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Abstract—In the modern car, electronic devices are even
employed for safety-critical missions like brake control, where
failures might cost human lives. Among various approaches to
increase the reliability of those devices, pervasive formal verifi-
cation most securely rules out all systematic failures. The main
target of the Verisoft project is the development of technology
for pervasive verification. Its application has been demon-
strated in the automotive context by an exemplary distributed
system consisting of hardware, a real-time operating system,
and application programs. The contribution of this paper is
a formal refinement proof linking an abstract specification of
this real-time operating system to its C implementation.

Keywords-Real-Time Operating System; Pervasive Verifica-
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I. INTRODUCTION

The continually increasing number and variety of elec-
tronic components in cars results in an exponential growth
for communication channels. Over time, adding more and
more wires has led to space, complexity and maintenance
problems. As an alternative, several components can share
the same wire and use a communication protocol on this bus.
For that purpose, Kopetz and Grünsteidl [1] have developed
the time-triggered protocol, which schedules fixed transmis-
sion times for each component on the bus. Variations of this
protocol are nowadays widely accepted in industry.

The approach has, however, its disadvantages: Previously
independent components meanwhile share the same bus,
which requires clock synchronization and a reliance on
former safety-uncritical components – a problem with the
multi-media system should certainly not propagate to the
brake system. The safest way to prevent such problems is
the exclusion of systematic errors by formal verification.
Certainly, this method cannot be limited to a single system
layer but should span over as many layers as possible. While
program verification has been known and used over decades,
the pervasive verification of complete computer systems still
remains a grand challenge [2].
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Among others [3], the Verisoft project takes on this
challenge. The goal of its automotive subproject is a per-
vasively verified distributed real-time system, consisting of
hardware, a real-time operating system, and application
programs. Pervasive verification means that all system layers
are coupled by formal soundness and simulation theorems,
such that any verification result, obtained on a suitable
layer, can ultimately be transferred down to a correctness
theorem on the hardware level. Our operating system OLOS
has been implemented on a verified processor [4] using a
generic programming framework for operating systems [5].
An emergency-call system [6], [7] serves as an example for
its practicability. In our paper, we report on the refinement
proof from an abstract specification layer down to the source
code of this operating system.

Our contribution is an important milestone towards an
evidence-based validation of safety-critical systems. We
have shown that formal methods can indeed produce the
evidence that an operating-system implementation meets its
specification, providing the highest possible level of quality
assurance for software. The developed verification technique
and the overall proof architecture may be reused in similar
contexts. In the long run, source-code verification should
supplement software certification, which is currently limited
to solely monitor the development process [3], [8]. For
safety-critical software, both, formal methods and software
engineering, can thus become two complementing disci-
plines aiming at the same target: 100% reliable software.

The paper is organized as follows: The next section
explains the context of our work, including the design
principles of OLOS and our verification environment. In
Sect. III, we elaborate on the implementation, while Sect. IV
presents the formal specification of our real-time system.
Our key contribution constitutes the formal correctness the-
orem shown in Sect. V. We conclude in Sect. VI.

II. BACKGROUND

Our distributed system comprises a number of compo-
nents that are connected via a communication bus. These so-
called electronic control units (ECUs) consist of a general-
purpose RISC processor and an automotive bus controller
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Figure 1. Transition phases during slot 2

(ABC). The latter takes care of the timely transmission
and reception of messages. This device is responsible for
clock synchronization, decoupling the processor from the
communication bus. In its mediator role, the ABC buffers
the messages from both sides, using pairs of send (SB) and
receive buffers (RB) in order to deal with metastability, a
common problem in electronic circuit design.

Our operating system OLOS runs on the processor, pro-
viding a virtual processor abstraction to the applications
that share the same physical processor. OLOS supports its
own message buffers (MB) for the communication between
applications (on the same as well as on different physical
processors).

In the following subsections, we introduce the principles
of the time-sharing communication scheme, on the one hand,
and our verification environment, on the other hand.

A. Our Time-Sharing Communication Protocol

The schedule of the transmission times on the bus is
statically fixed and repeated perpetually. A period, or round,
is subdivided into equal time slices, the so-called slots. The
organization of a round is described by several scheduling
tables. Each ECU features its own set of these tables.
Firstly, the send-permission table (SPT) specifies for each
slot, whether the ECU is allowed to send. Secondly, the
application scheduling table (AST) determines for each slot,
which application should compute. Finally, a buffer-index
table (BT) identifies in each slot, which message buffer
of OLOS is exchanged with the device. Table I shows
scheduling tables for the two communicating ECUs that we
use as a running example in our paper.

We divide each slot into four phases: device communi-
cation, receive, compute, and send. Fig. 1 depicts them for
slot 2 of our running example.

Device Communication: In this phase, the ABC device
is communicating with the other ECUs via the bus, while

the remaining phases are characterized by communication
with OLOS. In our example, ECU 1 broadcasts the message
that OLOS has written to the device in the previous slot. All
ECUs receive this message from the bus.

Receive: The operating system reads the receive buffer
from the ABC device into its own message buffers. Fig. 1
shows how the operating system reads the message that the
device has received in the previous slot into the message
buffer indicated by the BT table from the previous slot.

Compute: The AST specifies the application that is ex-
ecuted during this phase of the current slot. This application
may compute locally or exchange messages with OLOS.

Send: This phase is only present if the corresponding
ECU is permitted to send in the next slot – in our example,
ECU 2. The operating system writes the message to be sent
in the next slot into the ABC’s send buffer.

B. Verifying C Programs – the Isabelle/Simpl Framework

The formalizations presented in this article are mecha-
nized and checked within the interactive theorem prover
Isabelle/HOL [9], implementing higher-order logic [10].
This paper is written using Isabelle’s document generation
facilities, which guarantees that the presented theorems
correspond to formally proven ones. We distinguish formal
entities typographically from other text. We use a sans-
serif font for types and constants (including functions and
predicates), e. g., map, a slanted serif font for free variables,
e. g., x, and a slanted sans-serif font for bound variables,

Table I
EXAMPLE SCHEDULING TABLES

ECU 1 ECU 2
slot 0 1 2 3 slot 0 1 2 3
SPT1 no no yes no SPT2 yes yes no yes
BT1 1 2 3 0 BT2 0 1 2 1
AST1 1 1 2 0 AST2 0 1 2 3



e. g., x . Type variables have a leading tick, e. g., ′a . HOL
(and Simpl) keywords are typeset in bold font, e. g., let.

The logical and mathematical notions follow the standard
notational conventions biased towards functional program-
ming. We only present the more unconventional parts here.
We prefer curried function application, e. g., f a b instead
of f (a, b). In this setting the latter becomes a function
application to one argument, which happens to be a pair.

Isabelle/HOL provides a library of standard types like
Booleans, natural numbers, integers, total functions, pairs,
lists, and sets as well as packages to define new data types
and records. Isabelle allows polymorphic types, e. g., ′a list
is the list type with type variable ′a . In HOL all functions are
total, e. g., nat⇒ nat is a total function on natural numbers.
There is, however, a type ′a option to formalize partial
functions. It is a data type with two constructors, one to
inject values of the base type, e. g., bxc, and the additional
element ⊥. A base value can be projected by dxe, which
is defined by the sole equation dbxce = x . As HOL is a
total logic, the term d⊥e is still a valid yet un(der)specified
value. Partial functions can be represented by the type ′a ⇒
′b option. The syntax and the operations for lists are similar
to functional programming languages like ML or Haskell.
The empty list is [], with x # xs the element x is ‘consed’
to the list xs . With map f xs , the function f is applied to all
elements in xs . The n-th element of a list xs can be selected
with xs[n]. A record is constructed by assigning all of its
fields, e. g., (|fld1 = v1, fld2 = v2|). Field fld1 of record r is
selected by r.fld1 and gets updated with a value x via r(|fld1

:= x|).
For the verification of C0, a fragment of C, we use a

general program-verification framework for sequential im-
perative programming languages: Isabelle/Simpl [11], [12].
It is built as a conservative extension on top of Isabelle/HOL.
The key feature of Isabelle/Simpl we use is the notion of
a total correctness Hoare-triple: G`t P c Q . This judgment
claims, that in procedure environment G, given an initial state
for which the precondition P holds, execution of statement
c terminates and for the final state the postcondition Q
holds. The assertions P and Q are formalized as sets of
states. Isabelle/Simpl is polymorphic over the state space;
we use records but hide the details by an Isabelle syntax,
such that {sv. svvar = 5} denotes the assertion that the value
of program variable var in state sv is five.

Expressions in Simpl are HOL expressions. Statements, in
contrast, are represented by a datatype, which we present in
pseudo-code notation employing Isabelle’s powerful syntax-
translation machinery. The procedure environment G is a
partial function from procedure names to statements, which
is consulted when calling procedures.

The framework includes a big-step semantics, a Hoare
logic for partial as well as total correctness and an automated
verification-condition generator for Simpl. Within this se-
quential core language, assembly fragments as well as C0 are

embedded. The embedding is based on a compiler converting
C0 constructs in terms of operations provided by the small-
step semantics of the RISC processor. A correctness proof
for this compiler, which links the small-step semantics to
the Simpl big-step semantics, is also provided [13]. This
correctness theorem about the embedding of C0 into Simpl
allows for mapping low-level properties to more abstract
ones formulated on the big-step semantics of C0. Alkassar
et al. have dedicated a separate article [14] on the semantics
stack in Verisoft.

III. IMPLEMENTATION

A. CVM: A Programming Framework for Operating Systems

Our operating system (OS) is implemented on the verified
RISC processor VAMP [4] using a programming framework
called communicating virtual machines (CVM) [5]. This
framework encapsulates the necessary hardware-specific
low-level functionality for operating systems built on the
VAMP. It provides basic mechanisms for address translation
and processor virtualization as well as the communication
with memory-mapped devices. Technically, CVM constitutes
the central interrupt-service routine of the OS, which is
executed whenever an interrupt occurs in the system. The
interrupt-service routine saves the hardware-specific context
and then passes control on to the higher layers of the OS.
The higher software layers may control the low-level mech-
anisms by so-called primitives. This software architecture
permits the implementation of an operating system almost
independently from hardware in C0 without assembly.

We distinguish two interrupt sources: On the one hand,
external interrupts might occur, which comprise the reset
signal (upon power up) and interrupts generated by pe-
ripheral devices. On the other hand, the currently executed
instruction may cause exceptions like an illegal instruc-
tion or a misalignment. Most notably, if an application
is computing, it may cause an exception with the special
instruction trap in order to explicitly call the operating
system. The instruction features an immediate constant to
identify a certain OS functionality. Upon such a system call,
the processor immediately transfers control to the interrupt-
service routine.

After saving the old processor context, the interrupt-
service routine calls the C function kdispatch of OLOS.
In OLOS, the function kdispatch and its subroutines call
CVM primitives for the communication with the ABC device
and the manipulation of application registers and memory.
The return value of kdispatch determines, which applica-
tion should resume its computation. In the next subsection,
we describe the functionality of kdispatch in more detail.

B. The Top-Level Function of OLOS

When an interrupt arrives, the CVM framework saves
the old processor context and calls kdispatch with two
parameters: the interrupt cause, a bit vector of occurred
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Figure 2. The program-flow diagram of function kdispatch

interrupts, and the exception data, which is the provided
immediate constant if a trap has occurred.

Fig. 2 shows the control-flow graph of this function. From
the interrupt cause, the function distinguishes three cases:

Initialization: After power-up, the processor generates
a reset interrupt. In this case, the CVM framework sets up its
internal data structures and then passes the interrupt on to
the kdispatch function. If called with the reset-interrupt
bit set, kdispatch calls the function olos_init. This
function initializes the internal C data structures of OLOS,
on the one hand, and configures the ABC device, on the
other hand. The remaining interrupt vector is ignored.

ABC Interrupt: The ABC device raises its interrupt line
when expecting data exchange with the operating system.
There can be up to two such communications: If the ECU
is scheduled to send a message on the bus in the next slot, the
device raises its interrupt to signal that the compute phase
has ended and OLOS transfers the designated message to the
device. As soon as the send phase has finished, the device
raises its interrupt line again and the operating system reads
the message that has been received in the slot before. If it is
not the ECU’s turn to send in the next slot, the send phase is
omitted, i. e., there is only one interrupt in this slot and OLOS
starts reading the received message from the device when
the interrupt at the end of the compute phase occurs. This
functionality is encapsulated in the function handle_int.

Trap Exception: During the compute phase, the current
application may communicate with the operating system via
trap exceptions. This hardware mechanism is used to request
the transfer of messages between OLOS and the applications.
Furthermore, an application signals its termination (for the
current slot) by a trap exception. The trap handler is imple-
mented in the function handle_trap (see below).

Potential other interrupts are ignored. The current ap-

plication might cause a number of exceptions during its
execution by e. g., misaligned addresses or attempts to access
memory outside its dedicated address range. Such exceptions
certainly should not occur in a fully verified system but
despite that, even a malicious application can only harm
those applications, it exchanges messages with.

The function kdispatch returns the value of the global
variable ca, determining the currently running application.
The subroutines of kdispatch ensure that the variable
has either the value of the AST table in the current slot or
the special value IDLE. Upon return, the CVM framework
transfers control to the corresponding application or waits
for interrupts, respectively.

C. Implementing System Calls – the Trap Handler

As sketched in Sect. III-A, the trap instruction is the
designated hardware mechanism to request services from the
operating system. We call these requests system calls. The
instruction features an immediate constant, which allows us
to distinguish different kinds of system calls. Furthermore,
register values might serve as parameters to such a call.
OLOS implements three system calls: The calls Send and
Receive are used for the message exchange between OLOS
and the applications. Moreover, an application should signal
with the call ExFinished that it has reached a synchronization
point, thus finishing the computation intended for the current
slot. The application is resumed for further computation in
a future slot. In a perfect system, all applications finish on
time and call ExFinished. Our operating system, however,
works correctly even if this requirement is violated.

If an application executes a trap instruction and
the provided immediate constant corresponds to one of
the three system calls, the dispatcher calls the function
handle_trap. Fig. 3 shows the control-flow diagram of
this function.

The implementation of the ExFinished call is simple:
OLOS sets its global variable ca to the value IDLE and
returns, which causes the processor to idle until an ABC
interrupt occurs. This interrupt marks the end of the com-
putation phase.

The remaining two system calls require two parameters:
• a pointer msg ptr into the application’s memory in-

dicating either the message value (for the Send call)
or the designated buffer that should accommodate the
message (for the Receive call), and

• a message identifier msg id selecting the message
buffer in OLOS as source or destination of the message,
respectively.

The parameters are held in registers. The implementation
reads them using the CVM primitive cvm_get_gpr and
checks their validity. If these checks fail, OLOS simply
stores an error value in a designated register of the current
application (using the CVM primitive cvm_set_gpr).
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Figure 3. The program-flow diagram of function handle_trap

In the successful case, the message value is transferred
either from OLOS’s message buffer into the application’s
buffer using the CVM primitive cvm_p2vcopy (for Send),
or from the application into OLOS using cvm_v2pcopy
(for Receive). Finally, the designated error register is set to
the value SUCCESS.

IV. FORMAL SPECIFICATION

Correctness is usually defined as compliance with a
specification. In our case, this specification is an automaton.
Note that OLOS relies on a specific protocol with the ABC,
i. e., assuming a certain device state, the operating system
only expects a restricted set of device inputs. Consequently,
we verify the operating system’s correctness with respect to
a model of the ABC device, which specifies the device’s
expected behavior. The specification then comprises the
complete behavior of an ECU, consisting of the operating
system and the device. This section proceeds with the
description of the ABC automaton and the ECU automaton.

A. ABC Automaton

As sketched in Sect. II, the ABC device is responsible for
the timely transmission and reception of messages. For this
purpose, the ABC device features a two-placed ring buffer
for outgoing messages (send buffer) and a second one for
incoming messages (receive buffer). In addition, it requires

a considerable amount of system-specific information. This
information includes time data like the slot length in hard-
ware cycles, the SPT table, and custom-tailored parameters
like the message size or the number of slots per round.
Furthermore, the device features a timer that signals the
start of the send phase to OLOS, which requires information
about the length of the receive and compute phases in
hardware cycles. All this information is held in the so-
called configuration registers, which are written by OLOS
in an initialization phase right after power up. This phase is
identified by an initialization flag, which is initially raised
together with the reset signal and remains enabled until
OLOS signals the completion of the initialization by writing
the set-ready command. Finally, the ABC state includes a
slot counter keeping track of the current slot number, a send
flag distinguishing send- and receive phase, and an interrupt
flag, which directly represents the device’s interrupt line.

Accordingly, we have formalized the state space of the
ABC automaton in Isabelle/HOL by a record with the
fields s.SB and s.RB for the buffers, s.CR for the set of
configuration registers, s.init flag, s.send flag, and s.INT
for the flags, as well as s.CSN for the current slot number.

The device interacts with the processor, on the one hand,
and the external environment, on the other hand. Fig. 4
visualizes the state transitions of the device with respect to
the inputs from both entities. Note that the diagram shows
suggestive names instead of a flag combination from our
formalization: A raised flag corresponds to the init state, the
interrupt line is raised in the read and the write state, and
the send flag is set for idlew and write. We annotate flowing
data with e for external environment and p for the processor.
Inputs are denoted by ↓, and outputs by ↑. As described, we
start in the init state, where OLOS consecutively writes the
configuration (config) into the corresponding registers and
finally issues the set-ready command (setrd).

After this command, the device idles (idler) expecting
communication with the bus (elmsg). More specifically, we
check whether the ECU has the send permission (sp) in the
current slot. If so, the device is waiting for a timer event,
then outputs the message from its send buffer to the bus
and writes the same message to its receive buffer (here we
assume ideal hardware). Otherwise, it awaits a message from
the bus and stores it into its receive buffer. We abbreviate
“if sp then (e↓timer, e↑msg) else e↓msg” by elmsg.

When the receive buffer has been written, the device
enters the read state, where the processor requests (p↓read)
the message from the receive buffer (p↑msg). In analogy
to the set-ready command, the processor acknowledges the
successful reception by the command clear interrupt (clr).
Depending on the send permission in the next slot (denoted
by sp+), the device either enters the read- or the write-
idle state (idler or idlew, respectively). The former has
been discussed before and the latter analogously awaits the
beginning of the send phase. This phase is deterministically
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Figure 4. State diagram for the ABC

entered after a configurably fixed time. We model the elapsed
time as an external event e↓timer.

With the external timer event, the device enters the
write state, where the processor writes (p↓msg) the send
buffer. When finished, the processor sends the clear-interrupt
command just like in the receive case. With this command,
the device transfers back to the idler state.

In Isabelle/HOL, we have formalized the transitions of the
ABC automaton in the function dabc.

B. Abstract ECU Automaton

In this subsection, we consider the abstract automaton
describing the behavior of the whole ECU consisting of
the processor with its running operating system and appli-
cations together with the ABC device. From the operating
system, the state space of this model inherits the application
mapping s.AM, the message buffers s.MB, and an idle
flag (s.idle flag), which abstracts the current application
identifier from the implementation state. Furthermore, we
literally embed the state of the ABC automaton above into
our state space (s.abc dev).

In Fig. 5, the state diagram of the ECU automaton, it
is possible to recognize the transition phases of a slot as
sketched in Fig. 1. The states recv and send in the diagram
directly correspond to the beginning of the receive phase
and the send phase. During the slot’s compute phase, the
automaton is in one of the states comp, idler, and idles.
Finally, the device communication is depicted by elmsg.

In the ECU specification, we abstract from the initializa-
tion phase after power-up. The initial state is idler, where the
ECU awaits an input from the environment. The according
transition resembles the device communication phase.

The device communication elmsg triggers a new slot and
the ECU changes to the receive state (recv). In this state,
the ABC interrupt is raised and the send flag is not set.
The transition labeled read represents the actual receive
phase, where OLOS reads the ABC’s receive buffer into its
message buffer and instructs the ABC to clear its interrupt.
Furthermore, the send flag is set to the value of sp+ (the
ECU’s send permission in the next slot).

idlerinit

send

idles

comp

recv
elmsg

read

sp+ ∧ e↓timer

sp+ ∧ ExFin

¬ sp+

∧ ExFin

e↓timer

write ¬ sp+ ∧
elmsg

¬ExFin

Figure 5. State diagram for the ECU

Immediately afterwards, the ECU is in the compute state
comp. The idle flag as well as the ABC’s interrupt flag
are unset. There are several transitions possible from this
state. All transitions involve a computation of the application
scheduled by the AST table. If there is no external event and
the application does not issue an ExFinished call, the ECU
remains in the comp state. In case of an ExFinished call, the
idle flag is set and the ECU descends into an idle state, idles

or idler, depending on the send permission in the next slot,
i. e., the value of the previously set send flag. If an external
event (inputs elmsg or e↓timer) occurs, the interrupt line is
raised. An external event during the comp state means that
the application has exceeded its worst-case execution time.
The ECU reacts just as if it had been in an idle state: If the
ECU has the send permission in the next slot, it proceeds to
the send state, otherwise to the receive state.

Finally, if the ECU is in the send state, the transition
labeled write describes the send phase, where OLOS writes
the content of a message buffer to the ABC’s send buffer,
resets the send flag, sets the idle flag, and finally requests
the ABC to clear its interrupt.

In Isabelle/HOL, we have formalized the transitions of the
abstract ECU automaton in the function dECU. An optional
external input i distinguishes external device steps (i = bec)
from processor computation (i = ⊥).

V. FORMAL REFINEMENT

This section reports on a formal correctness proof of the
OLOS implementation. In contrast to a normal application
program, an operating system is neither entirely written in C
nor does it usually terminate. These circumstances demand
further investigation of the verification framework and the
system’s architecture.

Firstly, we cannot prove the correctness of hardware-
specific assembly code in Isabelle/Simpl. The code of CVM
primitives has been verified on the processor level [15]. In
Simpl, we can nevertheless express the effects of those low-
level computations that are visible to the C0 programmer. We
abstract these computations into atomic XCalls (extended
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calls), which are similar to conventional function calls. In
particular, we augment the state space of the overall program
with an additional program variable cvmX representing the
external, hardware-specific state. Semantically, an XCall is
a function call performing a transition on this external state
and communicating with C0 via parameter passing and
return values. In our case, the external state comprises an
identifier of the current application, the processor state of
all applications, and the ABC device configuration.

Secondly, operating-system verification deals with non-
termination. Observe, however, that our top-level routine of
OLOS itself terminates while the endless loop is realized
in the low-level hardware-specific parts. Hence, we simply
formulate a single OLOS step – in analogy to the CVM
primitives – as an ordinary Simpl function. Then, we expand
the correctness theorem over unbounded execution traces.

In particular, we express correctness in terms of simu-
lation between the execution traces of the implementation
and the abstract ECU automaton, which both have been
introduced in the previous two sections. Fig. 6 depicts the
situation in detail: The implementation starts in the state
sv0 directly after power up. Its first transition d

I
ECU yields

in state sv1 that can be abstracted via absECU to an initial
specification state. This simulation is retained by all further
transitions. Below, we define prerequisites like absECU and
outline the induction proof for our correctness theorem.

A. Prerequisites

For our correctness theorem, we need a number of pre-
requisites. Firstly, there is the Simpl function cvmstep
representing a combined step of CVM and OLOS. We model
the reset interrupt by the global variable reset and assume
that its initial value is True. The initial value corresponds
to the processor state right after power-up. If reset is True,
cvmstep changes it to False, initializes the applications,
and invokes kdispatch with an interrupt vector of 1, i. e.,
exactly the reset interrupt is raised. In further computations,
a cvmstep execution consists of the following parts: If
there is a current application, it executes a single step.
Then, CVM computes the bit vector of occurred interrupts,
combining the exceptions caused by the current application
and occurred device interrupts. If there are any interrupts,
CVM calls the kdispatch function with the bit vector

and determines from the function’s return value, which
application will become the current one in future steps.
Note that the return value might not be a valid application
identifier, in which case CVM will idle in future steps until
the next device interrupt.

Secondly, we need a simulation relation. More precisely,
we use the function absECU that maps implementation states
to model states:

absECU sv ≡
(|AM = cvm apps sv.cvmX,
MB = map (λn. sv.heap msg sv.MB[n])

[0..<MSGCOUNT],
idle flag = (sv.ca = IDLE),
abc dev = cvm abc sv.cvmX|)

The function constructs a state of the ECU automaton as
described in Sect. IV-B. From the external CVM state, we
extract the applications and the device configuration. They
are stored in the components AM and abc dev, respectively.
Furthermore, the variable of the current application ca is
abstracted to the idle flag, i. e., the flag is raised iff sv.ca
= IDLE. Finally, the message buffers are gathered from the
different memory objects in the implementation, which are
scattered over the heap.

Thirdly, we formulate an invariant over the implemen-
tation states. This predicate excludes implementation states
that cannot occur in an execution trace. Recall that we prove
the simulation between implementation and specification by
induction. Our induction is based on the fact that the state
after the first cvmstep at power up can be abstracted via
absECU to an initial specification state. The inductive step
formalizes that the abstraction relation is preserved by any
possible further cvmstep. We combine properties of these
further steps in our invariant, which is established at the
induction start and preserved by the inductive step.

This invariant comprises assumptions on variables con-
taining the schedule, the current slot, the applications, and
the device. For instance, OLOS and the device independently
store information on the schedule or the current slot. Cer-
tainly, the redundant information must not be contradicting.
We have already learned in Sect. III-B about another con-
straint: The variable ca has either the value of the application
scheduling table in the current slot or the special value IDLE.
Furthermore, we require the well-formedness of the message
buffers and their content. These constraints arise from a
weaker typing model in Isabelle/HOL, e. g., representing
fixed-length arrays by lists. With all prerequisites in place,
we can formalize our inductive proof.

B. Induction Start

The induction start formalizes the correct bootstrap at
power up. As already mentioned, we assume that the reset
variable initially has the value True. Additionally, we require
well-formedness, e. g., the correct length of the list repre-



senting the array of message buffers. Finally, we presume
that the peripheral device system is in an initial state. These
constraints comprise well-formedness of the device state, on
the one hand, and the correct set-up of flags (see Sect. IV-A),
on the other hand. We combine all these assumptions in the
constant at power up sv. After the initial cvmstep, the
invariant invariant holds for the successor state t, and the
abstracted state absECU t is an initial specification state:

Theorem 1 (Induction start). After power-up, the initial
cvmstep yields in a state, which can be related via absECU

to an initial specification state. Moreover, the invariant holds
for the yielded state. Formally:

G`t {sv. at power up sv}
CALL cvmstep()
{t. invariant t ∧ is init state (absECU t)}

Proof: The code, which initializes the required data
structures and the device, can roughly be divided into
three parts, each containing a loop. We have to show the
correctness not only for the execution and the loop invariants
of each part, but also the property preservation from one
to the following piece of code. The problem of passing on
invariants and interim results to discharge next preconditions
does not only appear between separated pieces of code but
also within a single loop. This is always the case when
sequential instructions depend on each other, i. e., in the
second loop where three different CVM primitives initialize
registers, allocate memory and load applications.

C. Induction Step

In the induction step, we assume that the invariant initially
holds, i. e., invariant sv. Additionally, we require that the
simulation relation between specification and implementa-
tion states hold. Note that the postcondition of the induction
start establishes this assumption. After each execution of
cvmstep, the invariant should hold for the successor state.
We show that the invariant and the simulation are preserved
by the execution of cvmstep on the implementation layer
and a transition on the specification layer.

Theorem 2 (Induction step). The simulation relation and
the invariant are preserved under a cvmstep. Formally:

G`t {sv. invariant sv ∧ s = absECU sv}
CALL cvmstep()
{t. invariant t ∧ absECU t = dECU ⊥ s}

Proof: In our proof, we distinguish three possible
phases: receive, compute and send (the device communi-
cation does not involve OLOS). In all these phases, the
applications and the ABC device are strictly separated.
The send and receive phase affect the operating system
as well as the ABC devices whereas the compute phase
only regards the current application and OLOS. Both phases
concerning the communication with the ABC device require

the validity of the device and the OLOS variables as well
as the contents of send, receive and message buffers after
a message transmission. In the compute phase we show the
validity of the interaction between the operating system and
the current application in case of an incoming exception
or trap. If no timer interrupt occurs before the application
finishes its execution, we distinguish between a “normal”
execution step of the application, a system call or another
exception. We have to assure in all cases that the application
remains valid, i. e., that the values of the PCs, registers and
memory are correct. Otherwise the timer occurs before the
application has finished. Every execution step except a trap
is finished first, before the receive or send phase is entered.
Afterwards, the applications, message buffers and devices
have to be valid.

D. Simulation

Concluding from the two previous theorems, we claim
that the simulation relation continues to holds after an initial
execution of cvmstep over all finite traces. Formally we
obtain this simulation by employing the soundness theorem
of the Hoare logic [12]. This theorem allows us to interpret
the proven Hoare triples on the operational semantics, which
results in a transition function, in our case, because we
have proven termination and C0 is deterministic. Note, that
within the transition function d

I
ECU, we combine the C0

computation and ABC transitions analogous to dECU. In our
formal theorem, we iterate transitions over a list of optional
external inputs is using the function fold.

Theorem 3 (Simulation). For an initial implementation state
sv0, where at power up sv0 holds, we obtain simulation on
external inputs is between the implementation d

I
ECU and its

specification dECU after the initial step sv1 = d
I
ECU ⊥ sv0.

Formally:

absECU (fold d
I
ECU is sv1) = fold dECU is (absECU sv1)

Proof: Theorem 1 states that starting in the state sv0

at power-up, the initialization step sv1 = d
I
ECU ⊥ sv0 estab-

lishes the implementation invariant as well as the simulation
absECU between implementation and specification states.
This simulation is preserved under transitions of both models
because of Theorem 2 and an additional lemma stating that
external ABC transitions dabc preserve the invariant.

VI. CONCLUSION

We have formally verified functional correctness of the
real-time operating system OLOS in the context of pervasive
verification. This operating system has been designed for
an industrial context. By our extensive case study, we
have challenged the current verification tools. Our complete



formal work is available online.1 With our work, we respond
to a long lasting grand challenge [2] as well as to a
general encouragement [16] for more experimental work in
computer science. The section proceeds with related work,
gained insights and future work.

A. Related Work

We are indebted to Klein for a comprehensive article
[3] on past and present approaches to operating-system
verification. Summarizing, Klein only presents a single, fully
verified operating system: KIT, a small assembly program,
that provides task isolation, device I/O, and single word mes-
sage passing. This verification project can only be referred
to as groundbreaking in the area of pervasive verification.
The operating system is very far from any real system and
the verification is based on a fairly abstract LISP execution
model. OLOS, in contrast, is implemented in C and has been
developed with an industrial use case in mind.

Several past verification projects concentrated on the spec-
ification but fell short on the actual verification, e. g., UCLA
Secure Unix [17] or VFiasco/Robin [18]. Other projects, like
Embedded Device [19], were successful in the verification
but did not reach down to the code level. Furthermore, the
Flint project [20] verified the correctness of certain low-level
assembly fragments but did not aim at full code coverage.
Embedded Device and Flint amend our work towards higher
and lower layers, respectively. Finally, the L4.verified project
[?], [?] completed the refinement proof for a general-purpose
microkernel just days before this paper went on print. While
their kernel is much more complex than OLOS, they verified
neither boot-up nor assembly code.

Beside these projects, there are several other verification
attempts within the Verisoft project [22].2 Our pervasive
approach has been the subject of earlier papers [13], [14]
as well. Most notably, the verification of the microkernel
VAMOS [23] has reached a mature state. While this kernel
has more features than OLOS, its current verification state
does not cover the system’s start up.

B. Gained Insights from Pervasive Verification

The aim of pervasiveness has considerably influenced our
verification approach and its result: We were able to rely
on previous work, namely VAMP, CVM, and Isabelle/Simpl,
which considerably increased the possible degree of reliance
that our verification result indeed holds for the overall
system. Certainly this approach has also disadvantages.

Pervasive verification is inherently based on the inte-
gration of all verification results into one single, coherent
theory. The tight integration of results from various authors
with different backgrounds poses its own challenges [13].
Within our work, we particularly perceived a high sensitivity
to changes made by other verification engineers, on the one

1For the theory files, see http://verisoft.de/VerisoftRepository.html.
2There is also a successor project, Verisoft XT, see http://verisoftxt.de/.

hand, and considerable friction losses because of different
formalization styles and even duplicated definitions and
proofs for similar problems, on the other hand.

Furthermore, several iterations were necessary in our
verification process until we could verify our main theorem
because earlier abstractions turned out to be insufficient. The
task of building a model stack extending over several ab-
straction levels – ideally from the gate-level implementation
up to applications – proved to require much foresight and
extreme prudence for the definition of the layer’s interfaces
because changes of the formalization usually spread over
several layers and are thus very costly. Though this fact
can certainly be expected, we considerably underestimated
the necessary number of iterations, notably increasing the
overall verification effort. Including all iterations, adaptions
and several improvements, we approximate the effort for our
correctness proof with 2 years.

C. Future Work
We foresee several possible extensions of our work.

Firstly, our verification approach implicitly assumes that
our real-time operating system is capable to timely handle
the incoming device interrupts. We have proven that our
interrupt handler, the top-level function of OLOS, terminates.
In order to set up a correctly running system, however, we
need an upper bound of its worst-case execution time. A
possible approach for its computation is static worst-case
execution-time analysis [24].

Secondly, CVM is currently specified on an abstract level
while its correctness proof is carried out on a lower level.
The property transfer between Simpl and the small-step
layer used for CVM correctness has been done before [25],
demonstrating the general applicability of our approach.

Furthermore, the model stack can be extended in the
opposite direction: the applications are currently modeled on
assembly level while usually written in C. Using Leinenbach
and Petrova’s [26], [27] theorem on compiler correctness, it
is possible to provide a more abstract programming model
for applications and their interaction with the operating
system. A similar approach [28] has been taken for the
VAMOS microkernel, already.

Finally, our correctness statement is yet limited to a single
slot schedule because of restrictions in our tool chain: The
schedule is currently specified via implementation constants
in the code. These constants are formally fixed in the gener-
ated code; the current verification framework is incapable
to instantiate a correctness proof for multiple schedules.
We are confident, however, that this problem can be solved
using recent improvements of Isabelle/HOL [29] and a
comparatively small enhancement of Isabelle/Simpl.
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