accessing devices. Since the target architec-

ture has devices the simulation theorem has to conclude not only equivalence between

VAMP assembly and VAMP ISA configurations but also that devices perform steps

triggered only by the external environment, i.e., steps with the idle inputs from the pro-

cessor. Next, we define a predicate that compares two configurations of device systems

and determines whether the second is obtained from the first by taking only external

steps.

Definition 31 (Non-interference of devices and the processor) The pred-

icate untouched-devs checks whether the configuration of a device system devs ′ is

obtained from the configuration devs by executing independently all devices steps

contained in the prefix of an execution sequence seqisa of length N with the external

inputs eifis:

25

untouched-devs devs devs ′ eifis seqisa N ≡
∀ did . devs ′ did =

fst (d∗dev (map eifis (filter-devs-isa seqisa did N))

(replicate |filter-devs-isa seqisa did N | mifi-limit-idle) (devs did))

Theorem 4 (Assembly-ISA simulation without devices access) Let asm
be the configuration of an assembly machine which executes in n steps a program
that occupies prog-len words of memory starting at the address start-addr. Let
isa and devs be the configuration of an ISA machine with devices, let seqisa be
its execution sequence, and let eifis be the sequence of external inputs. Provided
that (i) the assembly machine configuration is valid and the sequences assumptions
hold, (ii) the preconditions for simulation are fulfilled, and (iii) the assembly-ISA
equivalence relation holds, there exists a resulting ISA configuration isa ′ with de-
vices devs ′ reached in N steps, such that the assembly-ISA equivalence relation is
preserved and the property of non-interference of devices and the processor holds:

[[valid-asm asm; precond-asm-isa asm start-addr prog-len n;
equiv-asm-isa-with-instr asm isa start-addr prog-len; precond-seq-isa seqisa eifis devs]]

=⇒ ∃N isa ′ devs ′.
fst (DN

isa seqisa eifis (|proc = isa, devs = devs|)) = (|proc = isa ′, devs = devs ′|) ∧
equiv-asm-isa-with-instr (dnasm asm) isa ′ start-addr prog-len ∧
untouched-devs devs devs ′ eifis seqisa N

VAMP assembly-ISA simulation with devices access. The theorem about simulation

of an assembly with devices by an ISA with devices is applied while reasoning about

correctness of assembly programs which communicate with devices. In case devices

are present on both levels the theorem becomes easier since there is a step-to-step

correspondence between the models. Recall that the function to-seqasm seqisa eifis
converts an execution sequence and a list of externals for the VAMP ISA with devices

model to an execution sequence for the VAMP assembly with devices model.

Theorem 5 (Assembly-ISA simulation with devices access) Let asmD be
the configuration of an assembly machine with devices which executes in N steps a
program that occupies prog-len words of memory starting at the address start-addr.
Let isaD be the configuration of an ISA machine with devices, let seqisa be its
execution sequence, and let eifis be the sequence of external inputs. Under the same
assumptions as in Theorem 4 the assembly-ISA abstraction relation with devices
holds at each step:

[[valid-asm asmD.proc;
precond-asm-isa-dev asmD start-addr prog-len (to-seqasm seqisa eifis) N ;
equiv-asm-isa-with-instr-dev asmD isaD start-addr prog-len;
precond-seq-isa seqisa eifis isaD.devs; N ′ ≤ N]]

=⇒ equiv-asm-isa-with-instr-dev (fst (DN ′
asm (to-seqasm seqisa eifis) asmD))

(fst (DN ′

isa seqisa eifis isaD)) start-addr prog-len

5 Compiling C0 to VAMP

Most software in Verisoft has been implemented and verified at the C0 level. Such C0

programs need to be translated (via assembly code) to machine code to be executable on

the target machine. We have developed and verified a simple non-optimizing compiler

from C0 to the assembly language of the VAMP processor [LP08].

26

asm0 . . . asms0 . . . asms1 asmsn

c0 c1 . . . cn

co
n
si
st

en
t

co
n
si
st

en
t

co
n
si
st

en
t

co
n
si
st

en
t

Fig. 3 Small-step compiler simulation theorem

Two versions of the compiler have been developed: a compiling specification in

the functional specification language of Isabelle/HOL and a compiler implementation
in C0. Accordingly, the compiler verification is split into two parts. First, we have

shown that for a given C0 program the compiler implementation generates the same

assembly code as specified by the compiling specification [Pet07]. Second, we have

proven a simulation theorem between the original C0 program executed by the C0

small-step semantics and the generated assembly code executed by the VAMP assembly

machine [Lei08].

To enable property transfer from the C0 to the VAMP layer, the simulation theorem

has to meet special requirements. In particular, the simulation theorem is formulated

based on small-step semantics to allow for reasoning about non-terminating and inter-

leaving programs. Additionally, the compiler correctness proof lifts resource restrictions

from the hardware layer to the more abstract C0 layer.

Here, we will briefly describe the induction step of the compiler simulation theorem.

Details that have been omitted here can be found in [Lei08].

5.1 Abstraction relation: C0 to VAMP assembly

In essence, the compiler simulation theorem (cf. Figure 3) shows that every step i of

the source program executed by the C0 small-step semantics is simulated by a certain

number si of steps of the VAMP assembly machine executing the compiled code.

Definition 32 (Abstraction relation) The abstraction relation consistent states

that a VAMP assembly configuration asm encodes a C0 configuration c via some

allocation function alloc which maps C0 g-variables to their allocated address in the

assembly machine. This relation is a conjunction of control, code, and data consistency

relations defined later:

consistent tt pt c alloc asm ≡ c-consistent tt pt c asm ∧ code-consistent tt pt c asm ∧
d-consistent tt pt c alloc asm

Definition 33 (Decomposition of a statement) With dse we obtain a list of

sub-statements of s by decomposing the outer layer of sequential composition (loop

bodies and if-then-else branches are not decomposed). Additionally, VxW = [s∈dxe . s
6= Skip] removes any top-level Skip statements from the statement list.

Definition 34 (Control consistency) Control consistency states that the pro-

gram counters of the VAMP correctly follow the control flow of the source program,

i.e., that they point to the code of the first statement in the current program rest and

27

that the return addresses stored in the run-time stack correspond with the structure

of the program rest (this is hidden in the predicate ra-consistent):

c-consistent tt pt c asm ≡
Vc.progW 6= [] −→ asm.dpc = the (code-base tt (gm-st c.mem) pt (hd Vc.progW)) ∧
asm.pcp = asm.dpc + 4 ∧ ra-consistent tt pt c asm

Definition 35 (Code consistency) Code consistency requires that the compiled

code of the C0 program is stored at address program-base of the VAMP machine. For

technical reasons, we also require that all bit patterns stored in the code region can be

decoded by the VAMP processor.

code-consistent tt pt c asm ≡
let code = codegen-program tt pt (gm-st c.mem)
in get-instr-list asm.mm program-base |code| = code ∧

(∀ x ∈set (asm.mm[program-base, |code|]). decodable x)

Definition 36 (Data consistency) Data consistency ensures that all reachable g-

variables of the C0 program, the heap, and the run-time stack are properly represented

in the assembly machine. It is formalized as a conjunction of several predicates.

d-consistent tt pt c alloc asm ≡ v-consistent tt c alloc asm ∧ p-consistent tt c alloc asm ∧
a-consistent tt pt c alloc ∧ fh-consistent tt pt c alloc asm ∧ r-consistent tt pt c alloc asm

The two main predicates v-consistent and p-consistent ensure that all reachable

g-variables of the C0 machine are properly represented in the assembly machine.

Definition 37 (Value consistency) Value consistency v-consistent requires for all

initialized reachable g-variables g of basic type that C0 and VAMP machine store the

same value.

v-consistent tt c alloc asm ≡
∀ g . g ∈ reachable-gvars tt c.mem ∧ elementary-gvar tt (symbols c.mem) g ∧

¬ pointer-gvar tt (symbols c.mem) g ∧ gvar-initialized c.mem g −→
values-match ((get-data tt c.mem g) 0) (asm.mm (fst (alloc g) div 4))

Definition 38 (Pointer consistency) Pointer consistency p-consistent requires

for all reachable pointer g-variables p which point to some g-variable g that the value

stored at the allocated address of p in the assembly machine is the allocated base

address of g . This defines a subgraph isomorphism between the reachable portions of

the heaps of the C0 machine and the assembly machine.

p-consistent tt c alloc asm ≡
∀ p. p ∈ reachable-gvars tt c.mem ∧ pointer-gvar tt (symbols c.mem) p ∧

gvar-initialized c.mem p −→
(case to-ptr ((get-data tt c.mem p) 0) of
ptr g ⇒ to-nat32 (asm.mm (fst (alloc p) div 4)) = fst (alloc g)
| Null ⇒ asm.mm (fst (alloc p) div 4) = 0)

The remaining predicates of data consistency check technical details. Allocation

consistency a-consistent ensures that the allocation function alloc is well defined (e.g.,

that the allocated memory regions of reachable g-variables do not overlap). Frame

header consistency fh-consistent ensures that the run-time stack is properly represented

in the assembly machine. Register consistency r-consistent checks the values of three

special registers which store the base address of the global memory frame, the base

address of the current stack frame, and the first unused heap address.

28

5.2 Simulation theorem: C0 to VAMP assembly

We slightly extend the requirements on valid C0 configurations from Section 3.3 for

the compiler simulation proof by strengthening the requirements regarding the relation

between the number of returns in the program rest and the recursion depth of the C0

configuration. For technical reasons we require that the recursion depth equals the

number of return statements plus one (this property is fulfilled automatically for valid

C0 programs which are started in an initial configuration).

The compiled code simulates the original C0 program only if no resource restrictions

of the target machine are violated. There are two kinds of resource restrictions.

The static resource restrictions require that the generated code fits into the memory

of the target machine. They are formalized via the set translatable-programs. Our

simple code generation algorithm further restricts the source program: the size of loop

bodies and the distance between function calls and the target function are limited by

the size of immediate constants in VAMP assembly instructions. The size of expressions

is bounded because intermediate results are not stored in memory but kept in registers.

Definition 39 (Valid C0 configurations) We combine the extended require-

ments in the following predicate.

valid-C0-conf tt pt xpt c ≡ c ∈ valid-C0SS tt pt validasm xpt ∧
nr-toplevel-returns dc.proge + 1 = recursion-depth c.mem ∧
(tt, pt, gm-st c.mem) ∈ translatable-programs

The dynamic resource restrictions require that the memory areas for stack and heap

do not overflow. In contrast to the static restrictions, the dynamic restrictions must be

checked for every step of the C0 small-step semantics. According to the memory layout

of the C0 compiler both stack and heap grow upwards from fixed start addresses. Thus,

we have to check that this start address plus the current size of stack or heap is not

larger than the heap start address or the maximum address, respectively.

Definition 40 (Sufficient memory) We formalize the dynamic resource restric-

tions in the following predicate.

sufficient-memory max-address tenv pt c ≡
abase-local-frame tenv pt (symbols c.mem) (recursion-depth c.mem) ≤ heap-base ∧
heap-base + asize-heap c.mem.hm.st < max-address

Additionally, this version of the C0 compiler does not deal with failing memory

allocation.8 The simulation proof assumes that allocation of new memory always suc-

ceeds, i.e., that the predicate enough-heap (cf. Section 3.3) never returns False when

allocation is being done.

allocation-succeeds tt enough-heap c ≡
∀ e sid tn. hd dc.proge = PAlloc e tn sid −→ enough-heap c.mem (the (map-of tt tn))

This requirement can be easily achieved by instantiating the predicate enough-heap
by enough-heap = (λm t. True), which we have done in the remaining sections. The

drawback of this solution is that we no longer obtain useful information about heap

consumption from the Hoare logic layer. Instead, this property has to be proven man-

ually via the above mentioned predicate sufficient-memory.

8 The compiler version described in [Lei08] does deal with failing allocation; see Chapter 11
of that work for a list of differences between both versions.

29

Definition 41 (Successful execution of assembly code) We introduce the

notation crange,arange `asm asm →n asm ′ which means that the VAMP assembly

machine successfully executes from configuration asm to asm ′ in n steps while re-

specting address range arange and code range crange; observe, that the latter forbids

self-modifying code. Additionally, it states that no exceptions have been generated and

that no illegal instruction has been executed. Observe, that these properties have to

be shown for all intermediate steps of the assembly machine. Formally, we define

crange,arange `asm asm →n asm ′ ≡ asm ′.pcp = asm ′.dpc + 4 ∧ dnasm asm = asm ′ ∧
valid-asm asm ′ ∧
(∀ n ′<n. ¬ mem-write-inside-range (dn

′
asm asm) crange ∧

mem-access-inside-range (dn
′

asm asm) arange ∧ inside-range crange (dn
′

asm asm).dpc ∧
¬ is-exception (dn

′
asm asm) ∧ legal-asm-instr (dn

′
asm asm) (current-instr (dn

′
asm asm)))

Successful execution of assembly code depends on two preconditions: the initial assem-

bly configuration asm needs to be valid, i.e., valid-asm asm, and the program counters

have to be aligned on word boundaries and must not start in a delay slot (i.e., we

require asm.pcp = asm.dpc + 4).

Using the predicates from the previous sections we can now easily formulate the

induction step lemma of the compiler simulation theorem. Observe, that we do not only

show that the abstraction relation is preserved but show additional properties which

are used for the CVM correctness proofs.

Theorem 6 (Compiler induction step) Assume the requirements from the
previous sections and additionally that the next step of the C0 small-step semantics
does not fail, that the program rest does not start with an inline assembly statement
(inline assembly code is handled separately [IT08, ST08a]), that the program rest
is not empty, that no stack or heap overflow occurs in the successor configuration
c ′, and that the maximum address is within the address space of the VAMP. Then
we show that there exists a step number n, a new allocation function alloc ′, and a
new assembly configuration asm ′ such that

1. the assembly machine advances in n steps from asm to asm ′ without generating
an interrupt,

2. the new assembly configuration asm ′ encodes the configuration c ′ via allocation
function alloc ′,

3. no special purpose registers have been changed,
4. the allocated addresses of heap variables of the old C0 configuration have not

been changed, and
5. newly allocated heap variables are (in the new assembly machine) allocated

directly behind the topmost address of the old heap memory.

[[valid-C0-conf tt pt xpt c; valid-asm asm; allocation-succeeds tt enough-heap c;
sufficient-memory max-address tt pt c; sufficient-memory max-address tt pt c ′;
consistent tt pt c alloc asm; d tt pt enough-heap c = bc ′c; Vc.progW 6= [];
¬ is-Asm (hd dc.proge); max-address ≤ 232]]

=⇒ ∃ n alloc ′ asm ′.
code-range tt (gm-st c.mem) pt,address-range max-address `asm asm →n asm ′ ∧
consistent tt pt c ′ alloc ′ asm ′ ∧ asm ′.sprs = asm.sprs ∧
(∀ g . valid-nameless-gvar tt (symbols c.mem) g −→ alloc ′ g = alloc g) ∧
(is-PAlloc (hd dc.proge) −→ fst (alloc ′ (gvar-hm |hm-st c.mem|)) = toph asm)

The proof is by case distinction over the first C0 statement in the program rest. For

data and code consistency it suffices to examine this statement and its compiled code

30

in isolation. For control consistency we have to show that the variable structure of the

program rest (which depends on previously executed statements) corresponds to the

fixed structure of control instructions in the compiled code. We prove this in a separate

lemma by induction on the nesting depth of control statements. For details see [Lei08].

5.3 Simulation of C0 by VAMP ISA

In this section we combine the compiler theorem with the VAMP simulation theorem.

Again, we only consider system mode executions.

Definition 42 (Valid system mode assembly configuration) An assembly

configuration is a valid system mode configuration if it is valid and both the mode and

the status register are zero:

valid-asm-system asm ≡ valid-asm asm ∧ asm.sprs[MODE] = 0 ∧ asm.sprs[SR] = 0

Definition 43 (Relation between C0 and VAMP ISA configurations) The

relation sim-C0-isa, which connects a C0 and a VAMP ISA configuration, holds if

there exists a valid system mode VAMP assembly machine asm that encodes the C0

configuration c via the allocation function alloc and is equivalent with the VAMP ISA

configuration isa, where the program range is computed from c.

sim-C0-isa tt pt c isa alloc ≡
∃ asm. valid-asm-system asm ∧ consistent tt pt c alloc asm ∧

equiv-asm-isa-with-instr asm isa program-base-word (codesize-program tt (gm-st c.mem) pt)

Theorem 7 (Simulation of C0 by VAMP ISA) Using the abstraction relation
sim-C0-isa we can combine Theorem 4 with an extended version of Theorem 6
which argues not about a single but n steps of the C0 step semantics starting in
configuration c.

[[valid-C0-conf tt pt xpt c; ∀ i<n. ¬ is-Asm (hd d(the (di tt pt enough-heap c)).proge);
Vc.progW 6= []; sim-C0-isa tt pt c isa alloc; dn tt pt enough-heap c = bc ′c;
∀ i<n. allocation-succeeds tt enough-heap (the (di tt pt enough-heap c)) ∧

sufficient-memory max-address tt pt (the (di tt pt enough-heap c));
sufficient-memory max-address tt pt c ′; max-address-precondition max-address;
∀ x ∈set (init-code tt (gm-st c.mem) pt). is-instr x ; precond-seq-isa seqisa eifis devs]]

=⇒ ∃N isa ′ devs ′ alloc ′.
fst (DN

isa seqisa eifis (|proc = isa, devs = devs|)) = (|proc = isa ′, devs = devs ′|) ∧
is-only-changed-mem isa.mm isa ′.mm
(program-base + 4 ∗ codesize-program tt (gm-st c.mem) pt) max-address ∧

isa-SPRs-equal isa.sprs isa ′.sprs ∧ c ′ ∈ valid-C0SS tt pt validasm xpt ∧
sim-C0-isa tt pt c ′ isa ′ alloc ′ ∧
(∀ g . valid-nameless-gvar tt (symbols c.mem) g −→ alloc ′ g = alloc g) ∧
untouched-devs devs devs ′ eifis seqisa N

6 CVM

Communicating virtual machines (CVM) is a computational model for the abstract ker-

nel, devices, and a bounded number of user processes [GHLP05,IT08]. All components

take turns in execution. The abstract kernel is modeled as C0 machine, the user pro-

cesses are modeled as assembly machines. CVM abstracts from a low-level microkernel,

31

which implements interrupt handling, kernel entry and exit, and a number of special

functions called CVM primitives [ST08a,ST08b]. CVM primitives provide mechanisms

for process management, interprocess and device communication. The abstract kernel

uses these primitives to implement a scheduler and kernel calls, allowing user processes

to interact with each other and with devices. The CVM marks the top-level model

described in this article. It is the basis for a microkernel and an operating system built

on top of it [DDB08,DDWS08,DDW09].

An important part of CVM is the implementation of memory virtualization, i.e.,

it ensures that each user process can operate on its own, isolated memory. This is

implemented via demand paging based on the VAMP’s address translation mechanism

and a swap disk. The page table, a data structure both accessed by the processor and

by software, maintains whether a page is in the swap or the main memory. Whenever

a user process accesses a page that is currently swapped out a page-fault interrupt is

triggered by the processor. In response, the page-fault handler is invoked, which copies

the requested page back to the main memory. To copy pages between the swap disk

and main memory the page-fault handler relies on a hard disk driver. Both the handler

and the driver are part of the CVM implementation.

In the remainder of this article we aim to establish the correctness of memory

virtualization. In this section we define the CVM abstraction relation with respect

to the VAMP ISA and state CVM’s correctness in terms of a simulation theorem.

One important case in the simulation is the correct virtualization of user steps. The

corresponding theorem is stated at the end of this section.

Simulation of user steps most importantly depends on the correctness of the page-

fault handler. In Section 7 we first present the top-level page-fault handler correctness

statement as it is applied in the user step simulation. This theorem is based on the func-

tional correctness of the paging algorithm, which is presented subsequently. Whereas

the CVM implementation is written in C0 with inline assembly and overall CVM cor-

rectness is stated at the level of the VAMP ISA, the page-fault handler is basically a

sequential C0 program without assembly parts. Thus, we can prove functional page-

fault handler correctness in the C0 Hoare logic and then transfer this result down to

the VAMP ISA, by utilizing the main theorems presented previously: property transfer

from the Hoare logic down to the C0 small-step semantics, compiler correctness, and

transfer from VAMP assembly with devices to VAMP ISA with devices.

In the Hoare logic, calls of the page-fault handler to the disk driver are represented

as XCalls operating on an extended state, which represents the contents of the swap

disk and user memory, i.e., the portion of the main memory reserved for user processes.

In Section 8 we prove that the assembly implementation of the driver calls adheres to

this abstraction. This is done by a simulation theorem between a C0 machine with

XCalls and its implementation in VAMP assembly.

6.1 CVM specification

A CVM configuration cvm is a record with the following components: the device con-

figurations cvm.devs, the interrupt mask cvm.up.statusreg for the devices, the user

process configurations cvm.up.userprocesses, modeled as a map from process IDs to

VAMP assembly configurations, the current process identifier cvm.up.currentp, which

is bpidc if process pid is running and ⊥ if the kernel is running, and the configuration

32

kernel init

abs kernel
stmts

primitives
execution

enable
interrupts

waiting for
interrupts

switch to user

user step

¬isPrimitive
¬isReturn

isPrimitive

isReturn
cup = 0

isReturn
cup 6= 0

¬JISR

JISR

¬JISR

JISR

reset

Fig. 4 CVM automaton

cvm.kernel of the abstract kernel. The abstract kernel is modeled by the C0 small-step

semantics. Its configuration includes the type table and the procedure table.

The program of the abstract kernel and the initial device configurations are param-

eters of the CVM model. In the following we denote them with Pk and devs.

Definition 44 (CVM initial configuration) Given the parameters Pk and devs,
an initial CVM configuration is constructed by the function init-cvm-sys Pk devs =

cvm as follows:

– The current process identifier cvm.up.currentp is ⊥ since the computation starts

with a kernel step. The status register cvm.up.statusreg masks all interrupts except

for the illegal, misalignment, page-fault, trap, and timer interrupts.

– Device configurations cvm.devs, except for the hard disk, are taken from devs. As

the CVM abstracts from the page-fault handler and the disk driver, the hard disk

used for swapping is no longer visible (i.e., set to the idle device idle-dev).

– The program (i.e., type table, procedure table, and global symbol table) of the

abstract kernel cvm.kernel is set to Pk. The memory of the abstract kernel is

initialized and its program rest is set to be a call to the abstract kernel’s dispatcher,

with parameters indicating a ‘system reset’.

– For each user process cvm.up.userprocesses i the program counters and general-

purpose registers are set to zero. Their PTL registers are set to −1, which indicates

zero size of the virtual memory. Thus, the main memory can be set arbitrarily. The

same holds for all special purpose registers other than PTL.9

Definition 45 (CVM computation) The transition Dcvm cvm devin takes a

CVM configuration cvm and the external input devin and computes the next state.

In case of faults (caused by the abstract kernel), the computation stops with the er-

ror configuration ⊥. Otherwise depending on the value of devin and cvm.up.currentp,

either the kernel, one user process, or one device progresses into the new configura-

tion bcvm ′c (for kernel and user processes cf. Figure 4). In the last case the CVM

computation additionally produces a device output devout.

Analogously, the transition DN
cvm seqasm cvm takes a CVM configuration cvm, the

external input sequence seqasm and a step number N and computes the state reached

9 A user process cannot access special-purpose registers; we use PTL however to encode the
processes’ memory size, which can be changed by the abstract kernel with CVM primitives.

33

cvm = (|kernel, devs, (|statusreg, currentp, userprocesses|)|)

isaD = (|proc, devs|)

concrete
kernel

B

cu
p-

re
la
ti
on

S
R
-rela

tio
n

dev-sim

(weak-)kernel-rel

(weak-)kernel-relation

(weak-) sim-C0-isa

Fig. 5 CVM abstraction relation

after taking N steps. Additionally, an external output list is generated. If any of the

steps leads to a fault, the whole computation returns with ⊥.

6.2 Linking the kernel

The CVM implementation Pcvm, which implements the functions described earlier, is

written in C0 with inline assembly. To obtain a running implementation for a given

abstract kernel Pk, we link the abstract kernel and the CVM implementation, and

compile them for the target machine [IT08], which results in the concrete kernel.
We merge type and global symbol tables, and replace external function calls to CVM

primitives by ordinary calls. We refer to the resulting type, procedure, and (global)

symbol table of the concrete kernel by (linked-tt Pk, linked-pt Pk, linked-st Pk).

6.3 Abstraction relation

The abstraction relation maps a CVM configuration to a configuration of VAMP ISA

with devices. It is a conjunction of statements for all the components of CVM configu-

rations (cf. Figure 5). We start with the relations SR-relation cvm.up.statusreg isaD for

the interrupt mask (stored in the status register) and cup-relation (the cvm.up.currentp)

isaD for the current process identifier. These relations compare the values of the kernel

variables SR and cup obtained from ISA memory with the status register and current

process identifier of the CVM configuration. The relation dev-sim cvm.devs isaD re-

quires that device states in the CVM and VAMP ISA configurations are equal except

for the swap disk, which is an idle device in CVM.

Relation for user processes. The relation B cvm.up.userprocesses isaD states whether

user process configurations are represented in the configuration of an ISA machine with

devices. We first define the function get-p-vm to ‘extract’ user process configurations

from ISA configurations. Second, we define a relation equiv-up which maintains equiv-

alence between the extracted and the given user process configuration.

The function get-p-vm isaD pid is defined separately for registers and memory of

user process pid. If process pid is currently running on the ISA machine, its regis-

ters can directly be taken from the hardware processor isaD.proc. Otherwise, another

process or the abstract kernel is currently running and the registers of process pid
are held in element pid of an array of process control blocks (PCBs). The memory

of user process pid is stored in the main memory isaD.proc.mm and the swap disk

34

in isaD.devs. For each memory address, the decision where the data can be found is

taken according to the valid bit of the respective page-table entry. So, (get-p-vm isaD

pid).mm = get-mm isaD pid, where get-mm is defined as follows:

get-mm isaD pid ≡
λad . if v (pte isaD pid (px (4 ∗ ad))) = 1

then get-int-var-from-mem isaD (pma isaD pid (4 ∗ ad))
else get-swap-int isaD (sma isaD pid (4 ∗ ad))

The equivalence relation equiv-up compares two user processes asm and asm ′ with re-

spect to a given (virtual) memory size vm-size. The relation is not an equality: memory

contents have to be equal only up to address vm-size, general-purpose register 0 is not

compared (it is always tied to 0 for the VAMP), and only certain special-purpose

registers must be equal while others are inaccessible to users:

equiv-up asm1 asm2 vm-size ≡ asm1.dpc = asm2.dpc ∧ asm1.pcp = asm2.pcp ∧
tl asm1.gprs = tl asm2.gprs ∧ (∀ r ∈set USER-SPRS. asm1.sprs[r] = asm2.sprs[r]) ∧
(∀ ad<vm-size div 4. asm1.mm ad = asm2.mm ad)

The relation for a single user process is then defined as

Bp cvm.up.userprocesses isaD pid =

equiv-up (get-p-vm isaD pid) (cvm.up.userprocesses pid) ((ptl isaD pid + 1) ∗ 212)

where ptl is used to compute the virtual memory size. The conjunction of this relation

over all processes defines the user process relation:

B cvm.up.userprocesses isaD =
∀ pid . 0 < pid ∧ pid < PID-MAX −→ Bp cvm.up.userprocesses isaD pid

Relation for the kernel. The abstraction relation for the abstract kernel component

cvm.kernel of CVM configurations is the most involved one. Since only after linking the

abstract kernel with the CVM implementation it can run on the target architecture

we relate it to the ISA machine indirectly through a concrete kernel ck. Concrete

and abstract kernels are connected by the relations kernel-relation, which has to hold

during kernel executions, or weak-kernel-relation, which has to hold during user steps.

Configurations of the concrete kernel ck can be mapped to the architecture by the C0-

ISA abstraction relation defined in Section 5.3. Using this relation and some additional

invariants to extend the above kernel relations we obtain the combined kernel and weak

kernel relations, kernel-rel Pk and weak-kernel-rel Pk. Before stating all these relations

let us first give an auxiliary definition.

Definition 46 (Content-enclosing relation) For two C0 memory contents ct1

and ct2 the predicate shifted-content ct1 ct2 lo ho offset len states that the content

ct1 of length len is enclosed within the content ct2 starting from position offset. Local

variables are shifted by lo while heap variables are shifted by ho.

Definition 47 (Kernel relation) The relation kernel-relation cvm.kernel Pk ck is

a conjunction of the following facts:

– type-, procedure- and global symbol table of cvm.kernel are equal to those of Pk,

– the relation kernel-relation-mem cvm.kernel.conf.mem ck.mem which states that

the content-enclosing relation holds for the global and heap memories of kernels

while the local stack of the abstract kernel is shifted by one (cf. Figure 6),

35

global
memory

global
memory

local stack

local stack

heap
memory

heap
memory

program
rest

program
rest

Abstract Kernel

Concrete Kernel

frame to call kernel dispatcher()

init() frame dispatcher() frame concr-kernel-inv

kernel-relation-mem

kernel-relation-prog

Fig. 6 Relating memory and program rest of abstract and concrete kernel

– the kernel program rest relation kernel-relation-prog cvm.kernel.conf Pk ck.mem
ck.prog which states that both kernels are calling the kernel dispatcher and this

call statement in the concrete kernel is obtained by renumbering the statement in

the abstract kernel (cf. Figure 6), and

– whenever the abstract kernel terminates its result is equal to the value of the

variable cup from the concrete kernel.

Definition 48 (Combined kernel relation) The combined kernel relation ties

together the abstract kernel cvm.kernel and the underlying ISA machine isa.

kernel-rel Pk cvm.kernel isa alloc =
∃ pfhss ck. kernel-sim-C0-isa Pk pfhss ck isa alloc ∧ concr-kernel-inv Pk pfhss ck ∧

kernel-relation cvm.kernel Pk ck

The relation kernel-sim-C0-isa Pk pfhss ck isa alloc is a conjunction of the C0-ISA

abstraction relation, the C0 validity predicate, and properties about the structure of

the global and heap memories. The relation concr-kernel-inv Pk pfhss ck requires that

active and free lists and the PCBs in the page-fault handler configuration pfhss at the

small-step layer are well-formed and their values correspond to those in ck.

The combined kernel relation has to hold after the execution of every statement of

the kernel. However, when the kernel returns control to a user process and until it is

re-entered (starting execution again with its main function) this relation is too strong.

Instead, we define a weak variant of the kernel relation, which merely requires that the

kernel remains ‘intact’ after user execution, most importantly that its heap and global

memory contents remain unchanged. Clearly, the concrete kernel can achieve this by

appropriately setting up and restricting address translations for users. In the following

definition, gmct resp. hmct denote global and heap memory contents of the concrete

kernel ck and hmst denotes its heap symbol table.

Definition 49 (Weak kernel relation) The relation weak-kernel-relation requires

(i) that type table, procedure table, and global symbol table of cvm.kernel equal to

those of Pk and (ii) that the weak kernel memory relation weak-kernel-relation-mem
cvm.kernel.conf.mem gmct hmct hmst holds, which comprises only content-enclosing

relations for heap and globals since the stack is reinitialized at the next kernel entry.

36

As with the kernel relation, we add a C0-ISA abstraction relation (weak, in this

case) in order to obtain the combined weak kernel relation.

Definition 50 (Combined weak kernel relation) The combined weak kernel

relation maps the abstract kernel cvm.kernel and the underlying ISA machine isa:

weak-kernel-rel Pk cvm.kernel isa alloc cp =
∃ pfhss gmct hmct hmst. weak-sim-C0-isa Pk pfhss gmct hmct hmst isa alloc ∧

weak-kernel-relation cvm.kernel Pk gmct hmct hmst ∧
fst (alloc (gvar-hm 0)) = heap-base ∧
(case cp of ⊥ ⇒ True | bpidc ⇒ 0 ≤ pfhss.abs-pcbs-ss[pid].ptl)

Besides the weak C0-ISA abstraction relation (explained below) and the weak kernel

relation the above definition states that the first variable on the heap resides at the

address heap-base and if the current process identifier cp corresponds to a user process,

then this process has some allocated memory.

Definition 51 (Weak C0-ISA abstraction relation) The abstraction relation

weak-sim-C0-isa Pk pfhss gmcr hmct hmst isa alloc states that there exists an inter-

mediate assembly configuration such that (i) it is valid and equivalent to isa, (ii) those

parts of the C0 validity predicate hold that speak about global and heap memories,

(iii) the compiler consistency relation holds except for control and register consistency.

Putting abstraction relations together. Device, user, and interrupt mask relations

hold in every CVM state. Otherwise we distinguish three cases. (i) If cvm.up.currentp
= ⊥ ∧ is-wait-state cvm.kernel the kernel is waiting for an interrupt. In this case the

combined weak kernel relation holds and the current process value is equal to 0. (ii) If

cvm.up.currentp = ⊥ ∧ ¬ is-wait-state cvm.kernel the kernel is going to make an

ordinary step and the full combined kernel relation holds. Additionally, an invariant

over processor registers is stated. (iii) If cvm.up.currentp = bpidc user process pid is

going to make a step. The combined weak kernel relation holds and the value of the

current process variable is related to pid. Additionally, the user invariants hold.

CVMrelation cvm Pk isaD alloc ≡ dev-sim cvm.devs isaD ∧ B cvm.up.userprocesses isaD ∧
SR-relation cvm.up.statusreg isaD ∧
(case cvm.up.currentp of
⊥ ⇒ if is-wait-state cvm.kernel

then weak-kernel-rel Pk cvm.kernel isaD.proc alloc ⊥ ∧ cup-relation 0 isaD ∧
weak-reg-invariant isaD.proc

else kernel-rel Pk cvm.kernel isaD.proc alloc ∧ reg-invariant isaD.proc
| bpidc ⇒ weak-kernel-rel Pk cvm.kernel isaD.proc alloc bpidc ∧ cup-relation pid isaD ∧

user-invariant isaD.proc pid)

6.4 Correctness theorem

CVM top-level correctness is stated as a simulation theorem between VAMP ISA with

devices and the CVM model. We start from an initial ISA configuration (|proc = isa,
devs = devs|), which is connected to a valid swap disk of sufficient size and has the

compiled linked kernel loaded to main memory. The ISA computation is parameter-

ized over an execution sequence seqisa. As a precondition on this sequence, denoted

precondition-seq-isa-hd seqisa, we assume that external inputs are well-typed, the pro-

cessor is scheduled infinitely often, and the hard disk transfers sectors in finite time

37

(this is formalized by an external trigger input to the hard disk signaling progress). Fur-

thermore, we have to assume certain properties of the abstract kernel abs-kernel-props
Pk, including preconditions for linking and bounds on the stack size. Based on these

assumption we should be able to simulate a CVM computation with an initial state

init-cvm-sys Pk devs with respect to some execution sequence seqasm (in which devices

and the processor always make progress): for all natural numbers n counting non-device

steps of the CVM model that reach a state in which the abstract kernel has not caused

a fault or heap overflow, we must prove the existence of a step number N ′ for the ISA

model in which, most prominently, the relation CVMrelation holds. Formally:

[[abs-kernel-props Pk; is-init-isa-config Pk isa; invariant-hd devs;
kernel-size + max-swap-size ≤ hd-size devs DID-hd; precondition-seq-isa-hd seqisa eifis devs]]

=⇒ ∃ seqasm. precondition-seq-cvm seqasm (init-dev devs) ∧
(∀ n. ∃N. count-proc-steps seqasm N = n ∧

(∀ cvm ′ eifos ′.

DN
cvm seqasm (init-cvm-sys Pk devs) = b(cvm ′, eifos ′)c ∧

asize-heap cvm ′.kernel.conf.mem.hm.st ≤ abstract-heap-max-size −→
(∃N ′ alloc ′.

CVMrelation cvm ′
Pk (fst (DN ′

isa seqisa eifis (|proc = isa, devs = devs|))) alloc ′)))

The proof of this theorem can be broken down according to the various types of

steps that can be made in the CVM model. We focus here on the correct simulation of

user processes in the CVM model. The structure of the correctness statement for such

steps is similar to the previously stated top-level correctness property. Given that we

start computation in a machine configuration (|proc = isa, devs = devs|) related to a

CVM configuration cvm and an abstract kernel Pk via an allocation function alloc, we

have to show that we can reach a machine configuration (|proc = isa ′, devs = devs ′|)
in which the user step that the CVM model makes has been simulated.

Theorem 8 (CVM correctness: user step)

[[abs-kernel-properties Pk; invariant-hd devs; precondition-seq-isa-hd seqisa eifis devs;
kernel-size + max-swap-size ≤ hd-size devs DID-hd; is-dlx-conft isa; code-invariant-isa Pk isa;
zfp-condition isa; cvm-stack-and-heap-bound cvm; |(cvm.up.userprocesses pid).sprs| = 32;
CVMrelation cvm Pk (|proc = isa, devs = devs|) alloc; cvm.up.currentp = bpidc]]

=⇒ ∃ seqasm. precondition-seq-cvm seqasm (init-dev devs) ∧
(∃N. count-proc-steps seqasm N = 1 ∧

(∀ cvm ′.

(∃ eifos ′. DN
cvm seqasm cvm = b(cvm ′, eifos ′)c) −→

asize-heap cvm ′.kernel.conf.mem.hm.st ≤ abstract-heap-max-size −→
(∃N ′ isa ′ devs ′.

fst (DN ′

isa seqisa eifis (|proc = isa, devs = devs|)) = (|proc = isa ′, devs = devs ′|) ∧
(∀DID. dconfs-single-same-type (devs DID) (devs ′ DID)) ∧ invariant-hd devs ′ ∧
kernel-size + max-swap-size ≤ hd-size devs ′ DID-hd ∧ is-dlx-conft isa ′ ∧
code-invariant-isa Pk isa ′ ∧ zfp-condition isa ′ ∧
(∃ alloc ′. CVMrelation cvm ′

Pk (|proc = isa ′, devs = devs ′|) alloc ′))))

7 Page-fault handler

Page-faults occurring during a user step are treated by a page-fault handler, a routine

which translates addresses and loads missing pages from the hard disk into the physical

memory. In this section we report on the verification of the function pfh-touch-addr
[ASS08]. This function is called in two situations: when page-fault exceptions occur

and when the kernel executes CVM primitives that access user memory. In the second

38

case the function simulates address translation for CVM, which runs untranslated,

and makes sure that the corresponding memory page is swapped in. In this article we

concentrate on the first case and omit the remaining details.

7.1 Design and implementation

Our page-fault handler implementation [Con06] maintains several data structures in

physical memory to manage physical and swap memories, support virtual memory

de- and allocation, and implement a page-replacement strategy. These data structures

comprise: (i) the process control blocks (PCBs), described in Section 6.3, (ii) page and

big-page tables used for translations of a virtual address into a physical or a swap ad-

dress, and (iii) active and free lists that manage allocated and free user memory pages.

The PCBs are shared between the page-fault handler and the CVM implementation.

Page tables are also accessed by the VAMP hardware; therefore, the page table origin

address has to match the allocated base address of the C0 variables representing the

page table. All other data structures are exclusively accessed by the page-fault handler.

At the software level we distinguish the following page-faults: (i) an invalid access
page-fault occurs on an access to a page not present in physical memory and (ii) a

zero-protection page-fault occurs on a write access to a freshly allocated page.

When a memory page is allocated for a user process it must be filled with zeros. This

is done lazily by our implementation. During allocation, all freshly allocated pages are

mapped read-only to a special zero-filled page residing at page address ZFP. Reading

from that page returns zero data. At a write attempt a zero-protection page-fault is

raised and only then a new page is allocated and cleared. Thus, the original allocation

operation leaves the active and free lists unchanged, possibly modifying the PCBs

and the page-table space in case an adjustment of origins is needed. When freeing

memory, the descriptors of the released pages are moved back to the free list, and the

corresponding entries in the page tables are invalidated.

On a page-fault the handler behaves as follows. If there is an unused user page in

physical memory (i.e., the free list is not empty), it can be mapped in for the page-

faulting process. If not, a page from an active list is evicted. The selected page is then

either filled with data loaded from the swap disk or with zeros, depending on the kind

of page-fault. The page table entry of an evicted page is invalidated while the valid bit

of a loaded page is set. We use the FIFO-eviction strategy, which guarantees that the

page swapped in during the previous call to the handler will not be swapped out during

the current call. This property is crucial for liveness of user instruction execution since

a single instruction can cause up to two page-faults on the physical machine – one

during the fetch phase, the other during a load/store operation.

7.2 Top-level correctness

Our notion of the page-fault handler top-level correctness is motivated by the CVM

correctness theorem. Besides guaranteeing functional correctness the top-level theorem

of the page-fault handler must ensure preservation of the CVM abstraction relation

for user processes B and other invariants. The main point of the functional correctness

statement is absence of page-faults after a call to the handler.

39

Theorem 9 (Page-fault handler top-level correctness)

[[hd dc.proge =
SCall res pfh-touch-addr
[VarAcc pid-vn, VarAcc addr-vn, Lit (unsigned MM-SWAP-IN), Lit (unsigned cnt)] sid;

intention = MM-SWAP-IN; toplm-conditions Pk c res addr-vn va pid-vn pid;
pfh-touch-addr-PREss (linked-tt Pk) pfhss abs-cnt pid va MM-SWAP-IN cnt c.mem.gm.ct
c.mem.gm.st c.mem.hm.ct c.mem.hm.st;

abs-kernel-props Pk; stack-and-heap-bound c; precondition-seq-isa-hd seqisa eifis devs;
invariant-hd devs; kernel-size + max-swap-size ≤ hd-size devs DID-hd; zfp-condition isa;
code-and-sprs-invariant-isa Pk isa; B up (|proc = isa, devs = devs|);
kernel-sim-C0-isa ′ Pk c isa alloc]]

=⇒ ∃N isa ′ devs ′.
fst (DN

isa seqisa eifis (|proc = isa, devs = devs|)) = (|proc = isa ′, devs = devs ′|) ∧
non-interference-hd-isa devs devs ′ seqisa eifis N ∧ invariant-hd devs ′ ∧
kernel-size + max-swap-size ≤ hd-size devs ′ DID-hd ∧ zfp-condition isa ′ ∧
code-and-sprs-invariant-isa Pk isa ′ ∧ B up (|proc = isa ′, devs = devs ′|) ∧
(∃ c ′ alloc ′. kernel-sim-C0-isa ′ Pk c ′ isa ′ alloc ′ ∧ mem-structure c c ′ Pk res ∧

c ′.prog = remove-first-stmt c.prog ∧
lc-var-val (linked-tt Pk) c ′.mem res =
unsigned (pfh-touch-addr-result-ss pfhss abs-cnt pid va MM-SWAP-IN) ∧
pfh-touch-addr-POSTss (linked-tt Pk) pfhss abs-cnt pid va MM-SWAP-IN c ′.mem.gm.ct
c ′.mem.gm.st c ′.mem.hm.ct c ′.mem.hm.st)

In the following we explain the assumptions and conclusions. The first condition of

the theorem assumes the head of the kernel’s program rest to be an invocation of the

page-fault handler. The call takes four parameters. The first two are the PID of the

process and the address of the page-fault. The third is the intention of the call. When

page-faults are handled, it is set to MM-SWAP-IN. In this case, the fourth parameter

is ignored; we do not describe other modes of operation here. The context of the call

(the top local memory frame of the kernel) must adhere to certain validity properties,

e.g., type constraints for the parameters. Those properties are grouped in the predicate

toplm-conditions. The functional preconditions (e.g., restrictions on parameter values)

of the handler call are collected in the predicate pfh-touch-addr-PREss.

Moreover, the abstract kernel must satisfy static validity properties described in

the CVM predicate abs-kernel-props. The next assumption ensures that the stack and

heap size of the kernel machine are bounded, and thus, do not overlap with the memory

space of user processes:

stack-and-heap-bound c ≡
asize-memlist (map st (map fst c.mem.lm)) frame-header-size ≤ MAX-STACK-PFH ∧
asize-heap c.mem.hm.st < MAX-HEAP-PFH

When proving correctness in the VAMP ISA with devices model, we do not have

to consider all possible computations given by the execution sequences. Rather, it

is valid (by hardware construction) to restrict ourselves only to fair sequences, i.e.,

sequences in which the processor and the devices are live. These conditions are defined

in precondition-seq-isa-hd.

The remaining assumptions are invariants and must also hold after termination of

the page-fault handler. The invariant invariant-hd states that the swap disk is valid

and of sufficient size. The invariant zfp-condition states that the zero-filled page is

placed appropriately in the ISA memory. The invariant code-and-sprs-invariant-isa
states that the memory of the ISA machine contains the kernel code, system mode is

enabled, and all external interrupts are disabled. The CVM abstraction relation B is

another invariant of the page-fault handler. Finally, the invariant kernel-sim-C0-isa ′

requires that the VAMP ISA machine implements the concrete kernel.

40

driver XCall

IS
A

-a
sm

si
m

C
0

se
m

a
n
ti
cs

st
a
ck

d
ri

v
er

co
rr

ec
tn

es
s

abstraction mapping

compiler
correctness

reorder

abstract PFH

Hoare logic

C0 extended

C0 small-step

VAMP Assembly
with devices

VAMP ISA
with devices

CVM
abstract kernel step

Fig. 7 Putting It All Together – Correctness of the Page-Fault Handler

If all assumptions hold, the theorem claims the existence of a step number N,

a corresponding VAMP ISA with devices computation (|proc = isa ′, devs = devs ′|)
and a matching new kernel state c ′, such that the page-fault handler function has

returned correctly, the result is written to the respective variable, and the corresponding

functional post condition is fulfilled. Moreover, the memory structure of the kernel has

been preserved, i.e., only a restricted set of global and heap variables have been altered

by the page-fault handler. This is expressed by the predicate mem-structure. For all

devices other than the hard disk, we only claim that they have not been influenced by

the page-fault handler execution. This notion of non-interference is expressed in the

property below, where a transition for an arbitrary device is denoted by the function

d
∗
dev and the function filter-devs-isa filters out all device steps, which are distinct from

the one given:

non-interference-hd-isa devs devs ′ seqisa eifis N ≡
∀ did . did 6= DID-hd −→

devs ′ did =
fst (d∗dev (map eifis (filter-devs-isa seqisa did N))

(replicate |filter-devs-isa seqisa did N | mifi-limit-idle) (devs did))

Finally, all invariants described above also occur in the conclusion.

7.3 Proof approach

Page-fault handler correctness is ultimately expressed at the level of VAMP ISA with

devices (with abstractions provided in the C0 small-step semantics). The page-fault

handler implementation consists of C0 and inline assembly portions (e.g., the driver).

Thus, it has to be verified with respect to many different semantical layers, forcing us

to switch between different verification methods.

41

The complexity of the proof boils down to obtain the functional postcondition of

the page-fault handler at the level of VAMP ISA with devices. Most of the conclusions

of the page-fault handler top-level theorem follow from the handler’s functional cor-

rectness statement pfh-touch-addr-POSTss which expresses the postcondition of the

page-fault handler in terms of the C0 small-step semantics. However, some essential

CVM invariants like the relation B are formulated directly in terms of the VAMP ISA.

By means of the C0-ISA abstraction relation (cf. Section 5.3) we obtain the values of

corresponding memory cells of the underlying ISA machine to infer the conclusions

formulated at the ISA level.

The C0 language stack with its extension to XCalls is used to separate verification

goals and to apply on each level the adequate technique (cf. Section 3). The overall

approach is sketched in Figure 7. To reason on the effects of inline assembly portions in

C0, we apply the previously developed concept of XCalls. Recall that each level in the

C0 language stack is parametrized over an extended state and an extended semantics.

For the verification of the page-fault handler code these parameters are instantiated

as follows: First, the extended state is defined, which abstracts from the hard disk and

the memory regions not covered by the C0 machine of the kernel. Second, the effect

of each inline assembly portion (i.e., for the read and write functions of the hard disk

driver) is specified by a separate XCall. Note that both components of the extension

are defined almost equally at all levels of the C0 language stack.

Henceforth, we can verify the page-fault handler code solely in extended C0, without

resorting to assembly semantics as follows. At the top we introduce a page-fault handler

automaton, a HOL abstraction of the handler’s data structures. The automaton is

used to specify the desired behavior of the handler and to describe necessary validity

requirements to it. The automaton’s state is mapped to the states of each level of

the C0 semantics stack: Simpl, C0 big-step and small-step semantics. By proving in

Hoare logic that executing the page-fault handler maintains the abstraction relation

between the PFH automaton and the Simpl state, we obtain the desired properties at

the level of Simpl. Our next goal is to transfer this correctness result down to the level

of ISA exploiting (i) the transfer theorem between Simpl and extended C0 big-step

semantics (cf. Section 3.4.1), (ii) the transfer theorem between extended C0 big-step

semantics and extended C0 small-step semantics (cf. Section 3.4.2), (iii) the hard disk

driver correctness theorem (cf. Section 8), which finally discharges the implementation

correctness of the XCalls, and (iv) the VAMP assembly-ISA simulation theorem with

device access transfer theorem (cf. Section 4.4). See Section 9.1 for a discussion of how

much effort is involved in this process. However, it is quite inconvenient to apply these

four theorems directly in the proof of the top-level correctness theorem. Therefore, a

number of intermediate theorems were introduced. They state correctness of the page-

fault handler at different semantical levels, namely the C0 big-step semantics, the C0

small-step semantics, and the ISA. In the following we show in more details how we

establish the page-fault handler’s functional correctness at the Hoare logic level.

Automaton and extended state. Functional correctness of the page-fault handler is

specified over a page-fault handler automaton and an extended state modeling the

physical memory and the swap disk of the machine which runs the handler. The au-

tomaton is defined by the record pfh and the list of records pcbs. The former abstracts

data structures from the handler’s implementation and has the following fields:

42

pfh.act the active list of page descriptors (defined below) associated

with user memory pages that store a virtual page

pfh.free the free list of page descriptors of unused physical pages

pfh.bpfree the stack of free big-page indices, a list of naturals

pfh.pt the page-table space used for translating virtual into physical

addresses, a two-dimensional list of naturals

pfh.bpt the big-page table space used for translating virtual into swap

addresses, a list of naturals

A page descriptor pd is a record which holds information about one user page and

has the following components:

pd.pid the process identifier associated with the physical page

pd.vpx the index of the virtual page corresponding to the physical one

pd.ppx the index of the user page in the physical memory

A single element pcb of the list pcbs is a record collecting those PCB fields that

are relevant for page-fault handling:

pcb.pto page-table origin pcb.bpto big-page table origin

pcb.ptl page-table length pcb.bptl big-page table length

The extended state xpfh of the page-fault handler specification is an abstraction of

the non-system part of the physical memory of the machine running the handler and

the hard disk of this machine. The state is used to specify the effects of read and write

operations to / from the hard disk invoked by the handler (cf. Section 8). It has the

following components:

xpfh.mem user part of the physical memory not reachable by C0

xpfh.swap content of the hard disk excluding the boot region

Both components are two-dimensional lists of natural numbers with dimensions

meaning a page content and a page index. We justify the correctness of the mapping of

the extended state to the physical memory and the hard disk later (cf. Theorem 11).

The handler must guarantee that after a call to it the page associated with a page-

faulting virtual address va of an interrupted user process pid will reside in the physical

memory. The page-table entry for a virtual page index vpx computed from the virtual

address by means of px va ≡ va div 212 is defined as pte-pfh pid vpx pcbs pt ≡
pt[pto-pfh pid pcbs + vpx div 1024][vpx ∧u 1023]. The function pto-pfh pid pcbs
computes the origin of the process pid in the page-table space respecting an offset of

the latter in the memory. We extract the valid and protected bits from a page-table

entry pte by v pte and p pte. While on, these bits denote that the page px pte resides

in the physical memory or is read-only, respectively. The handler recognizes a page-

fault at a virtual address va of a process pid if page-fault pid va intention pcbs pt
≡ let pte = pte-pfh pid (px va) pcbs pt in ¬ v pte ∨ intention 6= MM-READ
∧ p pte. The disjuncts denote the invalid access and the zero-protection page-faults,

respectively. Since the handler preserves an invariant that all entries pointing to the

zero-filled page are protected, the second disjunct does not reference ZFP.

43

The function abs-pfh-after-handling pfh pid va pcbs specifies the paging algorithm

implemented by the handler (cf. Section 7.1). It is invoked on an abstract page-fault

handler configuration pfh with page-fault pid va intention pcbs pfh.pt and returns

a non-page-faulting configuration. The update of the extended state, which reflect

the page transfers between physical memory and the hard disk, is formalized by the

predicate x-after-handling xpfh xpfh
′ intention pid (px va) pfh pcbs which relates

initial xpfh and resulting xpfh
′ configurations of the extended state. The configuration

xpfh
′ is obtained by applying the functions readPage and writePage at appropriate

page addresses. These functions specify the semantics of the hard disk driver and are

described in Section 8.

Validity. We demand various properties to hold over the page-fault handler abstrac-

tion. These properties reflect the functional correctness and are necessary for the proof

of the relation B. They are established for the first time after the execution of the initial-

ization code and are preserved under calls to the handler. The predicate valid-pfh-pcbs
pfh pcbs claims, among others, the following:

– All virtual addresses are translated into physical ones outside the kernel code range,

which is the case if all elements of the page-table space point outside the kernel:

valid-ppx-ptspace pfh ≡
∀ i<|pfh.pt|.
∀ j<|pfh.pt[i]|.

v pfh.pt[i][j] ∧ px pfh.pt[i][j] 6= ZFP −→ KERNEL-PGS ≤ pfh.pt[i][j] div 212 ∧
pfh.pt[i][j] div 212 < TOTAL-PGS

– Page tables (of different user processes) do not overlap:

pt-not-overlap pcbs ≡
∀ j<|pcbs|. ∀ i<j . 0 < i −→ pto-pfh i pcbs + ptl-pfh i pcbs < pto-pfh j pcbs

– Page-table origins of user processes are monotonic:

pto-mono pcbs ≡ ∀ j<|pcbs|. ∀ i<j . 0 < i −→ pcbs[i].pto < pcbs[j].pto

– The active list describes only valid pages:

valid-bit-active pfh pcbs ≡ ∀ i<|pfh.act|. v (pte-pfh pfh.act[i].pid pfh.act[i].vpx pcbs pfh.pt)

– All the valid pages are described by the active list:

active-describes-valid-pte pfh pcbs ≡
∀ pid vpx .

1 ≤ pid ∧ pid < PID-MAX ∧ vpx < to-nat32 (pcbs[pid].ptl + 1) ∧
v (pte-pfh pid vpx pcbs pfh.pt) ∧ px (pte-pfh pid vpx pcbs pfh.pt) 6= ZFP −→
(∃ i<|pfh.act|. pfh.act[i].ppx = px (pte-pfh pid vpx pcbs pfh.pt) ∧

pfh.act[i].pid = pid ∧ pfh.act[i].vpx = vpx)

– No virtual pages of a given process might be stored by two or more active pages:

distinct-pid-vpx-active pfh ≡ distinct (map (λi . (i .pid, i .vpx)) pfh.act)

– All physical page indices in active and free lists are distinct:

distinct-ppx-active-free pfh ≡ distinct (map ppx (pfh.act @ pfh.free))

Additionally, a number of size constraints are imposed on extended states:

valid-x xpfh ≡ |xpfh.mem| = USER-PGS + 1 ∧ |xpfh.swap| = TOTAL-BIG-PGS ∗ 210 ∧
(∀ i<|xpfh.mem|. |xpfh.mem[i]| = 1024) ∧ (∀ i<|xpfh.swap|. |xpfh.swap[i]| = 1024)

44

Abstraction towards Simpl. To state that the handler’s implementation respects the

algorithm defined over the automaton we introduce an abstraction relation. It ties to-

gether the automaton’s state and the state of the handler’s implementation at each level

of the C0 semantics stack. At the Hoare logic level the C0 implementation is translated

into Simpl. The state is given as a collection of flattened variables – all structure fields

are unrolled – and a separate heap function for every field (split heap approach). The

abstraction relation pfh-pcbs-map holds between the variables constituting the Simpl

state and the page-fault handler automaton given by pfh and pcbs. The relation maps

each variable from the implementation to its equivalent notion in the automaton. The

mapping is non-trivial to a large extent because pointer data structures, like doubly-

linked lists, are used. So far we have defined: (i) the page-fault handler automaton and

its validity requirements, (ii) the page-fault handling algorithm which operates over the

automaton and the extended state, and (iii) the abstraction relation between the au-

tomaton and the implementation in Simpl. To guarantee the handler’s implementation

correctness we have proven in the Hoare logic the following theorem.

Theorem 10 (Page-fault handler functional correctness) Let pfh and pcbs
define the page-fault handler automaton, let xpfh be an extended state, let pid be a
process identifier, and let va be a virtual address. Assume that

– pfh-pcbs-map holds between the Simpl pre-state and pfh with pcbs,
– valid-pfh-pcbs pfh pcbs holds, and
– page-fault pid va intention pcbs pfh.pt takes place.

If pfh ′ = abs-pfh-after-handling pfh pid va pcbs and xpfh
′ is appropriately con-

structed using readPage and writePage then

– pfh-pcbs-map holds between the Simpl post-state and pfh ′ with pcbs,
– valid-pfh-pcbs pfh ′ pcbs is preserved,
– ¬ page-fault pid va intention pcbs pfh ′.pt, and
– x-after-handling xpfh xpfh

′ intention pid (px va) pfh ′ pcbs.

8 Disk driver

Device drivers are an integral part of system software. Not only high-level functionality

such as file I/O or networking depend on devices, even basic operating system features,

such as demand paging (Sect. 7), rely on correctly implemented device drivers. Hence,

any verification approach of computer system stacks should deal with driver correct-

ness. When proving functional correctness of a driver it is insufficient to reason only

about software, devices themselves and their interaction with the processor have to

be taken into account. In this section we present the correctness theorem of a simple

hard disk driver for an ATAPI hard disk, which is reading and writing single pages.

The driver is called by the page-fault handler to swap data from and to the hard disk.

It is implemented in C0 with inline assembly code; the specification of each driver

functions is given in form of an atomic XCall. The correctness of these specifications

is expressed in terms of a simulation theorem.10 With the theorem we present, we

10 Currently only the write case is formally proven; proving the read case is an ongoing effort.

45

discharge the implementation correctness proof obligation of the XCalls used in the

context of the page-fault handler verification. Moreover, page-fault handler correctness

itself gets transferred from C0 with XCalls down to VAMP assembly with devices.

In [ASS08] we addressed the embedding of the hard disk driver into page-fault

handler verification. Furthermore, in [AH08] a formal model of an ATAPI hard disk

is described and a general theory for driver verification in an interleaved setting is

introduced and applied to the concrete hard disk driver.

8.1 Driver specification and abstraction relation

The driver is specified by means of XCalls, which operate on the extended state defined

in Section 7.3, in particular its memory component xpfh.mem and swap component

xpfh.swap. The two driver XCalls are writePage, which copies a page from the memory

to the swap component, and readPage, which does the opposite.

In the following we refer to the pair consisting of the ordinary C0 state and the

extended driver component as extended C0 machine. Basically, the simulation theorem

relates the execution of the extended C0 machine with the execution of the concurrent

VAMP assembly with devices model. Furthermore, we maintain on the implementation

side an intermediate C0 configuration which has to be consistent with the assembly

state. We use the intermediate C0 machine because the extended C0 machine does

not cover the whole C0 implementation and hence cannot be related to the underlying

assembly state (e.g., the C0 functions implementing the XCalls are not contained in

the procedure table).

Before stating the theorem, we define the corresponding abstraction relation. In

short, it relates code and configurations of the extended C0 machine with the in-

termediate C0 machine and VAMP assembly with devices. The code portions of the

intermediate C0 machine are basically obtained by implementing the extended proce-

dures by ordinary procedures and replacing every XCall by an ordinary procedure call.

This is the core of the following abstraction relation.

Definition 52 (XCall code abstraction relation) The abstraction relation for

code codeSIM pti pi ptx px xpt specMap takes as parameters the procedure tables

and program rests of the intermediate and the extended C0 machine, the extended

procedure table, and a map relating XCalls to their implementation functions in the

intermediate C0 machine. It is the conjunction of three properties:

Program rests. By replacing each occurrence of a driver XCall by an invocation of

the corresponding implementation function in the program rest px of the extended

machine we must obtain the program rest pi of the implementation machine.

Procedure tables. All functions defined in the procedure table ptx of the extended

machine must also be defined in the procedure table pti of the implementation

machine. Additionally, the functions have to be equal except for their bodies for

which the program rest relation from above has to hold.

Relating XCalls and C0 implementation. This property ensures that the intermediate

C0 machine implements the XCalls by corresponding C0 functions. The map of

XCalls to their implementation is given by the parameter specMap, which con-

tains: the names of the XCalls to simulate, the signatures of the C0 functions

implementing them, and the semantics of the XCalls.

46

We define the abstraction relation for the driver in two steps, starting with a slightly

simplified version driverSIM ′.

Definition 53 (XCall abstraction relation) The abstraction relation for the

disk driver driverSIM ′ tt pti ci alloc asmD ptx cx xpt specMap takes as parameters

the description of the intermediate C0 machine (consisting of type table, procedure

table, and current state), the allocation function from the compiler, the current state

of the VAMP assembly with devices model, the description of the extended C0 machine

(consisting of procedure table, current state, and the extended procedure table) and a

map relating the XCall specifications to their implementation in the intermediate C0

machine. It is defined as the conjunction of the following properties:

Extended C0 / VAMP assembly with devices. We map the extended swap component

to the sector memory of the hard disk: memConsis asmD.proc.mm (snd cx).mem.

The parts of the memory of the assembly machine, which lie outside of the range

of the C0 machine are mapped to the abstract memory component of the extended

machine; this is captured by swapConsis (asmD.devs DID-hd) (snd cx).swap.

Extended C0 / Intermediate C0. The memory of the intermediate C0 machine and the

extended machine are equal: ci.mem = (fst cx).mem. Additionally, the code and

the procedure tables of the extended C0 machine and of the C0 implementation

machine are related: codeSIM pti ci.prog ptx (fst cx).prog xpt specMap.

Intermediate C0 / VAMP assembly with devices. Compiler consistency holds between

intermediate C0 and assembly machine: consistent tt pti ci alloc asmD.proc.

8.2 Driver correctness theorem

With the abstraction relation we can sketch the outline of the simulation theorem. It

relates the execution of n steps of the specification machine to N steps in the VAMP

assembly with devices model. Remember that the term λm t. True is our instantiation

for the predicate enough-heap (cf. Section 5.2).

[[driverSIM ′ tt pti ci alloc asmD ptx (cx, xpfh) xpt driver-impl-to-spec;
dnx tt ptx (λm t. True) cx xpfh xpt = b(cx

′, xpfh
′)c]]

=⇒ ∃ ci
′ alloc ′ N.

driverSIM ′ tt pti ci
′ alloc ′ (fst (DN

asm seq asmD)) ptx (cx
′, xpfh

′) xpt driver-impl-to-spec

This is the granularity at which theorems usually are presented in conference articles

(e.g., in [ASS08]): the skeleton of the simulation is sketched, where the bulk of complex

but presumably dreary conditions are silently omitted. Those conditions, though, are

often highly intriguing, hard to predict, and unveil only during the formal verification

process. Staying with the skeleton picture, they are the meat of our work.

In the following we extend the skeleton to a full-blown version of the driver cor-

rectness, as it has been proven in Isabelle and applied in the formal verification of the

page-fault handler. Most of the assumptions and conclusions appearing in the driver

correctness are already defined and originate either from the compiler, the page-fault

handler, or CVM correctness.

Compositionality conditions. The driver correctness theorem serves to translate cor-

rectness results from the level of C0 with XCalls down to the VAMP assembly with

devices model, in which the assembly state and devices are explicitly visible. Applied

to the stack presented in this article, the theorem is used to propagate the correctness

47

of the page-fault handler to the level of VAMP assembly with devices. This result is

then embedded into the verification of the CVM.

However, the outlined theorem does not allow such an embedding of a smaller

computation (page-fault handler) into a larger computation (CVM), because the as-

sumption on the program rest is too restrictive. It requires the code of the extended

C0 machine and that of the implementation machine to be equal (up to XCall sub-

stitution). This is a major restriction: the page-fault handler is verified relative to an

extended machine only containing the functions needed for its invocation not aware of

the rest of the CVM code.

The problem is close to the one described and solved by Theorem 3. Unfortunately,

this theorem does not serve us well: page-fault handler correctness is embedded into

CVM correctness at the level of the VAMP rather than at the pure C0 level. Thus,

we generalize the driver correctness theorem to obtain a modular verification chain.

(i) Similar to the property transfer in the C0 language stack we propagate correctness

at the level of function calls: is-SCall cx.prog. (ii) Because the extended machine is em-

bedded into the implementation machine, the procedure table of the former must be

included in the one of the latter. This is already guaranteed by the codeSIM relation.

(iii) The program rest of the extended machine is only a prefix of the implementa-

tion machine (after XCall substitution). Thus, we obtain the new abstraction relation

driverSIM by refining the code relation of the abstraction relation driverSIM ′: ∃ ppre.
prefix ci.prog ppre rest ∧ codeSIM pti ppre ptx px xpt specMap.

Validity predicates. We have to assume validity of the C0 configuration, the extended

C0 configuration, the assembly state, the hard disk, and the execution sequences of the

VAMP assembly with devices model.

To apply C0 compiler correctness, validity of the initial C0 machine has to be

assumed (see Section 5): valid-C0-conf tt pti [] ci.

Inline assembly code in the extended machine may break the abstraction provided

by XCalls. For example, a code portion writing the abstracted memory region would

have no semantical effects on the abstract memory component and hence lead to an

unsound state. Therefore, we require the program rest of the extended machine and of

the bodies of all functions fn ∈ SCalls xpt (scalls xc.prog) possibly called during its

execution to be free of inline assembly code:

precondition-C0X-driver ptx cx ≡
∀ fn∈SCalls ptx (scalls cx.prog).

case map-of ptx fn of ⊥ ⇒ True | bptec ⇒ valid-prop pte.proc-body noASM

The device component is valid if a hard disk is connected that is in a valid state.

A hard disk is in a valid state if it is idle (i.e., no operation is pending), if interrupts

are disabled, if its sector memory is well defined, i.e., the values of the data stored are

in range, and if its buffer is empty.

Execution sequences define for each step, whether the processor or one of the devices

is allowed to take action. For unfair sequences, i.e., if either the hard disk or the

processor are scheduled only finitely many times, we cannot prove termination and

thus also no driver correctness. However, from hardware correctness one can deduce

that it suffices only to consider fair sequences. Furthermore, we need to assume that

the sequences are well-typed, i.e., that the type of the external input always matches

the type of the device taking a step:

precondition-seq-asm seqasm ≡
eifis-welltyped-asm seqasm ∧ proc-live-input-seq-asm seqasm ∧ hd-live-input-seq-asm seqasm

48

The next predicate ensures that certain components of the system did not change

during execution. This holds for the length of the disk memory, the length of the

abstract swap component, and for the first two memory cells of the assembly machine

(containing a jump instruction to the kernel code). The last conjunct is part of the

predicate kernel-sim-C0-isa (cf. page 35). It ensures that once the page tables are

created, their allocation in the processor memory will not change:

invariant-mem asmD asmD
′ ci ci

′ alloc alloc ′ xpfh xpfh
′ ≡

hd-size asmD.devs DID-hd = hd-size asmD
′.devs DID-hd ∧

|xpfh
′.swap| = |xpfh.swap| ∧

(∀ i . 0 ≤ i ∧ i < 2 −→ asmD
′.proc.mm i = asmD.proc.mm i) ∧

(ci
′.mem.hm.st 6= [] −→

fst (alloc ′ (gvar-hm 0)) =
(if ci.mem.hm.st = [] then toph asmD.proc else fst (alloc (gvar-hm 0))))

Translation from VAMP assembly to VAMP ISA. The assembly model is only an

abstraction (and simplification) of the underlying ISA. For translating computations

from VAMP assembly with devices to VAMP ISA with devices via Theorem 5, we

need to discharge a series of assumptions on the initial state and assumptions on

each step of the execution. The former is given by the already introduced predicate

valid-asm-system (cf. Section 5.3). Among others, the dynamic conditions forbid in-

structions for unmasking external interrupts and for switching the processor mode.

They are grouped together by the already defined predicate dynamic-properties-dev
(cf. Section 4.4).

Memory restrictions. The compiler correctness theorem is only applicable if in each

step sufficient heap and stack memory is available in the assembly machine (see Sec-

tion 5). Often such assumptions are silently ignored because they are not visible in the

semantics of the given high-level language. As in the C0 small-step semantics, those

models assume some infinite memory. Memory restrictions do not emerge until results

are propagated down to lower levels, as in the case of the driver correctness.

If no garbage collection is running the heap consumption of a C0 program will

steadily increase. The reason is simple: C0 offers only a construct to allocate new

memory on the heap, but not to set memory free again. Thus, it suffices to claim the

sufficient-heap predicate only for the final configuration to ensure that sufficient heap

is available during all predecessor computations:

heap-base + asize-heap cx
′.mem.hm.st < max-address

Similarly, we would like to estimate the maximum stack consumption needed by

the considered computation. An upper bound of the stack consumption of functions

with no recursive calls can be computed by a static analysis of the program. In short,

this approach determines the deepest path (in terms of stack consumption) in the

invocation tree of the given code. This path is computed by the recursively defined set

sufficient-stack-size. A triple (pti, fn, sz) is an element of this set if sz is an upper

bound of the stack consumption required of the function fn in the procedure table pti.

As mentioned before, we propagate correctness at the level of function calls (as for

example the call to the page-fault handler). For such a function call we get the size

estimation sz by:

(pti, thecalled-function (hd dcx.proge), sz) ∈ sufficient-stack-size

We require that the sum of this upper bound and the current stack consumption to be

smaller than the heap-base:

49

sz + abase-local-frame tt pti (symbols ci.mem) (recursion-depth ci.mem) ≤ heap-base

The next condition ensures that the driver code is running within the kernel memory,

i.e., that neither user pages are manipulated by the C0 code nor that the C0 code

accesses any devices through memory mapped I/O:

max-address ≤ (KERNEL-PGS − 1) ∗ PAGE-SIZE

All memory restrictions are grouped in the predicate sufficient-memory-driver. In terms

of our application stack, sufficient-memory-driver has been discharged for the C0 ma-

chine of the concrete kernel.

Interleaving devices. So far we only described the semantical effects on the hard disk,

silently ignoring all other devices. Because the code only accesses the hard disk, the

computation of other devices is not influenced by the simulated computation of the

processor. Still, due to input from the external environment, the configuration of the

devices may have changed. Thus, the final state of any device can be computed by

ignoring all steps of the processor and of the hard disk. This notion of non-interference

is expressed in the property below (cf. Section 7.2).

non-interference-hd-asm asmD seq i ≡
∀ did . did 6= DID-hd −→

(fst (Di
asm seq asmD)).devs did =

fst (d∗dev (filter-devs-asm seq did i)

(replicate |filter-devs-asm seq did i| mifi-limit-idle) (asmD.devs did))

Now, the simulation theorem outlined above reads in its full beauty as follows:

Theorem 11 (Driver correctness)

[[valid-C0-conf tt pti [] ci; valid-asm-system asmD.proc; invariant-hd asmD.devs;
precondition-seq-asm seqasm; precondition-C0X-driver ptx cx;
sufficient-memory-driver tt pti ci cx cx

′ max-address sz; is-SCall cx.prog;
driverSIM tt pti ci rest alloc asmD ptx (cx, xpfh) xpt driver-impl-to-spec;

dkx tt ptx (λx y . True) cx xpfh xpt = b(cx
′, xpfh

′)c]]
=⇒ ∃ ci

′ alloc ′ i . valid-C0-conf tt pti [] ci
′ ∧

valid-asm-system (fst (Di
asm seqasm asmD)).proc ∧

invariant-hd (fst (Di
asm seqasm asmD)).devs ∧

invariant-mem asmD (fst (Di
asm seqasm asmD)) ci ci

′ alloc alloc ′ xpfh xpfh
′ ∧

dynamic-properties-dev asmD (program-base div 4)
(codesize-program tt (gm-st ci.mem) pti) seqasm i ∧

non-interference-hd-asm asmD seqasm i ∧
driverSIM tt pti ci

′ rest alloc ′ (fst (Di
asm seqasm asmD)) ptx (cx

′, xpfh
′) xpt

driver-impl-to-spec

8.3 Proof methodology and overview

Obviously, when proving correctness of a concrete driver, an interleaved semantics

of all devices is extremely cumbersome. Integration of results into traditional Hoare

logic proofs also becomes hardly manageable. Preferably, we would like to maintain a

sequential programming model or at least, only bother with interleaved steps of those

devices controlled by the driver we attempt to verify. This can be achieved by exploiting

non-interference properties of the processor and devices.

In Section 8.2 we stated non-interference of processor computations on devices

not accessed by the code. Similarly, we can also show the opposite direction: The

50

computation of a processor that only accesses the hard disk is not influenced by other

devices in case external interrupts are disabled. Thus, when verifying our driver it

suffices to consider only those execution sequences which are restricted to processor

and hard disk steps.

In certain stable states the hard disk is guaranteed not to be subject of manipula-

tion due to external input. During this time, reasoning can be simplified even more and

a completely sequential model in which only the processor takes steps can be assumed.

The sketched non-interference and reordering lemmas are detailed and applied to

the verification of the hard disk driver in [AH08]. The proof of the theorem consists of

two major parts: the correctness of the inlined assembly code and its correct embedding

into a C0 function call. The assembly code copies a page sector by sector to the internal

memory of the hard disk. Each sector is first written word by word to an internal buffer

of the disk. Once the buffer is full it takes the disk some time until it copies the data

to the sector memory. Meanwhile, the driver polls on a dedicated status port. The end

of copying is indicated by a (non-deterministic) input from the external environment.

The correctness of the driver is expressed in terms of the interleaved assembly

model with devices. Thus, all valid execution sequences have to be considered. However,

by knowing that the disk is almost always in a stable mode, and by using the non-

interference observation described above, large parts of the proof could be carried out

in a sequential model, in which only the processor takes steps. The only place were

some concurrent reasoning is necessary is during the polling loop.

The assembly code is embedded into a C0 function call. However, this call must

finally also be expressed in terms of the underlying assembly model with devices. This is

accomplished by several applications of the C0 compiler correctness theorem. Compiler

correctness is still applicable in the context of interleaved executed devices. This follows

from the non-interference observation stated above, and since (i) the compiler ensures

that the compiled code does not access any device ports, and (ii) the disk remains in

stable configurations during execution of C0 statements.

After the C0 function is invoked, parameters are passed to a freshly created function

frame. Compiler correctness ensures correctness of parameter passing and that the

program counter of the compiled assembly machine is pointing to the beginning of the

assembly driver code. Now, we apply the previously sketched correctness of the inlined

code and obtain a new assembly configuration. We need to show that meanwhile, the

C0 abstraction is not broken, e.g., by manipulations of stack or heap pointers. Finally,

again by using compiler correctness, we show that the function returns correctly.

9 Experiences and lessons learned

9.1 Statistics and evaluation

Table 3 summarizes some statistics of the theories, arranged along the sections of this

article. The numbers are based on Isabelle’s keywords, instead of raw ‘lines of code’. As

with all statistics, the numbers have to be interpreted with care, especially regarding

the proof steps. The theories were developed by various people from different sites with

different backgrounds and Isabelle offers its users quite some opportunity to develop

an individual proof style. Some prefer rather small steps others try to push automation

as far as possible. Some prefer the ‘apply’ style, which often leads a large number of

intermediate lemmas, others structure their proofs with Isar.

51

Table 3 Theory statistics

Module Section Definitions Lemmas Proof steps

C0 (syntax) 3 178 158 903
Hoare logic 3.1 95 866 15 748
C0 big-step 3.2 100 307 7 691
C0 small-step 3.3 357 1 212 19 482
Hoare to big-step 3.4.1 118 591 16 713
Big-step to small-step 3.4.2 88 318 16 492
VAMP 4 877 1 366 21 419
C0 compiler 5 282 1 402 41 234
CVM 6 1 223 3 231 53 536
Page-fault handler 7 453 1 577 31 783
Disk driver 8 162 411 11 908
Miscellaneous 166 828 7 626

Σ 4 099 12 267 244 535

The statistics illustrate that pervasive verification comes at a cost. The development

of the meta theory and the utilization of the theorems to actually transfer properties

are expensive. However, to do justice to the numbers one has to keep in mind that the

meta theorems only have to be proven once and there is a lot of potential for automation

to support the application of the theorems for actual property transfer. We have only

developed this kind of automation to limited degree, as we only transferred a couple

of properties within the time limits of the Verisoft project. After all the overhead for

pervasiveness can be considered constant the more properties are actually transferred.

The main benefit of pervasive verification and a seamlessly verified model stack with

a small trusted computing base are that an extreme level of confidence and assurance

is gained in specifications and results. There is no fear of redoing parts of your work as

soundness bugs become apparent, which is the ‘Sword of Damocles’ hanging over all

less rigorous approaches. To make pervasive verification more efficient we recommend

to focus future effort on reusable modules and libraries, shared within the community.

9.2 Libraries

One thing that we missed very often during theory development are ready-to-use theory

libraries to help solve the problems at hand. It turns out that the design and develop-

ment of such libraries is both difficult and critical. It is difficult because the libraries’

usefulness strongly depends on tiny formalization details. It is critical because fixing

early design errors can result in costly adaptations in the theories of the (hopefully)

many users of the library. Providing a library comes with the commitment to main-

tain and extend the library to prevent bit-rot and make the library more attractive

to its users. Ideally, a librarian should be appointed for each library, who is responsi-

ble for development and integration of new results into the library (as opposed to a

community-based approach of maintaining libraries, which in our experience does not

work well). Overall this means that dedicated resources should be allocated for library

development, which is an often overlooked fact in the planning of projects.

52

9.3 Pervasive verification and automation

All the verification was conducted in Isabelle/HOL (Version 2005). The main source of

automation we employed were Isabelle’s built-in tactics, like term rewriting (simp), the

Tableaux-based prover for propositional logic (blast), the arithmetic decision procedure

for Presburger arithmetic (arith), and combinations of those. One general observation

is that the performance of those tools drastically suffers from large formulas that occur

when dealing with lots of assumptions and invariants. This problem can be effectively

avoided when preferring structured Isar proofs over unstructured apply-style proofs,

since in Isar proofs the reasoning steps happen to be applied in smaller local context

with only the relevant assumptions mentioned in the proof text. However, developing

proper Isar proof techniques means additional training of the users, who may like to

stick to their familiar apply-style proofs they first learnt.

Additionally to the built-in Isabelle tactics, customized tactics were developed to a

limited extent. A verification condition generator for the Simpl Hoare logic was devel-

oped and was routinely applied for the verification of C0 programs. Applying transfer

theorems for concrete programs was supported using reflection to discharge validity

constraints like typing of C0 statements. Moreover, a tactic was developed supporting

the transfer from Simpl Hoare triples to the big-step semantics, cf. Section 3.4.1.

Furthermore, the Hoare logic was designed to allow the integration of software

model checkers and automatic termination analysis [DMSS05]. An external tool can

either be employed as a trusted oracle that only delivers its final outcome or as an

untrusted one that has to deliver a proof that can be replayed within Isabelle. However,

even in the first case the integration of external tools in the context of pervasive

verification is quite challenging. As the results have to smoothly fit into the overall

verification workflow, great care has to be taken to agree on the exact semantics of

properties and every subtlety of the underlying model, e.g., the C0 language. The

additional effort to tune a tool that can handle the task ‘in principle’ to one that exactly

fits into its scope is easily underestimated and scientifically often not rewarding. We

consider this the main reason that for software verification the integration got stuck in

an experimental phase. However, even in case of a successful integration the percentage

of the proof obligations for the complete functional verification of C0 programs we

expected to be able to discharge was only around 10 to 15 percent. As we were working

in the context of interactive theorem proving the formalization is biased towards concise

intelligible specifications, which exploit the expressibility of HOL. When focusing on

automation it may be beneficial to consequently restrict oneself to fragments like first

order logic. However, this comes at the cost of readability.

After all we see two promising sources to improve automation. First of all experi-

enced users that make the ‘right’ formalizations, and second the design of libraries and

the smooth integration of small decision procedures (e.g., handling bit vectors) as well

as general purpose provers (like automated first order or higher order provers) that

help discharging routine proof obligations.

9.4 Best practices

In contrast to theory repositories like the archive of formal proofs,11 where the con-

tributions mostly stand only on their own, all theories developed for the pervasive

11 http://afp.sf.net

http://afp.sf.net

53

verification of a system must in the end fit together and be checked simultaneously.

The required level of integration in pervasive verification is therefore much higher than

with conventional verification and some difficulties mirror those in the development of

large software projects. Hence, it is not surprising that many useful practices can be

absorbed from the software engineering field.

We have broken down overall (theory) development into a number of modules with

acyclic dependencies among each other. Modules are stored in a version control system;

branches are used to maintain variants of modules (e.g., depending on different Isabelle

versions). While the prover could in principle live with all definitions and proofs stuffed

into a single theory, module and theory structure are intended to simplify human

understanding of the theory corpus.

We use a (semi-automatic) continuous integration approach to check all theories

regularly in a clean build environment. All theories are processed in a single heap. This

strategy of early merging has helped us find problems with the prover and with the

theories. Problems in the first category were for example heap size limitations, which

were overcome with newer Poly/ML versions. Problems in the second category were in

the beginning for example conflicting simpset modifications in theories or tweaking of

global configurations options in (old versions of) Isabelle (e.g., modifying the simplifi-

cation depth limit), which are very hard to locate and are therefore best detected early.

Once the initial merging phase was completed, the typical problem in the second cat-

egory of course was the breakage of higher-level theories due to changes in lower-level

theories. While we used regular heaps for running the integration, we did not make

use of Isabelle’s session mechanism, which was too inflexible for theory checking in a

fast-changing environment: Isabelle sessions are organized in a linear fashion (not in a

DAG), therefore cannot be merged, and with sessions theories can only be checked at a

session granularity, regardless of whether only a few theories need to be rerun. Instead,

we have used an open, live heap for theory checking, such as is used when running an

interactive session. In this scenario, if a theory changes, ‘only’ the theory itself and all

theories that import it need to be checked.12

9.5 Some notes on the formalization

We summarize some of our experiences with the different formalizations of the C0 se-

mantics. In our formalizations we did not distinguish between real runtime faults, e.g.,

caused by array index violations or division by zero that we want to reason about, and

malformed situations that are ruled out by system invariants like type safety. With

a transition function like d within a logic of total functions one has to define some

behavior even for those malformed configurations that we are not really interested in.

If we had used a small-step relation instead one could focus only on the good con-

figurations and otherwise just get stuck. A type safety theorem would then guarantee

progress for valid configurations. The functional definition has the drawback that one

always has to go through case distinctions to rule out those malformed configurations

during the proofs about the semantics; there are many of those proofs in our project.

The big-step semantics has a quite strict separation between type information and

the memory, whereas a memory configuration in the small-step semantics maintains

12 As we will argue later on, this is still too slow to provide a pleasant user experience for
certain tasks.

54

both. Similar decisions are sometimes taken within the definitions of auxiliary func-

tions and predicates. For example there is a certain trade-off between defining a single

function that recurses over the syntax tree once and calculates multiple results simul-

taneously, or to define several similar functions for the different results. Our experience

is that keeping things separate is beneficial in the long run, in particular when formal

entities may be used in different scenarios that one has not thought of in the beginning.

For example one designs something like typing with the compiler correctness proof in

mind, and later on similar things are needed in simulation or soundness proofs. In

the worst case one duplicates work and develops a similar notion for the new appli-

cation. Having smaller formal entities supports simpler theorems that are likely to be

more general as a combined theorem for a more complex definition. This makes the

formalization more flexible in the end.

9.6 TP system improvements

We mention some improvements to the theorem-proving system (rather than the logics,

models, or proofs), which would have helped in developing and enhancing the quality of

our theory corpus. Notably, most of the suggested improvements are applicable in two

contexts: online, during theory developing to improve the user interface and experience,

and offline, during theory checking, benchmarking, or analysis of other kind.

Speed. With a large theory corpus such as ours, improving TP speed would be a big

gainer. Improving the speed comes in two varieties: reducing turn-around times and

reducing the latency for (full or incremental) theory checking. The latter improvement

is relevant in interactive context only.

When people work interactively with their own theories, they often enable Isabelle’s

skip proofs mode, which boils down to Isabelle just parsing and type-checking all

imported theories. Although for higher-level theories, it can take on the order of an

hour to process all imported theories, this usually reduces the time required to load

the theories that you are not working on to a bearable minimum. However, this is only

a work-around and this behavior is unsafe: from time to time broken proofs of lemmas

in the current theory working set will not be noticed due to having been accidentally

skipped altogether.

If lower-level theories are modified (e.g., because of adding a new lemma to a theory

library or moving an existing lemma to a more appropriate theory) good practice

dictates that theories are checked from the modified theory upwards. This operation

cannot be done when skipping proofs, and even checking up to your own theories only

(omitting other theory branches reaching up from the modified theory) can result in

unbearable delay. This has discouraged people from adding lemmas at the right place in

the first place or cleaning-up their theories after they have finished their development.

There has been already much progress with recent Poly/ML versions, which support

multi-threading. Recent Isabelle versions make use of this parallelism, by decoupling

proof checking from theory loading and checking independent proofs in parallel. The

new system offers great flexibility in scheduling which proofs to check when, which can

lead to a significant reduction of latency when working interactively with the prover.

Apart from taking advantage of multiple cores at the theory or proof level, the

turn-around times in incremental proof checking will not be reduced by this approach.

55

Reducing the turn-around times for changes in low-level theories, which is in the or-

der of hours, by a small factor only (i.e., the number of cores) will not be sufficient.

We think that significant reductions in turn-around time can be achieved by track-

ing dependencies of proofs on a more fine-grained basis and then basically checking a

proof only if its dependencies have changed. For example, if in a change only the proof

of single lemma has changed but not its claim then only this single proof has to be

checked to get an up-to-date heap. In principle, Isabelle can keep track of dependencies

(in newer version it does so by default). Mechanisms for change tracking, however, are

not yet present in Isabelle and would have to be implemented.

A wholly different kind of approach aims at reducing the accumulated ‘global’ turn-

around time, i.e., the CPU cycles a group of developers burn cooperatively working on

common goal, e.g., proving a computer system correct. This duplication of effort can

be reduced by establishing a (possibly decentralized) heap / theory / proof distribu-

tion network or working with a server-based approach (‘proof wikis’). A server-based

approach can leverage existing continuous integration infrastructure. However, theory

developers as much as software developers do not work in one ‘universe’ all the time,

but rather in multiverses, in which branching and merging occurs when the develop-

ment of new features begins and ends. This has to be taken into account in the design

of a server-based solution.

Tools for end-users. Similar to powerful integrated development environments (IDEs),

TP systems should provide more tools for end-users, to enable the analysis and im-

provement of the quality of the theories that are developed. In a non-interactive setting,

such tools should enable to continuously control theory quality and warn about new

hot-spots in the theory corpus. Naturally, the level of ‘understanding’ of these tools

will have to stay quite low. There are still a couple of interesting areas where relatively

simple tools can help.

First, there is the area of exploration and navigation of the theory corpus. This

helps in reading, understanding, and most importantly using other people’s theories

and theorems. Thus, exploratory tools should help prevent duplicate effort in theory

development; in a non-perfect world, you may find useful, proven results at the place

where you least expect them. Isabelle’s find-theorems facility is a nice example of such

a tool: it can find theorems via higher-order pattern matching. It will however not find

theorems outside of the current theory branch, causing users to resort to inferior tools

like grep instead. This problem of focus can be avoided by searching for theorems on

big heaps only, which include the whole theory corpus.

Second, there is the area of slenderizing and massaging the theory corpus. There

should be tools that give hints online during theory development (‘this goal has already

been proven’) or afterwards (‘this lemma can be moved elsewhere’). Also, the identifi-

cation of dead parts of the theory corpus is of interest. These tools are required because

theory developers often work locally first, distributing their results only when develop-

ment has finished (partly, this is done for speed reasons, cf. above). We experimented

with five approaches in this area:

1. We applied ConQAT, a clone detection tool,13 to our theory sources. A first

analysis shows that up to 28% percent of the text in typical theories is redundant. Be-

cause proof structure is generally ignored and sometimes duplicate proofs are actually

valid, this very simple first analysis can produce false positives. A quick inspection of

13 http://conqat.in.tum.de/

http://conqat.in.tum.de/

56

the reported clones however showed that a good fraction really could be factored out

into separate lemmas.

2. Similarly, we have implemented a tool to detect recurring conclusions of subgoals

(across many proofs). In an online analysis, the prover can warn you if you are about

to establish a conclusion that you have already proven earlier. In an offline analysis,

recurring conclusions of subgoals can just be reported by number of recurrences; the

higher the number of repetitions, the higher the potential merit in factoring out the

conclusion into a separate lemma. In this case, the prover can also suggest potential

assumptions for the lemma, e.g., the intersection of the sets of assumptions that have

appeared for that particular conclusion. An initial analysis for the C0 small-steps se-

mantics (which contains many lemmas, e.g., on type safety) has shown that ca. eight

percent of the subgoal conclusions appear repeatedly. This number should be treated

with care, however, because if a certain chain of conclusions appears multiple times

(because the same proof is conducted multiple times), than all conclusions in all in-

stances of the chain are counted multiple times. With apply-style proofs, however, these

chains cannot easily be filtered out, because in contrast to Isar-style proofs, there is no

concept of a ‘sub proof’.

3. With lack of proper exploratory tools and lemmas sometimes being placed at

odd locations, some results may have been proven multiple times. This has happened

a couple of dozen times in our theory corpus. In most cases, only auxiliary results

and simple lemmas were duplicated. We however also had cases, where larger lemmas

became identical due to refactoring (e.g., removing a model parameter).

Lemma clone detection checks for multiple lemmas having the same claim. We have

performed experiments, checking for lemma duplicates both at the source level and in-

side Isabelle, looking for almost identical clones only. This analysis can be improved by

performing more relaxed comparison of lemma claims; e.g., generalizing over bound and

unbound variables or doing more aggressive normalization. Another possibility would

be to try using ATPs (e.g., integrated in newer Isabelle versions via the ‘sledgehammer’

tool) to detect clones or nearly-clones of lemmas.

4. To help placing lemmas in theories where they might best belong, we have devel-

oped a tool called ‘Gravity’. As noted several times earlier, during theory development

(auxiliary) lemmas are often placed in higher-level theories for convenience. By analyz-

ing the lemma’s dependencies, the Gravity tool can compute (minimal) theories14 that

satisfy the dependencies needed by the lemma. Performing the analysis for a whole

group of lemmas (e.g., all lemmas in a theory), a better result can be produced by

‘skipping’ intra-group dependencies. This way the tool would suggest moving two lem-

mas that are in the same theory and where second lemma uses the first lemma to the

same minimal theories.

5. Finally, it can be important to detect and prune dead parts of the theory corpus.

These may exist for historical reasons or due to refactoring operations as described

above. Excessive pruning may be harmful, though. Depending on the analysis being

employed and the scope at which it is operating, exported theorems of a library or even

top-level theorems may be classified as unused; clearly, these should not be removed.

We have written a simple prototype to conservatively detect unused lemmas at the

source code level; we have manually removed a couple of dozens lemmas, which were

reported by this tool.

14 A unique minimal theory may not exist because theories dependencies form a DAG.

57

Finally, there is the area of benchmarking. In continuous integration, benchmark-

ing information is vital for time-out detection – checking a theory corpus must not

be delayed indefinitely because, e.g., a new, unfortunate simplification rule causes the

simplifier to loop in just a single lemma of the whole corpus. Also, continuous bench-

marking in interactive use helps raise awareness on bottlenecks in proofs, which may

point out to real performance problems in the formalization but also the prover itself.

A Glossary

C0 General

s, e, v C0 statement, expression, and value
T C0 type
x extended state component for XCalls
dse decomposition of a statement
VsW decomposition of a statement and removal of Skip

statements
tt type table
pt procedure table

C0 Big-Step

P C0 program
sv, t state in Simpl and C0 big-step
ext extended state component
heap heap component of state
lcls local variables of state
glbs global variables of state
free-heap free heap locations of state
HT, GT, LT heap-, global-, local typing
P,sz,L`bs 〈s, sv〉 ⇒ t big-step execution of a C0 statement
tnenv type table of a program
genv global variables of a program
plookup procedure lookup in a program
xplookup lookup of extended procedure in a program
xpt,pt,tt,VT,HT `bs s

√
typing of C0 statement

HT,tt `bs v::vT typing of value
HT,tt `bs m::MT typing of memory
tt `bs sv::HT,LT,GT typing of state
valid-prog valid C0 program
A set of definitely assigned variables
D definite assignment analysis
G`h 〈s, sv〉 ⇒ t big-step execution of a Simpl statement
G`h s↓sv guaranteed termination of a Simpl statement
G |=h P s Q total correctness of a Simpl statement

C0 Small-Step

c configuration
mem memory configuration
prog program rest
gm global memory
hm heap memory
lm local memory stack (frame stack)
ct memory content
st symbol table
init-vars set of initialized variables
g-variable variables and sub variables
tt,pt,enough-heap,xpt `ss c → c ′ small-step relation for C0 statements

58

d tt pt enough-heap c small-step transition function
dn tt pt enough-heap c small-step transition function (many steps)
dx tt pt enough-heap c x xpt small-step transition function with XCalls
dnx tt p enough-heap c x xpt small-step transition function with XCalls (many

steps)
valid-C0SS valid configurations
valid-cfgss valid configuration for property transfer
tt,pt,enough-heap,xpt,validasm,L,P |=ss P s Q

total correctness
transition-invariant transition invariant

Compiler

alloc allocation function from compiler theorem

VAMP

n, N Step numbers for systems without and with devices
asm VAMP assembly configuration
dasm asm VAMP assembly transition function
dnasm asm VAMP assembly transition function (many steps)
isa VAMP instruction-set architecture configuration
validasm Well typedness of assembly instructions
disa isa eev mifo VAMP ISA transition function
devs Devices configuration
ddev eifi mifi d Device transition function
d∗dev eifis mifis d Device transition function (many steps)
intr d Device interrupt predicate
seqasm Execution sequence for VAMP assembly with devices
asmD Configuration for VAMP assembly with devices

DN
asm seqasm asmD VAMP assembly with devices transition function

seqisa Execution sequence for VAMP ISA with devices
eifis Sequence of external inputs
isaD Configuration for VAMP ISA with devices

DN
isa seqisa eifis isaD VAMP ISA with devices transition function

CVM, Page-Fault Handler

Pk (abstract) kernel
pid process identifier
Dcvm cvm seqxasm CVM transition function

DN
cvm seqasm cvm CVM transition function (many steps)

xpfh extended state component for the page-fault handler
xpt extended procedure table (for XCalls)
pfh (abstract) page-fault handler configuration
pd (abstract) page descriptor configuration
pcb (abstract) process control block

References

[ABP09] Eyad Alkassar, Sebastian Bogan, and Wolfang Paul. Proving the correctness of
client/server software. Sādhanā: Academy Proceedings in Engineering Sciences,
34, 2009. To appear.

[AH08] Eyad Alkassar and Mark A. Hillebrand. Formal functional verification of device
drivers. In Shankar and Woodcock [SW08], pages 225–239.

[AHK+07] Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, and Sergey
Tverdyshev. Formal device and programming model for a serial interface. In
Bernhard Beckert, editor, Proceedings, 4th International Verification Workshop
(VERIFY), Bremen, Germany, pages 4–20. CEUR-WS.org, 2007.

[AHL+08] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and
Artem Starostin. The Verisoft approach to systems verification. In Shankar and
Woodcock [SW08], pages 209–224.

59

[ASS08] Eyad Alkassar, Norbert Schirmer, and Artem Starostin. Formal pervasive verifi-
cation of a paging mechanism. In C. R. Ramakrishnan and Jakob Rehof, editors,
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS08), volume 4963 of LNCS, pages 109–123. Springer,
2008.

[Bal03] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano Be-
rardi, Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and Pro-
grams, International Workshop, TYPES 2003, Torino, Italy, April 30 – May 4,
2003, Revised Selected Papers, volume 3085 of LNCS, pages 34–50. Springer, 2003.

[Bal06] Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts.
In Jonathan M. Borwein and William M. Farmer, editors, Mathematical Knowledge
Management, 5th International Conference, MKM 2006, Wokingham, UK, August
11–12, 2006, Proceedings, volume 4108 of LNCS, pages 31–43. Springer, 2006.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and William D. Young. An
approach to systems verification. JAR, 5(4):411–428, December 1989.

[BHW06] Gerd Beuster, Niklas Henrich, and Markus Wagner. Real world verification – Ex-
periences from the Verisoft email client. In Geoff Sutcliffe, Renate Schmidt, and
Stephan Schulz, editors, Proceedings of the FLoC’06 Workshop on Empirically Suc-
cessful Computerized Reasoning (ESCoR 2006), volume 192 of CEUR Workshop
Proceedings, pages 112–125. CEUR-WS.org, August 2006.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach, and Wolfgang
Paul. Instantiating uninterpreted functional units and memory system: Functional
verification of the VAMP. In Daniel Geist and Enrico Tronci, editors, Proceedings of
the 12th Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME), volume 2860 of LNCS, pages 51–65. Springer,
2003.

[BJK+06] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach, and Wolfgang
Paul. Putting it all together: Formal verification of the VAMP. International
Journal on Software Tools for Technology Transfer, 8(4–5):411–430, August 2006.

[Bog08] Sebastian Bogan. Formal Specification of a Simple Operating System. PhD thesis,
Saarland University, Computer Science Department, August 2008.

[Bur72] R. Burstall. Some techniques for proving correctness of programs which alter data
structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7, pages
23–50. Edinburgh University Press, 1972.

[Con06] Cosmin Condea. Design and implementation of a page fault handler in C0. Master’s
thesis, Saarland University, July 2006.

[DDB08] Matthias Daum, Jan Dörrenbächer, and Sebastian Bogan. Model stack for the
pervasive verification of a microkernel-based operating system. In Bernhard Beckert
and Gerwin Klein, editors, Proceedings, 5th International Verification Workshop
(VERIFY), Sydney, Australia, volume 372 of CEUR Workshop Proceedings, pages
56–70. CEUR-WS.org, August 2008.

[DDW09] Matthias Daum, Jan Dörrenbächer, and Burkhart Wolff. Proving fairness and
implementation correctness of a microkernel scheduler. JAR: Special Issue on
Operating Systems Verification, 2009. To appear.

[DDWS08] Matthias Daum, Jan Dörrenbächer, Burkhart Wolff, and Mareike Schmidt. A
verification approach for system-level concurrent programs. In Shankar and Wood-
cock [SW08], pages 161–176.

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the verification of mem-
ory management mechanisms. In Dominique Borrione and Wolfgang Paul, editors,
Proceedings of the 13th Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods (CHARME 2005), volume 3725 of LNCS,
pages 301–316. Springer, 2005.

[DMSS05] Matthias Daum, Stefan Maus, Norbert Schirmer, and M. Nassim Seghir. Inte-
gration of a software model checker into Isabelle. In Geoff Sutcliffe and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
12th International Conference, LPAR 2005, Montego Bay, Jamaica, December 2–
6, 2005, Proceedings, volume 3835 of LNCS, pages 381–395. Springer, 2005.

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On the
correctness of operating system kernels. In Joe Hurd and Thomas F. Melham,
editors, 18th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2005), volume 3603 of LNCS, pages 1–16. Springer, 2005.

60

[HEK+07] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M. Petters.
Towards trustworthy computing systems: Taking microkernels to the next level.
SIGOPS Oper. Syst. Rev., 41(4):3–11, 2007.

[HKS08] Ralf Huuck, Gerwin Klein, and Bastian Schlich, editors. 3rd intl Workshop on
Systems Software Verification (SSV 2008), volume 217C of Electronic Notes in
Theoretical Computer Science. Elsevier Science B.V., 2008.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[HP08] Mark A. Hillebrand and Wolfgang Paul. On the architecture of system verifica-
tion environments. In Karen Yorav, editor, Hardware and Software, Verification
and Testing, Third International Haifa Verification Conference, HVC 2007, Haifa,
Israel, October 23–25, 2007, volume 4899 of LNCS, pages 153–168. Springer, 2008.

[IT08] Tom In der Rieden and Alexandra Tsyban. CVM – A verified framework for
microkernel programmers. In Huuck et al. [HKS08].

[Kle99] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Com-
puting, 11(5):541–566, 1999.

[Kle09] Gerwin Klein. Operating system verification – An overview. Sādhanā: Academy
Proceedings in Engineering Sciences, 34, 2009. To appear.

[Lei08] Dirk C. Leinenbach. Compiler Verification in the Context of Pervasive System
Verification. PhD thesis, Saarland University, Computer Science Department, July
2008.

[LNRS07] Bruno Langenstein, Andreas Nonnengart, Georg Rock, and Werner Stephan. Ver-
ification of distributed applications. In Francesca Saglietti and Norbert Oster, ed-
itors, Computer Safety, Reliability, and Security, 26th International Conference,
SAFECOMP 2007, Nuremberg, Germany, September 18–21, 2007, volume 4680 of
LNCS, pages 315–328. Springer, 2007.

[LP08] Dirk Leinenbach and Elena Petrova. Pervasive compiler verification – From verified
programs to verified systems. In Huuck et al. [HKS08], pages 23–40.

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture: Complexity and
Correctness. Springer, 2000.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NYS07] Zhaozong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify realistic sys-
tems code: Machine context management. In TPHOLs ’07, pages 189–206. LNCS,
2007.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer, 1994.

[Pet07] Elena Petrova. Verification of the C0 Compiler Implementation on the Source
Code Level. PhD thesis, Saarland University, Computer Science Department, May
2007.

[Sch05] Norbert Schirmer. A verification environment for sequential imperative programs
in Isabelle/HOL. In Franz Baader and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 11th International Conference,
LPAR 2004, volume 3452 of LNCS, pages 398–414. Springer, 2005.

[Sch06] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technical University of Munich, April 2006.

[ST08a] Artem Starostin and Alexandra Tsyban. Correct microkernel primitives. In Huuck
et al. [HKS08], pages 169–185.

[ST08b] Artem Starostin and Alexandra Tsyban. Verified process-context switch for C-
programmed kernels. In Shankar and Woodcock [SW08], pages 240–254.

[SW08] Natarajan Shankar and Jim Woodcock, editors. Verified Software: Theories, Tools,
Experiments Second International Conference, VSTTE 2008, Toronto, Canada,
October 6–9, 2008. Proceedings, volume 5295 of LNCS, Toronto, Canada, October
2008. Springer.

[TS08] Sergey Tverdyshev and Andrey Shadrin. Formal verification of gate-level computer
systems. In Kristin Yvonne Rozier, editor, LFM 2008: Sixth NASA Langley Formal
Methods Workshop, NASA Scientific and Technical Information (STI), pages 56–58.
NASA, 2008.

	Introduction
	Preliminaries
	C0
	VAMP
	Compiling C0 to VAMP
	CVM
	Page-fault handler
	Disk driver
	Experiences and lessons learned
	Glossary

