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Abstract

Verification of imperative programs means reasoning about modifications of a program state. So proper
representation of state spaces is crucial for the usability of a corresponding verification environment. In this
paper we discuss various existing state space models under different aspects like strong typing, modularity
and scalability. We also propose a variant based on the locale infrastructure of Isabelle. Thus we manage
to combine the advantages of previous formulations (without suffering from their disadvantages), and gain
extra flexibility in composing state space components (inherited from the modularity of locales).
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1 Introduction

The core of any kind of imperative program is the update of a system state. Every
theorem proving approach for reasoning about imperative programs involves a for-
mal representation of the system state at the base of the program calculus, whether
this is UNITY [1], TLA [15], Hoare logics [8,11,20], or others [9,22,6].

An adequate formal model for representing program state is a delicate issue. The
model has to be sufficiently detailed to express the properties to be verified, but
excessive detail may pose a burden to interactive verification due to “formal noise”
that conceals the interesting problems. Even more, some specific properties of a
programming language may have to be reflected in the state space model. E.g. Java
ensures that only initialised variables are accessed, whereas C lacks such guarantees.
In the latter case, it is desirable to ensure the absence of illegal memory accesses by
formal verification. For Java a state space model that abstracts from initialisation
is fine, but it would be ill-suited for C.
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This short discussion already shows that we cannot expect a single solution that
fits best to all possible applications. Our particular motivation for this work was
reasoning about C0 programs (a type-safe subset of C), within the Verisoft project. 4

Here the state was represented as a record in a general Hoare logic environment
[20], implemented in Isabelle/HOL [17]. It turned out that the main limitation of
this record representation is a lack of compositionality and scalability in the large
verification tasks of Verisoft.

In the present paper we introduce an improved version of state spaces, which is
also of interest beyond Hoare logic reasoning: it can be viewed as a general concept
for abstract open records in HOL with support for multiple inheritance.

Preliminaries. Isabelle is a generic logical framework which works with different
object logics. We only refer to Isabelle/HOL [17], which is an implementation of
higher-order logic augmented with facilities for defining datatypes, records, induc-
tive sets, recursive functions etc. The implementation language of Isabelle is SML,
which can also be used at run-time to program and extend the system in a logically
sound manner, according to the well-known “LCF approach”.

Keywords like lemma, record, locale, etc. refer to Isabelle theory commands.
The notation for types, terms and propositions approximates standard mathemati-
cal notation, with a bias towards λ-calculus. There are the usual type constructors
T 1 × T 2 for product and T 1 ⇒ T 2 for the total function space. For type vari-
ables we use greek letters α, β, γ or alternatively ′name for longer names. For type
constants we use plain identifiers (e.g. name). The term language refers to abstrac-
tion λx ::α. b (where types are usually left implicit thanks to type-inference), and
curried function application as in f x y. Functional update of f at position x with
new value v is written f (x := v). The Isabelle framework expresses proof rules in
Natural Deduction style, using

∧
for quantification and =⇒ for implication.

Overview. In §2 we examine some expected requirements of state space models.
In §3 we discuss existing state space representations, covering functions, tuples,
records, and abstract types. In §4 we introduce our variant based on locales in
Isabelle, and report on its application in the context of a Hoare logic.

2 Requirements of State Space Models

In principle, modelling state spaces for imperative programming languages is trivial.
In mathematics, a state may be seen as a function from a set of names to a set of
values, with range restrictions V n depending on field names n, i.e. s: N ⇀ V where
V =

⋃
n∈N V n and ∀n ∈ N . s n ∈ V n. In an untyped logic like set theory this

is a reasonable approach [21,13]; the same idea may be formalised in type-theory
as a dependent function space. As we intend to produce formal reasoning tools in
the end, we now step back from purely logical foundations and reconsider high-level
requirements arising in practical verification.

Lookup and update. The most basic features of a state space is the lookup
and update of a variable, as they appear in programming language expressions,
assertions, or in statements. To reason about a global state it is also crucial to

4 http://www.verisoft.de
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express so-called frame conditions, the parts of a state that do not change during
certain operations. Putting those aspects together we need means to access an
individual variable and also its complement (all other variables).

Typing. Typed programming languages structure the program state by assigning
different types to the variables. Programming language types can either be mapped
to HOL types or HOL terms (e.g. as sets). If the programming language is type-safe
and the HOL type system is expressive enough it is desirable to map the program
types directly to HOL types. Thus strong typing of the underlying logic is directly
employed to support verification of imperative programs.

Modularity. When composing a system from several components the question
of modularity of the reasoning framework appears. Immediate compositionality
demands a uniform representation of the state space of the different components.
Otherwise intermediate steps may have to be introduced to lift a component and a
property to the combined state space. If components are replicated, renaming may
also become important for compositionality. E.g. consider a library for linked heap
lists that regards only a next pointer for operations like append, reverse, etc. This
basic structure may appear in various kinds of lists, like strings or queues. Then it
is desirable to verify the library only once for an abstract next-field, and instantiate
it later for various kinds of lists present in the application.

Scalability. We want to handle non-trivial programs, say with hundreds of global
variables (e.g. a compiler for C0 written in C0). The state space model needs to
support this, despite the resource limitations of contemporary computers.

3 Existing Models

3.1 State as Function

The first attempt to embed a programming logic into HOL is the work of Gordon [8].
He represents the state as function from names to values: name ⇒ value. Variable
names are first-class objects of HOL, which means that we can quantify over them.
For example, the frame condition ∀ x . x 6= y −→ s1 x = s2 x expresses that states s1

and s2 may only be different for variable y. The domain of all variables is represented
by the same HOL type, namely value. Gordon and later Homeier [11] only consider
programs with variables ranging over numbers. Treating variables of different types
or even composite types like arrays requires a more complex representation of values.
In his formalisation of Dijkstra, Harrison [9] uses an inductive datatype to address
this problem, e.g.:

datatype value = Intg int | Bool bool | Array value list.

The different representations for integers (int), Booleans (bool) and arrays (value
list) are injected into the type value by the constructors Intg, Bool and Array.
By modelling arrays as lists of values also nested arrays can be expressed. An
example array of array of integers is Array [Array [Intg 1, Intg 2], Array [Intg 3,

Intg 4]]. A drawback of this approach is that a mixed array like Array [Intg 1,

Bool b] is a perfectly legal value but is typically ruled out by the type system of
the programming language. This issue carries on to expressions, where we have
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to explicitly deal with programming language typing within HOL. Consider the
simple statement x := y + 1. Such an assignment boils down to a function update
in our state space. To handle the addition we somehow have to lift the HOL
addition that is defined for type int to type value. There are two possibilities:
project the arguments or lift the operation. Even in case of a deep embedding of the
expression and statement language the evaluation function implements one of those
two possibilities (or maybe a mixture of both of them).

Projecting arguments (aggressive evaluation): For each variable type we de-
fine a projection function. E.g. the function the-Intg for type int :

the-Intg :: value ⇒ int

the-Intg (Intg i) = i

Since HOL functions are total the term the-Intg (Bool b) is legal, but results in
an unspecified int. The assignment x := y + 1 is modelled as:

s(x := Intg (the-Intg (s y) + 1)).

Here s is the current state, which is updated at position x. We have to insert pro-
jections and injections into the original expression, which carries on to assertions
about the program and therefore clutters up the verification task, unless we find
some means to hide these indirections.

Lifting operations (type-sensitive evaluation): In this approach we explicitly
fix the binary operations and define their evaluation for values:

datatype bop = Add | And

eval :: (bop × value × value) ⇒ value

eval (Add , Intg n, Intg m) = Intg (n + m)

eval (And , Bool b, Bool c) = Bool (b ∧ c)

Again eval is under-specified, if the arguments have different types. In this setting
our assignment x := y + 1 becomes s(x := eval (Add , s y , Intg 1)).

Since the set of possible operations is made explicit by the datatype bop, the
evaluation function eval can take care of typing issues and implicitly perform
the projections from value. However, primitive values like 1 have to be injected
into type value now. Moreover, basic properties of the operations only hold for
correctly typed expressions. E.g. commutativity of addition: eval (Add , n, m)
= eval (Add , m, n) only holds, if we know that both arguments are of the form
Intg i. In this case we can reduce the addition on type value to the ordinary
integer addition and inherit its properties. We need to insert those explicit type
constraints into the assertions about the program to be able to lift the logical
properties of the operations for types int or bool to type value. This basically
means that we prove type safety of evaluation every time we reason about ex-
pressions. This is annoying, since for a type-safe programming language this can
be shown once and for all.

Comparing the two approaches, the first works well when type-safety is already
guaranteed by the programming language. Then it is sufficient to use the aggressive

4



Schirmer and Wenzel

evaluation strategy for expressions and assertions. Type-safety is naturally reflected
in the logical representation in the sense that the projections and injections cancel
each other in individual programs. E.g. if variable i is supposed to store an int,
every update introduces the constructor Intg and a lookup (as it may appear in
an assertion) uses the corresponding destructor the-Intg, but not the-Bool etc. The
abstraction level on which assertions are formulated is the-Intg (s i) and not some-
thing like s i = Intg n. This uniform view on a state as holding atomic entities in
the projected form the-Intg (s i) avoids implicit type constraints that would have
to be discharged later. This is exactly the same view as provided by the other state
space representations discussed below.

The second approach demands explicit typing constraints in assertions. This
only makes sense if type-safe execution is not guaranteed and is therefore an essential
part of the verification or if the type-system of the programming language cannot
easily be mapped to the simple types of HOL.

In general, representing the state as a function leads to a uniform representation
for all components and thus the components can be developed independently of each
other. To achieve compositionality the tool only has to ensure that the names used
in different components are distinct. Using strings as names and some kind of name
mangling seem to be appealing at first sight. However, strings in Isabelle/HOL are
implemented as lists of characters and are rather heavyweight objects in this setting,
where the only required property is to check whether names are different. Renaming
of variables is not easily achieved, since it demands an explicit transformation of
the program and the assertions.

The restriction to one common universal type of values is another (theoretical)
burden. We need to know in advance which values are embedded. This contradicts
the very idea of truly modular development of components. However, as long as all
the different values of the programming language can be embedded into an inductive
datatype once and for all, this is not a practical issue.

3.2 State as Tuple

As alternative to states as functions, Wright et al. [22] propose tuples. Variables
are identified by position in the tuple rather than by name. E.g. the tuple int ×
int × bool represents a state space with three variables of type int, int, and bool,
respectively. Each variable thereby has an individual HOL type. The typing issues
of the “state as function” approach are eliminated since the artificial super-type
for all variables is avoided. Variable types are identified with HOL types, and type
inference ensures well-typed expressions.

By choosing the names of bound variables when abstracting over the state space,
one can even annotate expressions with the programming language variables. Ab-
straction naturally occurs in assertions, if they are represented as predicates state
⇒ bool, or in update functions state ⇒ state. E.g. the state update of our running
example x := y + 1 can be encoded in the following function:

λ(x , y , b). (y + 1, y , b)

Using λ-abstraction the variables of the tuple are named x, y and b. If all variables
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are known, this translation from the assignment to the state update can be handled
by a mere syntactic translation. However, great care has to be taken, since those
translations have to account for all variable names and their order in the tuple.
Moreover, names of bound variables can only be considered as comments for the
reader. Due to α-conversion there is no logical difference between λ(x , y , b). (y + 1,

y , b) and λ(n, m, k). (m + 1, m, k). Note that a one-to-one translation between
the input and output syntax is not always possible. Consider the two assignments
x := x and y := y. Both would be mapped to the same internal form: λ(x , y , b).
(x , y , b), the identity function.

Since variables lack proper names, we cannot quantify over them. Fortunately,
typical assertions do not quantify over variables, but merely refer to their values
within the state. This works in the same fashion as the state update above. How
can we express frame conditions? To specify that only the value of y may change,
one can list all other variables: x 1 = x 2 ∧ b1 = b2. This is how frame conditions
work out in principle, but the main drawback is poor modularity. Every time we
add a new variable to the program, we have to adapt those specifications.

Poor compositionality is also caused by the lack of a uniform state for all com-
ponents. If we attempt to combine two components we can first build the Cartesian
product of the underlying state spaces and try to rerun the old proofs. However,
this will only work if the variable names occurring in the proofs are distinct to begin
with. Elsewise we could try to come up with a calculus for composition, that lifts
components to the Cartesian products.

Scalability of the tuple approach is limited in Isabelle/HOL. The problem is
that the state tuple is explicitly split in every expression like λ(x , y , b). (x ′, y ′,

b ′). The type information stored in such a split tuple grows quadratically with the
size of the tuple: the underlying Pair constructor is polymorphic: Pair ::α ⇒ β ⇒
α × β. Every constructor application is fully annotated with its type and a tuple
(x 1, x 2,. . .) is internally Pair x 1 (Pair x 2 . . .). The situation is similar for tuple
abstraction, which is based on split :: (α ⇒ β ⇒ γ) ⇒ α × β ⇒ γ.

3.3 State as Record

Records are similar to tuples, but additionally allow us to give proper names to
variables. They were proposed by Wenzel [23] as state space representation and
successfully used by Prensa [19] for the verification of parallel programs and by
Paulson [18] for the formalisation of UNITY. Records enhance tuples by supplying
selection and update functions for each constituent. For example,

record state =
x ::int
y ::int
b::bool

yields the selectors x :: state ⇒ int, y :: state ⇒ int and b :: state ⇒ bool, and
update functions x-update :: int ⇒ state ⇒ state, y-update :: int ⇒ state ⇒ state
and b-update :: bool ⇒ state ⇒ state. A record update x-update i s is written as
s(|x := i |). Then x := y + 1 becomes s(|x := y s + 1|).
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With selectors and updates as explicit functions, it is also easy to provide no-
tation for program expressions, commands and annotations [23], closely resembling
informal presentations. For example, the assertion {s. y s = x s + a} (a set-
comprehension over states) may then be written as {|y = x + a|}.

As with tuples we still cannot quantify over variable names, since record field
names are not first-class objects of HOL. A field is merely characterised by its
selection and update functions. However, due to extensional equality we can now
specify that only y may change, without having to mention the other variables: ∃ i .
s2 = s1(|y := i |). Both in this specification and the assignment above, only the
relevant portions of the state space occur. This improves modularity compared to
tuples. If the framework takes care to assign distinct variable names to different
components, we can replace the record of a component with the record containing
all variable names of all components and the proofs still remain valid when we rerun
them. Even better, we can avoid rerunning the session by exploiting the extensibility
of records in Isabelle/HOL [16,17]. Every record has an extension field “. . .” of
arbitrary type. By instantiating this slot with a new chunk of record-fields the
record can be extended. This new chunk again contains a polymorphic “. . .” field for
further extensions. Thanks to this structural sub-typing, we get linear extensions of
records essentially for free. Brucker and Wolff [6] handle single inheritance of object
oriented programs by adding another dimension to this construction, employing a
polymorphic sum. This allows to add various subclasses on the same level.

To get beyond a linear development of component states, we can develop a calcu-
lus for record composition, by defining an operator that transforms the state space
by lifting all operations and assertions from a component state to the compound
state. This approach is implemented and elaborated for a Hoare logic [20], but it
gets technically tedious to implement in the tool and is rather heavyweight. Paul-
son [18] has developed a theory of program composition for UNITY, experiencing
similar inconveniences.

Scalability of records is better than for raw tuples. By using lookup and up-
date functions the record is not explicitly split in every expression. Moreover,
the representing type for records may be grouped according to the structure of
record extensions, not individual record fields. This reduces the number of nested
tuple constructions. However, the 2008/2009 version of the record package in Is-
abelle/HOL still decomposes records internally to prove some auxiliary theorems,
e.g. in the simplification procedure that proves that an update of a field x does not
affect the value of another field y. Hence the performance of records also suffers
from their size. In Isabelle/HOL records are defined as an abstraction on tuples
nested to the right. Better results may be achieved by balanced nesting of tuples
as a binary tree, as for example implemented in HOL4. 5

3.4 State as Abstract Type

Merz [15] aims at a uniform global state representation combined with strong typing
of variables. The idea is to regard the state as an abstract type state with a co-

5 Personal communication with Michael Norrish.
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algebraic structure imposed by inspectors like N :: state ⇒ nat and B :: state ⇒
bool to represent the variables. Rather than defining the type and the inspector
functions, their behaviour is characterised axiomatically. Update functions are not
directly supported but in a relational framework the effect can be described with the
inspector functions alone, e.g. {(s1, s2). N s2 = N s1 + 1}. The axioms basically
need to ensure that variables can be updated independently, which requires all
variables to be known in advance. So modularity is limited to addition of new
variables without old proof scripts breaking. Similarly, Back and von Wright [2]
axiomatise both the lookup and update functions.

Without having to rely on global axioms, Heyd and Crégut [10] employ the
section-concept of Coq to declare only the parts of the state that are used by
a component within their formalisation of UNITY. The state is not completely
abstract, but modelled as a dependent function from variable names to the domain
of each variable. The sections maintain the assumptions on the distinctness of
variables and their types and provide projection and injections similar to the “state
as function” approach. Given a compound state, which holds all variables of all
components, the assumptions of the individual components can be discharged. The
individual correctness results for each component are transferred to the compound
state. However, Coq sections cannot be easily reassembled after being closed. So
incremental development of libraries building on each other demands a lot of manual
work. Heyd and Crégut also request better tool support to handle notation that
hides the projections and injections.

4 The Locale Way

Let us briefly reconsider the particular benefits of the different approaches discussed
so far. State as a tuple gives us strong typing for the variables, and records provide
a convenient view on the state, by providing dedicated lookup and update functions
for variables. Regarding compositionality, the clear winner is the “state as function”
approach, for the following intuitive reason: imperative programs and the typical
specifications we intend to prove only require the state to have at least a particular
set of distinct variables. This idea is directly captured in a function with an infinite
domain of names. Whereas tuples and records are overly specific in the sense that
they restrict the state to exactly these variables.

The problems described with the “state as function” approach essentially boil
down to the need to make everything concrete, such as concrete names for variables
and a concrete universal type for all possible values. This makes it hard for the tool
implementor to provide a modular framework for the independent development of
different components.

We now employ Isabelle locales [12,3,4], to make everything abstract. Names are
represented by a type variable ′name and we assume all free variables, of that type,
which are used in the component, to be distinct. Similarly, values are of type ′value
and we assume the presence of injection and projection functions that we need for a
concrete component. All reasoning about programs is carried out abstractly relative
to these assumptions. Locales enable rename, merge and addition of state space
components as we compose our program segments. When the main program (or
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procedure) is assembled we can discharge the accumulated assumptions by providing
distinct names and a value type that is big enough to hold all the types occurring
in the program (e.g. a suitable sum type). In analogy to a compiler, reasoning first
proceeds in an abstract, symbolic state space; then we “link” the whole program by
assigning concrete names. The resulting theorems no longer mention any hypotheses
about the state space construction.

4.1 Proof Contexts and Locales

Every proof in Isabelle depends on a background data structure called proof context,
which was originally introduced by Wenzel [24,25] to support structured proof texts
written in the Isar language. In a sense, a proof context is just “abstract nonsense”
that helps to organise formal reasoning; a context may hold arbitrary data that can
be declared at compile-time in a type-safe manner.

The original model for this notion of context stems from certain aspects of the
underlying logical calculus of Isabelle (and the HOL family in general): here the
main judgement Γ ` B means that proposition B is derivable within an environment
Γ = α1, . . ., αl, x 1, . . ., xm, A1, . . ., An consisting of fixed type variables, term
variables, and hypotheses. Isabelle provides explicit notation to establish theorems
within a local context, for example:

lemma fixes x ::α assumes a: A x shows b: B x 〈proof 〉

The proof may refer to a fixed parameter x ::α and local fact a: A x, while the final
result is exported from that context as a rule b:

∧
x . A x =⇒ B x. Note that types

are usually left implicit, any type variable occurring in a statement is implicitly
fixed according to schematic polymorphism. At the outer level, term parameters
may be fixed automatically as well, i.e. the above fixes is optional.

Apart from such purely logical assumptions and conclusions, the context may
also hold additional non-logical information (type constraints, concrete syntax, hints
for proof tools etc.). Thus the content of a context may be understood as arbitrary
data that is abstracted over logical entities (types, terms, theorems).

The locale mechanism [12] of Isabelle manages high-level composition of con-
texts, supporting incremental additions of conclusions later on. For example:

locale loc = fixes x ::α assumes a: A x
lemma (in loc) b: B x 〈proof 〉
lemma (in loc) c: C x 〈proof 〉

The annotation “(in loc)” causes the context of locale loc to be reconstructed,
such that its content is available during the proof; the local result is stored within
that context for later use in further conclusions; a global version is exported to the
toplevel as in the immediate version of fixes/assumes/shows above. Additional
contextual hints may be given using attributes (written as postfix application), e.g.
the following command declares rules to the simplifier:

declare (in loc) b [simp] and c [simp]
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The simp declaration is essentially a function thm → context → context that adds
a given theorem to the simpset maintained as context data.

Locale expressions [3] compose existing locales via merge and rename operations.
Multiple inheritance between locales can be expressed here. A new locale definition
may add assumptions to a locale expression. Locale interpretation [4] transfers re-
sults stemming from one locale into another context. Interpretation works between
locales, within a proof body, or at the outer theory level.

A morphism formalises the idea of moving results between contexts, adapting
logical dependencies accordingly. Hence a morphism ϕ may be represented as a
tuple (ϕtype, ϕterm, ϕthm) of mappings on those formal categories. This is further
abstract nonsense to organise logical reasoning systematically. E.g. an export mor-
phism between contexts Γ1 ⊆ Γ2 imposes the difference of assumptions on resulting
theorems, by discharging hypotheses and introducing =⇒ etc. This is how the above
rules b and c are exported into the global theory environment. Another important
special case is an interpretation morphism: given concrete types and terms for fixed
variables, and theorems for hypotheses, the corresponding substitution operation
transforms a result from an abstract theory into a concrete situation. Thus locale
interpretation can be explained succinctly.

With the help of explicit morphisms, we can easily generalise the idea of declaring
theorems to the context (cf. the simp attribute above) towards arbitrary data that
may be re-interpreted in different situations. A declaration is any function of type
morphism → context → context that augments a context in a monotonic fashion.
Declarations may be added to a locale using the command declaration (in loc).
The locale infrastructure maintains a canonical order of declarations d1, . . ., dn.
Whenever the locale context is re-entered in a situation described by a morphism
ϕ, the context is augmented to become the collective declaration dn ϕ (. . .(d1 ϕ

Γ). . .). This means that every time a locale context is reconstructed, all the data will
be back in its proper place, as the effect of invoking the collection of declarations.
Here the morphism tells how to interpret abstract concepts in the present situation.
This facility can be used in numerous ways, such as maintaining information about
state space field names and types.

4.2 Abstract State Spaces as Locales

Isabelle allows to add new top-level commands to the system. Building on the locale
infrastructure, we provide a command statespace 6 like this:

statespace vars =
n::nat
b::bool

This resembles a record definition (§3.3), but introduces sophisticated locale in-
frastructure instead of HOL type schemes. The resulting context postulates two
distinct names n and b and projection / injection functions that convert from ab-
stract values to nat and bool. The logical content of the locale is:

6 This is part of the Isabelle distribution since Isabelle2008; the subsequent examples use Isabelle2009.
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locale vars ′ =
fixes n:: ′name and b:: ′name
assumes distinct [n, b]

fixes project-nat :: ′value ⇒ nat and inject-nat ::nat ⇒ ′value
assumes

∧
n. project-nat (inject-nat n) = n

fixes project-bool :: ′value ⇒ bool and inject-bool ::bool ⇒ ′value
assumes

∧
b. project-bool (inject-bool b) = b

The HOL predicate distinct describes distinctness of all names in the context. Lo-
cale vars ′ defines the raw logical content that is defined in the state space locale.
We also maintain non-logical context information to support the user:

• Syntax for state lookup and updates that automatically inserts the corresponding
projection and injection functions.

• Setup for the proof tools that exploit the distinctness information and the can-
cellation of projections and injections in deductions and simplifications.

This extra-logical information is added to the locale in form of declarations,
which associate the name of a variable to the corresponding projection and injec-
tion functions to handle the syntax transformations, and a link from the variable
name to the corresponding distinctness theorem. As state spaces are merged or
extended there are multiple distinctness theorems in the context. Our declara-
tions take care that the link always points to the strongest distinctness assumption.
With these declarations in place, a lookup can be written as s·n, which is trans-
lated to project-nat (s n), and an update as s〈n := 2〉, which is translated to s(n
:= inject-nat 2). We can now establish the following lemma:

lemma (in vars) foo: s〈n := 2〉·b = s·b by simp

Here the simplifier was able to refer to distinctness of b and n to solve the equation.
The resulting lemma is also recorded in locale vars for later use and is automatically
propagated to all its interpretations. Here is another example:

statespace α varsX = vars [n=N , b=B ] + vars + x ::α

The state space varsX imports two copies of the state space vars, where one has
the variables renamed to upper-case letters, and adds another variable x of type α.
This type is fixed inside the state space but may get instantiated later on, analogous
to type parameters of an ML-functor. The distinctness assumption is now distinct
[N , B , n, b, x ], from this we can derive both distinct [N , B ] and distinct [n, b], the
distinction assumptions for the two versions of locale vars above. Moreover we have
all necessary projection and injection assumptions available. These assumptions to-
gether allow us to establish state space varsX as an interpretation of both instances
of locale vars. Hence we inherit both variants of theorem foo: s〈N := 2〉·B = s·B
as well as s〈n := 2〉·b = s·b. These are immediate consequences of performing the
locale interpretation.

The declarations for syntax and the distinctness theorems also observe the mor-
phisms generated by the locale package due to the renaming n = N :

lemma (in varsX ) foo: s〈N := 2〉·x = s·x by simp
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To assure scalability towards many distinct names, the distinctness predicate
is refined to operate on balanced trees. Thus we get logarithmic certificates for
the distinctness of two names by the distinctness of the paths in the tree. Asked
for the distinctness of two names, our tool produces the paths of the variables in
the tree (this is implemented in SML, outside the logic) and returns a certificate
corresponding to the different paths. Merging state spaces requires to prove that
the combined distinctness assumption implies the distinctness assumptions of the
components. Such a proof is of the order m · log n, where n and m are the number
of nodes in the larger and smaller tree, respectively.

4.3 Integration into the Hoare Logic Environment

We now examine the integration of the new state space implementation into the
Hoare logic environment [20] and see how it benefits from it. 7 The underlying pro-
gramming language model is generic wrt. the state space representation. In the
current implementation the verification is partitioned on the granularity of proce-
dures. To properly handle procedure calls the framework represents the state as a
polymorphic pair where one component stores the local variables and the other the
global ones (including the heap). On return of a procedure call the global variables
of the callee are passed back to the caller, whereas the local variables of the caller
are restored. With this mechanism the framework handles the scoping correctly
without depending on any further details of the concrete representation for local
and global variables. Previously, records were used for state spaces. Although the
scoping is already handled by the Hoare logic, the usage of records to represent local
variables has the odd effect that the local variables of different procedures appear
side-by-side in the record, blowing up its size. It is however possible to share local
variables of the same name and the same HOL type. Besides this inconvenience
of local variables, the Hoare logic inherits the same advantages and disadvantages
from the underlying record representation as discussed before (§3.3). Now records
are replaced by state spaces, which we explain by the example of list reversal.

The heap may hold structured values (e.g. struct in C). Our heap model follows
Bornat [5]: instead of a single heap of structured components there is a separate
heap for each field. Type ref is an abstract type for references. A structure to
represent a linked list in the heap is struct list {struct list *next;}. The
structure contains only the component next. So we get one heap variable next of
type ref ⇒ ref in the global state space:

statespace globals-list =
next ::ref ⇒ ref

procedures (imports globals-list) Rev(p::ref |q ::ref )
where r ::ref
in q := Null ; WHILE p 6= Null DO r := p; p := p→next; r→next := q; q := r OD

The procedures command defines the new procedure Rev importing the global
state space. The input parameter p, the output parameter q as well as the local
variable r together define a separate local state space (which does not have to be

7 Available from the Archive of Formal Proofs: http://afp.sourceforge.net/entries/Simpl.shtml.
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merged with the global state space, as the Hoare logic already distinguishes local
and global variables). The syntax for statements and assertions builds on the in-
frastructure of the state spaces so that the user is not bothered with projections
and injections into the value type. The notation x→f mimics composition of deref-
erencing a pointer with field selection in C and is translated to function lookup or
update, depending on its occurrence as value or left-value.

Whenever we refer to a variable of the state space it is typeset in a sans-serif font.
So p expands to s·p for some bound state s that is introduced by the surrounding
syntax. For example, the loop condition above formally is a state set. The expanded
version reads like {s. s·p 6= Null} in Isabelle’s set-comprehension notation combined
with the lookup syntax of state spaces. Similarly the assertions in the following
lemma are translated to Isabelle’s set-comprehension.

The procedures command combines the state space locales in a new locale
named Rev-impl. To be able to rename procedures, e.g. to use several instantiations
simultaneously, this locale also contains the procedure name Rev as a parameter
and the assumption that in the procedure environment Γ (function from procedure
names to bodies) at the position Rev the corresponding body is found. Within this
locale we can prove the following lemma for list reversal:

lemma (in Rev-impl) shows
Rev-spec: ∀Ps. Γ` {|List p next Ps|} q := PROC Rev(p) {|List q next (rev Ps)|}

This specification of procedures on heap lists follows Mehta and Nipkow [14].
From the pointer structure in the heap we (relationally) abstract to HOL lists of
references. The predicate List p next Ps expresses that we obtain the (HOL) list of
references Ps by starting at reference p and following the next heap.

This specification of list reversal is quite abstract and conceptually works for
any structure that contains some kind of “next” pointer. Consider, for example a
program that implements strings and queues as linked lists.

struct string {
char chr;
struct string *strnext;};

struct queue {
int cont;
struct queue *qnext;};

We can define this extended state space by importing two copies of the list state
and adding the new components:

statespace globals-compose =
globals-list [next=strnext ] + globals-list [next=qnext ] +
chr :: ref ⇒ char
cont :: ref ⇒ int

We can now use ordinary locale operations to merge and rename locales to create
two instances of the list reversal procedure. One for strings, named RevS and one for
queues named RevQ. The only thing we have to do is to rename the next component
and the procedure name accordingly. This can be done with the following locale
operations (new parameters are listed after for):

locale RevS-impl = globals-compose +
Rev-impl where next = strnext and Rev = RevS for RevS

13
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locale RevQ-impl = globals-compose +
Rev-impl where next = qnext and Rev = RevQ for RevQ

The aforementioned procedures command ensures, that any procedure using
one of the procedures RevS or RevQ imports the locales RevS-impl or RevQ-impl,
respectively. Within this setup both instances of the procedure specification are
immediately available for the further program verification. E.g.

∀Ps. Γ` {|List p strnext Ps|} q := PROC RevS (p) {|List q strnext (rev Ps)|}

Since we may use Isabelle’s type variables or type classes to specify abstract
program variables we can also develop abstract procedures, like a generic sorting
algorithm that can be instantiated later. Regardless of whether the underlying
model of the programming language supports features like generics, we can employ
the Isabelle/HOL infrastructure to reason abstractly about these procedures and
specialise them to the different instances.

5 Conclusion

Our approach of representing state spaces for imperative programs is a combination
of basic logical concepts with an extra-logical layer for type-checking and notation.
The latter is based on existing locale infrastructure in Isabelle, which happily sup-
ports arbitrary declarations in proof contexts (such as program variables with their
types). This careful arrangement in different layers allows to return to a simple
logical model of states spaces as functions (as already seen in early experiments in
HOL and in informal mathematics).

Strong typing for state spaces is essentially achieved by coercions (the projections
and injections from an abstract value type) that are inserted automatically by our
syntax layer. We did not need to consider the more complex notion of dependent
function types, which are beyond HOL anyway. Instead, the Isabelle infrastructure
is able to support a kind of user space type system outside the logic.

Logical simplicity is an important prerequisite for scalability and modularity:
our motivation stems from non-trivial specification and verification tasks in the
Verisoft project (C compiler, OS components, email client etc.). On the other
hand, there is extra complexity in the design and implementation of the overall
verification environment.

Here Isabelle locales have shown a great potential to model advanced concepts
on top of the existing framework (and HOL object-logic). This flexibility is not
accidental, but a consequence of the very design of Isabelle: foundations are frugal,
but there are powerful mechanisms to implement add-on tools as user libraries.
While the implementation of the latter is not trivial, it can be done with reasonable
effort by experienced users, as has been demonstrated here.
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