
Formal Pervasive Verification of a Paging Mechanism

Eyad Alkassar?, Norbert Schirmer ??, and Artem Starostin ???

Computer Science Department - Saarland University
{eyad, nschirmer, starostin}@wjpserver.cs.uni-sb.de

Abstract. Memory virtualization by means of demand paging is a crucial com-
ponent of every modern operating system. The formal verification is challenging
since reasoning about the page fault handler has to cover two concurrent com-
putational sources: the processor and the hard disk. We accurately model the in-
terleaved executions of devices and the page fault handler, which is written in
a high-level programming language with inline assembler portions. We describe
how to combine results from sequential Hoare logic style reasoning about the
page fault handler on the low-level concurrent machine model. To the best of our
knowledge this is the first example of pervasive formal verification of software
communicating with devices.

1 Introduction

With a comparably small code base of only some thousand lines of code, and imple-
menting important safety and security abstractions as process isolation, microkernels
seem to offer themselves as perfect candidates for a feasible approach to formal verifi-
cation. The most challenging part in microkernel verification is memory virtualization,
i.e., to ensure that each user process has the notion of an own, large and isolated mem-
ory. User processes access memory by virtual addresses, which are then translated to
physical ones. Modern computer systems implement virtual memory by means of pag-
ing: small consecutive chunks of data, called pages, are either stored in a fast but small
physical memory or in a large but slower auxiliary memory (usually a hard disk), called
swap memory. The page table, a data structure both accessed by the processor and by
software, maintains whether a page is in the swap or the physical memory. Whenever the
process accesses a page located in the swap memory, either by a store/load instruction
or by an instruction fetch, the processor signals a page fault interrupt. On the hardware
side, the memory management unit (MMU) triggers the interrupt and translates from
virtual to physical page addresses. On the software side, the page fault handler reacts
to a page fault interrupt by moving the requested page to the physical memory. In case
the physical memory is full, some other page is swapped out (cf. Fig. 1).

The aim of the Verisoft project1 is a pervasive formal correctness result. The grand
challenge is to integrate various levels of abstraction and computational models. The
? Work was supported by the German Research Foundation (DFG) within the program ‘Perfor-

mance Guarantees for Computer Systems’.
?? Work was supported by the German Federal Ministry of Education and Research (BMBF) in

the framework of the Verisoft project.
??? Work was supported by the International Max Planck Research School for Computer Science.

1 http://www.verisoft.de

hard
disk

page table

swap table

MMU

PFH

virtual
memory

physical
memory

va

data

page
fault

pma

sma

Fig. 1. Concept of paging

physical machine on the lower end, which comprises the concurrent computation of
at least the processor and the devices, in the middle, portions of assembler code to
implement the device drivers, and on the upper end a high-level sequential programming
language, in our case C0, a subset of C. The decisive contribution of this paper is the
integration of devices into a pervasive system verification methodology. This comprises
dealing with interleaved I/O devices and integration of inline assembler code even in the
high-level Hoare logics. All computational models and abstraction layers and almost all
proofs are mechanized in the theorem prover Isabelle/HOL, which gives us the highest
possible assurance that all parts fit together. At submission of the paper not finished
proofs include the read case of the driver.

Related Work Hillebrand [7] presents paper and pencil formalisations and proofs for
memory virtualisation. First attempts to use theorem provers to specify and even prove
correct operating systems were made as early as the seventies in PSOS [11] and UCLA
Secure Unix [16]. However a missing or to a large extend underdeveloped tool envi-
ronment made mechanized verification futile. With the CLI stack [2], a new pioneering
approach for pervasive system verification was undertaken.

Most notably the simple kernel KIT was developed and its machine code implemen-
tation was proven. Compared to modern kernels KIT was very limited, in particular it
lacked the interaction with devices. The project L4.verified [6] focuses on the verifi-
cation of an efficient microkernel, rather than on formal pervasiveness, as no compiler
correctness or an accurate device interaction is considered. The microkernel is imple-
mented in a larger subset of C, including pointer arithmetic and an explicit low-level
memory model [15]. However with inline assembler code we gain an even more expres-
sive semantics as machine registers become visible if necessary. So far only exemplary
portions of kernel code were reported to be verified, the virtual memory subsystem uses
no demand paging [14]. For code verification L4.verified relies on Verisoft’s Hoare
environment [13]. In the FLINT project, an assembly code verification framework is
developed and code for context switching on a x86 architecture is formally proven [12].
Although a verification logic for assembler code is presented, no integration of results
into high-level programming languages is undertaken. The VFiasco project [9] aims at

the verification of the microkernel Fiasco implemented in a subset of C++. Code veri-
fication is performed in a embedding of C++ in PVS and there is no attempt to map the
results down to the machine level.

Overview Sect. 2 elaborates on the virtualization problem, gives an overview of our
general approach and states the required page fault handler correctness property. In
Sect. 3 a page fault handler implementation, specification and its code verification is
presented. In Sect. 4 we integrate the code verification into the Verisoft system stack to
obtain the desired correctness result. Finally we conclude in Sect. 5.

2 Virtual Memory Simulation Problem

One of the most challenging verification objectives of Verisoft is to prove that the phys-
ical machine correctly implements memory virtualization towards user processes: the
physical memory and the swap space of the hard disk are organized by the page fault
handler to provide separate uniform linear memories towards user processes. This is
expressed as a simulation theorem between a physical machine and a virtual machine
model and is described in this section. The other sections are concerned with its proof.

Most crucially the correctness of the simulation theorem depends on the correctness
of the page fault handler. This proof ties together various key results of the Verisoft sys-
tem stack. Besides the physical machine this also includes semantics for C0 and a Hoare
logic. The physical machine model is quite fine grained and executes instructions and
devices concurrently, whereas the page fault handler is basically a high-level sequen-
tial C0 program. We avoid conducting the whole proof on the low-level of the physical
machine, by proving the page fault handler correct in a Hoare logic for C0. The sound-
ness theorem of the Hoare logic [13] composed with the correctness theorem of the C0
compiler [10] allows to transfer the page fault handler correctness down to the physical
machine. However, we have to consider one peculiarity of the page fault handler (and
low-level systems code in general): there are small portions of inline assembler code
that break the high-level C0 semantics. In case of the page fault handler this is the de-
vice driver code for communication with the hard disk. We encapsulate these pieces of
inline assembler code into so called ‘XCall’s. On the level of the Hoare logic these are
represented as atomic state updates (cf. Sect. 3.1) on an extended state that comprises
both the C0 memory and the current configuration of the hard drive. We prove that the
assembler implementation of the XCall adheres to this abstraction (cf. Sect. 4.2).

Another major step is to bridge the gap from the sequential C0 model to the con-
current execution of the processor and the devices on the physical machine. This is
achieved by means of a reordering theorem (cf. Sect. 4.2). The memory virtualization
theorem is a property that has to hold for all possible interleavings. The reordering the-
orem allows us to focus only on those execution traces where the relevant actions of the
device driver and the device happen consecutively.

2.1 Basic Definitions

We denote the set of boolean values by B and set of natural numbers including zero by
N. For any natural x we denote the set of natural numbers less then x by Nx. We denote

the unbounded abstract list with elements of type T by T ∗ and the list of length n by T n.
The length of a list x is denoted by |x|, its element access by x[i], and the tail, e.g., the
part of the list without the first element, by tl(x). The operator 〈x〉 yields for a bit string
x ∈ B∗ the natural number represented by x. The fragment of a bit list from a position
a to b is denoted by x[b : a]. For a record x the set of all its possible configurations is
defined by Cx. A memory m is modeled as a mapping from addresses a to byte values
m[a]. An access to d consecutive memory cells starting at address a is abbreviated as
md [a] = m[a+d−1], . . . ,m[a].

We deal with an abstract model of computation, where N user processes are virtual
machines that run on a single physical machine. The memories of machines are logically
organized in pages of size P = 4K bytes. For a virtual address va ∈ B32 we define by
px(va) = va[31 : 12] and bx(va) = va[11 : 0] its page and byte indexes, respectively.
Represented as natural number we get px(va) = va/P and bx(va) = va mod P.

2.2 Physical Machine Specification

The physical machine is the sequential programming model of the VAMP hard-
ware [3] as seen by a system software programmer. It is parameterized by (i) the
set SAP ⊆ B5 of special purpose register addresses visible to physical machines, and
(ii) the number TPP of total physical memory pages which defines the set PMA =
{a | 0 ≤ 〈a〉< TPP ·P} ⊆ B32 of accessible physical memory addresses. The machines
are records pm = (pc,dpc,gpr,spr,m) with the following components: (i) the normal
pm.pc ∈ B32 and the delayed pm.dpc ∈ B32 program counters used to implement the
delayed branch mechanism, (ii) the general purpose register file pm.gpr ∈ B5 7→ B32,
and the special purpose register file pm.spr ∈ SAP 7→ B32, and (iii) the byte addressable
physical memory pm.m ∈ PMA 7→ B8.

We demand SAP to contain the following addresses: (i) mode, for the mode register,
and (ii) pto and ptl, for the page table origin resp. length registers whose values are
measured in pages. For any address a ∈ SAP we will abbreviate pm.spr[a] = pm.a. A
physical machine is running in system mode if pm.mode = 032 and in user mode if
pm.mode = 0311.

Address Translation and Page Faults In user mode a memory access to a virtual
address va is subject to address translation. It either redirects to the translated physical
memory address pma(pm,va) or generates a page fault.

The physical memory address is computed as follows. We interpret the mem-
ory region pm.mpm.ptl·P[pm.pto · P] as the current page table. Let ptea(pm,va) =
pm.pto ·P+4 ·px(va) be the page table entry address for virtual address va and
pte(pm,va) = pm.m4[ptea(pm,va)] be its page table entry. The page table en-
try is composed of three components, the physical page index ppx(pm,va) =
pte(pm,va)[31 : 12], the valid bit v(pm,va) = pte(pm,va)[11], and the protected bit
p(pm,va) = pte(pm,va)[10]. Concatenation of the physical page index and the byte
index yields the physical memory address pma(pm,va) = ppx(pm,va)◦bx(va).

In order to define page faults, let w∈B be active on write operations. The page fault
pf(pm,va,w) is raised if (i) the valid bit v(pm,va) is not set, or (ii) the write flag w and
the protected bit p(pm,va) are active.

Semantics The semantics of a physical machine is formally given by the transition
function δpm(pm) = pm′ yielding the next state configuration. If no page fault occurs the
effects of a transition are defined by the underlying instruction set architecture (ISA).
In case pf(pm,va,w) the program counters are set to the start address of the page fault
handler. We switch to system mode and the execution of the handler is triggered. After
its termination the mode is changed back and the user computation resumes.

2.3 Devices

From the viewpoint of the operating system the hard disk is a device . Before describing
the hard disk model, we sketch our general framework for memory-mapped devices (we
do not consider DMA here). A device x is a finite transition system which communi-
cates with (i) an unspecified external environment, and (ii) the processor. Examples for
input and output from and to the environment are incoming key press events and out-
going network packages. We denote inputs from the environment with eifix and outputs
with eifox. The processor reads and writes from and to a device by load- and store-word
operations to specific address regions. Both operations are signaled by an output func-
tion ω of the processor: ω(pm) = mifi. In case of a read operation, the device returns
requested data in form of an output called mifo. The transition of a device of type Cx is
then given by: δdevs(x,eifix,mifi) = (x′,mifo,eifox).

For all modeled device types DT and a set of device identifiers DI, the configuration
pmd = (pm,devs : DI →DT) describes the state of the processor and of all devices. The
processor and devices are executed in an interleaved way. An oracle, called execution
sequence (seq) determines for a given step number i whether the processor, i.e., seq(i) =
Proc or some device d makes a step, in which case the sequence also provides the input
from the environment: seq(i) = (d,eifixd). The function δpmd describes the execution
of the overall system. It takes as input the combined state of the processor and of all
devices, a step number and an execution sequence. A detailed description of the device
framework can be found in [1]. Next we instantiate one device with the hard disk.

Hard Disk Description We model a hard disk based on the ATA/ATAPI protocol.
Hard disks are parameterized over the number of sectors S. Each sector has a size of
128 words. We assume that the hard disk is large enough to store the total virtual page
space of all user processes. The processor can issue read or write commands to a range
of sectors, by writing the start address and the count of sectors to a special port. Each
sector is then read/written word by word from/to a sector buffer. After a complete sector
is written or read to the sector buffer, the hard disk needs some time to transfer data to
the sector memory. This amount of time is modeled as non-determinism by an oracle
input from the external environment, indicating the end of the transfer. In this case the
input eifihd is set to one. The hard disk can be run either in interrupt or polling mode.
We chose the second type.

In the following we only need the sector memory of the hard disk. Its domain ranges
over S · 128 words: hd = (sm : NS·128 7→ N256, . . .). A hard disk is necessarily an item
of the device system pmd.devs. We abbreviate an access to the hard disk of a physical
machine with devices as pmd.hd. A detailed description of the hard disk, its transitions
and a simple driver can be found in [8].

2.4 Virtual Machine Specification

Virtual machines are the hardware model visible for user processes. They give an
user the illusion of an address space exceeding the physical memory. No address
translation is required, hence page faults are invisible. The virtual machine’s param-
eters are: (i) the number TVP of total virtual memory pages which defines the set
of virtual memory addresses VMA = {a | 0 ≤ 〈a〉< TVP ·P} ⊆ B32, and (ii) the set
SAV ⊆ SAP\{mode,pto,ptl} of special purpose register addresses visible to virtual ma-
chines. Their configuration, formally, is a record vm = (pc,dpc,gpr,spr,m) where only
the vm.spr ∈ SAV 7→ B32 and vm.m ∈ VMA 7→ B8 differ from the physical machines.
The semantics is completely specified by the ISA.

2.5 Simulation Relation

A physical machine maintaining a page fault handler with a hard disk can simulate
virtual machines. The simulation relation, called the B-relation, specifies a (pseudo-)
parallel computation of N user processes up ∈CN

vm modeled as virtual machines on one
system pmd composed out of a physical machine, a hard disk, and other devices. The
computation proceeds as follows.

The physical machine maintains a variable cp designating which of the user pro-
cesses is meant to make a step. Unless a page fault occurs, the process up[cp] is up-
dated according to the semantics of virtual machines. Otherwise, the physical machine
invokes the page fault handler. After its execution, the user process continues the com-
putation. An appropriate page fault handler obeys the following rules: (i) it maintains
the list of N process control blocks (PCB) (described below), which permanently reside
in the memory of the physical machine, (ii) it is able to access page tables of processes
which lie consecutively in the physical memory, (iii) it has a data structure, called the
swap table which maps virtual addresses to swap page indexes. A swap memory address
sma(pm,a) is computed via an access to such a table.

Process control blocks implement the user processes. They contain fields for storing
the content of gpr and spr register files of all processes. When a user process currently
being run on the physical machine is interrupted by a page fault, the content of the
registers is copied into the PCBs before the execution of the page fault handler. Accord-
ingly, after the handler terminates the interrupted user process is restored by copying
the content of appropriate PCB fields back to the registers of the physical machine.

Now we define the B-relation. First, we must reconstruct virtual machines from the
contexts stored in PCBs. The function virt(pid,pmd) = vm yields the virtual machine
for process pid by taking the register values from the corresponding PCB fields. The
memory component of the built virtual machine is constructed out of physical memory
and the data on the hard disk depending where a certain memory page lies:

vm.m[a] =

{
pmd.pm.m[pma(pm,a)] if v(pm,a)
pmd.hd.sm[sma(pm,a)] otherwise

.

Then, the B-relation is: B(pmd,up) = ∀pid ∈ NN : virt(pid,pmd) = up[pid].

There is a small number of additional correctness relations omitted due to the lack
of space. The reader should refer to [5] for them.

Proving the correctness of memory virtualization is a one-to-n-step simulation be-
tween the virtual and the physical machine. One has to show that each step of a virtual
machine, can be simulated by n steps of the physical machine, while the B-relation
is preserved. The only interesting case in the proof is the occurrence of a page fault
during the execution of a load or store instruction. In all other cases, the semantics of
the virtual and the physical machines almost coincide. In the following we describe the
crucial part of the proof: the page fault handler execution leads to a non-page faulting
configuration maintaining the B-relation.

3 Page Fault Handler Implementation and Code Verification

3.1 Extended Hoare Logic

Our page fault handler is implemented in a high-level programming language with small
portions of inline assembler code for communication with the hard disk and to access
portions of memory that are not mapped to program variables (e.g., memory of user
processes). As programming language we use C0, which has been developed for and is
extensively used within the Verisoft project. In short C0 is Pascal with C syntax, i.e.,
its type-system is sound and it supports references but no pointer-arithmetic. Syntax
and semantics of C0 are fully formalized in Isabelle/HOL. Moreover, a compiler is
implemented and formally verified [10].

We use Hoare logic as an effective means of C0 program verification. Unfortunately
the inline assembler portions, that make hardware details visible towards the program-
ming language, break the abstractions C0 provides. We deal with the low-level inline
assembler parts, without breaking the Hoare logic abstraction for C0, by encapsulated
them into an atomic step on an extended state, a so called XCall. The extended state can
only be modified via a XCall.

We apply an instance of Schirmer’s Hoare logic environment [13] implemented in
Isabelle/HOL. He defines a set of Hoare rules, for a generic programming language
Simpl, and formally proves the soundness of this logic. Hoare rules describe a triple
{P}S{Q}, where precondition P defines the set of valid initial states of the C0 variables,
S is the statement to execute and postcondition Q is guaranteed to hold for the states
after execution of S. We prove total correctness and hence termination is guaranteed.

Additionally to the embedding of C0 into Simpl, we introduce some special treat-
ment for XCalls and refer to the resulting system as extended Hoare logic. First we
have to deal with the extended state space, i.e., the physical memory and the swap. In
Simpl we treat them analogous to C0 variables, with the only difference that they are
not restricted to C0 types. It is not necessary to introduce a new Hoare rule into Simpl
to handle XCalls. Instead we can use the ‘Basic’ construct of Simpl, a general assign-
ment which can deal with an arbitrary state update function f : { f (s)∈Q} Basic f {Q}.
On the level of Simpl every XCall is modelled as such a state update, representing the
abstract semantics of the XCall.

The specification of the page fault handler and its operations, and data types in gen-
eral, are not directly formulated on the level of the extended C0 state. Instead the C0

state is lifted to a more abstract model. For example a linked pointer structure may
be mapped to a HOL list. An abstraction relation abs relates the model a and the ex-
tended C0 state xc. The pre- and postconditions of Hoare triples then typically express
that the abstraction relation is preserved by the abstract operation and the correspond-
ing C0 implementation. When the operation on the abstract model transfers a to a′

then the extended C0 state has to make the analogous transition. Hence we prove sim-
ulation of the abstraction and the C0 program by the following specification scheme:
{abs(a,xc)}S{abs(a′,xc′)}.

In Sect. 3.2 we describe the C0 implementation of the page fault handler using
XCalls. Then we continue in Sect. 3.3 with the specification of the page fault handler by
an abstract model. The aforementioned Hoare logic verification ensures the simulation
of the implementation and the abstract model.

3.2 Implementation

Our page fault handler implementation [4] maintains several global data structures to
manage the physical and the swap memories. These data structures permanently reside
in the memory of a physical machine. They are used to support mechanisms of vir-
tual memory de- and allocation, and the page replacement strategy. The necessary data
structures comprise: (i) the process control blocks, (ii) the page and swap tables, and
(iii) active and free lists managing allocated and free user memory pages, respectively.

On the software level we distinguish the following page faults: (i) an invalid access
occurring when a desired page is not present in the physical memory, and (ii) the zero
protection page fault which signals a write access to a newly allocated page.

On the reset signal a page fault handler initialization code is executed. It brings the
data structures to a state where all the user physical pages are free, and page resp. swap
tables are filled with zeros. The page table lengths of all user processes are nulled, and
their origins are uniformly distributed inside the page table space.

When a memory page is allocated for a virtual machine it must be filled with ze-
ros. In order to avoid heavy swapping and zero-copying at a particular page index, we
optimize the allocation process by making all of the newly allocated pages point to the
zero filled page residing at page address adzfp. This page is always protected. Whenever
one reads from such a page a zero content is provided. At a write attempt to such a
page a zero protection page fault is raised. Thus, an allocation leaves the active and
free lists unchanged, possibly modifying the PCBs and the page table space in case a
movement of origins is needed. On the memory free, the descriptors of the released
pages are moved back to the free list, and the corresponding entries in the page tables
are invalidated.

On a page fault the handling routine is called. The free list is examined in order to
find out whether any unused page resides in the physical memory and could be given
to a page faulting process. If not, a page from an active list is evicted. An obtained
vacant page is then either filled with the desired data loaded from the disk, or with
zeros depending on the kind of page fault. The page table entry of an evicted page is
invalidated while the valid bit of a loaded page is set. We use the FIFO-eviction strategy,
which guarantees that the page swapped in during the previous call to the handler will
not be swapped out during the current call. This property is crucial for liveness of the

page fault handler since a single instruction can cause up to two page faults on the
physical machine — one during the fetch phase, the other during a load/store operation.

Programming Model and Extended State The semantics of C0 is defined as a small
step transition system on configurations c. In small step semantics, C0 configurations
are records c = (pr,s) where c.pr is the program rest and c.s is the ‘state’. The page
fault handler manipulates and hence must have access to the following components:

– Program variables as the free, and active lists, maintained only by the page fault
handler. These are ordinary C0 variables.

– The page tables which are used by the hardware for address translation. We simply
map them to an ordinary array variable in C0, where we solely have to ensure that
the allocation address of this array coincides with the page table origin used by
the physical machine during address translation. All the C0 data structures together
with the handler code consume TSP total system pages of physical memory.

– Physical memory of the machine running the handler. The page fault handler trans-
fers memory pages from the hard disk to the non-system region of physical mem-
ory which consists of TUP = TPP−TSP total user pages of physical memory, and
hence it must be able to manipulate the region pm.mTUP·P[TSP ·P]. As in C0 the
memory is not explicitly visible (e.g., through pointer arithmetic) we employ the
extended state to manipulate physical memory.

– The swap memory of the hard disk. An elementary device driver which swaps pages
from memory to the hard disk is an integral part of the page fault handler. Similar
to the virtual memory, the hard disk is out of the scope of the pure C0 machine, and
is handled by the extended state.

Access to the physical memory and the elementary device driver of the hard disk
are both implemented as inline assembler code in C0. As detailed in Sect. 3.1 we en-
capsulate inline code by atomic primitives, the XCalls. We augment the C0 small step
semantics to handle XCalls which results in a new transition system on extended con-
figurations xc = (c,mem ∈ NTUP 7→ NP

256,swap ∈ NTVP·N 7→ NP
256).

The semantics δxc of the new machine executes the small step transition function
of the C0 machine in case the head of the program rest is an ordinary C0 statement.
Otherwise the effects of the primitives are applied, i.e., in case the next statement is a
read command: xc.c.pr = readPage(xc,admem,adswap) we copy a page from the swap
to the virtual memory: xc′.mem(admem) = xc.swap(adswap). Whereas in case of a write
primitive xc.c.pr = writePage(xc,adswap,admem) we copy a page from physical memory
to the swap: xc′.swap(adswap) = xc.mem(admem).

The implementations of these primitives, mainly the elementary drivers, are verified
separately against their specification. Note, that at this point we even abstracted inter-
leaved device execution to one atomic step. In Sect. 4.2 we justify this abstraction by
stating the correctness of our driver implementation.

3.3 Specification

Abstract Page Fault Handler An abstract page fault handler is a high-level concept
of: (i) data structures from the implementation, (ii) physical memory of the machine

running a page fault handler, and (iii) hard disk of this machine. Before the formal
specification of the page fault handler two auxiliary concepts are formalized. They are
page descriptors and translation tables.

Page Descriptors A page descriptor is a record pd = (pid,vpx,ppx) holding the infor-
mation about one user page. Its fields are: (i) pd.pid ∈NN , a process identifier which de-
notes to which virtual machine an associated physical page belongs, (ii) pd.vpx∈NTVP,
a virtual page index showing to which virtual page the corresponding physical page be-
longs, and (iii) pd.ppx ∈ NTPP, a physical page index which points to the user page in
the physical memory.

Translation Table We abstract the page and the swap tables to the concept of a trans-
lation table. It allows us to easily determine the address of a virtual page in physi-
cal or swap memories. A translation table entry is a record tte = (ppx,spx,v) with
tte.ppx ∈ NTPP, tte.spx ∈ NTVP and tte.v ∈ B. The components are the physical page
index, the swap page index, and the valid bit, respectively.

Configuration The abstracted configuration of a page fault handler is a record pfh =
(active, free, tt,pto,ptl,mem,swap). The meaning of the components is: (i) the active
list pfh.active ∈C∗

pd of page descriptors associated with user memory pages that store a
virtual page, (ii) the free list pfh.free ∈ N∗

TPP of unused physical page indexes. We de-
mand |pfh.active|+ |pfh.free| = TUP since both lists describe physical memory pages
potentially accessible by a user, (iii) the translation table pfh.tt ∈CTVP

tte is an abstraction
of the physical memory region that stores page tables and swap tables. Each entry cor-
responds exactly to one virtual page, (iv) the vectors of the processes’ page table origins
pfh.pto ∈ NN

TVP and page table lengths pfh.ptl ∈ NN
TVP, (v) page addressable representa-

tions of the non-system part of the physical memory pfh.mem ∈ NTUP 7→ NP
256, and the

hard disk content pfh.swap ∈ NTVP·N 7→ NP
256.

The components pfh.(mem,swap) are supposed to be mapped one-to-one to the
corresponding components of the implementation configuration xc.

Page Faults Visible to the Software A page fault handler guarantees that after its
call a page associated with a virtual address va and a process pid will be in the phys-
ical memory. The translation table entry address for a virtual page index px(va) and a
process pid is defined as ttea(pfh,pid,px(va)) = pfh.pto[pid] ·P + px(va), and the cor-
responding translation table entry is tte(pfh,pid,px(va)) = pfh.tt[ttea(pfh,pid,px(va))].
We shorten an access to an entry’s component x ∈ {ppx,spx,v} as x(pfh,pid,px(va)) =
tte(pfh,pid,px(va)).x. By pf(pfh,pid,va) = v(pfh,pid,px(va))∨ppx(pfh,pid,px(va)) =
adzfp we define the page fault signal. The disjuncts denote the invalid access and the zero
protection page faults, respectively.

Obtaining a Non-Page Faulting Configuration A page fault handling routine in-
voked in a configuration pfh with pf(pfh,pid,va) steps to a configuration pfh′ with
pf(pfh′,pid,va) according to the following algorithm. First, a victim page descrip-
tor vic is selected depending on the length of the free list. Let E(pfh) hold in

case the free list in the configuration pfh is empty, i.e., |pfh.free| = 0. We set
vic = pfh.active[0] if E(pfh), and vic = (∗,∗,pfh.free[0]) otherwise. If the free list
is empty the descriptor of the page to be swapped in is removed from the head
of the active list, otherwise from the head of the free list, and is appended to the
active list. The vpx field of the descriptor is set to the px(va) value. Formally,
pfh′.active = tl(pfh.active)◦ (pid,px(va),vic.ppx) and pfh′.free = pfh.free if E(pfh),
and pfh′.active = pfh.active ◦ (pid,px(va),vic.ppx) and pfh′.free = tl(pfh.free) other-
wise. Further, in case of the empty free list the victim page is written to the swap mem-
ory. Formally, pfh′.swap = swap out(pfh,vic.pid,vic.ppx,vic.vpx) if E(pfh), where
swap out(pfh,pid,ppx,vpx) yields the modified swap component replacing the swap
page at address spx(pfh,pid,vpx) by pfh.mem[ppx]. The (obtained) free space in the
physical memory is either filled with zeros in case of the zero protection page fault or
with the page loaded from the swap memory. We set pfh′.mem = zfp(pfh,vic.ppx) if
ppx(pfh,pid,px(va)) = adzfp, and pfh′.mem = swap in(pfh,pid,vic.ppx,px(va)) other-
wise. The swap in(pfh,pid,ppx,vpx) returns a memory component where a page at ad-
dress ppx is updated with pfh.swap[spx(pfh,pid,vpx)], and zfp(pfh,ppx) yields a mem-
ory where the page ppx is filled with zeros. Finally, the translation table entry of the
evicted page is invalidated while the valid bit and the page index of the swapped in
page are appropriately set:

pfh′.tt[i].(ppx,v) =

(ppx(pfh,vic.pid,vic.vpx),0) if i = ttea(pfh,vic.pid,vic.vpx)
(vic.ppx,1) if i = ttea(pfh,pid,px(va))
pfh.tt[i].(ppx,v) otherwise

.

4 Correctness of the Page Fault Handler: Integrating Results

Conceptually, there are two correctness criteria for a page fault handler. Invoked in the
configuration pfh with the parameters (pid,va) it must guarantee, first of all, a page fault
no longer occurs at the address va. Secondly, it must preserve the B-relation which is
established for the first time after the page fault handler initialization code. Both prop-
erties follow from the functional correctness of the page fault handler implementation.

Mapping Implementation to Abstraction In order to state that the handler implemen-
tation respects abstraction we define the predicate map(c,pmd,pfh) which is, basically,
a conjunction of the three following statements: (i) the variables of the implementation
C0 machine c encode the data structures pfh.(active, free, tt,pto,ptl) of the abstraction,
(ii) the memory pmd.pm.m of the physical machine starting from the page TSP encodes
the abstract memory component pfh.mem, and (iii) the hard disk content pmd.hd.sm
stores the swap pages pfh.swap of the abstraction. This mapping is established for the
first time with the initial configuration of the abstract page fault handler and has to be
preserved under each call to the handler.

Mapping C0 to the Physical Machine Since the overall paging mechanism correct-
ness is stated on the level of the physical machine with devices, we relate C0 config-
urations to the physical machine states. Given an allocation function alloc mapping

variable names to memory locations, we relate a C0 configuration to its physical ma-
chine implementation. We use the compiler simulation relation consis(alloc)(c,pm),
which relates values of variables and pointers to memory regions and the program to
some code region of the physical machine. A further condition is control-consistency,
which states that the delayed PC of the physical machine (used to fetch instructions)
points to the start of the translated code of the program rest c.pr of the C0 machine.

Validity of the Abstract Page Fault Handler We demand a variety of properties to
hold over the page fault handler abstraction. These properties reflect the functional cor-
rectness and are necessary for the B-relation proof. The predicate valid(pfh) claims,
among others, the following: (i) all virtual addresses are translated into physical ad-
dresses outside the page fault handler code range, (ii) translation tables do not overlap,
(iii) page table origins of user processes are monotonic, and ttea(pfh,pid,px(va)) al-
ways addresses a value inside the translation table, (iv) the active list describes only
valid pages, and all the valid pages are described by the active list, (v) none of the vir-
tual pages of a given process might be stored by two or more active pages, and (vi) all
physical page indexes in active and free lists are distinct. Now we state the overall cor-
rectness theorem of a paging mechanism.

Theorem 1 (Paging Mechanism Correctness). Let c be the C0 machine calling the
handler function: c.pr = handler(pid,va);r, and let pfh be the abstract page fault han-
dler configuration. Let up be the user processes, and pmd = (pm,devs) be the physical
machine with devices. Assuming that (i) c is simulated by pm: consis(alloc)(c,pm),
(ii) the relation B(pmd,up) holds, (iii) c and pmd encode a valid configuration pfh:
map(c,pmd,pfh) ∧ valid(pfh), and (iv) a page fault takes place: pf(pfh,pid,va), then
there exists a number of steps T , s.t. pmd′ = (pm′,devs′) = δ T

pmd(pmd) after which (i) the
handler function is executed and the C0 machine remains consistent with the physical
one: ∃c′,alloc′ . consis(alloc′)(c′,pm′) ∧ c′.pr = r, (ii) the relation B(pmd′,up) is
preserved, and (iii) c′ and pmd′ encode a valid non-page faulting configuration pfh′:
map(c′,pmd′,pfh′) ∧ valid(pfh′) ∧ pf(pfh′,pid,va).

4.1 Compiler Correctness: From C0 to the Physical Machine

The compiler correctness theorem states that the execution of a given C0 program sim-
ulates the execution of the compiled program running on the hardware. It is formally
proven correct in Isabelle/HOL by Leinenbach [10].

Theorem 2. ∀t. consis(alloc)(c,pm) =⇒∃s,alloc′. consis(alloc′)(ct ,pms)

4.2 Driver Correctness

Implementation Model The driver calls are implemented as C0 functions with in-
line assembler code, where the inline code portion accesses the hard disk and ma-
nipulates the physical memory. An assembler instruction list il can be integrated by
a special statement Asm(il) into the C0 code. The control-consistency is extended in a
straightforward way to the new statement: an instruction list at the head of the program

P P PHD, rdy P P SI ...KEYB SI KEYB

writePage

KEYB ...SI SIPP PHD, rdy P KEYBP

Fig. 2. Reordering of device steps, with hard disk, serial interface and keyboard

rest maps to a memory region pointed at by the delayed PC of the physical machine:
c.pr = Asm(il);r∧ consis(alloc)(c,pm) =⇒ pm.m4·length(il)(pm.dpc) = il

The semantics of inline assembler is defined over the combined configuration of a
C0 and a physical machine with device state (c,pmd). We execute C0 transitions as long
as no assembler is met. In case of assembler instructions we switch, via the compiler
consistency relation, to the physical machine, execute the assembler code and switch
back to the C0 machine. For the last step, we only have to state how the C0 variables are
manipulated by the assembler code. This combination of assembler and C0 semantics is
the driver’s implementation model. Out of the two driver calls readPage and writePage
the latter and more complex one was formally verified.

Simulation Relation This paragraph outlines the correctness of the elementary hard
disk driver. First we have to define a simulation relation between our abstract state xc
and the implementation state (c,pmd). This relation is called xConsis(xc,c,pmd) and it
maps: (i) the abstract swap component to the sector memory defined in the hard disk:
xc.swapTUP[0] = pmd.hd.smTUP·K [0], (ii) the abstract memory component to total user
pages of physical memory: xc.memTUP[0] = pm.mTUP·P[TSP ·P], (iii) the program rest
of xc to the C0 program rest by substituting XCalls by their C0 with inline assembler
implementation, and (iv) machine c to the physical machine pm: consis(alloc)(c,pm).

Next we can state the simulation theorem, where pmdt,seq denotes the execution of
t steps under the oracle seq of the physical machine with devices:

Theorem 3. ∀seq. xConsis(xc,c,pmd) =⇒ ∃c′, t. xConsis(δxc(xc),c′,pmdt,seq)

The most challenging part of the correctness prove, is dealing with the interleaved de-
vice execution. We need a programmer’s model without unnecessary interleaving, and
we have to prove some atomicity of driver execution.

Non-Interference of Devices All devices take interleaved steps triggered by the en-
vironment. However we want to verify Theorem 3, ignoring all devices except the hard
disk. In the best case the proof would split in sequential assembler execution and device
steps analyzed separately. In principle we want to ensure that: (i) the execution of the
driver does not interfere with other devices than the hard disk, and (ii) the execution of
the driver can be considered as one atomic step.

These two properties follow from a simple observation of device execution. If the
processor is not accessing a device x and if device x is not triggering an interrupt we can
simply swap the execution of the processor and the device without changing the final
configuration. A similar lemma holds for swapping steps of two different devices.

xc

abstract transition systempfh

xc
extended C0 machine
(with swap and physical
memory component)

c c
C0 machine

pmd
physical machine with devices
(including hard disk model)

a
bs

up

x
C
on
si
s

pm
hd

co
n
si
s

pm
hd

up

B
-R
el

B
-R
el

x
C
on
sis

driver
XCall

a
bs

virtual memory specification

pfh

pmd

m
a
p

m
a
p m
a
p

m
a
p

co
n
si
s

Fig. 3. Page fault handler correctness: putting it all together

We generalized this basic observations to a reordering theorem (see Fig. 2): if all
interrupts are disabled and if the processor only accesses some device x during execut-
ing a given instruction list, we can move all other device steps after the time when the
instruction list is executed.

4.3 Proof Sketch of the Paging Mechanism Correctness

With the described methodology we are able to show Theorem 1. In brief, the proof idea
is as follows: we show the functional correctness of the page fault handler by reasoning
in Hoare logic, lift the results down to the level of the physical machine via the sound-
ness theorem of the Hoare logic [13] and Theorems 3 and 2, and infer the B-relation
by reasoning about the physical machine memory content. An overview is depicted in
Fig. 3. The order of proof steps of the paging mechanism are as follows. 1. Show the
validity of the Hoare triple {abs(pfh,xc)} handler(pid,va) {abs(pfh′,xc′)}. 2. Justify
the implication valid(pfh) =⇒ valid(pfh′). 3. From Theorem 3 obtain the number of
steps T and the implementation machine c′ in order to instantiate the existential quanti-
fiers in the conclusion: (a) via xConsis and (1) obtain the user part memories’ contents
pmd′.pm′.m and pmd′.hd′.sm that respect pfh′, and (b) via xConsis get that c′ is mapped
to pfh′. 4. Apply Theorem 2 in order to lift (3.c) down to the system part of the physical
memory pmd′.pm′.mTSP[0]. 5. We have mapped the user and system parts of physical
memory and hard disk content to the valid non-pagefaulting configuration pfh′. From
valid(pfh′) we are able to claim the properties about physical memory content sufficient
to show B(pmd′,up), which follows by case splitting on the page fault types.

5 Conclusion

The verification of 500 lines of C0 and 30 lines of assembler code and the reordering
theorems took us about 2 person years2. Not classical verification problems, as finding

2 Isabelle/HOL theories are available from http://www.verisoft.de/.

invariants, appeared to be the major problem. Rather unexpected and tedious work as
‘simple’ bitvector operations turned out to be very time consuming. A lot of further
effort, not elaborated in this paper, amounts to the integration of models, in particular
lifting properties to the overall kernel correctness result, as well as a language stack
covering different big- and small step semantics of C0.

This paper not only presents the methodology to deal with pervasive system veri-
fication, including inline assembler and driver code accessing interleaved devices, we
also verify an important piece of a kernel, running on a real and verified processor.
By that we give a strong argument for the feasibility of formal verification beyond its
application to abstract models and toy implementations.

References

1. E. Alkassar, M. Hillebrand, S. Knapp, R. Rusev, and S. Tverdyshev. Formal device and
programming model for a serial interface. In Proc., 4th International Verification Workshop
(VERIFY). CEUR-WS Workshop Proc., 2007.

2. W. Bevier, W. Hunt, Jr., J S. Moore, and W. Young. An approach to systems verification.
Journal of Automated Reasoning, 5(4):411–428, December 1989.

3. Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach, and Wolfgang Paul.
Putting it all together: Formal verification of the VAMP. International Journal on Software
Tools for Technology Transfer, 8(4–5):411–430, August 2006.

4. C. Condea. Design and implementation of a page fault handler in C0. Master’s thesis,
Saarland University, July 2006.

5. M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the correctness of operating
system kernels. In Proc. 18th TPHOLs, volume 3603, pages 1–16. Springer, 2005.

6. G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. Petters. Towards trustworthy computing
systems: Taking microkernels to the next level. Operating Systems Review, July 2007.

7. M. Hillebrand. Address Spaces and Virtual Memory: Specification, Implementation, and
Correctness. PhD thesis, Saarland University, Computer Science Department, June 2005.

8. M. Hillebrand, T. In der Rieden, and W. Paul. Dealing with I/O devices in the context of
pervasive system verification. In ICCD ’05, pages 309–316. IEEE Computer Society, 2005.

9. M. Hohmuth, H. Tews, and S. Stephens. Applying source-code verification to a microkernel:
the vfiasco project. In Proc. 10th ACM SIGOPS, pages 165–169. ACM Press, 2002.

10. D. Leinenbach and E. Petrova. Pervasive compiler verification – from verified programs to
verified systems. In 3rd SSV’08, to appear. Elsevier Science B. V., 2008.

11. P. Neumann and R. Feiertag. PSOS revisited. In In Proc. 19th ACSAC, 2003.
12. Z. Ni, D. Yu, and Z. Shao. Using xcap to certify realistic systems code: Machine context

management. In Proc. 20th TPHOLs, pages 189–206. LNCS, 2007.
13. N. Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,

Technische Universität München, April 2006.
14. H. Tuch and G. Klein. Verifying the L4 virtual memory subsystem. In Proc. NICTA Formal

Methods Workshop on Operating Systems Verification, pages 73–97. NICTA, 2004.
15. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In Proc. 34th POPL,

pages 97–108. ACM Press, 2007.
16. B. Walker, R. Kemmerer, and G. Popek. Specification and verification of the UCLA Unix

security kernel. Commun. ACM, 23(2):118–131, 1980.

