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Prüfer der Dissertation: 1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Dr. Wolfgang J. Paul
Universität des Saarlandes

Die Dissertation wurde am 31.10.2005 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 21.04.2006 angenommen.





i

Kurzfassung
Ziel der Dissertation ist es, eine Verifikationsumgebung für sequentielle imperative
Programme zu schaffen. Zunächst wird unabhängig von einer konkreten Program-
miersprache ein allgemeines Sprachmodell entwickelt, das ausdrucksstark genug
ist um alle gängigen Programmiersprachkonzepte abzudecken: Gegenseitig rekur-
sive Prozeduren, abrupte Terminierung und Ausnahmebehandlung, Laufzeitfeh-
ler, lokale und globale Variablen, Zeiger und Halde, Ausdrücke mit Seiteneffekten,
Zeiger auf Prozeduren, partielle Applikation, dynamischer Methoden Aufruf und
unbeschränkter Indeterminismus.

Für dieses Sprachmodell wird eine Hoare Logik sowohl für partielle alsauch für
totale Korrektheit entwickelt. Darauf aufbauend wird ein Verifikations-Bedingungs-
Generator implementiert. Die Hoare Logik erlaubt die Integration von statischer
Programmanalyse und Software Model Checkern in die Verifikation.

Desweiteren wird eine Teilsprache von C in die Verifikationsumgebung eingebet-
tet, um die Durchgängigkeit zu einer realen Programmiersprache zu demonstrieren.

Die gesamte Entwicklung wurde im Theorembeweiser Isabelle durchgeführt.
Dadurch wird zum einen die Korrektheit maschinell sichergestellt und zum anderen
steht nun für die Verifikation von Programmen die reichhaltige Infrastruktur einer
vollwertigen und universellen Beweisumgebung zur Verfügung.
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Abstract
The purpose of this thesis is to create a verification environment for sequential imper-
ative programs. First a general language model is proposed, which is independent
of a concrete programming language but expressive enough to cover all common
language features: mutually recursive procedures, abrupt termination and excep-
tions, runtime faults, local and global variables, pointers and heap, expressions
with side effects, pointers to procedures, partial application and closures, dynamic
method invocation and also unbounded nondeterminism.

For this language a Hoare logic for both partial and total correctness is developed
and on top of it a verification condition generator is implemented. The Hoare logic
is designed to allow the integration of program analysis or software model checking
into the verification.

To demonstrate the continuity to a real programming language a subset of C is
embedded into the verification environment.

The whole work is developed in the theorem prover Isabelle. Therefore the
correctness is machine-checked and in addition the rich infrastructure of the general
purpose theorem prover Isabelle can be employed for the verification of imperative
programs.
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Funk is, what you don’t play.
— Maceo Parker
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1.1 Motivation

Software correctness is an issue since the beginning of computer programming.
Due to the omni-presence of computers and embedded devices in modern society,
malicious software becomes a serious threat for economy and even for human
lives. To improve software quality, today’s software engineering provides methods
to guide the process of software development. From the problem analysis and
requirements phase, over the implementation phase until the deployment of the
software. These methods mostly introduce informal or semi-formal ways to describe
the requirements of the software to improve communication and to derive test cases.
The main technical means to ensure software quality is still extensive program
testing, which consumes a lot of the overall effort to build the software and only has
a limited effect. As Dijkstra [29] pointed out: “Program testing can be used to show
the presence of bugs, but never to show their absence!”

As alternative to testing Floyd [35], Hoare [47], Dijkstra [29] and others pio-
neered the idea of rigorous program verification. As opposed to testing, verifica-
tion traces every possible program path as it works on a symbolic and abstract
level. The method relies on mathematical proof to ensure program correctness. The
approaches are labelled in the literature as (Floyd-)Hoare logic, or in case of Dijkstra’s
work as the weakest precondition calculus or predicate transformers. The basic idea is to
describe a program state by a predicate, a so called assertion. The calculus defines
rules, how a certain statement in the programming language affects the assertion. A
piece of code is specified by two assertions, a pre- and a postcondition. If the initial
state satisfies the precondition, then the final state, after execution the program,
satisfies the postcondition. The rules of the calculus are syntax directed and allow
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to decompose the specification of a program to a mere logical proposition in the
assertion logic, the so called verification condition. If the verification condition can be
proven, then the program satisfies its specification. Since the rules of the calculus
are syntax directed, the process of decomposing a specification to the verification
condition can even be automated (provided that loops are annotated with an invari-
ant). This is the purpose of a verification condition generator. This was quite a success,
since it allows to reduce program verification to mere logical reasoning. However,
it turned out that the verification conditions can get quite complicated. A lot of
knowledge and theorems about the domain the programs work on is needed. This
ranges from arithmetic for numeric applications, to structures like lists, trees, graphs
or sets in case of pointer manipulating programs. To supply proper tool support
for reasoning about the verification condition, a general purpose theorem prover
is needed in order to deal with the comprehensive background theory. In recent
years the technology of interactive theorem provers, based on an expressive logic,
has reached a mature state with a wide range of successful applications, from pure
logic [92, 82], over mathematics [38, 9] to programming language semantics [81, 58].
This technology is definitely well suited to reason about the verification condition.
Furthermore, as the logic of the interactive theorem provers is expressive enough to
formalise programming language semantics, it is even possible to derive the Hoare
calculus within the theorem prover and hence ensure the soundness of the program
logic. Gordon [71] was the first who followed this approach and embedded a simple
while language into higher order logics.

To demand that the program calculus has to be derived in a theorem prover does
not at all originate form a disproportionate need for security. As Apt pointed out in
his survey on Hoare logics [7]: “various proofs given in the literature are awkward,
incomplete, or even incorrect”. A prominent example is the procedure call rule
for Euclid. Euclid is a programming language that was developed in parallel with
its Hoare logics [44, 64], since program verification was the driving force for the
language design. Cartwright and Oppen [21] and later Gries [43] and Olderog [86]
noticed that the proposed procedure call rule for Euclid is indeed unsound.

Besides these general soundness issues of a program logic, there are also some
practical considerations within the context of the Verisoft1 project that stimulated
this work. The Verisoft project aims at the pervasive verification of complete com-
puter systems, comprising the hardware, the operating system and distributed user
level applications. The main programming language for the software layers is C0,
a type-safe subset of C. The user level applications, as well as large parts of the
operating system can be written in C0. However, parts of the operating system
have to be written with in-line assembler code. Those parts modify the state of
the computer in areas that are usually invisible for a C0 program. For instance the
operating system can increment or decrement the allocated memory of another user
program. Hence not all parts of the operating system can be verified on the C0
layer. However, since large parts of the operating system are indeed written in C0 it
is not desirable to conduct the whole verification on the low level of the assembler
language. Fortunately this is not necessary as long as the complete meta theory
for the program logic is available. The soundness theorem of the Hoare logic can
be employed to transfer proven program properties to the C0 semantics. Further-
more, a compiler correctness theorem between the C0 semantics and the assembler

1The Verisoft project is funded by the German Federal Ministry of Education and Research (BMBF)
under grant 01 IS C38. Verisoft home page: http://www.verisoft.de.

http://www.verisoft.de


1.2 Contributions 3

semantics makes the program properties available on the assembler layer. Hence
the formal soundness theorem for the Hoare logic is not only a desirable add-on, but
indispensable to actually transfer program properties to the lower layers for further
reasoning.

1.2 Contributions

The focus of this thesis is to provide a sound and practically useful verification
environment for sequential imperative programs. First I develop a general language
model for sequential imperative programs called Simpl. It is not restricted to a
particular programming language, but covers all common language features of
imperative programs: mutually recursive procedures, global and local variables,
pointers and heap, expressions with side effects, runtime faults like array bound
violations or dereferencing null pointers, abrupt termination like break, continue,
return in C and even exceptions, pointers to procedures, partial application and
closures, dynamic method invocation and also unbounded nondeterminism. For
this language I define an operational semantics and a Hoare logic for both partial and
total correctness. These Hoare logics are proven sound and complete with respect
to the operational semantics. All the formalisation and proofs are conducted in the
theorem prover Isabelle/HOL. This is the first machine checked completeness proof
for total correctness of a Hoare logic for such an expressive language. Moreover, the
handling of auxiliary variables and the consequence rule are clarified. It turns out
that there is no need to mention auxiliary variables at all in the core calculus.

The application of the Hoare logic rules is automated in a verification condition
generator, implemented as Isabelle tactic. This rules out any soundness concerns of
the implementation of the verification condition generator. Moreover, the handling
of procedure definitions and specifications is seamlessly integrated into Isabelle.
This makes the comprehensive infrastructure of Isabelle available for program veri-
fication and leads to a flexible, sound and practically useful verification environment
for imperative programs.

The Hoare logic is extended to facilitate the integration of automatic program
analysis or software model checking into the verification environment. The proper-
ties that the program analysis infers can be added as assertions into the program.
These assertions are treated as granted for the rest of the verification. The Hoare
calculus and the notion of validity is adapted to make sound reasoning about those
assertions possible. The analysis result is again captured in a Hoare triple. This
leads to a clear and declarative interface of the Hoare logic to program analysis.

To demonstrate the connection to a real programming language, a type-safe
subset of the C programming language, called C0 is formally embedded into Simpl.
This embedding illustrates how the type safety result for C0 can be exploited to
switch to a simpler state model for the verification of individual (welltyped) C0
programs. For example, primitive types of C0 are directly mapped to HOL types
in Simpl. Hence type inference of Isabelle takes care of the basic typing issues.
Moreover, the heap model of Simpl already rules out aliasing between pointers of
unequal type or to different structure fields. This is the first time this model is
formally justified. Moreover, the embedding of C0 in Simpl shows how a deep
embedding, tailored for meta theory, can be transferred to a shallow embedding
for the purpose of program verification. The correctness proof of the embedding
allows to transfer the program properties that are proven on the Simpl level back to
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the original C0 semantics.

1.3 Related Work

The related work can be grouped in three categories.

• General work about Hoare logics,

• formalisation of programming languages and program logics in theorem
provers, and

• tools for program verification in general.

The decisive characteristic of the work in this thesis is that all the meta theory is
developed and proven in Isabelle/HOL [80] and the actual program verification also
takes place in Isabelle/HOL. So everything is machine checked and there are no gaps
that can introduce any soundness issues. Moreover, Simpl makes no restrictions on
the state space model and on the basic actions of the programming language. These
can be exchanged and adapted to fit to a concrete programming language and to
the current verification task.

As Hoare logic was already invented in 1969 there is a vast amount of literature
available on this topic. Already in 1981 Apt wrote a first survey article [7]. Lots
of the work made its way into textbooks [76, 118, 8, 36] and can even be regarded
as folklore in computer science. Therefore I only mention the work that is closely
related to this thesis. In this work I present the soundness and completeness proofs
for a Hoare logic for partial and for total correctness. Simpl features mutually
recursive procedures as well as unbounded nondeterminism. Let us first sketch
some history of Hoare logics for deterministic languages with procedures. Hoare
proposed a calculus [48] that was proven sound and complete by Olderog [86].
In his survey article [7] Apt presents a sound and complete Hoare logics for both
partial and total correctness. For partial correctness he follows Gorelick [41] and
for total correctness he completes the work of Sokolowski [106]. Later America and
de Boer [3] find that the system for total correctness was unsound. They modify
the system and present new soundness and completeness proofs. However, their
calculus suffers from three additional adaptation rules. Kleymann (formally named
Schreiber) [104] subsumes all three rules by using a consequence rule that goes back
to Morris [73]. Kleymann has also formalised his work in the theorem prover LEGO
[97]. For the first time the soundness and completeness of a Hoare logic have been
proven in a theorem prover. Oheimb [84] builds on the work of Kleymann and
presents a sound and complete Hoare logic for partial correctness for a significant
subset of Java. Nipkow [77] simplifies some aspects of Kleymann’s proof system
and extends the proofs for partial and total correctness to procedures in the context
of unbounded nondeterminism. Nipkow relates his results to the work of Apt [5]
and Apt and Plotkin [6] on unbounded nondeterminism. He identifies the main
differences in that they use ordinals instead of well-founded relations and do not
consider procedures. Both Oheimb and Nipkow have formalised their work in
Isabelle/HOL. The work in this thesis introduces some further simplification to the
proof system of Kleymann and extends the work of Nipkow to Simpl. In particular
Simpl supports abrupt termination and can deal with procedures with parameters,
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dynamic method invocation and higher order features like pointers to procedures
and closures.

The tradition of embedding a programming language in HOL goes back to the
work of Gordon [71], where a while language with variables ranging over natural
numbers is introduced. A polymorphic state space was already used by Wright et al.
[111] in their mechanisation of refinement concepts, by Harrison in his formalisation
of Dijkstra [46], and by Prensa to verify parallel programs [98]. Still procedures were
not present. Homeier [50] introduces procedures, but the variables are again limited
to numbers. Later on detailed semantics for Java [84, 103, 102, 51] and C [81] were
embedded in a theorem prover. Unfortunately verification of even simple programs
suffers from the complex models. The problem is that the models are biased towards
meta theory of the programming language. Although properties like type safety of
the programming language can be proven once and for all, typing issues are explicit
in the model and permanently show up in the verification of individual welltyped
programs. The meta theory of Simpl completely abstracts from the state space
representation. The state space can be instantiated for every individual program.
With this approach the types of programming language variables can be mapped
to HOL types, and moreover a shallow embedding of expressions can be used. All
this simplifies the verification of individual programs.

The Why tool [33] implements a program logics for annotated functional pro-
grams (with references) and produces verification conditions for external theorem
provers. It can handle uninterpreted parts of annotations that are only meaningful
to the external theorem prover. With this approach it is possible to map imper-
ative languages like C to the tool by representing the heap in reference variables.
Although the Why tool and the work we present in this paper both provide compara-
ble verification environments for imperative programs the theoretical foundations
to achieve this are quite different: Filliâtre builds up a sophisticated type theory
incorporating an effect analysis on the input language, whereas the framework of
Hoare logics and the simple type system of HOL is sufficient for our needs. More-
over, the entire development in this thesis, the calculus together with its soundness
and completeness proof, is carried out in Isabelle/HOL, in contrast to the pen and pa-
per proofs of Filliâtre [32]. The formal model in Isabelle/HOL allows to reason about
the embedding of a programming language to Simpl. In contrast, the embedding
of C [34] and Java [65] to the Why tool have to be trusted.

The following tools for the verification of imperative programs all have in com-
mon that they are less foundational than the approach presented in this thesis. The
tools and their meta theory are not developed in a uniform logical framework like
HOL: The Jive tool [70] implements a Hoare logic for Java [96]. The resulting verifica-
tion conditions are passed to an interactive theorem prover, currently Isabelle/HOL.
The KIV-tool [100] uses dynamic logic [45] for program verification. Recently Sten-
zel has extended it to handle Java Card programs [108, 107]. Stenzel has also verified
this extension within the KIV-tool. The KeY-tool [2] is also based on dynamic logic
to reason about Java. The B-Method [1] and VDM [55] focus on building programs
in a step-wise refinement process.

Several works propose the integration of automatic tools into interactive theorem
proving. In the context of hardware verification Pisini et al. [31], Rajan et al. [99]
and Amjad [4] have integrated model checkers. Similarly Joyce and Seger [56]
proposed a link between symbolic trajectory evaluation and interactive theorem
proving. On the other hand there is work on the integration of general purpose
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automatic theorem provers for fragments of HOL, like first order theorem provers
[69] or SAT solvers [113] and arithmetic decision procedures [11]. However, I am
not aware of any work to integrate program analysis or software model checking in
a Hoare logic based framework. On the level of byte-code, Wildmoser et al. [117]
propose a similar approach. It allows to integrate static analysis results for Java
byte-code into a proof carrying code framework.

The approach followed in context of the Why tool is complementary to the
one in this thesis. The Why tool can generate verification conditions for several
theorem provers. These include the automatic theorem prover Simplify2 [75] and
the interactive theorem prover Coq [14]. In some cases the verification condition can
already be proven by Simplify, otherwise it has to be proven in Coq. In our setting
a similar effect could be achieved by integrating Simplify as an oracle in Isabelle
that is invoked on the verification condition. In contrast, the approach in this thesis
integrates the results of the program analysis or software model checker before
the verification condition generator is invoked. We do not expect the automatic
tool to solve the complete verification condition, but can exploit the assertions it
returns already during verification condition generation and also in the following
interactive verification.

1.4 Overview

For the rest of this chapter I introduce preliminaries on Isabelle and the notational
conventions of this thesis.

Chapter 2 introduces Simpl, a model for sequential imperative programming
languages. The formal syntax and semantics of Simpl is defined and a couple of
examples illustrate how common language features can be expressed in Simpl.

In Chapter 3 a Hoare logic for partial and total correctness of Simpl programs is
developed and proven sound and complete.

In Chapter 4 a verification condition generator is built on top of the Hoare
logic and a series of examples illustrate how various aspects of the verification of
imperative programs are handled.

Chapter 5 discusses how program analysis or software model checking can be
integrated into the verification environment.

Chapter 6 studies the compositionality of the calculus and how verified libraries
can be built and reused.

Chapter 7 introduces C0, a type-safe subset of the programming language C.
Its syntax and semantics is defined and a type system and a definite assignment
analysis is developed. A couple of type soundness theorems are proven.

In Chapter 8 C0 is embedded into Simpl and this embedding is proven correct.
The final correctness theorem allows to transfer program properties from Simpl back
to the original C0 program. An example concludes the presentation.

Chapter 9 reports on the practical experiences with the verification environment
and finally concludes the thesis with a summary and pointers to further work.

Appendix A presents a collection of theorems that are omitted in Chapter 2.

2See the Simplify home page: http://research.compaq.com/SRC/esc/Simplify.html

http://research.compaq.com/SRC/esc/Simplify.html
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1.5 Preliminaries on Isabelle

Isabelle [90] is a generic proof assistant. It provides a framework to declare deductive
systems, rather than to implement them from scratch. Currently the best developed
object logic is HOL [80], higher order logic, including an extensive library of (con-
crete) mathematics, as well as various packages for advanced definitional concepts
like (co-)inductive sets and types, primitive and well-founded recursion etc. To de-
fine an object logic, the user has to declare the syntax and the inference rules of the
object logic. By employing the built-in mechanisms of Isabelle/Pure, higher-order
unification and resolution in particular, one already gets a decent deductive system.
For sizable applications some degree of automated reasoning is essential. Existing
tools like the classical tableau prover or conditional rewriting can by instantiated
by a minimal ML-based setup. ML [91] is the implementation language of Isabelle.
Moreover, Isabelle follows the well-known LCF system approach [40], which allows us
to write arbitrary proof procedures in ML without breaking system soundness since
all those procedures are expanded into primitive inferences of the logical kernel.

Isabelle’s meta logic [89], which is minimal higher-order logic with connectives∧
(universal quantification), =⇒ (implication), and ≡ (equality), is used to describe

natural deduction style inference rules and basic definitions. The Isabelle kernel
manipulates formulas on the level of the meta logic.

For example, the introduction rule for conjunction:

P Q

P ∧ Q
(I),

is expressed as:

[[P; Q]] =⇒ P ∧ Q,

in the meta logic. The brackets [[. . . ]] =⇒ separate the premises from the conclusion.
They are syntactic sugar for nested entailment. Without these brackets the rule
reads as follows:

P =⇒ (Q =⇒ P ∧ Q).

Isabelle supports two kinds of proof styles. A tactic style and a declarative,
human-readable style. In the tactic style the current proof goal is manipulated
with so called tactics. These tactics range from the application of a single inference
rule to automatic methods, like decision procedures for linear arithmetic, rewriting
or a classical tableau prover. The effect of a tactic is an altered goal state. It can
either solve the goal completely, split the goal to various subgoals, or just modify or
simplify it. Here is an example proof.

lemma P ∧ Q =⇒ Q ∧ P

1. P ∧ Q =⇒ Q ∧ P

The command lemma initiates the initial subgoal.

apply (rule conjI)
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1. P ∧ Q =⇒ Q
2. P ∧ Q =⇒ P

The rule conjI is applied backwards. This means its conclusion is unified with the
current subgoal and the premises result in the new subgoals.

apply (erule conjE)

1. [[P; Q]] =⇒ Q
2. P ∧ Q =⇒ P

The elimination rule conjE splits the conjunction in the premises. The first subgoal
can now be solved by assumption.

apply assumption

1. P ∧ Q =⇒ P

And analogous for the remaining subgoal.

apply (erule conjE)

1. [[P; Q]] =⇒ P

apply (assumption)
done

The major drawback of tactic style proofs is that a reader can only understand
them if he can either imagine or see the current goal state. This also complicates
maintenance of the theories.

The alternative, declarative proof style, also named (proper) Isar style [114, 116,
79], is more verbose and explicit about the objects that are manipulated. The proof
is self contained. You do no longer need a goal state to follow the argumentation.
Without going into details, here is the same lemma in the Isar style.

lemma P ∧ Q =⇒ Q ∧ P
proof −
assume P ∧ Q
then obtain Q and P ..
then show Q ∧ P ..

qed

If a lot of theorems depend on the same set of assumptions, this context can
be grouped together in a so called locale [10]. An algebraic example is reasoning
about groups. An abstract group fixes the operations for product and inverse and
an identity element, together with the axioms of associativity, left-inverse and the
left-identity.

The following definition of locale group-context encapsulates the local parameters
(with local syntax) and assumptions. The type ′a is a type variable for elements of
the group. The infix type constructor ⇒ is for the total function space. So the
parameter prod is a function that takes two arguments. In the locale the syntax x · y
can be used.
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locale group-context =
fixes prod :: ′a⇒ ′a⇒ ′a (infixl · 70)
and inv :: ′a⇒ ′a ((-−1) [1000] 999)
and one :: ′a (1)

assumes assoc: (x · y) · z = x · (y · z)
and left-inv: x−1

· x = 1
and left-one: 1 · x = x

We may now prove theorems within a local context just by including a directive
“(in name)” in the goal specification. The final result is stored within the named
locale, still holding the context. For instance, here is the proof that the right-inverse
is derivable form the group axioms. The . . . abbreviate the last mentioned term. In
this proof it is always the right hand side of the equation above. The also triggers
transitivity reasoning for the equations.

theorem (in group-context)
right-inv: x · x−1 = 1

proof −
have x · x−1 = 1 · (x · x−1) by (simp only: left-one)
also have . . . = 1 · x · x−1 by (simp only: assoc)
also have . . . = (x−1)−1

· x−1
· x · x−1 by (simp only: left-inv)

also have . . . = (x−1)−1
· (x−1

· x) · x−1 by (simp only: assoc)
also have . . . = (x−1)−1

· 1 · x−1 by (simp only: left-inv)
also have . . . = (x−1)−1

· (1 · x−1) by (simp only: assoc)
also have . . . = (x−1)−1

· x−1 by (simp only: left-one)
also have . . . = 1 by (simp only: left-inv)
finally show ?thesis .

qed

The theorems in locale group-context build the abstract theory of groups. Isabelle
also allows to instantiate a locale as we want to access the theorems for a concrete
group, for example, the real numbers with addition. The abstract operations are
instantiated with the corresponding operations for reals and the group axioms
have to be proven for these operations. Then Isabelle automatically instantiates all
the theorems that are accumulated in locale group-context for the reals. Moreover,
locales can extend other ones. Like an abelian group adds the commutativity axiom
to groups:

locale abelian-group-context = group-context +
assumes commute: x · y = y · x

Of course, all the theorems for groups are automatically available for abelian
groups. Locales support a modular development of the theories. The abstract
theory can be developed independent of concrete instances. And every concrete
instance can import the abstract theory.

Currently the best developed object logic of Isabelle is HOL, an encoding of
higher order logic, augmented with facilities for defining data types, records, induc-
tive sets as well as primitive and total general recursive functions. The work in this
thesis is based on Isabelle/HOL. Quoting from the Isabelle/HOL tutorial [80]:

HOL = Functional Programming + Logic.
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Hence the notation in this thesis is a mixture of functional programming and
standard mathematical-logical conventions. The main impact from functional pro-
gramming is that functions are usually defined in a curried form and function
definitions for data-types use pattern matching. The motivation for the curried
form is that partial application can be exploited. For example, instead of defining
an addition function add of type int × int⇒ int, it is defined as int⇒ int⇒ int, which
means int⇒ (int⇒ int). Hence an increment function can be defined as add 1, since
this partial application results in a function of type int⇒ int. The curried style of
functions together with partial application is also the reason why the arguments
of a function are not grouped together with parenthesis. An application add (i, j)
corresponds to a signature int × int⇒ int, as (i, j) is a pair in HOL. The parameters
of a function are just separated by a white space: add i j. Function application binds
tighter than any infix or mixfix operation. For instance, f i + g i j means (f i) + (g i j).

After this short introduction about the principles of the notation, we system-
atically introduce some more notation and basic (data) types and their primitive
operations.

Types The basic types are truth values (bool), natural numbers (nat) and integers
(int). The space of total functions is denoted by the infix ⇒. Type variables are
written as ′a, ′b, ′c, etc. The notation t :: τmeans that HOL term t has HOL type τ.

The functions nat :: int⇒ nat and int :: nat⇒ int convert between natural numbers
and integers. Negative integers are mapped to natural number 0.

Logical Connectives The logical connectives are as usual: ∧, ∨, −→, ¬, ∀ and ∃ .
Where the bound variables of quantifiers are separated from the body by a “.”. For
instance, ∀x y. x < y. Note that the two implications −→ and =⇒ and the universal
quantifies ∀ and

∧
, taken from HOL and the meta logic are equivalent. Since an

HOL formula is an atomic entity for the meta logic, the scope of HOL quantifiers
never extends over meta logical connectives. For example, in ∀x. P x =⇒ P x the x
in the conclusion is not in scope of the universal quantifier. Of course the universal
quantifier of the meta logic extends over meta logical connectives. For instance, in∧

x. P x =⇒ P x both x are bound by the quantifier.
HOL defines a polymorphic equality=. Hence the “if and only if” is just Boolean

equality in HOL.
As usual, the connectives −→, =⇒, ∧ and ∨ associate to the right, and ∧ or ∨

bind tighter than −→. For instance, the proposition P −→ Q −→ R −→ S means
P −→ (Q −→ (R −→ S)) and is hence equivalent to the proposition P ∧ Q ∧ R −→ S
(which is (P ∧ Q ∧ R) −→ S).

Furthermore, HOL provides a conditional, e.g. if x < y then x else y , and for
every data type there is a case distinction, e.g. case x < y of True ⇒ x | False ⇒ y.
Term abbreviations can be introduced as in let x = t in u, which is equivalent to u
where all occurrences of x have been replaced by t. For example, let x = 1 in x + x
is equivalent to 1 + 1. Moreover, multiple bindings are separated by semicolons:
let x1 = t1;. . . ; xn = tn in u.

Pairs The type constructor for pairs is the infix ×. There are the two projections
functions fst :: ′a × ′b⇒ ′a and snd :: ′a × ′b⇒ ′b. Tuples are pairs nested to the right.
So (a, b, c) is identical to (a, (b, c)) and also type ′a × ′b × ′c is identical to ′a × ( ′b × ′c).
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Sets Sets of elements of type ′a have type ′a set . The notation for sets follows the
usual mathematical convention, like x ∈ A, A ∩ B, A ∪ B, − A, A ⊆ B, etc. Only set
comprehension is written as {x. P x} instead of {x| P x}. The empty set is {}, a singleton
set is, for instance, {a}, and the universal set is UNIV. A finite set expression like, for
instance, {a, b, c} abbreviates {a} ∪ {b} ∪ {c} ∪ {}. Finite sets are characterised by the
predicate finite, which is defined inductively by the following rules:

finite {}

finite A

finite ({a} ∪ A)

Unions can be formed over the values of a given set. The syntax is
⋃

x∈A B. The
union over a type:

⋃
x∈UNIV B, is abbreviated with

⋃
x B. The union of a set of sets is

expressed by
⋃

C.
The infix ‘ denotes the set image operation: f ‘ A = {f a. a ∈ A}.

Lists Lists of elements of type ′a have type ′a list. The constructors of a list are
the empty list [] and the infix constructor ·, which adds a single element to the front
of the list. Moreover, [a, b, c] abbreviates a·b·c·[]. The infix @ appends two lists.
The function set converts from lists to sets. Variable names ending in the plural “s”
usually stand for lists, length xs yields the length of list xs and is abbreviated with
|xs|, and xs[n], where n::nat, is the nth-element of xs (starting with 0). Moreover, with
xs[n := e] the list xs is updated at position n with value e . Term distinct xs means that
the elements of xs are all distinct. The following standard functions from functional
programming are also available in Isabelle/HOL.

With rev xs the list xs is reversed.
The function map applies a function to each element in a list:

map f [x1, x2,. . . , xn] = [f x1, f x2,. . . , f xn].

The function foldl iterates a binary operation over a list:

foldl g e [x1, x2,. . . , xn] = (g (. . . (g (g e x1) x2). . . ) xn).

For example, the sum of an integer list is can be calculated by foldl (+) 0 is. The
parenthesis around the infix operation + indicate that it is used as a normal (prefix)
function here.

Function zip takes two lists and generates a list of pairs:

zip [x1, x2,. . . , xn] [y1, y2,. . . , yn] = [(x1,y2), (x2,y2),. . . , (xn,xn)].

The input lists have to be of equal length. Otherwise the empty list is returned.
With hd the first element of a list is selected, and with tl the first element is

removed from the list. Similarly function last selects the last element of a list, and
butlast removes the last element from the list.

With take n xs the first n elements of the list xs are selected and with drop n xs the
first n elements are dropped from xs.

With replicate n e a list with n copies of e is generated.
Function concat takes a list of lists and concatenates them:

concat [xs1, xs2,. . . , xsn] = xs1 @ xs2 @ . . . @ xsn.
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Functions The λ operator is used to define (anonymous) functions. For example,
λx. x ∗ x is a function that takes an argument x and squares it.

A function update is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b. It is
defined as:

f (a := b) ≡ λx. if x = a then b else f x.

Function composition is written as usual:

f ◦ g ≡ λx. f (g x).

Partial Functions HOL is a logic of total functions. To model partiality of func-
tions there are two main approaches used throughout the HOL-Library and this
thesis. First, the function can just return a default value within the range type.
As types in HOL are non empty, every type has at least one element. Hence it is
perfectly valid to declare a polymorphic constant arbitrary. This arbitrary is just a
default value for each type. It is not defined but just declared. This means that it
is an unspecified value of a type. A function can always return arbitrary in case of
an undefined situation. For example, this is how hd is defined. Only for non-empty
lists a reasonable result can be expected. The user only specifies the sole equation
hd (x·xs) = x. Internally the other case is defined as hd [] = arbitrary. The drawback
of this approach is that one cannot distinguish between defined and undefined ap-
plications of hd. The result arbitrary can as well come from a legal application like
hd (x·xs) = arbitrary, since arbitrary could be equal to x. Hence most theorems about
hd have the precondition xs , []. For example: xs , [] =⇒ hd xs·tl xs = xs.

In the second approach we explicitly adjoin a new element None to the type:

datatype ′a option = None | Some ′a

For succinctness we write bac instead of Some a. The under-specified inverse the
of Some satisfies the bxc = x. Moreover, the function option-map applies a function to
a defined value.

option-map ≡ λf y. case y of None⇒ None | bxc ⇒ bf xc

A partial function can be modelled as type ′b ⇒ ′a option. In an undefined
situation the element None is returned. The drawback is that the range type is no
longer just ′a but ′a option.

It depends on the situation and on sure instinct to decide which approach to
choose.

Maps Maps are partial functions of type ′a ⇒ ′b option, where None represents
undefinedness and f x = byc means x is mapped to y. The domain of a map is
defined as dom m ≡ {a. m a , None}. Instead of type ′a ⇒ ′b option we also write
′a ⇀ ′b. We abbreviate f (x:=byc) to f (x 7→ y). The latter notation extends to lists:
f ([x1,. . . ,xm] [ 7→] [y1,. . . ,yn]) means f (x1 7→y1). . . (xi 7→yi), where i is the minimum of m
and n. This notation works for arbitrary list expressions on both sides of [7→], not
just enumerations. Multiple updates like f (x7→y)(xs[ 7→]ys) can be joined together as
f (x 7→ y, xs [7→] ys). The map λx. None is written empty, and empty(. . . ), where . . . are
updates, abbreviates to [. . . ]. For example, empty(x7→y, xs[7→]ys) becomes the term
[x 7→ y, xs [7→] ys].

Overwriting map m1 with map m2 is written m1 ++ m2 and is defined as:
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m1 ++ m2 ≡ λk. case m2 k of None⇒ m1 k | bvc ⇒ bvc.

Composition of map m1 with map m2 is written m1 ◦ m m2 and is defined as:

m1 ◦m m2 ≡ λk. case m2 k of None⇒ None | bvc ⇒ m1 v.

Function map-of turns an association list, i.e. list of pairs, into a map:

map-of :: ( ′k × ′v) list⇒ ( ′k⇀ ′v)
map-of [] = empty
map-of (p·ps) = map-of ps(fst p 7→ snd p)

Note that with this definition the first elements may overwrite later occurrences of
the same key:

map-of [(a, x), (a, y)] a = bxc.

The domain of a map m is restricted to a set A by the operation m�A:

m�A ≡ λk. if k ∈ A then m k else None.

Two maps m1 and m2 satisfy the relation m1 ⊆m m2, if they agree on the domain
of m1:

m1 ⊆m m2 ≡ ∀k∈dom m1. m1 k = m2 k.

Pattern Matching As in functional programming, (recursive) definitions are often
defined with pattern matching on the data types. In those definitions the order of the
equations is significant. Moreover, the dummy pattern - can be used. For example:

f (x·y·xs) = . . .
f (x·xs) = . . .
f - = . . .

The second equation is only applied to lists with only one element, since lists
with at least two elements are already handled by the first equation. Similarly the
third equation is only responsible for the empty list.

Presentation Issue This thesis presents applied work in formal logics. Hence
a lot of formulas, lemmas and theorems show up. The presentation in this thesis
follows the motto:

What you see is what we proved!

Isabelle theories can be augmented with LATEX text which may contain references
to Isabelle theorems (by name — see chapter 4 of the Isabelle/HOL tutorial [80]).
When Isabelle processes this LATEX text, it expands these references into the LATEX
text for the proposition of the theorem. Using this mechanism, the text for most of
the definitions and theorems in this paper is automatically generated, and hence the
chance of typos or omissions is minimised.

The style for the presentation of theorems may also be configured. The plain
configuration yields Isabelle’s meta logic, e.g.

[[A; B]] =⇒ C.
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This can also be presented as an inference rule:

A B

C

To improve readability the theorems may also be schematically converted to a
sentence:

If A and B then C.

Or even be filled with user defined text:

Provided A and also B, then we have C.

Most theorems in this thesis are presented in either of the latter two styles.
Although most of the proofs are in the quasi-readable form of Isar proofs, it

appears beyond the state of the art to turn these into concise textbook-style proofs
automatically. Hence the proofs presented in this thesis are manually tuned variants
of the Isar proofs.

Most of the proofs are inductive. Induction on a data type, rule induction on an in-
ductive definition, well-founded induction, or “induction on the recursion-scheme
of function . . .”. What does the latter mean? HOL is a logic of total functions. The
termination of every recursive definition has to be proven. For primitive recursion
on data types the data type package already provides a recursion operator. When
defining a general recursive function this is reduced to well-founded recursion and
the corresponding proof obligations have to be discharged by Isabelle or manually
by the user. Isabelle then derives an induction scheme that exactly follows the re-
cursion in the definition. This induction scheme is often very convenient to use if
one attempts to prove a theorem that involves the recursive definition. This is what
I refer to with “induction on the recursion-scheme of function . . .”.
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The Simpl language

Everything should be made as simple as possible,
but not simpler.

— Albert Einstein

This chapter introduces a general language model for sequential imperative
programs. It is independent of a concrete programming language but expressive
enough to cover all common language features.
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2.1 Abstract Syntax

In this section I introduce the abstract syntax of Simpl, a sequential imperative
programming language. Simpl is a rather general language that is not fixed to a
specific real programming language like C, Pascal or Java. It is more like a model
for imperative programs that allows to embed real programming languages for the
purpose of program verification. To achieve this flexibility Simpl only defines the
control flow statements, without restricting the basic actions or expressions of the
programming language. Semantically spoken, Simpl makes no assumptions on the
state space, it is polymorphic. We use the canonical type variable ′s for the state
space. Basic actions are arbitrary state updates of type ′s ⇒ ′s. For example we
can model variable assignments, field assignments or memory allocation as those
basic actions. Simpl is rich enough to cover the following programming language
features:

• mutually recursive procedures,

• global variables, local variables and heap,

• runtime faults like array bound violations or dereferencing null-pointers

• abrupt termination like break, continue, return and even exceptions,

• side effecting expressions,

• nondeterminism,

• pointers to procedures, partial application and closures, and

• dynamic method invocation.

Despite the fact that Simpl supports nondeterminism, I call it sequential since it
has no direct notion of concurrency.

The syntax of Simpl is defined by the polymorphic data type ( ′s, ′p, ′f ) com, where ′sDefinition 2.1
Syntax of Simpl

I

is the state space type, ′p the type of procedure names and ′f the type of faults. The
constructors are listed in the following table, where c, c1 and c2 are Simpl commands
of type ( ′s, ′p, ′f ) com and the Boolean condition b and the guard g are modelled as
state sets of type ′s set.

Skip Do nothing
Basic f Basic command, where f is a state-update: ′s⇒ ′s
Seq c1 c2 Sequential composition, also written as c1; c2
Cond b c1 c2 Conditional statement (if-then-else)
While b c Loop
Call p Procedure call, p is of type ′p
Guard f g c Guarded command, fault f is of type ′f
Throw Initiate abrupt termination
Catch c1 c2 Handle abrupt termination
Spec r Basic (nondeterministic) command defined by the

relation r of type ( ′s × ′s) set
DynCom cs Dynamic (state dependent) command, where cs has

type ′s⇒ ( ′s, ′p, ′f ) com.
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The formal semantics of Simpl is defined in the next section. Therefore I only
give some brief explanations of the language constructs here.

Runtime faults are modelled by the guarded command Guard f g c, where g is
the guard that watches for runtime faults that may occur in c. If g is violated the
fault f is signalled and the computation stops.

The core procedure call Call p is parameterless. Parameter passing is imple-
mented in section 2.4.

Throw and Catch are the basic building blocks to model various kinds of abrupt
termination, like break, continue, return and exceptions. In Catch c1 c2 the com-
mand c2 can be seen as handler. It is only executed if c1 terminates abruptly.

Command Spec r defines the potential next states via the relation r. It can be
used to model nondeterministic choice or in the context of refinement [72, 28] it can
represent a specification of a piece of code rather than an implementation.

The dynamic command DynCom cs allows to abstract a command over the state
space. It can be used for different purposes: To implement scoping, parameter
passing, expressions with side-effects or “real” dynamic construct like pointers to
procedures or dynamic method invocations. Details follow in section 2.4.

The set of Simpl commands is not minimal. A Skip can be implemented by
Basic (λs. s), the dynamic command DynCom can be used to implement the condi-
tional, and the Spec command can be used to implement the Basic command. This
separation reflects the different concepts behind the commands.

2.2 Semantics

This section defines the semantics of Simpl by an operational big-step semantics.
The core state space is polymorphic and is denoted by the type variable ′s, runtime
faults have type ′f. To define the semantics the state space is augmented with control
flow information:

datatype ( ′s, ′f ) xstate = Normal ′s | Abrupt ′s | Fault ′f | Stuck J Definition 2.2
Extended state space

Execution starts in a normal state Normal s. If a Throw is executed the state
switches to Abrupt s. In case a guard Guard f g c is violated the runtime fault
is signalled by the state Fault f. Moreover, execution can get stuck because of a
procedure call to an undefined procedure or an empty set of possible next states in
command Spec. State Stuck makes those dead ends visible in the semantics.

We introduce the state-discriminators isAbr and isFault: J Definition 2.3
State discriminatorsisAbr :: ( ′s, ′f ) xstate⇒ bool

isAbr t ≡ ∃s. t = Abrupt s

isFault :: ( ′s, ′f ) xstate⇒ bool
isFault t ≡ ∃ f . t = Fault f

The operational big-step semantics: Γ` 〈c,s〉⇒ t, is defined inductively by the rules J Definition 2.4
Big-step semantics of
Simpl

in Figure 2.1. In procedure environment Γ execution of command c transforms the
initial state s to the final state t, where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s,t :: ( ′s, ′f ) xstate
c :: ( ′s, ′p, ′f ) com
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Γ` 〈Skip,Normal s〉 ⇒ Normal s
(S)

Γ` 〈Basic f,Normal s〉 ⇒ Normal (f s)
(B)

Γ` 〈c1,Normal s〉 ⇒ s ′ Γ` 〈c2,s ′〉 ⇒ t

Γ` 〈Seq c1 c2,Normal s〉 ⇒ t
(S)

s ∈ b Γ` 〈c1,Normal s〉 ⇒ t

Γ` 〈Cond b c1 c2,Normal s〉 ⇒ t
(CT)

s < b Γ` 〈c2,Normal s〉 ⇒ t

Γ` 〈Cond b c1 c2,Normal s〉 ⇒ t
(CF)

s ∈ b Γ` 〈c,Normal s〉 ⇒ s ′ Γ` 〈While b c,s ′〉 ⇒ t

Γ` 〈While b c,Normal s〉 ⇒ t
(WT)

s < b

Γ` 〈While b c,Normal s〉 ⇒ Normal s
(WF)

Γ p = bbdyc Γ` 〈bdy,Normal s〉 ⇒ t

Γ` 〈Call p,Normal s〉 ⇒ t
(C)

Γ p = None

Γ` 〈Call p,Normal s〉 ⇒ Stuck
(CU)

s ∈ g Γ` 〈c,Normal s〉 ⇒ t

Γ` 〈Guard f g c,Normal s〉 ⇒ t
(G)

s < g

Γ` 〈Guard f g c,Normal s〉 ⇒ Fault f
(GF)

Γ` 〈Throw,Normal s〉 ⇒ Abrupt s
(T)

Γ` 〈c1,Normal s〉 ⇒ Abrupt s ′ Γ` 〈c2,Normal s ′〉 ⇒ t

Γ` 〈Catch c1 c2,Normal s〉 ⇒ t
(C)

Γ` 〈c1,Normal s〉 ⇒ t ¬ isAbr t

Γ` 〈Catch c1 c2,Normal s〉 ⇒ t
(CM)

(s, t) ∈ r

Γ` 〈Spec r,Normal s〉 ⇒ Normal t
(S)

∀ t. (s, t) < r

Γ` 〈Spec r,Normal s〉 ⇒ Stuck
(SS)

Γ` 〈cs s,Normal s〉 ⇒ t

Γ` 〈DynCom cs,Normal s〉 ⇒ t
(DC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ` 〈c,Fault f 〉 ⇒ Fault f
(FP)

Γ` 〈c,Stuck〉 ⇒ Stuck
(SP)

Γ` 〈c,Abrupt s〉 ⇒ Abrupt s
(AP)

Figure 2.1: Big-step execution rules for Simpl

The rules for the common language constructs follow the standard textbook
semantics [76, 118]. The handling of abrupt termination is adapted from Java
exception handling in the semantics of Oheimb [84]. The execution rules come in
two flavours: the statement specific rules and the propagation rules for Fault, Stuck
and Abrupt states. The statement specific rules are only applicable to Normal states.
As soon as an “abnormal” state is entered, execution is skipped and the state is
propagated. There is no means to recover from a Fault or Stuck state. Execution
ends in those states, whereas the Catch statement continues execution of the second
statement in a Normal state upon abrupt termination of the first statement. If the
first statement terminates normally, Catch skips the execution of the second one.
The encoding of control flow information into the state implements the expected
behaviour of abrupt termination. As an example, consider the execution of the
statement Catch (Seq Throw c1) c2 starting in state Normal s. According to Rules
C and S we first execute Γ` 〈Throw,Normal s〉 ⇒ Abrupt s. This becomes the
first premise of the S Rule. The only way to instantiate the second premise is by
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the AP Rule: Γ` 〈c1,Abrupt s〉 ⇒ Abrupt s. This means c1 is skipped and
execution of sequential composition becomes Γ` 〈Seq Throw c1,Normal s〉 ⇒ Abrupt s.
According to the CRule, finally the statement c2 is executed to handle the abrupt
termination: Γ` 〈c2,Normal s〉 ⇒ t.

Branching conditions are modelled semantically as state sets. Therefore testing
them becomes set membership. The command Basic f applies the function f to the
current state. Similarly all states that are related to the current state by relation r are
potential next states of Spec r. The semantic becomes nondeterministic here since
multiple next states can exist. If there is no possible next state this is signalled by
the Stuck state. Making those stuck executions and runtime faults visible by the
special states Stuck and Fault f, makes it possible to reason about them in the context
of a big-step semantics. Non termination, stuck executions and runtime faults
are distinguishable. Only in case of an infinite computation there is no final state
defined by this big-step semantics. The dynamic command DynCom cs depends on
the current state s. The actual command executed is cs s.

2.3 Termination

To verify total correctness of a program one needs to show that the program termi-
nates for all valid inputs. To ensure guaranteed termination of a Simpl program it
is not sufficient to require the existence of a terminating computation in the big-step
semantics: ∃ t. Γ` 〈c,s〉 ⇒ t. Due to nondeterminism this does not guarantee that all
computations from the same initial state s terminate.

Guaranteed termination: Γ`c ↓ s, of program c in the initial state s is defined J Definition 2.5
Guaranteed
termination

inductively by the rules in Figure 2.2, where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s :: ( ′s, ′f ) xstate
c :: ( ′s, ′p, ′f ) com

The rules for guaranteed termination follow the same scheme as the big-step
semantics. The statement specific rules only care about Normal initial states, whereas
programs started in a Stuck, Fault or Abrupt state trivially terminate. Therefore the
judgement Γ`c ↓ s only rules out infinite computations, since stuck computations or
runtime faults are regarded as terminating. The rules are self-explanatory.

If statement c terminates when started in state s, then there is a final state t with
respect to the big-step semantics.

If Γ`c ↓ s then ∃ t. Γ` 〈c,s〉 ⇒ t. J Lemma 2.1

Proof. By induction on the termination judgement. �

The other direction is not valid, since Simpl is nondeterministic.

2.4 Derived Language Features

The purpose of this section is to illustrate how common programming language
features can be modelled in Simpl. For example, we derive procedure calls with pa-
rameters from the primitive Simpl statements. In order to give illustrative examples
I first introduce an appropriate state space representation.
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Γ`Skip ↓ Normal s
(S)

Γ`Basic f ↓ Normal s
(B)

Γ`c1 ↓ Normal s ∀s ′. Γ` 〈c1,Normal s〉 ⇒ s ′−→ Γ`c2 ↓ s ′

Γ`Seq c1 c2 ↓ Normal s
(S)

s ∈ b Γ`c1 ↓ Normal s

Γ`Cond b c1 c2 ↓ Normal s
(CT)

s < b Γ`c2 ↓ Normal s

Γ`Cond b c1 c2 ↓ Normal s
(CF)

s ∈ b Γ`c ↓ Normal s ∀s ′. Γ` 〈c,Normal s〉 ⇒ s ′−→ Γ`While b c ↓ s ′

Γ`While b c ↓ Normal s
(WT)

s < b

Γ`While b c ↓ Normal s
(WF)

Γ p = bbdyc Γ`bdy ↓ Normal s

Γ`Call p ↓ Normal s
(C)

Γ p = None

Γ`Call p ↓ Normal s
(CU)

s ∈ g Γ`c ↓ Normal s

Γ`Guard f g c ↓ Normal s
(G)

s < g

Γ`Guard f g c ↓ Normal s
(GF)

Γ`Throw ↓ Normal s
(T)

Γ`c1 ↓ Normal s ∀s ′. Γ` 〈c1,Normal s〉 ⇒ Abrupt s ′−→ Γ`c2 ↓ Normal s ′

Γ`Catch c1 c2 ↓ Normal s
(C)

Γ`Spec r ↓ Normal s
(S)

Γ`cs s ↓ Normal s

Γ`DynCom cs ↓ Normal s
(DC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ`c ↓ Fault f
(F)

Γ`c ↓ Stuck
(S)

Γ`c ↓ Abrupt s
(A)

Figure 2.2: Guaranteed termination for Simpl

2.4.1 State Space Representation

To find an adequate model for the representation of the program’s state space is a
delicate issue. On the one hand it has to be detailed enough to express the properties
to be verified, on the other hand it has a decisive impact on the usability of the formal
tool. A fine grained model may introduce a lot of “formal noise”, which conceals
the interesting problems and makes interactive verification a real burden. Moreover,
the specific properties of different programming languages can be reflected in the
state space model. For example, Java itself ensures that we can only access initialised
memory and variables. Whereas in C there are no such guarantees. There it is a
desirable requirement of formal verification to ensure the absence of illegal memory
accesses. So for Java a state space model that abstracts from initialisation problems
is preferable, whereas such a model is out of question for C.

This short discussions makes obvious that we cannot expect one general solution
that fits best to all possible applications. This is one of the reasons why Simpl is
not commited to one single solution. The state space is not fixed, but polymorphic,
so that the user is able to tailor it to his needs. Nevertheless I briefly discuss
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the solutions that have previously been implemented in HOL and introduce the
approach that is used for the examples throughout this thesis. Keep in mind that
our goal is to facilitate program verification. We want to support reasoning about
individual programs, not reasoning about meta properties of the programming
language.

2.4.1.1 State as Function

The first attempt to embed a programming logic into HOL is the work of Gordon
[39]. He represents the state as function from names to values: name ⇒ value.
Variable names are first class objects of HOL, which means that we can quantify
over them. For example, the property ∀x. x , y −→ s1 x = s2 x expresses that states
s1 and s2 may only be different for variable y. Such specifications about the “things
that do not change” are crucial when reasoning about global variables. The range
of all variables is represented by the same HOL type, namely value. Gordon only
considers programs with variables ranging over numbers. Considering variables of
different types or even composite types like arrays, a more complex representation
of values is needed. In his formalisation of Dijkstra, Harrison [46] uses an inductive
data type to handle this problem:

datatype value = Intg int | Bool bool | Array value list

The different representations for integers (int), Booleans (bool) and arrays (value
list) are injected into the type value by the constructors Intg, Bool and Array. By
modelling arrays as lists of values also nested arrays can be expressed. An example
for an array of array of integers is Array [Array [Intg 1, Intg 2], Array [Intg 3, Intg
4]]. A drawback of this approach is that type constraints that are usually imposed
by the programming language can easily be violated. A mixed array like Array
[Intg 1, Bool b] is a perfectly legal value but typically ruled out by the type system
of the programming language. This problem carries on to expressions, where we
have to explicitly deal with programming language typing within HOL. Consider
the simple statement x := y + 1. Such an assignment boils down to a function
update in our state space. To handle the addition we somehow have to lift the HOL
addition that is defined for type int to type value. There are two solutions. We can
either project the arguments or lift the operation.

Projecting arguments (aggressive evaluation): We define a function the-Intg that
projects an int out of a value:

the-Intg :: value⇒ int
the-Intg (Intg i) = i

Since HOL is a logic of total functions the term the-Intg (Bool b) is legal, but
results in an unspecified int. The assignment x := y + 1 is then semantically
modelled as:

s(x := Intg (the-Intg (s y) + 1)).

Here s is the current state, and :=means function update in HOL. We have to
insert projections and injections into the original expression, which carries on
to assertions about the program and therefore clutters up the verification task.
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Lifting operations (type-sensitive evaluation): In this approach we explicitly fix
the binary operations and define their evaluation for values:

datatype bop = Add | And

eval :: (bop × value × value)⇒ value
eval (Add, Intg n, Intg m) = Intg (n + m)
eval (And, Bool b, Bool c) = Bool (b ∧ c)

Again eval is under-specified, if the arguments have different types. In this
setting our assignment x := y + 1 becomes:

s(x := eval (Add, s y, Intg 1)).

Since the set of possible operations is made explicit by the data type bop, the
evaluation function eval can take care of typing issues and implicitly perform
the projections from value. However, now primitive values like 1 have to be
injected into type value. Moreover, basic properties of the operations only
hold for correctly typed expressions. For example, commutation of addition:
eval (Add, n, m) = eval (Add, m, n) only holds, if we know that both arguments
are of the form Intg i. In this case we can reduce the addition on type value to
the ordinary integer addition and inherit their properties. We need to insert
those explicit type constraints into the assertions about the program to be able
to lift the logical properties of the operations for types int or bool to type value.
This basically means that we prove type safety of evaluation every time we
reason about expressions. This is annoying, since for a type-safe programming
language this can be proven once and for all.

To summarise, the characteristics of the “state as function” approach are the
following:

• only fixed range of variables and

• explicit typing, but

• first class variable names.

2.4.1.2 State as Tuple

As alternative Wright et al. [111] propose to take a tuple to represent the state space.
Variables are identified by their position in the tuple rather than by names. For
example, the tuple int × int × bool represents a state space with three variables of
type int or bool, respectively. Each variable thereby has an individual HOL type. The
typing issues of the “state as function” approach are eliminated since we do not have
to introduce an artificial super-type for all variables. Variable types are identified
with HOL types and thus type inference only accepts welltyped expressions.

By choosing the names of bound variables, when abstracting over the state space,
one can even name the programming language variables. Abstraction naturally
occurs in assertions, if they are represented as predicates state⇒ bool, or in update
functions state ⇒ state. For example, the state update of our running example
x := y + 1 can be encoded in the following function:
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λ(x, y, b). (y + 1, y, b).

Via the λ-abstraction the components of the tuple are named with x, y and b. If all
variables are known this translation from the assignment to the state update can be
handled by a mere syntactic translation. However, great care has to be taken, since
those translations have to remember all the variable names and their order in the
tuple. Moreover, names of bound variables can only be considered as comments
for the reader. Logically there is no difference between λ(x, y, b). (y + 1, y, b) and
λ(n, m, k). (m + 1, m, k). Besides, an one-to-one translation between the input and
output syntax is impossible in some cases. Consider the two assignments x := x
and y := y. Both would be mapped to the same internal form: λ(x, y, b). (x, y, b).

Since variables do not have a real name, we cannot quantify over variable names.
Fortunately the “typical” assertions do not quantify over variable names anyway.
They just refer to the components of the state. This can be done in the same fashion
as the state update above. However, how can we express the “things that do not
change”? To express that only y may change its value, one can list all components
that do not change: x1 = x2 ∧ b1 = b2. So in principle it is possible to express it, but
the major drawback is the poor modularity. Every time we add a new variable to
the program, we have to adapt those specifications. The problem is that the way to
express that ymay not change, does not even mention y at all, but instead explicitly
lists all the other variables. Similarly, all assertions and functions on the state have
to be updated if a variable is added, since they split the tuple to its components.

We end up with the following characterisation of the “state as tuples” approach:

• variables can range over any HOL type,

• automatic typing by type inference, but

• variables have only fake names.

2.4.1.3 State as Record

Records are similar to tuples, but additionally allow us to give proper names to
variables. They were proposed by Wenzel [115] as state space representation and
successfully used by Prensa [98] for the verification of parallel programs. Records
enhance tuples by supplying selection and update functions for each component.
For example

record state =
x :: int
y :: int
b :: bool

yields the selectors x :: state ⇒ int, y :: state ⇒ int and b :: state ⇒ bool, and the
update functions x-update :: int ⇒ state ⇒ state, y-update :: int ⇒ state ⇒ state and
b-update :: bool⇒ state⇒ state. A record update x-update i s can be abbreviated with
s(|x := i|). In this setting the assignment x := y + 1 becomes a record update:

s(|x := y s + 1|).

As with tuples we still cannot quantify over variable names, since record field
names are no first class objects of HOL. A field is merely characterised by its selection
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and update functions. However, we can now specify that only y may change,
without having to mention the other variables: ∃ i. s2 = s1(|y := i|). So in both this
specification and the assignment above, only the relevant portions of the state space
occur. This improves modularity compared to tuples.

In the end I decided to use records as state space representation. Every variable
is represented by a record field and thus has an individual HOL type. As with tuples,
automatic type inference takes care of typing issues. Moreover, with field selection
and update we have convenient means to express state updates and assertions.

As final remark, there is one oddity of the “state as record” approach. Modelling
the state as function gives us a uniform representation of the state space for every
program. In the other approaches the shape and therefore the type of the state
depends on the variables of each individual program. Each variable needs an extra
slot in the tuple or field in the record. However, as sketched above, with records
we can focus on the relevant variables in the assertions and state updates. So for
practical issues this is no problem. In Sections 6 and 9.2 this discussion is continued.

2.4.2 Concrete Syntax for Simpl
To improve readability of Simpl programs I introduce pseudo-code syntax. First
of all let me address the assignment. With the state represented as record, an
assignment m = m - 1 is mapped to a Basic command that performs a record update:
Basic (λs. s(|m := m s − 1|)). The record update and the record selection both refer to
the program state s that is bound by the λ. Whenever we refer to a component of
the state space it is type-set in a sans-serif font. In Isabelle those components are
marked with the acute symbol .́ So m is typeset as ḿ in Isabelle and expands to m s
for some bound state s. The abstraction over this state is triggered by the statements,
like the function in Basic or the condition of Cond and While. Moreover we introduce
the special braces {|. . . |} to describe sets that implicitly abstract over the state. The
following table lists concrete syntax and its mapping to the Simpl commands for
some basic statements.

concrete syntax abstract syntax

SKIP Skip
m := e Basic (λs. s(|m := e|))
c1; c2 Seq c1 c2
IF b THEN c1 ELSE c2 FI Cond {s. b} c1 c2
IF b THEN c1 FI Cond {s. b} c1 Skip
WHILE b DO c OD While {s. b} c
TRY c1 CATCH c2 END Catch c1 c2
g7→ c Guard False g c
{|P|} {s. P}

By default, faults ′f are instantiated with Boolean values. The guarded statement
g 7→ c is marked with fault False. In most cases we want to prove that all guards
hold and thus no fault at all occurs. Hence the fault, which guards are marked with,
is not important. However, in Chapter 5 we introduce an interface to discharge
guards with automatic program analysis. There, a default marking of guards with
False comes in handy.
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2.4.3 Expressions with Side Effects
Simpl has no built in expression language. Expressions appear inside a statement
as ordinary HOL expressions. For example, the assignment m = m - 1 is mapped
to a Basic command where the subtraction appears inside the state update function:
Basic (λs. s(|m := m s − 1|)). Therefore expressions do not have side-effects. To deal
with side-effecting expressions of a programming language, the trivial approach is to
reduce them to statements and expressions without side effects. A program transfor-
mation step introduces temporary variables to store the result of subexpressions. For
example, we can get rid of the increment expression in r = m++ + n by first saving
the initial value of m in a temporary variable: tmp = m; m = m + 1; r = tmp + n.
In our state space model this approach is somehow annoying since the temporary
variables directly affect the shape of the state record. The essence of the temporary
variables is to fix the value of an expression at a certain program state, so that we
can later on refer to this value. Since our dynamic command DynCom allows to
abstract over the state space we already have the means to refer to certain program
states. Similar to the state monad in functional programming [112] we introduce
the command bind e c, which binds the value of expression e (of type ′s⇒ ′v) at the
current program state and feeds it into the following command c (which is of type
′v⇒ ( ′s, ′f, ′p) com):

bind :: ( ′s⇒ ′v)⇒ ( ′v⇒ ( ′s, ′f, ′p) com)⇒ ( ′s, ′f, ′p) com
bind e c ≡ DynCom (λs. c (e s))

J Definition 2.6

We introduce the notation e � m. c as syntactic sugar for bind e (λm. c). The
assignment r = m++ + n is represented in Simpl as:

m� m. m := m + 1; r := m + n.

Unfolding the definition of bind we arrive at:

DynCom (λs. m := m + 1; r := m s + n).

The last occurance of m refers to the initial state s.
As the intermediate names, introduced by a bind, are only bound names of a

λ-abstraction it is possible to supply more syntactic sugar to completely hide the
names and mimic the original increment expression of C.

2.4.4 Abrupt Termination
Abrupt termination is the immediate transfer of control flow to some enclosing
statement, skipping the execution of the pending statements that normally would
be processed. The enclosing statement can be syntactically determined like in case
of break, continue and return or dynamically like a handler for exceptions. Abrupt
termination is well-behaved compared to arbitrary gotos. We can only jump out,
but not inside or criss-cross the code. The building block for abrupt termination in
Simpl is:

TRY c1 CATCH c2 END.

Abrupt termination of c1 is handled by c2. In case of normal termination of c1,
the second statement c2 is skipped.

To break out of a loop means to immediately exit the loop. This can be imple-
mented by putting the loop between the TRY−CATCH:
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TRY WHILE b DO . . . THROW . . . OD CATCH SKIP END .

In case of continue only the loop body is exited and control flow continues with
a new iteration of the loop. Therefore only the loop body is protected:

WHILE b DO TRY . . . THROW . . . CATCH SKIP END OD .

Similarly, in case of a return, the procedure body is protected by the enclosing
TRY−CATCH. Exception handling can be directly mapped to TRY c1 CATCH c2 END.
The protected area is c1 and the exception handler is c2.

In case all kinds of abrupt termination are simultaneously present, we instru-
ment the state space to distinguish them. The auxiliary variable Abr stores the
reason for abrupt termination. Then break, for example, actually becomes Abr
:= ”break”; THROW. The corresponding handler peeks into Abr to decide whether
to stop abrupt termination or to continue it: IF Abr = ”break” THEN SKIP ELSE
THROW FI. Similarly, exception objects can be stored in an auxiliary variable, so
that the handler can make its decision to catch or re-raise the exception. We only
have to use a global variable to ensure that the exception properly passes procedure
boundaries.

2.4.5 Blocks and Procedures with Parameters
The purpose of blocks in Simpl is to implement scoping. They can be used to
introduce local variables and to handle parameter passing in procedures. Again we
use the state abstraction provided by DynCom to get hold of the initial state. This
way we can restore the contents of the initial state when we exit the block.

block :: ( ′s⇒ ′s)⇒ ( ′s, ′p, ′f ) com⇒ ( ′s⇒ ′s⇒ ′s)⇒ ( ′s⇒ ′s⇒ ( ′s, ′p, ′f ) com)⇒ ( ′s, ′p, ′f ) com
block init bdy return c ≡
DynCom
(λs. TRY Basic init; bdy CATCH Basic (return s); THROW END;

DynCom (λt. Basic (return s); c s t))

Definition 2.7
block

I

A procedure call with parameters can directly be implemented as a block with
the parameterless call as body:

call :: ( ′s⇒ ′s)⇒ ′p⇒ ( ′s⇒ ′s⇒ ′s)⇒ ( ′s⇒ ′s⇒ ( ′s, ′p, ′f ) com)⇒ ( ′s, ′p, ′f ) com
call init p return c ≡ block init (Call p) return c

Definition 2.8
Procedure call with

parameters

I

The control flow of statement block init bdy return c is illustrated in Figure 2.3. First

block init bdy return c

s init s bdy return s tt

Abrupt

c s t

Figure 2.3: Control flow of a block

the function init initialises the block before body bdy is executed. Function return
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exits the block. To communicate results to the enclosing environment the following
statement c can peek inside the block, similar to the bind command. This can be
used to pass the result of a procedure to the caller. The block also takes care about
abrupt termination. For both abrupt and normal termination of the block body the
state is cleaned up by function return. In case of abrupt termination the follow-up
statement c is skipped and abrupt termination is propagated by re-raising THROW.
The initial state before entering the body is captured by the first DynCom and is
named s. The final state of the body is bound to t by the second DynCom. The return
function as well as the follow-up statement c can refer to both states. This allows
return to restore the initial values of hidden variables and the follow-up statement
c can implement any kind of evaluation strategy for procedure calls. Consider a
procedure call like p -> next = reverse (p) in C. The left-value of p -> next
determines the address where the return value of reverse is stored. According to
the left to right evaluation strategy this address is calculated before the procedure
call. Since the procedure itself can modify the global state due to side-effects the
left-value of p -> nextmay evaluate to a different address after the procedure call.
To properly model the final assignment, we have to restore the initial address of
left-value p -> next after the procedure returns. For this purpose we can access
the initial state s in the follow-up statement c.

The following examples illustrate the Simpl mechanisms for scoping by blocks
and procedures. Introducing a new local variable as in {int i = j; bdy} can be
implemented by:

block (λs. s(|i := j s|)) bdy (λs t. t(|i := i s|)) (λs t. SKIP).

The block is entered by initialising variable i with the current value of j. To exit the
block the initial value of i is restored. Since no result value is passed the follow-up
statement is just SKIP.

Parameter passing for procedure calls is concerned with formal and actual pa-
rameters. Suppose that the formal parameter of procedure foo is n. Parameter
passing for foo(i)means to copy the content of i to n:

init = (λs. s(|n := i s|)).

To return from the procedure the local variables of the caller have to be restored.
Or put the other way round, only the global parts of the state are propagated from
the procedure to the caller. We group together all global variables in another record
globals, which is a field of the state space record. Hence the return from a procedure
can be expressed as follows:

return = (λs t. s(|globals := globals t|)).

Pascal [54] also allows nested local procedure definitions. The local variables
of an enclosing procedure act as global variables in the local procedures. Hence a
uniform distinction between global and local variables is no longer adequate. How-
ever, as Pascal supports static scoping we know at every call point of a procedure
which variables are regarded as global and which as local. This can also be encoded
into the return function.

The final question is how the result of a function call can be communicated to
the caller. A statement like return e in C has two consequences: The procedure is
abruptly terminated and the value ofe is passed to the caller. In Simpl we decompose
both aspects. We keep an auxiliary variable res where the result is stored. So return
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e basically becomes res := e. If we also want to model the abrupt termination we
can add a subsequent THROW (cf. Section 2.4.4). Since the result is stored in res
the follow-up statement can get it from there. The assignment j = foo(i) can be
encoded in the follow-up statement:

c = (λs t. Basic (λu. u(|j := res t|))).

Note that s is the initial state of the caller, t the final state of the procedure body and
u the current state after returning from the procedure. To summarise, the procedure
call j = foo(i) is modelled by:

call (λs. s(|n := i s|)) ”foo” (λs t. s(|globals := globals t|)) (λs t. Basic (λu. u(|j := res t|))).

2.4.6 Dynamic Procedure Calls
A dynamic procedure call is a combination of the dynamic command DynCom and
a procedure call with parameters.

dynCall::( ′s⇒ ′s)⇒ ( ′s⇒ ′p)⇒ ( ′s⇒ ′s⇒ ′s)⇒ ( ′s⇒ ′s⇒( ′s, ′p, ′f ) com)⇒ ( ′s, ′p, ′f ) com
dynCall init p return c ≡ DynCom (λs. call init (p s) return c)

Definition 2.9
Dynmaic procedure

call

I

The procedure name can depend on the current state. Hence the procedure that
actually gets called can depend on the state, like on the value of a variable. We can
model a pointer to a procedure that way. A procedure pointer is a variable that
stores the name of the procedure. Moreover, in an object oriented setting we can
model dynamic method invocation. The method called depends on the dynamic
type of the object. This dynamic type is obtained from the current state.

2.4.7 Closures
The concept of closures is used in functional programming to handle partial ap-
plication of function. A function is a first class value in functional programming
languages and hence can be passed like any other value as a parameter to other
functions. This allows to implement higher order functions. If a function applica-
tion only provides a function with a part of its parameters, the function cannot yet
be evaluated. The computation is postponed until all parameters are supplied. The
parameters of the partial application are stored together with the function to make
them available as the function finally gets evaluated. The combination of a local
parameter environment and the function is the so called closure.

A similar effect occurs in imperative languages like Algol 60 [30] or Pascal [54]
which allow procedures as parameters of procedures (similar to procedure pointers)
and also local procedure declarations and static scoping. A local procedure L can
be declared in the (static) scope of an enclosing procedure E. The local procedure
L can access the local variables of the enclosing procedure E. However, the local
procedure can escape from the scope of the enclosing procedure E if is passed as an
argument to an other procedure P. If the local procedure L is finally called in the
body of procedure P it has to remember the original local variables of the statically
enclosing procedure E. As long as the locally declared procedure L only reads from
the local variables of the enclosing procedure E, this can also be expressed by partial
application. We can move the local procedure declaration to the outermost (global)
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scope by augmenting its parameter list with all the local variables of the enclosing
procedure E. Let L ′ be this global version of the procedure L. The local procedure
declaration L is then a partial application of the corresponding global procedure L ′

to the local variables of the enclosing procedure E.
In Simpl we represent closures as pairs ′e× ′p, where ′e is the environment and ′p

the procedure name. To call a closure we first adapt the current state according to the
environment and then call the procedure. The function upd takes the environment
and transforms it to a state update ′s⇒ ′s, like the init function in procedure calls.

callClosure :: ( ′e⇒ ( ′s⇒ ′s))⇒ ( ′e × ′p)⇒ ( ′s, ′p, ′f ) com
callClosure upd cl ≡ Basic (upd (fst cl)); Call (snd cl)

J Definition 2.10

This command only allows to call a fixed closure. We use it to specify the
expected behaviour of a closure. In a program we actually want to retrieve the
closure from the state, as a generalised procedure pointer, and then call it including
additional parameters and result passing. We can define it analogously to the
dynamic procedure call. The state update resulting from the environment in the
closure is just composed to the init function that applies the remaining parameters.

dynCallClosure :: ( ′s⇒ ′s)⇒ ( ′e⇒ ( ′s⇒ ′s))⇒ ( ′s⇒ ( ′e × ′p))⇒
( ′s⇒ ′s⇒ ′s)⇒ ( ′s⇒ ′s⇒ ( ′s, ′p, ′f ) com)⇒ ( ′s, ′p, ′f ) com
dynCallClosure init upd cl return c ≡
DynCom (λs. call (upd (fst (cl s)) ◦ init) (snd (cl s)) return c)

J Definition 2.11
Calling a closure

Let us have a look at an example. We represent the local environment in a
closure as a list of pairs, associating the name of a parameter with its value. We
have a variable c in the state space that can store a closure. Consider a procedure
”Add” that takes two parameters x and y and returns the addition in result variable r.
To partially apply procedure ”Add” to a variable n we create a closure and associates
”x” with the current value of n:

c := ([(”x”, n)], ”Add”).

In case ”Add” would expect more than two parameters, further partial applica-
tions would add the additional bindings to the association list. To call the closure
we need to define a function that converts the association list to a state update. First,
we associate the parameter names to the corresponding update functions of the state
space record st:

var :: string⇀ (nat⇒ (st⇒ st))
var ≡ [”x” 7→ x-update, ”y” 7→ y-update]

Then we iterate those update functions over the association list:

upd :: (string × nat) list⇒ st⇒ st
upd es s ≡ foldl (λs (x, v). the (var x) v s) s es

Here is an example:

n := 2;
c := ([(”x”, n)], ”Add”);
n := 1;
m := 3;
dynCallClosure (λs. s(|y := m s|)) upd c (λs t. s(|globals := globals t|)) (λs t. r := r t).
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The code snippet first partially applies ”Add” to the current value of n, which is 2.
Then it modifies n and finally calls the closure while supplying the second parameter
with the current value of m. Note that c is the selector of the state record. The result
is stored in variable r. Since the closure has stored the initial value of n the result is
5 and not 4.

2.4.8 Arrays
Arrays are modelled as HOL lists. The i’th element of a list l is obtained by l[i].
Update of the i’th element is l[i := e]. An assignment to an array is written as a[i] := e
and translates to a := a[i:=e].

To check for array bound violations with a guard we can use the length of the
list, eg.: {|i < |a||}7→ a[i] := e

2.4.9 Heap and Pointers
The heap model we introduce in this section excludes explicit address arithmetic
but is capable to represent typical heap structures like lists:

struct list {int cont; struct list *next}.

I want to emphasise that this is only one possible heap model. As the Simpl
language does not restrict the state space it can deal with any kind of heap represen-
tation. A proper heap model depends on the level of abstraction the programming
language offers as well as the concrete applications we attempt to tackle within the
verification environment. Tuch and Klein [110] present an alternative heap model
for Simpl that is capable to deal with low-level manipulations like pointer arith-
metic in untyped memory, but still offers a neat, abstract and typed view of memory
where possible. The heap model we adapt is the split heap approach that goes back
to Burstall [20] and was recently taken up by Bornat [17] and also by Metha and
Nipkow [67, 68]. The main benefit of this heap model is that it already excludes
aliasing between different fields of structures, like cont and next in the list example.
The typed view of memory is hard-wired into the model. Thats why we cannot
properly express low-level untyped operations like pointer arithmetic in it.

To highlight that we do not calculate with pointers we introduce a type ref of
references. We use the typedef facility of Isabelle/HOL [80] to construct the new type
ref that is isomorphic to the natural numbers. UNIV is the universal set:

typedef ref = UNIV::nat set.

The typedef mechanism defines a new type from a subset of an existing type.
It also provides functions to convert between both types. By introducing the new
type ref without lifting the arithmetic operations from the natural numbers, we
exclude address arithmetic. We declare the reference NULL as a constant without
any definition, it is just one value upon the references.

2.4.9.1 Split Heap Approach

In the context of structures in the heap one might naturally think of the heap as
a function from addresses to a heap object which contains the structure. So if
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we attempt to access a component of a heap object we need the pointer and the
field name. Hence the heap can also be viewed as a function that takes those two
arguments and retrieves an atomic value:

heap :: ref ⇒ fieldname⇒ val.

Updating a heap h at reference p and field f with a value v can be described as the
following nested function update:

h(p:=(h p)(f := v)).

If we reason about programs with pointers we usually do not reason about concrete
reference values. Instead we might have two pointer variables p and q. Due to
aliasing those pointers may reference the same location. Hence we cannot infer
from different variable names that they point to different locations. With the field
names this is different. These are constants that are fixed by the types that occur
in the program. If two field-names are different the locations they address are also
different. Moreover the field-names are also constant in the program text. For
example, for dereferencing a pointer x -> next the field-name next is a literal. It is
no variable. This is the key ingredient that is exploited in the split heap approach.
First it just swaps the arguments of the heap:

heap :: fieldname⇒ ref ⇒ val.

The above heap update of field f and reference p now becomes:

h(f := (h f )(p := v)).

Any attempt to access a different field g is already handled by the outer function
update instead of the inner one in the previous example. Since the field names are
fixed by the program we can merge the heap with each field-name and arrive at the
split heap model. This means that each field of a structure gets a separate heap in
the state space. In the list example we introduce the heaps cont:: ref ⇒ int and next
:: ref ⇒ ref. As additional benefit the fields can have individual HOL types, like int
or ref and do not have to be injected into a single type val. We also introduce heaps
for all primitive values we attempt to point to, like a heap for integers or a heap for
Booleans. The split heap model excludes aliasing on the granularity of the fields
of a structure. Hence it also excludes aliasing between different structures like lists
and trees. A next pointer of a list never collides with a left or right pointer of a tree.
An update to the next heap does not affect the left or right heaps. Like each variable
gets its own component in the state space record, each structure field gets its own
component. This is also extended to nested structures.

Here is the layout of the state space record for a heap that can contain lists and
trees as well as pointers to integers and Booleans.

record state =
globals :: heap
. . . <local variables> . . .

record heap =
cont :: ref ⇒ int
next :: ref ⇒ ref

left :: ref ⇒ ref
right :: ref ⇒ ref

int :: ref ⇒ int
bool :: ref ⇒ bool
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As already mentioned in Section 2.4.5 all global components like the split heaps
are grouped together in a single record field globals. This gives a uniform model for
the procedure return, regardless of the number of split heaps in the program.

To access the heap we provide the syntax p → f that mimics dereferencing
pointers in C. The syntax p→ f is translated to function application f p. Moreover,
the translation to variables and heap components takes care of the indirection to
the globals component of the state. For example, the assignment p := p → next is
translated to

Basic (λs. s(|p := (next (globals s)) p|)),

where p is considered to be a local variable. Similarly, the heap update p→ next := v
is translated to

Basic (λs. s(|globals := (globals s)(|next := (next (globals s))(p s := v)|)|)).

2.4.9.2 Memory Management

To model allocation and deallocation we need some bookkeeping of allocated refer-
ences. This can be achieved by an auxiliary ghost variable alloc in the state space.
A good candidate is a list of allocated references. We do not commit ourselves to a
certain allocation strategy. We only demand “freshness” of a new reference. We use
Hilberts choice operator to select a fresh reference:

new :: ref set⇒ ref
new A ≡ SOME a. a < {NULL} ∪ A

Definition 2.12 I

Since type ref is isomorphic to the natural numbers we have infinitely many
references. If only finitely many references are allocated we can always find a fresh
reference.

If finite A then new A < A ∧ new A , NULL.Lemma 2.2 I

The global ghost variable alloc is a list of allocated references. Every time the
program allocates memory it is augmented with the new reference new (set alloc).
Similarly, if the program deallocates a reference it is removed from the list. The
number of elements in a list is per se finite. Hence we can always get a new “fresh”
reference according to Lemma 2.2.

By the length of the list we can also handle space limitations. If we need a more
detailed model for the free memory we can also introduce another ghost variable
free that counts the free memory cells. With this slightly more general view the
objects can have different sizes. Although we only need one reference to store any
object in the split heap model, the allocation of different objects can still have an
individual impact on the free counter, depending on the size of the objects.

To guard against dangling pointers we can regard the allocation list:

{|p,Null ∧ p ∈ set alloc|}7→ p→cont := 2.

The use of guards is a flexible mechanism to adapt the model to the kind of
language we are looking at. In case of a type-safe language like Java there is no
explicit deallocation by the user and we can remove some guards. For example, the
test for p ∈ set alloc is not necessary in Java. If the new instruction of the programming
language does not initialise the allocated memory we can add another ghost variable
to watch for initialised memory through guards.
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2.5 Conclusion

Simpl is a mixture of a deep and shallow embedding of a programming language
in HOL. The statements are embedded deeply but allow a shallow embedding of
basic operations and expressions on the polymorphic state space. On the one hand
the deep embedding allows to define functions and predicates by recursion over
the statement syntax and supplies an induction principle for statements. On the
other hand the shallow parts provide the flexibility to tailor the language to the
requirements of a concrete programming language and verification task.

There is no need for a type system on the high level of abstraction that Simpl
provides. Moreover, the representation of the state space as a record allows to map
primitive types of the programming language to HOL types.
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C H A P T E R 3

Hoare Logic for Simpl

This chapter describes a Hoare logic for both partial and total correctness of
Simpl programs. The soundness and (relative) completeness of the Hoare logic
is proven.
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Program verification in general is about the derivation of program properties.
For sequential programs the main focus of interest is on functional correctness,
absence of runtime faults and guaranteed termination. More fine-grained properties
include execution time or memory consumption. To derive those properties one can
directly argue about the semantics or use a program logic. A program logic supplies
a calculus for reasoning about programs, without directly referring to the semantics.
Depending on the intended purpose, a program logic can be specialised to certain
program properties, possibly even allowing automated deduction, or giving the
user a more abstract or convenient methodology for reasoning. The essence of
imperative programming is to manipulate the program state. The most prominent
program logics for imperative programs is Hoare logic, developed by Hoare [47] on
the basis of earlier work by Floyd [35]. The basic idea is to describe the properties
of all possible states at a given program point by an assertion, expressed as a logical
formula. The Hoare logic gives rules for every programming language construct,
which describe the effect of the program directly on the assertion instead of the
state. Reasoning about a program is lifted to the level of assertions. An annotated
program can be completely reduced to the assertion logic, for which first order
logic is sufficient. Higher order concepts like induction are no longer necessary to
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reason about loops, if a proper invariant is supplied. This is the main theoretical
and practical benefit of Hoare logics compared to direct reasoning on the program
semantics.

A Hoare logic judgement is usually of the form {P} c {Q}, where P and Q are
assertions namely the pre- and the postcondition and c is a program fragment. If a
state satisfies the precondition P then the final state after execution of c satisfies the
postcondition Q. If termination is also guaranteed one speaks about total correctness,
otherwise about partial correctness. There is no uniform treatment of runtime-
faults, like division by zero, in the literature. Sometimes they are regarded as
non-terminating computations and thus have to be proven absent to ensure total
correctness, sometimes they are simply ignored. Some programming languages
like Java use exceptions and thus introduce means to handle runtime faults within
the programming language. Of course a proper Hoare logic then has to deal with
exceptions.

Traditionally, assertions are formulas of first order logic. Programming language
variables can directly occur in the formula. The Hoare logic rules map the effect of
a statement to the assertions via syntactic substitutions. For example, consider the
assignment rule:

{Q[e/x]} x := e {Q}.

Often the intuitive meaning of a Hoare logic rule is revealed by reading it back-
wards. If after the assignment the assertion Q holds, then before the assignment
Q[e/x] holds, which we obtain out of Q by replacing all occurrences of variable x by e.
For example, if the postcondition Q is x< 5 then the precondition is e< 5. The appeal
of this approach is the direct syntactic correspondence between the variables in the
assertion and the variables of the program. The assertion is only modified in those
parts that mention the variable that is assigned to. The situation gets more involved
as we introduce procedures with parameter passing and local variables. To properly
reason about procedure calls [43, 7], fresh variable names have to be invented that
neither occur in the body of the procedure nor in the assertions. Another problem
is aliasing that occurs when dealing with arrays or heap. Two syntactically different
pointers p and q can point to the same heap location. An assignment to the heap via p
also modifies the content of q. Thus a simple syntactic substitution of all occurrences
of p is not sufficient to describe the effect. The problem is the indirection introduced
by dereferencing a pointer. Not the pointer is modified but the heap cell it points
to. However, the heap is not explicitly visible in the programming language. As an
example consider the assignment ∗p := 4, where ∗p means dereferencing pointer p.
If we want to derive {∗p = 4 ∧ ∗q = 5} as a postcondition it is not sufficient to just
substitute ∗p by 4 to get the precondition {4 = 4 ∧ ∗q = 5}. The assignment can also
have an effect on ∗q if p equals q. The effect of the assignment is not determined by
the syntactic occurrence of ∗p, but by the actual value of p, the heap cell it points to.
This dependency of the value can be introduced as a case distinction in the assertion
logic. For every dereference of a pointer that is syntactically different from p we
introduce such a case distinction. In our example we arrive at the precondition
{4 = 4 ∧ if q = p then 4 = 5 else ∗q = 5}. To satisfy this assertion p and q have to point
to different heap cells in the beginning. The case distinction on the pointer value
is the essence of dealing with aliasing. In the end all approaches boil down to it
[20, 101, 93, 67, 13].

The first question to answer when formalising a Hoare logic is how to represent
assertions. Traditionally assertions are first order formulas where the effect of the
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program is described by substitutions. Directly adapting this scheme to HOL means
to formalise the assertion logic and the notion of substitution. To avoid this extra
layer of formalisation we follow the extensional approach [76] and directly map the
assertion logic to HOL [71, 111, 46, 84, 77, 67]. This immediately makes the existing
infrastructure of the theorem prover available for the assertion logic. An assertion
describes a set of states, hence we can directly use the set comprehension of HOL:

{s. P s}.

This approach is perfectly suited for the generic nature of Simpl. The state space
is polymorphic and there is no formal notion of “program variable”on that level.
Therefore a substitution based assertion logic that would introduce variables would
destroy this genericity. Assignments are special Basic statements. The generalised
assignment rule has the following form:

{s. f s ∈ Q} (Basic f ) Q.

We avoid the set brackets around the postcondition, since Q already is a set in
HOL. For every concrete postcondition the standard set comprehension notation
automatically introduces the set brackets, like in the precondition. The states sat-
isfying the precondition are exactly those states that lead to the postcondition by
executing f. The precondition anticipates the semantic effect of f. This rule is sound
for all Basic actions. It automatically works for assignments or pointer updates as
they can all be encoded in f. However, this semantical rule poses the question if we
lose the original benefit of Hoare logics to abstract from the semantics and directly
work on the assertion syntax. At first this is true, but we can regain the benefits by
exploiting the infrastructure of Isabelle. Let us consider the assignment m := e and
the postcondition {s. m s < 4 ∧ n s = 5}.

Remember that the assignment is mapped to Basic (λs. s(|m := e|)). Therefore
instantiation of the Hoare Rule for Basic yields:

{s. s(|m := e|) ∈ {s. m s < 4 ∧ n s = 5}} m := e {s. m s < 4 ∧ n s = 5}.

Now we can employ Isabelle’s simplifier to derive a more appealing precondi-
tion. First, we can substitute the state update into the set, by rewriting with the
equation (a ∈ {x. P x}) = P a:

{s. m (s(|m := e|)) < 4 ∧ n (s(|m := e|)) = 5} m := e {s. m s < 4 ∧ n s = 5}.

Moreover, we can simplify the record selections of the state update, m (s(|m := e|))
becomes e and n (s(|m := e|)) rewrites to n s. We arrive at:

{s. e < 4 ∧ n s = 5} m := e {s. m s < 4 ∧ n s = 5}.

This corresponds to the syntactic substitution that we expect from the original
Hoare logic assignment rule. Variable m is substituted by e and n is left unchanged.
We provide syntactic sugar to hide the abstraction over s and the selection of record
fields from s. The special brackets {|. . . |} implicitly abstract over the state space, and
the selection can be abbreviated with ḿ, as in the assignment. With our syntactic
convention to use a sans-serif font instead of the prefixed symbol ,́ we can write {|m
= 4|} for {s.m s= 4}. So finally we get back to the textbook version for the assignment:

{|e < 4 ∧ n = 5|} m := e {|m < 4 ∧ n = 5|}.
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To summarise: We employ a shallow embedding of the assertions and directly
represent them as HOL sets. This relieves us from the work to formalise an asser-
tion logic and substitution operation, which can get quite involved when dealing
with aliasing. The semantical version of the generalised assignment rule for Basic
statements is straightforward and works out of the box for arbitrary state updates,
including pointer manipulations. By instrumenting the infrastructure of Isabelle to
simplify the assertions, we can still preserve the syntactic feeling of Hoare logic.

3.1 Partial Correctness

The Hoare logic for Simpl has to deal with abrupt termination. In the literature there
are two different approaches. One [33, 53] splits the postcondition, the other [84]
keeps the standard format of a Hoare triple. By holding a separate postcondition for
normal and abrupt termination the Hoare logic keeps track of both possible control
flows and the rules can directly manipulate either of them. By sticking to one
postcondition reasoning about abrupt termination is forced into the assertion level.
The postcondition itself has to be aware of abrupt and normal termination. It is a
predicate on extended states ( ′s, ′f ) xstate rather then on raw states ′s. This makes
assertions more complicated and additionally has the drawback, that the Hoare
logic cannot look inside the postcondition, since we use a shallow embedding. A
rule cannot take the postcondition apart into the portions about normal and abrupt
termination but would instead add information about the current control flow into
the assertions. For these reasons I decided to split the postcondition. The clear
distinction between normal and abrupt termination results in a straightforward and
clean calculus. Abrupt termination does not complicate reasoning about normal
termination at all.

The Hoare logic for Simpl is inductively defined by the rules in Figure 3.1. TheDefinition 3.1
Hoare logic for Simpl

(partial correctness)

I

judgement has the following form:

Γ,Θ`/F P c Q,A,

where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
Θ :: ( ′s set × ′p × ′s set × ′s set) set
F :: ′f set

P,Q,A :: ′s set
c :: ( ′s, ′p, ′f ) com

To stick to common practice I continue talking about Hoare triples, although the
judgement has more than tree components. P is the precondition, c a program frag-
ment, Q the postcondition for normal termination, A the postcondition for abrupt
termination and Γ is the procedure environment as in the operational semantics. Θ
is a set of assumptions that contains those procedure specifications that are taken as
granted while verifying c. It is used to handle mutually recursive procedures. The
F is a set of faults. The intended meaning of the judgement is partial correctness
modulo faults in F. A guarded statement has the form Guard f g c, where f is a certain
fault of type ′f, g the guard condition and c a statement. If the fault f is in F then we
assume that the gaurd does not fail, otherwise the Hoare logic has to ensure that the
guard holds. The set F is introduced to the Hoare calculus to facilitate the integra-
tion of automatic program analysers into the verification process (cf. Section 5). If
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the automatic tool has already proven that some guards never fail, this information
can be exploited by the Hoare logic. The overall result should of course be a triple
where F is the empty set, which means that we do not rely on the assumption that
some guards cannot fail per se. An empty context Θ or empty postcondition A for
abrupt termination or an empty set F of faults can be omitted. The intended formal
semantics of a Hoare triple is defined by the notion of validity, which is written as
Γ|=/F P c Q,A:

Γ|=/F P c Q,A ≡ J Definition 3.2
Validity (partial
correctness)

∀s t. Γ` 〈c,s〉 ⇒ t −→ s ∈Normal ‘ P −→ t < Fault ‘ F −→ t ∈Normal ‘ Q ∪ Abrupt ‘ A

Given an execution of statement c from initial state s to final state t, provided
that s is a Normal state satisfying the precondition P, provided that t is non of the
Fault states in F, then t either becomes a Normal state satisfying Q or an Abrupt state
satisfying A. Fault or Stuck states are excluded by this semantics. If the set F is empty
then the Hoare logic has to guarantee that no fault occurs. In a sense the calculus is
not completely “partial”. Validity does not take contextΘ into account. The context
is only needed in intermediate steps of the derivation. In the end the Hoare triple
is proven relative to an empty context. Validity and the Hoare logic are related by
two important theorems that are proven in Sections 3.1.3 and 3.1.4:

• Soundness: Γ`/F P c Q,A −→ Γ|=/F P c Q,A
We can only derive valid Hoare triples out of the empty context.

• Completeness: Γ|=/F P c Q,A −→ Γ`/F P c Q,A
We can derive every valid Hoare triple out of the empty context.

The Hoare logic rules are divided into two parts, for each syntactic construct of
Simpl there is exactly one rule and there are two structural rules, the consequence
rule and the assumption rule. The rules are written in a weakest precondition style,
which means that the postcondition consists of plain variables Q and A whereas the
precondition is obtained from the postcondition. Given a program and a postcon-
dition the application of the rules yields the weakest precondition. The Rules S,
B, S, C and W are standard.

How to deal with procedures is elaborated in Section 3.1.2.
For a guarded command Guard f g c we can assume that the guard holds when

we verify the body c. The standard G Rule also requires to prove that the
guard actually never fails. However, when the fault belongs to the set F the guard
can always be regarded as guarantee and hence the G Rule treats it as an
additional assumption.

The postcondition for abrupt termination A is left untouched and handed over to
the sub-statements by most of the rules. Only the rules for Throw and Catch consider
it. In case of a Throw it has to stem from the precondition. The T Rule is dual
to the S Rule, where the postcondition Q for normal termination comes from
the precondition. Similarly, the C Rule is dual to sequential composition. In
case of Catch, the intermediate assertion R connects the precondition of the second
statement with abrupt termination of the first statement. For Seq however, it is
connected with normal termination of the first statement.

For the nondeterministic Spec we have to establish the postcondition for every
possible successor state. To avoid getting stuck there must be at least one successor
state.
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Γ,Θ`/F Q Skip Q,A
(S)

Γ,Θ`/F {s. f s ∈ Q} (Basic f ) Q,A
(B)

Γ,Θ`/F P c1 R,A Γ,Θ`/F R c2 Q,A

Γ,Θ`/F P (Seq c1 c2) Q,A
(S)

Γ,Θ`/F (P ∩ b) c1 Q,A Γ,Θ`/F (P ∩ − b) c2 Q,A

Γ,Θ`/F P (Cond b c1 c2) Q,A
(C)

Γ,Θ`/F (P ∩ b) c P,A

Γ,Θ`/F P (While b c) (P ∩ − b),A
(W)

(P, p, Q, A) ∈ Specs ∀ (P, p, Q, A)∈Specs. p ∈ dom Γ ∧ Γ,Θ ∪ Specs`/F P (the (Γ p)) Q,A

Γ,Θ`/F P (Call p) Q,A
(CR)

Γ,Θ`/F (g ∩ P) c Q,A

Γ,Θ`/F (g ∩ P) (Guard f g c) Q,A
(G)

f ∈ F Γ,Θ`/F (g ∩ P) c Q,A

Γ,Θ`/F P (Guard f g c) Q,A
(G)

Γ,Θ`/F A Throw Q,A
(T)

Γ,Θ`/F P c1 Q,R Γ,Θ`/F R c2 Q,A

Γ,Θ`/F P (Catch c1 c2) Q,A
(C)

Γ,Θ`/F {s. (∀ t. (s, t) ∈ r −→ t ∈ Q) ∧ (∃ t. (s, t) ∈ r)} (Spec r) Q,A
(S)

∀s∈P. Γ,Θ`/F P (cs s) Q,A

Γ,Θ`/F P (DynCom cs) Q,A
(DC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∀s∈P. ∃P ′Q ′A ′. Γ,Θ`/F P ′ c Q ′,A ′∧ s ∈ P ′∧ Q ′⊆ Q ∧ A ′⊆ A

Γ,Θ`/F P c Q,A
(C)

(P, p, Q, A) ∈ Θ

Γ,Θ`/F P (Call p) Q,A
(A)

Figure 3.1: Hoare logic for partial correctness

Since the dynamic command depends on the state, the Hoare triple has to hold
for every possible instance stemming from a state in the precondition.

The next section is dedicated to a detailed discussion of the consequence rule,
followed by some explanation how to deal with mutually recursive procedures.
There the assumption rule comes in.

3.1.1 “The” Consequence Rule
A consequence rule allows to adapt the pre- and postcondition of a specification. A
Hoare triple can thus be reused in different contexts without having to reprove the
body. Reuse is a crucial ingredient to supply modular reasoning on the granularity
of procedures. A procedure should only be specified and proven correct once
and upon a call to this procedure its specification can be inserted into the current
proof. The most common consequence rule allows to strengthen the precondition
or weaken the postcondition:

Γ,Θ`/F P ′ c Q ′,A ′ P ⊆ P ′ Q ′⊆ Q A ′⊆ A

Γ,Θ`/F P c Q,A
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Actually there are two ways to read a consequence rule which influences the
intuitive view on weakening or strengthening, namely from the premises to the con-
clusion or vice versa. In the first case we assume that we have given the specification
Γ,Θ`/F P ′c Q ′,A ′and want to adapt it. We are allowed to strengthen the precondition
and weaken the postcondition. The reading from the conclusion to the premises
is motivated by backwards reasoning. Consider a proof, where we have to show
Γ,Θ`/F P c Q,A. The (backwards) application of the consequence rule results in a new
proof state where we have to show Γ,Θ`/F P ′ c Q ′,A ′ for a weaker precondition but a
stronger postcondition. So the commonly used view to strengthen the precondition
and weaken the postcondition refers to the first reading, from the premises to the
conclusion.

Auxiliary variables are crucial for specifications in Hoare logics. Traditionally
auxiliary variables are those variables in the assertions that do not appear in the
program itself. They are merely used for specification. The pre- and postcondition
of a Hoare triple are predicates on the initial and final state of the program. Using
auxiliary variables allows to relate the pre- and the postcondition. Consider a simple
state space with only one variable n and the following specification of the identity:

Γ` {|n = n|} c {|n = n|}.

The value of variable n is preserved by the identity. Formally the program
variable n is fixed to the auxiliary (or logical) variable n. The postcondition again
refers to the auxiliary variable n to relate the output to the input. The problem with
the auxiliary variable is that we cannot derive

Γ` {|n = n − 1|} c {|n = n − 1|}

with the simple consequence rule above, since this would boil down to prove that
n = n − 1. This situation naturally occurs when verifying recursive procedures. We
may assume the specification of the procedure while verifying its body. Imagine
n to be the input parameter of the factorial. We assume that the specification
works for a value n, but for the recursive call we need the specification for n − 1,
which we cannot obtain with the simple consequence rule. The calculus becomes
incomplete. For this reason Kleymann [104, 60, 61] argues that auxiliary variables
have to be taken into account by the Hoare logic and the assertions. He explicitly
introduces the dependency of assertions on the auxiliary variables. Assertions are
no longer just predicates on the state space but also on the auxiliary variables. He
introduces a generalised consequence rule inspired by Morris [73] that allows to
adapt the auxiliary variables and obtains a complete calculus. His approach was
adapted by Oheimb [83, 84] and by Nipkow [78] where assertions are modelled as
predicates of type ′a⇒ ′s⇒ bool, where ′a is the type of auxiliary variables and ′s
the type of the state space. So formally there is only one auxiliary variable, which
somehow has to contain all necessary auxiliary variables. To prove completeness of
the Hoare logic, the type of the auxiliary variable is identified with the state space
type. The auxiliary variable is used to fix the state of the precondition, to refer to
the initial state in the postcondition. Unfortunately the fixed type of the auxiliary
variable makes the calculus clumsy in practice. All specifications have to be forced
in a format where only one auxiliary variable is used, which is a kind of shadow
state. Later Oheimb and Nipkow [85] refine their rules and get rid of the explicit
dependency of the assertions on the auxiliary variables. Assertions now formally
only depend on the state space: ′s ⇒ bool. Unfortunately the rule of consequence
and the rule to handle recursive procedures again force a fixed type for the auxiliary
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variable. The dependency is only moved to the meta level of HOL. The situation is
somehow annoying. The consequence rule is sound without fixing it to a specific
type, but the formalisation in HOL forces it to a fixed type thus making the calculus
hard to use. This awkward behaviour of the embedding of the Hoare calculus in
HOL indicates that there is still an issue with the consequence rule and the rule
for recursive procedures. It seems that auxiliary variables have been taken “too
serious”. Indeed the Hoare logic for Simpl does not introduce auxiliary variables
at all. Nevertheless a consequence rule à la Kleymann can be derived from the core
rules. Therefore the type of an auxiliary variable is not fixed and can be different
for each use of the rule. Every specification can introduce any number of auxiliary
variables of any type to express the desired property. In the following I motivate
and introduce the Simpl consequence rule and compare it to other rules.

In the identity specification Γ` {|n = n|} c {|n = n|} the auxiliary variable n is a
free variable of HOL. Thus it is logically equivalent to this universally quantified
version:

∀n. Γ` {|n = n|} c {|n = n|}.

Our initial attempt to derive Γ` {|n= n− 1|} c {|n= n− 1|} now boils down to simple
instantiation of the universally quantified variable. So this problem can already
be solved on the level of HOL and there is no need for a special treatment inside
the Hoare logic. However, can we derive Γ` {|n = m ∧ 0 ≤ n|} c {|0 ≤ n|} from this
specification? We suppose to be in an initial state were variable n has a positive
value m. Can we transfer the information that n is positive to the postcondition?
We first instantiate the universally quantified n in our specification to m. Then
we apply the consequence rule and have to show {|n = m ∧ 0 ≤ n|} ⊆ {|n = m|} for
the precondition, and {|n = m|} ⊆ {|0 ≤ n|} for the postcondition. The case for the
precondition is trivial, but for the postcondition we are stuck. We only know that
n=m and have no means to derive that m is positive. The problem is that the pre-
and postconditions are separated by the consequence rule. From the postcondition
of the specification we know that the value of n is still m. However, we cannot make
use of the general knowledge of the new precondition about m being positive while
solving the constraint for the postcondition.

We can try to reformulate the target Hoare triple Γ` {|n=m∧ 0≤ n|} c {|0≤ n|}. Since
m is bound outside of the whole Hoare triple, we can reuse it in the postcondition.
We reformulate the postcondition {|0 ≤ n|} to {|0 ≤ m −→ 0 ≤ n|}. Since m is a state
independent logical variable and we can derive from the precondition that m is
positive, we can put this assumption as a hypothesis to the postcondition. Now
we can indeed derive Γ` {|n = m ∧ 0 ≤ n|} c {|0 ≤ m −→ 0 ≤ n|} from our identity
specification. Again we instantiate n with m and apply the consequence rule. The
constraint on the precondition stays the same, but know for the postcondition we
get {|n = m|} ⊆ {|0 ≤ m −→ 0 ≤ n|}. We can assume both n=m and 0 ≤ m to conclude
that 0 ≤ n, which is trivial.

If we abstract from the predicate 0 ≤ n and the postcondition we arrive at two
Hoare triples describing the same property:

• Γ` {|n = m ∧ P n|} c {|Q n|}

• Γ` {|n = m ∧ P n|} c {|P m −→ Q n|}

Note that in the first Hoare triple the auxiliary (logical) variable m only appears
in the precondition. It was introduced to give the initial value of n a name so that
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we can instantiate the identity specification. Conceptually we mean Γ` {|P n|} c {|Q n|}.
In the second Hoare triple the logical variable m is used to connect the pre- and the
postcondition. Like in the identity specification it can be interpreted as universally
quantified outside of the Hoare triple. With this slightly more general view, we
ultimately compare the following two schemes of specification:

• Γ` P c Q

• ∀Z. Γ` {s. s = Z ∧ s ∈ P} c {t. Z ∈ P −→ t ∈ Q} (∗)

The second one is a more elaborate version, that explicitly fixes the pre-state
to the auxiliary variable Z and includes the knowledge about this pre-state in the
postcondition. Semantically both specifications are equivalent:

Γ|=/F P c Q,A = (∀Z. Γ|=/F {s. s = Z ∧ s ∈ P} c {t. Z ∈ P −→ t ∈ Q},{t. Z ∈ P −→ t ∈ A}) J Lemma 3.1

The simple consequence rule allows to derive the second specification from the
first, since {s. s = Z ∧ s ∈ P} ⊆ P and Q ⊆ {t. Z ∈ P −→ t ∈ Q}. Unfortunately we are
not able to derive the first specification from the second one. We already fail to find
a proper instance of Z since the initial state is only “inside” the first precondition
P. The simple consequence rule gives us no means to instantiate Z with a s ∈ P.
Even if the first specification fixes the pre-state to a logical variable and is given in
the right format: Γ` {s. s = Z ∧ s ∈ P} c Q, we cannot deduce the constraint for the
postcondition: {t. Z ∈ P −→ t ∈ Q} ⊆ Q. We can instantiate the second specification
with Z, but as in the identity example we have no means to discharge Z ∈ P, since
the simple consequence rule strictly separates the pre- and the postcondition. Not
all semantically equivalent specifications can be derived from each other using the
simple consequence rule. Sticking to the nomenclature of Kleymann the calculus is
not adaptation complete. Note that this does not necessarily imply that the calculus is
incomplete. It may still be possible to derive the desired property without the given
specification, by reproving the body.

A first step to remedy this situation is by a more liberal side-condition in the
consequence rule:

Γ,Θ`/F P ′ c Q ′,A ′ ∀s∈P. s ∈ P ′∧ Q ′⊆ Q ∧ A ′⊆ A

Γ,Θ`/F P c Q,A

We only have to establish weakening of the postcondition under the additional
assumption of an initial state satisfying the new precondition P. Therefore we can
derive Γ` {s. s = Z ∧ s ∈ P} c Q from specification (∗). The critical postcondition
strengthening is easy under the assumption of the new precondition:

∀s∈{s. s = Z ∧ s ∈ P}. {t. Z ∈ P −→ t ∈ Q} ⊆ Q

Z ∈ P can be established, since we know both s ∈ P and s = Z from the precondition.
Note that s is fixed to Z, which is a free variable or bound outside of the new triple.
That is why the postconditions in the rule above formally do not have to depend on
state s.

However, we are still not able to deriveΓ`P c Q. Basically we need to instantiate Z
with a s ∈ P, but the new consequence rule still strictly separates the side-condition
from the Hoare triple in the premise. The canonical solution is to integrate the
specification triple into the side-condition, which leads to the Simpl consequence
rule:
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∀s∈P. ∃P ′Q ′A ′. Γ,Θ`/F P ′ c Q ′,A ′∧ s ∈ P ′∧ Q ′⊆ Q ∧ A ′⊆ A

Γ,Θ`/F P c Q,A

We can select a suitable specification under the assumption of a s ∈ P. In the
example we can instantiate Z of the specification with s and arrive at the following
trivial side-condition:

∀s∈P. s ∈ {s. s = s ∧ s ∈ P} ∧ {t. s ∈ P −→ t ∈ Q} ⊆ Q

Oheimb [84] already mentions a similar consequence rule, where the specifica-
tion triple can be selected under the assumption of the new precondition. However,
as the auxiliary variable is explicit in his assertions the side-condition also deals
with them, which leads to a fixed type for the auxiliary variable.

The general consequence rule gives complete freedom to select the specification
depending on the new precondition. The consequence rule of Kleymann can be
obtained from it by restricting this freedom to the adaptation of the auxiliary variable.
It again disentangles the specification triple from the side-condition, but still links
them together via the auxiliary variable:

∀Z. Γ,Θ`/F (P ′Z) c (Q ′Z),(A ′Z)
∀s∈P. ∃Z. s ∈ P ′Z ∧ Q ′Z ⊆ Q ∧ A ′Z ⊆ A

Γ,Θ`/F P c Q,A
(CA)

The auxiliary variable Z is universally quantified in the specification. The side-
condition allows to select a suitable Z from the initial state. Since this consequence
rule is a derived rule and not part of the inductive definition of the core calculus,
HOL puts no restrictions on the type of Z. The auxiliary variable only appears in
the premises. Therefore its type is not constrained by the conclusion at all. If we
directly include this rule to the inductive definition we would have to fix the type
of Z or somehow make it visible in the conclusion. In order to preserve soundness,
the right-hand side of a definition may not introduce new type variables. Otherwise
the value of the constant would depend on a hidden type that is not visible from
the constant itself.

All the consequence rules seen so far work for both partial and total correctness.
All of them ensure that the new precondition implies the precondition of the specifi-
cation. As soon as the specification is proven, termination is guaranteed. Kleymann
[61] also introduces a consequence rule that only works for partial correctness. It al-
lows to bypass the specification if the new postcondition can directly be established.
Ignoring abrupt termination this consequence rule reads as follows:

∀Z. Γ,Θ`/F (P ′Z) c (Q ′Z) ∀s∈P. ∀ t. (∀Z. s ∈ P ′Z −→ t ∈ Q ′Z) −→ t ∈ Q

Γ,Θ`/F P c Q,A

In order to prove that the final state t satisfies the new postcondition Q we may or
may not use the specification. If we want to use it we have to find a proper instance
of Z and prove s ∈ P ′ Z to get hold of t ∈ Q ′ Z. If we can directly provide the new
postcondition, like the trivial one {|True|}, we do not have to take this detour and can
immediately satisfy the side-condition. This consequence rule allows to circumvent
to establish the precondition of the specification. Therefore total correctness is no
longer guaranteed. In our setting such a partial correctness rule does not work. The
semantics of our Hoare logic is more total in the sense that even partial correctness
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ensures that we do not end in a Fault or Stuck state. However, the following rule
works for partial correctness:

∀s ∈ P. ∀ t. ∃P ′Q ′A ′. Γ,Θ`/F P ′ c Q ′,A ′∧
((s ∈ P ′−→ t ∈ Normal ‘ Q ′∪ Abrupt ‘ A ′) −→ t ∈ Normal ‘ Q ∪ Abrupt ‘ A)

Γ,Θ`/F P c Q,A

This rule mimics Kleymanns partial correctness rule, but additionally ensures
that we do not end up in a Fault or Stuck state. Again we can avoid to establish
the precondition of the specification if we can directly show the new postcondition.
This consequence rule is strictly more liberal then the general consequence rule. We
can derive the general consequence rule from it but not vice versa. However, this
rule is a kind of monster. It breaks the abstraction level of our Hoare logic, since
it introduces direct reasoning on the extended states. Moreover, it is unclear how
we could practically make use of the possibility to circumvent the precondition of
the specification. How can we argue that the final state is neither Fault nor Stuck
without using the postcondition of the specification? These are the reasons for me
to avoid putting this consequence rule to the core calculus.

3.1.2 Recursive Procedures

The basic idea to handle recursive procedures, is to assume the specification while
verifying the procedure body. Technically a procedure specification can be assumed,
by augmenting the set Θ of assumptions with it. Every recursive call can then
be directly handled by the assumption rule A. To handle mutually recursive
procedures we simultaneously add all the specifications to the assumptions and
prove their bodies correct. This is the nature of the CR Rule. Any number of
procedure specifications Specs can be added to the assumptions Θ, as long as our
target specification is among them and we prove that all procedure bodies meet
their specification. Moreover, to avoid getting stuck all procedures must be defined
in context Γ.

The general rule can be specialised to one procedure by instantiating Specs with
the single specification {(P, p, Q, A)}. Then it simplifies to the familiar rule:

p ∈ dom Γ Γ,Θ ∪ {(P, p, Q, A)}`/F P (the (Γ p)) Q,A

Γ,Θ`/F P (Call p) Q,A

As already indicated in the discussion about the consequence rule this version
is often to restrictive, since it only moves the exact specification to the assumptions.
As soon as the specification uses auxiliary variables a recursive call might require
different instances of the auxiliary variables. Take the factorial as an example:

Γ` {|n = n|} Call ”fac” {|n = n!|}.

If we only add ({|n = n|},”fac”,{|n = n!|},{}) to the assumptions we cannot handle the
recursive call which requires ({|n = n − 1|},”fac”,{|n = n − 1!|},{}). However, the general
rule for recursion does not forbid adding more than one instance of the specification
to the assumptions. We can add all the instances at once:

Specs =
⋃

n {({|n = n|},”fac”,{|n = n!|},{})}.
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Now we can handle every possible recursive call to the factorial. Generalising
this idea we can derive this version to handle one recursive procedure with auxiliary
variables:

p ∈ dom Γ ∀Z. Γ,Θ ∪ (
⋃

Z {(P Z, p, Q Z, A Z)})`/F (P Z) (the (Γ p)) (Q Z),(A Z)

Γ,Θ`/F (P Z) (Call p) (Q Z),(A Z)

To handle mutually recursive procedures we can derive a variant that handles
all procedures and auxiliary variables at once:

P ⊆ dom Γ
∀p∈P. ∀Z. Γ,Θ ∪ (

⋃
p∈P

⋃
Z {(P p Z, p, Q p Z, A p Z)})`/F (P p Z) (the (Γ p)) (Q p Z),(A p Z)

∀p∈P. ∀Z. Γ,Θ`/F (P p Z) (Call p) (Q p Z),(A p Z)

The assertions P, Q and A are indexed by the procedure name and depend on
the auxiliary variable Z. P is the set of mutually recursive procedures. The general
CR Rule allows to derive this rule, but itself appears to be much simpler.
Moreover, it does not introduce the complication that we have to be explicit about
the type of Z as discussed for the consequence rule.

3.1.3 Soundness
Soundness of the Hoare logic means that we can only derive semantically valid
triples within the calculus:

Γ`/F P c Q,A −→ Γ|=/F P c Q,A.

We assume to have a derivation of a Hoare triple and want to show that it is
indeed valid according to definition 3.2. We follow the proof of Oheimb [84] by
induction on the Hoare logic derivation. Expanding the definition of validity we
have given an execution from an initial state satisfying the precondition to a final
state that does not belong to the set of excluded faults and have to show that the final
state indeed satisfies the postcondition and neither becomes Fault nor Stuck. Since
the Hoare logic rules for atomic statements like Basic mimic the semantics anyway
these cases are straightforward. For compositional statements the Hoare Logic
exactly follows the syntax and thus we can assume validity for the sub-statements
and argue on their composition. The operational semantics itself follows the syntax,
too, except for the loop and the procedure call. In case of the loop we can only
assume validity of the loop body. To extend it to the iterated execution of the body
we do a nested induction, but this time on the operational semantics. This works
fine for the while loop, because of the regular pattern of its execution: a sequence
of loop bodies until the condition becomes false. In case of the (mutually) recursive
procedure calls there is no such regular pattern in the execution. Moreover, the
Hoare logic exploits the assumptionsΘ in the CR Rule, whereas validity does
not involve them at all. We introduce an extended notion of validity that also takes
them into account:

Γ,Θ|=/F P c Q,A ≡ (∀ (P, p, Q, A)∈Θ. Γ|=/F P (Call p) Q,A) −→ Γ|=/F P c Q,ADefinition 3.3
Validity within context

I

Provided that the specifications inΘ are valid, then the Hoare triple is also valid.
The basic idea to handle recursion is to argue on the recursion depth to justify that

it is sound to assume correctness of the procedure specification while verifying the
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body. Since we deal with partial correctness we know that the program terminates,
and thus the depth of recursion is finite and we can build an inductive argument on
it. Unfortunately our operational semantics is not fine grained enough to talk about
the depth or recursion. We introduce an auxiliary semantics that takes the depth
of nested procedure calls into account and build the soundness proof on a refined
notion of validity on the basis of this semantics.

The operational big-step semantics: Γ` 〈c,s〉 n
⇒ t, with natural number n as limit J Definition 3.4

Big-step semantics
with limit on nested
procedure calls

on nested procedure calls is defined inductively by the rules in Figure 3.2, where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s,t :: ( ′s, ′f ) xstate
c :: ( ′s, ′p, ′f ) com

Γ` 〈Skip,Normal s〉 n
⇒ Normal s

(S)
Γ` 〈Basic f,Normal s〉 n

⇒ Normal (f s)
(B)

Γ` 〈c1,Normal s〉 n
⇒ s ′ Γ` 〈c2,s ′〉 n

⇒ t

Γ` 〈Seq c1 c2,Normal s〉 n
⇒ t

(S)

s ∈ b Γ` 〈c1,Normal s〉 n
⇒ t

Γ` 〈Cond b c1 c2,Normal s〉 n
⇒ t

(CT)
s < b Γ` 〈c2,Normal s〉 n

⇒ t

Γ` 〈Cond b c1 c2,Normal s〉 n
⇒ t

(CF)

s ∈ b Γ` 〈c,Normal s〉 n
⇒ s ′ Γ` 〈While b c,s ′〉 n

⇒ t

Γ` 〈While b c,Normal s〉 n
⇒ t

(WT)

s < b

Γ` 〈While b c,Normal s〉 n
⇒ Normal s

(WF)

Γ p = bbdyc Γ` 〈bdy,Normal s〉 n
⇒ t

Γ` 〈Call p,Normal s〉 n + 1
⇒ t

(C)
Γ p = None

Γ` 〈Call p,Normal s〉 n + 1
⇒ Stuck

(CU)

s ∈ g Γ` 〈c,Normal s〉 n
⇒ t

Γ` 〈Guard f g c,Normal s〉 n
⇒ t

(G)
s < g

Γ` 〈Guard f g c,Normal s〉 n
⇒ Fault f

(GF)

Γ` 〈Throw,Normal s〉 n
⇒ Abrupt s

(T)

Γ` 〈c1,Normal s〉 n
⇒ Abrupt s ′ Γ` 〈c2,Normal s ′〉 n

⇒ t

Γ` 〈Catch c1 c2,Normal s〉 n
⇒ t

(C)
Γ` 〈c1,Normal s〉 n

⇒ t ¬ isAbr t

Γ` 〈Catch c1 c2,Normal s〉 n
⇒ t

(CM)

(s, t) ∈ r

Γ` 〈Spec r,Normal s〉 n
⇒ Normal t

(S)
∀ t. (s, t) < r

Γ` 〈Spec r,Normal s〉 n
⇒ Stuck

(SS)

Γ` 〈cs s,Normal s〉 n
⇒ t

Γ` 〈DynCom cs,Normal s〉 n
⇒ t

(DC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ` 〈c,Fault f 〉 n
⇒ Fault f

(FP)
Γ` 〈c,Stuck〉 n

⇒ Stuck
(SP)

Γ` 〈c,Abrupt s〉 n
⇒ Abrupt s

(AP)

Figure 3.2: Big-step execution with limit on nested procedure calls
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The rules are structurally equivalent to the normal big-step semantics. The limit
n is just passed around, except for the procedure call, where it is decremented. A
basic property of this semantics is monotonicity with respect to the limit for nested
procedure calls.

If Γ` 〈c,s〉 n
⇒ t and n ≤ m then Γ` 〈c,s〉 m

⇒ t.Lemma 3.2
Monotonicity

I

Proof. By induction on the execution up to depth n. �

Using this lemma we can show a kind of equivalence between both operational
semantices:

Γ` 〈c,s〉 ⇒ t = (∃n. Γ` 〈c,s〉 n
⇒ t)Theorem 3.3

Equivalence
I

Proof. Both directions are proven separately by induction on the respective seman-
tics. �

By inserting the new semantics into our validity notions, we arrive at parame-
terised versions, that also take the recursion depth into account.

Γ|=
n
/F P c Q,A ≡Definition 3.5

Validity with limit
I

∀s t. Γ` 〈c,s〉 n
⇒ t −→ s ∈Normal ‘ P −→ t < Fault ‘ F −→ t ∈Normal ‘ Q ∪ Abrupt ‘ A

And analogous for validity with respect to context Θ.

Γ,Θ|=n /F P c Q,A ≡ (∀ (P, p, Q, A)∈Θ. Γ|=n /F P (Call p) Q,A) −→ Γ|=n /F P c Q,ADefinition 3.6
Validity with limit and

context

I

Note that a Hoare triple is trivially valid in the sense of Γ|=n /F P c Q,A if the
program needs more than n recursive calls in order to terminate, because then there
is no state s and t such that Γ` 〈c,s〉 n

⇒ t. Using lemma 3.3 we arrive at the following
relationship between the different notions of validity:

Γ|=/F P c Q,A = (∀n. Γ|=n /F P c Q,A)Lemma 3.4 I

A Hoare triple is valid in the usual sense if it is valid for all recursion depths.
Therefore we only get one direction if we also take the context Θ into account:

(∀n. Γ,Θ|=n /F P c Q,A) −→ Γ,Θ|=/F P c Q,ALemma 3.5 I

The other direction fails since we only get validity up to a fixed n for a specifi-
cation in the assumptions of Γ,Θ|=n /F P c Q,A, whereas we would need it for all n
in order to apply Lemma 3.4. However, we are perfectly fine with this direction.
By induction on a derivation Γ,Θ`/F P c Q,A we prove validity for every recursion
depth ∀n. Γ,Θ|=n /F P c Q,A and thus can conclude Γ,Θ|=/F P c Q,A by Lemma 3.5.

Γ,Θ`/F P c Q,A −→ (∀n. Γ,Θ|=n /F P c Q,A)Lemma 3.6
Soundness with limit

and context

I

Proof. The proof is by induction on the Hoare logic derivation. I only describe the
interesting cases, namely for the loop and the procedure call. The other cases are
straightforward.

Case W: As induction hypothesis we can assume validity of the loop body:

∀n. Γ,Θ|=n /F (P ∩ b) c P,A.
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We have to show Γ,Θ|=n /F P (While b c) (P ∩ − b),A. According to Definition 3.6 of
validity we have to consider an execution of the loop: Γ` 〈While b c,Normal s〉 n

⇒ t,
and have to show t ∈ Normal ‘ (P ∩ − b) ∪ Abrupt ‘ A under the assumptions of:

• a valid context: ∀ (P, p, Q, A)∈Θ. Γ|=n /F P (Call p) Q,A,

• the invariant for s: s ∈ P, and

• t < Fault ‘ F.

In case s < b the loop is immediately exited and thus t = Normal s and we are
finished since we know that the invariant holds for s. In case s ∈ b first the loop body
c is executed, followed by the recursive execution of While b c. From the induction
hypothesis we know that the invariant P holds after execution of the loop body.
To continue with the recursive loop we start a nested induction on the execution
of the loop: Assuming Γ` 〈While b c,Normal s〉 n

⇒ t and s ∈ P and t < Fault ‘ F we
show that t ∈ Normal ‘ (P ∩ − b) ∪ Abrupt ‘ A. From the induction on the operational
semantics we obtain an intermediate state r, where Γ` 〈c,Normal s〉 n

⇒ r as well as
Γ` 〈While b c,r〉 n

⇒ t. From the outer hypothesis we get r ∈ Normal ‘ P ∪ Abrupt ‘ A.
In case r is an Abrupt state the execution and the proof is finished since t = r. In case
r is Normal we know that the invariant holds and hence r ∈ Normal ‘ P. Thus we can
apply the nested induction hypothesis to show the thesis.

Case CR: We have to show Γ,Θ|=n /F P (Call p) Q,A under the hypothesis:

• (P, p, Q, A) ∈ Specs, and (∗)

• ∀ (P, p, Q, A)∈Specs. p ∈ dom Γ ∧ (∀n. Γ,Θ ∪ Specs|=n /F P (the (Γ p)) Q,A). (∗∗)

To get hold of validity of the procedure body in hypothesis (∗∗) we have to
discharge the contextΘ ∪ Specs. We unfold the definition of validity within context
Θ and generalise the goal to all specifications in Specs:

(∀ (P, p, Q, A)∈Θ. Γ|=n /F P (Call p) Q,A) −→ (∀ (P, p, Q, A)∈Specs. Γ|=n /F P (Call p) Q,A).

Since we know from (∗) that the current procedure call is among Specs we are
finished when this lemma is proven. We prove it by induction on the recursion
depth n.

Case n= 0 is trivial, since there is no execution of a procedure call with a recursion
limit of 0.

In case n = m + 1 we know ∀ (P, p, Q, A)∈Θ. Γ|=m + 1
/F P (Call p) Q,A. By the

monotonicity Lemma 3.2 we get validity of the context Θ up to recursion depth m
as well. Hence with the inner induction hypothesis we get validity up to recursion
depth m for all procedure calls in Specs: ∀ (P, p, Q, A)∈Specs. Γ|=m/F P (Call p) Q,A.
Putting the validity of the procedure calls inΘ and Specs together, we can discharge
the context Θ ∪ Specs of the outer hypothesis (∗∗) and conclude that the procedure
bodies are valid up to recursion depth m:

∀ (P, p, Q, A)∈Specs. Γ|=m/F P (the (Γ p)) Q,A.

Validity of the procedure bodies up to depth m corresponds to validity of the corre-
sponding procedure calls up to depth m + 1:

∀ (P, p, Q, A)∈Specs. Γ|=m + 1
/F P (Call p) Q,A.

�
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Putting Lemmas 3.6 and 3.5 together we get:

Γ,Θ`/F P c Q,A −→ Γ,Θ|=/F P c Q,ALemma 3.7
Soundness within

context

I

InstantiatingΘwith the empty context we arrive at the plain soundness theorem
for the Hoare logic:

Γ`/F P c Q,A −→ Γ|=/F P c Q,ATheorem 3.8
Soundness

I

3.1.4 Completeness

Completeness of the Hoare logic is the converse question to soundness. Is every
semantically valid triple derivable in the Hoare logic? Or formally:

Γ|=/F P c Q,A −→ Γ`/F P c Q,A.

According to Cook [25] the more accurate term is relative completeness. Relative
to the completeness of the underlying deductive system, in our case HOL. Consider
a triple Γ|=/F {|True|} c {|False|},{|False|}. This triple is valid if the program c does not
terminate for any input. However, imagine program c is an universal program in
the sense of recursion theory that has an undecidable halting problem. Proving the
triple would mean to solve the halting problem within the underlying deductive
system HOL. In this sense relative completeness only expresses that the Hoare logic
rules do not introduce an additional source of incompleteness. A (relative) complete
Hoare logic is the “right set” of rules, which allow to decompose a property about
a program to a mere logical proposition in the assertion logic.

A related question is the expressiveness of the assertion logic, i.e. whether it is
possible to express certain intermediate assertions and invariants that occur during
a proof within the assertion logic. By our extensional approach with a shallow em-
bedding of the assertions we have already solved this problem. In the completeness
proof we can directly refer to the operational semantics in the assertions, without
having to encode it in a special assertion language.

As intermediate step we prove that the most general triple (MGT) or most general
formula [41] can be derived within the Hoare logic. The most general triple is a Hoare
triple where the precondition does not exclude any states, and the postcondition
is the set of final states that can be reached according to the operational semantics.
The triple describes the same input/output relation as the operational semantics. All
valid triples can be derived from the most general triple via the consequence rule.
In our setting we have to restrict the set of initial states since our notion of partial
correctness is not completely “partial”. According to Definition 3.2 of validity only
those executions are relevant which do not lead to a Stuck or Fault state that is not in
the set F. The Hoare logic does not allow to prove that a guard fails or a procedure is
undefined. Quite the opposite, it is designed to ensures that at most a guard in F can
fail and that no procedure is undefined. To exclude certain final states we introduce
the auxiliary predicate Γ` 〈c,s〉 ⇒<T. Execution of program c in initial state s does
not lead to a final state in T:

Γ` 〈c,s〉 ⇒<T ≡ ∀ t. Γ` 〈c,s〉 ⇒ t −→ t < TDefinition 3.7 I

The most general triple for command c is:
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Γ`/F {s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t}.

The initial state is fixed to the auxiliary variable Z so that we can refer to it in
the postcondition. Moreover, all initial state that can lead to a Stuck or Fault final
state not in F are excluded by the precondition. The Normal final states belong to the
postcondition for normal termination and all Abrupt final states to the postcondition
for abrupt termination.

Provided that the most general triple is derivable within the Hoare logic: J Lemma 3.9
MGT implies
completeness∀Z. Γ`/F {s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}

c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t},

then every valid triple Γ|=/F P c Q,A is derivable in the Hoare logic: Γ`/F P c Q,A.

Proof. We can derive the triple Γ`/F P c Q,A from the MGT by using the consequence
rule CA (cf. p. 44). Under the assumption of a s ∈ P, we instantiate the
auxiliary variable Z in the MGT with s. From validity of the triple Γ|=/F P c Q,A we
know that the execution of c does not end up in a Stuck or Fault state not in F. Thus s
satisfies the precondition of the MGT. From the postcondition of the MGT we obtain
a Normal or Abrupt final state t for the execution started in s. Since we know validity
of the triple and have s ∈ P we can conclude that t ∈ Q or t ∈ A, respectively. �

We prove that the most general triple is derivable in the Hoare logic in two steps.
First, we prove that the MGT is derivable under the assumption that the MGT of
all procedures is derivable, and in the second step we discharge this assumption by
the CR Rule for procedure calls.

Provided that the MGT for all procedures in Γ is derivable: J Lemma 3.10

∀p∈dom Γ.
∀Z. Γ,Θ`/F

{s. s = Z ∧ Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
Call p
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t},

then the MGT for a command c is also derivable:
∀Z. Γ,Θ`/F

{s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t}.

Proof. By induction on the syntax of command c.
Cases Skip, Basic f, Spec r, Throw: The MGTs are directly derivable by the corre-

sponding Hoare logic rules.
Case Call p: The MGT is derived from the general assumption that all MGTs for

procedures in dom Γ are derivable. Since the precondition ensures that execution
does not get stuck we can conclude that p ∈ dom Γ.

Cases Seq c1 c2, Cond b c1 c2, Catch c1 c2, DynCom cs: The MGTs can be directly
derived from the corresponding Hoare logic rules, after adapting the MGTs for the
components with the consequence rule. As an example, for sequential composition
the induction hypothesis provides the MGT for c1 and c2:
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∀Z. Γ,Θ`/F
{s. s = Z ∧ Γ` 〈c1,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c1
{t. Γ` 〈c1,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c1,Normal Z〉 ⇒ Abrupt t}

(∗)

∀Z. Γ,Θ`/F
{s. s = Z ∧ Γ` 〈c2,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c2
{t. Γ` 〈c2,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c2,Normal Z〉 ⇒ Abrupt t}.

(∗∗)

We have to show the MGT for Seq c1 c2:

Γ,Θ`/F
{s. s = Z ∧ Γ` 〈Seq c1 c2,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
Seq c1 c2
{t. Γ` 〈Seq c1 c2,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Seq c1 c2,Normal Z〉 ⇒ Abrupt t}.

We can directly prove this with the S Rule after adapting (∗) and (∗∗) by the
consequence rule:

• Γ,Θ`/F
{s. s = Z ∧ Γ` 〈Seq c1 c2,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c1
{t. Γ` 〈c1,Normal Z〉 ⇒ Normal t ∧ Γ` 〈c2,Normal t〉 ⇒<{Stuck} ∪ Fault ‘ (− F)},
{t. Γ` 〈Seq c1 c2,Normal Z〉 ⇒ Abrupt t}

• Γ,Θ`/F
{t. Γ` 〈c1,Normal Z〉 ⇒ Normal t ∧ Γ` 〈c2,Normal t〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c2
{t. Γ` 〈Seq c1 c2,Normal Z〉 ⇒ Normal t},
{t. Γ` 〈Seq c1 c2,Normal Z〉 ⇒ Abrupt t}

From the precondition of the MGT for statement Seq c1 c2 we know that execution
of Seq c1 c2 does not lead to a Stuck or Fault state not in F. This knowledge is broken
down to the sub-statements and transfered to the pre- and postconditions with the
consequence rule in order to link the derivations of c1 and c2 together.

Case Guard f g c: For f ∈ F and according to the G Rule we do not have
to show that guard g holds. Hence the MGT immediately follows from the MGT
for c and the consequence rule. In the other case we have to show that the guard
holds. We can exploit the precondition of the MGT of Guard f g c, which ensures
that execution does not end up in a Fault state and thus the guard must hold.

Case While b c: As induction hypothesis we can assume the MGT for the loop
body c:

∀Z. Γ,Θ`/F
{s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t}.

(∗)

We have to show the MGT for While b c:

Γ,Θ`/F
{s. s = Z ∧ Γ` 〈While b c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
While b c
{t. Γ` 〈While b c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈While b c,Normal Z〉 ⇒ Abrupt t}.

(∗∗)
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To use the W Rule (cf. p. 40) we have to find an invariant that is strong
enough to imply the MGT (∗∗) for While b c, but still can be derived from the MGT
(∗) of the loop body c. To be more precise, we introduce the assertions P ′ and A ′

such that ∀Z. Γ,Θ` (P ′Z) While b c (P ′Z ∩ − b),(A ′Z) implies (∗∗), and (∗) implies
Γ,Θ` (P ′Z ∩ b) c (P ′Z),(A ′Z):

• unroll ≡ {(s, t). s ∈ b ∧ Γ` 〈c,Normal s〉 ⇒ Normal t}∗

• P ′≡
λZ. {t. (Z, t) ∈ unroll ∧

(∀s1. (Z, s1) ∈ unroll −→
s1 ∈ b −→
Γ` 〈c,Normal s1〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧
(∀s2. Γ` 〈c,Normal s1〉 ⇒ Abrupt s2 −→

Γ` 〈While b c,Normal Z〉 ⇒ Abrupt s2))}

• A ′≡ λZ. {t. Γ` 〈While b c,Normal Z〉 ⇒ Abrupt t}.

The relation unroll is the reflexive transitive closure of a single execution of the loop
body from a state that satisfies the loop condition. It characterises the intermediate
states that are reached by unrolling the loop. The intuition of the auxiliary variable
Z is the initial state of the loop. The invariant P ′ captures three aspects. Firstly,
every intermediate state t is reachable by unrolling the loop. Secondly, for every
state s1 that is reachable by unrolling the loop and for which the loop condition
still holds, execution of the loop body does not get Stuck or lead to a Fault not in F.
And thirdly, for every such state s1, in case execution of the loop body terminates
abruptly then this also terminates the whole loop. Note that the second and third
aspect are general invariants for the reachable states of unroll. They are not restricted
to the current state t.

1. (∗) implies Γ,Θ` (P ′Z ∩ b) c (P ′Z),(A ′Z):
Z is the initial state of the whole loop. We apply the consequence rule CA.
Thus our overall assumption is to have an intermediate state s, such that:

s ∈ P ′Z ∩ b. (∗ ∗ ∗)

Therefore we know that s is reachable by unrolling: (Z, s) ∈ unroll, all the general
properties of the reachable states, and that s ∈ b. We instantiate the auxiliary variable
Z of MGT (∗) with this state s. The precondition of (∗) is a direct consequence of
(∗ ∗ ∗) according to the second aspect of P ′ Z. For normal termination (∗) yields a
Normal sate t from execution of the loop body: Γ` 〈c,Normal s〉 ⇒ Normal t. We have
to establish the invariant P ′ Z for it. Since we know from (∗ ∗ ∗) that the invariant
holds for s, we can guarantee it for t by unrolling the loop once more. For abrupt
termination we have to show that this also exits the complete loop, which is the
third aspect of the invariant (∗ ∗ ∗).

2. ∀Z. Γ,Θ` (P ′Z) While b c (P ′Z ∩ − b),(A ′Z) implies (∗∗):
Again we start with the consequence rule CA and instantiate Z with Z
which is identified with the initial state s by (∗∗). The precondition of (∗∗) gives us
the general assumption:

Γ` 〈While b c,Normal Z〉 ⇒<{Stuck} ∪ Fault ‘ (− F). (∗ ∗ ∗)

To establish the preconditon we have to prove the invariant for state Z: Z ∈ P ′ Z.
Since unroll is reflexive, (Z, Z) ∈ unroll is trivial. The general properties about all
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unrolled states are proven by reflexive transitive closure induction on unroll, under
the assumption of (∗ ∗ ∗).

To establish the postcondition of (∗∗) for normal termination we have to show
that all t ∈ P ′ Z ∩ − b are also proper final states of the execution of the while
loop: Γ` 〈While b c,Normal Z〉 ⇒ Normal t. We only need (Z, t) ∈ unroll and t < b in
order to prove this, again by reflexive transitive closure induction on unroll. The
postcondition for abrupt termination of (∗∗) and A ′Z are the same, so there is nothing
to do in this case. �

The next lemma states that the MGT for all procedures in Γ is derivable:

∀p∈dom Γ.
∀Z. Γ`/F {s. s = Z ∧ Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}

(Call p)
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t}

Lemma 3.11 I

Proof. With the CR Rule we augment the context with all the specifications for
all p ∈ dom Γ and all Z.

Specs =
(
⋃

p∈dom Γ⋃
Z {({s. s = Z ∧ Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)},

p,
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},
{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t})})

In this augmented context we can derive the MGT for the procedure bodies by
Lemma 3.10, since we can provide the MGTs for the calls by the assumption rule:

∀Z. Γ,Specs`/F {s. s = Z ∧ Γ` 〈the (Γ p),Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
the (Γ p)
{t. Γ` 〈the (Γ p),Normal Z〉 ⇒ Normal t},
{t. Γ` 〈the (Γ p),Normal Z〉 ⇒ Abrupt t}

Since execution of a defined procedure is reduced to the execution of its body
we can adapt this MGT to:

∀Z. Γ,Specs`/F {s. s = Z ∧ Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)}
the (Γ p)
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},
{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t}

As this matches to the premise of the CRRule we have finshed the proof. �

Lemma 3.11 allows to discharge the assumption of Lemma 3.10. Therefore we
have proven that the MGT is derivable in the Hoare logic. With Lemma 3.9 we
arrive at the completeness theorem:

Γ|=/F P c Q,A −→ Γ`/F P c Q,ATheorem 3.12
Completeness

I

For soundness we also have a version which takes the context Θ into account,
but for completeness this does not work. If there is a malicious specification in
context Θ every triple is regarded as valid in the extended notion of validity. In a
sense the Hoare logic is “too correct”. It does not allow to derive arbitrary nonsense
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from a false specification in the context. Initially we can only derive nonsense about
the malicious procedure itself. Of course this can be expanded to a program that
uses this procedure. However, for statements that do not refer to the procedure we
still can only derive sound triples. This stems from the fact that the Hoare logic
rules work strictly syntax directed. Only if we already have a proven fact about
a statement we may adapt it by the consequence rule. By adding the following
semantical rule to the Hoare logic we can remedy this situation:

∀n. Γ,Θ|=n /F P c Q,A ¬ Γ|=/F P c Q,A

Γ,Θ`/F P c Q,A
(EF)

If a triple is valid under context Θ but invalid without the context, then neverthe-
less we can derive it. This rule is trivially sound and does not contribute to pure
completeness, since we can only derive invalid triples with it. Therefore the com-
pleteness Theorem 3.12 still makes sense and we have not just defined completeness
into the Hoare logic. Note that we use the more restrictive∀n. Γ,Θ|=n /F P c Q,A instead
of Γ,Θ|=/F P c Q,A in the premise of the EF Rule, so that the proof of lemma
3.6 still works. With the EF Rule we can extend the completeness theorem to
work with any context:

If we augment the Hoare logic with rule EF then: J Lemma 3.13
Completeness within
context(∀n. Γ,Θ|=n /F P c Q,A) −→ Γ,Θ`/F P c Q,A.

Why is such a lemma useful at all? In the end we are only interested in deriving
triples out of an empty context, so Theorem 3.12 is sufficient. The answer is “proof
engineering”. Although the Hoare calculus is complete there are a bunch of rules
that are practically useful, but not derivable from the given set of rules. For example,
all semantic preserving transformations of the program. Such rules can be proven
semantically sound and the completeness theorem brings them into the Hoare logic.
Those rules are only applicable in an empty context. However, with Lemma 3.13 it
is also possible to make those rules available in arbitrary contexts. Of course it is
also possible to extend the core calculus with all the desired rules. However, this
results in a rather monolithic structure of the theories, whereas Lemma 3.13 allows
a modular and incremental development. This approach also allows to introduce
rules to the Hoare calculus that would be rejected by the HOL type system, if they
are directly inserted to the inductive definition of the Hoare logic. For example,
in previous versions of the Hoare logic the consequence rule CA was part
of the core rules, instead of the C Rule. As explained in Section 3.1.1 this
has the odd effect that the type of the auxiliary variable is fixed. However, for the
completeness proof we only need the auxiliary variables to fix the state. Therefore
it is sufficient to fix the type of the auxiliary variable to the state space type. Then
the completeness proof can be done with this restricted version of the consequence
rule. Afterwards the polymorphic variant of the consequence rule can be proven
sound and inserted to the calculus by the completeness theorem.

3.2 Total Correctness

Total correctness means partial correctness plus termination. This is directly re-
flected in the validity notion for total correctness:
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Γ|=t/F P c Q,A ≡ Γ|=/F P c Q,A ∧ (∀s∈Normal ‘ P. Γ`c ↓ s)Definition 3.8
Validity (total

correctness)

I

The various judgements for total correctness are distinguished from partial cor-
rectness by the subscript t.

The total correctness Hoare logic for Simpl is inductively defined by the rules inDefinition 3.9
Hoare logic for Simpl

(total correctness)

I

Figure 3.3. The judgement has the following form:

Γ,Θ`t/F P c Q,A,

where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
Θ :: ( ′s set × ′p × ′s set × ′s set) set
F :: ′f set

P,Q,A :: ′s set
c :: ( ′s, ′p, ′f ) com

Γ,Θ`t/F Q Skip Q,A
(S)

Γ,Θ`t/F {s. f s ∈ Q} (Basic f ) Q,A
(B)

Γ,Θ`t/F P c1 R,A Γ,Θ`t/F R c2 Q,A

Γ,Θ`t/F P (Seq c1 c2) Q,A
(S)

Γ,Θ`t/F (P ∩ b) c1 Q,A Γ,Θ`t/F (P ∩ − b) c2 Q,A

Γ,Θ`t/F P (Cond b c1 c2) Q,A
(C)

wf r ∀σ. Γ,Θ`t/F ({σ} ∩ P ∩ b) c ({t. (t, σ) ∈ r} ∩ P),A

Γ,Θ`t/F P (While b c) (P ∩ − b),A
(W)

(P, p, Q, A) ∈ Specs
wf r Specs-wf = (λp σ. (λ(P, q, Q, A). (P ∩ {s. ((s, q), (σ, p)) ∈ r}, q, Q, A)) ‘ Specs)
∀ (P, p, Q, A)∈Specs. p ∈ dom Γ ∧ (∀σ. Γ,Θ ∪ Specs-wf p σ`t/F ({σ} ∩ P) (the (Γ p)) Q,A)

Γ,Θ`t/F P (Call p) Q,A
(CR)

Γ,Θ`t/F (g ∩ P) c Q,A

Γ,Θ`t/F (g ∩ P) (Guard f g c) Q,A
(G)

f ∈ F Γ,Θ`t/F (g ∩ P) c Q,A

Γ,Θ`t/F P (Guard f g c) Q,A
(G)

Γ,Θ`t/F A Throw Q,A
(T)

Γ,Θ`t/F P c1 Q,R Γ,Θ`t/F R c2 Q,A

Γ,Θ`t/F P (Catch c1 c2) Q,A
(C)

Γ,Θ`t/F {s. (∀ t. (s, t) ∈ r −→ t ∈ Q) ∧ (∃ t. (s, t) ∈ r)} (Spec r) Q,A
(S)

∀s∈P. Γ,Θ`t/F P (cs s) Q,A

Γ,Θ`t/F P (DynCom cs) Q,A
(DC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∀s∈P. ∃P ′Q ′A ′. Γ,Θ`t/F P ′ c Q ′,A ′∧ s ∈ P ′∧ Q ′⊆ Q ∧ A ′⊆ A

Γ,Θ`t/F P c Q,A
(C)

(P, p, Q, A) ∈ Θ

Γ,Θ`t/F P (Call p) Q,A
(A)

Figure 3.3: Hoare logic for total correctness
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Most of the rules are structurally equivalent to their partial correctness counter-
parts, except for the rules for loops and recursive procedures. The central idea is
that termination is ensured by a well-founded relation on the state space. A relation
r is well-founded if and only if there is no infinite descending chain :

. . . , (s3, s2), (s2, s1), (s1, s0) ∈ r

The W Rule fixes the initial state of the loop body with σ. After the loop
is executed the final state s has to be smaller with respect to the well-founded
relation r. The predicate wf r expresses that r is well-founded. The PR Rule for
recursive procedures has the same structure. The preconditions of the procedure
specifications in the context are restricted to smaller states. Again with respect to a
well-founded relation r. In this case the relation does not only depend on the state
space but also on the procedure name. This is useful to handle mutually recursive
procedures and crucial in the completeness proof.

3.2.1 Soundness
Soundness for total correctness ensures that every derived Hoare triple is indeed
partially correct and that the program terminates. The basic proof structure is
again induction on the Hoare logic derivation. Compared to the partial correctness
proof we do not need to argue on the depth of recursion this time. Since the Rules
W and CR are equipped with a well-founded relation we can instead use
induction on this relation. First, we introduce the notion of validity within a context:

Γ,Θ|=t/F P c Q,A ≡ (∀ (P, p, Q, A)∈Θ. Γ|=t/F P (Call p) Q,A) −→ Γ|=t/F P c Q,A J Definition 3.10
Validity within
contextNow we can proceed with the main lemma, soundness within a context:

Γ,Θ`t/F P c Q,A −→ Γ,Θ|=t/F P c Q,A J Lemma 3.14
Soundness within
contextProof. By induction on the Hoare logic derivation. Since the Hoare logic, the op-

erational semantics, and the termination judgement Γ`c ↓ s all follow the same
structure the proof is straightforward in most cases. The interesting cases are W
and CR.

Case W. As induction hypothesis we get a well-founded relation r and
validity of the loop body c:

• wf r (∗)

• ∀σ. Γ,Θ|=t/F ({σ} ∩ P ∩ b) c ({τ. (τ, σ) ∈ r} ∩ P),A. (∗∗)

We have to show validity of the whole loop:

Γ,Θ|=t/F P (While b c) (P ∩ − b),A.

According to the definition of total correctness we have to show partial correct-
ness and termination.

Partial correctness: By unfolding Definition 3.3 of partial correctness within a
context we can assume:

• ∀ (P, p, Q, A)∈Θ. Γ|=t/F P Call p Q,A,

• Γ` 〈While b c,Normal s〉 ⇒ t,
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• s ∈ P, and

• t < Fault ‘ F,

and have to prove that the postcondition holds for t:

t ∈ Normal ‘ (P ∩ − b) ∪ Abrupt ‘ A.

We exploit (∗) and do a well-founded induction on the initial state s. This gives us
an induction hypothesis for all executions of While b c in a smaller state than s. In
case s < b we exit the loop and can immediately finish the proof. Otherwise we first
execute the loop body c and reach an intermediate state τ. From validity (∗∗) we
know that state τ is smaller according to relation r: (τ, s) ∈ r. Moreover, we know
that the invariant holds at state τ. If τ < b then τ = t and we are finished. Otherwise
we complete the proof with the induction hypothesis since τ is a smaller state than
s and therefore the recursive execution of While b c leads to a proper final state.

Termination: By unfolding the definition of total correctness within a context we
can assume:

• ∀ (P, p, Q, A)∈Θ. Γ|=t/F P Call p Q,A and

• s ∈ P

and have to prove termination of the loop:

Γ`While b c ↓ Normal s.

Again we exploit (∗) and do a well-founded induction on the initial state s. This
gives us termination of While b c started in a Normal state smaller state than s. In
case s < b we exit the loop and can immediately finish the proof. Otherwise validity
(∗∗) yields termination of the loop body. The execution of c yields an intermediate
state τ. From validity (∗∗) we know that state τ is smaller according to relation r:
(τ, s) ∈ r. If τ < b then the loop terminates immediately. Otherwise we complete the
proof with the induction hypothesis since τ is a smaller state than s and therefore
the recursive execution of While b c terminates.

Case CR. From the induction we get the following hypotheses:

• (P, p, Q, A) ∈ Specs

• wf r (∗)

• Specs-wf = (λp σ. (λ(P, q, Q, A). (P ∩ {s. ((s, q), (σ, p)) ∈ r}, q, Q, A)) ‘ Specs)

• ∀ (P, p, Q, A)∈Specs.
p ∈ dom Γ ∧ (∀σ. Γ,Θ ∪ Specs-wf p σ|=t/F ({σ} ∩ P) (the (Γ p)) Q,A)

(∗∗)

We have to show validity of the procedure call within context Θ:

Γ,Θ|=t/F P (Call p) Q,A.

By expanding the definition of validity within context Θwe have to show:

(∀ (P, p, Q, A)∈Θ. Γ|=t/F P (Call p) Q,A) −→ Γ|=t/F P (Call p) Q,A.
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The central idea is to exploit hypothesis (∗∗) to get hold of the validity for the
procedure body: ∀σ. Γ|=t/F ({σ} ∩ P) (the (Γ p)) Q,A. Therefore we have to discharge
the context Θ ∪ Specs-wf p σ. Once the validity of the procedure body is established
the validity of the corresponding procedure call is a direct consequence from the
operational semantics and termination. For the specifications in Θ we can already
assume validity, since we show validity of the procedure call in this context. To
discharge the specifications in Specs-wf, we use well-founded induction for the
following generalised goal:

We assume:

• ∀ (P, p, Q, A)∈Θ. Γ|=t/F P (Call p) Q,A and (∗ ∗ ∗)

• (P, p, Q, A) ∈ Specs

and show:

Γ|=t/F ({σ} ∩ P) (the (Γ p)) Q,A.

We use (∗) and do a well-founded induction on the initial configuration (σ, p). There-
fore we get an induction hypothesis for all (s, q), such that ((s, q), (σ, p)) ∈ r. Hence
with the definition of validity we have:

∀ (P ′, q, Q ′, A ′)∈Specs. Γ|=t/F (P ′∩ {s. ((s, q), (σ, p)) ∈ r}) (the (Γ q)) Q ′,A ′.

This is lifted from the body to the corresponding call by using the operational
semantics and termination:

∀ (P ′, q, Q ′, A ′)∈Specs. Γ|=t/F (P ′∩ {s. ((s, q), (σ, p)) ∈ r}) (Call q) Q ′,A ′.

This is exactly the definition of Specs-wf. Together with (∗ ∗ ∗) we can discharge the
context of (∗∗) and have proven validity of the body. �

The direct consequence of this lemma is the pure soundness theorem for total
correctness:

Γ`t/F P c Q,A −→ Γ|=t/F P c Q,A J Theorem 3.15
Soundness

3.2.2 Completeness
The basic strategy to prove completeness for total correctness is the same as for
partial correctness in section 3.1.4 and extends the work of Nipkow [77, 78] to Simpl.
Again we define the notion of the most general triple which implies completeness.
Since validity for total correctness ensures termination we add the Γ`c ↓ Normal s
to the precondition of the MGT. So for total correctness the most general triple for
command c is:

Γ`t/F {s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`c ↓ Normal s}
c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t}

The key difference to partial correctness is how to deal with loops and recursion.
The Rules W and CR now demand a well-founded relation. In case of the
loop it is straightforward to construct, but for the recursive procedures it gets rather
involved. To satisfy the W Rule, execution of the loop body has to decrease the
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state with respect to a well-founded relation r. Here (t, s) ∈ r means that t is smaller
than s. We consider a terminating loop. We regard those states as smaller that are
“nearer” to the end of the computation. Hence the state after execution of the loop
body is smaller than the initial state. That is the idea of the following relation:

(≺Γb,c) ≡ {(t, s). Γ`While b c ↓ Normal s ∧ s ∈ b ∧ Γ` 〈c,Normal s〉 ⇒ Normal t}Definition 3.11 I

To show well-foundedness of this relation, we use the lemma of the library that
expresses that a relation is well-founded if and only if there is no infinite descending
chain:

wf r = (@ f . ∀ i. (f (i + 1), f i) ∈ r)Lemma 3.16 I

An infinite descending chain is modelled as a function f from the natural num-
bers to the elements of the relation r, for which f (i + 1) is smaller than f i. The
relation is well-founded if there is no such function. By induction on the termina-
tion judgement we show that if While terminates then we eventually reach a state
where the loop condition becomes false:

If Γ`While b c ↓ Normal (f k) and ∀ i. Γ` 〈c,Normal (f i)〉 ⇒ Normal (f (i + 1)) thenLemma 3.17 I

∃ i. f i < b.

The general f k rather than the more intuitive f 0 is required by the inductive
proof. Together with Lemma 3.16 we gain well-foundedness of ≺Γb,c:

wf (≺Γb,c)Lemma 3.18 I

The termination ordering ≺Γb,c for the while loop was easy to define with the
means of the big-step semantics, because of its uniform computation that consists
of the execution of the body followed by the test of the condition. The “distance”
between two states in ≺Γb,c is one execution of the loop body. In case of (mutually)
recursive procedures the situation is different. There is no uniform code segment
that is executed between every two procedure calls. For partial correctness the proof
that the MGT is derivable is divided in two main lemmas (cf. Lemmas 3.10 and 3.11):

• Derive the MGT under the assumption that the MGT of all procedures in Γ is
derivable.

• Derive the MGT for the procedures.

The proof of the second lemma builds on the first. With the rule CR (for
partial correctness) the MGTs for all procedures are put into the context, so that
they are trivially derivable by the assumption rule. In this augmented context
the first lemma is applicable. For total correctness the second step is problematic.
The rule CR (for total correctness) only allows to put restricted MGTs to the
context. The specifications are only applicable to configurations that are smaller
with respect to a well-founded relation. To get along with those restricted MGTs
we need to find an appropriate well-founded relation. Intuitively we only need
the MGTs for procedure calls in configurations that are reachable from the initial
state. Since we also know that the computation terminates this relation should be
well-founded. The problem is that our big-step semantics is too coarse-grained to
express a “reachable configuration”. It only relates initial to final states. To remedy
this situation we introduce a small-step semantics. Then we define the relation of
reachable configurations of a terminating computation and prove that it is indeed
well-founded. Finally we have to show that it is sufficient to focus on the restricted
set of MGTs to derive the MGT of a procedure call.
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Termination ordering for (mutually) recursive procedure calls We define a
small-step semantics for Simpl, in order to formulate that a procedure call is reach-
able from another one. This is the basic building block for the well-founded relation
that we need for rule CR. A big-step semantic executes the whole program
at once and relates the initial with the final states. A small-step semantics is a
single step relation between configurations of the computation. Via the reflexive
transitive closure we can express that a configuration is reachable from another
one. The design principle of the small-step semantics is to make it easy to identify
those configurations where a procedure call is executed next. Basically a config-
uration consists of a list of pending statements and the current state. The head
of the statement list is the next command to be executed. Compound statements
like c1; c2 are first decomposed to the list of components [c1, c2], until an atomic
statement is the first one in the list. This statement is then executed and removed
from the list. Moreover, to handle abrupt termination we keep track of a stack of so
called continuations. A continuation consists of two statement lists, one for normal
termination and one for abrupt termination. The continuation stack structures the
computation into blocks. A statement Catch c1 c2 opens a new block, by pushing the
pending statements to the stack. If the pending statements are completely processed
the compoutation continues by popping the continuation stack. Depending on the
current state the computation is continued with the statements for normal or abrupt
termination, respectively.

( ′s, ′p, ′f ) continuation = ( ′s, ′p, ′f ) com list × ( ′s, ′p, ′f ) com list
( ′s, ′p, ′f ) config = ( ′s, ′p, ′f ) com list × ( ′s, ′p, ′f ) continuation list × ( ′s, ′f ) xstate

J Definition 3.12

The operational small-step semantics: Γ` 〈cs, css, s〉→ 〈cs ′, css ′, t〉, is defined induc- J Definition 3.13
Small-step semantics
for Simpl

tively by the rules in Figure 3.4. In procedure environment Γ a single computation
step transforms configuration 〈cs, css, s〉 to 〈cs ′, css ′, t〉, where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s, t :: ( ′s, ′f ) xstate
cs, cs ′ :: ( ′s, ′p, ′f ) com list
css, css ′ :: ( ′s, ′p, ′f ) continuation list.

Moreover, we write Γ` 〈cs, css, s〉 →+ 〈cs ′, css ′, t〉 and Γ` 〈cs, css, s〉 →∗ 〈cs ′, css ′, t〉
for the transitive and reflexive transitive closure of the single step computation.

Compound statements are decomposed by augmenting the list of pending state-
ments cs with the components. The state component of the configuration stays the
same during this decomposition, until an atomic statement is reached. When a con-
figuration 〈Catch c1 c2·cs,css,Normal s〉 is reached we enter a new block to execute c1.
In case of normal termination of c1 the pending statements cs are executed, in case
of abrupt termination the handler c2 is inserted. Therefore the next configuration
is 〈[c1],(cs,c2·cs)·css,Normal s〉. When the current block is completely processed, i.e.
there are no more pending statements, the continuation stack is taken into account.
If it is also empty we have reached the final configuration: 〈[], [], s〉. Otherwise the
continuation is chosen according to the current state. In case of an Abrupt state
the component for abrupt termination is selected, and in all other cases the one
for normal termination is chosen. Fault and Stuck states skip the execution of the
pending statements.
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Γ` 〈Skip·cs, css, Normal s〉 → 〈cs, css, Normal s〉
(S)

Γ` 〈Basic f ·cs, css, Normal s〉 → 〈cs, css, Normal (f s)〉
(B)

Γ` 〈Seq c1 c2·cs, css, Normal s〉 → 〈c1·c2·cs, css, Normal s〉
(S)

s ∈ b

Γ` 〈Cond b c1 c2·cs, css, Normal s〉 → 〈c1·cs, css, Normal s〉
(CT)

s < b

Γ` 〈Cond b c1 c2·cs, css, Normal s〉 → 〈c2·cs, css, Normal s〉
(CF)

s ∈ b

Γ` 〈While b c·cs, css, Normal s〉 → 〈c·While b c·cs, css, Normal s〉
(WT)

s < b

Γ` 〈While b c·cs, css, Normal s〉 → 〈cs, css, Normal s〉
(WF)

Γ p = bbdyc

Γ` 〈Call p·cs, css, Normal s〉 → 〈[bdy], (cs, Throw·cs)·css, Normal s〉
(C)

Γ p = None

Γ` 〈Call p·cs, css, Normal s〉 → 〈cs, css, Stuck〉
(CU)

s ∈ g

Γ` 〈Guard f g c·cs, css, Normal s〉 → 〈c·cs, css, Normal s〉
(G)

s < g

Γ` 〈Guard f g c·cs, css, Normal s〉 → 〈cs, css, Fault f 〉
(GF)

Γ` 〈Throw·cs, css, Normal s〉 → 〈cs, css, Abrupt s〉
(T)

Γ` 〈Catch c1 c2·cs, css, Normal s〉 → 〈[c1], (cs, c2·cs)·css, Normal s〉
(C)

(s, t) ∈ r

Γ` 〈Spec r·cs, css, Normal s〉 → 〈cs, css, Normal t〉
(S)

∀ t. (s, t) < r

Γ` 〈Spec r·cs, css, Normal s〉 → 〈cs, css, Stuck〉
(SS)

Γ` 〈DynCom c·cs, css, Normal s〉 → 〈c s·cs, css, Normal s〉
(DC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ` 〈c·cs, css, Fault f 〉 → 〈cs, css, Fault f 〉
(FP)

Γ` 〈c·cs, css, Stuck〉 → 〈cs, css, Stuck〉
(SP)

Γ` 〈c·cs, css, Abrupt s〉 → 〈cs, css, Abrupt s〉
(AP)

Γ` 〈[], (nrms, abrs)·css, Normal s〉 → 〈nrms, css, Normal s〉
(EBN)

Γ` 〈[], (nrms, abrs)·css, Abrupt s〉 → 〈abrs, css, Normal s〉
(EBA)

Γ` 〈[], (nrms, abrs)·css, Fault f 〉 → 〈nrms, css, Fault f 〉
(EBF)

Γ` 〈[], (nrms, abrs)·css, Stuck〉 → 〈nrms, css, Stuck〉
(EBS)

Figure 3.4: Small-step semantics for Simpl
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The only surprising rule is C. A more intuitive, simpler rule is:

Γ p = bbdyc

Γ` 〈Call p·cs, css, Normal s〉 → 〈bdy·cs, css, Normal s〉
(CS)

Instead I have decided to artificially open a new block. The rule itself is more
complicated, but the target configuration is somehow simpler. Every procedure
body starts its execution in a configuration where there are no pending statements.
The reason for this more complicated rule lies in the original motivation for the small-
step semantics: to prove well-foundedness of the reachable sequence of procedure
calls of a terminating computation. In that proof (cf. Theorem 3.22) we embed
an isolated computation that yields from one procedure call to another one, into
a computation context. To be more precise, given a computation between two
procedure calls:

Γ` 〈[the (Γ p)], css, Normal s〉 →+ 〈[the (Γ q)], css ′, Normal t〉, (∗)

we can embed this computation into another one, by appending continuations (cf.
Lemma 3.20):

Γ` 〈[the (Γ p)], css @ css ′′, Normal s〉 →+ 〈[the (Γ q)], css ′@ css ′′, Normal t〉.

The css ′′ is the computation rest that is accumulated before the procedure call to
p is reached. This outer computation only affects the continuation stack because the
C Rule cleans up the pending statements. Otherwise, with rule CS, the
outer computation would also affect the pending statements, since

. . . → 〈Call p·cs,. . .〉 → 〈the (Γ p)·cs,. . .〉 → . . . .

Due to the block structure of a computation in the small-step semantics we
cannot just append some statements cs to the pending statements of (∗) to arrive at:

Γ` 〈the (Γ p)·cs, css, Normal s〉 →+ 〈the (Γ q)·cs, css ′, Normal t〉.

Consider exiting a block:

Γ` 〈[], (nrms, abrs)·css, Normal s〉 → 〈nrms, css, Normal s〉.

For a nonempty cs we do not get:

Γ` 〈cs, (nrms, abrs)·css, Normal s〉 → 〈nrms @ cs, css, Normal s〉.

Quite the opposite, first cs is executed instead of nrms.
With the small-step semantics we have all the preliminaries to define the termi-

nation ordering ≺Γ that we need for the CR Rule. Remember that it is defined
for pairs, consisting of a state and the procedure name. So (t, q) ≺Γ (s, p) means
that procedure call q in state t comes after procedure call p in state s. Therefore it is

“nearer” to the end of the terminating computation and thus regarded as smaller:

(≺Γ) ≡ {((t,q),(s,p)). Γ`the (Γ p) ↓ Normal s ∧
(∃css. Γ` 〈[the (Γ p)], [], Normal s〉 →+ 〈[the (Γ q)], css, Normal t〉)}

J Definition 3.14

Conceptually ≺Γ relates two subsequent procedure call configurations. Since
we use the transitive closure →+ intermediate procedure calls are not ruled out.
Therefore the two procedure calls do not have to be strictly consecutive. To prove
that ≺Γ is well-founded we string together subsequent calls of the form:
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Γ` 〈[the (Γ p)], [], Normal s〉 →+ 〈[the (Γ q)], css, Normal t〉.

We argue that this sequence cannot be infinite, since the initial configuration ter-
minates. To string the isolated subsequent procedure calls together, the stack of
continuations css is accumulated. For example:

1. Γ` 〈[the (Γ p1)], [], Normal s1〉 →
+
〈[the (Γ p2)], css2, Normal s2〉

2. Γ` 〈[the (Γ p2)], [], Normal s2〉 →
+
〈[the (Γ p3)], css3, Normal s3〉

We can continue the first computation by starting the second one with the continu-
ation stack css2:

1. Γ` 〈[the (Γ p1)], [], Normal s1〉 →
+
〈[the (Γ p2)], css2, Normal s2〉

2. Γ` 〈[the (Γ p2)], css2, Normal s2〉 →
+
〈[the (Γ p3)], css3 @ css2, Normal s3〉

Extending the continuation stack is justified by the following two lemmas:

If Γ` 〈cs, css, s〉 → 〈cs ′, css ′, t〉 then Γ` 〈cs, css @ xs, s〉 → 〈cs ′, css ′@ xs, t〉.Lemma 3.19 I

Proof. By induction on the single step relation. Note that there is no (recursive)
appearance of the single step relation among the premises of the rules in Figure 3.4.
Hence induction on the single step relation coincides with a case distinction on the
rules. �

Induction on the transitive closure lifts this result to→+:

If Γ` 〈cs, css, s〉 →+ 〈cs ′, css ′, t〉 then Γ` 〈cs, css @ xs, s〉 →+ 〈cs ′, css ′@ xs, t〉.Lemma 3.20 I

In analogy to the infinite descending chain in Lemma 3.16 we introduce the
notion of an infinite computation. Γ` 〈cs,css,s〉 → . . . (∞) expresses that there is an
infinite computation starting in configuration 〈cs, css, s〉:

Γ` 〈cs,css,s〉 → . . . (∞) ≡ ∃ f . f 0 = 〈cs, css, s〉 ∧ (∀ i. Γ` f i→ f (i + 1))Definition 3.15
Infinite computation

I

Now we have two ways to describe termination of Simpl programs. By the
termination judgement Γ`c ↓ s and by the absence of an infinite computation. In
fact both notions are equivalent:

Γ`c ↓ s = (¬ Γ` 〈[c],[],s〉 → . . . (∞))Theorem 3.21
Termination iff no

infinite computation

I

To keep the focus on completeness, the proof of this theorem is postponed to ap-
pendix A as Theorem A.20. It requires quite a lot of intermediate steps about the
relation of the big- and the small-step semantics and about properties of infinite
computations.

wf (≺Γ)Theorem 3.22 I

Proof. We do the proof by contradiction. We assume that ≺Γ is not well-founded.
According to Lemma 3.16 this means that there is an infinite descending chain for
the relation ≺Γ. From this assumptions we derive a contradiction. With ≺Γ we relate
procedure call configurations, consisting of the procedure name and the state. This
means that we assume that there is an infinite sequence of procedure names and
program states each of which are terminating, and that are subsequently reachable
from each other, formally:
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∀ i. Γ`the (Γ (p i)) ↓ Normal (s i) ∧
(∃css. Γ` 〈[the (Γ (p i))], [], Normal (s i)〉 →+

〈[the (Γ (p (i + 1)))], css, Normal (s (i + 1))〉).
(∗)

The function p enumerates the procedure names and s enumerates the states. From
instantiating (∗) with 0 we get termination of the computation started in the initial
configuration: Γ`the (Γ (p 0)) ↓ Normal (s 0). With Theorem 3.21 (used from left to
right) we therefore know that there is no infinite computation:

@ f . f 0 = 〈[the (Γ (p 0))], [], Normal (s 0)〉 ∧ (∀ i. Γ` f i→ f (i + 1)). (∗∗)

The further strategy is to contradict this by constructing such an infinite compu-
tation from the isolated computation fragments between two subsequent procedure
calls that we can obtain form (∗). Every such fragment starts with an empty continu-
ation stack and accumulates a continuation stack css as it reaches the next procedure
call. This continuation css describes the remaining computation that has to be exe-
cuted after the second procedure call returns. To get the entire computation starting
from the initial configuration out of those fragments, we have to accumulate the
continuation stacks. To construct the infinite sequence of configurations the only
piece missing is the sequence of continuation stacks. For each index i the current
procedure can be obtained from the enumeration p and the current state from enu-
meration s. In (∗) the continuation stack css is existentially quantified under the
universal quantification of i. Therefore it depends on i. To describe the sequence
of continuation stacks we want to construct an enumeration function css in analogy
to p and s. We use the axiom of choice to transform the ∀ i. ∃css. . . . of (∗) into an
enumeration function css. The axiom of choice reads as follows in HOL:

(∀x. ∃y. Q x y) −→ (∃ f . ∀x. Q x (f x)).

If a predicate Q holds for an existential quantified y and an universally quantified
outer x, then we can obtain a choice function f that selects the proper y from the x
so that Q x (f x) holds. This is exactly our situation. With the axiom of choice and (∗)
we obtain the enumeration function css for the continuation stack of a fragment of
computation:

∀ i. Γ` 〈[the (Γ (p i))], [], Normal (s i)〉 →+

〈[the (Γ (p (i + 1)))], css i, Normal (s (i + 1))〉. (∗ ∗ ∗)

By sequencing the css we can construct the complete computation from these
fragments:

〈[the (Γ (p 0))], [], Normal (s 0)〉 →+

〈[the (Γ (p 1))], css 0, Normal (s 1)〉 →+

〈[the (Γ (p 2))], css 1 @ css 0, Normal (s 2)〉 →+ . . . .

The auxiliary function seq is used to sequence the css:

seq css 0 = []
seq css (i + 1) = css i @ seq css i

We define an enumeration function f of configurations that form the infinite
computation:

f ≡ λi. ([the (Γ (p i))], seq css i, Normal (s i)).
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Hence f 0 is our initial configuration:

f 0 = ([the (Γ (p 0))], [], Normal (s 0)).

Moreover, since a computation fragment of (∗ ∗ ∗):

Γ` 〈[the (Γ (p i))], [], Normal (s i)〉 →+ 〈[the (Γ (p (i + 1)))], css i, Normal (s (i + 1))〉,

can be inserted into the complete computation by Lemma 3.19:

Γ` 〈[the (Γ (p i))], seq css i, Normal (s i)〉 →+

〈[the (Γ (p (i + 1)))], css i @ seq css i, Normal (s (i + 1))〉,

we get an infinite computation ∀ i. Γ` f i→+ f (i + 1). This contradicts (∗∗). �

Deriving the MGT Equipped with the termination ordering ≺Γb,c for loops and ≺Γ

for procedure calls we can continue the completeness proof along the lines of partial
correctness.

Provided that the most general triple is derivable within the Hoare logic:Lemma 3.23
MGT implies
completeness

I

∀Z. Γ`t/F {s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`c ↓ Normal s}
c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t},

then every valid triple Γ|=t/F P c Q,A is derivable in the Hoare logic: Γ`t/F P c Q,A.

Proof. The proof is analogous to the proof of Lemma 3.9. �

The next step is to derive the MGT under the assumption that the MGT of all
procedures is derivable.

Provided that the MGT for all procedures in Γ is derivable:Lemma 3.24 I

∀p∈dom Γ.
∀Z. Γ,Θ`t/F

{s. s = Z ∧ Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`Call p ↓Normal s}
Call p
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t},

then the MGT for command c is also derivable:

∀Z. Γ,Θ`t/F
{s. s = Z ∧ Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`c ↓ Normal s}
c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t}.

Proof. By induction on the syntax of command c and along the lines of the proof of
Lemma 3.10. For compound statements the termination restriction Γ`c ↓ Normal s
in the precondition is decomposed in the same fashion as the exclusion of stuck and
faulty computations Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) in Lemma 3.10.

In case of While b c the invariant of Lemma 3.10 is strengthened with the fact that
from every intermediate state t that is reachable by unrolling the loop, execution of
While b c also terminates:

• unroll ≡ {(s, t). s ∈ b ∧ Γ` 〈c,Normal s〉 ⇒ Normal t}∗
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• P ′≡
λZ. {t. (Z, t) ∈ unroll ∧

(∀s1. (Z, s1) ∈ unroll −→
s1 ∈ b −→
Γ` 〈c,Normal s1〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧
(∀s2. Γ` 〈c,Normal s1〉 ⇒ Abrupt s2 −→

Γ` 〈While b c,Normal Z〉 ⇒ Abrupt s2)) ∧
Γ`While b c ↓ Normal t}

The well-founded relation required by the W Rule is of course the termination
ordering ≺Γb,c for loops. �

To discharge the precondition of the previous lemma we have to derive the MGT
for all procedures p in Γ. With the following lemma we argue that for all statements
c that are reachable from procedure p in initial state σ, it is sufficient to assume that
the MGT of all smaller procedure calls with respect to ≺Γ are derivable. These are
exactly those MGTs that are made available as assumptions in the CR Rule.

Provided that the MGT for all procedure configurations (s, q) that are smaller than J Lemma 3.25
the initial configuration (σ, p) with respect to ≺Γ are derivable:

∀q∈dom Γ.
∀Z. Γ,Θ`t/F

{s. s = Z ∧
Γ` 〈Call q,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧
Γ`Call q ↓ Normal s ∧ (s, q) ≺Γ (σ, p)}

Call q
{t. Γ` 〈Call q,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call q,Normal Z〉 ⇒ Abrupt t},

then the MGT for all statements c that are reachable from the initial configuration
are derivable:

∀Z. Γ,Θ`t/F
{s. s = Z ∧
Γ` 〈c,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧
Γ`the (Γ p) ↓ Normal σ ∧
(∃cs css. Γ` 〈[the (Γ p)], [], Normal σ〉 →∗ 〈c·cs, css, Normal s〉)}

c
{t. Γ` 〈c,Normal Z〉 ⇒ Normal t},{t. Γ` 〈c,Normal Z〉 ⇒ Abrupt t}.

Proof. By induction on the syntax of command c and along the lines of the proof of
Lemma 3.10 or Lemma 3.24. From the precondition of the Hoare triple we know
that the current configuration is reachable from the initial state:

Γ` 〈[the (Γ p)], [], Normal σ〉 →∗ 〈c·cs, css, Normal s〉.

To get hold of the induction hypothesis for compound statements this computation
has to be extended until the sub-statement is the head of the statement list. For
example, consider the case of sequential composition c1; c2. In this case we know
from the precondition:

Γ` 〈[the (Γ p)], [], Normal σ〉 →∗ 〈(c1; c2)·cs, css, Normal s〉.
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According to the small-step semantics Seq is decomposed and the next configuration
is 〈c1·c2·cs, css, Normal s〉 and therefore we can make use of the induction hypothesis
for c1, since statement c1 is the head of the statement list. From the postcondition
for normal termination of the MGT for c1 we arrive at a final state t according to the
big-step semantics:

Γ` 〈c1,Normal s〉 ⇒ Normal t.

With Lemma A.1 we can extend the small-step computation to the configuration
〈c2·cs, css, Normal t〉 and thus make use of the MGT for c2.

For abrupt termination of c1 the argument is analogous.
Case Call q. From the precondition of the Hoare Triple we know that the compu-

tation does not get stuck and thus q ∈ dom Γ. Moreover, the current configuration is
reachable form the initial one:

Γ` 〈[the (Γ p)], [], Normal σ〉 →∗ 〈Call q·cs, css, Normal s〉.

The next configuration according to the small-step semantics is

〈[the (Γ q)],(cs,Throw·cs)·css,Normal s〉.

Hence we have (s, q) ≺Γ (σ, p) and can use the consequence rule to adapt the MGT
for all reachable procedure calls from the assumption of the lemma.

Case While b c: The invariant of Lemma 3.24 is strengthened with the fact that
from every intermediate state t that is reached by unrolling the loop, While b c in
this state t is reachable from the initial configuration:

• unroll ≡ {(s, t). s ∈ b ∧ Γ` 〈c,Normal s〉 ⇒ Normal t}∗

• P ′≡
λZ. {t. (Z, t) ∈ unroll ∧

(∀s1. (Z, s1) ∈ unroll −→
s1 ∈ b −→
Γ` 〈c,Normal s1〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧
(∀s2. Γ` 〈c,Normal s1〉 ⇒ Abrupt s2 −→

Γ` 〈While b c,Normal Z〉 ⇒ Abrupt s2)) ∧
Γ`the (Γ p) ↓ Normal σ ∧
(∃cs css. Γ` 〈[the (Γ p)], [], Normal σ〉 →∗ 〈While b c·cs, css, Normal t〉)}

The well-founded relation required by the W Rule is of course the termination
ordering ≺Γb,c for loops. �

We instantiate statement c of the previous lemma with the body of the initial
procedure the (Γ p) and fix the initial state σ. Since the initial state is trivially
reachable, the consequence rule allows us to conclude that the MGT of the initial
procedure body is reachable from the restricted MGTs for the procedure calls:

Provided that the MGT for all procedure configurations (s, q) that are smaller thanLemma 3.26 I
the initial configuration (σ, p) with respect to ≺Γ are derivable:

∀q∈dom Γ.
∀Z. Γ,Θ`t/F

{s. s = Z ∧
Γ` 〈Call q,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧
Γ`Call q ↓ Normal s ∧ (s, q) ≺Γ (σ, p)}
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Call q
{t. Γ` 〈Call q,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call q,Normal Z〉 ⇒ Abrupt t},

then the MGT of the initial procedure body is derivable:

∀Z. Γ,Θ`t/F
({σ} ∩
{s. s = Z ∧
Γ` 〈the (Γ p),Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`the (Γ p) ↓ Normal s})

the (Γ p)
{t. Γ` 〈the (Γ p),Normal Z〉 ⇒ Normal t},{t. Γ` 〈the (Γ p),Normal Z〉 ⇒ Abrupt t}

Proof. This lemma is an instance of Lemma 3.25. �

Now we are in a situation where we can apply the CR Rule (cf. p. 56) and
can conclude that the MGT of all procedure calls is derivable:

∀p∈dom Γ. J Lemma 3.27
∀Z. Γ,Θ`t/F

{s. s = Z ∧
Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`Call p ↓ Normal s}

Call p
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t}

Proof. We attempt to use the CR Rule with ≺Γ as well-founded relation. We
define the set of specifications Specs as the MGT for all procedure calls to defined
procedures:

Specs =
(
⋃

p∈dom Γ⋃
Z {({s. s = Z ∧

Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`Call p ↓ Normal s},
p,
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},
{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t})})

According to the premise of the CR Rule we define the restriction of the
specifications for smaller configurations with respect to ≺Γ:

Specs-wf p σ = (λ(P, q, Q, A). (P ∩ {s. (s, q) ≺Γ (σ, p)}, q, Q, A)) ‘ Specs.

For any procedure p ∈ dom Γ and any initial state σ, within context Specs-wf p σ
we can use Lemma 3.26 to derive the MGT for the procedure body of p. Lemma 3.26
is applicable since its premise can be solved by the assumption rule A, because
we are in context Specs-wf p σ. Hence we have:

Γ,Specs-wf p σ`t/F
({σ} ∩
{s. s = Z ∧
Γ` 〈the (Γ p),Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`the (Γ p) ↓ Normal s})

the (Γ p)
{t. Γ` 〈the (Γ p),Normal Z〉 ⇒ Normal t},{t. Γ` 〈the (Γ p),Normal Z〉 ⇒ Abrupt t}
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This is almost what we need to prove about the procedure bodies according to
the CR Rule. We only have to replace the occurences of the (Γ p) in the pre-
and postcondition by Call p. Since procedure p is defined we have the following
equivalences:

• Γ` 〈Call p,s〉 ⇒ t = Γ` 〈the (Γ p),s〉 ⇒ t

• Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) =
Γ` 〈the (Γ p),Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F)

• Γ`Call p ↓ Normal s = Γ`the (Γ p) ↓ Normal s.

With these equivalences we can refine the Hoare triple to:

Γ,Specs-wf p σ`t/F
({σ} ∩
{s. s = Z ∧ Γ` 〈Call p,Normal s〉 ⇒<{Stuck} ∪ Fault ‘ (− F) ∧ Γ`Call p ↓ Normal s})

the (Γ p)
{t. Γ` 〈Call p,Normal Z〉 ⇒ Normal t},{t. Γ` 〈Call p,Normal Z〉 ⇒ Abrupt t}

This is the required Hoare triple for the CR Rule. �

This lemma discharges the assumption of Lemma 3.24. Therefore we have
proven that the MGT is derivable in the Hoare logic. With Lemma 3.23 we arrive at
the completeness theorem for total correctness:

Γ|=t/F P c Q,A −→ Γ`t/F P c Q,ATheorem 3.28
Completeness

I

To obtain completeness within context Θ we again have to augment the Hoare
logic with an additional rule that allows to derive invalid triples if there is a wrong
specification among the assumptions:

Γ,Θ|=t/F P c Q,A ¬ Γ|=t/F P c Q,A

Γ,Θ`t/F P c Q,A
(EF)

If we augment the Hoare logic with the EF Rule then:Lemma 3.29
Completeness within

context

I

Γ,Θ|=t/F P c Q,A −→ Γ,Θ`t/F P c Q,A

3.3 Conclusion

In this chapter I have introduced a Hoare logic for partial and total correctness of
Simpl programs and have presented the soundness and completeness proofs. The
extensional representation of assertions as HOL sets makes the definition of an as-
sertion logic unnecessary. Besides, the flexibility to use arbitrary HOL predicates as
assertions also simplifies the completeness proof, since we can directly use the oper-
ational semantics in the assertions without having to deal with expressivity issues
or an encoding of the semantics in the assertion logic. Albeit the expressive power
of Simpl, the high level of abstraction leads to concise soundness and completeness
proofs. Especially the completeness proof for total correctness goes further than
related work in the area of formalised and machine checked program calculi. This
proof extends the work of Nipkow [77] to Simpl, which can in particular handle
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unbounded nondeterminism, abrupt termination, dynamic method invocation and
higher order features like pointers to procedurs and closures.

The handling of auxiliary variables and the consequence rule are further clarified.
It turns out that there is no need to mention auxiliary variables at all in the core
calculus.

The Hoare logic provides extended means to reason about runtime faults. Chap-
ter 5 explains how this feature provides an interface to integrate program analysis
result into the Hoare logic.



72 Chapter 3 — Hoare Logic for Simpl



C H A P T E R 4

Utilising the Hoare Logic

This chapter describes the integration and automation of the Hoare logic in
Isabelle. A verification condition generator is built as Isabelle tactic on top of
the Hoare logic. Examples illustrate how we deal with various aspects of the
programming language and what the resulting proof obligations look like.
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In this chapter, we introduce Hoare logic rules for the derived statements like the
procedure call with parameters. These rules can either be derived directly from the
basic set of Hoare logic rules, or we can prove their validity and use the completeness
Theorems 3.12 and 3.28 to introduce them. In neither case we have to augment the
inductive definitions of the Hoare rules.

Our main tool is a verification condition generator that is implemented as tactic
called vcg. The Hoare logic rules in Figures 3.1 and 3.3 are syntax directed and
defined in a weakest precondition style, so that we can almost take them as they
are. With the consequence rule, we derive variants of the Hoare rules where all
assertions in the conclusions are plain variables so that they are applicable to every
context. We get the following format:

P ⊆WP . . .

Γ,Θ` P c Q,A

The . . . may be recursive Hoare triples or side-conditions which somehow lead
to the weakest precondition WP. If we recursively apply rules of this format until the
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program c is completely processed, then we have calculated the weakest precondi-
tion WP and are left with the verification condition P ⊆WP. The set inclusion is then
transformed to an implication. Finally we split the state records so that the record
representation does not show up in the resulting verification condition. This leads
to quite comprehensible proof obligations that closely resemble the specifications.

Although the Hoare rules manipulate the state in the assertions, instead applying
a syntactic substitutions, stepping through verification condition generation “feels”
like the expected syntactic substitutions of traditional Hoare logic. As already
described in the beginning of Section 3 this is achieved by simplification of the
record updates in the assertions calculated by the Hoare rules. Here is a first
example:

lemma
Γ` {|m = a ∧ n = b|} i := m; m := n; n := i {|m = b ∧ n = a|}
apply vcg-step

1. Γ` {|m = a ∧ n = b|} i := m; m := n {|m = b ∧ i = a|}

apply vcg-step

1. Γ` {|m = a ∧ n = b|} i := m {|n = b ∧ i = a|}

apply vcg-step

1. {|m = a ∧ n = b|} ⊆ {|n = b ∧ m = a|}

apply vcg-step

1.
∧

m n. n = n ∧ m = m

In the first three steps the sequential composition is processed by the Rules S
and B and the postcondition is simplified to perform the substitution. In the
last step the set inclusion is transformed to the corresponding implication and the
state record is split. If we omit the state split we obtain the following verification
condition: ∧

s. n s = n s ∧ m s = m s

Symbol
∧

is the universal quantifier of Isabelle’s meta logic.

4.1 Loops

To verify a loop, the user annotates an invariant. For total correctness the user also
supplies the variant, which in our case is a well-founded relation on the state space,
which decreases by execution of the loop body. We introduce constant whileAnno to
extend statement While with the annotations I for the invariant and V for the variant.

whileAnno :: ′s set⇒ ′s set⇒ ( ′s × ′s) set⇒ ( ′s, ′p, ′f ) com⇒ ( ′s, ′p, ′f ) com
whileAnno b I V c ≡While b c

Definition 4.1 I

This definition reflects that the annotations are mere comments for the verifica-
tion condition generator. The annotations do not appear on the right hand side.
Rewriting a program with this definition yields a pure Simpl program without
any annotations. For the annotated loop we derive the following rule for partial
correctness that is used by the verification condition generator:
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P ⊆ I Γ,Θ`/F (I ∩ b) c I,A I ∩ − b ⊆ Q

Γ,Θ`/F P (whileAnno b I V c) Q,A

The precondition has to imply the invariant, the loop body has to preserve the
invariant and finally the invariant together with the negated loop condition has
to imply the postcondition. The rule for total correctness also takes the variant
annotation into account.

P ⊆ I ∀σ. Γ,Θ`t/F ({σ} ∩ I ∩ b) c ({t. (t, σ) ∈ V} ∩ I),A I ∩ − b ⊆ Q wf V

Γ,Θ`t/F P (whileAnno b I V c) Q,A

The state before execution of the loop body is fixed with σ. The state after
execution of the loop body has to be smaller than σwith respect to the variant V.

Proving that a relation is well-founded can be quite hard. Fortunately there
are ways to compose relations so that they are well-founded by construction. This
infrastructure is already present in Isabelle/HOL [80], since the recdef command
for general recursive functions builds on it. For example, measure f is always
well-founded, where f is a function that maps the state to a natural number; the
lexicographic product of two well-founded relations is again well-founded and
the inverse image construction inv-image of a well-founded relation is again well-
founded. These constructions are best explained by the following equations:

(x, y) ∈ measure f = f x < f y
((a, b), (x, y)) ∈ r <∗lex∗> s = (a, x) ∈ r ∨ a = x ∧ (b, y) ∈ s
(x, y) ∈ inv-image r f = (f x, f y) ∈ r

Another useful construction is <∗mlex∗> which is a combination of a measure
and a lexicographic product:

((x, y) ∈ f <∗mlex∗> r) = (f x < f y ∨ f x = f y ∧ (x, y) ∈ r)

In contrast to the lexicographic product it does not construct a product type. The
state may either decrease according to the measure function f or the measure stays
the same and the state decreases accordint to relation r.

The following example calculates multiplication by iterated addition. The dis-
tance of the loop variable m to a decreases in every iteration. This is expressed by
the measure function a − m on the state space.

lemma Γ`t {|m = 0 ∧ s = 0|}
WHILE m , a INV{|s = m ∗ b ∧ m ≤ a|} VAR MEASURE a − m
DO s := s + b; m := m + 1 OD
{|s = a ∗ b|}
apply vcg

1.
∧

m s. [[m = 0; s = 0]] =⇒ s = m ∗ b ∧ m ≤ a
2.
∧

m s. [[s = m ∗ b; m ≤ a; m , a]]
=⇒ a − (m + 1) < a − m ∧ s + b = (m + 1) ∗ b ∧ m + 1 ≤ a

3.
∧

m s. [[s = m ∗ b; m ≤ a; ¬ m , a]] =⇒ s = a ∗ b

The invariant annotation is preceded by INV and variant annotation by VAR.
The capital MEASURE is a shorthand for measure (λs. a − m s). The three subgoals
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stem from the first three preconditions of the rule above. The well-foundedness
of the variant was already discharged by the verification condition generator. The
first one is for the path from the precondition to the invariant. The second one is
for the loop body. The loop body has to decrease the variant and reestablish the
invariant. The final subgoal guarantees that the invariant together with the negated
loop condition implies the postcondition.

4.2 Expressions with Side Effects

In Section 2.4.3 we introduced the command bind to model expressions with side
effects. The Hoare rule for bind is the following:

P ⊆ {s. s ∈ P ′ s} ∀s. Γ,Θ`/F (P ′ s) (c (e s)) Q,A

Γ,Θ`/F P (bind e c) Q,A

The intuitive reading of the rule is backwards in the style of the weakest precon-
dition calculation. The initial state is s. The postcondition we want to reach is Q or
A. Since statement c depends on the initial state s via expression e, the intermediate
assertion P ′ depends on s, too. Since it has to work for any initial state s it is uni-
versally quantified. The actual precondition P describes a subset of the states of the
weakest precondition P ′ s. The rule for total correctness is structurally equivalent.

The following example is for the statement r = m++ + n:

lemma Γ`{|True|} m� m. m := m + 1; r := m + n {|r = m + n − 1|}
apply vcg

1.
∧

m n. True =⇒ m + n = m + 1 + n − 1

The initial values of the variables are m and n. So in the postcondition r is
substituted by m + n and m by m + 1.

4.3 Blocks

Local variables can be introduced with the block statement (cf. Section 2.4.5). For
example, {int i; i = 2} is modelled by:

block (λs. s) (i := 2) (λs t. t(|i := i s|)) (λs t. SKIP).

The initialisation function is the identity and the body of the block is the assign-
ment. To exit the block, the initial value of i is restored. The follow-up statement is
SKIP. A block introduces a dependency of the assertions on the initial state s and
the final state of the body t. This is reflected in the Hoare rule for block. Again the
intermediate states are universally quantified.

P ⊆ {s. init s ∈ P ′ s} ∀s. Γ,Θ`/F (P ′ s) bdy {t. return s t ∈ R s t},{t. return s t ∈ A}
∀s t. Γ,Θ`/F (R s t) (c s t) Q,A

Γ,Θ`/F P (block init bdy return c) Q,A

Figure 4.1 illustrates the connection between the Hoare rule and the execution
of a block for normal termination.
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block init bdy return c

s

∈

P

∈

−→

∈

Q

∈

R s tP ′ s

init s bdy return s tt c s t

Figure 4.1: Illustration of the Hoare rule for a block

The operational reading of this rule is backwards, like it is applied by the veri-
fication condition generator. We start with the target postconditions Q and A. The
follow-up statement c and the function return then introduces the dependency of s
and t, which is propagated to the intermediate assertions R and P ′. In the example
above the return function resets the value of i to the initial value. Hence every oc-
currence of i in the postcondition refers to the initial value. We provide the concrete
syntax LOC . . . COL to introduce locally bound variables. Next we show a property
for the example:

lemma Γ`{|i = i|} LOC i; i := 2 COL {|i ≤ i|}
apply vcg

1.
∧

i. i ≤ i

As expected the value of i in the pre- and poststate coincides.

4.4 Procedures

To introduce a new procedure we provide the command procedures. Isabelle is
programmable and offers an extensible top-level. The Hoare logic module uses this
facility to introduce the new command.

procedures Fac (n|r) =
IF n = 0 THEN r := 1
ELSE r := CALL Fac(n − 1); r := n ∗ r FI

Fac-spec: ∀n. Γ`{|n = n|} r := PROC Fac(n) {|r = fac n|}

A procedure is given by its signature followed by its body and optionally some
named specifications. The parameters in front of the pipe | are value parameters
and behind the pipe are result parameters. Value parameters model call by value
semantics. The value of a result parameter at the end of the procedure is passed back
to the caller. Most common programming languages do not have the concept of a
result parameter. However, our language is a model for sequential programs rather
than a “real” programming language. We represent return e as an assignment of
e to the result variable. In order to capture the abrupt termination stemming from
a returnwe can use the techniques described in Section 2.4.4.

The command procedures automatically installs syntax translations for the pro-
cedure call. As running example we explain the procedure call m :=CALL Fac(i). As
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introduced in Section 2.4.5 this translates to the internal form call init ”Fac” return
result with the proper init, return and result functions. Starting in an initial state s
first the init function is applied, in order to pass the parameters. Then we execute
the procedure body according to the environment Γ. Upon normal termination of
the body in a state t, we first exit the procedure according to the function return s t
and then continue execution with result s t. In case of an abrupt termination the
final state is given by return s t. The function return passes back the global variables
(and heap components) and restores the local variables of the caller, and result ad-
ditionally assigns results to the scope of the caller. The return/result functions get
both the initial state s before the procedure call and the final state t after execution
of the body. If the body terminates abruptly we only apply the return function,
thus the global state is propagated to the caller but no result is assigned. This is
the expected semantics of an exception. For our example m := CALL Fac(i) the init
function copies the actual parameter i to the formal parameter n, hence we have:
init s = s(|n := i s|). The return function updates the global variables of the initial state
with their values in the final state. The global variables are all grouped together
in a single record field: return s t = s(|globals := globals t|). The result function is not
just a state update function like return, but yields a complete command, like the
second argument in the bind command. To model nested procedure calls we can
use the same technique as described for side-effecting expressions. In our example
the result statement is an assignment that copies the formal result parameter r to m:
result s t = Basic (λu. u(|m := r t|)). Here s is the initial state (before parameter pass-
ing), t the final state of the procedure body, and u the state after the return from the
procedure. If the procedure has multiple result parameters this leads to a sequence
of state-updates in the result statement.

Procedure specifications are ordinary Hoare triples. We use the parameterless
call for the specification: r := PROC Fac(n) is syntactic sugar for Call ”Fac”. This
emphasises that the specification describes the internal behaviour of the procedure,
whereas parameter passing corresponds to the procedure call. The precondition of
the factorial specification fixes the current value n to the logical variable n. Universal
quantification over n enables us to adapt the specification to an actual parameter.
Besides providing convenient syntax, the command procedures also defines a con-
stant for the procedure body (named Fac-body) and creates two so called locales. The
purpose of locales is to set up logical contexts to support modular reasoning [10].
One locale is named like the specification, in our case Fac-spec. This locale contains
the procedure specification. The second locale is named Fac-impl and contains the
assumption Γ ”Fac” = bFac-bodyc, which expresses that the procedure is defined in
the current environment. The purpose of these locales is to give us easy means to
setup the context in which we prove programs correct. For example, we are not
fixed to verify procedures in a strict bottom-up fashion. With the locales we can
first only assume the specifications of auxiliary procedures and prove them later on.
Hence a mixed bottom-up and top-down verification is possible.

Procedure Call By including Locale Fac-spec, the following lemma assumes that
the specification of the factorial holds. If the specification is already proven it does
not have to be explicitly included. The vcg uses the specification to handle the
procedure call. The example also illustrates locality of i.

lemma includes Fac-spec shows
Γ` {|m = 3 ∧ i = 2|} r := CALL Fac (m) {|r = 6 ∧ i = 2|}
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apply vcg

1.
∧

i m. [[m = 3; i = 2]] =⇒ fac m = 6 ∧ i = 2

In the verification condition the result variable r is replaced by fac m, which comes
from the specification Fac-spec:

∀n. Γ` {|n = n|} r := PROC Fac(n) {|r = fac n|}

In the resulting proof obligation, the universally quantified variable n is instantiated
with the inital value of program variable m.

As the verification condition generator encounters a procedure call, for instance
Γ,Θ` P call init p return result Q,A, it does not look inside the procedure body, but
instead uses the specification ∀Z. Γ,Θ` (P ′Z) Call p (Q ′Z),(A ′Z) of the procedure. It
adapts the specification to the actual calling context by a variant of a Kleymann-style
consequence rule (cf. Section 3.1.1), which also takes parameter and result passing
into account, similar to the rule for block introduced in the previous section. In
the factorial example n plays the role of the auxiliary variable Z. It transports state
information from the pre- to the postcondition.

P ⊆ {s. ∃Z. init s ∈ P ′Z ∧ (∀ t∈Q ′Z. return s t ∈ R s t) ∧ (∀ t∈A ′Z. return s t ∈ A)}
∀s t. Γ,Θ`/F (R s t) (result s t) Q,A ∀Z. Γ,Θ`/F (P ′Z) (Call p) (Q ′Z),(A ′Z)

Γ,Θ`/F P (call init p return result) Q,A

The idea of this rule is to adapt the specification of Call p to call init p return result.
Figure 4.2 shows the sequence of intermediate states for normal termination and
how they are related to the assertions.

call init p return result

s

P ′Z

∈

P

∈

Q ′Z−→

∈ ∈

Q−→

∈

init s result s treturn s tCall p

R s t

t

Figure 4.2: Procedure call and specification

We start in state s for which the precondition P holds. To be able to make use
of the procedure specification we have to find a suitable instance of the auxiliary
variable Z, such that the precondition of the specification holds: init s ∈ P ′Z. Let t be
the state immediately after execution of the procedure body, before returning to the
caller and passing results. We know from the specification that the postcondition
holds: t ∈Q ′Z. From this we have to conclude that leaving the procedure according
to the function return leads to a state in R s t. From this state, execution of result s t
ends up in a state in Q. For abrupt termination the analogous idea applies, but
without the intermediate assertion R s t, since execution of result s t is skipped.
Rewriting the record updates and selections in the side-condition with Isabelle’s
simplifier yields the natural proof obligation we have seen in the factorial example.
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This automatic adaptation of the specification to the actual calling context is the
reason why we use a variant of the Kleymann-style consequence rule instead of the
more general consequence rule C (cf. Figure 3.1 on p. 40). Technically such
a rule would work for the verification condition generator as well, but it is less
constructive. The user has to instantiate the specification by hand in the resulting
verification condition.

The auxiliary variable Z has a polymorphic type. When a specification uses
more than one auxiliary variable the verification condition generator instantiates Z
with a tuple containing all the necessary auxiliary variables. Thereby a customised
rule for the current specification is created on the fly.

Procedure Implementation — Partial Correctness To verify the procedure body
we use the rule for recursive procedures. We extend the context with the procedure
specification. In this extended context the specification holds by the assumption
rule. We then verify the procedure body by using vcg, which uses the assumption
to handle the recursive call.

lemma includes Fac-impl shows
∀n. Γ`{|n = n|} r := PROC Fac(n) {|r = fac n|}
apply (hoare-rule ProcRec1)

1. ∀n. Γ,(
⋃

n {({|n = n|}, ”Fac”, {|r = fac n|}, {})})
` {|n = n|}

IF n = 0 THEN r := 1
ELSE r := CALL Fac(n − 1); r := n ∗ r FI
{|r = fac n|}

apply vcg

1.
∧

n. (n = 0 −→ 1 = fac n) ∧ (n , 0 −→ n ∗ fac (n − 1) = fac n)

The rule ProcRec1 is a specialised version of the general rule for recursion (cf. Section
3.1.2), tailored for one recursive procedure. The method hoare-rule applies a single
rule and solves canonical side-conditions like p ∈ dom Γ. Moreover, it expands the
procedure body.

Procedure Implementation — Total Correctness For total correctness the user
supplies a well-founded relation. For the factorial the input parameter n decreases
in the recursive call. This is expressed by the measure function λ(s,p). sn. A state as
prefix superscript, like sn, is syntactic sugar for n s. It is generally used in assertions
and annotations to refer to the value of a variable at a certain state. The well-founded
relation can depend on both the state space s and the procedure name p. The latter
is useful to handle mutual recursion. The rule ProcRec1t is a specialised version of
the general recursion rule for total correctness, tailored for one recursive procedure.

lemma includes Fac-impl shows
∀n. Γ`t {|n = n|} r := PROC Fac(n) {|r = fac n|}
apply (hoare-rule ProcRec1t [where r=measure (λ(s,p). sn)])
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1. ∀σ n. Γ,(
⋃

n {({|n = n|} ∩ {|n < σn|}, ”Fac”, {|r = fac n|}, {})})
`t ({σ} ∩ {|n = n|})

IF n = 0 THEN r := 1 ELSE r := CALL Fac(n − 1); r := n ∗ r FI
{|r = fac n|}

We may only assume the specification for “smaller” states {|n < σn|}, where state σ is
fixed in the precondition.

apply vcg

1.
∧

n. (n = 0 −→ 1 = fac n) ∧
(n , 0 −→ n − 1 < n ∧ n ∗ fac (n − 1) = fac n)

The measure function results in the proof obligation n − 1 < n. In contrast to
partial correctness we only assume “smaller” recursive procedure calls correct while
verifying the procedure bodies. Were “smaller” is in the sense of a well-founded
relation r.

The following contrived example was introduced by Homeier [50]. The only
issue of this example is termination. It does not calculate anything interesting. We
introduce two mutually recursive procedures.

procedures pedal(n,m) =
IF 0 < n THEN
IF 0 < m THEN

CALL coast(n− 1,m− 1) FI; CALL pedal(n− 1,m)
FI
and coast(n,m) =
CALL pedal(n,m);
IF 0 < m THEN CALL coast(n,m− 1) FI

The problem for termination is the call of pedal in procedure coast. If we only take
the state space into account we cannot construct a proper well-founded relation that
decreases with this call. Homeier introduces a call graph analysis in order to handle
this example. In our setting the well-founded relation can also take the procedure
names into account. We consider a call to pedal as progress with respect to procedure
coast. We supply a measure function that weights coast as 1 and pedal as 0. For each
recursive call either n, m or the weight of the procedure name decreases. Since for
the call of coast within pedal both n and m are decreased, the sum of n, m and the
weight of the procedure name is sufficient as measure function.

lemma includes pedal-coast-impl
shows Γ`t {|True|} PROC pedal(n,m) {|True|} ∧ Γ`t {|True|} PROC coast(n,m) {|True|}
apply(hoare-rule ProcRec2t

[where r= measure (λ(s,p). sn + sm + (if p = ”coast” then 1 else 0))])

1. ∀σ. Γ,{({|n + m + 1 < σn + σm|}, ”coast”, {|True|}, {}),
({|n + m < σn + σm|}, ”pedal”, {|True|}, {})}
`t {σ} IF 0 < n

THEN IF 0 <m THEN CALL coast(n − 1,m − 1) FI; CALL pedal(n − 1,m)
FI

{|True|}
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2. ∀σ. Γ,{({|n + m < σn + σm|}, ”coast”, {|True|}, {}),
({|n + m < σn + σm + 1|}, ”pedal”, {|True|}, {})}
`t {σ} CALL pedal(n,m); IF 0 < m THEN CALL coast(n,m − 1) FI {|True|}

As the procedures are mutually recursive we also verify them simultaneously.
This allows to augment the context with the specifications of both procedures. The
rule ProcRec2t is derived from the general recursion rule CR to deal with two
mutually recursive procedures. The specialisation of the CR Rule to a given
number n of mutually recursive procedures is implemented as an Isabelle command.

In the example we get two subgoals, one for the body of pedal and one for the
body of coast. In order to use the specification of coast in the body of pedal, the sum
of n and m has to decrease at least by 2. For the recursive call of pedal a progress of
1 is enough. In the body of coast, the sum of of n and m only has to decrease by 1 in
case of a recursive call to coast. For pedal it can stay the same. Hence it is no problem
to prove termination with this measure function.

4.5 Abrupt Termination

As explained in Section 2.4.4 we can implement breaking out of a loop by a THROW
inside the loop body and enclosing the loop into a TRY−CATCH block. The follow-
ing example again implements multiplication by iterated addition. This time the
loop condition is always True. The actual test is implemented inside of the loop and
exits the loop by a THROW.

lemma
Γ` {|m = 0 ∧ s = 0|}
TRY
WHILE True
INV {|s = m ∗ b|}
DO IF m = a THEN THROW ELSE s := s + b; m := m + 1 FI OD

CATCH
SKIP

END
{|s = a ∗ b|}

apply vcg

1.
∧

m s. [[m = 0; s = 0]] =⇒ s = m ∗ b
2.
∧

m s. [[s = m ∗ b; True]] =⇒ (m = a −→ s = a ∗ b) ∧ (m , a −→ s + b = (m + 1) ∗ b)
3.
∧

m s. [[s = m ∗ b; ¬ True]] =⇒ s = a ∗ b

The first subgoal stems from the path from the precondition to the invariant. The
second one from the loop body. We can assume the invariant and the loop condition
and have to show that the invariant is preserved when we execute the ELSE branch,
and that the THEN branch implies the assertion for abrupt termination, which is
{|s = a ∗ b|} according to the Rules C and S. The third subgoal expresses that
normal termination of the while loop has to imply the postcondition. As loop never
terminates normally the third subgoal trivially holds.
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To model different kinds of abrupt termination (like break, continue or a pro-
cedure return), we introduce an additional variable Abr to the state space to distin-
guish them. Here is a modified version of the previous example that explicitly deals
with this ghost variable.

lemma
Γ` {|m = 0 ∧ s = 0|}
TRY
WHILE True
INV {|s = m ∗ b|}
DO IF m = a THEN Abr := ”Break”; THROW

ELSE s := s + b; m := m + 1
FI

OD
CATCH

IF Abr = ”Break” THEN SKIP ELSE THROW FI
END
{|s = a ∗ b|}

apply vcg

1.
∧

m s. [[m = 0; s = 0]] =⇒ s = m ∗ b
2.
∧

m s. [[s = m ∗ b; True]]
=⇒ (m = a −→

(”Break” = ”Break” −→ s = a ∗ b) ∧
(”Break” , ”Break” −→ False)) ∧

(m , a −→ s + b = (m + 1) ∗ b)
3.
∧

m s. [[s = m ∗ b; ¬ True]] =⇒ s = a ∗ b

The proof obligation is basically the same as for the previous example. The
second subgoal has the flaw to contain a trivial case distinction ”Break” = ”Break”
and ”Break”, ”Break”. It stems from the IF in the CATCH block that is propagated to
the THROW. To avoid this blow up in the proof obligation the verification condition
generator can be instrumented to simplify the proof obligation as it processes the
assignment Abr := ”Break”. At this point in the program it knows which value Abr
gets. To distinguish this assignment from an ordinary assignment we introduce the
command raise:

raise :: ( ′s⇒ ′s)⇒ ( ′s, ′p, ′f ) com
raise f ≡ Seq (Basic f ) Throw

J Definition 4.2

As the verification condition generator encounters a raise command it invokes the
simplifier. This avoids to produce odd case distinctions, as the following example
illustrates:

lemma
Γ` {|m = 0 ∧ s = 0|}
TRY
WHILE True
INV {|s = m ∗ b|}
DO IF m = a THEN RAISE Abr := ”Break”

ELSE s := s + b; m := m + 1
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FI
OD

CATCH
IF Abr = ”Break” THEN SKIP ELSE THROW FI

END
{|s = a ∗ b|}

apply vcg

1.
∧

m s. [[m = 0; s = 0]] =⇒ s = m ∗ b
2.
∧

m s. [[s = m ∗ b; True]] =⇒ (m = a −→ s = a ∗ b) ∧ (m , a −→ s + b = (m + 1) ∗ b)
3.
∧

m s. [[s = m ∗ b; ¬ True]] =⇒ s = a ∗ b

In the context of a language with exceptions, this idea can also be employed
to distinguish different kinds of exceptions like division by zero, dereferencing
null pointers or lack of memory. Although the Hoare logic only provides a single
postcondition for all kinds of abrupt termination, an invocation of the simplifier at
the right point can be used to select the proper part of the postcondition.

4.6 Heap

The heap can contain structured values like structs in C or records in Pascal. We
employ the split heap approach as described in Section 2.4.9.1. We have one heap
variable f of type ref ⇒ value for each component f of type value of the struct.
References ref are isomorphic to the natural numbers and contain NULL.

A typical structure to represent a linked list in the heap is:

struct list {int cont; struct list *next}.

The structure contains two components, cont and next. So we also get two heap
variables, cont of type ref ⇒ int and next of type ref ⇒ ref in our state space record:

record heap =
cont :: ref ⇒ int
next :: ref ⇒ ref

record st =
globals :: heap
p :: ref
q :: ref
r :: ref

To specify programs that manipulate the heap we follow the approach of Mehta
and Nipkow [67]. We abstract the pointer structure in the heap to a suitable HOL
type. A heap list is abstracted to a HOL lists of references. After this abstraction,
specification and verification takes place in the domain of HOL lists. Predicate List
abstracts the heap list to a HOL list:

List :: ref ⇒ (ref ⇒ ref )⇒ ref list⇒ bool
List p h [] = p = NULL
List p h (a·ps) = p = a ∧ p , NULL ∧ List (h p) h ps

Definition 4.3 I

The list of references is obtained from the heap h by starting with the reference p,
following the references in h up to NULL. With a generalised predicate that describes
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a path in the heap, Mehta and Nipkow [68] show how this idea can canonically be
extended to cyclic lists.

To specify in-place list reversal we can use the precondition {|List p next Ps|} and
the postcondition {|List q next (rev Ps)|}. Initially pointer p points to the list Ps and
in the end pointer q points to the reverse of Ps. The following program implements
this in-place list reversal and also shows the loop invariant.

Γ` {|List p next Ps|}
q := NULL;
WHILE p , NULL
INV {|∃Ps ′Qs ′.

List p next Ps ′∧
List q next Qs ′∧ set Ps ′∩ set Qs ′= {} ∧ rev Qs ′@ Ps ′= Ps|}

DO r := p; p := p→next; r→next := q; q := r OD
{|List q next (rev Ps)|}

The loop invariant expresses that q points to the already reversed initial part of
the list and p to the not yet processed rest of the list. Moreover it asserts that lists
Ps ′ and Qs ′ are separated.

For total correctness we also have to come up with a variant. In the loop of the
example above, the pointer p is moved through the list. Hence the length of the
list p points to is getting smaller in each iteration. In the invariant the list p points
to is abstracted to Ps ′, but Ps ′ is quantified inside the invariant. Hence we cannot
directly refer to Ps ′ in the variant. However, the List predicate uniquely determines
the list.

If List p h as and List p h bs then as = bs. J Lemma 4.1

This uniqueness result can be exploited to convert the relational abstraction List
to a functional abstraction:

list :: ref ⇒ (ref ⇒ ref )⇒ ref list
list p h ≡ THE ps. List p h ps

J Definition 4.4

The definite description operator THE can be used instead of Hilbert’s choice
operator SOME in our case, since the value is unique. The following lemma connects
List with list.

If List p h ps then list p h = ps. J Lemma 4.2

With the functional abstraction list we can directly define the variant as the
length of the list pointed to by p:

Γ`t {|List p next Ps|}
q := NULL;
WHILE p , NULL
INV {|∃Ps ′Qs ′.

List p next Ps ′∧
List q next Qs ′∧ set Ps ′∩ set Qs ′= {} ∧ rev Qs ′@ Ps ′= Ps|}

VAR MEASURE |list p next|
DO r := p; p := p→next; r→next := q; q := r OD
{|List q next (rev Ps)|}
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If we encapsulate in-place list reversal in a procedure it appears that the above
specification is too weak. The problem is that we cannot determine from the Hoare
triple what “does not change”. This issue is referred to as frame problem in the
literature [16]. In the context of the split-heap model we want to be able derive that
all other heaps like cont have not changed. Moreover, for the next heap the only
references that are affected are those in list Ps. The following definition illustrates
how we approach the frame problem.

procedures Rev(p|q) =
q := Null;
WHILE p , Null
DO r := p; p := p→next; r→next := q; q := r OD

Rev-spec:
∀σ Ps. Γ` {|σ. List p next Ps|} q := PROC Rev(p)

{|List q next (rev Ps) ∧ (∀p. p < set Ps −→ (next p = σnext p))|}
Rev-modifies:
∀σ. Γ`/UNIV {σ} q := PROC Rev(p) {t. t may-only-modify-globals σ in [next]}

We give two specifications this time. The first one captures the functional be-
haviour and additionally expresses that all parts of the next-heap not contained in
Ps remain the same (σ denotes the pre-state). Fixing a state is part of the assertion
syntax: {|σ. ...|} translates to {s. s=σ ...} and σnext to next (globals σ). The second specifi-
cation is a “modifies-clause” or “frame condition” that lists all the state components
that may be changed by the procedure. Only the next heap is listed, and there-
fore we know that the cont heap or any other heap remains unchanged. Thus the
main specification can focus on the relevant parts of the state space. The assertion
t may-only-modify-globals σ in [next] abbreviates the following relation between the
final state t and the initial state σ: ∃next ′. globals t = (globals σ)(|next:=next ′|). This
frame condition can be exploited during verification condition generation:

lemma includes Rev-spec + Rev-modifies shows
Γ`{|cont=c ∧ List p next Ps|} p := CALL Rev(p)
{|cont=c ∧ List p next (rev Ps)|}

apply vcg

1.
∧

next cont p.
List p next Ps =⇒
∀nexta q.

List q nexta (rev Ps) ∧ (∀p. p < set Ps −→ nexta p = next p) −→
cont = cont ∧ List q nexta (rev Ps)

The impact of the frame condition shows up in the resulting proof obligation. The
cont-heap results in the same variable before and after the procedure call (cont = cont),
whereas the next-heap is described by next in the beginning and by nexta in the end.
The specification of Rev relates both next-heap states.

So how does the verification condition generator use the modifies-clause to
obtain this result? A procedure call is of the form call init p return result. The return
function is defined as return s t = s(|globals := globals t|). It copies the current state
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of the global variables (including the heap) at the end of the procedure body to the
caller. The verification condition generator exploits the modifies-clause to substitute
this return function with a modified one, which only returns the global components
that may actually change. In the example this is:

return ′ s t = s(|globals := (globals s)(|next := next (globals t)|)|).

So cont actually behaves like a local variable in the resulting proof obligation.
The Hoare rule that justifies this modification of the return function is the following.

Γ,Θ`/F P call init p return ′ result Q,A
∀s t. t ∈Modif (init s) −→ return ′ s t = return s t
∀s t. t ∈ModifAbr (init s) −→ return ′ s t = return s t
∀σ. Γ,Θ`/UNIV {σ} Call p (Modif σ),(ModifAbr σ)

Γ,Θ`/F P call init p return result Q,A
(MR)

The last premise is the modifies-clause. It has a postcondition Modif σ for normal
termination and ModifAbr σ for abrupt termination. In case of the list reversal, the
modifies-clause for abrupt termination is the empty set, since the procedure never
terminates abruptly. State σ is the initial state. If the functions return ′ and return
behave the same under the assumption of the modifies-clause then it is valid to
replace them. In our example we have to show the following side-condition. Note
that init s does not modify the global components at all and hence we have the
equation globals (init s) = globals s.

∀s t. t ∈ {t. ∃next ′. globals t = (globals s)(|next := next ′|)} −→
s(|globals := (globals s)(|next := next (globals t)|)|) = s(|globals := globals t|)

We have to show the equality of two records. Two records are equal if all their
components are equal. For component next both sides yield the next ′ that is obtained
from the premise. All other components are from state s. These side-conditions are
solved automatically by the verification condition generator.

For the modifies-clause in the MR Rule, the fault set is UNIV instead
of F in the rest of the rule. This means that we can ignore guards while verifying
the modifies-clause itself. This is sound, since the first premise already takes care
of the guards. The modifies-clause is proven fully automatically by the verification
condition generator. In case of a loop, the invariant is the modifies-clause itself. To
handle procedure calls the verification condition generator uses the corresponding
modifies-clause as specification. The resulting verification condition is similar to
the side-condition of the MR Rule described above and can be solved in
the same fashion.

Also in the context of total correctness the modify-clause only has to be proven
for partial correctness. Termination of the procedure call is already handled by the
first premise.

Γ,Θ`t/F P call init p return ′ result Q,A
∀s t. t ∈Modif (init s) −→ return ′ s t = return s t
∀s t. t ∈ModifAbr (init s) −→ return ′ s t = return s t
∀σ. Γ,Θ`/UNIV {σ} Call p (Modif σ),(ModifAbr σ)

Γ,Θ`t/F P call init p return result Q,A
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The modifies-clause lifts the advantages of the split-heap approach to the level
of procedure specifications. It is an effective way to express separation of different
pointer structures in the heap and can be handled completely automatically during
verification condition generation. For example, reversing a list only modifies the
next-heap but not some left- and right-heaps of a tree structure.

4.7 Dynamic Procedure Call

The Hoare rule for the dynamic command DynCom is the following.

∀s∈P. Γ,Θ`/F P (cs s) Q,A

Γ,Θ`/F P (DynCom cs) Q,A

As command cs depends on the state we have to show the Hoare triple for all
possible states that satisfy the precondition. We can use the consequence rule to
transform this rule to a form that the verification condition generator can use:

P ⊆ {s. ∃P ′Q ′A ′. Γ,Θ`/F P ′ (cs s) Q ′,A ′∧ P ⊆ P ′∧ Q ′⊆ Q ∧ A ′⊆ A}

Γ,Θ`/F P (DynCom cs) Q,A

For every possible state s in P we have to come up with a suitable specification
Γ,Θ`/F P ′ (cs s) Q ′,A ′. If we do not put any restrictions on command cs this is the
best we can expect for this general state dependent command. However, for spe-
cific applications of the dynamic command it might be possible for the verification
condition generator to infer the specification from the context, for example, con-
sider procedure pointers. A typical application of a procedure pointer is to pass the
comparison function as an argument to a sorting procedure. The sorting procedure
does not modify this pointer but just uses it to call the procedure. Hence the speci-
fication of the comparison function can be fixed throughout the sorting procedure.
To simplify the example we use a procedure that calculates the maximum of two
numbers instead of the sorting procedure.

First, we define the signature of the comparison function:
procedures compare(n,m|b)

This declaration is only used to generate the syntax translations for (dynamic)
procedure calls to compare.

procedures Max (compare, n, m | k) =
b := DYNCALL compare(n,m);
IF b THEN k := n ELSE k := m FI

Max-spec:
∀ leq n m. Γ`
({|n=n ∧ m=m|} ∩
{|∀n m. Γ` {|n=n ∧ m=m|} b := PROC compare(n,m) {|b = (leq n m)|}|})
k := PROC Max(compare,n,m)
{|k = mx leq n m|}

First, compare is an ordinary program variable as n or m. Its type is string,
since procedure names are represented as strings. The dynamic procedure call
b := DYNCALL compare(n,m) is translated to
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dynCall (λs. s(|n := n s, m := m s|)) compare (λs t. s(|globals := globals t|)) (λi t. b := b t)

where compare is the selector function of the state space record. The precondition of
the specification of Max consists of two parts that are conjoined by the intersection.
The first part fixes the initial values of n and m and the second part contains the
expected behaviour of the procedure compare, specified as a Hoare triple. As the
assertions can contain arbitrary HOL expressions it is no problem to include a
Hoare triple in a pre- or postcondition. Note that b := PROC compare(n,m) in the
precondition translates to Call (compare s), where s is the implicitly bound state of the
precondition. Hence the Hoare triple in the precondition describes the behaviour of
the procedure that is referenced by the initial value of compare. As we do not know
the exact behaviour of the comparison function the postconditions are parametrised
by the place-holder leq of type nat⇒ nat⇒ bool. Function mx is defined as follows:

mx leq a b ≡ if leq a b then a else b

The verification condition generator takes the specification in the precondition
and applies it to the last premise of the following rule, as it processes the dynamic
procedure call:

P ⊆ {s. p s = q ∧ (∃Z. init s ∈ P ′Z ∧ (∀ t∈Q ′Z. return s t ∈ R s t) ∧ (∀ t∈A ′Z. return s t ∈ A))}
∀s t. Γ,Θ`/F (R s t) (c s t) Q,A ∀Z. Γ,Θ`/F (P ′Z) (Call q) (Q ′Z),(A ′Z)

Γ,Θ`/F P (dynCall init p return c) Q,A

This rule resembles the rule for ordinary procedure calls as introduced in Section
4.4. Additionally we have to show that p s = q, where p s is the procedure name
that is actually called and q the fixed procedure name of the specification. In the
example p s = q ensures that the variable compare still holds the same value as in
the initial state.

To extract the embedded Hoare Triple from the precondition of Max we use the
following variant of the consequence rule.

∀s∈S. Γ,Θ` ({s} ∩ P) c Q,A

Γ,Θ` (P ∩ S) c Q,A
(CEP)

This rule is applied backwards. It allows to bring the precondition S in front of
the Hoare triple, while fixing the state.

lemma Max-spec: includes Max-impl
shows
∀n m leq. Γ`
({|n=n ∧ m=m|} ∩
{|∀n ′m ′. Γ` {|n=n ′∧ m=m ′|} b := PROC compare(n,m) {|b = (leq n ′m ′)|}|})
k := PROC Max(compare,n,m)
{|k = mx leq n m|}

apply (hoare-rule ProcNoRec1)

1.
∧

n m leq.
Γ` ({|n = n ∧ m = m|} ∩
{|∀n ′m ′. Γ` {|n = n ′∧ m = m ′|} b := PROC compare(n,m) {|b = leq n ′m ′|}|})

b := DYNCALL compare(n,m); IF b THEN k := n ELSE k := m FI
{|k = mx leq n m|}
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apply (rule ConseqExtractPre)

1.
∧

n m leq.
∀s∈{|∀n ′m ′. Γ` {|n = n ′∧ m = m ′|} b := PROC compare(n,m) {|b = leq n ′m ′|}|}.
Γ` ({s} ∩ {|n = n ∧ m = m|})

b := DYNCALL compare(n,m); IF b THEN k := n ELSE k := m FI
{|k = mx leq n m|}

apply clarify

1.
∧

n m leq s.
∀n ′m ′. Γ` {|n = n ′∧ m = m ′|} Call (compare s) {|b = leq n ′m ′|} =⇒
Γ` ({s} ∩ {|n = n ∧ m = m|})

b := DYNCALL compare(n,m); IF b THEN k := n ELSE k := m FI
{|k = mx leq n m|}

apply vcg

1.
∧

leq compare n m.
∀n ′m ′. Γ` {|n = n ′∧ m = m ′|} Call compare {|b = leq n ′m ′|} =⇒
(leq n m −→ n = mx leq n m) ∧ (¬ leq n m −→ m = mx leq n m)

apply (clarsimp simp add: mx-def )
done

Rule ProcNoRec1 is a variant of the recursion rule for the case were no recursion
occurs. It only expands the body. The next two steps are used to extract the
specification out of the precondition. Note that the state s is introduced and the
value of compare becomes compare s. Then the verification condition generator can
be called and uses the specification as it processes the dynamic procedure call.

We can now implement a concrete comparison:

procedures LEQ (n,m | b) = b := n ≤ m

We prove the specification:

∀n m. Γ` {|n = n ∧ m = m|} b := PROC LEQ(n,m) {|b = (n ≤ m)|}

Then we can derive the specialised specification for the instantiated maximum
procedure:

∀n m. Γ` {|n = n ∧ m = m|} k := CALL Max(”LEQ”,n,m) {|k = mx (≤) n m|}

These ideas to handle a dynamic procedure call can also be adapted to an object
oriented setting for dynamic method invocation. The method called, depends on
the dynamic type of the object. A type annotation in the program can give the
verification condition generator a hint, which specification to select. This could be
a specification that subsumes the behaviour of the methods for all subtypes as well.
The user then has to show that the actual type fits to the one in the hint. The selection
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of the specification may even be easier as in case of the procedure pointer example,
as it does not have to be part of the precondition of a method. The specifications
are grouped according to the class hierarchy and are thus static. Only the type of
the objects is dynamic. Some type constraint for an object is sufficient to determine
which specifications may be relevant.

As the example of the procedure pointer illustrates it is possible to customise
the verification condition generator to commonly used patterns of the dynamic
procedure call. As default solution one can always use the generic rule introduced
in the beginning of this section. This rule postpones the selection of the relevant
specification for the dynamic procedure call to the user. This may be the only
sufficient solution in a sophisticated program that passes around and calculates
procedure pointers.

4.8 Closures

Dealing with closures is quite similar to dynamic procedure calls. Additionally clo-
sures can be used to hide parts of the state. For example, here is the implementation
of a private counter in ML:

fun inc p () = p := !p + 1; !p

fun newCounter () =

let

val p = ref 0

in inc p

end

Dereferencing p is written as !p in ML. First a new counter is created by allocating
an integer and initialising it with 0. The address p of this new location is passed
to function inc as partial application. Since p is a local name inside newCounter
nobody else knows this address. The result of newCounter is a function of type
unit => nat. Every time we apply it to () it increments the private counter and
returns its value. For example,

val count = newCounter (); val x = count () + count ().

The value of x is 3.
We now implement the same program in Simpl. A counter consist of a single

field cnt in the heap.

procedures Inc(p|r) =
p→cnt := p→cnt + 1;
r := p→cnt

The specification of Inc is the following.

lemma (in Inc-impl)
∀ i p. Γ` {|p→cnt = i|} r := PROC Inc(p) {|r=i+1 ∧ p→cnt = i+1|}
by vcg simp
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Next, we define the procedure NewCounter. It allocates a new counter cell,
initialises its value to 0 and creates a closure for procedure Inc. The NEW is imple-
mented as described in Section 2.4.9.2. The first argument is the size of the new
cell. It checks whether there is enough free memory left and creates a new reference,
or otherwise returns NULL. The partial application is implemented as described in
Section 2.4.7.

procedures NewCounter(|c) =
p := NEW 1 [cnt := 0];
c := ([(”p”,p)],”Inc”)

How does a proper specification for NewCounter look like? Of course we could
just reveal everything and expose the content of the closure in the postcondition.
However, a closure should be viewed as a black box, at least when we want to
deal with higher order procedures in a modular fashion. As we specify procedures
by the parameterless procedure call PROC, we use the parameterless closure call
callClosure to specify a closure. The auxiliary function upd is defined analogously to
the example in Section 2.4.7:

∃p. ∀ i. Γ` {|p→cnt = i|} callClosure upd c {|r = i + 1 ∧ p→cnt = i + 1|}.

There is a reference p such that a call to the closure increments the corresponding
counter. The hidden reference is existentially quantified. Of course we should also
provide a frame condition, but as this works analogously to the examples in Section
4.6 we omit it here. Next comes the specification for NewCounter. The ghost variable
alloc is a list of allocated references and free indicates how much memory is still
left. Additionally to the Hoare triple about the resulting closure, we express that
the reference is fresh and that the initial value of the counter is 0. The freshness of
the reference is crucial if we want to reason about several counters.

lemma (in NewCounter-impl)
shows NewCounter-spec:
∀alloc free.
Γ` {|1 ≤ free ∧ free=free ∧ alloc=alloc|} c := PROC NewCounter()
{|∃p. p < set alloc ∧ p ∈ set alloc ∧ free=free − 1 ∧ p , NULL ∧ p→cnt = 0 ∧

(∀ i. Γ` {|p→cnt = i|} callClosure upd c {|r=i+1 ∧ p→cnt = i+1|})|}
apply vcg
apply (rule-tac x=new (set alloc) in exI)
apply simp

1.
∧

alloc free.
1 ≤ free =⇒
∀ i. Γ` {|new (set alloc)→cnt = i|}

callClosure upd ([(”p”, new (set alloc))], ”Inc”)
{|r = i + 1 ∧ new (set alloc)→cnt = i + 1|}

After applying the verification condition generator and instantiating reference p
we end up with the Hoare triple from the postcondition. The c is substituted by the
current closure. Since callClosure is only the composition of a Basic command and a
Call this can be verified as usual by calling the vcg.

We continue with a (dynamic) call of the closure. As for the dynamic command,
the default rule is an adaptation of the general consequence rule.
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P ⊆ {s. ∃P ′Q ′A ′.
Γ,Θ`/F P ′ (callClosure upd (cl s)) Q ′,A ′∧
init s ∈ P ′∧ (∀ t∈Q ′. return s t ∈ R s t) ∧ (∀ t∈A ′. return s t ∈ A)}

∀s t. Γ,Θ`/F (R s t) (c s t) Q,A

Γ,Θ`/F P (dynCallClosure init upd cl return c) Q,A

Using this rule, the verification condition generator postpones the selection of
proper specification of the closure to the user.

lemma
Γ`{|∃p. p→cnt = i ∧ (∀ i. Γ` {|p→cnt = i|} callClosure upd c {|r=i+1 ∧ p→cnt = i+1|})|}

dynCallClosure (λs. s) upd c (λs t. s(|globals := globals t|)) (λs t. Basic (λu. u(|r := r t|)))
{|r=i+1|}

apply vcg

1.
∧

s p. ∀ i. Γ` {|p→cnt = i|} callClosure upd (c s)
{|r = i + 1 ∧ p→cnt = i + 1|} =⇒

∃P ′Q ′.
Γ` P ′ callClosure upd (c s) Q ′∧
s ∈ P ′∧ (∀ t∈Q ′. r t = cnt (globals s) p + 1)

Now we can employ the specification in the assumption for i = cnt (globals s) p
and finally instantiate P ′ and Q ′ to finish the proof.

We can apply the same idea as for the dynamic procedure call in Section 4.7
so that the verification condition generator already selects the specification. We
first extract the specification from the precondition so that the verification condition
generator can guess it. We have to show that the current closure is the same as the
one in the specification:

P ⊆ {s. ∃Z. cl ′= cl s ∧
init s ∈ P ′Z ∧ (∀ t∈Q ′Z. return s t ∈ R s t) ∧ (∀ t∈A ′Z. return s t ∈ A)}

∀s t. Γ,Θ`/F (R s t) (c s t) Q,A
∀Z. Γ,Θ`/F (P ′Z) (callClosure upd cl ′) (Q ′Z),(A ′Z)

Γ,Θ`/F P (dynCallClosure init upd cl return c) Q,A

The following example illustrates this approach.

lemma
Γ`{|∃p. p→cnt = i ∧ (∀ i. Γ` {|p→cnt = i|} callClosure upd c {|r=i+1 ∧ p→cnt = i+1|})|}

dynCallClosure (λs. s) upd c (λs t. s(|globals := globals t|)) (λs t. Basic (λu. u(|r := r t|)))
{|r=i+1|}

apply (rule ConseqExtractPre ′)
apply clarify

1.
∧

s p. ∀ i. Γ` {|p→cnt = i|} callClosure upd (c s)
{|r = i + 1 ∧ p→cnt = i + 1|} =⇒

Γ` {s}
dynCallClosure (λs. s) upd c (λs t. s(|globals := globals t|))
(λs t. r := r t)
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{|r = scnt p + 1|}
apply vcg

1.
∧

p cnt c.
∀ i. Γ` {|p→cnt = i|} callClosure upd c

{|r = i + 1 ∧ p→cnt = i + 1|} =⇒
∀cnta r. r = cnt p + 1 ∧ cnta p = cnt p + 1 −→ r = cnt p + 1

by simp

The final example for counters introduces aliasing between the counters in clo-
sures c and d. Both refer to the same counter and hence the result is 3. Since closures
are ordinary values, the assignment d := c makes them equal and hence we can use
the specification from the postcondition of NewCounter to handle both calls.

lemma (in NewCounter-impl) shows
Γ`{|1 ≤ free|}

c := CALL NewCounter ();
d := c;
dynCallClosure (λs. s) upd c (λs t. s(|globals := globals t|)) (λs t. Basic (λu. u(|n := r t|)));
dynCallClosure (λs. s) upd d (λs t. s(|globals := globals t|)) (λs t. Basic (λu. u(|m := r t|)));
r := n + m
{|r=3|}

The next section explains how annotations can be inserted into a program text,
to guide the verification condition generation. This technique can also be used to
annotate the calling points of closures so that the verification condition generator
can guess the proper specification, instead of postponing the decision to the user.
The verification condition generator is implemented as a ML tactic. Hence it can
inspect the Hoare triple to look for a proper specification. It can even employ the
approach to extract the triple from the precondition to discharge the side-condition
about the specification.

Another aspect of closures is to partially apply a closure to some more arguments.
In our representation of the environment as association list this means to augment
the list.

ap :: ( ′k × ′v) list⇒ (( ′k × ′v) list × ′p)⇒ (( ′k × ′v) list × ′p)
ap es cl ≡ (es @ fst cl, snd cl)

Definition 4.5 I

Consider a closure c which implements the addition of two parameters n and m.
We view this closure as a black box. We do not make any assumptions about the
environment in it. It could be empty or not. When we partially apply an argument
to the closure, we expect the resulting closure to implement an increment function
that expects only one argument, namely m. This is what the next example attempts
to prove.

lemma
Γ`{|n=n0 ∧ (∀ i j. Γ` {|n=i ∧ m=j|} callClosure upd c {|r=i + j|})|}

c := (ap [(”n”,n)] c)
{|∀ j. Γ` {|m=j|} callClosure upd c {|r=n0 + j|}|}

apply vcg

1.
∧

s j. ∀ i j. Γ` {|n = i ∧ m = j|} callClosure upd (c s) {|r = i + j|} =⇒
Γ` {|m = j|} callClosure upd (ap [(”n”, n s)] (c s)) {|r = sn + j|}
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The resulting proof obligation is quite similar to the adaptation of a procedure
specification to an actual procedure call. It is even simpler since we only have to
deal with parameter passing and not with a procedure return and result passing.
The adaptation rule is hence again a variant of the consequence rule.

P ⊆ {s. ∃P ′Q ′A ′. Γ,Θ`/F P ′ (callClosure upd cl) Q ′,A ′∧ upd es s ∈ P ′∧ Q ′⊆ Q ∧ A ′⊆ A}

Γ,Θ`/F P (callClosure upd (ap es cl)) Q,A

Or in the Kleymann-style:

P ⊆ {s. ∃Z. upd es s ∈ P ′Z ∧ Q ′Z ⊆ Q ∧ A ′Z ⊆ A}
∀Z. Γ,Θ`/F (P ′Z) (callClosure upd cl) (Q ′Z),(A ′Z)

Γ,Θ`/F P (callClosure upd (ap es cl)) Q,A

These rules are instances for our concrete model of environments as association
list. The general rules, which only consider the environment to be of type ′e, have a
semantical side-condition on the different environments in the premise and the con-
clusion. In this abstract view we do not know how the environment is implemented
and the ap function is not yet available. The rule just assumes that we switch from an
environment e ′ to e. The side-condition upd e = upd e ′ ◦ upd x specifies semantically
that the environment e is an extension of e ′. The x models the new arguments that
are partially applied. Note that here function upd is of type ′e⇒ ′s⇒ ′s and not the
concrete update of the example above.

P ⊆ {s. ∃P ′Q ′A ′. Γ,Θ`/F P ′ (callClosure upd (e ′, p)) Q ′,A ′∧ upd x s ∈ P ′∧ Q ′⊆ Q ∧ A ′⊆ A}
upd e = upd e ′ ◦ upd x

Γ,Θ`/F P (callClosure upd (e, p)) Q,A

The side-condition can be discharged in the implementation of the environment
as an association list. Thats why it does not show up in the specialised rules before.

4.9 Introducing Annotations

When verifying a larger piece of program text, it is useful to split it and prove the
parts in isolation. The parts can then be recombined with the consequence rule.
Moreover, it should be possible to refer to an intermediate state in annotations like
a loop invariant. To automate this process we introduce the derived command
specAnno, which allows to introduce a Hoare triple (including auxiliary variables)
in the program text.

specAnno::( ′a⇒ ′s set)⇒( ′a⇒( ′s, ′p, ′f ) com)⇒( ′a⇒ ′s set)⇒( ′a⇒ ′s set)⇒( ′s, ′p, ′f ) com
specAnno P c Q A ≡ c arbitrary

J Definition 4.6

The assertions P, Q and A as well as the statement c depend on an auxiliary
variable of polymorphic type ′a. This auxiliary variable can be used to fix the state
or to introduce logical variables. If we need more than one variable we can use a
tuple. The statement c depends on the auxiliary variable, too. This enables nested
annotations to refer to the auxiliary variable. After stripping all annotations the raw
body should not refer to the variable. That is why the whole specAnno construct is
defined as c arbitrary. The logical variable is only used by the verification condition
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generator. It has no semantical effect, not even a syntactic one with respect to the
core language of Simpl. The Hoare rule for specAnno is mainly an instance of the
consequence rule:

P ⊆ {s. ∃Z. s ∈ P ′Z ∧ Q ′Z ⊆ Q ∧ A ′Z ⊆ A}
∀Z. Γ,Θ`/F (P ′Z) (c Z) (Q ′Z),(A ′Z) ∀Z. c Z = c arbitrary

Γ,Θ`/F P (specAnno P ′ c Q ′A ′) Q,A

The side-condition ∀Z. c Z = c arbitrary expresses our intention about body c
explained above: The raw body is independent of the auxiliary variable. This
side-condition is solved automatically by the vcg. The concrete syntax for this
specification annotation is shown in the following example. Consider we want to
prove

Γ` {|σ. P σ|} c1; c2; c3 {|Q σ|}.

The precondition {|σ. P σ|} is an abbreviation for {s. s=σ∧ P σ}. Hence the pre-state
is fixed as σ, so that the postcondition can refer to the initial state. Now we can
isolate statement c2 and fix the state between c1 and c2 as τ:

Γ` {|σ. P σ|} c1; ANNO τ. {|τ. P ′ σ τ|} c2 {|Q ′ σ τ|}; c3 {|Q σ|}.

The intermediate assertions can refer to both σ and τ. According to the rule for
specAnno we can now prove the inner Hoare triple separately. The consequence
side-condition ensures that the isolated Hoare triple fits into the main proof. The
syntax hides that the nested c2 is formally λτ. c2. According to the definition of
specAnno the whole inner triple ANNO τ. {|τ. P ′ σ τ|} c2 {|Q ′ σ τ|} simplifies to c2.

4.10 Conclusion

In this chapter I have presented the verification condition generator and the inte-
gration of the Hoare logic into Isabelle/HOL. This provides a solid verification envi-
ronment for imperative programs. The examples in this chapter demonstrate that
the verification condition generator results in quite natural proof obligations. With
an additional modifies-clause we can lift separation of heap components, which are
directly expressible in the split heap model, to the level of procedures, without hav-
ing to introduce a new logic like separation logic [101]. Crucial parts of the frame
problem can then already be handled during verification condition generation and
the modifies-clause itself can be proven automatically.

The flexibility of the assertions as HOL sets can be exploited to deal with dynamic
procedure calls and closures. An assertion in a Hoare triple can itself hold a nested
Hoare triple to specify the behaviour of a procedure pointer or closure.

The examples in this chapter are all focused on the verification condition gen-
erator. However, the Hoare rules can also be applied by hand. Moreover, Wenzel
[115] has shown how a Hoare logic can be integrated into an Isar proof. Here is an
example of the verification of multiplication by iterated addition.

lemma
Γ` {|m = 0 ∧ s = 0|}
WHILE m , a
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DO s := s + b; m := m + 1 OD
{|s = a ∗ b|}
proof −
let Γ` - ?while - = ?thesis
let {| ?́inv|} = {|s = m ∗ b|}

have {|m = 0 & s = 0|} ⊆ {| ?́inv|} by auto
also have Γ` . . . ?while {| ?́inv ∧ ¬ (m , a)|}
proof
let ?c = s := s + b; m := m + 1
have {| ?́inv ∧ m , a|} ⊆ {|s + b = (m + 1) ∗ b|}

by auto
also have Γ` . . . ?c {| ?́inv|} by vcg
finally show Γ` {| ?́inv ∧ m , a|} ?c {| ?́inv|} .

qed
also have {| ?́inv ∧ ¬ (m , a)|} ⊆ {|s = a ∗ b|} by auto
finally show ?thesis by blast

qed

Without going into detail, let me highlight some aspects. With the let commands
the term abbreviations ?while, ?inv and later ?c are introduced by matching. The
?while stores the whole loop statement, ?inv matches the invariant and ?c the loop
body. The keyword also triggers transitivity reasoning. The set of transitivity rules
is extensible. In case of the Hoare logic there are transitivity rules for consequence
rules. For instance, the first also weakens the precondition to the invariant. The . . .
abbreviate the last mentioned term. For instance, in the first case {| ?́inv|}. The nested
proof is for the loop body. Here we use the verification condition generator to solve
the preservation of the invariant.

The major parts of practical applications are proven by first invoking the verifi-
cation condition generator. The resulting verification condition can still be proven
by a structured Isar proof. However, the technique above can be used to decompose
a Hoare triple into smaller pieces. This can be especially useful to isolate difficult
sections of the program for some manual treatment.
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C H A P T E R 5

Interfacing Program Analysis

This chapter explores how results of a program analysis or a software model
checker can be introduced to the Hoare logic to support the verification.
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Our Hoare logic based verification environment aims at the verification of func-
tional correctness properties of programs. Hence the tool is essentially interactive.
On the other hand, during the last years, advances in verification methodology as
well as in computing power have resulted in tools for automatic program verifica-
tion. Examples are Astrée [15, 66], Slam1, Magic2 and Blast3. These tools do not
target full functional verification, but try to ensure safety properties like the absence
of buffer overflows or dereferencing null pointers. In this section, we discuss how
we can integrate such tools into our verification environment in order to increase
automation and reduce the workload for the user. The focus is not on the technical
integration but on the logical one. Which rules and concepts of the Hoare logic can
be used as interface to the results produced by external tools?

In the Hoare logic for Simpl we distinguish three aspects of program verification:

• termination,

• absence of runtime faults and

• functional correctness.

1See also the Slam Home page for more information: http://research.microsoft.com/slam/
2See also the Magic Home page for more information: http://www-2.cs.cmu.edu/˜chaki/magic/
3See also the Blast Home page for more information: http://www-cad.eecs.berkeley.edu/˜rupak/

blast/

http://research.microsoft.com/slam/
http://www-2.cs.cmu.edu/~chaki/magic/
http://www-cad.eecs.berkeley.edu/~rupak/blast/
http://www-cad.eecs.berkeley.edu/~rupak/blast/
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The easiest tool to integrate is termination analysis. If termination is already
proven, we can switch from total correctness to partial correctness. We can use the
following Hoare rule to introduce the result to the Hoare logic:

Γ,Θ`/F P c Q,A ∀s∈P. Γ`c ↓ Normal s

Γ,Θ`t/F P c Q,A

The rule is applied backwards. A total correctness proof can be separated in
partial correctness and termination. The termination tool has to supply the theorem
∀s∈P. Γ`c ↓ Normal s. Ideally it creates a proof of this property that can be checked
by Isabelle. Isabelle also supplies a so called oracle interface. This way we can
introduce a theorem as an axiom into the verification process without giving a proof
for it. The results of the external tool have to be trusted if an oracle is used.

Runtime faults are modelled as explicit guards within Simpl. The basic idea is to
discharge those guards that can be proven valid by an external tool. However, it is
not always helpful for interactive verification if we just remove the guard from the
program. The information of the guard can sometimes be valuable for functional
correctness as well — for example in case of array bounds. Knowing that the index
is within range is also important for reasoning about access operations. In this
respect it would be counterproductive to remove the information that a program
analysis has inferred. Then we have to reprove this constraint during the proof of
functional correctness. Instead of removing the guard we want to be able to use it
as granted for the further verification. The basic means to achieve this is already
built into the Hoare logic. It is our notion of validity modulo faults in a set F which
allows the rule:

f ∈ F Γ,Θ`/F (g ∩ P) c Q,A

Γ,Θ`/F P (Guard f g c) Q,A

For the verification of the body c of the guarded statement we can assume the guard,
without having to prove it, as long as the fault is in the set F.

Besides guarding against runtime faults, guards can also be utilised to integrate
additional information that a program analysis has inferred, to support the func-
tional correctness proof. The program analysis infers program properties for a
certain program point. This information can be put into a guard that is considered
to be valid.

As sketched above, the manipulation of guards plays a central role. Therefore,
we introduce some auxiliary functions and predicates and important properties of
them.

5.1 Stripping Guards

All guarded commands are marked with a fault f that is raised if the guard fails. The
function strip-guards gets a set of faults F and removes all guards that are marked
with a fault in this set.
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strip-guards :: ′f set⇒ ( ′s, ′p, ′f ) com⇒ ( ′s, ′p, ′f ) com
strip-guards F Skip = Skip
strip-guards F (Basic f ) = Basic f
strip-guards F (Spec r) = Spec r
strip-guards F (Seq c1 c2) = Seq (strip-guards F c1) (strip-guards F c2)
strip-guards F (Cond b c1 c2) = Cond b (strip-guards F c1) (strip-guards F c2)
strip-guards F (While b c) =While b (strip-guards F c)
strip-guards F (Call p) = Call p
strip-guards F (DynCom cs) = DynCom (λs. strip-guards F (cs s))
strip-guards F (Guard f g c) = if f ∈ F then strip-guards F c

else Guard f g (strip-guards F c)
strip-guards F Throw = Throw
strip-guards F (Catch c1 c2) = Catch (strip-guards F c1) (strip-guards F c2)

J Definition 5.1

To strip the guards from the bodies stored in the procedure environment we
introduce the function strip.

strip :: ′f set⇒ ( ′p⇀ ( ′s, ′p, ′f ) com)⇒ ( ′p⇀ ( ′s, ′p, ′f ) com)
strip F Γ ≡ λp. case Γ p of None⇒ None | bbdyc ⇒ bstrip-guards F bdyc

J Definition 5.2

If a guard is violated it raises the fault it is marked with. Otherwise a guarded
command just executes its body. Hence if no fault occurs during execution the same
run is possible for a program where the guards are stripped off. To be more precise,
if no fault in F occurs during execution of statement c, then the same execution is
possible for statement strip-guards F c.

If Γ` 〈c,s〉 ⇒ t and t < Fault ‘ F then Γ` 〈strip-guards F c,s〉 ⇒ t. J Lemma 5.1

Proof. By induction on the execution of c. �

We get the same result if we strip the context Γ.

If Γ` 〈c,s〉 ⇒ t and t < Fault ‘ F then strip F Γ` 〈c,s〉 ⇒ t. J Lemma 5.2

Proof. By induction on the execution in context Γ and Lemma 5.1. �

For the opposite direction the situation is a little more involved. If execution of
strip-guards F c causes a runtime fault, then execution of c causes a runtime fault,
too. However, it could be another fault, since c can contain some guards marked
with a fault in F. If c causes a runtime fault not in F then it has to be the same. If c
does not cause a runtime fault then the final states of both runs have to coincide.

If Γ` 〈strip-guards F c,s〉 ⇒ t then J Lemma 5.3
∃ t ′. Γ` 〈c,s〉 ⇒ t ′∧

(isFault t −→ isFault t ′) ∧
(t ′ ∈ Fault ‘ (− F) −→ t ′= t) ∧ (¬ isFault t ′−→ t ′= t).

Proof. By induction on the execution of strip-guards F c. �

If strip F Γ` 〈c,s〉 ⇒ t then J Lemma 5.4
∃ t ′. Γ` 〈c,s〉 ⇒ t ′∧

(isFault t −→ isFault t ′) ∧
(t ′ ∈ Fault ‘ (− F) −→ t ′= t) ∧ (¬ isFault t ′−→ t ′= t).
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Proof. By induction on the execution in context strip F Γ and Lemma 5.3. �

Causing a runtime fault is considered as termination in Simpl. Hence the more
guards a program has the more likely it is to terminate.

If Γ`strip-guards F c ↓ s then Γ`c ↓ s.Lemma 5.5 I

Proof. By induction on termination of strip-guards c and Lemma 5.1. �

If strip F Γ`c ↓ s then Γ`c ↓ s.Lemma 5.6 I

Proof. By induction on termination in context strip Γ and Lemmas 5.5 and 5.2. �

For the other direction we have to exclude runtime faults in F for the execution
of c.

If Γ`c ↓ Normal s and Γ` 〈c,Normal s〉 ⇒<Fault ‘ F thenLemma 5.7 I

Γ`strip-guards F c ↓ Normal s.

Proof. By induction on termination of c and Lemma 5.3. �

If Γ`c ↓ Normal s and Γ` 〈c,Normal s〉 ⇒<Fault ‘ F then strip F Γ`c ↓ Normal s.Lemma 5.8 I

Proof. By induction on termination in context Γ and Lemmas 5.7 and 5.4. �

From the semantic properties of strip-guards we can derive the following rule:

Γ,Θ`/F P c Q,A Γ,Θ`/{} P (strip-guards (− F) c) UNIV,UNIV

Γ,Θ`/{} P c Q,A

Again the intended application is backwards. The user wants to verify property
Γ,Θ`/{} P c Q,A. With the rule above, this goal can be reduced to Γ,Θ`/F P c Q,A,
where all the guards with a mark in F are granted. This is justified by the second
premise, which ensures that no guard with a mark in F actually fails. We only
leave those guards in c that are marked with F by applying strip-guards (− F) c. The
only purpose of the second premise is to guarantee that the guards hold, hence
the postconditions are trivial. The second premise is the one that is intended to be
generated by the automatic tool.

For total correctness the rule is similar. In this case, partial correctness of the
second premise suffices, since termination is handled by the first premise.

Γ,Θ`t/F P c Q,A Γ,Θ`/{} P (strip-guards (− F) c) UNIV,UNIV

Γ,Θ`t/{} P c Q,A

To employ the rules we have to mark the guards according to the result of the
automated tool.
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5.2 Marking Guards

With mark-guards f c we mark all guards in statement c with fault f.

mark-guards :: ′f ⇒ ( ′s, ′p, ′f ) com⇒ ( ′s, ′p, ′f ) com
mark-guards f Skip = Skip
mark-guards f (Basic g) = Basic g
mark-guards f (Spec r) = Spec r
mark-guards f (Seq c1 c2) = Seq (mark-guards f c1) (mark-guards f c2)
mark-guards f (Cond b c1 c2) = Cond b (mark-guards f c1) (mark-guards f c2)
mark-guards f (While b c) =While b (mark-guards f c)
mark-guards f (Call p) = Call p
mark-guards f (DynCom cs) = DynCom (λs. mark-guards f (cs s))
mark-guards f (Guard f ′ g c) = Guard f g (mark-guards f c)
mark-guards f Throw = Throw
mark-guards f (Catch c1 c2) = Catch (mark-guards f c1) (mark-guards f c2)

J Definition 5.3

Semantically, marking guards does not change much. It can only happen that
the marked program causes the new fault instead of the old one.

If Γ` 〈c,s〉 ⇒ t then J Lemma 5.9
∃ t ′. Γ` 〈mark-guards f c,s〉 ⇒ t ′∧

isFault t = isFault t ′∧ (¬ isFault t −→ t ′= t).

Proof. By induction on execution of statement c. �

And similarly in the other direction.

If Γ` 〈mark-guards f c,s〉 ⇒ t then J Lemma 5.10
∃ t ′. Γ` 〈c,s〉 ⇒ t ′∧

isFault t = isFault t ′∧
(t ′= Fault f −→ t ′= t) ∧ (¬ isFault t ′−→ t ′= t).

Proof. By induction on execution of statement mark-guards f c. �

Marking guards has no effect on termination.

Γ`mark-guards f c ↓ s = Γ`c ↓ s J Lemma 5.11

Proof. In each direction by induction on the termination judgement and Lemmas
5.9 and 5.10. �

With these semantic properties of mark-guards it is evident that the following
Hoare rules are valid:

Γ,Θ`/{} P c Q,A

Γ,Θ`/{} P (mark-guards f c) Q,A

Γ,Θ`/{} P (mark-guards f c) Q,A

Γ,Θ`/{} P c Q,A

Γ,Θ`t/{} P c Q,A

Γ,Θ`t/{} P (mark-guards f c) Q,A

Γ,Θ`t/{} P (mark-guards f c) Q,A

Γ,Θ`t/{} P c Q,A
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5.3 Discharging Guards

Now we have all preliminaries to use the results of a program analysis or a software
model checker to discharge some guards. We only have to distinguish between
proven and unproven guards. Hence a Boolean mark is sufficient. The central rule
is the following:

Γ,Θ`/{True} P c ′Q,A Γ,Θ`/{} P c ′′UNIV,UNIV
c = mark-guards False c ′ c ′′= strip-guards {False} c ′

Γ,Θ`/{} P c Q,A
(DG)

Initially we are in a state where we attempt to prove Γ,Θ`/{} P c Q,A. We assume
that all guards in c are marked as False. Note that the actual mark is not important
since we currently work modulo the empty set of faults (/{}), which means that
we have to prove all guards, regardless of their mark. The target statement c ′ is
one that contains the same guards as c, but some may be marked as True. This is
expressed by the equation c = mark-guards False c ′. The first premise of the rule is
the goal where the user continues, when all the other premises are discharged. This
Hoare triple is annotated with /{True} which means that all the guards in c ′ that
are marked with True are considered as granted. The others still have to be proven
by the user. The guards in c ′ that are marked with True have to be discharged by
the second premise. The guards marked with False are stripped. This is expressed
with equation c ′′= strip-guards {False} c ′. The premise Γ,Θ` P c ′′UNIV,UNIV is the
interface to the automatic tool. It describes the result of the program analysis in the
terms of the Hoare logic. It ensures that all the guards in c ′′hold, but nothing more,
since the postcondition is trivial. The guards in c ′′are exactly those guards of c ′ that
are marked with True.

The rule for total correctness is analogous. In this case, again, partial correctness
in the second premise suffices, since termination is handled by the first premise.
This means that we do not require a termination proof from the program analysis.

Γ,Θ`t/{True} P c ′Q,A Γ,Θ`/{} P c ′′UNIV,UNIV
c = mark-guards False c ′ c ′′= strip-guards {False} c ′

Γ,Θ`t/{} P c Q,A

The following example is a bubble sort implementation, with a number of guards
to watch for array bound violations and arithmetic overflows. The list of guards
in front of some statements is syntactic sugar for nested guarded commands. The
default mark is False, which is omitted in the syntax. The current task for the user
is to prove this Hoare triple:

Γ` {|i = |arr| − 1 ∧ |arr| < max-nat|}
WHILE 0 < i
DO j := 0;

WHILE j < i
DO {|j + 1 ≤ max-nat|}, {|j + 1 < |arr||}, {|j < |arr||}
7→ IF arr[j + 1] < arr[j]

THEN {|j < |arr||}7→ temp := arr[j];
{|j < |arr||}, {|j + 1 ≤ max-nat|}, {|j + 1 < |arr||}
7→ arr[j] := arr[j + 1];
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{|j + 1 ≤ max-nat|}, {|j + 1 < |arr||}7→ arr[j + 1] := temp
FI;

{|j + 1 ≤ max-nat|}7→ j := j + 1
OD;
{|1 ≤ i|}7→ i := i − 1

OD
{|∀ j<|arr|. ∀ i<j. arr[i] ≤ arr[j]|}

Now the user invokes the tactic to discharge some guards. The tactic passes the
problem to the software model checker or the program analysis, which manages to
solve some of the guards. The results are translated to the following Hoare triple4:

Γ`/{} {|i = |arr| − 1 ∧ |arr| < max-nat|}
WHILE 0 < i
DO j := 0;

WHILE j < i
DO {|j + 1 ≤ max-nat|}

√
, {|j + 1 < |arr||}

√
, {|j < |arr||}

√

7→ IF arr[j + 1] < arr[j]
THEN {|j < |arr||}

√
7→ temp := arr[j];

arr[j] := arr[j + 1];
{|j + 1 ≤ max-nat|}

√
, {|j + 1 < |arr||}

√

7→ arr[j + 1] := temp
FI;

{|j + 1 ≤ max-nat|}
√
7→ j := j + 1

OD;
{|1 ≤ i|}

√
7→ i := i − 1

OD
UNIV,UNIV

This Hoare triple only contains those guards that the software model checker
could handle. They are marked with

√
which is syntactic sugar for the mark True.

For example, in the THEN branch there are some guards missing compared to the
original statement. The tactic compares this result (c ′′) with the initial statement
(c) and calculates the resulting statement (c ′) and instantiates the DG
Rule. The second side-condition is solved by the result of the software model
checker and the other side-conditions by rewriting. All these steps are performed
automatically. The next goal the user has to deal with stems from the first premise
of the DG Rule:

Γ`/{True} {|i = |arr| − 1 ∧ |arr| < max-nat|}
WHILE 0 < i
DO j := 0;

WHILE j < i
DO {|j + 1 ≤ max-nat|}

√
, {|j + 1 < |arr||}

√
, {|j < |arr||}

√

7→ IF arr[j + 1] < arr[j]
THEN {|j < |arr||}

√
7→ temp := arr[j];

{|j < |arr||}, {|j + 1 ≤ max-nat|}, {|j + 1 < |arr||}
7→ arr[j] := arr[j + 1];
{|j + 1 ≤ max-nat|}

√
, {|j + 1 < |arr||}

√

4The guards that are proven are arbitrarily chosen by me for this example. They do not reflect the
current implementation of any software model checker or program analysis.
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7→ arr[j + 1] := temp
FI;

{|j + 1 ≤ max-nat|}
√
7→ j := j + 1

OD;
{|1 ≤ i|}

√
7→ i := i − 1

OD
{|∀ j<|arr|. ∀ i<j. arr[i] ≤ arr[j]|}

The mode has switched to /{True} and the guards that were proven by the
software model checker are ticked off, whereas the other guards are still marked
with False. Now the user can continue by calling the verification condition generator.
When the verification condition generator passes a ticked off guard it can either
completely ignore it or use it as an assumption:

P ⊆ R
Γ,Θ`/F R c Q,A f ∈ F

Γ,Θ`/F P (Guard f g c) Q,A

P ⊆ {s. s ∈ g −→ s ∈ R}
Γ,Θ`/F R c Q,A f ∈ F

Γ,Θ`/F P (Guard f g c) Q,A

By providing two syntactic variants for a ticked off guard the user can even
specify the behaviour individually for each guard.

5.4 Adding Guards

The approach described so far is used to discharge guards that are already present
in the original program. Those guards protect the program from runtime faults.
However, program analysis may also be able to derive program properties beyond
this class that can be used to verify (parts of) functional correctness. The idea is
that the program analysis puts this information to additional guards in the program.
Once these guards are added they can be discharged by the techniques described so
far. The only missing piece is how to add guards to the program. We introduce the
relation c1 ⊆g c2 that expresses that statement c2 has more guards than c1. Ignoring
all guards, both c1 and c2 share the same skeleton.

Skip ⊆g Skip = True
Basic f 1 ⊆g Basic f 2 = f 1 = f 2
Spec r1 ⊆g Spec r2 = r1 = r2
Seq c1 d1 ⊆g Seq c2 d2 = (c1 ⊆g c2) ∧ (d1 ⊆g d2)
Cond b1 c1 d1 ⊆g Cond b2 c2 d2 = b1 = b2 ∧ (c1 ⊆g c2) ∧ (d1 ⊆g d2)
While b1 c1 ⊆g While b2 c2 = b1 = b2 ∧ (c1 ⊆g c2)
Call p1 ⊆g Call p2 = p1 = p2
DynCom c1 ⊆g DynCom c2 = ∀s. c1 s ⊆g c2 s
Guard f 1 g1 c1 ⊆g Guard f 2 g2 c2 = f 1 = f 2 ∧ g1 = g2 ∧ (c1 ⊆g c2) ∨

(Guard f 1 g1 c1 ⊆g c2)
c1 ⊆ g Guard f g c2 = c1 ⊆ g c2
Throw ⊆g Throw = True
Catch c1 d1 ⊆g Catch c2 d2 = (c1 ⊆g c2) ∧ (d1 ⊆g d2)
- ⊆g - = False

Definition 5.4 I

A statement with more guards is more likely to cause a runtime fault. If it
does not cause a runtime fault it yields the same result as the statement with fewer
guards:
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If c ⊆g c ′ and Γ` 〈c,s〉 ⇒ t then J Lemma 5.12

∃ t ′. Γ` 〈c ′,s〉 ⇒ t ′∧ (isFault t −→ isFault t ′) ∧ (¬ isFault t ′−→ t ′= t).

Proof. By induction on c ′ and in case of the while loop a nested induction on the
execution of c ′. �

If a statement with more guards terminates and does not cause a runtime fault,
then the statement with fewer guards terminates, too.

If Γ`c ′ ↓ s and c ⊆g c ′ and Γ` 〈c ′,s〉 ⇒<Fault ‘ UNIV then Γ`c ↓ s. J Lemma 5.13

Proof. By induction on c ′ and Lemma 5.12. In case of the while loop we use a nested
induction on the termination of c ′. �

These two lemmas justify the following Hoare rules. They allow us to introduce
more guards to the statement.

c ⊆g c ′ Γ,Θ`/{} P c ′Q,A

Γ,Θ`/{} P c Q,A

c ⊆g c ′ Γ,Θ`t/{} P c ′Q,A

Γ,Θ`t/{} P c Q,A

We can first use these rules to attach the results of a program analysis to the
statement. Then we continue as described in the previous section to discharge these
guards.

5.5 Conclusion

In this chapter I have presented an approach to integrate program analysis or soft-
ware model checking into the process of functional verification within a Hoare logic
based environment. The main characteristic of this approach is that it is declarative
and modular. We do not have to instrument the verification condition generator to
call the program analysis at certain program points. Instead, the program analysis
can run before the verification condition generator and its result is clearly captured
in a Hoare triple. This Hoare triple is then used to annotate the program with guards
that can be taken as granted for the verification. Currently we have integrated a
software model checker called ACSAR5 and a termination analysis [94, 95, 24] in
this fashion [26]. In the current state the software model checker discharges guards
about arithmetic overflows and array bound checks. For instance, it is able to dis-
charge all the guards in the bubble sort algorithm that was presented in this chapter.
Currently the model checker is extended to handle null pointer checks.

Right now the tools do not produce any proof that can be checked by Isabelle.
They are treated as trusted oracles. However, program analysis can be instrumented
to produce a Hoare proof. This is proposed by Seo et al. [105] and independently by
Chaieb [22] and implemented by Dehne [27] for an interval analysis. With such a
proof we can close the gap and seamlessly integrate the program analysis into the
verification environment without introducing any soundness issues.

I am not aware of any other work to integrate program analysis or software
model checking in a Hoare logic based framework. However, a similar approach is

5See also the ACSAR Home page for more information http://www.mpi-sb.mpg.de/˜seghir/ACSAR/
ACSAR-web-page.html

http://www.mpi-sb.mpg.de/~seghir/ACSAR/ACSAR-web-page.html
http://www.mpi-sb.mpg.de/~seghir/ACSAR/ACSAR-web-page.html
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followed by Wildmoser et al. [117] in the context of a proof carrying code framework,
but on the level of byte-code.

The approach followed in context of the Why [33] tool is complementary to the
one presented in this chapter. The Why tool can generate verification conditions
for several theorem provers, among them, the automatic theorem prover Simplify6

[75] and the interactive theorem prover Coq [14]. In some cases the verification
condition can already be proven by Simplify, otherwise it has to be proven in Coq.
In our setting a similar effect could be achieved by integrating Simplify as an oracle in
Isabelle that is invoked on the verification condition. Such an integration is similar to
the work on the connection of Isabelle to automatic first order theorem provers [69],
SAT solvers [113] and arithmetic decision procedures [11]. In contrast the approach
in this chapter integrates the results of the program analysis or software model
checker before the verification condition generator is invoked. We do not expect
the automatic tool to solve the complete verification condition, but can exploit the
assertions it returns already during verification condition generation and also in the
following interactive verification.

6See the Simplify home page: http://research.compaq.com/SRC/esc/Simplify.html

http://research.compaq.com/SRC/esc/Simplify.html
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Compositionality

In this Chapter, we examine how building and reusing verified libraries about
imperative programs can be supported in the verification environment. The goal
is to enable building verified libraries independent of each other and to supply
means to combine these components to a program.

Contents
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The state space of a Simpl program is modelled as a record. It depends on the
program variables and the data structures that are stored in the heap. The type of
the state space also affects the type of every Simpl statement: ( ′s, ′p, ′f ) com. The
′s is instantiated with the state space type. Hence every Hoare triple is restricted
to the state space type it was declared with. If the complete program is known,
the state space can be fixed in advance, before the verification starts. Moreover
the style of specifications that we have introduced in Sections 4.4 and 4.6 is robust
with respect to extensions of the state space. The functional specifications and even
the modifies-clause, only refer to the relevant parts of the state space in particular
the heap. This means that after extending the state space all the specifications and
proofs still work. However, we have to rerun the session.

6.1 Exploiting Structural Subtyping

We can avoid rerunning the session by exploiting the extensibility of records in
Isabelle/HOL [74, 80]. Every record has an additional field “. . .” of a polymorphic
type. For example:

record one =
N :: nat

The record-type that is created has two fields (|N :: nat, . . . :: ′a|). This type is called
′a one-scheme. Type one is an abbreviation for (|N :: nat, . . . :: unit|) or unit one-scheme,
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where ′a is instantiated with the unit type. By instantiating ′a with other types the
record can be extended.

record two = one +
M :: nat

This definition creates an extension type (|M :: nat, . . . :: ′a|) that contains the
fields M :: nat and a new extension slot . . . :: ′a. By inserting (|M :: nat, . . . :: ′a|) in ′a
one-scheme we get (|M :: nat, . . . :: ′a|) one-scheme. This is (|N :: nat, M :: nat, . . . :: ′a|).
Hence we have extended record one with the new fields of record two. The crucial
point in this construction is, that record two is just an instance of record one. So every
property that has been proven about a record with type ′a one-scheme is also valid
if we instantiate ′a so that the resulting record is a two record. Linear extensions of
records are possible with this kind of structural subtyping.

We can employ this kind of subtyping in the design of our state space. First,
all the global components are grouped together in a single field. This allows us to
generically copy all global components as in the return from a procedure. We have
the following scheme for the state space:

record ′g state =
globals :: ′g
. . . <local variables> . . .

record globals =
. . . <global variables + heap> . . .

As both the global components and the state are defined as record, they are both
extensible. The globals component of record state is polymorphic, so that it works
with any extension of record globals. With this setup we can achieve that global
variables, heap as well as local variables can be extended. For example, we can start
with a library of heap-lists and then extend it with heap-trees etc. The main benefit
of this kind of compositionality is that it is for free. Mere type instantiation lifts
the propositions to the extended state space. The drawback are the limitations of
structural subtyping. We can only extend the state space in a linear fashion. We can
start with the library for heap-lists and continue with heap-trees, or vice versa, but
we cannot develop both theories independently in their minimal state space and
then merge them. The only way to achieve this is to merge the state space in advance
and then rerun the whole session. Moreover, we cannot reuse the same library in
two instances. For example, a program may contain several data structures that are
linked together as a list, like strings or queues. It would be nice if we could reuse
the same verified list-reversal procedure for both instances. We are aiming at this
kind of compositionality in the remainder of this chapter. We develop a framework
that allows to lift a Hoare triple defined for a fixed state space into a Hoare triple for
a bigger state space. Bigger means that the original state space can be embedded
into the new one. We can project the original state out of a state from the bigger
state space.

6.2 Lifting Hoare Triples

The relation between the original state space ′s and the bigger one ′S can be described
by two functions:

project :: ′S⇒ ′s
inject :: ′S⇒ ′s⇒ ′S
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Intuitively the original state space is a part of the bigger state space. With project
S we can obtain the embedded original state space from S, and with inject S s we can
replace the embedded original state in S by s. The functions project and inject are
parameters of our framework that appear in the following definitions and theorems.
We do not give any definitions for project and inject yet, but specify their expected
behaviour axiomatically. Such common parameters and their specifications can be
grouped together in Isabelle in a so called locale [10]. This allows us to develop the
rest of the theory under these common assumptions. If we later on attempt to use
the theory for a concrete example, we only have to instantiate the functions project
and inject according to our needs and prove their specifications. All the theorems
of the general theory are then automatically instantiated to the current application.
The locale we define is named lift-state-space. To highlight which definitions and
theorems depend on this locale they are marked with (in lift-state-space).

locale lift-state-space = J Definition 6.1
fixes

project :: ′S⇒ ′s
inject :: ′S⇒ ′s⇒ ′S

assumes

(1) Projection and injection commutes:
project (inject S s) = s

(2) Injection and projection commutes:
inject S (project S) = S

(3) Only the last injection matters:
inject (inject S s) t = inject S t

With the functions project and inject as basic building blocks we can define what
it means to lift a command from one state space to another. We start with lifting of
functions as they appear in the Basic command. The lifted function takes a state S of
the new state space, applies the original function f to the projection of S and injects
the result into S.

lift f :: ( ′s⇒ ′s)⇒ ( ′S⇒ ′S)
lift f f ≡ λS. inject S (f (project S))

J Definition 6.2
(in lift-state-space)

Next, we lift state sets as they appear in the conditions of statements Cond and
While or in assertions. A state belongs to the lifted set if the projected state belongs
to the original set.

lifts :: ′s set⇒ ′S set
lifts A ≡ {S. project S ∈ A}

J Definition 6.3
(in lift-state-space)

The Spec command specifies the possible next state as a relation. Hence we need
to lift relations, too.

liftr :: ( ′s × ′s) set⇒ ( ′S × ′S) set
liftr r ≡ {(S, T). (project S, project T) ∈ r ∧ T = inject S (project T)}

J Definition 6.4
(in lift-state-space)
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A pair of states belongs to the lifted relation if the projections of the states belong
to the original relation. This is the first part of the conjunction. The additional
equation T = inject S (project T) expresses that the “rest” of T is the same as S. In
the Spec command the pair (S, T) describes a potential state transition from state
S to state T. The effect of the embedded original state space is described by the
relation r. The remaining parts of the lifted state space have to stay the same. This
restriction is necessary to lift frame conditions or modifies-clauses (cf. Section 4.6).
The original frame condition only expresses which parts of the projected state space
stay the same. To enforce that the additional parts also remain unchanged we need
this restriction.

Now we have all the ingredients to lift a command:

liftc :: ( ′s, ′p, ′f ) com⇒ ( ′S, ′p, ′f ) com
liftc Skip = Skip
liftc (Basic f ) = Basic (lift f f )
liftc (Spec r) = Spec (liftr r)
liftc (Seq c1 c2) = Seq (liftc c1) (liftc c2)
liftc (Cond b c1 c2) = Cond (lifts b) (liftc c1) (liftc c2)
liftc (While b c) =While (lifts b) (liftc c)
liftc (Call p) = Call p
liftc (DynCom cs) = DynCom (λs. liftc (cs (project s)))
liftc (Guard f g c) = Guard f (lifts g) (liftc c)
liftc Throw = Throw
liftc (Catch c1 c2) = Catch (liftc c1) (liftc c2)

Definition 6.5
(in lift-state-space)

I

Function lifte is used to lift the procedure environment:

lifte :: ( ′p⇀ ( ′s, ′p, ′f ) com)⇒ ( ′p⇀ ( ′S, ′p, ′f ) com)
lifte Γ p ≡ case Γ p of None⇒ None | bbdyc ⇒ bliftc bdyc

Definition 6.6
(in lift-state-space)

I

Moreover, we define a state projection projectx for extended states:

projectx :: ( ′S, ′f ) xstate⇒ ( ′s, ′f ) xstate
projectx s ≡
case s of Normal s⇒ Normal (project s) | Abrupt s⇒ Abrupt (project s)
| Fault f ⇒ Fault f | Stuck⇒ Stuck

Definition 6.7
(in lift-state-space)

I

The original state space is embedded in the lifted state space. Hence an execution
of the lifted program somehow contains the execution of the original program. This
is proven in the following theorem:

If lifte Γ` 〈liftc c,S〉 ⇒ T then Γ` 〈c,projectx S〉 ⇒ projectx T.Theorem 6.1
(in lift-state-space)

Simulation

I

Proof. By induction on the execution of the lifted statement. �

Theorem 6.1 is the key to lift partial correctness properties.

If Γ|=/F P c Q,A then lifte Γ|=/F (lifts P) (liftc c) (lifts Q),(lifts A).Theorem 6.2
(in lift-state-space) Lift

partial correctness

I

Proof. According to Definition 3.2 of validity we have to consider an execution
lifte Γ` 〈liftc c,Normal S〉 ⇒ T of the lifted program, where S ∈ lifts P and T < Fault ‘ F.
We have to show T ∈ Normal ‘ lifts Q ∪ Abrupt ‘ lifts A. From the simulation
Theorem 6.1 we get Γ` 〈c,projectx (Normal S)〉 ⇒ projectx T, and as S satisfies the
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lifted precondition we also have project S ∈ P. Since we know the validity of
Γ|=/F P c Q,A, we know that the projected final state satisfies the postcondition:
projectx T ∈ Normal ‘ Q ∪ Abrupt ‘ A. With Definitions 6.3 and 6.7 this is lifted to
T ∈ Normal ‘ lifts Q ∪ Abrupt ‘ lifts A. �

With the soundness and completeness Theorems 3.8 and 3.12 this result can be
converted into a Hoare rule:

Γ`/F P c Q,A

lifte Γ`/F (lifts P) (liftc c) (lifts Q),(lifts A)
(L)

To lift total correctness properties we also have to lift termination.

If Γ`c ↓ projectx S then lifte Γ`liftc c ↓ S. J Theorem 6.3
(in lift-state-space)
Lift terminationProof. By induction on the termination of c and Theorem 6.1. �

Together with Theorem 6.2 we can now lift total correctness properties.

If Γ|=t/F P c Q,A then lifte Γ|=t/F (lifts P) (liftc c) (lifts Q),(lifts A). J Theorem 6.4
(in lift-state-space)
Lift total correctnessWith the soundness and completeness Theorems 3.15 and 3.28 this result can be

converted to a Hoare rule:

Γ`t/F P c Q,A

lifte Γ`t/F (lifts P) (liftc c) (lifts Q),(lifts A)
(L)

There is a subtle effect on the properties we can lift, which stems from the
definition of lifts. A lifted assertion only describes a property of the embedded
original state. For “usual” assertions this is exactly what we want to achieve, but
for frame conditions we want more. A frame condition is a property of the whole
state space not only of some part that is changed by the program. Those parts of
the lifted state that are not part of the embedded state remain unchanged during
execution. We want to include this information to the frame condition as we lift it.

The function state takes an extended state and yields the raw state in case it is
Normal or Abrupt.

state :: ( ′s, ′f ) xstate⇒ ′s
state (Normal s) = s
state (Abrupt s) = s

J Definition 6.8

The following lemma expresses that during the execution of a lifted statement
only the embedded state changes. We exclude Fault and Stuck final states, since only
Abrupt or Normal states have a sensible raw state that is obtained by function state.
Moreover, Fault and Stuck final states are already covered by Theorem 6.1.

If lifte Γ` 〈liftc c,S〉 ⇒ T and T < Fault ‘ UNIV ∪ {Stuck} then J Lemma 6.5
(in lift-state-space)state T = inject (state S) (project (state T)).

Proof. By induction on the execution of the lifted statement. �

With this lemma we can properly lift frame conditions. The first conjunct in
the following postconditions takes care of the embedded state, whereas the second
conjunct takes care of the additional parts.
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If ∀s. Γ|=/F {s} c (Modif s),(ModifAbr s) thenTheorem 6.6
(in lift-state-space)

Lift frame condition

I

lifte Γ|=/F
{S} (liftc c)
{T. T ∈ lifts (Modif (project S)) ∧ T = inject S (project T)},
{T. T ∈ lifts (ModifAbr (project S)) ∧ T = inject S (project T)}.

Proof. Analogous to Theorem 6.2 using Lemma 6.5. �

The rules we have introduced allow all kinds of manipulations on programs,
like renaming of variables or heap components or merging two libraries. To merge
two libraries that are defined for different state spaces we first have to define a
new state space that is capable of storing all the components of the libraries state
spaces. Then we define the project and inject functions for both libraries. Note that
the requirements of locale lift-state-space on the project and inject functions allow us
to share parts of the state between the two libraries. This can be used to merge
two libraries about heap lists, for example. However, right now we cannot rename
procedures. This is necessary if we want to reuse a procedure twice for different
data structures. For example, a list library may be used to implement strings as well
as queues. To provide this possibility we introduce the function rename to rename
the procedure calls in a statement according to a name mapping N.

rename :: ( ′p⇒ ′q)⇒ ( ′s, ′p, ′f ) com⇒ ( ′s, ′q, ′f ) com
rename N Skip = Skip
rename N (Basic f ) = Basic f
rename N (Spec r) = Spec r
rename N (Seq c1 c2) = Seq (rename N c1) (rename N c2)
rename N (Cond b c1 c2) = Cond b (rename N c1) (rename N c2)
rename N (While b c) =While b (rename N c)
rename N (Call p) = Call (N p)
rename N (DynCom cs) = DynCom (λs. rename N (cs s))
rename N (Guard f g c) = Guard f g (rename N c)
rename N Throw = Throw
rename N (Catch c1 c2) = Catch (rename N c1) (rename N c2)

Definition 6.9
(in lift-state-space)

I

We also have to rename the procedure environment Γ. We require that all defined
procedures are stored in Γ ′ at the renamed position:

∀p bdy. Γ p = bbdyc −→ Γ ′ (N p) = brename N bdyc

We make no assumptions about the undefined procedures in Γ. The new envi-
ronment Γ ′ can define more procedures as Γ. It can happen that renaming defines a
previously undefined procedure. Then the execution of the original program may
end up in a Stuck state, whereas the renamed program might not. Since the Hoare
logic excludes Stuck final states anyway this special case imposes no problems.

If ∀p bdy. Γ p = bbdyc −→ Γ ′ (N p) = brename N bdyc and Γ ′` 〈rename N c,s〉 ⇒ t thenTheorem 6.7 I
∃ t ′. Γ` 〈c,s〉 ⇒ t ′∧ (t ′= Stuck ∨ t ′= t).

Proof. By induction on the execution of the renamed program. �

If ∀p bdy. Γ p = bbdyc −→ Γ ′ (N p) = brename N bdyc and Γ|=/F P c Q,A thenTheorem 6.8 I

Γ ′|=/F P (rename N c) Q,A.
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Proof. By Theorem 6.7 and Definition 3.2. �

To transfer termination to the renamed program we also have to exclude Stuck
final states.

If ∀p bdy. Γ p= bbdyc −→ Γ ′ (N p)= brename N bdyc and Γ`c ↓ s and Γ` 〈c,s〉⇒<{Stuck} J Theorem 6.9
then Γ ′`rename N c ↓ s

Proof. By induction on the termination of c and Theorem 6.7. �

Hence we can also transfer total correctness properties.

If ∀p bdy. Γ p = bbdyc −→ Γ ′ (N p) = brename N bdyc and Γ|=t/F P c Q,A then J Theorem 6.10

Γ ′|=t/F P (rename N c) Q,A.

Proof. By Theorems 6.8 and 6.9 and Definition 3.8. �

6.3 Example

As an example, we lift a general list reversal procedure to work with both strings
and queues. We begin with the definition of the library that contains the list reversal
procedure. The next heap is the only global component. The local variables are p, q
and r.

record state-list =
globals :: globals-list
p :: ref
q :: ref
r :: ref

record globals-list =
next :: ref ⇒ ref

We define the list reversal procedure in this state space.

procedures Rev (p|q) =
q := NULL;
WHILE p , NULL
DO r := p; {|p , NULL|}7→ p := p→next;
{|r , NULL|}7→ r→next := q; q := r

OD

As described in Section 4.4 this definition creates a constant Rev-body for the
body of the procedure and a locale Rev-impl which holds the single assumption:
Γ ”Rev” = bRev-bodyc. When we prove the specification and the frame condition for
the list reversal these theorems are under the assumptions of locale Rev-impl. This
means that they hold for any procedure environment Γ for which the list reversal is
defined, in particular for the minimal environment Γ = [”Rev” 7→ Rev-body]. Here is
the specifiction of Rev:

∀Ps. Γ` {|List p next Ps|} q := PROC Rev(p) {|List q next (rev Ps)|} J Lemma 6.11
(in Rev-impl)

And here the frame condition.
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∀σ. Γ`/UNIV {σ} q := PROC Rev(p) {t. t may-only-modify-globals σ in [next]}Lemma 6.12
(in Rev-impl)

I

Next we define the extended state space. We want to import the list reversal
twice, for strings and for queues.

struct string {

char chr;

struct string* strnext;

}

struct queue {

int cont;

struct queue* qnext;

}

The layout of the new state space is the following:

record state =
globals :: globals
str :: ref
queue :: ref
q :: ref
r :: ref

record globals =
chr :: ref ⇒ char
strnext :: ref ⇒ ref

cont :: ref ⇒ int
qnext :: ref ⇒ ref

For strings we map the heap strnext to next and for queues the heap qnext.
Similarly, the local variable str is mapped to p for strings and queue is mapped
to p for queues. For q and r we share the local variables. To make use of our
framework we have to define the project and inject functions. We start with strings.
The projection function takes a state S of type state and yields the embedded state
of type state-list.

project-globals-str:: globals⇒ globals-list
project-globals-str G ≡ (|next = strnext G|)

project-str:: state⇒ state-list
project-str S ≡
(|state-list.globals = project-globals-str (globals S),
state-list.p = str S, state-list.q = q S, state-list.r = r S|)

The injection function takes a state S of type state and updates it according to the
components in state s of type state-list.

inject-globals-str:: globals⇒ globals-list⇒ globals
inject-globals-str G g ≡ G(|strnext := next g|)

inject-str:: state⇒ state-list⇒ state
inject-str S s ≡
S(|globals := inject-globals-str (globals S) (globals-list.globals s),

str := state-list.p s, q := state-list.q s,r := state-list.r s|)

For these definitions the assumption of locale lift-state-space (cf. Definition 6.1)
hold, which is proven automatically by Isabelle’s simplifier. Hence we can use the
lifting rule from Theorem 6.2. We lift the specification of the list reversal for the
minimal procedure environment.

∀Ps. lifte [”Rev” 7→ Rev-body]` {|List str strnext Ps|} Call ”Rev” {|List q strnext (rev Ps)|}Lemma 6.13 I

Now we also rename the procedure to RevStr. We define the name mappingN :
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N :: string⇒ string
N p ≡ if p = ”Rev” then ”RevStr” else ””

Then we define the new procedure as lifted version of Rev:

procedures RevStr(str|q) = renameN (liftc Rev-body)

For the procedure environment Γ in locale RevStr-impl we can prove the premise
of Theorem 6.8. All procedures defined in the lifted minimal environment are also
defined in Γ:

∀p bdy. lifte [”Rev” 7→ Rev-body] p = bbdyc −→ Γ (N p) = brenameN bdyc J Lemma 6.14
(in RevStr-impl)

Hence we can finally lift Lemma 6.13 to the new environment.

∀Ps. Γ` {|List str strnext Ps|} q := PROC RevStr(str) {|List q strnext (rev Ps)|} J Lemma 6.15
(in RevStr-impl)

Analogously we lift the frame condition with the rule derived from Theorem 6.6.

∀σ. Γ`/UNIV {σ} q := PROC RevStr(str) {t. t may-only-modify-globals σ in [strnext]} J Lemma 6.16
(in RevStr-impl)

For the queue we can do exactly the same. We define the projection and injection
functions from the queue components to the state space of the generic list reversal
library and define a proper renaming function.

For the list reversal the only relevant heap component is the next pointer. The
other fields like chr or cont are not necessary to lift the list reversal procedure.
Hence every data-structure that somehow is a linked list can import the list reversal
procedure, regardless of any additional component. An interesting question is how
generic libraries can become if they also refer to the content of the list, for example, if
we want to sort the list according to its content. We can use the type polymorphism
of HOL in order to define the content generically. We assume that there is a field
content of type ′a. Then we can specify the procedure generically with respect to
an ordering on type ′a that is also a parameter of the specification. To instantiate
the library we have to map the actual content to the generic content field. In our
example this is chr for the strings or cont for the queues. If the content contains
more than one field, this is also no problem. We can simply map the tuple of all the
fields to ′a. The project and inject functions can deal with this more general kind of
embedding.

6.4 Conclusion

The presented framework provides a flexible foundation for the construction of
verified libraries. It allows to build modules independently of each other and merge
them into a program. The lifting of Hoare triples and the renaming of procedures
works schematically and can thus be automated. Although the work was motivated
by the state space representation as a record the theory is independent of this specific
model and can hence be used in other set-ups as well.

The approach is independent of the restrictions of the embedded programming
language. For example in C there is no notion of genericity, at least no type-safe
one. Nevertheless, it is possible to develop and verify a generic list theory in the
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verification environment. Every instance of a list that appears in a given C program
can then be derived from this generic list theory. This relieves the user from copying
and reproving several instances of the same algorithms and data structures. This
scenario actually appeared in the Verisoft Project.

Moreover, it seems promising to integrate this work with the refinement frame-
work of Tuch and Klein [109]. They start with an abstract view of the system and
prove the crucial properties on this level. The system is defined semantically as an
abstract data type that consists of a set of initial states and a set of operations that
specify possible state transitions of the system. Then they refine the model until a
C implementation is reached. The meta theory of data refinement ensures that the
properties for the abstract system are preserved by the refinement step, as long as
each of the operations is implemented correctly. As the C level is reached the Hoare
logic is used to prove the correctness of the individual operations. Furthermore, as
Simpl provides the Spec command to specify a command, rather than to implement
it, Simpl programs themselves can be refined. The framework of this chapter can
be used to simplify the integration of various abstract data types into a complete
system.
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The C0 Language

This chapter introduces C0, a type-safe subset of the C programming language.
The abstract syntax and the semantics of C0 is defined and a type system and a
definite assignment analysis is developed. Type soundness theorems relate these
static semantics to execution. In the following chapter, C0 is embedded into
Simpl. Properties of C0 programs can be proven in the verification environment
for Simpl.
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C0 is a subset of the C programming language [57]. In this chapter, we develop
a formal model of the C0 language and in the following chapter, we embed it into
Simpl in order to employ the verification environment to derive program properties.
We prove the soundness of this embedding. This means that the program properties
proven in the verification environment are also valid in the C0 model.
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The C0 programming language is used throughout the Verisoft project aiming
at the pervasive verification of computer systems comprising hard and software. A
complete system stack is developed and verified, containing a processor, a micro
kernel, a simple operating system (including a TCP/IP stack) and a distributed
application and a C0 compiler to the processor. C0 is used throughout all the
software layers. To cover all abstraction levels various models of C0 were developed.
The most abstract one is a big-step semantics. To reason about concurrency also a
small-step semantics was developed. Moreover there is a variant of the C0 small-
step semantics that allows to include in-line assembler instructions. This is necessary
to describe parts of the micro kernel. The embedding of C0 into Simpl provides
an even more abstract layer on top of the big-step semantics. To achieve high
productivity due to a high level of abstraction, the goal is to cover as much of the
system verification on the Simpl level as possible. However, since not all parts (like
the in-line assembler code) are covered by the Simpl level we need a way to transfer
the properties proven on the abstract level to the more concrete one. The soundness
proof in the next chapter is one of those transformation steps. Another one is a
simulation theorem of the C0 small-step semantics within the C0 big-step semantics.
The key differences between the C0 big-step semantics and Simpl are:

• a monolithic heap in C0 versus a split heap model in Simpl and

• a deep embedding of expressions in C0 versus shallow embedding in Simpl.

This comparison reflects the different purposes of the language models. The C0
semantics is used to verify properties of the programming language, like type sound-
ness or compiler correctness, whereas Simpl aims at the verification of individual
programs.

The main motivation of C0 was to identify a subset of C that is easy to verify but
can still be compiled by an ordinary C compiler. That way one can use the standard
C infrastructure to develop the programs. All aspects of C that might complicate
verification and which can be avoided in the implementation work within Verisoft
are omitted. The main features of C that were dropped are:

• gotos,

• abrupt termination (break, continue or return),

• side-effects in expressions,

• pointer arithmetic,

• unions and

• pointer casts.

So in the end C0 is semantically more like Pascal, but with C syntax. For some
examples I use C syntax, since the corresponding C0 (abstract) syntax is less readable.
The C0 model I present builds on the work of Martin Strecker for the Verisoft project.
The main aspect I added is the definite assignment analysis (cf. Section 7.2.7) and on
top of it the refined notion of state conformance and type safety (cf. Section 7.2.9).
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7.1 Abstract Syntax

7.1.1 Names
To improve readability we introduce four (HOL) types for C0 identifiers: tname
(type names), vname (variable names), fname (field names) and pname (procedure
names). All these names are synonyms for string.

7.1.2 Types
C0 is a typed language.

C0 types are defined as a recursive datatype ty with the following constructors: J Definition 7.1
C0 types

• Boolean,

• Integer for signed integers,

• UnsgndT for unsigned intergers,

• CharT ,

• Ptr tn, where tn :: tname,

• NullT,

• Arr n T, where n :: nat, T :: ty, and

• Struct fs, where fs :: (fname × ty) list.

In C0 the size of an array is already statically fixed by its type. The amount of
memory occupied for each value of a certain type is determined by the function
sizeof-type:

sizeof-type :: ty⇒ nat
sizeof-type Boolean = 1
sizeof-type Integer = 1
sizeof-type UnsgndT = 1
sizeof-type CharT = 1
sizeof-type (Ptr tn) = 1
sizeof-type NullT = 1
sizeof-type (Arr n T) = n ∗ sizeof-type T
sizeof-type (Struct fTs) = foldl (+) 0 (map sizeof-type (map snd fTs))

J Definition 7.2
sizeof-type

All types, except for structures and arrays are regarded as primitive types.

primitive-type :: ty⇒ bool
prim-type T ≡ case T of Struct fs⇒ False | Arr n T⇒ False | -⇒ True

J Definition 7.3
prim-type

The numeric types are Integer, UnsgndT and CharT.

numeric-type :: ty⇒ bool
numeric-type T ≡ T ∈ {Integer, UnsgndT, CharT}

J Definition 7.4
numeric-type



122 Chapter 7 — The C0 Language

7.1.3 Values
Primitive C0 values of (HOL) type prim can be:Definition 7.5

C0 primitive values
I

• a Boolean Bool b, where b :: bool,

• a (signed) integer Intg i, where i :: int,

• an unsigned integer Unsgnd n, where n :: nat,

• a character Chr c, where c :: int,

• a reference Addr a, where a :: loc (cf. Definition 7.8), or

• the null reference Null.

C0 values of (HOL) type val can be:Definition 7.6
C0 values

I

• primitive values Prim p, where p :: prim,

• arrays Arrv vs, where vs :: val list, or

• structures Structv fs, where fs :: (fname × val) list.

We also define a set of destructors the-. . . :

the-Prim (Prim v) = v
the-Bool (Bool b) = b
the-Boolv (Prim (Bool b)) = b
the-Intg (Intg i) = i
the-Intgv (Prim (Intg i)) = i
the-Unsgnd (Unsgnd n) = n
the-Unsgndv (Prim (Unsgnd n)) = n
the-Chr (Chr c) = c
the-Chrv (Prim (Chr c)) = c
the-Addr (Addr a) = a
the-Addrv (Prim (Addr a)) = a
the-Structv (Structv fs) = fs
the-Arrv (Arrv vs) = vs

Definition 7.7
Value destructors

I

The address model for the C0 big-step semantics is rather abstract. No assump-
tions about data-alignment or consecutive addresses are made. One location can
store any kind of value, even structured ones. This is quite similar to references in
Simpl as introduced in Section 2.4.9. For a convenient translation of C0-addresses
to Simpl we identify the type loc of locations with the non NULL references ref by
an Isabelle type definition:

typedef loc = {r. r , NULL}Definition 7.8
Locations

I

Since there is no extra layer of values in Simpl, NULL is an ordinary element of
type ref, whereas in C0 Null is an extra constructor of values. The definition of type
loc allows us to map value Null to reference NULL since it can not be occupied by
a C0 address. The functions Ref and the-Ref convert between ref and val. They use
the functions Abs-loc and Rep-loc that are generated by the type definition facility of
Isabelle to convert between ref and loc.
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Ref :: ref ⇒ val
Ref r ≡ if r = NULL then Prim Null else Prim (Addr (Abs-loc r))

J Definition 7.9

the-Ref :: val⇒ ref
the-Ref (Prim Null) = NULL
the-Ref (Prim (Addr l)) = Rep-loc l

J Definition 7.10

Heap memory in C0 is initialised upon allocation. The auxiliary function
default-val yields the default value for every C0 type. Most importantly, every
pointer is initialised with Null. Hence C0 avoids the issue of dangling pointers since
it does not support deallocation of memory by the program. It is supposed to run
with a garbage collector.

default-val :: ty⇒ val
default-val Boolean = Prim (Bool False)
default-val Integer = Prim (Intg 0)
default-val UnsgndT = Prim (Unsgnd 0)
default-val CharT = Prim (Chr 0)
default-val (Ptr tn) = Prim Null
default-val NullT = Prim Null
default-val (Arr n T) = Arrv (replicate n (default-val T))
default-val (Struct fs) = Structv (map (λ(n, T). (n, default-val T)) fs)

J Definition 7.11
default-val

7.1.4 Expressions
Every expression carries a polymorphic tag ′a that is supposed to store the type
of the expression. Initially a C0 expression only carries a dummy tag (). A type
elaboration phase annotates the (sub-)expressions with their types. For the purpose
of this work we are only concerned with type annotated expressions. In the sequel
we therefore use variable T for these type tags.

C0 supports the following expressions of (HOL) datatype ′a expr: J Definition 7.12
C0 expressions

• literal values Lit v T, where v :: val,

• variable access VarAcc vn T, where vn :: vname,

• array access ArrAcc e i T of array e with index i where e, i :: ′a expr,

• structure access StructAcc e n T of structure e with field n where e :: ′a expr and
n :: fname,

• dereferencing Deref e T, where e :: ′a expr,

• unary operations UnOp uop e T, where uop :: unop and e :: ′a expr. Type unop
comprises the following alternatives: unary-minus, bitwise-neg, logical-not and
the casts to-int, to-unsigned-int and to-char,

• binary operations BinOp bop e1 e2 T, where bop :: binop and e1, e2 :: ′a expr. Type
binop comprises the following alternatives: plus, minus, times, divide, bitwise-or,
bitwise-and, bitwise-xor, shiftleft, shiftright, greater, less, equal, greaterequal, lesse-
qual or notequal, and
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• lazy binary operations LazyBinOp bop e1 e2 T, where bop :: lazybinop and
e1, e2 :: ′a expr. A lazybinop can either be logical-and or logical-or.

With the selector typ we can get hold of the type tag of an expression:

typ :: ′a expr⇒ ′a
typ (Lit v T) = T
typ (VarAcc vn T) = T
typ (ArrAcc e i T) = T
typ (StructAcc e cn T) = T
typ (BinOp bop e1 e2 T) = T
typ (LazyBinOp bop e1 e2 T) = T
typ (UnOp uop e T) = T
typ (Deref e T) = T

Definition 7.13 I

7.1.5 Statements
The type variable ′a for the (type-) tags of expressions is propagated to statements.

C0 supports the following statements of (HOL) datatype ′a stmt:Definition 7.14
C0 statements

I

• the empty statement Skip,

• assignment of expression e2 to (left-) expressions e1: Ass e1 e2, where both e1
and e2 are of type ′a expr,

• pointer allocation of a new element of type tn and assignment of the address
to (left-) expression e: PAlloc e tn, where e :: ′a expr and tn :: tname,

• sequential composition Comp c1 c2, where c1, c2 :: ′a stmt,

• conditional execution Ifte e c1 c2, where e :: ′a expr and c1, c2 :: ′a stmt,

• while loop Loop e c, where e :: ′a expr and c :: ′a stmt,

• procedure/function call SCall vn pn ps, of procedure pn with parameters ps
and return value assigned to variable vn, where vn :: vname, pn :: pname and
ps :: ′a expr list, and

• return from procedure/function Return e.

Procedures in C0 are statements. A procedure call can only occur as an assign-
ment to a variable. They are of the form vn = pn(ps) in C syntax. Procedure calls
can not appear in expressions. Hence expressions are free of side-effects.

7.1.6 Programs
A type declaration (tdecl) consists of a type name and its type. A variable declaration
(vdecl) consists of a variable name and its type. A procedure declaration pdecl consists
of the parameter declarations, the local variable declarations and the return type.
A procedure definition ( ′a pdefn) consists of the procedure name, the procedure
declaration and the body statement. Finally a program ( ′a prog) consists of type,
global variable and procedure declarations.
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tdecl = tname × ty
vdecl = vname × ty
pdecl = vdecl list × vdecl list × ty
′a pdefn = pname × pdecl × ′a stmt
′a prog = tdecl list × vdecl list × ′a pdefn list

J Definition 7.15
C0 program

To extract declaration information of procedures and programs, we define various J Definition 7.16
auxiliary functions. The definitions are self explanatory:

• Components of procedure declarations:
pardecls-of :: pdecl⇒ vdecl list
pardecls-of ≡ fst

locdecls-of :: pdecl⇒ vdecl list
locdecls-of ≡ fst ◦ snd

returnT-of :: pdecl⇒ ty
returnT-of ≡ snd ◦ snd

• Components of procedure definitions:
pdecl-of :: (pdecl × ′a stmt)⇒ pdecl
pdecl-of ≡ fst

pbody-of :: (pdecl × ′a stmt)⇒ ′a stmt
pbody-of ≡ snd

• Components of programs:
tdecls-of :: ′a prog⇒ tdecl list
tdecls-of ≡ fst

gdecls-of :: ′a prog⇒ vdecl list
gdecls-of ≡ fst ◦ snd

pdefns-of :: ′a prog⇒ ′a pdefn list
pdefns-of ≡ snd ◦ snd

• Type, global variable and procedure lookup:
tnenv :: ′a prog⇒ (tname⇀ ty)
tnenv ≡ map-of ◦ tdecls-of

genv :: ′a prog⇒ (vname⇀ ty)
genv ≡ map-of ◦ gdecls-of

plookup :: ′a prog⇒ (pname⇀ (pdecl × ′a stmt))
plookup ≡ map-of ◦ pdefns-of

7.2 Semantics

7.2.1 State

The state of a C0 execution consists of a heap (mapping from locations to values), the
local and global variables (mapping from variable names to values) and a counter
for the free heap.
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record state =Definition 7.17
C0 state

I

heap :: loc⇀ val
lvars :: vname⇀ val
gvars :: vname⇀ val
free-heap :: nat

Local variables may hide global variables. Throughout execution we keep track
of the local variables via a set L to decide whether a name refers to a local or global
variable. Lookup and update of variables depends on this set L:

lookup-var :: vname set⇒ state⇒ vname⇀ val
lookup-var L s vn ≡ if vn ∈ L then lvars s vn else gvars s vn

update-var :: vname set⇒ state⇒ vname⇒ val⇒ state
update-var L s vn v ≡ if vn ∈ L then s(|lvars := lvars s(vn 7→ v)|)

else s(|gvars := gvars s(vn 7→ v)|)

Definition 7.18
Variable lookup/update

I

7.2.2 Expression Evaluation

Expressions are evaluated to values. This evaluation may cause runtime faults like
array bound violations or dereferencing null pointers. We model this behaviour
with optional values. If evaluation succeeds a result of the form bvc is obtained,
otherwise None.

Expression evaluation: eval L s e, of expression e in state s and in context of localDefinition 7.19
Expression evaluation

I

variables L is defined in Figure 7.1.

Expression evaluation is straightforward. The expression is processed recur-
sively. If evaluation of a sub-expression fails this is propagated to the top.

The evaluation of unary and binary operations is mapped to the corresponding
HOL definitions by the auxiliary functions apply-unop (cf. Figure 7.4), apply-binop
(cf. Figure 7.3) and apply-lazybinop (cf. Figure 7.2). For lazy binary operations the
auxiliary function early-result is used to decide whether the overall result is al-
ready determined by the first sub-expression. In this case evaluation of the second
sub-expression is skipped. Since expressions do not have side-effects this only
amounts to runtime errors. If the second expression is skipped it cannot cause a
runtime error. Hence the first expression can implement a test to guard the second
expression. A prominent idiom in C is that the first part of a conjunction imple-
ments a null pointer test for the following dereferenced expression. For example:
if p != null && p->x < 5 ....

early-result :: lazybinop⇒ bool⇒ bool option
early-result bop b ≡
case bop of logical-and⇒ if b then None else bbc
| logical-or⇒ if b then bbc else None

Definition 7.20 I



7.2 Semantics 127

eval :: vname set⇒ state⇒ ′a expr⇒ val option

eval L s (Lit v T) = bvc

eval L s (VarAcc vn T) = lookup-var L s vn

eval L s (ArrAcc e i T) =
case eval L s e of None⇒ None
| bevc ⇒

case eval L s i of None⇒ None
| bivc ⇒

let a = the-Arrv ev; n = the-Unsgndv iv
in if n < |a| then ba[n]c else None

eval L s (StructAcc e cn T) =
case eval L s e of None⇒ None | bvc ⇒ map-of (the-Structv v) cn

eval L s (Deref e T) =
case eval L s e of None⇒ None
| bvc ⇒ if v = Prim Null then None else heap s (the-Addrv v)

eval L s (UnOp uop e T) =
case eval L s e of None⇒ None
| bvc ⇒ option-map Prim (apply-unop (uop, the-Prim v))

eval L s (BinOp bop e1 e2 T) =
case eval L s e1 of None⇒ None
| bv1c ⇒

case eval L s e2 of None⇒ None
| bv2c ⇒ option-map Prim (apply-binop (bop, the-Prim v1, the-Prim v2))

eval L s (LazyBinOp lbop e1 e2 T) =
case eval L s e1 of None⇒ None
| bv1c ⇒ case early-result lbop (the-Boolv v1) of

None⇒ case eval L s e2 of None⇒ None
| bv2c ⇒ option-map Prim (apply-lazybinop (lbop, the-Prim v1, the-Prim v2))

| bbc ⇒ bPrim (Bool b)c

Figure 7.1: Evaluation of C0 expressions

For the sequel the exact definition of operations like bit-shifting is not important
and hence it is omitted. The only relevant point about the unary and binary opera-
tions is that C0 supports modulo arithmetic with silent over- and underflows. The
default HOL modulo operation always yields a positive result, e.g. −2 mod 4 = 2.
To properly handle signed modulo arithmetic of C0 we define a variant modwrap
where −2 modwrap 4 = −2:

a modwrap m ≡ (a + m) mod (2 ∗ m) − m J Definition 7.21

Function modwrap shifts the result of mod so that it lies between −m (inclusively)
and m (exclusively), for a positive m.
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apply-lazybinop :: (lazybinop × prim × prim)⇒ prim option

apply-lazybinop (logical-and, Bool b1, Bool b2) = bBool (b1 ∧ b2)c
apply-lazybinop (logical-and, Bool False, v) = bBool Falsec

apply-lazybinop (logical-or, Bool b1, Bool b2) = bBool (b1 ∨ b2)c
apply-lazybinop (logical-or, Bool True, v) = bBool Truec

apply-lazybinop (-,-,-) = None

Figure 7.2: Evaluation of lazy binary operations

The bounds, word and bit-sizes of the numeric types are listed in the following
table.

constant value

wlen-byte 4
bytelen-bit 8
wlen-bit wlen-byte ∗ bytelen-bit
int-lb − int-ub
int-ub 2 ˆ (wlen-bit − 1)
un-int-ub 2 ˆ wlen-bit
chr-lb − chr-ub
chr-ub 2 ˆ (bytelen-bit − 1)

We call a primitive value bounded if it respects the bounds of its type:

bounded :: prim⇒ bool
bounded (Intg i) = int-lb ≤ i ∧ i < int-ub
bounded (Unsgnd n) = n < un-int-ub
bounded (Chr i) = chr-lb ≤ i ∧ i < chr-ub
bounded - = True

Definition 7.22 I

To evaluate the parameters of a procedure call we lift evaluation of expressions
to expression lists:

evals :: vname set⇒ state⇒ ′a expr list⇒ val list option
evals L s [] = b[]c
evals L s (e·es) = case eval L s e of None⇒ None

| bvc ⇒
case evals L s es of None⇒ None
| bvsc ⇒ bv·vsc

Definition 7.23 I

The big-step semantics propagates runtime faults, too. Therefore the program
states of type state are embedded into the option type. Function eval-opt lifts expres-
sion evaluation to these optional states:

eval-opt :: vname set⇒ state option⇒ ′a expr⇒ val option
eval-opt L None e = None
eval-opt L bsc e = eval L s e

Definition 7.24 I
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apply-binop :: (binop × prim × prim)⇒ prim option

apply-binop (equal, v1, v2) = bBool (v1 = v2)c
apply-binop (notequal, v1, v2) = bBool (v1 , v2)c

apply-binop (plus, Intg i1, Intg i2) = bIntg ((i1 + i2) modwrap int-ub)c
apply-binop (plus, Unsgnd n1, Unsgnd n2) = bUnsgnd ((n1 + n2) mod un-int-ub)c
apply-binop (plus, Chr i1, Chr i2) = bChr ((i1 + i2) modwrap chr-ub)c

apply-binop (minus, Intg i1, Intg i2) = bIntg ((i1 − i2) modwrap int-ub)c
apply-binop (minus, Unsgnd n1, Unsgnd n2) = bUnsgnd (nat ((int n1 − int n2) mod int un-int-ub))c
apply-binop (minus, Chr i1, Chr i2) = bChr ((i1 − i2) modwrap chr-ub)c

apply-binop (times, Intg i1, Intg i2) = bIntg (i1 ∗ i2 modwrap int-ub)c
apply-binop (times, Unsgnd n1, Unsgnd n2) = bUnsgnd (n1 ∗ n2 mod un-int-ub)c
apply-binop (times, Chr i1, Chr i2) = bChr (i1 ∗ i2 modwrap chr-ub)c

apply-binop (divides, Intg i1, Intg i2) = if i2 = 0 then None else bIntg (i1 div i2 modwrap int-ub)c
apply-binop (divides, Unsgnd n1, Unsgnd n2) = if n2 = 0 then None else bUnsgnd (n1 div n2)c
apply-binop (divides, Chr i1, Chr i2) = if i2 = 0 then None else bChr (i1 div i2 modwrap chr-ub)c

apply-binop (bitwise-or, Intg i1, Intg i2) = bIntg (i1 ∨s i2)c
apply-binop (bitwise-or, Unsgnd n1, Unsgnd n2) = bUnsgnd (n1 ∨u n2)c
apply-binop (bitwise-or, Chr i1, Chr i2) = bChr (i1 ∨s i2)c

apply-binop (bitwise-and, Intg i1, Intg i2) = bIntg (i1 ∧s i2)c
apply-binop (bitwise-and, Unsgnd n1, Unsgnd n2) = bUnsgnd (n1 ∧u n2)c
apply-binop (bitwise-and, Chr i1, Chr i2) = bChr (i1 ∧s i2)c

apply-binop (bitwise-xor, Intg i1, Intg i2) = bIntg (i1 ⊕s i2)c
apply-binop (bitwise-xor, Unsgnd n1, Unsgnd n2) = bUnsgnd (n1 ⊕u n2)c
apply-binop (bitwise-xor, Chr i1, Chr i2) = bChr (i1 ⊕s i2)c

apply-binop (shiftleft, Intg i1, Unsgnd n2) = bIntg (i1 �s/wlen-bit n2)c
apply-binop (shiftleft, Unsgnd n1, Unsgnd n2) = bUnsgnd (n1 �u/wlen-bit n2)c
apply-binop (shiftleft, Chr i1, Unsgnd n2) = bChr (i1 �s/bytelen-bit n2)c

apply-binop (shiftright, Intg i1, Unsgnd n2) = bIntg (i1 �s/wlen-bit n2)c
apply-binop (shiftright, Unsgnd n1, Unsgnd n2) = bUnsgnd (n1 �u/wlen-bit n2)c
apply-binop (shiftright, Chr i1, Unsgnd n2) = bChr (i1 �s/bytelen-bit n2)c

apply-binop (greater, Intg i1, Intg i2) = bBool (i2 < i1)c
apply-binop (greater, Unsgnd n1, Unsgnd n2) = bBool (n2 < n1)c
apply-binop (greater, Chr i1, Chr i2) = bBool (i2 < i1)c

apply-binop (less, Intg i1, Intg i2) = bBool (i1 < i2)c
apply-binop (less, Unsgnd n1, Unsgnd n2) = bBool (n1 < n2)c
apply-binop (less, Chr i1, Chr i2) = bBool (i1 < i2)c

apply-binop (greaterequal, Intg i1, Intg i2) = bBool (i2 ≤ i1)c
apply-binop (greaterequal, Unsgnd n1, Unsgnd n2) = bBool (n2 ≤ n1)c
apply-binop (greaterequal, Chr i1, Chr i2) = bBool (i2 ≤ i1)c

apply-binop (lessequal, Intg i1, Intg i2) = bBool (i1 ≤ i2)c
apply-binop (lessequal, Unsgnd n1, Unsgnd n2) = bBool (n1 ≤ n2)c
apply-binop (lessequal, Chr i1, Chr i2) = bBool (i1 ≤ i2)c

apply-binop (-,-,-) = None

Figure 7.3: Evaluation of binary operations
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apply-unop :: (unop × prim)⇒ prim option

apply-unop (unary-minus, Intg i) = bIntg (− i modwrap int-ub)c
apply-unop (unary-minus, Chr i) = bChr (− i modwrap chr-ub)c

apply-unop (bitwise-neg, Intg i) = bIntg ¬s/wlen-bit ic
apply-unop (bitwise-neg, Unsgnd n) = bUnsgnd ¬u/wlen-bit nc
apply-unop (bitwise-neg, Chr i) = bChr ¬s/bytelen-bit ic

apply-unop (logical-not, Bool b) = bBool (¬ b)c

apply-unop (to-int, Intg i) = bIntg ic
apply-unop (to-int, Unsgnd n) = bIntg (int n modwrap int-ub)c
apply-unop (to-int, Chr i) = bIntg ic

apply-unop (to-unsigned-int, Intg i) = bUnsgnd (nat (i mod int-ub))c
apply-unop (to-unsigned-int, Unsgnd n) = bUnsgnd nc
apply-unop (to-unsigned-int, Chr i) = bUnsgnd (nat (i mod chr-ub))c

apply-unop (to-char, Intg i) = bChr (i modwrap chr-ub)c
apply-unop (to-char, Unsgnd n) = bChr (int n modwrap chr-ub)c
apply-unop (to-char, Chr i) = bChr ic

apply-unnop (-,-) = None

Figure 7.4: Evaluation of unary operations

7.2.3 Left-Expression Evaluation and Assignment
The left hand side of a C0 assignment is not restricted to plain variables but can
contain an arbitrarily nested combination of variable-, structure- and array-access
and dereferencing pointers. Following the C nomenclature, these left hand sides
of assignments are called left-expressions. They evaluate to left-values. On real
hardware such a left-value corresponds to a memory address. However, the C0
memory model we have introduced is not fine grained enough. Even structured
values fit in one memory cell. A memory location can not address a sub-component
of a structure or array. To keep this convenient level of abstraction we instead
introduce a kind of path to address a sub-component of a compound value. We
use the (left-)expressions themselves to describe this path. A left-value is a reduced
left-expression, where all array indexes and addresses to dereference a pointer
are evaluated. For example, term Deref (Lit (Prim (Addr a)) T ′) T or the array
access ArrAcc (VarAcc a T ′) (Lit (Prim (Intg 2)) T ′′) T are valid left-values, whereas
term Deref (Deref p T ′) T or the array access ArrAcc (VarAcc a T ′) (VarAcc i T ′′) T are
still valid left-expressions but are not regarded as left-values. We define the predicate
reduced to test whether a left-expression is a left-value. It tests whether only literal
values appear as array indexes or as pointers in a dereferenced expression.

reduced :: ′a expr⇒ bool
reduced (VarAcc vname T) = True
reduced (Deref (Lit a T ′) T) = True
reduced (ArrAcc lv (Lit i T ′) T) = reduced lv
reduced (StructAcc lv cn T) = reduced lv
reduced - = False

Definition 7.25 I
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Assignment of a value to a left-expression is performed in two steps. First the
left value is calculated and then the new value is assigned into the state according
to the left value.

Left-expression evaluation: leval L s e, of left-expression e in state s in context of J Definition 7.26
Left-expression
evaluation

local variables L is defined in Figure 7.5.

leval :: vname set⇒ state⇒ ′a expr⇒ ′a expr option

leval L s (VarAcc vn T) = bVarAcc vn Tc

leval L s (ArrAcc e i T) =
case leval L s e of None⇒ None
| bevc ⇒ case eval L s i of None⇒ None | bivc ⇒ bArrAcc ev (Lit iv (typ i)) Tc

leval L s (StructAcc e cn T) =
case leval L s e of None⇒ None | bevc ⇒ bStructAcc ev cn Tc

leval L s (Deref e T) =
case eval L s e of None⇒ None | bevc ⇒ bDeref (Lit ev (typ e)) Tc

leval L s - = None

Figure 7.5: Evaluation of C0 left-expressions

Left-expression evaluation leval produces reduced left-expressions.

If leval L s le = blvc then reduced lv. J Lemma 7.1

Proof. By induction on le. �

Assignment: assign L s lv v, of value v to left-value lv in state s in context of local J Definition 7.27
Assignmentvariables L is defined in Figure 7.6.

The assignment follows the path given via the left value lv and weaves the
new value v into the current state. It also checks for array bound violations and
dereferencing null pointers. The auxiliary function null-lit is defined as follows:

null-lit :: ′a expr⇒ bool
null-lit (Lit (Prim Null) T) = True
null-lit - = False

J Definition 7.28

The auxiliary function assoc-update preforms an update in an assocation list.

assoc-update :: ( ′k × ′v) list⇒ ′k⇒ ′v⇒ ( ′k × ′v) list
assoc-update [] k v = []
assoc-update (x·xs) k v = if k = fst x then (k, v)·xs else x·assoc-update xs k v

J Definition 7.29

We also provide a lifted version of assignment that watches for faults in the
left-value and value argument:

assign-opt :: vname set⇒ state⇒ ′a expr option⇒ val option⇒ state option
assign-opt L s None vo = None
assign-opt L s bec vo = case vo of None⇒ None | bvc ⇒ assign L s e v

J Definition 7.30
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assign :: vname set⇒ state⇒ ′a expr⇒ val⇒ state option

assign L s (VarAcc vn T) v = bupdate-var L s vn vc

assign L s (StructAcc lv fn T) v =
case eval L s lv of None⇒ None
| bevc ⇒

let fs = the-Structv ev;
new-val = Structv (assoc-update fs fn v)

in if fn ∈ set (map fst fs) then assign L s lv new-val else None

assign L s (ArrAcc lv i T) v =
case eval L s lv of None⇒ None
| bevc ⇒

let a = the-Arrv ev;
n = the-Unsgndv (the-Lit i)

in if n < |a| then assign L s lv (Arrv (a[n := v])) else None

assign L s (Deref lt T) v =
if null-lit lt then None
else bs(|heap := heap s(the-Addrv (the-Lit lt) 7→ v)|)c
assign L s - - = None

Figure 7.6: Assignment of a value to a left-value

7.2.4 Big-Step Semantics

The operational big-step semantics: Π,L`C0 〈c,s〉 ⇒ t, is defined inductively by theDefinition 7.31
Big-step semantics of

C0

I

rules in Figure 7.7. In program Π and in context of local variables L execution of
command c transforms the initial state s to the final state t, where:

Π :: ′a prog
L :: vname set

s,t :: state option
c :: ′a stmt

Like the big-step semantics of Simpl (cf. Definition 2.4) the rules are divided into
two parts. The syntax directed ones are only applicable to normal states bsc, whereas
the fault propagation rule is applicable for all commands and skips execution if the
state is None.

The Skip statement leaves the state unmodified.
An assignment Ass le e evaluates the left-expression le and the expression e and

assigns its value.
For a pointer allocation PAlloc le tn first the type corresponding to the type-name

tn is obtained. Then a new heap location is allocated. If heap allocation fails the Null
pointer is assigned to the left-value obtained from left-expression le. Otherwise we
obtain a fresh location l, initialise it with the proper default value and decrement
the free-heap counter. Finally we assign the location l to the left-value obtained from
left-expression le. Heap allocation is performed by the auxiliary function new-Addr.
It considers free-heap to decide whether there is enough memory to allocate the
requested object.

If new-Addr f T h = blc then h l = None, whenever the domain of heap h is finite.
This means that location l is “fresh” with respect to heap h.
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Π,L`C0 〈Skip,bsc〉 ⇒ bsc
(S)

t = assign-opt L s (leval L s le) (eval L s e)

Π,L`C0 〈Ass le e,bsc〉 ⇒ t
(A)

tnenv Π tn = bTc new-Addr (free-heap s) T (heap s) = blc
s1 = s(|heap := heap s(l 7→ default-val T), free-heap := free-heap s − sizeof-type T|)

t = assign-opt L s1 (leval L s le) bPrim (Addr l)c

Π,L`C0 〈PAlloc le tn,bsc〉 ⇒ t
(PA)

tnenv Π tn = bTc
new-Addr (free-heap s) T (heap s) = None t = assign-opt L s (leval L s le) bPrim Nullc

Π,L`C0 〈PAlloc le tn,bsc〉 ⇒ t
(PAF)

Π,L`C0 〈c1,bsc〉 ⇒ s1 Π,L`C0 〈c2,s1〉 ⇒ s2

Π,L`C0 〈Comp c1 c2,bsc〉 ⇒ s2
(C)

eval L s e = bPrim (Bool True)c
Π,L`C0 〈c1,bsc〉 ⇒ t

Π,L`C0 〈Ifte e c1 c2,bsc〉 ⇒ t
(IT)

eval L s e = bPrim (Bool False)c
Π,L`C0 〈c2,bsc〉 ⇒ t

Π,L`C0 〈Ifte e c1 c2,bsc〉 ⇒ t
(IF)

eval L s e = None

Π,L`C0 〈Ifte e c1 c2,bsc〉 ⇒ None
(IF)

eval L s e = bPrim (Bool True)c Π,L`C0 〈c,bsc〉 ⇒ s1 Π,L`C0 〈Loop e c,s1〉 ⇒ t

Π,L`C0 〈Loop e c,bsc〉 ⇒ t
(LT)

eval L s e = bPrim (Bool False)c

Π,L`C0 〈Loop e c,bsc〉 ⇒ bsc
(LF)

eval L s e = None

Π,L`C0 〈Loop e c,bsc〉 ⇒ None
(LF)

plookup Π pn = b((pds, lds, rT), body)c
pns = map fst pds lns = map fst lds L ′= set (pns @ lns @ [Res])

Π,L ′`C0 〈body,set-locv-new-frame s pns (evals L s ps)〉 ⇒ t

Π,L`C0 〈SCall vn pn ps,bsc〉 ⇒ reset-locv-old-frame L s t vn
(SC)

t = assign-opt L s bVarAcc Res (typ e)c (eval L s e)

Π,L`C0 〈Return e,bsc〉 ⇒ t
(R)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π,L`C0 〈c,None〉 ⇒ None
(FP)

Figure 7.7: Big-step execution rules for C0

The definition of new-Addr builds on new for references (cf. Definition 2.12). The
functions Rep-loc and Abs-loc convert between types ref and loc.

new-Addr :: nat⇒ ty⇒ (loc⇀ val)⇒ loc option
new-Addr free T h ≡
if sizeof-type T ≤ free then bAbs-loc (new (Rep-loc ‘ dom h))c else None

J Definition 7.32

The rules for sequential composition Comp c1 c2, conditional execution Ifte e c1 c2
and the loop Loop e c are standard. If a runtime fault occurs during evaluation of
the branch condition e it is propagated.
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To execute a procedure call SCall vn pn ps first the procedure definition of pro-
cedure pn is retrieved: ((pds, lds, rT), body). The names of the formal parameters
pns and local variables lns are extracted from this definition. Additionally to these
names there is the reserved name Res for the result variable. The procedure body
assigns the result value to this variable. Altogether the variables pns, lns and Res are
regarded as local variables for the procedure body. Before entering the procedure
body the actual parameters ps are evaluated and are used to initialise the new frame
for the procedure body:

set-locv-new-frame :: state⇒ vname list⇒ val list option⇒ state option
set-locv-new-frame s pns None = None
set-locv-new-frame s pns bpvsc = bs(|lvars := [pns [7→] pvs]|)c

Definition 7.33 I

Only the parameters are initialised. The local variables and the result variables
remain uninitialised. After the body is executed the local variables of the caller are
restored and the content of the result variable Res is copied to variable vn.

reset-locv-old-frame :: vname set⇒ state⇒ state option⇒ vname⇒ state option
reset-locv-old-frame L s None vn = None
reset-locv-old-frame L s btc vn = case lvars t Res of None⇒ None

| brc ⇒ bupdate-var L (t(|lvars := lvars s|)) vn rc

Definition 7.34 I

The return statement Return e is a mere abbreviation for the assignment to the
result variable Res. It does not exit the procedure immediately.

7.2.5 Termination

Analogous to the Simpl (cf. Definition 2.5) we define a termination judgement for
C0 programs.

Guaranteed termination: Π,L`C0 c ↓ s, of statement c in the initial state s withinDefinition 7.35
Guaranteed

termination of C0

I

the context of program Π and local variables L is defined inductively by the rules
in Figure 7.8, where:

Π :: ′a prog
L :: vname set

s :: state option
c :: ′a stmt

If statement c terminates when started in state s, then there is a final state t
according to the big-step semantics.

If Π,L`C0 c ↓ s then ∃ t. Π,L`C0 〈c,s〉 ⇒ t.Lemma 7.2 I

Proof. By induction on the termination judgement. �

In contrast to Simpl, C0 is deterministic:

If Π,L`C0 〈c,s〉 ⇒ t and Π,L`C0 〈c,s〉 ⇒ t ′ then t = t ′.Lemma 7.3 I

Proof. By induction on the execution Π,L`C0 〈c,s〉 ⇒ t. �

Hence we also get termination from a big-step execution:

If Π,L`C0 〈c,s〉 ⇒ t then Π,L`C0 c ↓ s.Lemma 7.4 I
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Π,L`C0 Skip ↓ bsc
(S)

Π,L`C0 Ass le e ↓ bsc
(A)

tnenv Π tn = bTc

Π,L`C0 PAlloc le tn ↓ bsc
(PA)

Π,L`C0 c1 ↓ bsc ∀s ′. Π,L`C0 〈c1,bsc〉 ⇒ s ′−→ Π,L`C0 c2 ↓ s ′

Π,L`C0 Comp c1 c2 ↓ bsc
(C)

eval L s e = bPrim (Bool True)c Π,L`C0 c1 ↓ bsc

Π,L`C0 Ifte e c1 c2 ↓ bsc
(IT)

eval L s e = bPrim (Bool False)c Π,L`C0 c2 ↓ bsc

Π,L`C0 Ifte e c1 c2 ↓ bsc
(IF)

eval L s e = None

Π,L`C0 Ifte e c1 c2 ↓ bsc
(IF)

eval L s e = bPrim (Bool True)c
Π,L`C0 c ↓ bsc ∀s ′. Π,L`C0 〈c,bsc〉 ⇒ s ′−→ Π,L`C0 Loop e c ↓ s ′

Π,L`C0 Loop e c ↓ bsc
(LT)

eval L s e = bPrim (Bool False)c

Π,L`C0 Loop e c ↓ bsc
(LF)

eval L s e = None

Π,L`C0 Loop e c ↓ bsc
(LF)

plookup Π pn = bpdf c pns = map fst (pardecls-of (pdecl-of pdf ))
lns = map fst (locdecls-of (pdecl-of pdf )) L ′= set (pns @ lns @ [Res])

Π,L ′`C0 pbody-of pdf ↓ set-locv-new-frame s pns (evals L s ps)

Π,L`C0 SCall vn pn ps ↓ bsc
(SC)

Π,L`C0 Return e ↓ bsc
(R)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π,L`C0 c ↓ None
(F)

Figure 7.8: Guaranteed termination for C0

Proof. By induction on the execution Π,L`C0 〈c,s〉 ⇒ t and Lemma 7.3 to handle the
intermediate states for sequential composition and the loop. �

Altogether we have the following equivalence between termination and the
big-step semantics:

Π,L`C0 c ↓ s = (∃ t. Π,L`C0 〈c,s〉 ⇒ t) J Lemma 7.5
Terminates iff exists
executionProof. By Lemmas 7.2 and 7.4. �

7.2.6 Typing

C0 is a statically typed language. As we have seen in the definition of the operational
semantics in the previous section there are no dynamic type checks. Statically
welltyped programs also behave type correct as they are executed. This is formally
proven in the next section. This property is crucial for correctness of the translation
to Simpl. In Simpl the state is already implicitly typed by the translation to a
state-record. The correspondence to C0 programs is only guaranteed for welltyped
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programs. To avoid redundancy, the type-system we introduce is generalised to
work both for static typing and to describe the type invariant that holds upon
execution of a C0 program.

Wellformed types We start with wellformedness of types. All pointer types have
to be declared and the field names of structures have to be unique.

unique :: ( ′a × ′b) list⇒ bool unique ≡ distinct ◦ map fstDefinition 7.36 I

The judgement TE` T
√

expresses that type T :: ty is wellformed with respect to aDefinition 7.37
Wellformed types

I

type environment TE :: tname⇀ ty. It is defined inductively by the rules in Figure
7.9

TE` Boolean
√

TE` Integer
√

TE` UnsgndT
√

TE` CharT
√

TE` NullT
√

TE tn = bTc

TE` Ptr tn
√

TE` T
√

TE` Arr n T
√

unique fTs ∀T∈set (map snd fTs). TE` T
√

TE` Struct fTs
√

Figure 7.9: Wellformed types

Typing of values As introduced in Section 7.1.2 pointers in C0 are typed. If we
are interested in the type of an address, a heap typing that maps locations to types
can be provided to the typing judgement. If no heap typing is given every address
Addr l fits to any pointer type Ptr tn.

The judgement HT`v v :: T expresses that value v is compatible with type T :: tyDefinition 7.38
Typing of values

I

with respect to an optional heap typing HT :: (loc ⇀ tname) option. It is defined
inductively by the rules in Figure 7.10. If HT = None it can be omitted.

HT`v Prim (Bool b) :: Boolean

int-lb ≤ i i < int-ub

HT`v Prim (Intg i) :: Integer

n < un-int-ub

HT`v Prim (Unsgnd n) :: UnsgndT

chr-lb ≤ i i < chr-ub

HT`v Prim (Chr i) :: CharT HT`v Prim Null :: Ptr tn HT`v Prim Null :: NullT

HT l = btnc

bHTc`v Prim (Addr l) :: Ptr tn `v Prim (Addr l) :: Ptr tn

n = |vs| ∀v∈set vs. HT`v v :: T

HT`v Arrv vs :: Arr n T

map fst fvs = map fst fTs
∀ (v, T)∈set (zip (map snd fvs) (map snd fTs)). HT`v v :: T

HT`v Structv fvs :: Struct fTs

Figure 7.10: Typing of values
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Values of a numeric type have to respect their bounds.
The Null pointer fits to any pointer type Ptr tn and to the type NullT.
If a heap typing bHTc is provided and HT l = btnc, then an address Addr l only

fits to the pointer type Ptr tn. If no heap typing is supplied it fits to any pointer type.
For static typing of C0 expressions, literal values may not contain addresses. This
can be enforced by providing the empty heap typing empty ≡ λl. None to the typing
judgement. bemptyc`v Prim (Addr l) :: Ptr tn is never valid and thus prevents literal
addresses to appear in C0 source code.

For array values, the array size has to fit to the type and the values stored in the
array have to be typed correctly.

For structures the field-names have to coincide with the field-names of the type
and the values have to be typed correctly.

Typing of expressions Typing of expressions is defined for type-tagged expres-
sions ty expr. Hence no explicit type occurs in the typing judgement, which is of the
formΠ,VT,HT`e e

√
. The heap typing HT is used to type literal values, VT is a type

environment for variable names and Π is the program. Actually the only relevant
information from the program is the type-name environment tnenv Π.

Typing of expressions: Π,VT,HT`e e
√

, with respect to program Π, type envi- J Definition 7.39
Typing of expressionsronment VT for variables and heap typing HT is defined inductively by the rules

in Figure 7.11. Expression lists are handled by judgement Π,VT,HT[`e] es
√

. Left-
expressions are typed according to Π,VT,HT`l e

√
(cf. Figure 7.12). Where:

Π :: ty prog
VT :: vname⇀ ty
HT :: loc⇀ tname

e :: ty expr
es :: ty expr list

Literal values Lit v T are welltyped if v is a welltyped value and type T is
wellformed.

For a variable access VarAcc vn T the type has to conform to the type environment
VT and the type has to be wellformed.

An array access ArrAcc a i T is welltyped provided that a is an array and i an
unsigned integer.

If e is a structure and field fn has type T, then the structure access StructAcc e fn T
is welltyped.

Dereferencing a pointer Deref e T is accepted, if e is a pointer to type-name tn
that is declared with the wellformed type T in the program.

Unary and binary operations are welltyped, if they conform to the auxiliary
rules �uop�T1 :: T and T1 �bop� T2 :: T respectively. The offset of shift operations
is restricted to unsigned integers. The order relations are restricted to numeric
types. Structures, arrays and pointers are excluded. Equality is only defined for
primitive types. These include pointers but not structures or arrays. The lazy binary
operations are only defined for Booleans.

Left expressions share the same typing rules as expressions but are restricted to
variable-, array- and structure-access and dereferencing pointers.

As mentioned for the typing of values, static typing is achieved by setting the
heap typing HT to the empty environment. This prohibits literal address values
in C0 sources. By induction on the typing judgement, we get that a welltyped
expression has a wellformed type.

If Π,VT,HT`e e
√

then tnenv Π` typ e
√
. J Lemma 7.6
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bHTc`v v :: T tnenv Π` T
√

Π,VT,HT`e Lit v T
√

VT vn = bTc tnenv Π` T
√

Π,VT,HT`e VarAcc vn T
√

Π,VT,HT`e a
√

typ a = Arr n T
Π,VT,HT`e i

√
typ i = UnsgndT

Π,VT,HT`e ArrAcc a i T
√

Π,VT,HT`e e
√

typ e = Struct fs map-of fs fn = bTc

Π,VT,HT`e StructAcc e fn T
√

Π,VT,HT`e e
√

typ e = Ptr tn tnenv Π tn = bTc tnenv Π` T
√

Π,VT,HT`e Deref e T
√

Π,VT,HT`e e
√

�uop�typ e :: T

Π,VT,HT`e UnOp uop e T
√

Π,VT,HT`e e1
√

Π,VT,HT`e e2
√

typ e1 �bop� typ e2 :: T

Π,VT,HT`e BinOp bop e1 e2 T
√

Π,VT,HT`e e1
√

Π,VT,HT`e e2
√

typ e1 = Boolean typ e2 = Boolean

Π,VT,HT`e LazyBinOp bop e1 e2 Boolean
√

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π,VT,HT[`e] []
√

Π,VT,HT`e e
√

Π,VT,HT[`e] es
√

Π,VT,HT[`e] e·es
√

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T ∈ {Integer, CharT}
�unary-minus�T :: T

numeric-type T
�bitwise-neg�T :: T �logical-not�Boolean :: Boolean

numeric-type T
�to-int�T :: Integer

numeric-type T
�to-unsigned-int�T :: UnsgndT

numeric-type T
�to-char�T :: CharT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
numeric-type T bop ∈ {plus, minus, times, divides, bitwise-or, bitwise-and, bitwise-xor}

T �bop� T :: T

numeric-type T
bop ∈ {shiftleft, shiftright}

T �bop� UnsgndT :: T

numeric-type T
bop ∈ {greater, less, greaterequal, lessequal}

T �bop� T :: Boolean

prim-type T1 prim-type T2
T1 � T2 ∨ T2 � T1

bop ∈ {equal, notequal}

T1 �bop� T2 :: Boolean

Figure 7.11: Typing of expressions

Π,VT,HT`e VarAcc vn T
√

Π,VT,HT`l VarAcc vn T
√

Π,VT,HT`l e
√

typ e = Struct fs map-of fs fn = bTc

Π,VT,HT`l StructAcc e fn T
√

Π,VT,HT`l a
√

typ a = Arr n T Π,VT,HT`e i
√

typ i = UnsgndT

Π,VT,HT`l ArrAcc a i T
√

Π,VT,HT`e Deref e T
√

Π,VT,HT`l Deref e T
√

Figure 7.12: Typing of left-expressions
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Typing of Statements

The judgement Π,VT,HT` c
√

ensures that statement c is welltyped with respect J Definition 7.40
Typing of statementsto program Π, type environment VT for variables and heap typing HT. It is defined

inductively by the rules in Figure 7.13, where

Π :: ty prog
VT :: vname⇀ ty

HT :: loc⇀ tname
c :: ty stmt

Π,VT,HT` Skip
√

Π,VT,HT`l le
√

Π,VT,HT`e e
√

typ e � typ le

Π,VT,HT` Ass le e
√

Π,VT,HT`l le
√

typ le = Ptr tn tnenv Π tn = bTc

Π,VT,HT` PAlloc le tn
√

Π,VT,HT` c1
√

Π,VT,HT` c2
√

Π,VT,HT` Comp c1 c2
√

Π,VT,HT`e e
√

typ e = Boolean Π,VT,HT` c1
√

Π,VT,HT` c2
√

Π,VT,HT` Ifte e c1 c2
√

Π,VT,HT`e e
√

typ e = Boolean Π,VT,HT` c
√

Π,VT,HT` Loop e c
√

plookup Π pn = b((pds, lds, rT), body)c
Π,VT,HT[`e] ps

√
map typ ps [�] map snd pds VT vn = brTc

Π,VT,HT` SCall vn pn ps
√

VT Res = bTc tnenv Π` T
√

Π,VT,HT`e e
√

typ e � T

Π,VT,HT` Return e
√

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T � T NullT � Ptr tn

T � Q

Arr n T � Arr n Q

map fst fTs = map fst fQs ∀ (T, Q)∈set (zip (map snd fTs) (map snd fQs)). T � Q

Struct fTs � Struct fQs

Ts [�] Qs ≡ |Ts| = |Qs| ∧ (∀ (T, Q)∈set (zip Ts Qs). T � Q)

Figure 7.13: Typing of statements

Skip is welltyped.
To type an assignment Ass le e we introduce a widening relation on types. The

type of expression e has to widen to the type of the left-expression le. C0 does not
allow widening between numeric types like characters and integers. Explicit type
casts have to be inserted there. The widening relation only supports a liberal typing
of the Null pointer. It can always be typed with NullT instead of a concrete pointer
type Ptr tn, for example, in an assignment like v = null. Technically we do not
need this widening relation. We could omit the null type NullT completely, but this
complicates the type elaboration phase. It then has to infer a proper pointer type
for every null pointer. The widening relation is reflexive and NullT � Ptr tn. For
structure and array types the widening relation is inherited from the components.
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Note that the covariant widening of array types is no issue for this very restricted
widening. In the end it only permits that a null pointer can be read from or written
to an array cell. The relation Ts [�] Qs extends the widening relation to lists.

For pointer allocation PAlloc le tn the type of le has to coincide with tn and tn has
to be defined in the type environment.

Typing of sequential composition, conditional execution and the loop is as ex-
pected.

For procedure calls SCall vn pn ps the types of the actual parameters have to
widen to the types of the formal ones and the return type has to coincide with the
type of variable vn.

For Return e the type of e has to widen to the type of the result variable.

7.2.7 Definite Assignment

The local variables and the result variable of a procedure are not automatically
initialised (cf. SC Rule on p. 133). However, uninitialised variables are a serious
threat to type-safe execution of a program. An uninitialised piece of memory may
contain an arbitrary sequence of bits. If we regard them as proper values and read
them, we can easily produce unpredictable behaviour. Think of an uninitialised
pointer variable. The bit sequence is interpreted as a reference to an object in main
memory and since the variable is not initialised we may read or write to an arbitrary
memory location. For heap allocation we already take special care and initialise
the memory with default values (cf. PA Rule on p. 133). For local variables
we follow the spirit of Java [42] and supply a simple static analysis for the source
program that ensures that we assign a value to a variable before we read from it. For
Java this analysis is called “definite assignment” analysis and is already formalised
in Isabelle/HOL [102, 59, 58]. We also employ a definite assignment analysis for
C0 to protect access to local variables. The analysis does not take global variables
into account. We consider that they are already initialised before the program is
executed. The formalisation of the definite assignment analysis basically consists
of two parts. FunctionA calculates the set of variables that are certainly assigned to
by a piece of code. The testD that ensures that reading the variable is safe, since it
definitely was assigned to before.

The definite assignment analysis for C0 is defined by the functions:Definition 7.41
Definite assignment

I

D :: ′a stmt⇒ vname set⇒ vname set⇒ bool
De :: ′a expr⇒ vname set⇒ vname set⇒ bool
Dl :: ′a expr⇒ vname set⇒ vname set⇒ bool
A :: ′a stmt⇒ vname set
Al :: ′a expr⇒ vname set

The definitions are given in Figure 7.14

The functions D and A are for statements, De for expressions, and Dl and Al
for left-expressions. The parameter L is the set of local variables and A is the set of
assigned variables. The basic test is performed byDe (VarAcc vn T) L A. If variable
vn is local then it also has to be in A. For left expressions the corresponding clause
is more liberal. A variable access as left expressions means that we attempt to
assign a value to vn, which is always allowed. For array access, structure access
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De (Lit v T) L A = True
De (VarAcc vn T) L A = vn ∈ L −→ vn ∈ A
De (ArrAcc e i T) L A =De e L A ∧ De i L A
De (StructAcc e fn T) L A =De e L A
De (Deref e T) L A =De e L A
De (BinOp bop e1 e2 T) L A =De e1 L A ∧ De e2 L A
De (LazyBinOp bop e1 e2 T) L A =De e1 L A ∧ De e2 L A
De (UnOp uop e T) L A =De e L A

Dl (VarAcc vn T) L A = True
Dl (ArrAcc e i T) L A =De e L A ∧ De i L A
Dl (StructAcc e fn T) L A =De e L A
Dl (Deref e T) L A =De e L A
Dl - L A = True

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Skip = {}
A (Ass le e) =Al le
A (PAlloc le tn) =Al le
A (Comp c1 c2) =A c1 ∪ A c2
A (Ifte b c1 c2) =A c1 ∩ A c2
A (Loop b c) = {}
A (SCall vn pn ps) = {vn}
A (Return e) = {Res}

Al (VarAcc vn T) = {vn}
Al (ArrAcc e i T) =Al e
Al (StructAcc e fn T) =Al e
Al (Deref e T) = {}
Al - = {}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D Skip L A = True
D (Ass le e) L A =Dl le L A ∧ De e L A
D (PAlloc le tn) L A =Dl le L A
D (Comp c1 c2) L A =D c1 L A ∧ D c2 L (A ∪ L ∩ A c1)
D (Ifte b c1 c2) L A =De b L A ∧ D c1 L A ∧ D c2 L A
D (Loop b c) L A =De b L A ∧ D c L A
D (SCall vn pn ps) L A = ∀e∈set ps.De e L A
D (Return e) L A = Res ∈ L ∧ De e L A

Figure 7.14: Definite assignment

and dereferencing pointers as left expressions the analysis for ordinary expressions
is applied. This means that the first assignment to a structure or array variable
must initialise the complete variable at once. Field or index wise initialisation is
excluded by this analysis. FunctionA collects the variables that are guaranteed to be
assigned by the statement. For left-expressions the auxiliary functionAl descends
into the left-expression until it reaches a variable. Global and local variables are
collected. For sequential composition Comp c1 c2 the union of the assigned variables
of both statements is returned; for Ifte b c1 c2 the intersection and for the loop the
empty set. This is a safe approximation. For a procedure call the variable assigned
to is returned, and Return e assigns to the result variable Res. For the analysis of
the second statement in D (Comp c1 c2) L A the set A is augmented with the local
variables that are assigned to by statement c1: L ∩ A c1.

By induction on the expressions/statement syntax the following basic monotonic-
ity properties of the definite assignment analysis are proven.

If A ⊆ A ′ and De e L A then De e L A ′. J Lemma 7.7

If A ⊆ A ′ and Dl le L A then Dl le L A ′. J Lemma 7.8

If A ⊆ A ′ and D c L A then D c L A ′. J Lemma 7.9
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7.2.8 Wellformed Programs

We consider a program to be wellformed if it respects the following static conditions:

wf-prog Π ≡
let (TD, GD, PD) = Π
in unique TD ∧

unique GD ∧
unique PD ∧
(∀T∈snd ‘ set (TD @ GD). tnenv Π` T

√
) ∧ (∀pd∈set PD. wf-pdefn Π pd)

wf-pdefn Π (pn, (pds, lds, rT), body) ≡
unique (pds @ lds @ [(Res, rT)]) ∧
(∀T∈snd ‘ set (pds @ lds @ [(Res, rT)]). tnenv Π` T

√
) ∧

Π,penv Π (pds, lds, rT),empty` body
√
∧

D body (fst ‘ set (pds @ lds @ [(Res, rT)])) (fst ‘ set pds) ∧ Res ∈ A body

penv Π (pds, lds, rT) ≡ map-of (pds @ lds @ [(Res, rT)] @ gdecls-of Π)

Definition 7.42 I

The type names in the type declarations and the global variables have to be
unique and all types have to be wellformed. Moreover, all procedure names have
to be unique and the definitions have to be wellformed. The names of parameters,
local variables and the result variable Res have to be unique and all their types
have to be wellformed. The procedure body has to be welltyped with respect to the
variable typing obtained from global variables, parameters, local variables and the
result variable. This variable typing is obtained with penv. Note that the map in penv
is built from the right to the left. Therefore local names hide global ones. Moreover,
the body has to pass the definite assignment test, where parameters, local variables
and the result variables are considered as local names and only the parameters are
considered as assigned variables. Finally the result variable Res has to be assigned
in the procedure body.

7.2.9 Type Safety

Type safety relates static semantics like typing and definite assignment with the
dynamic semantics, the execution of the program. It describes the properties that
are guaranteed during runtime if the static tests have passed. Traditionally [119],
type safety is decomposed to progress and subject reduction. Progress means that the
execution cannot get stuck in a configuration were no semantic rule is applicable.
This means that the system ran into an undefined or unpredicted situation. Subject
reduction means that a typed expression is reduced to a value of the corresponding
type. As an example, if evaluation of the branching condition of a loop does not
evaluate to a Boolean value but to an integer then the big-step semantics of C0 (cf.
Figure 7.7 on p. 133) gets stuck, since neither of the Rules LT, LF or
LF are applicable.

The C0 big-step semantics in Figure 7.7 is not suited to describe the progress
property. It does not distinguish non-termination from stuck computations. Like
in the big-step semantics for Simpl (cf. Figure 2.1) one can introduce a special
Stuck state to signal stuck computations in the final state. Then the semantics does
not really get stuck but exits with the Stuck state. Hence non-termination and stuck
computations can be distinguished. However, the canonical way to prove progress is
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to use a small-step semantics. Infinite and stuck computations can be distinguished
naturally with a small-step semantics. However, since we do not need a progress
property for the purpose of the embedding of C0 in Simpl and the corresponding
soundness proof, we restrict our attention to subject reduction. We not only prove
subject reduction for expressions, but also for statements. That means execution of
statements preserves “welltypedness” or conformance of the program state.

Conformance of a value to its type is already captured by the typing judgement
bHTc`v v :: T, where HT is the heap typing for the current state. A store like the local
variable store or the heap is a mapping from variable names or locations to values,
or generally ′a⇀ val. A store conforms to static typing ST :: ′a⇀ ty if every stored
value conforms to its type:

HT` s :: ST ≡ ∀p v T. s p = bvc −→ ST p = bTc −→ bHTc`v v :: T J Definition 7.43

Note that this definition only puts a constraint on positions where both a value
and a type are present. It does not demand that for every typed position in the store
typing there has to be a value in the store. This is the situation for local variables.
They are not initialised when the procedure is entered. However, all global variables
have to be initialised. A C0 state is conforming if the heap, the local variables and
the global variables conform to the corresponding type environment.

For a program state we define the conformance predicate TE` s :: HT,LT,GT, where J Definition 7.44
TE :: tname ⇀ ty is the type environment, HT :: loc ⇀ tname the heap typing, and
LT,GT :: vname⇀ ty the typing for local and global variables, respectively :

TE` s :: HT,LT,GT ≡
HT` heap s :: (TE ◦m HT) ∧ dom (heap s) = dom HT ∧ finite (dom (heap s)) ∧
HT` lvars s :: LT ∧ HT` gvars s :: GT ∧ dom (gvars s) = dom GT

The heap typing HT maps locations to type names, and the type environment
TE maps type names to types. The heap has to conform to the composition of both.
Moreover, the domains of the heap and the heap typing coincide and are finite. The
local variables have to conform to their types. And finally the global variables must
conform to their types and have to be defined.

We start with some subject reduction theorems for definite assignment. Evalua-
tion of a left-expression preserves the analysis result:

If leval L s le = blvc then Al le =Al lv. J Lemma 7.10

If leval L s le = blvc and De le L ′A then De lv L ′A. J Lemma 7.11

If leval L s le = blvc and Dl le L ′A then Dl lv L ′A. J Lemma 7.12

The proofs are by induction on the left-expression. For statement execution we
can prove that the local variables predicted byA are indeed assigned to by executing
the statement:

If Π,L`C0 〈c,bsc〉 ⇒ btc then L ∩ A c ⊆ dom (lvars t). J Theorem 7.13

Proof. By induction on the big-step execution. �

Function A returns global and local variables that are assigned to. By intersection
with L we only regard the local variables. Note that we do not have to require
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wellformedness of the program. Since a procedure call restores the local variables
of the caller anyway, we do not need to know that all procedure bodies are definitely
assigned.

Now we come to the subject reduction theorem for expressions. Evaluation of
a welltyped and definitely assigned expression in a conforming state preserves the
type:

For a conforming state s: tnenv Π` s :: HT,LT�A,GT, and a welltyped expression e:Theorem 7.14
Subject reduction

(expression)

I

Π,GT ++ LT,HT`e e
√

that is definitely assigned: De e (dom LT) A, we have:
If eval (dom LT) s e = bvc then bHTc`v v :: typ e

Proof. By induction on expression e. �

The variable environment for the typing of e is obtained by overriding the global
environment with the local environment: GT ++ LT. Hence local variables may hide
global ones. The type declarations of the program form the type environment. The
state only has to be conforming for the local variables in A. The definite assignment
analysis guarantees that the expression only reads from those variables. The restric-
tion of the local typing LT to domain A is performed by the restriction operator LT�A.

For left expressions we get a similar result:

For a conforming state s: tnenvΠ` s :: HT,LT�A,GT, and a welltyped left-expressionTheorem 7.15
Subject reduction

(left-expression)

I

le: Π,GT ++ LT,HT`l le
√

that is definitely assigned: Dl le (dom LT) A, we have:
If leval (dom LT) s le = blvc then Π,GT ++ LT,HT`l lv

√
.

Proof. By induction on left-expression le and Theorem 7.14. �

Since evaluation of the left-expression again yields a (reduced) left expression
the typing judgement for left-expressions is used in the conclusion instead of the
value typing in case of ordinary expressions.

To lift subject reduction to the execution of statements we have to be in the
context of a wellformed program. This ensures that every procedure is welltyped
and definitely assigned. Conformance of the state is preserved by execution:

In context of a wellformed program Π: wf-prog Π, given a conforming state s:Theorem 7.16
Subject reduction

(statements)

I

TE` s :: HT,LT�A,GT, where TE = tnenvΠ and GT = genvΠ, given a statement c that
is welltyped: Π,GT ++ LT,HT` c

√
and definitely assigned: D c (dom LT) A, then we

have:
If Π,dom LT`C0 〈c,bsc〉 ⇒ btc then
∃HT ′. TE` t :: HT ′,LT�(A ∪ A c),GT ∧ HT ⊆m HT ′.

Proof. By induction on the big-step execution and Theorems 7.14 and 7.15 and the
monotonicity Lemmas 7.9 and 7.7 for definite assignment. �

If the program allocates memory the heap typing has to be extended correspondingly.
That is why we obtain an extended heap typing HT ′ for the final state. Since all the
variables inA c are assigned to in the final state, the domain restriction of the local
typing can be extended with these variables.
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7.3 Conclusion

This chapter presented the formal syntax and semantics of C0, a type-safe subset of
the C programming language. The formalisation of C0 is a typical deep embedding
of a programming language in HOL, aiming at the meta-theory of C0. The syntax
as well as the semantics of all relevant notions of the programming language are
defined. The main results are the type safety theorems for C0. They describe the
guarantees for the program execution that result form the static welltypedness and
definite assignment checks. In particular C0 ensures that all variables and heap
locations are initialised and that the execution respects the static typing.
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C H A P T E R 8

Embedding C0 into Simpl

This chapter introduces a translation from C0 to Simpl and proves its sound-
ness. Due to this translation, C0 programs can be verified in the verification
environment for Simpl and the proven program properties can be transferred to
C0 again.
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The program model for C0 presented in the previous chapter is a typical deep
embedding of a programming language in HOL. For every relevant notion of the
programming language, its types, values, expressions and statements the syntax is
defined and then a type system, a definite assignment analysis and an operational
semantics is developed on top of the syntax. Finally, properties of the programming
language like type safety are proven. The model is well suited for these proofs.
We can explicitly reason about welltyped expressions and values, about subject
reduction properties and definedness of variables. The type safety proof ensures
that for a welltyped and definitely assigned program we do not have to worry
about typing issues and definedness of local variables anymore, when investigating
individual C0 programs. Therefore it is completely legal to abstract from typing and
definedness issues for program verification. The embedding of C0 in Simpl realizes
such an abstraction step. C0 variables are identified with record fields, C0 types
with HOL types, C0 expressions and atomic statements like assignment or memory
allocation are translated to lookup and updates in the state space record.

A peculiarity of the translation of C0 to Simpl is that it cannot be defined gener-
ically for all C0 programs, since variables in Simpl are represented as record fields.
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Therefore the shape of the record depends on every individual program. However,
we can only reason about record fields in HOL as soon as the record-type itself
is defined. To remedy this situation we present a two layered approach. We first
define and verify a translation of C0 to Simpl that is parametrised on translation
functions for access and update of individual variables and heap cells. This proof
builds on commutation properties for those basic access and update functions. For
each individual program these properties have to proven. By splitting the proof
in the parameterised general part and the program specific part it is possible to
conduct the main parts once and for all. Moreover, the remaining commutation
properties are simple enough to be proven fully automatically for each individual
program.

Before going into the details of the formalisation of the abstraction and the cor-
responding soundness results, we sketch various aspects to give a better intuition.

Workflow In the end we want to prove functional properties and termination of
C0 programs. We start with a C0 program, abstract it to Simpl and then verify
this Simpl program. The soundness theorem for the abstraction allows to transfer
the program properties down to the C0 program again. A Hoare triple specifies
the input/output behaviour for all program runs that start in a state satisfying the
precondition. To transfer a Hoare triple from Simpl to C0, we need to know that the
behaviour of the C0 program is captured by the behaviour of the Simpl program.
Then it is also covered by the Hoare triple. Therefore we have to prove that the
C0 program can be simulated by the corresponding Simpl program. In context of
total correctness we also have to show that termination of the Simpl program implies
termination of the corresponding C0 program. The correctness of the C0 embedding
in Simpl is not only important to ensure soundness of the overall verification. It is
used to transfer proven program properties from a high level of abstraction as in
Simpl, to the lower levels of abstraction and in the end to the machine model of the
underlying computer hardware. Some parts of the overall system verification can
only be carried out on the lower levels. Hence it is pragmatically important to make
the proven properties accessible for the lower levels.

Variables Consider a simple C0 program with only two local variables, an integer
i and a Boolean b. In Simpl we represent this state space by a record with two fields:

record st = i::int b::bool

However, in C0 the local variables are represented as a mapping from variable
names to values:

vname⇒ val option

By getting rid of the option and the val layer, the Simpl state space representation
introduces two levels of abstraction. All variables are defined and have an individ-
ual HOL type. The C0 type system and definite assignment analysis justifies these
abstractions.

Variable lookup and assignment is translated to record lookup and update. For
example the assignment i = i + 1 in C0:

Ass (VarAcc ”i” Integer)
(BinOp plus (VarAcc ”i” Integer) (Lit (Prim (Intg 1)) Integer) Integer),
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is abstracted to a Basic command in Simpl:

Basic (λs. s(|i := i s + 1|))

Procedure calls The state-record in Simpl is flat. The local variables of all pro-
cedures are side-by-side in the same state-record. A local variable of a procedure
is visible within every other procedure. Hence a procedure could read the local
variables of another procedure. However, for C0 programs the type system ensures
that a procedure only touches its own variables. Pointers to local variables are also
excluded in C0. Hence such odd behaviour is ruled out for those Simpl procedures
that are translated from a C0 procedure.

Another issue is the procedure call semantics. If a procedure is entered in C0, the
local variables are all reset to None (cf. SC Rule in Figure 7.7 on p. 133). In Simpl
no such reset takes place. It cannot even be expressed in Simpl, since the record
fields yield the plain values without the option layer. However, since the definite
assignment analysis of C0 ensures that we never access uninitialised variables, we
can safely skip resetting the local variables in the corresponding Simpl program.

Heap In C0 the heap is modelled as a mapping from locations to values. Even
compound values like structures and arrays fit in one heap cell. The most promi-
nent use of the heap is to store dynamic structures like lists and trees. These are
represented as structures in C and also C0, e.g. here is a typical list structure:

struct list {

int cont;

struct list* next;

}

In Simpl we follow the split heap approach introduced in Section 2.4.9.1. The
main benefit of splitting the heap is that aliasing between structure fields and hence
also aliasing between pointers of different C0 type is already ruled out by the model.
To deal with aliasing is the main challenge when reasoning about pointer programs.
Reducing the source of potential aliases pays off during program verification.

In the split heap model, we have a separate heap f of type ref ⇒ value for each
component f of type value of the structure. Hence we get:

record heap =
cont :: ref ⇒ int
next :: ref ⇒ ref

In this heap model we obtain individual HOL types for each structure field
and most important we rule out aliasing between distinct structure fields. As a
consequence, aliasing between different heap structures like lists and trees is ruled
out, too. The separation of types and fields in a C0 heap is guaranteed by the C0
type system. In the embedding to Simpl we directly encode it into the heap-model.

To get a uniform representation of structured values in both the heap and the
variables, we also split structures in variables. Consider a variable x of a pair
structure:
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struct pair {

int fst;

int snd;

};

struct pair x;

In Simpl we introduce two variables:

record st =
x-fst :: int
x-snd :: int

The translation of access and update of C0 structures has to be aware of this
different representation. For nested structures, or arrays of structures a kind of
normalisation takes place. Consider an array of pairs:

struct pair[100] a.

Again variable a is split up in two variables in Simpl. One array a-fst and one
array a-snd. An array access a[10].fst is thus translated to a-fst[10], since arrays are
represented as HOL lists. The array access and the field-selection are swapped in
the translation. In general first the field-selections are applied, followed by the array
accesses. An expression like a[10] yields a pair structure as result. The translation
of such an (non-atomic) expression into Simpl depends on the context. For example,
if it appears as a parameter of a procedure or in an assignment it is translated to a
sequence of updates of the components a-fst and a-snd.

Allocation The heap in C0 is a mapping from locations to values: loc⇒ val option.
The locations that store None are considered to be free and can be used to allocate a
new object. In the split-heap model we have removed the option layer. This makes it
more convenient to reason about lookup and update in the heap, but we have lost the
information about allocated heap locations. We introduce an additional component
to the state space, which records the allocation information: a list of allocated
locations. In practical applications major parts of the code are only concerned with
heap lookup and update and only small parts actually allocate memory. Separating
heap and allocation fits well into this scenario.

Runtime Faults Runtime faults in C0 are caused by array bound violations and
dereferencing null pointers. In the semantics (left-)expression evaluation and as-
signment watch for these faults and signal a violation by returning None. In Simpl
runtime faults are modelled as explicit guards. The expressions themselves do not
have to distinguish between Some and None. Expression evaluation and runtime
faults are disentangled in the program logic. This allows to integrate automatic
methods that are only concerned with the runtime faults (cf. Section 5) and keep the
focus of interactive verification on the functional aspects.

Arithmetic C0 employs bounded modulo arithmetic since it is supposed to run
on a real machine. For program verification we want to preserve the opportunity
to “think unbounded”. To keep consistency with C0 we introduce guards that
ensure that the program stays within the arithmetic bounds, and thus no over- or
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underflows occur during program execution. Strictly speaking the soundness proof
for embedding C0 in Simpl is modular with respect to arithmetic. We can plug in
the C0 arithmetic, relieving us from guards, or unbounded arithmetic, relieving us
from modulo calculations. We keep the flexibility of Simpl to choose the appropriate
approach, depending on the application.

Formalisation Issue For the initial example of a C0 program with only two vari-
ables, an integer i and a Boolean b, the abstraction of a variable access to i or b can
be formalised as:

abs (VarAcc ”i” Integer) = i
abs (VarAcc ”b” Boolean) = b

We map the variable identifiers to the corresponding record selectors. There are
two problems with this abstraction in HOL:

• We cannot generically define how to map a variable identifier to a record field,
unless the record is defined.

• The abstraction function abs is not welltyped in HOL. The first clause has type
st⇒ int, the second one st⇒ bool.

There is no meta theory of record types in HOL. Only instances of record types
start living in a HOL-theory the moment they are defined. Within HOL we cannot
generically define how a list of C0 variable declarations is mapped to a record-type
with a field for each variable. Hence we can only define the translation from C0 to
Simpl for each individual C0 program, since we then know the state space record.
However, fortunately we do not have to redo the complete soundness proof for
each C0 program. Major parts of the translation from C0 to Simpl can indeed be
formulated in HOL. Only for the basic operations concerning access/update of a
variable or structure field we need to know the state record. We can use these basic
actions as parameters to the abstraction function as well as the theorems and proofs.
For example, we can supply a lookup function V to the abstraction function, which
tells how a lookup of a C0 variable works in the Simpl state space:

abs V (VarAcc vn T) = V vn

This generalised abstraction function can be defined generically for all C0 pro-
grams. The generic soundness proof puts constraints on the lookup function V. For
each individual C0 program we define V and have to prove these constraints. These
proof obligations are simple enough to be discharged automatically. For variable
updates we employ the same idea.

For the same typing issues mentioned before we cannot simultaneously define
V ”i” = i and V ”b” = b. To remedy the situation we fall back to the C0 values:

V ”i” = λs. Prim (Intg (i s))
V ”b” = λs. Prim (Bool (b s))

This gives raise to the question if we have lost one of the major goals of the
embedding into Simpl: to get rid of the explicit typing in terms and use HOL types
instead. Fortunately the answer is no. Since the expressions are always embedded
in statements, their values are only intermediate results in a state update. Hence
in the end val constructors and destructors cancel each other. For example, the
abstraction function translates the assignment i = i + 1 to
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Basic (λs. s(|i := the-Intgv (Prim (Intg (i s))) + the-Intgv (Prim (Intg 1))|)).

This rewrites to the desired

Basic (λs. s(|i := i s + 1|)).

Since we only consider welltyped C0 programs this rewriting step always works.

8.1 Splitting Types and Values

Basically C0 values are abstracted to Simpl by getting rid of the value constructors
and by splitting structures to their components.

C0 Simpl

Prim (Bool b) b
Prim (Intg i) i
Prim (Unsgnd n) n
Prim (Chr c) c
Prim Null NULL
Prim (Addr l) Rep-loc l
Structv fs split map snd fs
Arrv vs split vs

Value Null is translated to reference NULL and addresses are converted to ref-
erences by the representation function Rep-loc. Since locations are defined as non
NULL references (cf. p. 122) we always get a proper reference. Structures are (re-
cursively) split to their primitive values. For example, for a pair structure like
Structv [(”fst”, Prim (Intg i)), (”snd”, Prim (Intg j))] the components i and and j are
stored separately in the Simpl state. Arrays are represented as a list of primitive
values. We cannot directly define a HOL function that performs the transformation
described in the table, since its result type depends on the input value. For example,
for a Bool b a Boolean is returned but for Intg i an integer. As motivated in the pre-
vious section values only appear nested in statements and there we can apply the
corresponding value destructors. Moreover, we can reason about splitting values to
their atomic components without leaving val. The essence of the abstraction to Simpl
is expressed in terms of the concrete C0 representation. This idea is used through-
out the whole rest of this chapter. We describe the effect of abstract operations in
the Simpl level by the corresponding effect in the C0 level. Because of the deep
embedding of C0 types and values it is straightforward to define manipulations on
this level.

We call a C0 type or value atomic if we do not have to split it for the embedding
into Simpl. All primitive values are atomic, arrays are atomic if the element type is
atomic and structures are atomic only in the borderline case when they do not have
any fields:

atomicT :: ty⇒ bool
atomicT (Struct fTs) = fTs = []
atomicT (Arr n T) = atomicT T
atomicT - = True

Definition 8.1 I
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As running examples we introduce the structures nested and pair:

struct nested {

struct { int x; bool y;} a;

int b;

}

struct pair {

int fst;

int snd;

}

The function selectors collects all field selectors of a type and returns them as a
list of paths to the atomic components. For example, for nestedwe get:

[[”a”, ”x”], [”a”, ”y”], [”b”]]

For arrays the selectors of the element type are returned.

selectors :: ty⇒ fname list list
selectors (Struct fTs) = if fTs = [] then [[]]

else concat (map (λ(f, T). map ((·) f ) (selectors T)) fTs)
selectors (Arr n T) = selectors T
selectors - = [[]]

J Definition 8.2

Given a type T and a selector path ss, function selT (T, ss) retrieves the selected
component type bsTc if the path is valid and None otherwise. The selection dis-
tributes over array types, e.g. given an array of pairs, the path [”fst”] selects an array
of integers.

selT :: ty × fname list⇒ ty option
selT (Boolean, []) = bBooleanc
selT (Integer, []) = bIntegerc
selT (UnsgndT, []) = bUnsgndTc
selT (CharT, []) = bCharTc
selT (NullT, []) = bNullTc
selT (Ptr tn, []) = bPtr tnc
selT (Struct fTs, []) = bStruct fTsc
selT (Struct fTs, s·ss) = case map-of fTs s of None⇒ None | bTc ⇒ selT (T, ss)
selT (Arr n T, ss) = case selT (T, ss) of None⇒ None | beTc ⇒ bArr n eTc
selT (-,-) = None

J Definition 8.3

We can relate selectors and selT. If we can select an atomic type, then the path is
among the selectors:

If selT (T, ss) = bsTc and atomicT sT then ss ∈ set (selectors T). J Lemma 8.1

Proof. By induction along the recursion-scheme of selT. �

For the opposite direction we need to know that the selectors are distinct. Oth-
erwise a selector could be hidden by another one with the same name, since the
map-of used by selT only finds the most recent field.

distinct-selectors :: ty⇒ bool
distinct-selectors (Struct fTs) = distinct (map fst fTs) ∧

(∀T∈snd ‘ set fTs. distinct-selectors T)
distinct-selectors (Arr n T) = distinct-selectors T
distinct-selectors - = True

J Definition 8.4
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If distinct-selectors T and ss ∈ set (selectors T) then
∃sT. selT (T, ss) = bsTc ∧ atomicT sT.

Lemma 8.2 I

Proof. By induction along the recursion-scheme of selectors. �

Every wellformed type has distinct selectors.

If TE` T
√

then distinct-selectors T.Lemma 8.3 I

Proof. By induction on wellformedness of types. �

Similar to selT we define a function idxT to index array types. It selects the
element type of an array or sub-array types of multi-dimensional arrays. It gets a
list of indices as parameter. Only the length of this list is relevant.

idxT :: ty × ′a list⇒ ty option
idxT (T, []) = bTc
idxT (Arr n T, i·is) = idxT (T, is)
idxT (-,-) = None

Definition 8.5 I

A central property of splitting types is that selections can always be applied
before indexing. This reflects the essence of the split-heap approach. Selection
means to pick a heap, which always is the first step.

Let selT (T, ss) = bsTc and idxT (sT, is) = biTc and selT (iT, ss ′) = bsiTc. ThenLemma 8.4 I

∃ssT. selT (T, ss @ ss ′) = bssTc ∧ idxT (ssT, is) = bsiTc.

Proof. By induction on the recursion-scheme of selT (T, ss). �

The functions selT and idxT yield an option type. They check whether a selector
path or index list fits to a type. Given a value of the same type the functions selv and
idxv select the corresponding sub-value.

selv :: val × fname list⇒ val
selv (Prim v, []) = Prim v
selv (Structv fVs, []) = Structv fVs
selv (Structv fVs, s·ss) = case map-of fVs s of None⇒ arbitrary | bvc ⇒ selv (v, ss)
selv (Arrv vs, ss) = Arrv (map (λv. selv (v, ss)) vs)

Definition 8.6 I

idxv :: val × nat list⇒ val
idxv (Prim x, []) = Prim x
idxv (Arrv vs, i·is) = idxv (vs[i], is)

Definition 8.7 I

The predicate dimfits tests, whether the dimension (length) of an index list fits to
a type:

dimfits :: ty⇒ ′a list⇒ bool
dimfits T is = (∃ iT. idxT (T, is) = biTc)

Definition 8.8 I

To safely index a value we also have to ensure that every index lies within the
bounds of the array:

idxfits :: (val × nat list)⇒ bool
idxfits (v, []) = True
idxfits (Arrv av, i·is) = i < |av| ∧ idxfits (av[i], is)
idxfits (-,-) = False

Definition 8.9 I
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A central property of selecting sub-values with selv is the preservation of the
array structure. For example, if we take an array A of pairs with 100 elements then
both the array selv (A, [”fst”]) and selv (A, [”snd”]) have 100 elements. This carries
over to multiple dimensions and selections:

If `v v :: T and selT (T, ss) = bsTc and idxfits (v, is) then idxfits (selv (v, ss), is). J Lemma 8.5

Proof. By induction on the recursion-scheme of selT. �

In Simpl we employ the split-heap model. Every value is split into its atomic
components. The function explode describes this effect. It takes a type and a value
and returns the list of atomic values according to the selectors of the type.

explode :: (ty × val)⇒ val list
explode (T, v) ≡ map (λss. selv (v, ss)) (selectors T)

J Definition 8.10

For the reverse effect, to build a compound value out of the list of atomic values,
we use the type as blueprint for the value.

implode :: (ty × val list)⇒ val
implode (Boolean, [b]) = b
implode (Integer, [i]) = i
implode (UnsgndT, [n]) = n
implode (CharT, [c]) = c
implode (Ptr tn, [p]) = p
implode (NullT, [p]) = p
implode (Struct fTs, vs) = let fs = map fst fTs;

Ts = map snd fTs;
vss= partition vs (map (length ◦ selectors) Ts);
vs ′= map implode (zip Ts vss)

in Structv (zip fs vs ′)
implode (Arr n T, vs) = Arrv

(map (λvs. implode (T, vs)) (transpose (map the-Arrv vs)))

J Definition 8.11

For primitive values the list of atomic values is the singleton list.
For structures the list of values is first partitioned to the sublists corresponding

to the selectors of each field. These sublists are imploded.

partition :: ′a list⇒ nat list⇒ ′a list list
partition xs [] = []
partition xs (n·ns) = take n xs·partition (drop n xs) ns

J Definition 8.12

In the nested example the split version of a value is of the form

[Prim (Intg x), Prim (Bool y), Prim (Intg b)].

The first two values belong to sub-structure a. Hence partitioning groups the first
two elements together:

[[Prim (Intg x), Prim (Bool y)], [Prim (Intg b)]].

Since selection distributes over arrays, the value lists have to be transposed
before they are imploded.
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transpose :: ′a list list⇒ ′a list list
transpose [] = []
transpose ([]·xss) = transpose xss
transpose ((x·xs)·xss) = map hd ((x·xs)·xss)·transpose (map tl ((x·xs)·xss))

Definition 8.13 I

For example, an array of pairs is exploded into two lists, one with the first
elements and one with the second elements. Before imploding it, we group the
corresponding first and second elements together by transposing the matrix of
elements:

transpose [[fst1, fst2, fst3], [snd1, snd2, snd3]] = [[fst1, snd1], [fst2, snd2], [fst3, snd3]].

If a value v has type T, and T has distinct selectors, then imploding reverts the
effect of exploding v. This reflects the situation between corresponding values in a
C0 state and a Simpl state. In Simpl the value is stored in its exploded version.

If `v v :: T and distinct-selectors T then implode (T, explode (T, v)) = v.Theorem 8.6 I

Proof. By induction on `v v :: T. �

8.2 Expressions

An expression is evaluated in a certain program state. Its value can depend on
the state of global and local variables and the heap. The shape of the Simpl state
record is not known until we have a concrete C0 program to translate. Since we
want to define a generic abstraction from C0 to Simpl, we supply lookup functions
for variables and heap as parameters. These lookup functions have to get all the
necessary information, so that we can properly implement them later for individual
C0 programs. The construction of these functions is completely schematic and can
thus be automatised (cf. Section 8.8). We start with global variables. At least we
have to know the C0 variable name vn. Since we split all compound variables to
their atomic components we also supply a selector path ss. To properly deal with
multi-dimensional arrays we also consider an index list is. For example, a two
dimensional array of integers is stored as int list list in the Simpl state-record. If an
empty index list is supplied, this two dimensional list is converted to a C0 array
value. If one index is given we first select the list in the Simpl state and get an
int list that is converted to a C0 array value. If two indexes are given we first select
the element and then make a primitive C0 value out of it. This strategy avoids to
introduce too many C0 value constructors in the intermediate values. Otherwise
it may happen that C0 value constructors are still visible in the resulting Simpl
program, which we want to avoid. We come back to this point when the abstraction
function for expressions is defined. For example, consider a global array of pairs:
struct pair [100] a. To lookup a component we supply the name ”a”, a selector
path [], [”fst”] or [”snd”] and a proper index list [] or [i].

Altogether we have the following signature of the lookup function for global
variables, where ′s is the type variable for the Simpl state:

GV :: vname⇒ fname list⇒ ′s⇒ nat list⇒ val.
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Some remarks on the order of parameters. The variable name in Simpl can depend
on the C0 variable name and the selector path. So GV vn ss sa denotes the Simpl
representation of the variable (component), where GV is the name of the lookup
function, and sa is a Simpl state. An atomic value in Simpl can be a primitive value
or a multi-dimensional list. This is modelled by the type: nat list⇒ val.

To lookup local variables we additionally supply the current procedure name pn
to disambiguate name collisions:

LV :: pname⇒ vname⇒ fname list⇒ ′s⇒ nat list⇒ val.

For heap lookup we identify the (split-)heap in Simpl by the type-name and a
selector path. The address is identified by the reference:

H :: tname⇒ fname list⇒ ref ⇒ ′s⇒ nat list⇒ val.

The following definitions and theorems all depend on these lookup functions.
They are common parameters in the abstraction functions and theorems. To group
such common parameters and even specify them by a set of assumptions, Isabelle
provides a mechanism called locale [10]. These locales can be used to realise
modular reasoning. First an abstract theory in the context of the locale is developed.
Later on, one can instantiate the locale parameters and provide proofs for the locale
assumptions. Then Isabelle automatically specialises all the locale theorems to the
concrete application. This exactly fits to our situation. Currently we develop an
abstract theory, how to embed C0 to Simpl and prove crucial properties of this
translation. We collect the necessary requirements on the basic lookup and update
functions. When we later on verify individual C0 programs, we supply these basic
lookup and update functions, prove their requirements and finally can use the
soundness theorem for the translation.

The first locale expr defines the context in which we define the abstraction of
expressions from C0 to Simpl. To highlight which definitions and theorems depend
on a locale they are marked with (in <locale-name>).

locale expr = J Definition 8.14
fixes

global variable lookup:
GV :: vname⇒ fname list⇒ ′s⇒ nat list⇒ val
local variable lookup:
LV :: pname⇒ vname⇒ fname list⇒ ′s⇒ nat list⇒ val
heap variable lookup:
H :: tname⇒ fname list⇒ ref ⇒ ′s⇒ nat list⇒ val
unary operations:
U :: (unop × prim)⇒ prim
binary operations:
B :: (binop × prim × prim)⇒ prim

defines
variable lookup:
V :: vname set⇒ pname⇒ vname⇒ fname list⇒ ′s⇒ nat list⇒ val
V L pn vn ss sa is ≡ if vn ∈ L then LV pn vn ss sa is else GV vn ss sa is

GV, LV and H are the lookup functions for global and local variables and the
heap. The locale also allows to give local definitions of parameters, like the variable
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lookup function V. It gets a set of local variables L as parameter and decides whether
to make a local lookup via LV or a global lookup via GV. As naming convention
the subscript a in state sa is used for abstract Simpl states and a plain s is used
for C0 states. The functions U and B are used to abstract the unary and binary
operations of C0. As mentioned in the overview in the previous section this allows
us to postpone the decision how to reason about arithmetic in the program logic.
We also parametrise unary operations, because of the type-cast to-int. In C0 it is
also defined with modulo arithmetic (cf. Figure 7.4 on p. 130). If we use unbounded
arithmetic in the Hoare logics the HOL conversion int can be used instead.

In Simpl there are no explicit syntactic terms for expressions. Expressions are
shallow-embedded as functions depending on the current state. Hence abstracting
a C0 expression to Simpl basically means to evaluate a C0 expression in an abstract
Simpl state.

Abstraction of expressions has the format:Definition 8.15
(in expr) Abstracting

expressions

I

abse L pn ss is e sa

and is defined in Figure 8.1, where L is a set of local variables, pn a procedure name,
ss a selector path, is an index list, e an expression and sa an abstract Simpl state.

abse :: vname set⇒ pname⇒ fname list⇒ nat list⇒ ty expr⇒ ′s⇒ val

abse L pn ss is (Lit v T) sa = idxv (selv (v, ss), is)

abse L pn ss is (VarAcc vn T) sa = V L pn vn ss sa is

abse L pn ss is (ArrAcc e i T) sa =
let n = the-Unsgndv (abse L pn [] [] i sa) in abse L pn ss (n·is) e sa

abse L pn ss is (StructAcc e fn T) sa = abse L pn (fn·ss) is e sa

abse L pn ss is (Deref e T) sa =
let r = the-Ref (abse L pn [] [] e sa);

tn = tname (typ e)
in H tn ss r sa is

abse L pn ss is (UnOp uop e T) sa = Prim (U (uop, the-Prim (abse L pn ss is e sa)))

abse L pn ss is (BinOp bop e1 e2 T) sa =
Prim (B (bop, the-Prim (abse L pn ss is e1 sa), the-Prim (abse L pn ss is e2 sa)))

abse L pn ss is (LazyBinOp bop e1 e2 T) sa =
Prim (the (apply-lazybinop (bop, the-Prim (abse L pn ss is e1 sa), the-Prim (abse L pn ss is e2 sa))))

Figure 8.1: Abstraction of expressions

The parameters ss for the selector path, and is for the index list are accumulators.
On the top-level abse L pn [] [] e sa is invoked. As abse descends into the expression it
augments ss with a selector when it passed a structure access, and is with an index
as it passes an array access. The local variables L and the procedure name pn specify
the current procedure context of the expression.



8.2 Expressions 159

For literal values the functions idxv and selv are used to select the sub-value ac-
cording to the accumulated ss and is. This clause also reflects the essence of splitting
values, variables and heaps in Simpl. Structure and array accesses are normalised.
First all structure accesses are applied by selv followed by the array indexing. In the
corresponding C0 expression, selection and indexing can be interleaved, depending
on the type. For example, in an array of pairs we first have to index the array before
we can select the first component of a pair. In Simpl there are two arrays, one storing
all the first components and one storing the second components. By choosing the
array to index we have already implicitly applied the selection.

Variable access is handled by lookup function V.
For array access ArrAcc e i T the index is evaluated and added in front of is before

descending into e.
Analogous for structure access StructAcc e fn T the field name is augmented to

ss before descending into e.
For dereferencing pointers Deref e T we calculate the reference and extract the

type-name from the type of e and finally use the lookup function H. The auxiliary
function tname is defined as follows:

tname :: ty⇒ tname
tname (Ptr tn) = tn

J Definition 8.16

For unary, binary and lazy binary expressions first the subexpressions are evalu-
ated. The result is passed to U in case of an unary operation, to B in case of a binary
operation, or otherwise directly to apply-lazybinop.

For the abstraction abse, the proper values for ss and is depend on the type of
expression e. For primitive types both ss and is have to be empty, since neither selec-
tion nor indexing of primitive types makes any sense. Since all unary, binary and
lazy-binary operations work on values of primitive types we can always consider
ss and is to be empty.

The selector path is propagated through the term, since all variables and heap-
components are split in Simpl. Hence we collect all the selectors in order to pick the
corresponding component as we finally reach a variable or heap access.

It might be puzzling to propagate the indexes through the term. It may be more
intuitive to omit the index accumulator is completely, and simply generate a list
lookup whenever an array access ArrAcc e i T is processed:

abs ′ L pn ss (ArrAcc e i T) sa =
let a = the-Arrv (abs ′ L pn ss e sa);

n = the-Unsgndv (abs ′ L pn [] i sa)
in a[n]

The problem becomes apparent by the following example. Consider a global array
arr of integers , and an array access Arr[i]. Moreover, let this array be mapped to a
record field arr of type int list in the Simpl state space. The desired Simpl expression
for array indexing is the following:

(arr sa)[i sa]

However, if we follow abs ′we get a different term. The abstraction of e yields

Arrv (map (Prim ◦ Intg) (arr sa)),
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since it transforms the int list to a val. Only the constructor Arrv is cancelled by the
destructor the-Arrv. Hence we end up with:

the-Intgv (map (Prim ◦ Intg) (arr sa))[i sa].

Unfortunately we cannot distribute the destructor the-Intgv under the list selection.
This only works if we know that the index is in range of the list: i sa < |arr sa|.
Even if this information is present in a guard in the C0 program, we need semantic
arguments to justify that the guard in front of the expression holds and thus the
destructor can be distributed. Mere syntactic equivalence of both Simpl programs is
not valid. We can completely avoid this problem if we do not construct the complete
array as C0 value in the first place, but just the primitive value resulting from list
selection. Exactly this is implement]ed by propagating the array indexes to the core
lookup functions. The lookup function GV can take care of this:

GV ”arr” [] sa is =
case is of []⇒ Arrv (map (Prim ◦ Intg) (arr sa))
| i·is⇒ Prim (Intg (arr sa)[i])

The abstraction abse does not care about potential runtime faults, like dereferenc-
ing a null pointer or array bound violations. To properly simulate C0 expressions
in Simpl we additionally generate guards that watch for these runtime faults. More-
over, we may have to introduce guards for unary and binary operations. If we use
unbounded arithmetic in Simpl we have to introduce guards that prevent over- and
underflows.

Guards are modelled as state sets in Simpl. As an optimisation we introduce a
guard generating function guarde that produces optional state sets. The result None
means that no guard is necessary. Semantically None can be viewed as syntactic
variant of the universal state set. The “guard” None always holds and thus we can
omit it.

Figure 8.2 defines the operations t, u, ∈∈ and v. They extend operations ∪, ∩, ∈Definition 8.17 I
and ⊆ on ′a set to ′a set option, treating None as the universal set.

A t B ≡ case A of None⇒ None | bAc ⇒ case B of None⇒ None | bBc ⇒ bA ∪ Bc
A u B ≡ case A of None⇒ B | bAc ⇒ case B of None⇒ bAc | bBc ⇒ bA ∩ Bc
a ∈∈ A ≡ case A of None⇒ True | bAc ⇒ a ∈ A
A v B ≡ case B of None⇒ True | bBc ⇒ case A of None⇒ False | bAc ⇒ A ⊆ B

Figure 8.2: Operations on ′a set option

To guard unary and binary operations we extend locale expr with the guard
generating functions Ug and Bg.

locale guard = expr +Definition 8.18 I
fixes

guard for unary operations:
Ug :: unop × ty⇒ ( ′s⇒ prim)⇒ ′s set option
guard for binary operations:
Bg :: binop × ty × ty⇒ ( ′s⇒ prim)⇒ ( ′s⇒ prim) ⇒ ′s set option
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The arguments of type ′s⇒ prim describe the values of the parameters for the
unary or binary operation. The abstraction on the state ′s is needed, since the value
can depend on the state and may have to be incorporated into the resulting guard,
which is a state set and thus also depends on the current state.

Figure 8.3 defines the guard generation for expression e: J Definition 8.19
(in guard) Guarding
expressionsguarde L pn ss is e,

where L is a set of local variables, pn a procedure name, ss a selector path, is an
index list, e an expression and sa an abstract Simpl state.

guarde :: vname set⇒ pname⇒ fname list⇒ ( ′s⇒ nat) list⇒ ty expr⇒ ′s set option

guarde L pn ss is (Lit v T) = guardi (λsa is. idxv (selv (v, ss), is)) [] is

guarde L pn ss is (VarAcc vn T) = guardi (V L pn vn ss) [] is

guarde L pn ss is (ArrAcc e i T) =
let n = λsa. the-Unsgndv (abse L pn [] [] i sa) in guarde L pn ss (n·is) e u guarde L pn [] [] i

guarde L pn ss is (StructAcc e fn T) = guarde L pn (fn·ss) is e

guarde L pn ss is (Deref e T) =
let r = λsa. the-Ref (abse L pn [] [] e sa);

tn = tname (typ e)
in guarde L pn [] [] e u b{sa. the-Ref (abse L pn [] [] e sa) , NULL}c u

guardi (λsa. H tn ss (r sa) sa) [] is

guarde L pn ss is (UnOp uop e T) =
guarde L pn ss is e u Ug (uop, typ e) (λsa. the-Prim (abse L pn ss [] e sa))

guarde L pn ss is (BinOp bop e1 e2 T) =
guarde L pn ss [] e1 u guarde L pn ss [] e2 u

Bg (bop, typ e1, typ e2) (λsa. the-Prim (abse L pn ss [] e1 sa)) (λsa. the-Prim (abse L pn ss [] e2 sa))

guarde L pn ss is (LazyBinOp bop e1 e2 T) =
let g1 = guarde L pn ss [] e1;

g2 = guarde L pn ss [] e2
in case bop of logical-and⇒ g1 u (b{sa. abse L pn [] [] e1 sa = Prim (Bool False)}c t g2)
| logical-or⇒ g1 u (b{sa. abse L pn [] [] e1 sa = Prim (Bool True)}c t g2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
guardi :: ( ′s⇒ nat list⇒ val)⇒ ( ′s⇒ nat) list⇒ ( ′s⇒ nat) list⇒ ′s set option
guardi arr rs [] = None
guardi arr rs (i·is) = b{sa. i sa < |the-Arrv (arr sa (aps rs sa))|}c u guardi arr (rs @ [i]) is

Figure 8.3: Guarding expressions

Guard generation follows the same scheme as abse and augments ss and is as it
comes along a structure or array access. The array bound checks are not introduced
by the array access ArrAcc e i T but when the array itself is reached. This is usually a
variable or heap lookup, or rarely a literal value. The auxiliary function guardi then
generates the indexing guards for all the accumulated indexes is.
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For literal values and variable access the guard generation is handled by guardi.
For array access ArrAcc e i T the abstracted index is augmented to the list is in

order to guard expression e. Moreover, the index i is guarded, too.
For structure access StructAcc e fn T the field name fn is augmented to ss to guard

e. For example, for an array of pairs and an expression A[i].fst this generates
a guard for list A-fst in the corresponding Simpl state. That way the information
about the affected sub-variable is propagated to V or H, respectively.

For dereferencing pointers with Deref e T, expression e is guarded and the result-
ing reference is tested against NULL.

For unary and binary operation the sub-expressions are guarded and the guard
functions Ug and Bg are consulted.

For lazy binary operations we optimise this scheme, to allow a C coding stereo-
type. The test for a null pointer is often part of a Boolean expression that also
dereferences the pointer:

if p != null && p->x < 5 ...

Since the second conjunct is only executed if the first conjunct holds this expres-
sion is safe. For the guard generation this means that we can regard the first
part of the conjunction to be true while testing the guard for the second expres-
sion. This implication is encoded as union t in guarde, according to the tautology:
(P −→ Q) = (¬ P ∨ Q).

The approach to propagate the index list through the term, may appear unnec-
essarily complicated. It may be more intuitive to omit the index accumulator is
completely and simply generate the guard while the array access ArrAcc e i T is
processed. However, since abse uses the index accumulator, guarde uses the index
accumulator, too. Both recursions are “synchronous”. The main soundness theorem
for expression abstraction (cf. Theorem 8.7) considers abse and gaurde simultaneously.
If the guard holds, then the value of the abstracted expression has to be the same as
in C0. The syncronicity of both recursions leads to a clear inductive argument.

The auxiliary function guardi generates the guards for all the accumulated array
accesses. The first argument is the abstraction of the array, the second one is an in-
ternal accumulator that reverses the third argument is. Consider a two dimensional
array and the access A[i][j]. Both accesses have to be guarded:

{sa. i sa < |A sa| ∧ j sa < |(A sa)[i sa]|}.

The selection of the current dimension is accumulated in argument rs of guardi.
Note that argument arr does not directly yield A sa but Arrv (map ValConstr (A sa)),
where ValConstr is a place holder for a proper val-constructor depending on the
type of the array. The Arrv is cancelled by the destructor the-Arrv inserted by guardi.
Moreover, since we only need the length of the list, we can get rid of mapping the
value constructor on the list, by simplifying with the equation:

|map f xs| = |xs|.

We have defined abstraction of C0 expressions to Simpl expressions together
with the corresponding guard generation. Now we draw our attention to the
desired correctness property of this translation. We want to simulate C0 expression
evaluation in Simpl, or to be more precise:
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If the guard in Simpl holds, then C0 expression evaluation does not cause
a runtime fault, and the expression values in C0 and Simpl coincide.

In this formulation the guards can fail more often than runtime faults in C0 occur.
This is intended, since it depends on the representation of unary and binary oper-
ations, if more guards than runtime faults are needed. For example, if we employ
unbounded arithmetic in the program logic, then the guards also watch for over-
and underflows. In C0 however, over- and underflows are silent. In the extreme
case of an unsatisfiable guard the simulation property trivially holds. So this cor-
rectness theorem does not protect us against the trivial translation of all the guards
to {|False|}. However, such a vacuous translation is immediately detected the first
time one attempts to prove a Simpl program correct, since the Hoare logic enforces
to prove that the guards always hold. This is not possible for unsatisfiable guards.

Before we formulate the simulation theorem, we specify the required properties
of the locale parameters. To minimise those requirements, we only specify the
behaviour of LV, GV and H for atomic values. Compound values can be constructed
from the atomic components as Theorem 8.6 suggests. To specify the properties we
relate C0-states with the corresponding Simpl states and compare the effects of C0
operations on the C0-state and abstracted operations on the Simpl state. We cannot
only relate exactly one Simpl state to a C0 state. The Simpl state space makes
no distinction between global and local variables. All the local variables of all
procedures are visible. In a C0 program however, there is only one active procedure
frame at each point in the execution. The local variables of other procedures are not
visible in this state. Therefore only the content of the local variables in the active
frame has to coincide with the Simpl state. All the values of the local variables of
other procedures are irrelevant and thus can have an arbitrary value. To abstract
the state we introduce another parameter to the locale:

abss :: pname⇒ state⇒ ′s set

It takes the name of the current procedure and a C0-state and yields the set of all
related Simpl states. As example consider a program with two procedures, p and
q, with local variables C and I, respectively, and the standard mapping to a Simpl
record. The following is a proper abstraction relation for the state:

abss pn s =
if pn = ”p” then {sa. ∀b. lvars s ”C” = bPrim (Bool b)c −→ C sa = b}
else if pn = ”q”

then {sa. ∀ i. lvars s ”i” = bPrim (Intg i)c −→ I sa = i} else UNIV

In the context of procedure p only the content of Boolean C has to coincide, in the
context of q only the content of integer I.

The locale lookup also introduces the type environment TE and the typing GT for
global variables and LT for local variables.
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locale lookup = guard +Definition 8.20 I
fixes

state abstraction:
abss :: pname⇒ state⇒ ′s set
type environment:
TE :: tname⇀ ty
typing for global variables:
GT :: vname⇀ ty
typing for local variables:
LT :: pname⇒ vname⇀ ty

assumes
(1) Every atomic component of a local C0 variable can be obtained via LV from

an abstract state:
[[lvars s vn = bvc; LT pn vn = bTc; `v v :: T; selT (T, ss) = bsTc;
atomicT sT; idxfits (selv (v, ss), is); sa ∈ abss pn s]]
=⇒ LV pn vn ss sa is = idxv (selv (v, ss), is)

(2) Every atomic component of a global C0 variable can be obtained via GV from
an abstract state:
[[gvars s vn = bvc; GT vn = bTc; `v v :: T; selT (T, ss) = bsTc; atomicT sT;
idxfits (selv (v, ss), is); sa ∈ abss pn s]]
=⇒ GV vn ss sa is = idxv (selv (v, ss), is)

(3) Every atomic component of a C0 heap location can be obtained via H from an
abstract state:
[[heap s l = bvc; TE tn = bTc; `v v :: T; selT (T, ss) = bsTc; atomicT sT;
idxfits (selv (v, ss), is); sa ∈ abss pn s]]
=⇒ H tn ss (Rep-loc l) sa is = idxv (selv (v, ss), is)

(4) If guard Bg holds, then the binary operation does not cause a runtime fault
and B yields the same value as apply-binop:
[[`v Prim (v1 sa) :: T1; `v Prim (v2 sa) :: T2; bounded (v1 sa);
bounded (v2 sa); T1 �bop� T2 :: T]]
=⇒ case apply-binop (bop, v1 sa, v2 sa) of

None⇒¬ sa ∈∈ Bg (bop, T1, T2) v1 v2
| bvc ⇒ sa ∈∈ Bg (bop, T1, T2) v1 v2 −→ B (bop, v1 sa, v2 sa) = v

(5) If guard Ug holds, then the unary operation does not cause a runtime fault
and U yields the same value as apply-unop:
[[`v Prim (v1 sa) :: T1; bounded (v1 sa); �uop�T1 :: T]]
=⇒ case apply-unop (uop, v1 sa) of None⇒¬ sa ∈∈ Ug (uop, T1) v1
| bvc ⇒ sa ∈∈ Ug (uop, T1) v1 −→ U (uop, v1 sa) = v

The premises of the requirements (1)–(3) restrict the selector path ss and the
index list is to sensible values. The selector path has to select an atomic component:
selT (T, ss) = bsTc and atomic sT. The index list has to fit to the selected value: idxfits
(selv (v, ss), is).

Since the basic lookup functions LV, GV and H are only specified for atomic
values, we can only prove the correctness of the abstraction of expressions abse for
atomic values. Note that this already includes all kinds of unary- and (lazy-)binary
operations since they are only concerned with primitive and thus atomic values.
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The following list describes the naming conventions and common entities of the
theorems about the simulation of C0 in Simpl:

Π: C0 program

TE: type environment, maps type names to types usually: TE = tnenv Π
GT: global typing, maps global variable names to types

LT pn: local typing, maps local variable names to types, parametrised by the proce-
dure name pn

L = dom (LT pn): The domain of the local typing defines the set of local variables of
a procedure. Parameters and the result variable are included.

GT ++ LT pn: typing for procedure pn, in case of a conflict global types are overrid-
den with local types

HT: heap typing, maps locations to type names

s: C0 state

sa: Simpl state

dom (lvars s): the domain of the local variables defines the set of assigned local
variables in the current state

There is a small subtlety concerning the index list is. For the guard generation
guarde the indexes are functions from a Simpl state to a natural number, whereas
for abse they are plain natural numbers. The auxiliary functions aps and Ks convert
between both representations. Function aps takes a list of functions and a state and
applies them all to the state. Function Ks takes a list and converts it to a list of
constant functions.

aps :: ( ′s⇒ ′a) list⇒ ′s⇒ ′a list
aps [] s = []
aps (i·is) s = i s·aps is s

J Definition 8.21

Ks :: ′a list⇒ ( ′s⇒ ′a) list
Ks [] = []
Ks (i·is) = (λs. i)·Ks is

J Definition 8.22

Now we prove the main simulation theorem for evaluation of expressions with
an atomic type. If the guard holds, then the C0 expression does not cause a runtime
fault and evaluates to the same value as the Simpl abstraction. The theorem is
generalised for the purpose of the inductive proof. For the intended core theorem
let ss = [] and is = []. Hence sT = T and T has to be atomic. Moreover, dimfits sT []
trivially holds.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, and J Theorem 8.7
(in lookup)
Simulation of atomic
expression evaluation

an abstract Simpl-state sa ∈ abss pn s, given an expression e that is welltyped:
Π,GT ++ LT pn,HT`e e

√
, and also definitely assigned: De e L A, with respect to

A ⊆ dom (lvars s) and L = dom (LT pn), given a selector path ss: selT (typ e, ss) = bsTc,
to an atomic type sT: atomicT sT, then for every proper index list is: dimfits sT is, we
have:
case eval L s e of None⇒¬ sa ∈∈ guarde L pn ss is e
| bvc ⇒ sa ∈∈ guarde L pn ss is e −→

abse L pn ss (aps is sa) e sa = idxv (selv (v, ss), aps is sa) ∧
sa ∈∈ guarde L pn ss is (Lit v (typ e)).
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Proof. By induction on expression e. We omit a detailed proof here, but rather
elaborate on how the different assumptions and constraints fit together. From the
requirements on the lookup functions LV, GV and H in locale lookup (cf. Definition
8.20(1), 8.20(2), and 8.20(3)) we only get assumptions for defined and welltyped
variable and heap values. By the subject reduction Theorem 7.14 we know that
evaluation always yields welltyped values, since the expression itself is welltyped.
For global variables and the heap, definedness of variables and locations is ensured
by the conformance assumption of the C0-state s. For local variables the definite
assignment analysis ensures that we only access assigned and hence defined vari-
ables. This is why A ⊆ dom (lvars s) is required. The subject reduction theorems like
Theorem 7.14 do not need this assumption since they implicitly consider executions
where only defined variables are accessed. Otherwise the evaluation yields None.

Every proof of a single induction case basically follows the case distinction
of the conclusion. In case the C0 expression causes a runtime fault, a certain
(sub-)expression caused it and therefore we know by the induction hypothesis that
the guard for this sub-expression does not hold. Hence the guard for the whole
expression fails, too. For the case ArrAcc a i T this argumentation does not directly
work, since guarding the array access is postponed to the guard of a, by augmenting
the index list is with the current index, say n. To be able to use the information
from the postponed guard at the position of the array access the last conjunct in the
conclusion of the theorem was introduced: The guard holds for the evaluated literal
value, too. Now we can argue that the guard holds for the evaluated array value
for all indexes n·is, if it holds for the array access. Hence if an array bound violation
occurs it is detected by this guard.

In case the C0 expression causes no runtime-fault and evaluates to bvc, we
can assume that the guard for the expression holds since we have to show an
implication. Hence we can conclude that the guards for the sub-expressions hold.
From the induction hypothesis we get that sub-expression evaluation is correctly
simulated by the abstraction and can lift these results to the whole expression. Case
Lit is trivial. Cases VarAcc and Deref are the base cases of the induction and the
places where the specifications for GV, LV and H come in. We can only use them if
idxfits (selv (v, ss), is). We know that guardi holds for all the accumulated indexes is.
Moreover, from the assumptions we know that the dimension of the index lists fits.
By induction on is we show that idxfits for all the is and thus the specifications can
be employed to prove the simulation.

The simulation of unary and binary operations is handled by the Requirements
8.20(5) and 8.20(4). �

Theorem 8.7 allows to simulate evaluation of an expression of an atomic type.
For assignments and procedure calls also compound types can occur. We can
construct a compound value out of its atomic components as in Theorem 8.6. We
also have to guard the expression evaluation to ensure that no runtime faults can
occur. Intuitively it is sufficient to generate only one guard for a proper atomic
component. For example, let A be an array of pairs. To guard an expression A[i], it
is sufficient to generate a guard for either array A-fst or A-snd. Both arrays have the
same length, since they are split versions of an array of pairs. One guard protects
both arrays.

The following lemma expresses that a guard stays valid if we switch the selector
path to an atomic component.
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For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, and J Lemma 8.8
(in lookup)an abstract Simpl-state sa ∈ abss pn s, given an expression e that is welltyped:

Π,GT ++ LT pn,HT`e e
√

, and also definitely assigned: De e L A, with respect
to A ⊆ dom (lvars s) and L = dom (LT pn), for any two selector paths ss and ss ′

(selT (typ e, ss) = bsTc, selT (typ e, ss ′) = bsT ′c) to atomic types sT and sT ′ (atomicT sT,
atomicT sT ′), we have:
If sa ∈∈ guarde L pn ss [] e then also sa ∈∈ guarde L pn ss ′ [] e.

Proof. The lemma has to be generalised to be proven by induction on e. The gener-
alised version is Lemma 8.12. It is postponed since it uses some auxiliary notions
that are introduced in the following section. �

With this lemma we can extend Theorem 8.7 from atomic to arbitrary types. One
guard for an arbitrary selector path ss has to be provided. The compound value
is constructed by first mapping abse to all the selectors of the type. This yields the
exploded version of the value. By imploding it we obtain the value.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, and J Theorem 8.9
(in lookup)
Simulation of
expression evaluation

an abstract Simpl-state sa ∈ abss pn s, given an expression e that is welltyped:
Π,GT ++ LT pn,HT`e e

√
, and also definitely assigned: De e L A, with respect to

A ⊆ dom (lvars s) and L = dom (LT pn), given a selector path ss: selT (typ e, ss) = bsTc,
to an atomic type sT: atomicT sT, then we have:
case eval L s e of None⇒¬ sa ∈∈ guarde L pn ss [] e
| bvc ⇒ sa ∈∈ guarde L pn ss [] e −→

implode (typ e, map (λss. abse L pn ss [] e sa) (selectors (typ e))) = v.

Proof. From Lemma 8.2 we know that the selectors of a type all yield a path to an
atomic type. Since the index list supplied to abse is empty, Theorem 8.7 guaran-
tees that every abstraction yields the corresponding atomic C0 value component.
All components together make up the exploded version of the value and can be
imploded to the original value via Theorem 8.6. �

The last contribution to the simulation of expressions is to lift the results obtained
so far to expression lists. To guard an expression list, we pick the guard for the head
of the selectors of each type. Note that selectors always returns at least one selector
path for every type. For atomic types it is the empty list.

guardes:: vname set⇒ pname⇒ ty expr list⇒ ′s set option
guardes L pn [] = None
guardes L pn (e·es) = guarde L pn (hd (selectors (typ e))) [] e u guardes L pn es

J Definition 8.23
(in guard)

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, and J Theorem 8.10
(in lookup)
Simulation of
expression list
evaluation

an abstract Simpl-state sa ∈ abss pn s, given an expression list es that is well-
typed: Π,GT ++ LT pn,HT[`e] es

√
, and where all expressions are definitely as-

signed: ∀e∈set es.De e L A, with respect to A ⊆ dom (lvars s) and L = dom (LT pn),
then we have:
case evals L s es of None⇒¬ sa ∈∈ guardes L pn es
| bvsc ⇒

sa ∈∈ guardes L pn es −→
map (λe. implode (typ e, map (λss. abse L pn ss [] e sa) (selectors (typ e)))) es = vs.

Proof. By induction on the expression list es and Theorem 8.9. �
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8.3 Left-Expressions

In C0, leval evaluates left-expression to a reduced left-expression, where array in-
dexes are evaluated to an integer and in case of dereferencing a pointer, its address
is calculated. This reduced left-expression is then used to guide function assign to
the position where the new value is inserted. In Simpl we follow the same two steps.
First, we calculate a left-value that corresponds to the reduced left-expression and
then we use it to perform the state update. Splitting the values in Simpl leads to
a normalisation of left-values. First all the field-selections are applied, since they
determine which heap or variable to address, and then the array indexes are applied.
We introduce the type of (memory-)cells and left-values lval to record this informa-
tion. The memory cell determines the C0-location that is affected by an assignment.
A cell holds a complete C0-value. The left-value then additionally records the path
inside this value to a sub-component that is replaced by the assignment.

A memory cell is eitherDefinition 8.24
Memory cell

I

• a variable Var pn vn, where pn :: pname and vn :: vname, or

• a heap location Heap tn r, where tn :: tname and r :: ref.

A left-value lval is of the form LVal c ss is, where c :: cell and ss :: fname list andDefinition 8.25
Left value

I

is :: nat list.

The function lval extracts the left-value from a reduced left-expression. While it
traverses the left-expression, the accumulator parameters ss and is are augmented
by every structure or array access. The leaf of a left-expression is either a variable
access VarAcc vn T or a pointer dereference: Deref e T. These leaf positions determine
the kind of memory cell the resulting left-value gets.

lval :: pname⇒ fname list⇒ nat list⇒ ty expr⇒ lval
lval pn ss is (VarAcc vn T) = LVal (Var pn vn) ss is
lval pn ss is (ArrAcc e i T) = lval pn ss (the-Unsgndv (the-Lit i)·is) e
lval pn ss is (StructAcc e fn T) = lval pn (fn·ss) is e
lval pn ss is (Deref e T) = LVal (Heap (tname (typ e)) (the-Ref (the-Lit e))) ss is
lval pn ss is - = LVal arbitrary ss is

Definition 8.26 I

Note that the initial ss and is of lval pn ss is le appear as a suffix in the resulting
left-value. Left-expression le adds its inherent selectors and indexes to the front. So
if ss ′ and is ′ stem from the left-expression le: lval pn [] [] le = LVal c ss ′ is ′, then we
have lval pn ss is le = LVal c (ss ′@ ss) (is ′@ is). The last equation in the definition of
lval is an extension to non left-expressions that maintains this property.

The abstraction absl takes a left-expressions and yields a left-value lval. Again
the selection path ss and the index list is are used as accumulators. Initially they can
be considered to be empty. As the left-expression is traversed, the array indices and
the address of a pointer is evaluated with abse.
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absl:: vname set⇒ pname⇒ fname list⇒ nat list⇒ ty expr⇒ ′s⇒ lval
absl L pn ss is (VarAcc vn T) sa = LVal (Var pn vn) ss is
absl L pn ss is (ArrAcc e i T) sa = let n = the-Unsgndv (abse L pn [] [] i sa)

in absl L pn ss (n·is) e sa
absl L pn ss is (StructAcc e fn T) sa = absl L pn (fn·ss) is e sa
absl L pn ss is (Deref e T) sa = let r = the-Ref (abse L pn [] [] e sa);

tn = tname (typ e)
in LVal (Heap tn r) ss is

J Definition 8.27
(in expr)

Abstraction absl only uses abse for expressions of atomic types, namely integers
and pointers. The only potential source of runtime faults is the evaluation of the
indexes and addresses. Array bound and null pointer tests are not performed
during left-expression evaluation but later on by the assignment. For evaluation
of indexes and addresses via abse, both the selector path and the index list are [].
The parameters ss and is of absl do not contribute to these applications. They are
passed down to the leaf of the left-expression, where they are built into the left-value.
Hence a guard for left-expression le for any selector path ss and any index list is is
sufficient to guard the nested abse applications. For the selector paths this is crucial,
since it allows to guard all the atomic assignments of a compound value by only
one guard. This is built into the following theorem, by using different selector paths
for the guard and for absl.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, and J Theorem 8.11
(in lookup)
Simulation of
left-expression
evaluation

an abstract Simpl-state sa ∈ abss pn s, given a left-expression le that is welltyped:
Π,GT ++ LT pn,HT`l le

√
, and also definitely assigned: Dl le L A, with respect to

A ⊆ dom (lvars s) and L = dom (LT pn), then for any selector paths ss and ss ′ and
index list is we have:
case leval L s le of None⇒¬ sa ∈∈ guarde L pn ss is le
| blvc ⇒

sa ∈∈ guarde L pn ss is le −→
absl L pn ss ′ (aps is sa) le sa = lval pn ss ′ (aps is sa) lv ∧
sa ∈∈ guarde L pn ss is lv.

Proof. By induction on left-expression le. Welltypedness and definite assignment of
left-expression le ensure that every nested array index and pointer that is derefer-
enced is welltyped and definitely assigned. Moreover, the guard ensures that those
sub-expressions are also correctly guarded. Since integers and addresses are both
atomic types Theorem 8.7 is applicable to derive the simulation. �

Some more remarks on the theorem. Even if we guard left-expression le with
guarde L pn [] [] le, this guard can be more restrictive as necessary, since it also checks
for array bound violations at ArrAcc and for dereferencing a null-pointer at Deref.
On the contrary, leval does not cause runtime faults in those cases. However, since
the evaluation of the left-expression is only a prelude to an assignment, where those
runtime faults have to be excluded, we do not need to introduce a more liberal
guard-generation. In the end we have to introduce the fully fledged guard for the
assignment anyway.

Moreover, the last line in the conclusion is not only a technical strengthening of
the conjecture to get a sufficient induction hypothesis as in case of Theorem 8.7. It
is used to link the guard for the left-expression to the following assignment. We
know that the guard also holds for the resulting left-value and hence array bounds
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and null-pointers are sufficiently protected to ensure a smooth execution of the
assignment according to this left-value.

Now we come back to Lemma 8.8. It allows to generate only one guard for an
arbitrary atomic component of a type, since this guard also protects all the other
components. This is also a crucial building block for assignments of compound
values. Since the single assignment in C0 is split up into a series of assignments of
all the atomic components in Simpl. The type of a left-expression that is obtained
by typ le is the same as if we type le as ordinary (right-)expressions. It is the type of
the cell-component where the new value is inserted. In case of an integer array A,
the left expression A[i] has type integer. We introduce the notion of a cell type that
yields the type of the (complete) cell, where the assignment takes place. In case of
the example A[i], the cell type is the type of the array A: “integer array”. For non
left-expressions the cell-type coincides with the type.

cty :: ty expr⇒ ty
cty (VarAcc vn T) = T
cty (ArrAcc e i T) = cty e
cty (StructAcc e cn T) = cty e
cty (Deref e T) = T
cty e = expr-ty e

Definition 8.28 I

The following lemma is a generalisation of Lemma 8.8 for which the induction on
expression e works out. Specialising css to [] yields Lemma 8.8 since the remaining
assumptions get trivial. Lemma 8.8 states that if a guard for a selector path ss to an
atomic type holds, then the guard for any other selector path ss ′ to an atomic type
also holds. To make the induction work for structure access, where the selector path
is extended, we generalise the selector paths to express that we are “somewhere
in-between” the cell type cty e and the type of the atomic component. Selector path
ess is inherent to expression e. It bridges from cell type cty e to expression type
typ e. Moreover, there is a common selector path css that selects a component type
beginning at expression type typ e. It can be extended to an atomic type by ss and
ss ′. Function lval is only used to get hold of ess and eis, the selectors and the indexes
that are inherent to expression e. It imposes no constraints.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, andLemma 8.12
(in lookup)

I

an abstract Simpl-state sa ∈ abss pn s, given an expression e that is welltyped:
Π,GT ++ LT pn,HT`e e

√
, and also definitely assigned: De e L A, with respect

to an A ⊆ dom (lvars s) and L = dom (LT pn), given a common selector path
css: selT (typ e, css) = bcsTc that can be extended by two selector paths ss and ss ′

( selT (csT, ss) = bsTc, selT (csT, ss ′) = bsT ′c) to atomic types sT and sT ′ (atomicT sT,
atomicT sT ′), let lval pn [] [] e = LVal c ess eis, selT (cty e, ess @ css) = besTc and let is be
a proper index list: idxT (esT, Ks eis @ is) = biTc, then we have:
If sa ∈∈ guarde L pn (css @ ss) is e then also sa ∈∈ guarde L pn (css @ ss ′) is e.

Proof. By induction on expression e. For the base cases VarAcc, Deref and Lit the
corresponding conjecture for guardi is proven by induction on the accumulated
index list is. �
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8.4 Assignments

C0 assignments Ass le e in Simpl are performed in three steps:

• Calculate the left-value of le with absl.

• Calculate all atomic values of e with abse.

• Update the state by a sequence of updates with the atomic values.

A single state update in C0 is split to a sequence of atomic state updates in Simpl.
We describe this sequence of state updates in C0 and prove that it simulates the
original C0 state update. Then it is sufficient to require that the state updates of
atomic components are simulated correctly.

The first auxiliary notion is updv (v, ss, is, v ′). It updates value v at the position
determined by selection path ss and index list is with the value v ′.

updv :: val × fname list × nat list × val⇒ val
updv (v, [], [], v ′) = v ′

updv (Structv fvs, s·ss, is, v ′) = Structv
(assoc-update fvs s

(updv (the (map-of fvs s), ss, is, v ′)))
updv (Arrv vs, ss, i·is, v ′) = Arrv (vs[i := updv (vs[i], ss, is, v ′)])
updv (Arrv vs, s·ss, [], Arrv vs ′) = Arrv (map (λ(v, v ′). updv (v, s·ss, [], v ′)) (zip vs vs ′))

J Definition 8.29

If both ss and is are [], then the update takes place at the root of the value. This
means that v is replaced by v ′. This equation marks the end of the recursion, where
all selections and indexes have been processed and the final position for the update
is reached. For a structure value Structv fvs and a non-empty selection path s·ss,
field s of the field-list fvs is updated by function assoc-update. For an array value
Arrv vs and a non-empty index list i·is the value list vs is updated at position i. These
first three equations are the canonical equations for C0-values. The last equation
stems from splitting values, since selection distributes over indexing. The first
array Arrv vs is an array of structured values, where we attempt to update a certain
component of all array elements. Array Arrv vs ′ is an array of the new component
values. The non-empty selector path s·ss determines the sub-components. All array
elements vs are updated according to the component values in vs ′.

Value update updv is compatible with selv and idxv:

If `v v :: T and selT (T, ss) = bsTc and idxfits (selv (v, ss), is) and idxT (sT, is) = biTc J Lemma 8.13
and `v v ′ :: iT then idxv (selv (updv (v, ss, is, v ′), ss), is) = v ′.

Proof. By induction on the recursion-scheme of selT. �

Updating an atomic component of a memory cell can be described as taking the
current value vc of the memory cell and then updating it via updv (vc, ss, is, v). This
is the basic intuition for the abstract update functions GVu, LVu and Hu for global-
and local variables and the heap that we introduce in locale assign. The arguments
of these functions are similar to the corresponding lookup functions. Additionally
the new atomic value is passed. The functions take the current state and yield the
updated state.



172 Chapter 8 — Embedding C0 into Simpl

locale assign =Definition 8.30 I
fixes

global variable update:
GVu :: vname⇒ fname list⇒ nat list⇒ val⇒ ′s⇒ ′s
local variable update:
LVu :: pname⇒ vname⇒ fname list⇒ nat list⇒ val⇒ ′s⇒ ′s
heap update:
Hu :: tname⇒ fname list⇒ ref ⇒ nat list⇒ val⇒ ′s⇒ ′s

defines
variable update:
Vu :: vname set⇒ pname⇒ vname⇒ fname list⇒nat list⇒ val⇒ ′s⇒ ′s
Vu L pn vn ss is v ≡ if vn ∈ L then LVu pn vn ss is v else GVu vn ss is v

Like lookup V the update Vu decides whether a global or a local variable is
concerned. The function absu takes a left-value and delegates the update to Vu or
Hu, depending on the kind of memory cell of the left-value.

absu :: vname set⇒ lval⇒ val⇒ ′s⇒ ′s
absu L (LVal (Var pn vn) ss is) v sa = Vu L pn vn ss is v sa
absu L (LVal (Heap tn r) ss is) v sa = Hu tn ss r is v sa

Definition 8.31
(in assign)

I

With absu we can simulate an assignment to an atomic component. To simulate
arbitrary assignments we sequence the atomic assignments of the components. The
components are obtained by the selectors function. To specify the update functions
GVu, LVu and Hu we describe their effect on a C0-state. For example, consider an
update of local variable vn, where lvars s vn = bvc. Let ss and is determine the atomic
component of v that is updated with a value v ′. Then the modification of the local
variables is described by:

lvars s(vn 7→ updv (v, ss, is, v ′))

Note that according to operator precedence, the map update takes place in
(lvars s) not in s. The update updv (v, ss, is, v ′) works fine as long as the type of v
fits to ss and is, and the type of v ′ fits to the selected component. However, if v
is for example a Boolean value and ss = [”fst”], the whole specification makes no
sense. In C0 these type constraints are ensured by static typing, and the subject
reduction theorems transfer them to program execution. There is one issue about
the abstraction of C0 to Simpl regarding parameter passing and initialisation of
local variables. In Simpl local variables are not reset to None when a procedure is
entered. They just keep the current value. Since the definite assignment analysis of
C0 ensures that every local variable is assigned to before it is read, this translation
is sound. To specify a procedure call in terms of C0 we just keep the local variable
setting of the caller, when we enter a procedure. If the caller has a local variable x of
type Boolean, and also the callee has a local variable x, but of a pair type, we arrive
at the undesired situation described above. The value of the Boolean x is still in the
store and we cannot properly describe what an update of component ”fst” or ”snd”
means. Hence we cannot properly describe component-wise initialisation. The
same issue occurs for parameter passing, since their names are also local and hence
can change the type during a procedure call. However, for parameter passing as
well as for the initialisation of a local variable, we know that the complete variable
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gets a value, not only parts of it. This is inherent to parameter passing and is
guaranteed by the definite assignment analysis for local variables. We can make use
of this property to remedy the situation. Additionally to the correctness of updating
of atomic components, we require from LV that it can properly initialise variables.
In case the left-value indicates an initialisation of a local variable we make use of
this requirement for LV. Instead of splitting the assignment to a sequence of atomic
updates we initialise it in one step.

Predicate linit L lv tests whether a left-value lv denotes an initialisation of a local
variable. The variable name has to be among the local variables L and the selector
path and the index list have to be empty.

linit :: vname set⇒ lval⇒ bool
linit L (LVal (Var pn vn) [] []) = vn ∈ L
linit L (LVal - - -) = False

J Definition 8.32

Function ass T L lv v sa decides whether lv is a local variable initialisation or not.
The value v is provided in an exploded version: as a function from selector path
to atomic value. In case of a local variable initialisation the value is imploded and
LV takes care of the initialisation. Otherwise a sequence of updates of the atomic
components is applied via absu. The library function foldl describes an iteration over
a list. The type argument T denotes the type of v. The selectors of type T are used to
extend the selectors of the left-value lv, such that altogether an atomic component
of the cell is addressed.

ass :: ty⇒ vname set⇒ lval⇒ (fname list⇒ val)⇒ ′s⇒ ′s
ass T L (LVal c ss is) v sa =
if linit L (LVal c ss is) then absu L (LVal c ss is) (implode (T, map v (selectors T))) sa
else foldl (λsa ss ′. absu L (LVal c (ss @ ss ′) is) (v ss ′) sa) sa (selectors T)

J Definition 8.33
(in assign)

The requirements on GVu, LVu and Hu are collected in locale update. They are
specified as commutation properties for the C0 update, the corresponding Simpl
update and the state abstraction abss. For example, for the update of an atomic
component of a local variable we have the following commuting diagram:

sa
LVu pn vn ss is v ′ sa

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ sa
′

abss pn
x xabss pn

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
s(|lvars := lvars s(vn 7→ updv (v, ss, is, v ′))|)

s ′

We can either perform the C0 operation from state s to s ′ and then abstract the
resulting state to sa

′, or first abstract state s to sa and then perform the abstract
operation LV. Since abstraction of the state abss yields a set of corresponding Simpl
states the commutation properties are defined on the level of sets, where the infix ‘
is the set image operation:

f ‘ A = {f a. a ∈ A}.

The value vc is the cell-value, i.e. The current value of the memory cell that is
affected by the update.
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locale update = lookup + assign +Definition 8.34 I
assumes

(1) Update of an atomic component of a local variable commutes:
[[lvars s vn = bvcc; LT pn vn = bTc; `v vc :: T; selT (T, ss) = bsTc;
atomicT sT; idxT (sT, is) = biTc; idxfits (selv (vc, ss), is); `v v :: iT]]
=⇒ LVu pn vn ss is v ‘ abss pn s
⊆ abss pn (s(|lvars := lvars s(vn 7→ updv (vc, ss, is, v))|))

(2) Initialisation of a local variable commutes:
[[LT pn vn = bTc; `v v :: T]]
=⇒ LVu pn vn [] [] v ‘ abss pn s ⊆ abss pn (s(|lvars := lvars s(vn 7→ v)|))

(3) Update of an atomic component of a global variable commutes:
[[gvars s vn = bvcc; GT vn = bTc; `v vc :: T; selT (T, ss) = bsTc; atomicT sT;
idxT (sT, is) = biTc; idxfits (selv (vc, ss), is); `v v :: iT]]
=⇒ GVu vn ss is v ‘ abss pn s
⊆ abss pn (s(|gvars := gvars s(vn 7→ updv (vc, ss, is, v))|))

(4) Update of an atomic component of a heap location commutes:
[[heap s l = bvcc; TE tn = bTc; `v vc :: T; selT (T, ss) = bsTc; atomicT sT;
idxT (sT, is) = biTc; idxfits (selv (vc, ss), is); `v v :: iT]]
=⇒ Hu tn ss (Rep-loc l) is v ‘ abss pn s
⊆ abss pn (s(|heap := heap s(l 7→ updv (vc, ss, is, v))|))

As in locale lookup the premises of the commutation properties restrict the selec-
tor path ss and is to sensible values. Moreover, the new value v has to fit to type
iT of the selected sub-component. Apart from initialisation of local variables, the
commutation requirements in locale update all assume that the cell already stores a
proper value for which we attempt to update a component. In C0 this is ensured
by conformance of the state and the definite assignment analysis. To talk uniformly
about local, global and heap values and updates we introduce some auxiliary func-
tions on the level of cells. First, with valc we obtain the value that is stored in the
memory cell, in case it is defined and not the cell corresponding to the null pointer.

valc :: vname set⇒ cell⇒ state⇒ val option
valc L c s ≡
case c of Var pn vn⇒ lookup-var L s vn
| Heap tn r⇒ if r = NULL then None else heap s (Abs-loc r)

Definition 8.35 I

Predicate nullc tests whether a cell corresponds to the null pointer.

nullc :: cell⇒ bool
nullc c ≡ case c of Var pn vn⇒ False | Heap tn r⇒ r = NULL

Definition 8.36 I

In some places it is more convenient to get rid of the option layer in valc. We
introduce the function dval T v that returns the default value of type T in case
v = None.

dval :: ty⇒ val option⇒ val
dval T v ≡ case v of None⇒ default-val T | bvc ⇒ v

Definition 8.37 I

The function dvalc returns a default value of the cell in case the value is not
defined. In contrast to the (valc L c s), dvalc T L c s still yields a welltyped value of
type T in case of an undefined cell.
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dvalc :: ty⇒ vname set⇒ cell⇒ state⇒ val
dvalc T L c s ≡ dval T (valc L c s)

J Definition 8.38

With updc L c v s an update of a cell c in state s with the new value v is performed.

updc :: vname set⇒ cell⇒ val⇒ state⇒ state
updc L c v s ≡
case c of Var pn vn⇒ update-var L s vn v
| Heap tn r⇒ s(|heap := heap s(Abs-loc r 7→ v)|)

J Definition 8.39

From these definitions it is obvious that for non-null cells, the value stored by
updc can be extracted by valc.

If ¬ nullc c then valc L c (updc L c v s) = bvc. J Lemma 8.14

If ¬ nullc c then dvalc T L c (updc L c v s) = v. J Lemma 8.15

Finally function upd defines the update on the level of left-values. It takes the
current value of the cell, updates a component of it with function updv according
to the selection path and the index list of the left-value and finally stores the new
value in the memory cell.

upd :: ty⇒ vname set⇒ lval⇒ val⇒ state⇒ state
upd T L (LVal c ss is) v s = updc L c (updv (dvalc T L c s, ss, is, v)) s

J Definition 8.40

The function upd provides the first basic bridge between assignments in C0
and the corresponding Simpl version. Firstly we can immediately generalise the
requirements in locale update to the level of cells:

Let valc L c s = bvcc and L = dom (LT pn). Given the following typing of cell c: J Lemma 8.16
(in update)

case c of Var pn ′ vn⇒ pn ′= pn ∧ (GT ++ LT pn) vn = bTc
| Heap tn r⇒ TE tn = bTc

Let `v vc :: T. Given a selector path ss: selT (T, ss) = bsTc, to an atomic type sT:
atomicT sT, and a proper index list is ( idxT (sT, is) = biTc, idxfits (selv (vc, ss), is)) and
a welltyped component value v: `v v :: iT, then:
absu L (LVal c ss is) v ‘ abss pn s ⊆ abss pn (upd T L (LVal c ss is) v s).

And secondly we can characterise the effect of assign with upd.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, given J Lemma 8.17
a welltyped left expression le: Π,GT ++ LT pn,HT`e le

√
that is definitely assigned:

Dl le L A with respect to L = dom (LT pn) and have reduced le, then we have:
If assign L s le v = bs ′c then upd (cty le) L (lval pn [] [] le) v s = s ′.

Proof. We first generalise the conclusion to get a proper induction hypothesis for an
intermediate position in the left-expression:

Let vd = dval (typ le) (eval L s le). If assign (dom (LT pn)) s le (updv (vd, ss, is, v)) = bs ′c
then upd (cty le) (dom (LT pn)) (lval pn ss is le) v s = s ′.
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With vd we describe the value of the cell-component that is addressed by the
left-expression le. The accumulated ss and is update a sub-component of this value
via function updv. The assign updates the cell with this new cell-component. This
situation is general enough for an induction on left-expression le. The proof is
straightforward.

By instantiating ss = [] and is = [] in the generalised conjecture, the term
updv (vd, ss, is, v ′) simplifies to v and hence vd itself does not appear anymore. We
arrive at the original conjecture. �

The conclusions of Lemmas 8.16 and 8.17 show that function upd gives us a
common base to compare the effect of assign in C0 and absu in Simpl. In Simpl
the update is described from the view of the affected cell, whereas in C0 this cell
is somehow disguised by the left-expression in assign. With upd we can bring the
affected cell to light. Consider a reduced left-expression le to an atomic component,
where lval pn [] [] le = LVal c ss is and T = cty le. This unifies the updates in Lemmas
8.16 and 8.17. Hence we can simulate an assignment to an atomic component in
Simpl.

The following lemma connects the cell value, and the value (not the left-value)
of a reduced left-expression le. Let lval pn [] [] le = LVal c ss is. If the left-expression
evaluates without runtime-faults: eval L le s = bvc, then we can obtain a proper cell
value valc L c s = bvcc. The value v is a sub-component of vc, and we can select it
via ss and is: idxv (selv (vc, ss), is) = v. This intuition was already used in the proof
of Lemma 8.17. Since evaluation checks for dereferencing null pointers and array
bounds, we also know that none of them are violated. Hence in case of a heap
cell, the address is valid. This is already part of the definition of valc. The absence
of array bound violations results in idxfits (selv (vc, ss), is). Moreover we obtain
welltypedness of the cell-value, and the cell itself. It might be irritating that we
care about value-evaluation of left-expressions at all, when thinking of assignments.
The reason is the view on assignments in Simpl that can, for example, be seen in
Lemma 8.16 or the definition of upd. We start from the cell-value, and first select
the sub-value according to ss and is, where the update finally takes place. This
selection corresponds to evaluation of the left-expression in C0. The results from
the following lemma, like welltypedness of the cell-value and the cell, or that the
indexes fit to the cell-value, are exactly the premises that we need for Lemma 8.16.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π, givenLemma 8.18 I
a welltyped left expression le: Π,GT ++ LT pn,HT`e le

√
that is reduced: reduced le,

and definitely assigned: De le L A with respect to L = dom (LT pn), moreover let
lval pn [] [] le = LVal c ss is, then we have:
If eval L s le = bvc then
∃vc. valc L c s = bvcc ∧

idxv (selv (vc, ss), is) = v ∧
idxfits (selv (vc, ss), is) ∧
bHTc`v vc :: cty le ∧
case c of Var pn ′ vn⇒ pn ′= pn ∧ (GT ++ LT pn) vn = bcty lec
| Heap tn r⇒ HT (Abs-loc r) = btnc ∧ TE tn = bcty lec.

Proof. By induction on le. Since eval does not cause a runtime fault we know that no
array bound is violated by le and that the cell value must be defined. The third and
fourth parts of the conjunction are used to handle the case of array- and structure
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access, respectively. The idxfits ensures that indexing with idxv works correctly. The
type of the cell-value is exploited to argue that the field name of a structure access
is valid, so that selv yields a proper result. �

If evaluation of a reduced left-expression does not cause a runtime fault, then
the corresponding assignment succeeds, too.

If reduced le and eval L s le , None then ∀v. assign L s le v , None. J Lemma 8.19

We can close the chain of argumentation, if we know that evaluation of the left-
expression does not cause a runtime-fault. Then with Lemma 8.19 we also know
that the assignment succeeds, and thus Lemma 8.17 is applicable. Moreover, since
the evaluation is successful the preconditions of Lemma 8.16 can be discharged with
Lemma 8.18.

From the simulation Theorem 8.7 for expressions we already know that evalua-
tion does not cause a runtime fault if the corresponding guard holds. Hence we can
already come up with a simulation lemma for assignments to atomic components.

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π and an J Lemma 8.20
(in update)
Simulation of atomic
assignment

abstract Simpl-state: sa ∈ abss pn s, given a welltyped and reduced left-expression le
(Π,GT ++ LT pn,HT`e le

√
and reduced le) that is definitely assigned: De le L A, with

respect to A ⊆ dom (lvars s) and L = dom (LT pn), let atomicT (typ le) and `v v :: typ le,
then we have:
case assign L s le v of None⇒¬ sa ∈∈ guarde L pn [] [] le
| bs ′c ⇒ sa ∈∈ guarde L pn [] [] le −→ absu L (lval pn [] [] le) v sa ∈ abss pn s ′.

Proof. In case the assignment causes a runtime fault, the guard also fails, since
otherwise Lemmas 8.7 and 8.19 lead to a contradiction. In case the assignment
succeeds and the guard holds, we can discharge the preconditions of Lemma 8.16,
since the evaluation of the left-expression succeeds according to 8.7 and hence
Lemma 8.18 is applicable. The remaining gap to assign is closed by Lemma 8.17. �

It might be puzzling that the previous lemma uses the typing judgement and
definite assignment analysis for ordinary expressions, instead of left-expressions.
Generally the typing judgement for left-expressions is more restrictive then the one
for expressions, since it rules out all the non left-expressions. However, reduced le
already rules them out. In this case both typing judgements are equivalent:

If reduced le then (Π,VT,HT`e le
√

) = (Π,VT,HT`l le
√

). J Lemma 8.21

Proof. By induction on left-expression le. �

For the definite assignment analysis the situation is different. Here the analysis
for expressions is strictly more restrictive as the one for left-expressions. In case of a
variable access it guarantees that the variable is defined in the current state. Only in
those defined cases the updated of a component is properly described by function
updv applied to the cell-value and hence by function upd. The only situation were
we have to deal with undefined memory cells is for initialisation of local variables
and parameter passing. Keep in mind that they are handled in a different manner
by function ass (cf. Definition 8.33 on p. 173). The initialisation is performed in a
single step and not component-wise. The correctness of this initialisation is already
required in the assumptions on LVu in locale update. Otherwise definite assignment
Dl andDe coincides:
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If reduced le and ¬ linit L (lval pn [] [] le) then Dl le L A =De le L A.Lemma 8.22 I

Proof. By induction on left-expression le. �

The remaining step for the simulation of a general assignment is to lift Lemma
8.20 to non-atomic assignments. We argue that a non-atomic assignment can be
simulated by a sequence of atomic assignments to the components.

We start with a basic lemma for updv. Consider two values v and v ′ of type T.
If we start with v and iterate updv (v, ss, [], selv (v ′, ss)) over all selectors of T, then
finally v is replaced by v ′.

If `v v :: T and `v v ′ :: T and distinct-selectors T thenLemma 8.23 I

foldl (λv ss. updv (v, ss, [], selv (v ′, ss))) v (selectors T) = v ′.

Proof. By induction on the recursion-scheme of selectors T. �

This lemma allows to replace the component of the cell-value that is updated,
with a sequence of updates. Consider the assignment statement Ass le e and let
lval pn [] [] le = LVal c ss is and valc L c s = bvcc and let the value of e be v ′. The new
value of vc is determined by:

updv (vc, ss, is, v ′).

The initial value of the component of vc that is addressed by ss and is is:

idxv (selv (vc, ss), is).

This sub-value is updated with v ′. With Lemma 8.23 used from right to left, we can
replace v ′ by the sequence of updates:

updv(vc, ss, is, foldl (λv ss ′. updv(v, ss ′, [], selv(v ′,ss ′))) (idxv(selv(vc,ss),is)) (selectors T)).

The sequence of updates is nested in the outer updv. The next step is to bring the
foldl in front of the outer updv, so that the whole update is replaced by a sequence of
updates. The following lemma allows to flatten the nested updv for a single step of
this sequence.

If `v vc :: T and selT (T, ss) = bsTc and idxT (sT, is) = biTc and selT (iT, ss ′) = bsT ′cLemma 8.24 I
and idxfits (selv (vc, ss), is) and `v v ′ :: sT ′ then
updv (vc, ss, is, updv (idxv (selv (vc, ss), is), ss ′, [], v ′)) = updv (vc, ss @ ss ′, is, v ′).

Proof. By induction on the recursion-scheme of selT (T, ss). �

In this lemma v ′ plays the role of selv (v ′, ss ′) in the explanation above. The ss
and the is are from the left expression, whereas the ss ′ is from splitting the value
v ′. The following lemma lifts this single step to a sequence of updates via foldl on a
list sss of selector paths, and also transforms the update of the cell-value, to a state
update via updc.

If `v dvalc T L c s :: T and selT (T, ss) = bsTc and idxT (sT, is) = biTc and `v v ′ :: iT andLemma 8.25 I
idxfits (selv (dvalc T L c s, ss), is) and ¬ nullc c and ∀ss ′∈set sss. selT (iT, ss ′) , None
and sss , [] then
updc L c
(updv (dvalc T L c s, ss, is,

foldl (λv ss ′. updv (v, ss ′, [], selv (v ′, ss ′))) (idxv (selv (dvalc T L c s, ss), is)) sss))
s =
foldl (λs ss ′. updc L c (updv (dvalc T L c s, ss @ ss ′, is, selv (v ′, ss ′))) s) s sss.
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Proof. By induction on sss and Lemma 8.24. The restriction ¬ nullc c is used in order
to apply Lemma 8.15 to extract the sub-component of the cell-value that is actually
changed by the outer updv. Note that ss and is remain the same in each step, only
ss ′ varies. �

If we insert selectors iT for sss in Lemma 8.25, we can use Lemma 8.23 to collapse
the complete inner foldl on the components of v ′ in the left hand side of the equation
to v ′. Moreover, we use Definition 8.40 of upd and arrive at the following lemma.

If `v dvalc T L c s :: T and selT (T, ss) = bsTc and idxT (sT, is) = biTc and `v v ′ :: iT J Lemma 8.26
and idxfits (selv (dvalc T L c s, ss), is) and distinct-selectors iT and ¬ nullc c then
upd T L (LVal c ss is) v ′ s =
foldl (λs ss ′. upd T L (LVal c (ss @ ss ′) is) (selv (v ′, ss ′)) s) s (selectors iT).

This lemma is the heart of the simulation of a C0 assignment Ass le e in Simpl.
LVar c ss is corresponds to the reduced left expression le: lval pn [] [] le = LVal c ss is.
Evaluation of e yields value v ′. The left hand side of the equation corresponds to
assign L s le v (cf. Lemma 8.17), and the right hand side corresponds to the sequence of
assignments of the atomic components of v ′ in Simpl (cf. Lemma 8.16 and Definition
8.33). There is only one issue left. Among the premises of Lemma 8.16 there are
three that depend on the state:

• definedness of the current cell: valc L c s = bvcc,

• type of the current cell value: `v vc :: T, and

• shape of the current cell value: idxfits (selv (vc, ss), is).

During the sequence of atomic updates the state changes as the cell is updated.
Hence we have to show that these properties are invariant under upd. Update upd
performs an updv on value vc. Hence definedness of vc is preserved. Moreover, updv
preserves the type:

If HT`v v :: T and selT (T, ss) = bsTc and idxT (sT, is) = biTc and HT`v v ′ :: iT and J Lemma 8.27
idxfits (selv (v, ss), is) then
HT`v updv (v, ss, is, v ′) :: T.

Proof. By induction on the recursion-scheme of updv. �

Moreover, updv preserves the shape of a value. Every valid index for a sub-
component is still valid after an update of another sub-component.

If `v v :: T and selT (T, ss) = bsTc and idxT (sT, is) = biTc and idxfits (selv (v, ss), is), J Lemma 8.28
moreover have `v v ′ :: iT and selT (T, ss ′) = bsT ′c and idxT (sT ′, is ′) = biT ′c and
idxfits (selv (v, ss ′), is ′) then
idxfits (selv (updv (v, ss, is, v ′), ss ′), is ′).

Proof. By induction on the recursion-scheme of updv. �

Lifting the previous two lemmas to upd we arrive at the desired invariant for the
update. Selector path ss together with index list is describe the left-value. Selector
path ss ′ is a extension to a sub-component.
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If valc L c s = bvcc and HT`v vc :: T and selT (T, ss) = bsTc and idxT (sT, is) = biTc andLemma 8.29 I
idxfits (selv (vc, ss), is) and HT`v v :: iT and selT (iT, ss ′) = bsiTc then
∃vc

′. valc L c (upd T L (LVal c (ss @ ss ′) is) (selv (v, ss ′)) s) = bvc
′
c ∧

HT`v vc
′ :: T ∧ idxfits (selv (vc

′, ss), is).

Finally we can prove the simulation of a C0 assignment Ass le e in Simpl. We
have to guard both the left-expression le and the expression e with a guard for an
arbitrary atomic component. This also guards the assignment itself. If these guards
hold, then the C0 assignment via assign-opt is simulated by the Simpl assignment
via ass:

sa
Simpl assignment with ass
−−−−−−−−−−−−−−−−−−−−−−→ sa

′

abss pn
x xabss pn

s −−−−−−−−−−−−−−−−−−−−−−→
C0 assignment with assign-opt

s ′

Since typ e � typ le both le and e have the same components. The following
auxiliary lemmas for widening are proven by induction on the widening relation.

If T � T ′ then selectors T = selectors T ′.Lemma 8.30 I

If T � T ′ then implode (T, vs) = implode (T ′, vs).Lemma 8.31 I

For a conforming C0-state s: TE` s :: HT,LT pn�A,GT, where TE = tnenv Π andTheorem 8.32
(in update) Simulation

of assignment

I

an abstract Simpl-state sa ∈ abss pn s, given a left-expression le that is welltyped:
Π,GT ++ LT pn,HT`l le

√
, and also definitely assigned: Dl le L A, with respect to

A ⊆ dom (lvars s) and L = dom (LT pn), given an expressions e that is welltyped:
Π,GT ++ LT pn,HT`e e

√
and definitely assigned: De e L A, and let typ e � typ le,

given a selector path ss: selT (typ le, ss) = bsTc, to an atomic type sT: atomicT sT, then
we have:
case assign-opt L s (leval L s le) (eval L s e) of
None⇒¬ sa ∈∈ guarde L pn ss [] le u guarde L pn ss [] e
| bs ′c ⇒ sa ∈∈ guarde L pn ss [] le u guarde L pn ss [] e −→

ass (typ le) L (absl L pn [] [] le sa) (λss. abse L pn ss [] e sa) sa ∈ abss pn s ′.

Proof. In case the assignment causes a runtime-fault, then either leval, eval or assign
caused this runtime-fault. According to Theorems 8.7 and 8.11 runtime faults in
either leval or eval are detected by the guard for le or e, respectively. Moreover, the
reduced left-expression that results from leval is also protected by the guard of le
according to Theorem 8.11. In case the left-expression is a plain variable access, then
the assign cannot fail. OtherwiseDl le l A impliesDe le l A (cf. Lemma 8.22). Typing
and definite assignment of le are propagated to the resulting reduced left-expression
(cf. Lemmas 7.15, 7.11 and 7.12). Hence a runtime fault in the assignment is detected
by the guard of le (cf. Lemma 8.19 and Theorem 8.7).

In case the assignment does not cause a runtime fault, and both guards hold for
the Simpl state then the evaluation of the left-expression le and the expression e are
simulated by absl and abse, respectively (cf. Theorems 8.11 and 8.7). The abstracted
value of expression e is provided in an exploded form to ass. The guard for e protects
all components (cf. Lemma 8.8). Hence every atomic component of expression e is
correctly abstracted by abse (cf. Theorem 8.7).
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Function ass makes a case distinction on predicate linit that tests whether the
assignment is an initialisation of a local variable. In case a local variable is initialised,
the correctness of the simulation is already guaranteed by the requirements on LVu
in locale update (cf. Definition 8.34(2)) and Theorem 8.9, which guarantees that the
original value of e is reconstructed by imploding its components. Lemma 8.31
justifies that ass can safely use the selectors of typ le instead of typ e to implode the
value.

Otherwise, if the assignment is not an initialisation of a local variable, function
ass simulates the assignment by a sequence of updates to the atomic components,
which is justified by Lemma 8.26. Lemmas 8.17 and 8.16 are used to connect the
update upd of Lemma 8.26 to assign, on the C0 side, and to absu on the Simpl side.
The preconditions of Lemma 8.16 are invariant under state updates upd (cf. Lemma
8.29) and can be discharged via Lemma 8.18. �

8.5 Execution

So far we can simulate C0 expressions and assignments in Simpl. These are already
the major building blocks for the simulation of a C0 execution in Simpl. We still have
to consider memory allocation. In the C0 state the heap configuration consists of
two parts, the mapping from locations to values and a counter for the free memory.
All locations that are mapped to None are considered to be “free” or “fresh”. If a
new object is created a fresh location is chosen for this object, and the object itself is
initialised with default values.

In the Simpl state we cannot see from a (split) heap which references are free,
since there is no option layer. Instead the state is extended with an allocation list,
that explicitly stores the allocated references. The references in the allocation list
correspond to the location that are not mapped to None in C0. A counter for free
memory is used in Simpl as well.

We introduce a new locale allocate that fixes the abstractions F, Fu, Al and Alu for
lookup and update of the free memory counter and the allocation list. Note that
Alu not only updates the allocation list, but also initialises the heap with the default
values. We could think of splitting these two steps and describe the initialisation as
ordinary assignment to the heap. The problem is that we cannot properly express
the intermediate state after updating the allocation list and before initialisation with
the default values in terms of the C0 state. Since in C0 allocation information and
the values in the heap are both stored in same mapping, we would have to map the
new location to a value bvc, since the location is allocated but cannot tell how v has
to look like before it is properly initialised. We work around this issue, by keeping
the allocation atomic in the abstraction to Simpl.

locale allocate = update + J Definition 8.41
fixes

free memory:
F :: ′s⇒ nat
consume memory:
Fu :: nat⇒ ′s⇒ ′s
allocated references:
Al :: ′s⇒ ref list
allocate new reference:
Alu :: tname⇒ ref ⇒ ′s⇒ ′s
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assumes
(1) F corresponds to free-heap:

sa ∈ abss pn s =⇒ F sa = free-heap s
(2) Fu simulates an update of free-heap:

Fu n ‘ abss pn s ⊆ abss pn (s(|free-heap := n|))
(3) Al corresponds to the domain of the heap:

[[finite (dom (heap s)); sa ∈ abss pn s]]
=⇒ set (Al sa) = Rep-loc ‘ dom (heap s)

(4) Alu simulates an allocation of a new heap object:
[[finite (dom (heap s)); TE tn = bTc; sa ∈ abss pn s; r = new (set (Al sa))]]
=⇒ Alu tn r sa ∈ abss pn (s(|heap := heap s(Abs-loc r 7→ default-val T)|))

The auxiliary function alloc implements pointer allocation for Simpl.

alloc :: vname set⇒ lval⇒ tname⇒ ty⇒ ′s⇒ ′s
alloc L lv tn T sa ≡

if sizeof-type T ≤ F sa
then let r = new (set (Al sa));

s1 = Alu tn r sa;
s2 = Fu (F sa − sizeof-type T) s1;
l = Abs-loc r

in absu L lv (Prim (Addr l)) s2
else absu L lv (Prim Null) sa

Definition 8.42
(in allocate)

I

The function directly resembles pointer allocation in C0. First, we test if there
is still enough memory left. If not, the null pointer is assigned to the left-value.
Otherwise we first obtain a fresh reference via new. This directly corresponds to the
location that new-Addr yields in C0 (cf. Definition 7.32 on p. 133). Then we initialise
the heap with the default value for the pointer, decrement the free memory counter
and assign the reference to the left-value. For the assignment we can directly use
absu since a pointer is an atomic value.

The expressions of a C0 statement have to be guarded in Simpl. The guard
generating functions like guarde yield an optional state set as guard. The functions
guard and guardWhile annotate the guard to a command or loop if necessary. The
guard for a loop condition b has to hold initially and after every execution of the
loop body.

guard :: ′f ⇒ ′s set option⇒ ( ′s, ′p, ′f ) com⇒ ( ′s, ′p, ′f ) com
guard f g c ≡ case g of None⇒ c | bgc ⇒ Guard f g c

Definition 8.43 I

guardWhile :: ′f ⇒ ′s set option⇒ ′s bexp⇒ ( ′s, ′p, ′f ) com⇒ ( ′s, ′p, ′f ) com
guardWhile f g b c ≡
case g of None⇒While b c | bgc ⇒ Guard f g (While b (Seq c (Guard f g Skip)))

Definition 8.44 I

Before we define the abstraction absc of C0 commands we introduce the locale
execute that fixes a few more abstraction functions to handle procedure calls. The
C0 program is Π, the corresponding Simpl procedure environment is Γ. With PE
we can retrieve the list of parameters of a procedure, and with RT its return type.
Moreover, Ret simulates the return of a procedure call. Parameter f is the fault that
is raised when a guard is violated. Finally absS lifts state abstraction to optional
states.
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locale execute = allocate + J Definition 8.45
fixes

parameter environment:
PE :: pname⇒ vname list
return type:
RT :: pname⇒ ty
default fault:
f :: ′f
C0 program:
Π :: ty prog
Simpl procedure environment:
Γ :: pname⇀ ( ′s,pname, ′f ) com
extended state abstraction:
absS :: pname⇒ state option⇒ ( ′s, ′f ) xstate set

assumes

(1) The state abstraction respects context switches:
abss pn s ⊆ abss qn (s(|lvars := empty|))

(2) Ret simulates the return from a procedure:
[[sa ∈ abss pn s; ta ∈ abss qn t]]
=⇒ Ret sa ta ∈ abss pn (t(|lvars := lvars s|))

(3) PE yields the parameters of a procedure:
plookup Π pn = b((pds, lds, rT), bdy)c =⇒ PE pn = map fst pds

(4) RT yields the return type of a procedure:
plookup Π pn = b((pds, lds, rT), bdy)c =⇒ RT pn = rT

(5) LT yields the local type environment of a procedure:
plookup Π pn = b((pds, lds, rT), bdy)c =⇒
LT pn = map-of (pds @ lds @ [(Res, rT)])

(6) GT yields the global type environment:
GT = map-of (gdecls-of Π)

(7) TE corresponds to the declared types:
TE = tnenv Π

(8) Function absS extends abss to optional states:
absS pn s ≡ case s of None⇒ {Fault f } | bsc ⇒ Normal ‘ abss pn s

(9) Γ yields the abstracted procedure bodies:
Γ pn = option-map (absc pn ◦ pbody-of ) (plookup Π pn)

Abstraction absc pn c of C0 statement c in context of procedure pn is defined in J Definition 8.46
(in execute)Figure 8.4.

The C0 Skip statement is mapped to the Simpl Skip statement.
For the assignment Ass le e we guard both the left-expression le and the expression

e. The left-value of le is obtained with absl and the atomic components of e with abse.
The assignment is simulated by a Basic statement with the function ass.
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absc :: pname⇒ ty stmt⇒ ( ′s, pname, ′f ) com

absc pn Skip = Skip

absc pn (Ass le e) =
let T = typ le;

g = guarde (dom (LT pn)) pn (hd (selectors T)) [] le u
guarde (dom (LT pn)) pn (hd (selectors T)) [] e;

lv = absl (dom (LT pn)) pn [] [] le;
v = λs ss. abse (dom (LT pn)) pn ss [] e s

in guard f g (Basic (λs. ass T (dom (LT pn)) (lv s) (v s) s))

absc pn (PAlloc le tn) =
let bTc = TE tn;

g = guarde (dom (LT pn)) pn [] [] le;
lv = absl (dom (LT pn)) pn [] [] le

in guard f g (Basic (λs. alloc (dom (LT pn)) (lv s) tn T s))

absc pn (Comp c1 c2) = Seq (absc pn c1) (absc pn c2)

absc pn (Ifte e c1 c2) =
let g = guarde (dom (LT pn)) pn (hd (selectors (typ e))) [] e;

b = {s. the-Boolv (abse (dom (LT pn)) pn [] [] e s)}
in guard f g (Cond b (absc pn c1) (absc pn c2))

absc pn (Loop e c) =
let g = guarde (dom (LT pn)) pn (hd (selectors (typ e))) [] e;

b = {s. the-Boolv (abse (dom (LT pn)) pn [] [] e s)}
in guardWhile f g b (absc pn c)

absc pn (SCall vn qn ps) =
let g = guardes (dom (LT pn)) pn ps;

vs = λs. map (λe. implode (typ e, map (λss. abse (dom (LT pn)) pn ss [] e s) (selectors (typ e)))) ps;
init = λs. foldl (λs ′ (n, v). Vu (dom (LT qn)) qn n [] [] v s ′) s (zip (PE qn) (vs s));
lv = LVal (Var pn vn) [] [];
res = λt ss. V (dom (LT qn)) qn Res ss t [];
result = λi t. Basic (ass (RT qn) (dom (LT pn)) lv (res t))

in guard f g (call init qn Ret result)

absc pn (Return e) =
let bTc = LT pn Res;

g = guarde (dom (LT pn)) pn (hd (selectors T)) [] e;
lv = LVal (Var pn Res) [] [];
v = λs ss. abse (dom (LT pn)) pn ss [] e s

in guard f g (Basic (λs. ass T (dom (LT pn)) lv (v s) s))

Figure 8.4: Abstraction of statements

For pointer allocation PAlloc le tn the left expression is guarded and reduced to
a left-value via absl. The allocation and the assignment is handled by alloc.

Sequential composition Comp c1 c2 is directly mapped to Seq in Simpl.
For the conditional Ifte e c1 c2 the expression e is guarded and transformed to the
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corresponding set of Simpl states via abse. Then it is mapped to Cond in Simpl.
Similarly, for Loop e c the expression e is guarded and transformed to a state set

in the Simpl While statement.
For the procedure call SCall vn qn ps the evaluation of the parameters ps is

guarded by guardes and translated to call init qn Ret result in Simpl. Parameter
passing is encoded in init. It iterates variable update Vu over the list of parameter
names and values. The parameter names are obtained from PE qn, the parameter
values vs are obtained by imploding the atomic components of the parameters ps
that are accessed via abse. Exiting the procedure is handled by function Ret. The
procedure result is read from the result variable Res in callee qn via function res, and
assigned to variable vn of the caller pn with the left-value lv.

The return statement Return e is just a syntactic variant of an assignment to
the result variable Res. Hence its translation is analogous to the translation of an
assignment.

Abstraction of statements with absc is executable with Isabelle’s simplifier. Hence
a C0 statement can be automatically translated to the corresponding Simpl state-
ment.

As we can see in Figure 8.4 the statement structure of the C0 and the correspond-
ing Simpl program are quite the same. The main building blocks are guarding and
simulating expressions and assignments. Since we already have the simulation the-
orems for these parts the proof for the simulation theorem for statements is rather
straightforward. Given a C0 execution Π,L`C0 〈c,bsc〉 ⇒ t and an initial Simpl state
sa ∈ abss pn s, we show

• that there is an execution of the corresponding Simpl program, and

• that for the execution of the corresponding Simpl program the final state is
either the fault state or contained in absS pn t.

Formulated in this canonical way, we do not have to exploit that C0 is actually
deterministic. Also keep in mind, that the Simpl program can potentially cause more
runtime-faults than the original C0 program, depending on the implementation of
arithmetic. That is why we explicitly allow the Simpl program to end up in the
fault state, although the C0 program may not cause a runtime fault. In case no fault
occurs we have the following commuting diagram:

Normal sa
execute absc pn c in Simpl
−−−−−−−−−−−−−−−−−−→ ta

absS pn
x xabsS pn

bsc −−−−−−−−−−−−−−−−−−→
execute c in C0

t

In context of a wellformed program Π: wf-prog Π, given a conforming C0-state s: J Theorem 8.33
Simulation of
execution

TE` s :: HT,LT pn�A,GT, and an abstract Simpl-state sa ∈ abss pn s, given a welltyped
statement c: Π,GT ++ LT pn,HT` c

√
that is definitely assigned: D c L A, with

respect to L = dom (LT pn) and A ⊆ dom (lvars s) then we have:
given the C0 execution Π,L`C0 〈c,bsc〉 ⇒ t then
(∃ ta. Γ` 〈absc pn c,Normal sa〉 ⇒ ta) ∧
(∀ ta. Γ` 〈absc pn c,Normal sa〉 ⇒ ta −→ ta = Fault f ∨ ta ∈ absS pn t).
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Proof. By induction on the C0 execution.
Case Skip is trivial.
Case Ass le e is covered by Theorem 8.32 for assignments.
Case PAlloc le tn is handled by the requirements for F, Fu, Al and Alu (cf. Definition

8.41) and the simulation Theorem 8.32 for assignments. There is only one subtlety.
Following the naming of states in Definition 8.42 of function alloc, the guard for
the left-value is on the state sa whereas we need it for the state s2 in order to apply
Theorem 8.32. By induction on the left-value we prove that the guard still holds in
state s2.

Case Comp c1 c2 follows from the induction hypotheses. As for the other composi-
tional statements Theorem 7.16 about the type soundness of C0 is used to propagate
conformance of the initial state to the intermediate states.

Cases Ifte e c1 c2 and Loop e c are derived from the induction hypotheses together
with Theorem 8.9 for the simulation of the condition e.

Case SCall vn qn ps. Evaluation of parameters ps is covered by Theorem 8.10
for expression lists. By the requirement abss pn s ⊆ abss qn (s(|lvars := empty|)) of
locale execute (cf. Definition 8.45(1)) we can simulate the entry of the procedure. By
induction on the parameter list and the requirement on LVu for the initialisation
of local variables (cf. Definition 8.34(2)) we can simulate parameter passing. The
wellformedness of the program ensures that the procedure body is welltyped and
definitely assigned so that the induction hypothesis can be applied. Returning from
the procedure is handled by the requirement on Ret (cf. Definition 8.45(2)). Finally
the assignment of the result variable is covered by Theorem 8.32. Note that the
result is assigned to a plain variable and thus no guard is needed here.

Case Return e is covered by Theorem 8.32 for assignments. �

This simulation theorem of a C0 execution by the execution of the corresponding
Simpl program allows to transfer Hoare triples for partial correctness from Simpl to
C0. If we have proven a Hoare triple on the Simpl level then this also includes the
behaviour of the original C0 program. Hence the specification can be transferred
to the C0 level. To transfer total correctness properties we additionally have to care
about termination.

8.6 Termination

If we have proven that the Simpl program terminates we want to conclude that the
original C0 program terminates, too. For both Simpl (cf. Figure 2.2 on p. 20) and
C0 (cf. Figure 7.8 on p. 135) we have similar inductive characterisations of guar-
anteed termination. Hence the obvious proof idea is induction on the termination
judgement for the Simpl program. We employ this idea but it does not work out as
smoothly as one might expect. The basic problem is that we formally do induction
on the termination of a Simpl program, but not on a general one, but one that was
generated by abstracting a C0 program. So intuitively the induction is more on the
termination of the embedded C0 program than on a general Simpl program.

We start with the terminating Simpl program Γ`ca ↓ Normal sa, where command
ca = absc pn c for a C0 statement c and sa ∈ abss pn s. We do induction on the
termination judgement Γ`ca ↓ Normal sa so in each inductive case we start with a
Simpl program ca and have to get hold of the C0 program c it comes from. So we
have to invert the effect of absc. For example, in case ca = Seq ca1 ca2 we can do
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case analysis on c and see that only c = Comp c1 c2 can result in ca by applying
absc. Hence we get both ca1 = absc pn c1 and ca2 = absc pn c2. We want to show that
judgement Π,L`C0 Comp c1 c2 ↓ bsc holds. In this situation we have the following
induction hypotheses:

• Π,L`C0 c1 ↓ bsc (∗)

• ∀sa
′ s ′. Γ` 〈ca1,Normal sa〉 ⇒ sa

′
−→ sa

′
∈ absS pn s ′−→ Π,L`C0 c2 ↓ s ′. (∗∗)

According to the C Rule we have to show:

1. Π,L`C0 c1 ↓ bsc

2. ∀s ′. Π,L`C0 〈c1,bsc〉 ⇒ s ′−→ Π,L`C0 c2 ↓ s ′.

We can already discharge (1) with hypothesis (∗). Also the conclusion of (2) matches
the conclusion of (∗∗), but the preconditions are different. From (2) we get a C0
execution and have to transform it to a Simpl execution in order to discharge the
preconditions of (∗∗). The simulation Theorem 8.33 for statements provides us with
exactly this transformation. However, it also allows that the final state sa

′ of the
Simpl execution can be the fault state Fault f, although s ′ is not None. In this case we
cannot derive sa

′
∈ absS pn s ′. Besides this dead end, the simulation theorem yields

sa
′
∈ absS pn s ′ and we can get hold of the conclusion of (∗∗). To get rid of the dead

end we can restrict the Simpl executions to those that do not end up in a Fault state.
In the end we want to transfer total correctness properties from Simpl to C0. The
semantics of a Hoare triple (cf. Definition 3.2 on p. 39) guarantees that we do not
end up in a Fault state. Therefore this is a perfectly legitimate restriction.

The example of the sequential composition shows that the basic proof idea
seems to work and that we can build on the simulation theorem for C0 executions in
Simpl. However, besides Skip, the only statement that never needs to be guarded is
sequential composition. For all other statements we potentially get a guard in front
of it. So instead of directly mapping Ifte to Cond we end up with Guard f g (Cond . . . ).
This destroys our inductive argument. Consider ca = Guard f g ca

′ and ca = absc pn c.
In the example ca

′ = (Cond . . . ) and c = (Ifte . . . ). We get an induction hypothesis
for ca

′ but we cannot find any sub-statement c ′ of c that actually translates to ca
′,

because guarding the statements is a crucial part of absc. To remedy the situation we
consider termination of the Simpl skeletons, where all the guards are stripped off.
Those skeletons preserve the structure of the original C0 abstract syntax and thus the
induction hypothesis matches the subcomponents of a C0 statement. Is it legitimate
to strip off the guards? Since runtime faults are also considered as termination, a
program with guards potentially terminates more likely than the version without
guards. In case we again restrict ourselves to executions of a guarded program that
do not cause runtime faults, then the termination of the guarded program implies
the termination of the program without guards (cf. Lemmas 5.7 and 5.8). This fits
in our scenario, since total correctness of a program implies that no runtime error
occurs.

However, even if we consider only the Simpl skeletons, without any guards,
there is still one case where the induction hypothesis does not match: The procedure
call. A C0 procedure call is translated to the derived command call init p ret res in
Simpl (cf. Definition 2.8). It is defined in terms of DynCom. Now we get into a
similar situation as with the guards. The procedure call is translated to DynCom ca

′,
where ca

′ is defined according to Definition 2.8. We want to employ the induction
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hypothesis for the procedure body, but we only get one for ca
′ sa. Here ca

′ sa has
no proper C0 counterpart. Simpl and its termination judgement is too general for
C0. C0 only exploits a subset of Simpl and hence the recursion and induction
principles for Simpl do not suit to the Simpl image of C0. We regard the subset of
Simpl statements that can be obtained by absc for a C0 statement as C0-shaped. For
those statements we define a specialised termination judgement Γ C̀0

shaped c ↓ s with the
desired recursion structure. Rule induction on this judgement is sufficient to prove
termination of the original C0 program. Moreover, we prove that every C0-shaped
Simpl program that terminates with respect to the ordinary judgement Γ`c ↓ s also
terminates with respect to Γ C̀0

shaped c ↓ s. Ultimately, we can conclude that termination
of the Simpl program, which was generated by absc implies that the original C0
program also terminates.

The set of C0-shaped Simpl programs is defined inductively by the rules in 8.5.Definition 8.47 I

Skip ∈ C0-shaped Basic f ∈ C0-shaped

c1 ∈ C0-shaped c2 ∈ C0-shaped

Seq c1 c2 ∈ C0-shaped

c1 ∈ C0-shaped c2 ∈ C0-shaped

Cond b c1 c2 ∈ C0-shaped

c ∈ C0-shaped

While b c ∈ C0-shaped

call init p ret (λi t. Basic (f i t)) ∈ C0-shaped
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call p ∈ C0-shaped DynCom (λt. Seq (Basic (f t)) (Basic (g t))) ∈ C0-shaped

c1 ∈ C0-shaped c2 ∈ C0-shaped

Catch c1 c2 ∈ C0-shaped Throw ∈ C0-shaped

Figure 8.5: C0-shaped Simpl programs

The rules above the dotted line are the obvious cases that result after stripping
off the guards from the translation of a C0 statement with absc. Under the dotted
line are the rules for those statements that appear as sub-statements of call if we
expand Definition 2.8. This extension is needed for the proof of Lemma 8.35.

Stripping the guards after abstracting a C0 statement yields a C0-shaped result:

strip-guards UNIV (absc pn c) ∈ C0-shapedLemma 8.34
(in execute)

I

Proof. By induction on c. �

Guaranteed termination Γ C̀0
shaped c ↓ s of a C0-shaped program c in the initial state sDefinition 8.48 I

is defined inductively by the rules in Figure 8.6, where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s :: ( ′s, ′f ) xstate
c :: ( ′s, ′p, ′f ) com
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Γ`C0
shaped Skip ↓ Normal s

(S)
Γ`C0

shaped Basic f ↓ Normal s
(B)

Γ`C0
shaped c1 ↓ Normal s ∀s ′. Γ` 〈c1,Normal s〉 ⇒ s ′−→ Γ`C0

shaped c2 ↓ s ′

Γ`C0
shaped Seq c1 c2 ↓ Normal s

(S)

s ∈ b Γ`C0
shaped c1 ↓ Normal s

Γ`C0
shaped Cond b c1 c2 ↓ Normal s

(CT)
s < b Γ`C0

shaped c2 ↓ Normal s

Γ`C0
shaped Cond b c1 c2 ↓ Normal s

(CF)

s ∈ b Γ`C0
shaped c ↓ Normal s ∀s ′. Γ` 〈c,Normal s〉 ⇒ s ′−→ Γ`C0

shaped While b c ↓ s ′

Γ`C0
shaped While b c ↓ Normal s

(WT)

s < b

Γ`C0
shaped While b c ↓ Normal s

(WF)

Γ p = bbdyc Γ`C0
shaped bdy ↓ Normal (init s)

Γ`C0
shaped call init p ret (λi t. Basic (f i t)) ↓ Normal s

(CP)

Γ p = None

Γ`C0
shaped call init p ret (λi t. Basic (f i t)) ↓ Normal s

(CPU)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Γ p = bbdyc Γ`C0

shaped bdy ↓ Normal s

Γ`C0
shaped Call p ↓ Normal s

(C)
Γ p = None

Γ`C0
shaped Call p ↓ Normal s

(CU)

Γ`C0
shaped DynCom (λt. Seq (Basic (f t)) (Basic (g t))) ↓ Normal s

(R)
Γ`C0

shaped Throw ↓ Normal s
(T)

Γ`C0
shaped c1 ↓ Normal s ∀s ′. Γ` 〈c1,Normal s〉 ⇒ Abrupt s ′−→ Γ`C0

shaped c2 ↓ Normal s ′

Γ`C0
shaped Catch c1 c2 ↓ Normal s

(C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ`C0
shaped c ↓ Fault f

(F)
Γ`C0

shaped c ↓ Stuck
(S)

Γ`C0
shaped c ↓ Abrupt s

(A)

Figure 8.6: Guaranteed termination of C0-shaped Simpl programs

The CPRule is the one we are aiming at. It has the same recursion structure
as a C0 procedure call. Hence induction on termination of C0-shaped programs fits
well to the original C0 program. The rules between the dotted lines are again the
extensions to the sub-statements occurring in the definition of call that we need for
the following lemma. If a C0-shaped program terminates according to the original
termination judgement, then it also terminates according to the new rules.

If Γ`c ↓ s and c ∈ C0-shaped and ∀p bdy. Γ p = bbdyc −→ bdy ∈ C0-shaped then J Lemma 8.35

Γ C̀0
shaped c ↓ s.

Proof. By induction on Γ`c ↓ s (cf. Figure 2.2 on p. 20). In case of DynCom cs we have
the following hypotheses:

• Γ`cs s ↓ Normal s,
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• DynCom cs ∈ C0-shaped, and (∗)

• Γ`cs s ↓ Normal s −→ cs s ∈ C0-shaped −→ Γ C̀0
shaped cs s ↓ Normal s. (∗∗)

To get hold of the conclusion of hypothesis (∗∗) we have to show that cs s is C0-
shaped: cs s ∈ C0-shaped. From (∗) we know that DynCom cs can either be of the form
call init p ret (λi t.Basic (f i t)) or it models a return statement, which results in the form
DynCom (λt. Seq (Basic (f t)) (Basic (g t))). In both cases we have cs s ∈ C0-shaped.

The other cases of the induction are straightforward. �

Assuming that the Simpl program does not cause a runtime fault, and that
the skeleton of the Simpl program, where all guards are stripped off, terminates
according to the rules of C0-shaped termination, then the original C0 program
terminates, too.

In context of a wellformed program Π: wf-prog Π, given a conforming C0-state s:Lemma 8.36
(in execute)

I

TE` s :: HT,LT pn�A,GT, and an abstract Simpl-state sa ∈ abss pn s, given a welltyped
statement c: Π,GT ++ LT pn,HT` c

√
that is definitely assigned: D c L A, with

respect to A ⊆ dom (lvars s) and L = dom (LT pn), moreover let ca = absc pn c and let
sca = strip-guards UNIV ca, then we have:
If strip UNIV Γ C̀0

shaped sca ↓ Normal sa and Γ` 〈ca,Normal sa〉 ⇒<Fault ‘ UNIV ∪ {Stuck}
then Π,L`C0 c ↓ bsc.

Proof. By induction on strip UNIV Γ C̀0
shaped sca ↓ Normal sa. In each inductive step we

first construct the matching original C0 statement c from the given case of sca. This is
done by case analysis on c and simplification according to the definitions of absc and
strip-guards. For atomic C0 statements termination is trivial. For compound state-
ments the induction hypothesis for termination of sca exactly fits to the preconditions
of the termination judgement for C0 programs. The simulation of the execution of
C0 statement c by the Simpl statement ca = absc pn c is provided by Theorem 8.33.
The further simulation of ca by the stripped version sca = strip-guards UNIV ca is
provided by Lemmas 5.1 and 5.2. These Lemmas are applicable since we have
excluded executions of ca that end up in a Fault state. We exclude Stuck states, too.
Hence we know that during execution every procedure is defined. This is necessary,
since C0 does not handle undefined procedures in the existing semantics (cf. Figure
7.7 on p. 133) and termination judgement (cf. Figure 7.8 on p. 135). Welltyped C0
programs of course never call an undefined procedure, but we have not proven any
formal lemma about this and thus cannot ignore this case. However, remember that
the semantics of Hoare-triples in Simpl already ensures that the execution does not
end up in a Stuck state and hence we do not introduce any substantial restriction
here. �

The previous lemma uses the termination of the C0-shaped guard-less skele-
ton in order to make the induction work. The following simulation theorem for
termination lifts this result to ordinary termination of the abstracted C0 program.

In context of a wellformed program Π: wf-prog Π, given a conforming C0-state s:Theorem 8.37
(in execute) Simulation

of termination

I

TE` s :: HT,LT pn�A,GT, and an abstract Simpl-state sa ∈ abss pn s, given a welltyped
statement c: Π,GT ++ LT pn,HT` c

√
that is definitely assigned: D c L A, with

respect to A ⊆ dom (lvars s) and L = dom (LT pn):
If Γ`absc pn c ↓Normal sa and Γ` 〈absc pn c,Normal sa〉 ⇒<Fault ‘ UNIV ∪ {Stuck} then
Π,L`C0 c ↓ bsc.
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Proof. Let ca = absc pn c and sca = strip-guards UNIV ca. Hence we have

• Γ`ca ↓ Normal sa, and (∗)

• Γ` 〈ca,Normal sa〉 ⇒<Fault ‘ UNIV ∪ {Stuck}. (∗∗)

In order to apply Lemma 8.36, we first transform assumptions (∗) and (∗∗) to
strip UNIV Γ C̀0

shaped sca ↓ Normal sa. With (∗) and (∗∗) we utilise Lemma 5.7 and ob-
tain Γ`sca ↓ Normal sa. Moreover, from (∗∗) and Lemmas 5.1 and 5.3 we obtain
Γ` 〈sca,Normal sa〉 ⇒<Fault ‘ UNIV. Together we get strip UNIV Γ`sca ↓Normal sa by
Lemma 5.8. From Lemma 8.34 we know that sca and all bodies in strip UNIV Γ are
C0-shaped. Thus we can conclude with Lemma 8.35 that the stripped variant also
terminates: strip UNIV Γ C̀0

shaped sca ↓ Normal sa. Now we apply Lemma 8.36 to finish
the proof. �

In order to transfer partial and total correctness properties we do not have to
provide the dual theorem: “guaranteed termination of C0 programs implies guar-
anteed termination of the corresponding Simpl program”. If there is a terminating
execution of the C0 program, according to the big-step semantics, then there is at
least one terminating computation in the corresponding Simpl program. This is
already guaranteed by Theorem 8.33. Hence the behaviour of the C0 program is
properly simulated by the corresponding Simpl program.

8.7 Hoare Triples

We can simulate C0 execution and termination in Simpl. Next we want to transfer
program specifications, given in form of a Hoare triple, from the Simpl level back
to the original C0 program. We first define the notion of a valid Hoare triple for C0
analogously to validity in Simpl, starting with partial correctness:

Π,L|=C0 P c Q ≡ ∀s t. Π,L`C0 〈c,s〉 ⇒ t −→ s ∈ Some ‘ P −→ t ∈ Some ‘ Q J Definition 8.49
Validity (partial
correctness)Given an execution of statement c from initial state s to final state t, provided

that the initial state satisfy the precondition P then the execution of c does not cause
a runtime fault and the final state satisfies the postcondition Q.

Total correctness additionally requires termination:

Π,L|=C0,t P c Q ≡ Π,L|=C0 P c Q ∧ (∀s∈Some ‘ P. Π,L`C0 c ↓ s) J Definition 8.50
Validity (total
correctness)In the corresponding Simpl specifications the postcondition for abrupt termina-

tion and the set of faults are both empty. We abbreviate Γ|=/{} P c Q,{} and also
Γ|=t/{} P c Q,{}with Γ|= P c Q and Γ|=t P c Q, respectively. We want to transfer a Simpl
Hoare triple Γ|= Pa (absc pn c) Qa to its C0 variant Π,L|=C0 P c Q. The assertions Pa
and P as well as Qa and Q have to be related. We introduce two ways to describe
this relation, either by abstraction of a C0 assertion to a Simpl assertion, or by con-
cretising a Simpl assertion to a C0 one. The differences between both approaches is
discussed in this section.

Every state s for which there is an abstract state sa = absa pn s that satisfies Pa
satisfies the concretisation of assertion Pa:

concr :: pname⇒ ′s set⇒ state set
concr pn Pa ≡ {s. ∃sa. sa ∈ abss pn s ∧ sa ∈ Pa}

J Definition 8.51
(in execute)
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The union of the abstract states for all C0 states satisfying P is the abstraction of
assertion P:

absa :: pname⇒ state set⇒ ′s set
absa pn P ≡

⋃
abss pn ‘ P

Definition 8.52
(in execute)

I

The simulation Theorem 8.33 for C0 executions in Simpl only works for well-
formed programs and welltyped definitely assigned statements and conforming
states. Conformance and definite assignment both depend on the initial state. These
properties have to be ensured by the precondition of the C0 Hoare triple. Welltyped-
ness of the statement can also be established under the precondition of the Hoare
triple. Remember that typing requires that all literal values are bounded. Since a
specification may contain literal values, for example, as place-holders for procedure
parameters, the bounds of these values are part of the precondition. Hence we need
the precondition in order to prove welltypedness of the statement.

For a wellformed program Π: wf-prog Π, given a statement c that is welltyped:Theorem 8.38
(in execute) Transfer of

partial correctness (I)

I

∀s∈P. Π,GT ++ LT pn,HT` c
√

, and also definitely assigned: D c L A, with respect
to L = dom (LT pn), let P = concr pn Pa and Q = concr pn Qa, moreover assume that
∀s∈P. TE` s :: HT,LT pn�A,GT and ∀s∈P. A ⊆ dom (lvars s), then we have:
If Γ|= Pa (absc pn c) Qa then Π,L|=C0 P c Q.

Proof. According to Definition 8.49 of validity we have to consider a C0 execution
Π,L`C0 〈c,bsc〉 ⇒ T where s ∈ P. We have to show that T ∈ Some ‘ Q. From concreti-
sation (cf. Definition 8.51) of Pa we obtain an abstract state sa ∈ abss pn s where
sa ∈ Pa. From the simulation Theorem 8.33 we get the corresponding Simpl execu-
tion Γ` 〈absc pn c,Normal sa〉 ⇒ Ta, where either Ta = Fault f or Ta ∈ absS pn T (∗).
Moreover, we know from validity of the Simpl Hoare triple that no runtime faults
occur and that Ta ∈ Normal ‘ Qa. Hence there is a ta with Ta = Normal ta and ta ∈ Qa
and with (∗) also a t such that T = btc and ta ∈ abss pn t. By Definition 8.51 we can
conclude T ∈ Some ‘ Q. �

The previous proof of property transfer via concretisation of the assertions is
straightforward. What if we want to use abstraction absa instead? We start with
Γ|= (absa pn P) absc pn c (absa pn Q) and want to conclude Π,L|=C0 P c Q. If we try to
adapt the proof above we encounter a problem right in the first step. Given a s ∈ P,
Definition 8.52 is not sufficient to ensure that there is a state sa ∈ abss pn s, since
abss could yield the empty set. A proper abstraction function is not as misbehaved,
but formally we have to exclude this situation here. Another problem occurs in the
final step of the proof, when we have given a ta ∈ absa pn Q and also ta ∈ abss pn t.
We want to conclude that t ∈ Q, but again the definition of absa is not sufficient.
From ta ∈ absa pn Q we only know that there is a t ′ such that ta ∈ abss pn t ′ and
t ′ ∈ Q. Unfortunately, t ′ and t do not necessarily have to be the same state. The
underlying problem is that postcondition Q can potentially distinguish t ′ from t,
whereas those differences are lost by the abstraction to ta. We can restrict ourselves
to postconditions Q that do not distinguish between states that are mapped to the
same abstract state:

∀ t1 t2. t1 ∈ Q −→ abss pn t1 ∩ abss pn t2 , {} −→ t2 ∈ Q

Note that this issue does not occur with concretisation. There we start with an
assertion on abstract states. Properties that can distinguish concrete states and not
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abstract ones, are thus per se ruled out since they cannot be expressed as assertion
on abstract states.

For a wellformed program Π: wf-prog Π, given a statement c that is welltyped: J Theorem 8.39
(in execute) Transfer
of partial correctness
(II)

∀s∈P. Π,GT ++ LT pn,HT` c
√

, and also definitely assigned: D c L A, with respect
to L = dom (LT pn), moreover assume that ∀s∈P. TE` s :: HT,LT pn�A,GT and also
∀s∈P. A ⊆ dom (lvars s) and ∀s∈P. abss pn s , {} and that Q respects the state abstrac-
tion: ∀ t1 t2. t1 ∈ Q −→ abss pn t1 ∩ abss pn t2 , {} −→ t2 ∈ Q, then we have:
If Γ|= (absa pn P) (absc pn c) (absa pn Q) then Π,L|=C0 P c Q.

Proof. According to Definition 8.49 we consider a C0 execution Π,L`C0 〈c,bsc〉 ⇒ T
where s ∈ P. We have to show that T ∈ Some ‘ Q. Since abss pn s , {}we can obtain an
abstract state sa ∈ abss pn s where sa ∈ Pa via Definition 8.52. From the simulation The-
orem 8.33 we get the corresponding Simpl execution Γ` 〈absc pn c,Normal sa〉 ⇒ Ta,
where either Ta = Fault f or Ta ∈ absS pn T (∗). Moreover, we know from validity of
the Simpl Hoare triple that runtime faults are excluded and Ta ∈ Normal ‘ absa pn Q.
Hence there is a ta with Ta =Normal ta and ta ∈ absa pn Q (∗∗) and with (∗) also a state
t such that T = btc and ta ∈ abss pn t (∗ ∗ ∗). From (∗∗) and Definition 8.52 we obtain an-
other state t ′such that t ′∈Q and ta ∈ abss pn t ′. Together with (∗∗∗) and our restriction
on postcondition Q we can conclude that t ∈ Q and hence T ∈ Some ‘ Q. �

In practice it turns out that a combination of both theorems works the best.
For the precondition we use abstraction and for the postcondition concretisation,
together with a consequence step. In practical applications all the assertions P, Pa
and Q and Qa are given and we show:

• absa pn P ⊆ Pa and

• concr pn Qa ⊆ Q.

Unfolding the definitions yields the following proof obligations:

• sa ∈ abss pn s −→ s ∈ P −→ sa ∈ Pa and

• ta ∈ abss pn t −→ ta ∈ Qa −→ t ∈ Q.

In both cases we obtain either sa ∈ abss pn s or ta ∈ abss pn t which we can exploit
in order to transfer the assertions.

Since the state abstraction only works well for conforming states it is crucial to
have this information. For the precondition the transfer theorems already require
conformance. For the postcondition we can derive it from the type soundness
Theorem 7.16 and similarly for definite assignment (cf. Theorem 7.13).

For a wellformed program Π: wf-prog Π, given a statement c that is welltyped: J Corollary 8.40
(in execute)∀s∈P. Π,GT ++ LT pn,HT` c

√
, and also definitely assigned: D c L A, with respect

to L = dom (LT pn), moreover assume that ∀s∈P. TE` s :: HT,LT pn�A,GT and also
∀s∈P. A ⊆ dom (lvars s) and ∀s∈P. abss pn s , {}, provided that absa pn P ⊆ Pa and
∀HT ′. HT ⊆m HT ′−→

concr pn Qa
⊆ {t. TE` t :: HT ′,LT pn�(A ∪ A c),GT −→ A ∪ L ∩ A c ⊆ dom (lvars t) −→ t ∈ Q},

then we have:
If Γ|= Pa (absc pn c) Qa then Π,L|=C0 P c Q.
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Proof. Analogous to Theorems 8.38 and 8.39. The additional assumptions in order
to derive Q from Qa are obtained by Theorems 7.16 and 7.13. �

For total correctness we can derive exactly the same theorems.

For a wellformed program Π: wf-prog Π, given a statement c that is welltyped:Theorem 8.41
(in execute) Transfer of

total correctness (I)

I

∀s∈P. Π,GT ++ LT pn,HT` c
√

, and also definitely assigned: D c L A, with respect
to L = dom (LT pn), let ∀s∈P. A ⊆ dom (lvars s) and ∀s∈P. TE` s :: HT,LT pn�A,GT,
moreover assume that P = concr pn Pa and Q = concr pn Qa, then we have:
If Γ|=t Pa (absc pn c) Qa then Π,L|=C0,t P c Q.

Proof. We have to show partial correctness and termination for the C0 program.
The transfer of partial correctness follows from Theorem 8.38. For termination we
assume s ∈ P and show Π,L`C0 c ↓ bsc. From concretisation (cf. Definition 8.51) of P
we obtain an abstract state sa ∈ abss pn s where sa ∈ Pa. With validity of the Simpl
Hoare triple we have Γ` 〈absc pn c,Normal sa〉 ⇒<Fault ‘ UNIV ∪ {Stuck} and also
Γ`absc pn c ↓ Normal sa. Thus the simulation Theorem 8.37 for termination ensures
Π,L`C0 c ↓ bsc. �

For a wellformed program Π: wf-prog Π, given a statement c that is welltyped:Theorem 8.42
(in execute) Transfer of

total correctness (II)

I

∀s∈P. Π,GT ++ LT pn,HT` c
√

, and also definitely assigned: D c L A, with respect
to L = dom (LT pn), moreover assume that ∀s∈P. TE` s :: HT,LT pn�A,GT and also
∀s∈P. A ⊆ dom (lvars s) and ∀s∈P. abss pn s , {} and that Q respects the state abstrac-
tion: ∀s t. s ∈ Q −→ abss pn s ∩ abss pn t , {} −→ t ∈ Q, then we have:
If Γ|=t (absa pn P) (absc pn c) (absa pn Q) then Π,L|=C0,t P c Q.

Proof. Analogous to Theorem 8.41. Non-emptiness of the state abstraction guaran-
tees a proper initial state sa ∈ abss pn s where sa ∈ Pa. �

For a wellformed program Π: wf-prog Π, given a statement c that is welltyped:Corollary 8.43
(in execute)

I

∀s∈P. Π,GT ++ LT pn,HT` c
√

, and also definitely assigned: D c L A, with respect
to L = dom (LT pn), moreover assume that ∀s∈P. TE` s :: HT,LT pn�A,GT and also
∀s∈P. A ⊆ dom (lvars s) and ∀s∈P. abss pn s , {}, provided that absa pn P ⊆ Pa and
∀HT ′. HT ⊆m HT ′−→

concr pn Qa
⊆ {t. TE` t :: HT ′,LT pn�(A ∪ A c),GT −→

A ∪ L ∩ A c ⊆ dom (lvars t) −→ t ∈ Q},
then we have:
If Γ|=t Pa (absc pn c) Qa then Π,L|=C0,t P c Q.

Proof. Analogous to Theorems 8.41 and 8.42. The additional assumptions in order
to derive Q from Qa are obtained by Theorems 7.16 and 7.13. �

8.8 Example

The purpose of this section is to show that we can indeed build a model for all the
assumptions that we have collected in order to prove the property transfer theo-
rems. Moreover, we illustrate that for a given C0 program we can define the locale
parameters like state abstraction and lookup and update functions schematically,
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and elaborate how their requirements can proven in an automatic fashion. Hence
this instantiation can be automated.

We consider a program that consist of two procedures, one to calculate the
factorial and one to reverse a list in the heap. The global array is only introduced to
explain how to deal with arrays:

struct list {

int cont;

struct list* next;

};

struct list arr[10];

unsigned int Fac(unsigned int n) {

unsigned int m;

if (n=0) {

return 1

} else {

m = Fac (n - 1);

return (n*m);

}

}

struct list* Rev(struct list* p) {

struct node* q,r;

q = NULL;

while (p != NULL) {

r = p;

p = p->next;

r->next = q;

q = r;

}

return q;

}

The body of the procedure Fac has the following C0 syntax tree:

Fac-C0-bdy ≡
Ifte (BinOp equal (VarAcc ”n” UnsgndT) (Lit (Prim (Unsgnd 0)) UnsgndT) Boolean)
(Return (Lit (Prim (Unsgnd 1)) UnsgndT))
(Comp (SCall ”m” ”Fac”

[BinOp minus (VarAcc ”n” UnsgndT) (Lit (Prim (Unsgnd 1)) UnsgndT)
UnsgndT])

(Return (BinOp times (VarAcc ”n” UnsgndT) (VarAcc ”m” UnsgndT) UnsgndT)))

The C0 syntax tree of procedure Rev is the following:

Rev-C0-bdy ≡
Comp (Ass (VarAcc ”q” (Ptr ”list”)) (Lit (Prim Null) NullT))
(Comp (Loop (BinOp notequal (VarAcc ”p” (Ptr ”list”)) (Lit (Prim Null) NullT)

Boolean)
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(Comp (Ass (VarAcc ”r” (Ptr ”list”)) (VarAcc ”p” (Ptr ”list”)))
(Comp (Ass (VarAcc ”p” (Ptr ”list”))

(StructAcc
(Deref (VarAcc ”p” (Ptr ”list”))

(Struct [(”cont”, Integer), (”next”, Ptr ”list”)]))
”next” (Ptr ”list”)))

(Comp (Ass (StructAcc
(Deref (VarAcc ”r” (Ptr ”list”))

(Struct [(”cont”, Integer), (”next”, Ptr ”list”)]))
”next” (Ptr ”list”))

(VarAcc ”q” (Ptr ”list”)))
(Ass (VarAcc ”q” (Ptr ”list”)) (VarAcc ”r” (Ptr ”list”)))))))

(Return (VarAcc ”q” (Ptr ”list”))))

The complete program Π consists of the type declaration for list structures, the
declaration of the global array variable and the procedure definitions:

Π ≡ ([(”list”, Struct [(”cont”, Integer), (”next”, Ptr ”list”)])],
[(”arr”, Arr 10 (Struct [(”cont”, Integer), (”next”, Ptr ”list”)]))],
[(”Fac”, ([(”n”, UnsgndT)], [(”m”, UnsgndT)], UnsgndT), Fac-C0-bdy),
(”Rev”, ([(”p”, Ptr ”list”)], [(”q”, Ptr ”list”), (”r”, Ptr ”list”)], Ptr ”list”),
Rev-C0-bdy)])

Next we define the Simpl state space. The global variables consist of the heaps
cont and next, the components arr-cont and arr-next of the global array, and of the
auxiliary components alloc and free. For the local variables we introduce the record
fields m, n and result variable Resn for procedure Fac, and p, q, r and Resr for
procedure Rev. Since the result variables of the factorial and list reversal have
different types in the Simpl model, we need to introduce two components. In
general we can map local variables of different procedures to the same record field
as long as they share the same type in the Simpl model.

record globals =
alloc :: ref list
free :: nat
cont :: ref ⇒ int
next :: ref ⇒ ref
arr-cont:: int list
arr-next:: ref list

record st =
globals :: globals
n :: nat
m :: nat
Resn :: nat
p :: ref
q :: ref
r :: ref
Resr :: ref

We define the procedures in Simpl. We use unbounded arithmetic in Simpl
and hence we have to guard the arithmetic operations in the program. Unsigned
integers are mapped to natural numbers. For natural numbers we have 0 − 1 = 0
for the subtraction and hence we introduce a guard. The upper bound for unsigned
integers is un-int-ub. For the list reversal procedure we guard against dereferencing
null pointers.
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procedures Fac (n|Resn) =
IF n = 0 THEN Resn := 1
ELSE {|1 ≤ n|}7→ m := CALL Fac(n − 1);
{|n ∗ m < un-int-ub|}7→ Resn := n ∗ m

FI

procedures Rev (p|Resr) =
q := NULL;
WHILE p , NULL
DO r := p;
{|p , NULL|}7→ p := p→next;
{|r , NULL|}7→ r→next := q;
q := r

OD;
Resr := q

Now we specify the procedures and prove them correct on the Simpl level. For
the factorial we get:

∀n. Γ` {|n ≤ 12|} Resn := CALL Fac(n) {|Resn = fac n|}

The upper bound 12 ensures that the calculation does not cause an overflow. For
the list reversal we prove:

∀p Ps. Γ` {|List p next Ps|} Resr := CALL Rev(p) {|List Resr next (rev Ps)|}

Before going into detail about the instantiation of the transfer theorem, we
discuss the results that we obtain from the property transfer to the C0 level. For the
factorial we get:

∀HT n. Π,L|=C0 {s. TE` s :: HT,empty,GT ∧ n ≤ 12}
SCall ”Res” ”Fac” [Lit (Prim (Unsgnd n)) UnsgndT]
{s. lvars s ”Res” = bPrim (Unsgnd (fac n))c}

The specification resembles the Simpl Hoare triple. The precondition addition-
ally restricts the initial state to be a conforming state. This is required by the property
transfer Corollary 8.40, since the correspondence of a Simpl state to a C0 state is
only given for conforming states. However, note that the typing for local variables
is empty, which means that we do not have to put any restrictions on the local vari-
ables. This is a desired and important property of the specification. It allows to
reuse the specification from any calling context since it does not make assumptions
on the types of the local variables. The local environment can be empty, since the
specified procedure call only gets a literal value as parameter and hence does not
read any local variable of the caller. With respect to conformance, this specification
can be used from any calling context. However, there is another handicap. The
result is assigned to ”Res”, which is the result variable of procedure ”Fac” itself.
The local variables L are also the local variables of the factorial: L = dom (LT ”Fac”).
This is because the statement has to be welltyped. Of course we could (re-)import
the specification for every calling point in a C0 program, as we then know which
local variables are active and which is the actual variable we assign the result to.
However, this is annoying. This is not a problem of the property transfer theorem
but of how to specify procedures on the C0 level. We have to deal with the result
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variable. In Simpl we solved this problem by completely decoupling procedure
calls and parameter/result passing. A procedure specification only specifies the
parameterless procedure. For C0 we could use the same idea and specify the proce-
dure body instead of the procedure call. Alternatively, we can derive an adaptation
rule that allows to adapt a specification of a canonical procedure call (with literal
values as parameters, and an assignment to the formal result parameter) to an actual
procedure call:

Π,L|=C0 P (SCall x p ps) Q
∀x∈set ps. isLit x ∀ t r. update-var L t x r ∈ Q −→ update-var L ′ t y r ∈ Q ′

Π,L ′|=C0 P (SCall y p ps) Q ′

where isLit e = (∃v T. e = Lit v T)

This rule allows to adapt the set of local variables from L to L ′, and the result
variable from x to y. The side-condition ensures that the postconditions fit together.
State t is the state after returning from the procedure before assigning the result r.
Assigning r to x yields a state in Q and assigning r to y a state in Q ′. Given a concrete
Q and Q ′, rewriting of the side-condition substitutes accesses to x in Q with r, and
similarly accesses of y in Q ′with r. Applied to our example:

update-var L t ”Res” r ∈ {t. lvars t ”Res” = bPrim (Unsignd (fac n))c}

simplifies to

r = bPrim (Unsignd (fac n))c.

And similarly, if we have another calling context L ′ and variable y ∈ L ′ then:

update-var L ′ t y r ∈ {t. lvars t y = bPrim (Unsignd (fac n))c}

also reduces to

r = bPrim (Unsignd (fac n))c.

And thus the specification can be adapted in the desired fashion.
For the list reversal we get the following specification on the C0 level:

∀HT p Ls.
Π,L|=C0 {s. TE` s :: HT,empty,GT ∧ bHTc`v p :: Ptr ”list” ∧ ListC0 p (heap s) Ls}

SCall ”Res” ”Rev” [Lit p (Ptr ”list”)]
{s. ListC0 (the (lvars s ”Res”)) (heap s) (rev Ls)}

Here we have to ensure that the value p is a pointer value, which means either
Prim Null or an address Prim (Addr l). In case of an address the location l has to
be registered in the heap typing HT as a list. This is all ensured by the typing
constraint bHTc`v p :: Ptr ”list”. Again this is necessary to ensure welltypedness of
the procedure call. The core part of the specification is the adaptation of the List
predicate to the C0 level:

ListC0 :: val⇒ (loc⇀ val)⇒ loc list⇒ bool
ListC0 v h [] = v = Prim Null
ListC0 v h (l·ls) = v = Prim (Addr l) ∧ ListC0 (selv (the (h l), [”next”])) h ls

Definition 8.53 I

After this preview on the results of the property transfer from Simpl to C0, we
return to our starting point. We have to instantiate the whole framework in order
to access the simulation theorems. After describing this instantiation we come back
to the examples for some further discussion.
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State abstraction The core of the simulation is to relate the C0 state with the
Simpl state. To specify this relation we define the auxiliary function assoc that takes
a default value, an association list and a key. If the key is in the association list it
returns the corresponding element, otherwise it returns the default value.

assoc :: ′b⇒ ( ′a × ′b) list⇒ ′a⇒ ′b
assoc d [] k = d
assoc d ((k ′, e)·as) k = if k ′= k then e else assoc d as k

J Definition 8.54

We define the state abstraction abss with two auxiliary functions, one for the
global components and one for the local variables:

abss pn s ≡ abs-glob (heap s) (free-heap s) (gvars s) ∩ abs-loc pn (lvars s).

For the global components we relate alloc to the domain of the heap and free to
free-heap. Moreover, every split heap is related to the corresponding projection of
the C0 heap. We can see two kinds of projections. First with function the, to get rid
of the option layer. This means that we only care about defined values. Second the
projections the-. . . to convert a C0 val to the corresponding Simpl value. This means
that we only care about type conforming stores. The global array is mapped to its
components in the Simpl state-record:

abs-glob :: heap⇒ nat⇒ vars⇒ st set
abs-glob h f vs ≡
{sa. (finite (dom h) −→ set (alloc (globals sa)) = Rep-loc ‘ dom h) ∧

free (globals sa) = f ∧
(∀ l. next (globals sa) (Rep-loc l) = the-Ref (selv (the (h l), [”next”]))) ∧
(∀ l. cont (globals sa) (Rep-loc l) = the-Intgv (selv (the (h l), [”cont”]))) ∧
arr-cont (globals sa) = map the-Intgv (the-Arrv (selv (the (vs ”arr”), [”cont”]))) ∧
arr-next (globals sa) = map the-Ref (the-Arrv (selv (the (vs ”arr”), [”next”])))}

For the local variables we use the procedure name pn to associate the local
variables to the corresponding record fields. In our example there are procedures
”Fac” and ”Rev”. The record fields correspond to the variables with the same name.
The result variable ”Res” is mapped to Resn for procedure ”Fac” and to Resr for
procedure ”Rev”:

abs-loc :: pname⇒ (vname⇀ val)⇒ st set
abs-loc ≡
assoc (λvs. UNIV)
[(”Fac”,
λvs. {sa. (vs ”n” , None −→ n sa = the-Unsgndv (the (vs ”n”))) ∧

(vs ”m” , None −→ m sa = the-Unsgndv (the (vs ”m”))) ∧
(vs ”Res” , None −→ Resn sa = the-Unsgndv (the (vs ”Res”)))}),

(”Rev”,
λvs. {sa. (vs ”p” , None −→ p sa = the-Ref (the (vs ”p”))) ∧

(vs ”q” , None −→ q sa = the-Ref (the (vs ”q”))) ∧
(vs ”r” , None −→ r sa = the-Ref (the (vs ”r”))) ∧
(vs ”Res” , None −→ Resr sa = the-Ref (the (vs ”Res”)))})]

We only place constraints on the local variables if they are defined in the C0 state.
If the local variable mapping is empty every name is mapped to None. Hence empty
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local variables can be related to any abstract state. Moreover for undefined proce-
dure names every abstract state is valid. With this construction we immediately
obtain the context switch property of locale execute (cf. Definition 8.45(1)):

abss pn s ⊆ abss qn (s(|lvars := empty|)).

To return from a procedure is defined as

Ret ≡ λsa ta. sa(|globals := globals ta|).

The initial caller state is sa and the final state of the procedure body is ta. We
propagate the global variables to the caller state. Since the constraints on the global
and local components are strictly separated we have

(sa(|globals := globals ta|) ∈ abs-glob (heap t) (free-heap t) (gvars t)) =
(ta ∈ abs-glob (heap t) (free-heap t) (gvars t))

and

(sa(|globals := g|) ∈ abs-loc pn s) = (sa ∈ abs-loc pn s).

Hence we can show that Ret properly simulates the return of a procedure in C0, as
required in locale execute (cf. Definition 8.45(2)):

[[sa ∈ abss pn s; ta ∈ abss qn t]] =⇒ sa(|globals := globals ta|) ∈ abss pn (t(|lvars := lvars s|))

Another important property of the state abstraction is that for every C0 state
there is at least one corresponding Simpl state. This is a precondition of the property
transfer theorems (cf. Theorem 8.38):

∃sa. sa ∈ abss pn s

We can prove this property by splitting the state record to its components. For
each component and each procedure there is at most one active constraint that
can be read as (conditional) definition. For example, for component n we have
vs ”n” , None −→ n sa = the-Unsgndv (the (vs ”n”)). Hence we can just define com-
ponent n sa as the-Unsgndv (the (vs ”n”)). The same is true for the global components
with some additional lemmas. For the alloc list we have to prove that for every
finite set of allocated locations there is a corresponding list of references, which
is done by induction on finite sets. The next heap can be defined by the func-
tion λr. the-Ref (selv (the (h (Abs-loc r)), [”next”])). For this definition the constraint
in abs-glob holds, since Abs-loc (Rep-loc x) = x holds. The reason why we do not use
this definition in abs-glob as well is that the translation functions from C0 start from
a location l and convert it to Rep-loc l and this exactly matches to the specification in
abs-glob. Moreover we do not have to exclude NULL since this is implicitly already
ensured by Rep-loc l. We provide the conversion lemma ∃ f . ∀ l. f (Rep-loc l) = g l that
ensures that we can define a split heap component from its specification in abs-glob.

Declarations Next we define the auxiliary functions to retrieve the declaration
information of program Π. It is obvious that the requirements of locale execute (cf.
Definition 8.45) are met by these definition.

• Type environment:
TE :: vname⇀ ty
TE ≡ map-of [(”list”, Struct [(”cont”, Integer), (”next”, Ptr ”list”)])]
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• Typing of global variables:
GT :: vname⇀ ty
GT ≡ map-of [(”arr”, Arr 10 (Struct [(”cont”, Integer), (”next”, Ptr ”list”)]))]

• Typing of local variables:
LT :: pname⇒ vname⇀ ty
LT ≡ flattenm (map-of [(”Fac”, LT-Fac), (”Rev”, LT-Rev)])
LT-Fac ≡ map-of [(”n”, UnsgndT), (”m”, UnsgndT), (”Res”, UnsgndT)]
LT-Rev ≡
map-of [(”p”, Ptr ”list”), (”q”, Ptr ”list”), (”r”, Ptr ”list”), (”Res”, Ptr ”list”)]

• Procedure parameters :
PE :: pname⇒ vname list
PE pn ≡ map fst (fst (fst (the (plookup Π pn))))

• Procedure return type:
RT :: pname⇒ ty
RT pn ≡ snd (snd (fst (the (plookup Π pn))))

• Abstract program:
Γ :: pname⇀ (st, pname, bool) com
Γ pn ≡ option-map (absc pn ◦ pbody-of ) (plookup Π pn)

The auxiliary function flattenm turns a nested mapping in a mapping that depends
on both keys.

flattenm:: ( ′a⇀ ( ′b⇀ ′c))⇒ ( ′a⇒ ( ′b⇀ ′c))
flattenm m ≡ λx y. case m x of None⇒ None | bm ′c ⇒ m ′ y

J Definition 8.55

State lookup The lookup function LV for local variables takes a procedure name,
a variable name, a selector list, the abstract state and an index list and returns the
component of the corresponding variable. For primitive values the only relevant
selector list is the empty one and the index list is completely ignored. We use
function assoc to build LV. Since the cases for undefined variables or components
are irrelevant for the desired properties of LV we use arbitrary as default element.

LV :: pname⇒ vname⇒ fname list⇒ st⇒ nat list⇒ val
LV ≡ assoc arbitrary

[(”Fac”,
assoc arbitrary
[(”n”, assoc arbitrary [([], λsa is. Prim (Unsgnd (n sa)))]),
(”m”, assoc arbitrary [([], λsa is. Prim (Unsgnd (m sa)))]),
(”Res”, assoc arbitrary [([], λsa is. Prim (Unsgnd (Resn sa)))])]),

(”Rev”,
assoc arbitrary
[(”p”, assoc arbitrary [([], λsa is. Ref (p sa))]),
(”q”, assoc arbitrary [([], λsa is. Ref (q sa))]),
(”r”, assoc arbitrary [([], λsa is. Ref (r sa))]),
(”Res”, assoc arbitrary [([], λsa is. Ref (Resr sa))])])]
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If we lookup a variable(-component) via LV, the value has to be the same as if
we fetch this value from the local variables directly (cf. Definition 8.20(1)):

[[lvars s vn = bvc; LT pn vn = bTc; `v v :: T; selT (T, ss) = bsTc;
atomicT sT; idxfits (selv (v, ss), is); sa ∈ abss pn s]]
=⇒ LV pn vn ss sa is = idxv (selv (v, ss), is)

How can we prove this property automatically? The point to start with is the
second premise LT pn vn = bTc. We only have to consider the declared variables
of a procedure. We pick one procedure after the other and test the property for
each declared variable. For example, let us select procedure ”Fac” and variable ”n”
which has type UnsgndT. Hence we know that v is of the form Unsgnd i for some i,
since `v v :: UnsgndT. Since UnsgndT is a primitive type the only relevant selector
path and index list is the empty list. According to the definition of LV we have:

LV ”Fac” ”n” [] sa [] = Prim (Unsgnd (n sa)).

Since sa ∈ abss pn s and we know lvars s ”n” = bvc from the assumptions, we also
have:

n sa = the-Unsgndv (the (lvars s ”n”)).

Moreover from the assumptions we derived that lvars s ”n” = bPrim (Unsgnd i)c.
Hence the destructors the and the-Unsgndv cancel the constructors b c and Unsgnd
and we arrive at:

LV ”Fac” ”n” [] sa [] = Prim (Unsgnd i) = idxv(selv(Prim (Unsgnd i),[]),[]).

To prove the overall requirement we have to inspect all valid instances of the
preconditions. That means we have to look at all procedures, all the local variable
declarations and all the reasonable selector paths and index lists. How can we
systematically enumerate all these cases? We start with LT pn vn = bTc. The type
environment is defined with map-of out of an association list. By induction on the
list we can prove the following induction scheme for maps:

list-all (λ(x, v). P x v) xs =⇒ map-of xs x = bvc −→ P x vLemma 8.44 I

If we want to prove a property P x v for any key x that is mapped to v we prove this
property for all the pairs in the association list xs. The function list-all tests whether
a predicate holds for all list elements.

list-all :: ( ′a⇒ bool)⇒ ′a list⇒ bool
list-all P [] = True
list-all P (x·xs) = P x ∧ list-all P xs

Definition 8.56 I

A similar theorem can be derived for flattening a map with flattenm like in the def-
inition for LT. With this approach we can systematically enumerate the procedures
and the local variable declarations. We still need a method for the selector paths
and the index lists. For the selector paths we already have the function selectors that
enumerates all the selectors to the atomic components of a type. The correctness
Lemma 8.1 is also available. For the index list we do not enumerate every valid
index. It is sufficient to focus on the length of the index lists which corresponds to
the dimension of a type. For each index in this list the constraint idxfits (selv (v, ss),
is) ensures that the index is within the array bounds. This is enough to symbolically
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evaluate list lookup and update by Isabelle’s simplifier. To get hold of the valid
dimension we derive the following equations for predicate dimfits (cf. Definition
8.8):

dimfits (Arr n T) is = case is of []⇒ True | i·is ′⇒ dimfits T is ′

dimfits - is = case is of []⇒ True | a·list⇒ False
J Lemma 8.45

With these equations we can automatically perform case analysis on the index list
by rewriting. The type we apply dimfits to is sT. The following two lemmas allow
to derive dimfits sT, from `v v :: T, selT (ss, T) = sT and idxfits (selv (v, ss), is).

If selT (T, ss) = bsTc and `v v :: T then `v selv (v, ss) :: sT. J Lemma 8.46

Proof. By induction on the recursion scheme of selT. �

If idxfits (v, is) and `v v :: T then dimfits T is. J Lemma 8.47

Proof. By induction on `v v :: T. �

With all this setup we do not have to prove the requirement for LV directly but
start with a “executable” version:

list-all
(λ(pn, m).
∀vn T. m vn = bTc −→

lvars s vn = bvc −→
`v v :: T −→
sa ∈ abss pn s −→
list-all
(λss. ∀sT. selT (T, ss) = bsTc −→

dimfits sT is −→
idxfits (selv (v, ss), is) −→ LV pn vn ss sa is = idxv (selv (v, ss), is))

(selectors T))
[(”Fac”, LT-Fac), (”Rev”, LT-Rev)]

Simplification of this goal results in two subgoals, one for ”Fac” and one for
”Rev”. The subgoal for the factorial is the following:

list-all
(λ(vn, T).

lvars s vn = bvc −→
`v v :: T −→
sa ∈ abss ”Fac” s −→
list-all
(λss. ∀sT. selT (T, ss) = bsTc −→

dimfits sT is −→
idxfits (selv (v, ss), is) −→ LV ”Fac” vn ss sa is = idxv (selv (v, ss), is))

(selectors T))
[(”n”, UnsgndT), (”m”, UnsgndT), (”Res”, UnsgndT)]

Now we just execute this proof obligation by rewriting. What is then left to show
is something like Prim (Unsgnd (the-Unsgndv v)) = v or more general a pattern like
constructor (destructor v) = v. To prove this we have to know that v is of the right
shape, e.g. again of the form v = constructor v ′ for some v’. Then both sides of the
equation are reduced to v ′. To achieve this we exploit the typing constraint `v v :: T.
We can either build up a set of lemmas like
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`v v :: UnsgndT =⇒ Prim (Unsgnd (the-Unsgndv v)) = v

or subsequently expand `v v :: T. Since type T is instantiated with a concrete type
we can use the following derived equations:

`v v :: Boolean = ∃b. v = Prim (Bool b)
`v v :: Integer = ∃ i. v = Prim (Intg i) ∧ int-lb ≤ i ∧ i < int-ub
`v v :: UnsgndT = ∃ i. v = Prim (Unsgnd i) ∧ i < un-int-ub
`v v :: CharT = ∃ i. v = Prim (Chr i) ∧ chr-lb ≤ i ∧ i < chr-ub
`v v :: Ptr tn = v = Prim Null ∨ (∃ l. v = Prim (Addr l))
`v v :: NullT = v = Prim Null
`v v :: Struct cnTs = ∃cnvs.

v = Structv cnvs ∧
map fst cnvs = map fst cnTs ∧
(∀ (v, T)∈set (zip (map snd cnvs) (map snd cnTs)). `v v :: T)

`v v :: Arr n T = ∃av. v = Arrv av ∧ |av| = n ∧ (∀v∈set av. `v v :: T)

With this whole setup the requirement on LV can be proven automatically, driven
by rewriting with a tactic like fastsimp in Isabelle. The requirement for global variable
lookup via GV (cf. Definition 8.20(2)) can be handled in the same fashion. Here is
the definition of GV for our program:

GV :: vname⇒ fname list⇒ st⇒ nat list⇒ val
GV ≡ assoc arbitrary

[(”arr”,
assoc arbitrary
[([”cont”],
λsa is. case is of []⇒ Arrv (map (Prim ◦ Intg) (arr-cont (globals sa)))

| i·is⇒ Prim (Intg (arr-cont (globals sa))[i])),
([”next”],
λsa is. case is of []⇒ Arrv (map Ref (arr-next (globals sa)))

| i·is⇒ Ref (arr-next (globals sa))[i])])]

In case of an empty index list the whole array component is returned, in case of
an one element index list the corresponding element is selected. We do not have
to care about any other dimension of the index list since we only have to deal with
welltyped lookups.

The heap lookup function H gets the type name and the selector list to determine
the component of the split heap. Moreover it takes a reference, a Simpl state and
the index list to actually lookup the value in the heap component:

H :: tname⇒ fname list⇒ ref ⇒ st⇒ nat list⇒ val
H ≡ assoc arbitrary

[(”list”,
assoc arbitrary
[([”cont”], λr sa is. Prim (Intg (cont (globals sa) r))),
([”next”], λr sa is. Ref (next (globals sa) r))])]

The requirement on H in locale lookup (cf. Definition 8.20(3)) is quite similar to
the ones for LV and GV. The type environment TE plays the role of LT or GT. Starting
with the declared types of the program, we can apply the same automation ideas as
before.
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State update Function LVu performs a state update of an atomic component in a
local variable. It gets the procedure name, the variable name, the selector and the
index list and the new value as parameters:

LVu :: pname⇒ vname⇒ fname list⇒ nat list⇒ val⇒ st⇒ st
LVu ≡

assoc arbitrary
[(”Fac”,

assoc arbitrary
[(”n”, assoc arbitrary [([], λis v sa. sa(|n := the-Unsgndv v|))]),
(”m”, assoc arbitrary [([], λis v sa. sa(|m := the-Unsgndv v|))]),
(”Res”, assoc arbitrary [([], λis v sa. sa(|Resn := the-Unsgndv v|))])]),

(”Rev”,
assoc arbitrary
[(”p”, assoc arbitrary [([], λis v sa. sa(|p := the-Ref v|))]),
(”q”, assoc arbitrary [([], λis v sa. sa(|q := the-Ref v|))]),
(”r”, assoc arbitrary [([], λis v sa. sa(|r := the-Ref v|))]),
(”Res”, assoc arbitrary [([], λis v sa. sa(|Resr := the-Ref v|))])])]

We require from LVu that the update commutes with the corresponding update
in the C0 state (cf. Definition 8.34(1)):

[[lvars s vn = bvcc; LT pn vn = bTc; `v vc :: T; selT (T, ss) = bsTc;
atomicT sT; idxT (sT, is) = biTc; idxfits (selv (vc, ss), is); `v v :: iT]]
=⇒ LVu pn vn ss is v ‘ abss pn s
⊆ abss pn (s(|lvars := lvars s(vn 7→ updv (vc, ss, is, v))|))

Like for the lookup we have to check all local variable declarations of all pro-
cedures and all reasonable selector paths and index lists. We can use the same
automation techniques to enumerate all the relevant cases. Let us examine the up-
date of variable ”n” in procedure ”Fac”. The conclusion of the property is defined
as set inclusion. We can transform this conclusion and introduce an abstract state
sa ∈ abss pn s and show:

LVu pn vn ss is v sa ∈ abss pn (s(|lvars := lvars s(vn 7→ updv (vc, ss, is, v))|)).

We start with the left hand side. Since the type of variable ”n” is primitive we
have ss = [] and is = []. According to the definition of LVu we have:

LVu ”Fac” ”n” [] [] v sa = sa(|n := the-Unsgndv v|).

On the right hand side we have updv (vc, [], [], v) = v and hence we have to show:

sa(|n := the-Unsgndv v|) ∈ abss pn (s(|lvars := lvars s(”n” 7→ v)|)).

On both sides the only component that changes is n or the local variable at
position ”n”, respectively. All the other components stay the same and we get the
simulation directly from sa ∈ abss pn s. Referring to the function abss or more precise
abs-loc we have to show n sa

′= the-Unsgndv (the (lvars s ′ ”n”)) for the updated states
sa
′= sa(|n := the-Unsgndv v|) and s ′= s(|lvars := lvars s(”n” 7→ v)|). This simplifies to:

the-Unsgndv v = the-Unsgndv v.
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Of course, for non atomic values we do not only have the simple equation
updv (vc, [], [], v) = v like above, but also cases where we have to reason about the
commutation of selection and update. However, as we are only concerned with
welltyped values and the situation where all indexes fit to the bounds of an array,
this strategy works out in those cases, too.

In locale update there is another requirement on LVu concerning the initialisation
of local variables (cf. Definition 8.34(2)). Since our example only involves primitive
types, this is actually the same. In general this requirement is easier to show since
it does not involve the update of subcomponents on the C0 side.

The update GVu for global variables looks a bit more involved since we have the
additional indirection to the global variables.

GVu :: vname⇒ fname list⇒ nat list⇒ val⇒ st⇒ st
GVu ≡

assoc arbitrary
[(”arr”,

assoc arbitrary
[([”cont”],
λis v sa.

case is of
[]⇒ sa(|globals := globals sa(|arr-cont := map the-Intgv (the-Arrv v)|)|)
| i·is⇒ sa

(|globals := globals sa
(|arr-cont := arr-cont (globals sa)[i := the-Intgv v]|)|)),

([”next”],
λis v sa.

case is of
[]⇒ sa(|globals := globals sa(|arr-next := map the-Ref (the-Arrv v)|)|)
| i·is⇒ sa

(|globals := globals sa
(|arr-next := arr-next (globals sa)[i := the-Ref v]|)|))])]

In order to prove the requirement for GVu (cf. Definition 8.34(3)) we can use the
same approach as for LVu.

Heap update Hu uses the type name and the selector list to determine the heap
and then performs the update in that heap at the position specified by the reference
and the index list.

Hu :: tname⇒ fname list⇒ ref ⇒ nat list⇒ val⇒ st⇒ st
Hu ≡

assoc arbitrary
[(”list”,

assoc arbitrary
[([”cont”],
λr is v sa. sa

(|globals := globals sa(|cont := (cont (globals sa))(r := the-Intgv v)|)|)),
([”next”],
λr is v sa. sa

(|globals := globals sa(|next := (next (globals sa))(r := the-Ref v)|)|))])]

Again the proof of the commutation requirement of Hu in locale update (cf. Defi-
nition 8.34(4)) uses the same automation techniques as the proof for LVu. Since the
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domain of the heap is not changed by the update the requirements for the allocation
list and the free heap counter, which are imposed by abss, are also preserved by the
update.

Memory Management For the abstraction of memory management we define the
following functions:

• Lookup of free memory counter:
F :: st⇒ nat
F sa ≡ free (globals sa)

• Update of free memory counter:
Fu :: nat⇒ st⇒ st
Fu n sa ≡ sa(|globals := globals sa(|free := n|)|)

• Lookup of allocation list:
Al :: st⇒ ref list
Al sa ≡ alloc (globals sa)

• Allocation and initialisation:
Alu :: tname⇒ ref ⇒ st⇒ st
Alu tn r sa ≡

assoc arbitrary
[(”list”, sa

(|globals := globals sa
(|alloc := r·alloc (globals sa),

cont := (cont (globals sa))(r := the-Intgv (default-val Integer)),
next := (next (globals sa))(r := the-Ref (default-val (Ptr tn)))|)|))]

tn

The requirements for these functions are collected in locale allocate (cf. Definition
8.41) and most of them follow directly from the definitions. For the property about
allocation and initialisation we enumerate all the declared types and then rewriting
takes care of the rest.

Guarded Arithmetic We follow the approach to use unbounded arithmetic in
Simpl. Hence we have to introduce guards to watch against over- and underflows
in the C0 program. We implement the functions U and B for unary and binary
operations, and the corresponding guard generators Ug and Bg. We only adapt
the semantics for ordinary arithmetic. For bit-level operations we keep the original
C0 semantics. The definition for unary expressions is in Figure 8.8, and for binary
expressions in Figure 8.7. The commutations properties between this guarded
arithmetic and the C0 arithmetic, as required in locale lookup (cf. Definition 8.20) are
proven by exhaustive case distinction.

The definition of the equality and inequality test in B (cf. Figure 8.7) introduces
more cases as the definition in apply-binop (cf. Figure 7.3). For each type there is an
extra equation in order to get rid of the constructors for prim in Simpl.

Note that this definition of guarded arithmetic and the corresponding simulation
lemmas are independent of our examples. They can be used for any C0 program.
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B:: (binop × prim × prim)⇒ prim
B (equal, Bool b1, Bool b2) = Bool (b1 = b2)
B (equal, Intg i1, Intg i2) = Bool (i1 = i2)
B (equal, Unsgnd n1, Unsgnd n2) = Bool (n1 = n2)
B (equal, Chr i1, Chr i2) = Bool (i1 = i2)
B (notequal, Bool b1, Bool b2) = Bool (b1 , b2)
B (notequal, Intg i1, Intg i2) = Bool (i1 , i2)
B (notequal, Unsgnd n1, Unsgnd n2) = Bool (n1 , n2)
B (notequal, Chr i1, Chr i2) = Bool (i1 , i2)
B (plus, Intg i1, Intg i2) = Intg (i1 + i2)
B (plus, Unsgnd n1, Unsgnd n2) = Unsgnd (n1 + n2)
B (plus, Chr i1, Chr i2) = Chr (i1 + i2)
B (minus, Intg i1, Intg i2) = Intg (i1 − i2)
B (minus, Unsgnd n1, Unsgnd n2) = Unsgnd (n1 − n2)
B (minus, Chr i1, Chr i2) = Chr (i1 − i2)
B (times, Intg i1, Intg i2) = Intg (i1 ∗ i2)
B (times, Unsgnd n1, Unsgnd n2) = Unsgnd (n1 ∗ n2)
B (times, Chr i1, Chr i2) = Chr (i1 ∗ i2)
B (divides, Intg i1, Intg i2) = Intg (i1 div i2)
B (divides, Unsgnd n1, Unsgnd n2) = Unsgnd (n1 div n2)
B (divides, Chr i1, Chr i2) = Chr (i1 div i2)
B (bop, v1, v2) = the (apply-binop (bop, v1, v2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bg:: (binop × ty × ty)⇒ ( ′s⇒ prim)⇒ ( ′s⇒ prim)⇒ ( ′s set) option
Bg (plus, Integer, Integer) = λv1 v2. b{sa. in-range-int (the-Intg (v1 sa) + the-Intg (v2 sa))}c
Bg (plus, UnsgndT, UnsgndT) = λv1 v2. b{sa. in-range-un-int (the-Unsgnd (v1 sa) + the-Unsgnd (v2 sa))}c
Bg (plus, CharT, CharT) = λv1 v2. b{sa. in-range-chr (the-Chr (v1 sa) + the-Chr (v2 sa))}c
Bg (minus, Integer, Integer) = λv1 v2. b{sa. in-range-int (the-Intg (v1 sa) − the-Intg (v2 sa))}c
Bg (minus, UnsgndT, UnsgndT) = λv1 v2. b{sa. the-Unsgnd (v2 sa) ≤ the-Unsgnd (v1 sa)}c
Bg (minus, CharT, CharT) = λv1 v2. b{sa. in-range-chr (the-Chr (v1 sa) − the-Chr (v2 sa))}c
Bg (times, Integer, Integer) = λv1 v2. b{sa. in-range-int (the-Intg (v1 sa) ∗ the-Intg (v2 sa))}c
Bg (times, UnsgndT, UnsgndT) = λv1 v2. b{sa. in-range-un-int (the-Unsgnd (v1 sa) ∗ the-Unsgnd (v2 sa))}c
Bg (times, CharT, CharT) = λv1 v2. b{sa. in-range-chr (the-Chr (v1 sa) ∗ the-Chr (v2 sa))}c
Bg (divides, Integer, Integer) = λv1 v2. b{sa. the-Intg (v2 sa) , 0 ∧ the-Intg (v1 sa) , int-lb}c
Bg (divides, UnsgndT, UnsgndT) = λv1 v2. b{sa. the-Unsgnd (v2 sa) , 0}c
Bg (divides, CharT, CharT) = λv1 v2. b{sa. the-Chr (v2 sa) , 0 ∧ the-Chr (v1 sa) , chr-lb}c
Bg (-,-,-) = λv1 v2. None

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
in-range-int v = int-lb ≤ v ∧ v < int-ub
in-range-un-int v = v < un-int-ub
in-range-chr v = chr-lb ≤ v ∧ v < chr-ub

Figure 8.7: Guarded binary operations
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U :: (unop × prim)⇒ prim
U (unary-minus, Intg i) = Intg (− i)
U (unary-minus, Chr i) = Chr (− i)
U (to-int, Intg i) = Intg i
U (to-int, Unsgnd n) = Intg (int n)
U (to-int, Chr i) = Intg i
U (to-unsigned-int, Intg i) = Unsgnd (nat i)
U (to-unsigned-int, Unsgnd n) = Unsgnd n
U (to-unsigned-int, Chr i) = Unsgnd (nat i)
U (to-char, Intg i) = Chr i
U (to-char, Unsgnd n) = Chr (int n)
U (to-char, Chr i) = Chr i
U (uop, v) = the (apply-unop (uop, v))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ug :: (unop × ty)⇒ ( ′s⇒ prim)⇒ ( ′s set) option
Ug (unary-minus, Integer) = λv. b{sa. int-lb < the-Intg (v sa)}c
Ug (unary-minus, CharT) = λv. b{sa. chr-lb < the-Chr (v sa)}c
Ug (to-int, UnsgndT) = λv. b{sa. the-Unsgnd (v sa) < nat int-ub}c
Ug (to-unsigned-int, Integer) = λv. b{sa. 0 ≤ the-Intg (v sa)}c
Ug (to-unsigned-int, CharT) = λv. b{sa. 0 ≤ the-Chr (v sa)}c
Ug (to-char, Integer) = λv. b{sa. in-range-chr (the-Intg (v sa))}c
Ug (to-char, UnsgndT) = λv. b{sa. the-Unsgnd (v sa) < nat chr-ub}c
Ug (-,-) = λv. None

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
in-range-chr v = chr-lb ≤ v ∧ v < chr-ub

Figure 8.8: Guarded unary operations

Property Transfer We have defined all the locale parameters and have proven
all the necessary properties. Hence we can instantiate the locale execute and Isabelle
provides us with all the instances of the generic theorems for the current definitions.
Let us reconsider the initial examples of the factorial and the list reversal procedure
and examine more closely how the specifications are ported from Simpl to the C0.
For the factorial we have the following Hoare triple in Simpl:

∀n. Γ` {|n ≤ 12|} Resn := CALL Fac(n) {|Resn = fac n|}

We can transfer it to the C0 variant:

∀HT n. Π,L|=C0 {s. TE` s :: HT,empty,GT ∧ n ≤ 12}
SCall ”Res” ”Fac” [Lit (Prim (Unsgnd n)) UnsgndT]
{s. lvars s ”Res” = bPrim (Unsgnd (fac n))c}

For list reversal the Simpl specification is:

∀p Ps. Γ` {|List p next Ps|} Resr := CALL Rev(p) {|List Resr next (rev Ps)|}

And is transformed to:
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∀HT p Ls.
Π,L|=C0 {s. TE` s :: HT,empty,GT ∧ bHTc`v p :: Ptr ”list” ∧ ListC0 p (heap s) Ls}

SCall ”Res” ”Rev” [Lit p (Ptr ”list”)]
{s. ListC0 (the (lvars s ”Res”)) (heap s) (rev Ls)}

The theorem we use for this property transfer is Corollary 8.40. First, we have to
prove wellformedness of program Π. All type and variable declarations have to be
wellformed and all procedure bodies have to be welltyped and definitely assigned.
All these tests are specified as syntax directed inductive definitions or recursive
functions. Since the C0 expressions are annotated with types we do not need any
kind of type inference. The built in automation of Isabelle is sufficient to prove
wellformedness of the program automatically by a tactic like fastsimp.

The statements in the Hoare triples we aim to transfer are procedure calls, like
SCall ”Res” ”Fac” [Lit (Prim (Unsgnd n)) UnsgndT]. This call is welltyped with respect
to LT ”Fac”. Moreover, it passes the definite assignment analysis for any set of local
variables L and set of assigned variables A, since the parameter is a literal value.
Hence we can use A = {}. For the conformance restriction of the initial sate the
emptiness of A also comes in handy: LT ”Fac”�A = empty. This is a desirable effect
since it means that the precondition is independent of the local variables of the
caller.

We have already proven that abss pn s , {} for any state s and procedure pn.
The translation from a C0 statement c to the Simpl statement absc pn c is performed

automatically by evaluation of absc with Isabelle’s simplifier.
The only point left is the adaptation of the pre- and postconditions. We start

with absa pn P ⊆ Pa. For the factorial we have P = {s. TE` s :: HT,empty,GT ∧ n ≤ 12}
and Pa = {|n ≤ 12|}. Hence the relation between both assertions is trivial to prove,
since Pa does not even depend on the state but only on the logical variable n.
For the list reversal the situation is different. Here we have the C0 precondition
P = {s. TE` s :: HT,empty,GT ∧ bHTc`v p :: Ptr ”list” ∧ ListC0 p (heap s) Ls}, and a cor-
responding Simpl precondition {|List p next Ps|} for some universally quantified p
and Ps. List Ps has type ref list, whereas Ls has type loc list, and similarly for p. We
first have to relate those logical variables. We instantiate the Simpl specification
with Pa = {|List (the-Ref p) next (map Rep-loc Ls)|}. Pa depends on the state and we have
to exploit the relation between Simpl and C0 states to establish absa pn P ⊆ Pa. By
unfolding the definition of absa we obtain a C0 state s and a Simpl state sa for which
sa ∈ abss ”Rev” s. Moreover, from the precondition P we obtain the conformance
of the state: TE` s :: HT,empty,GT, welltypedness of value p: bHTc`v p :: Ptr ”list”,
and the heap list: ListC0 p (heap s) Ls. From these assumptions we want to derive
List (the-Ref p) (next (globals sa)) (map Rep-loc Ls). We do induction on the list Ls and
exploit the definition of the state abstraction abss. Predicate ListC0 guarantees that
each next pointer is of the kind Addr l. The state abstraction provides us with

∀ l. next (globals sa) (Rep-loc l) = the-Ref (selv (the (h l), [”next”])).

This is exactly what we need to relate the lists. Since the crucial typing issues are
already encoded in ListC0 we did not have to use the conformance of the initial state.

For the postcondition of the factorial we start with the Simpl assertion and have
to transform it to the C0 one:

concr ”Fac” {|Resn = fac n|} ⊆ {t. lvars t ”Res” = bPrim (Unsgnd (fac n))c}.
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This time the assertions refer to the state, namely to the result variable. By unfolding
the definition of concr, we again obtain a C0 state t and a corresponding Simpl state
ta ∈ abss ”Fac” t. From the state abstraction we have:

lvars t ”Res” , None −→ Resn ta = the-Unsgndv (the (lvars t ”Res”)).

This is too weak to derive the desired C0 postcondition. We neither know whether
”Res” is defined in lvars t, nor in case there is a defined value, which type it has. That
is why Corollary 8.40 additionally gives us information about conformance and the
set of assigned (defined) variables of the final state. Definite assignment guarantees
that lvars t ”Res” is defined and the state conformance ensures that the stored value
is indeed an unsigned integer. With this additional information the state abstraction
is strong enough and we can derive the desired C0 postcondition.

For the postcondition of the list reversal the situation is similar. Only with def-
inite assignment we know that the result value is defined, and conformance of the
state ensures that every value along the pointer chain indeed stores an address. To
work around the definedness issue of ”Res” we could also think of strengthening the
state abstraction by removing the premise lvars t ”Res” , None. Unfortunately, this
breaks the important context switch property abss pn s ⊆ abss qn (s(|lvars := empty|)).
Just insert ”Fac” for pn and qn. Then we would have to show that assuming
equation Resn ta = the-Unsgndv (the bvc) for the right hand side, implies the equa-
tion Resn ta = the-Unsgndv (the None), when the local variables are reset. This is not
possible.

An other question is, whether we can get rid of the dependency of the state
conformance. The answer is yes, if we write the assertions on the C0 level in a
fully “destructive” way. For the factorial this means that we do not specify the
postcondition as

lvars t ”Res” = bPrim (Unsgnd (fac n))c

but instead as

the-Unsgndv (the (lvars t ”Res”)) = fac n.

This exactly fits to the specification of Resn ta that we get from the state abstraction
and hence we do not need to exploit the conformance of state t to conclude that the
destructor form and the constructor form are actually the same.

The conformance assertion in the precondition is imposed by the transfer theo-
rems. So we cannot just remove it. However, we can refine our notion of validity of
a Hoare triple. In general we are only interested in specifications of welltyped pro-
grams and conforming states. Hence we can incorporate these constraints directly
into validity:

Π,L|=T
C0 P c Q ≡

∀s t HT LT A.
wf-prog Π ∧
L = dom LT ∧
tnenv Π` s :: HT,LT�A,genv Π ∧ Π,genv Π ++ LT,HT` c

√
∧ D c L A −→

Π,L`C0 〈c,bsc〉 ⇒ t −→ s ∈ P −→ t ∈ Some ‘ Q

J Definition 8.57

This validity notion restricts partial correctness to wellformed programs, a con-
firming initial state and a welltyped statement that is definitely assigned. Oheimb
[84] uses a similar definition. From type safety we can also derive conformance of
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the final state. With this modified definition of validity, we can keep state confor-
mance under the hood and do not have to mention it in every assertion. Whenever
we need conformance we can simply assert it. With this definition we can indeed
reduce the precondition of the C0 factorial to {s. n ≤ 12}.

How does the idea of “destructive” assertions work for heap data? The predicate
ListC0 is not completely “destructive”. It restricts value v do be either Prim Null or
Prim (Addr l). The calculation of the next pointer via selv (the (h l), [”next”]) however
is already “destructive”. We can define a destructor the-Ptr for the C0 level that
works analogously to the-Ref for Simpl.

the-Ptr :: val⇒ prim
the-Ptr (Prim Null) = Null
the-Ptr (Prim (Addr l)) = Addr l
the-Ptr - = Null

the-Ref :: val⇒ ref
the-Ref (Prim Null) = NULL
the-Ref (Prim (Addr l)) = Rep-loc l
the-Ref - = NULL

Definition 8.58 I

The last equations in the definitions are used to make both functions work the
same for non pointer values. Now we can modify the list predicate to be fully

“destructive”:

ListC0
′ :: val⇒ (loc⇀ val)⇒ loc list⇒ bool

ListC0
′ v h [] = the-Ptr v = Null

ListC0
′ v h (l·ls) = the-Ptr v = Addr l ∧ ListC0

′ (selv (the (h l), [”next”])) h ls

Definition 8.59 I

With this specification we only need the properties of state abstraction to translate
between List and ListC0

′. Conformance of the state is no longer necessary, but still
we have to do an induction on the list, since List and ListC0

′ are different recursive
definitions. However, we can take a further step. Instead of introducing a new
predicate ListC0

′we reuse the List predicate, but abstract the complete heap:

nexta :: state⇒ ref ⇒ ref
nexta s r ≡ the-Ref (selv (the (heap s (Abs-loc r)), [”next”]))

Definition 8.60 I

This projection of the ”next” component of the heap coincides with the state
abstraction:

If sa ∈ abs-glob (heap s) (free-heap s) (gvars s) and p , NULL thenLemma 8.48 I

nexta s p = next (globals sa) p.

For predicate List there is a lemma that allows to exchange two heaps if they
store the same content for the list elements.

If ∀x∈set ps. x , NULL −→ h x = g x then List p h ps = List p g ps.Lemma 8.49 I

Proof. By induction on list ps. �

Together with Lemma 8.48 we can prove that the C0 and Simpl list predicate
coincide, without a further induction.

If sa ∈ abs-glob (heap s) (free-heap s) (gvars s) thenLemma 8.50 I

List (the-Ref p) (nexta s) Ps = List (the-Ref p) (next (globals sa)) Ps.
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This approach somehow reflects the canonical interpretation of a Simpl assertion
on the C0 level. If we provide lemmas like Lemma 8.49 for all the data-structures
we use in a program, the Simpl assertions are canonically lifted to the C0 version
and the correspondence proof becomes trivial.

Of course “destructive” specifications also have a drawback. They are weaker as
the type constraining variants. It depends on the complexity of the involved values
and the properties we are interested in, if welltypedness of the values is crucial for
further reasoning. For example, for simple state updates of primitive values we can
still conclude that an update of variable ”x” does not affect variable ”y”:

the-Unsgndv (the ((lvars t(”x” 7→ v)) ”y”)) = the-Unsgndv (the (lvars t ”y”)).

This works fine, since the reasoning completely takes place locally inside the
destructors:

(lvars t(”x” 7→ v)) ”y” = lvars t ”y”.

However, consider the more complex selv (the (h l), [”next”]) and an update of
the heap at location l but in component ”cont”:

selv (the ((h(l 7→ updv (the (h l), [”cont”], [], v))) l), [”next”]) =
selv (updv (the (h l), [”cont”], [], v), [”next”])

To conclude that the updv is irrelevant and the right hand side can be further
reduced to selv (the (h l), [”next”]) we need to exploit the type information. If we have
a proper conformance constraint for the heap at hand we can get the information
from there. We can also add this constraints to predicates like ListC0 which has the
advantage that the information is right there where we need it.

Let us take the assertion ListC0 p (heap s) Ls from the precondition of list reversal,
where p and Ls are logical variables. We want to ensure that the type of every
value the (h l), where l ∈ set Ls, indeed is a list structure. The type of a location is
determined by the heap typing HT which itself is just an opaque logical variable.
We currently have no information about the type of a location l. We can gain it when
we know the type of the initial pointer p. Given the information that p points to
a list (bHTc`v p :: Ptr ”list”) and the conformance of the state we can propagate the
information through the list. If we want to apply the same lines of reasoning to the
postcondition we need to know the type of ”Res” and that the value of lvars t ”Res”
is defined and indeed a pointer to a list. At first we lack this information since
we have not put it to the postcondition. However, Corollary 8.40 allows us to
put state conformance and the definedness of variable ”Res” into the postcondition.
Moreover, if we work with the alternative definition of validity we can obtain this
information ad-hoc as we need it:

Π,L|=T
C0 P c Q

Π,L|=T
C0 P c {t. ∃HT LT. Π,genv Π ++ LT,HT` c

√
∧ dom LT ∩ A c ⊆ dom (lvars t) ∧ t ∈ Q}

This rule allows us to strengthen any postcondition with welltypedness of the
statement, conformance of the final state and the guarantee about assigned variables
from the definite assignment analyses. The soundness of this rule is given by the
type safety Theorems 7.13 and 7.16. Applied to our example we can infer the type
of variable ”Res” since we know the procedure call is welltyped and the procedure
definition makes the result type explict. Moreover, the variable has a defined value
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according to the analysis result of definite assignment. Together with the state
conformance we can infer the type of the list elements.

Let me conclude. The “destructive” style of C0 assertions can be obtained
canonically from the Simpl assertions. Moreover, if we use the alternative definition
of validity it appears that the assertions are strong enough, since we can reconstruct
type information in an ad-hoc fashion if necessary. However, dependent of the
concrete application it may still be preferable to use stronger assertions that already
incorporate the crucial parts of the type information. Then it is unnecessary to
exploit state conformance in order to access the information.

8.9 Conclusion

This chapter presented the embedding of C0 into Simpl. This allows to employ
the verification environment for Simpl to derive properties of C0 programs. Since
this translation is verified the program properties can be transferred back to the C0
level. The translation and the correctness proof illustrate how one can switch from
a deep embedding, tailored for meta theory, to a shallow embedding for program
verification. The type-soundness results for C0 allow to adopt a simpler model for
the verification of individual programs. In particular programming language types
can be mapped to HOL types and the split heap model rules out aliasing between
different structure fields and pointer types.

This is the first formal verification of the split heap approach. As the language
model of Simpl and the programming language C0 are both developed in the same
logical framework of Isabelle/HOL the soundness of the embedding is formally
verified and machine checked. In contrast, the embedding of C [34] and Java [65] to
the Why tool have to be trusted, as the tool is external.

The soundness theorem is modular with respect to the implementation of arith-
metic in the program logic. We can either employ the bounded modular arithmetic
of C0 or switch to unbounded arithmetic, protected by guards against over- and un-
derflows. Both have their favours and it depends on the application which approach
is to prefer. For example, to implement a big-number library or cryptographic prim-
itives it may be convenient to stay within modular arithmetic. Whereas in other
applications it is preferable to model and specify the procedures with unbounded
arithmetics.
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9.1 Practical Experiences

This section summarises and discusses the practical experiences with the verification
environment. The main applications that were so far tackled with the verification
environment are the following:

• Case study: Normalisation of Binary Decision Diagrams

• C0 verification in Verisoft

– C0 Compiler

– Operating system kernel

– Email-client

• Memory Management of L4 kernel, with methodology of refinement

9.1.1 Normalisation of Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are a canonical, memory efficient pointer struc-
ture to represent Boolean functions, with a wide spread application in computer sci-
ence. They had a decisive impact on scaling up the technology of model checking to
large state spaces and handling practical applications [23]. BDDs were introduced
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by Bryant [19], and later on refined by Bryant et al. [18]. The efficiency of the BDD
algorithms stems from the sharing of subgraphs in the BDD.

The basic encoding of the Boolean function in a BDD is a binary decision tree,
where each node represents an input variable of the function. An inner node of
the BDD contains a Boolean variable over which the function is defined, together
with a pointer to the left and right sub-BDD. Given a valuation of the variables the
value of the Boolean function encoded in the BDD is obtained by traversing the
BDD according to the valuation of the variables. The leaf that is reached holds the
value of the function under the given valuation.

The binary decision tree is stored as a directed acyclic graph (DAG) in the BDD.
This allows to share common subtrees. Normalisation of a BDD means to remove
all redundant nodes and to share all subtrees where possible. A normalised BDD
provides an unique representation of the underlying Boolean function. Moreover,
the shared representation saves storage space and computation time.

The main challenges for the verification of the normalisation algorithm are:

• sharing of subtrees, and

• an auxiliary data-structure for working on the breadth of the decision tree is
introduced.

To formalise the notion of a BDD the abstraction techniques described in Section
4.6 are adapted. In a first step the BDD in the heap is abstracted to a DAG. Then
we abstract the DAG to a binary decision tree, and finally the decision tree is
interpreted as a Boolean function. The DAG layer is employed to reason about
sharing properties. The decision tree layer is used to identify redundant nodes that
can be removed, and finally the Boolean function level describes the semantics of
the BDD. It has to be preserved by the normalisation algorithm.

Before the main part of the normalisation starts, the BDD is traversed and an
additional data structure is built, that links together all the nodes that correspond
to the same decision variable. This data-structure is called level-list. It is used to
process the BDD in a breadth first fashion starting from the leafs up to the root.
During the verification of the algorithm we have to keep track of the original BDD,
the level-list and the already processed parts that result in the normalised BDD.

The normalisation algorithm is split into 5 procedures and is about 50 lines of
Simpl code. The verification of partial correctness of the normalisation algorithm
and its auxiliary procedures sums up to about 10 000 lines of Isabelle/Isar formalisa-
tion and proofs and is based on a master thesis [87]. The verification work took about
3 person months. Adapting the proofs to total correctness [88] was straightforward
and only adds a few lines.

We locate the reasons of the complexity mainly in the data structure, which
involves a high degree of data sharing and side effects, which results in quite
complex invariants, specifications and proofs. We have to keep track of the original
BDD, the level-list and the normalised parts of the BDD.

The hardest part of the proof was to find the invariant for the main loop, that
processes the BDD from the leafs to the root in a breadth first fashion. To isolate
the loop from the surrounding code the technique described in Section 4.9 was
employed. To prove the verification conditions, we used the structured language
Isar [114, 116, 79] that allows to focus on and keep track of the various aspects
of the proof, so that we can conduct it in a sensible order. Moreover, it turned
out that the Isar proofs are quite robust with regard to the iterative adaptation of
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the invariant resulting from failed proof attempts. The already established lines of
reasoning remained stable, while adding new aspects to, or strengthening parts of
the invariant. The relatively large size of the proofs is partly explained by the fact
that the declarative Isar proofs are in general more verbose than tactic scripts.

The Hoare logic framework and the split heap model appeared to form a suit-
able verification environment on top of Isabelle/HOL. The abstraction of pointer
structures to HOL datatypes allows us to give reasonable specifications. The split
heap model addresses parts of the separation problems that occur when specifying
procedures on pointer structures. The overhead of describing the parts of the heap
that do not change is kept small. The main effort of the work goes into the problem
and not into the framework.

9.1.2 C0 Verification in Verisoft

The Verisoft project aims at the pervasive verification of computer systems, com-
prising hardware, system software, the operating system and user applications. To
handle the complexity, the computer system and also the models for verification are
organised in layers.

At the bottom there is (i) the hardware layer, on top of it (ii) a machine language
(assembler) layer, and on top of it (iii) the programming language layer for C0.
Correctness theorems for the components are often simulation theorems between
adjacent layers. For example, compiler correctness is a simulation between Layers
(ii) and (iii).

Gargano et al. [37] introduce an abstract parallel model of computation called
communicating virtual machines (CVM). It formalises the interaction of concurrent
user processes with an operating system kernel. In this model the user processes
are virtual machines, which means processors with virtual memory. The so called
abstract kernel however, is represented as a C machine. This emphasises that the
user processes are black-boxes for the operating system kernel. They can attempt
to execute any machine code. It is the responsibility of the hardware and primarily
of the kernel to ensure that no user process can corrupt the system. The kernel itself
is written in C0, augmented with some in-line assembler parts. On the level of the
CVM these in-line assembler parts are abstracted to so called CVM primitives that
alter the state of user processes. For instance, there are CVS primitives to increase
and decrease the memory size of an user process or to copy data between processes
or I/O devices. Since the kernel is in large parts written in C0 its verification is
carried out in the verification environment presented in this thesis. The theorems in
Section 8.7 are used to transfer the properties from Simpl to C0. Further a compiler
correctness theorem can be employed to transfer the properties to the assembler
layer, where they can be combined with the in-line assembler parts. To reduce
the reasoning on the assembler layer even more, we lift the effect of the assembler
instructions to the C machine. This is the purpose of the CVM primitives. They
are specifications for the in-line assembler parts. They modify parts of the system
configuration that are usually not visible from a C0 program. However, since the
state space in Simpl is polymorphic we can simply extend it with those parts. Since
there is no C0 implementation for the CVM primitives they are “implemented” by
their specification. For this purpose the Spec command is used in Simpl. This allows
to reason about the effect of the in-line assembler parts on the abstract Simpl level.
The flexibility of Simpl makes these extensions immediately available to the user.



218 Chapter 9 — Conclusion and Outlook

We plan to extend the C0 language with a statement similar to Spec. Then the
property transfer theorems of Section 8.7 can be adapted to this extended semantics.
A correctness proof for the translation (compilation) from C0 with this Spec state-
ments to C0 with in-line assembler guarantees that the assembler parts meet their
specification and the whole program has the expected behaviour.

A major effort in Verisoft is to prove the C0 compiler correct [62]. The correctness
of the compiler is crucial to ensure soundness of the overall system. As mentioned
above, major parts of the reasoning about the operation system kernel takes place
on the C0 level. However, in the end this kernel has to be compiled to run on
the actual hardware. The compiler correctness is established in two steps. First
the compiling specification is formalised in Isabelle/HOL and proven correct. The
compiling specification is a HOL function that compiles the C0 program to the
assembler language. The correctness theorem of the compiling specification is a
step by step simulation of the C0 small-step semantics and the semantics of the
assembler language. In a second step the compiler is itself implemented in C0. The
C0 implementation is proven to implement the compiling specification. This proof
is carried out in the verification environment presented in this thesis. The proof
mainly is concerned with the different paradigms of the compiling specification
and implementation. The specification is basically a functional program in HOL
and the implementation is an imperative program. The equivalence of (nested)
while loops to recursive functions has to be shown. The syntax tree, the assembler
program as well as auxiliary data like type and function tables, are represented as
heap structures. The techniques described in Section 4.6 are used to abstract them
to the corresponding entities on the specification level.

The C0 implementation of the compiler is over 1 000 lines of C0 code. The formal
proof of the compiler implementation comprises about 900 lemmas and a total of
20 000 proof lines. It took about 1 person year. The proof is for partial correctness
and the guards where omitted. From the experience in the BDD case study, we
expect that the adaptation to total correctness is straightforward. As described in
Section 5, we plan to use a software model checker to discharge the guards.

On top of the operating system an E-mail client is implemented as a demo
application. The operating system supports the SMTP protocol and the E-mail
client encrypts the messages. The E-mail client is implemented and specified [12]
and the verification is ongoing work. Unfortunately there are no further publications
available up to now.

Another subproject of Verisoft applies system verification to embedded devices.
In this domain an extension of C called DPCE1 is used that introduces data-parallel
instructions. Since Simpl is not fixed to a particular programming language the C0
embedding was extended with these data parallel instructions.

9.1.3 Memory Management of L4 Kernel, with Refinement

The project L4.verified2 is also concerned with the verification of operating systems.
In this case the L4 micro kernel [63]. They employ the methodology of data re-
finement [28] to structure their verification. Tuch and Klein [109] have verified the
virtual memory subsystem of the L4 kernel with this approach. They start with an

1See the DPCE home page for more information: http://www.crescentbaysoftware.com/dpce/
2http://www.cse.unsw.edu.au/˜formalmethods/projects/l4.verified/

http://www.crescentbaysoftware.com/dpce/
http://www.cse.unsw.edu.au/~formalmethods/projects/l4.verified/
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abstract view on the virtual memory system and prove the crucial properties on this
level. The system is defined semantically as an abstract data type that consists of a
set of initial states and a set of operations that specify possible state transitions of the
system. Then they refine the model until a C implementation is reached. The meta
theory of data refinement ensures that the properties for the abstract system are
preserved by the refinement step, as long as each of the operations is implemented
correctly. As the C level is reached the Hoare logic is used to prove the correctness
of the individual operations. The soundness Theorems 3.8 and 3.15 for the Hoare
logic are used to interpret the Hoare triple as a state transition specification so that
the result can be used in the refinement framework. Moreover, the Spec command
of Simpl can be used to define refinement between Simpl programs. On the higher
level the operation is just specified, without implementation. As the refinement
proceeds the specification is implemented by a concrete Simpl statement that meets
the specification.

As the L4 kernel implementation also involves pointer arithmetic Tuch and Klein
[110] have developed an alternative heap model for Simpl that is capable to deal
with low-level manipulations like pointer arithmetic in untyped memory, but still
offers a neat, abstract and typed view of memory where possible.

9.2 State Space Representation Revisited

For the reasons discussed in Section 2.4.1 we decided to use records as the state
space representation. The main benefit of this approach is that primitive types of
the programming language coincide with types in HOL and hence the specifications
and verification conditions are quite natural. The drawback of the records is that the
type of the state space is not uniform, since it depends on the variables appearing
in the program. Moreover, the field names of records are no first class objects in
the logic and hence we cannot do much meta-level reasoning about records inside
the logic. We managed to express all crucial properties without this quantification.
However, the abstraction from C0 states to Simpl states, for instance, cannot be
formalised generically in HOL for this reason. Hence we postponed this translation
to the point where the C0 program and the corresponding state record can be fixed.
Another issue of records is scalability. Records are a heavyweight feature of HOL.
For each record field a selector and update function has to be defined together
with means to simplify selections and updates by rewriting. Internally, records are
implemented as nested pairs. To prove that an update of field x does not affect
a selection of field y basically requires to split the record to its components. The
more fields the record has the more costly this operation becomes. In contrast, if we
represent the state as a function from names to values, we only have to compare the
names regardless of how many names are present in the program.

The simplicity of specifications and the verification conditions is a crucial prereq-
uisite for the usability of the tool that we do not want to sacrifice. So the question
is if we can provide a more lightweight representation of the state space but still
can keep the simplicity of verification conditions. According to the discussion in
Sections 2.4.1, 8.8 and 2.4.9.1 the most promising candidate is the function from
names to values, together with the fully “destructive” scheme for specifications and
state updates. For the split heap model we can use the function from field-name and
reference to value. Of course, as detailed in Section 2.4.1, this leads to various value
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constructors and destructors that have to be inserted into the terms. However, with
some additional implementation effort it might be possible to hide this clutter from
the user. The constructors and destructors could be inserted by automatic syntax
translations in Isabelle, in order to support simple specifications. However, this
mere syntactic sugar does not prevent the destructors to show up in the verification
condition. We end up with proof obligations like:∧

s. the-Intgv (lvars s ”n”) < m,

instead of ∧
n. n < m,

what we obtain right now. Again, with additional implementation effort, one can
clean up the verification condition by generalising it. We can abstract every oc-
currence of the-Intgv (lvars s ”n”) in the verification condition to an universally
quantified variable n. This results in exactly the same proof obligation as we obtain
right now. Nested quantification over the state, as introduced by the verification
condition for procedure calls, complicates the generalisation. Moreover, with the
representation of the split heap model as a single function with two parameters it
becomes necessary to distribute destructors over heap updates. However, it still
seems possible to automate such a generalisation.

Since the state space of Simpl is polymorphic, we do not have to change anything
about the basic Hoare logic, or the meta-theory of Simpl. Even the embedding of C0
to Simpl remains valid, since it is open to different state space representations in the
Simpl layer. It may even be possible to discharge the program specific requirements
once and for all, since we can formalise the state abstraction, lookup and update
function generically. Hence it seems to be a worthwhile project for the future to
investigate this alternative state space representation.

9.3 Contributions

I think the main contribution of this thesis is to provide a practically useful verifi-
cation environment for imperative programs, without making any concessions on
the meta theory of the tool. Having the meta theory available in the same uniform
framework of HOL, makes it possible to embed realistic programming languages
and to extend the calculus without introducing any soundness risks. Examples
for those extension are the integration of program analysis or the tool support for
composing verified libraries. As is being demonstrated by the aforementioned
large-scale verification projects, this framework has finally made practical, concrete
program verification feasible.

In this thesis I have introduced a general language model for sequential im-
perative programs, its operational semantics and a Hoare logic for partial and
total correctness. The language model is expressive enough to cover all common
language features, like mutually recursive procedures, abrupt termination and ex-
ceptions, runtime faults, local and global variables, pointers and heap, expressions
with side effects, pointers to procedures, partial application and closures, dynamic
method invocation and also unbounded nondeterminism. Despite its expressive
power, the language model and its meta theory is still neat and clean. Soundness
and completeness of the Hoare logics for both partial and total correctness have
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been proven. Especially the completeness proof for total correctness of such an ex-
pressive language goes beyond the related work in the area of formalised program
calculi.

Furthermore, I have clarified the handling of auxiliary variables and the conse-
quence rule. The auxiliary variables are now completely “auxiliary” and do not
appear in the core Hoare calculus anymore. This avoids type restrictions on the aux-
iliary variables and allows any number of auxiliary variables in the specifications.
This gives the user the freedom to write natural specifications, which is a crucial
ingredient for the practical usability of the tool.

All specifications and proofs have been carried out in the interactive theorem
prover Isabelle/HOL. All theorems in this thesis are machine checked and generated
from the Isabelle sources.

The following table gives an overview of the size of the formalisation.

Formalisation Lines of Isabelle code Pages of proof document

Simpl 27 400 524
C03 5 800 220
Embedding C0 into Simpl 18 800 400

The Hoare logic is mechanised and integrated into Isabelle/HOL. An automatic
verification condition generator is implemented as Isabelle tactic and Isabelle’s
locales are employed to organise procedure specifications. This makes the compre-
hensive infrastructure of Isabelle/HOL accessible for the verification of imperative
programs. Moreover, I have developed a framework to build and reuse generic
verified libraries. The following table lists the sizes of the implementation.

Implementation Lines of ML code

Hoare module 2 800
Syntax translations for Simpl 1 300

The BDD case study and the experiences in the large-scale verification projects
Verisoft and L4.verified document that the verification environment is practically
useful, effective, extensible and flexible.

The Hoare logic features extended means to handle guards. This provides a
clean interface to automatic program verification tools like software model checkers
or program analysis. The results of the program analysis can be introduced to the
Hoare logic in form of discharged guards in the program text. These guards are
treated as granted for the rest of the verification. This scheme can be used to delegate
the handling of runtime faults like arithmetic overflows or dereferencing null point-
ers to a software model checker. Hence the interactive proof can focus on functional
correctness. Moreover, the same scheme can be employed to introduce general prop-
erties that a program analysis has inferred to the verification environment. They
can be used to support the interactive proof.

The language model is not restricted to a particular programming language.
Instead it can be used to embed a programming language in order to do program
verification. I have demonstrated this by embedding C0 into Simpl and proving the
soundness of this translation. In order to verify a C0 program it is first translated to

3Large parts of the C0 formalisation go back to the work of Martin Strecker for the Verisoft project.
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Simpl. Then the verification environment can be used to proof program properties.
Finally, the soundness of the translation allows to transfer the properties to C0 again.
The translation of C0 to Simpl shows how the type-safety of C0 can be exploited
in order to obtain a simpler model for the verification of individual programs.
Primitive programming language types are directly mapped to HOL types. Hence
we do not have to care about typing issues during program verification, since it is
already covered by the type inference of Isabelle/HOL. Moreover, the monolithic
heap in C0 is translated to a split heap model in Simpl, which excludes aliasing
between structure fields. The soundness theorem justifies this translation. From a
methodological point of view the soundness proof for the translation from C0 to
Simpl shows how a deep embedding of expressions, tailored for meta-theory, can
be transferred to a shallow embedding for the purpose of program verification.

9.4 Further work

The work in this thesis can serve as basis for further investigations in various
directions:

Usability In realistic applications, the verification condition generator generates
quite sizeable proof obligations, that follow the control flow of the program.
In the BDD case study we manually decomposed these proof obligations to
a structured Isar proof. The skeleton of such an Isar proof could be directly
generated in addition to the proof obligation.

Embeddings I have presented the embedding of C0 into Simpl. It would be inter-
esting to embed further programming languages, in particular object oriented
languages like Java. Dynamic method invocation can be mapped to the dy-
namic command in Simpl.

Extensions Simpl is restricted to sequential programs. The natural next step is to
extend Simpl with parallelism. On the one hand one can implement shared
state parallelism, as formalised by Prensa [98] for a while language. On
the other hand an integration with a process calculus like CSP [49] can be
investigated.

Assertions The Hoare logic allows arbitrary HOL predicates as assertions. In recent
years separation logic [101] was proposed to reason about heap data. Right
now there is no tool support for separation logic in interactive theorem provers.
It seems desirable to investigate if and how separation logic can be integrated
into the verification environment.

Refinemet The integration of Simpl into the refinement framework that was initi-
ated by Tuch and Klein [109] can be extended. The challenge is to keep the
overhead of the refinement meta theory at a minimum, so that it does not
become a burden for practical applications.

State As already elaborated in Section 9.2 it seems worthwhile to experiment with
alternative state space representations.

Wir stehen selbst betrübt und sehn betroffen,
Den Vorhang zu und alle Fragen offen.

— Bertolt Brecht



A P P E N D I X A

Theorems about Correlation of the Simpl
Big- and Small-Step Semantics

In this chapter, we investigate the various correlations between the Simpl big-
and small-step semantics and the associated notions of termination and infinite
computation.

Every big-step execution can be embedded into a small-step computation.

If Γ` 〈c,s〉 ⇒ t then ∀cs css. Γ` 〈c·cs, css, s〉 →∗ 〈cs, css, t〉. J Lemma A.1

Proof. By induction on the big step execution. �

By instantiating cs and css with the empty list we get the simulation of the
big-step execution in the small-step semantics.

If Γ` 〈c,s〉 ⇒ t then Γ` 〈[c], [], s〉 →∗ 〈[], [], t〉. J Lemma A.2
Small-step simulates
big-stepA small-step configuration has richer structure than a big-step configuration.

The first component of a small-step configuration is a statement list instead of a
single statement in the big-step semantics. Moreover, the small-step configuration
has a continuation stack which is completely missing in the big-step semantics. To
prove the simulation of a terminating small-step execution by the big-step semantics
we first extend the big-step semantics to statement lists and a continuation stack.

The extended operational big-step semantics: Γ` 〈cs,css,s〉 ⇒ t, is defined induc- J Definition A.1
Extended big-step
semantics for Simpl

tively by the rules in Figure A.1. Execution of the initial configuration 〈cs, css, s〉 in
procedure environment Γ leads to the final state t. Where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s, t :: ( ′s, ′f ) xstate

cs :: ( ′s, ′p, ′f ) com list
css :: ( ′s, ′p, ′f ) continuation list

The statement sequence cs is consecutively executed by the ordinary big-step
semantics. If it is completely processed the continuation stack is considered analo-
gously to the small-step semantics.

A terminating small-step computation can be simulated by the extended big-step
semantics.

If Γ` 〈cs, css, s〉 →∗ 〈[], [], t〉 then Γ` 〈cs,css,s〉 ⇒ t. J Lemma A.3
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Γ` 〈[],[],s〉 ⇒ s
(N)

Γ` 〈c,s〉 ⇒ s ′ Γ` 〈cs,css,s ′〉 ⇒ t

Γ` 〈c·cs,css,s〉 ⇒ t
(C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ` 〈nrms,css,Normal s〉 ⇒ t

Γ` 〈[],(nrms, abrs)·css,Normal s〉 ⇒ t
(EBN)

Γ` 〈abrs,css,Normal s〉 ⇒ t

Γ` 〈[],(nrms, abrs)·css,Abrupt s〉 ⇒ t
(EBA)

Γ` 〈nrms,css,Fault f 〉 ⇒ t

Γ` 〈[],(nrms, abrs)·css,Fault f 〉 ⇒ t
(EBF)

Γ` 〈nrms,css,Stuck〉 ⇒ t

Γ` 〈[],(nrms, abrs)·css,Stuck〉 ⇒ t
(EBS)

Figure A.1: Extended big-step semantics for Simpl

Proof. By reflexive transitive closure induction.
Case reflexivity: We have to show Γ` 〈[],[],t〉 ⇒ t, which is covered by the N

Rule.
Case transitivity: As induction hypothesis we have an initial step of the compu-

tation

Γ` 〈cs, css, s〉 → 〈cs ′, css ′, s ′〉, (∗)

that we can finish by a big-step execution

Γ` 〈cs ′,css ′,s ′〉 ⇒ t. (∗∗)

We have to show that we can also start the big-step execution in the initial configu-
ration:

Γ` 〈cs,css,s〉 ⇒ t.

This is proven by exhaustive case distinction on the initial step (∗) according to the
single step relation. �

By specialising the previous lemma to a singe statement we get the simulation
of a terminating small-step execution by the ordinary big-step semantics.

If Γ` 〈[c], [], s〉 →∗ 〈[], [], t〉 then Γ` 〈c,s〉 ⇒ t.Lemma A.4
Big-step simulates

terminating small-step

I

Putting Lemma A.2 and Lemma A.4 together we arrive at the equivalence of a
terminating small-step computation and the big-step execution.

Γ` 〈[c], [], s〉 →∗ 〈[], [], t〉 = Γ` 〈c,s〉 ⇒ tTheorem A.5
Terminating small-step

iff big-step

I

This theorem closely relates the big-step and the small-step semantics. For the
rest of this chapter we turn our attention to the two characterisations of guaranteed
termination: The inductively defined judgement Γ`c ↓ s and the absence of infinite
computations ¬ Γ` 〈[c],[],s〉 → . . . (∞). The inductive variant is nice to use, since it
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comes along with an induction principle for proving properties about terminating
programs. Moreover, the decomposition for compound statements like Seq c1 c2 is
directly built into the rules. We immediately get that c1 terminates in s and that for
every intermediate state that is reachable by executing c1 in s also c2 terminates.

However, the alternative characterisation of termination, as absence of infinite
computations, also has its favours. First of all it is more intuitive than the termi-
nation judgement, since it directly encodes the idea of termination as “no infinite
computation”. Moreover, the mere fact that we used this characterisation in or-
der to prove the completeness of the Hoare logic for total correctness (cf. Theorem
3.22) makes it indispensable for our argumentation. Viewed that way the inductive
termination judgement is questionable, since it was not strong enough for our argu-
mentation. However, as the following equivalence argumentation shows, it is much
harder to work with the absence of infinite computations. From a proof engineering
point of view the equivalence proof provides us with a separation of concerns. We
can use the more convenient inductive termination judgement whenever possible,
and only have to show once that the absence of infinite computations shares the
same properties.

We start with the direction from Γ`c ↓ s to ¬ Γ` 〈[c],[],s〉 → . . . (∞). The basic idea
is to do induction on the termination judgement and contradict the assumption that
there is an infinite computation. The main lemma that we need to make use of the
induction hypotheses for compound statements is the following:

If Γ` 〈c·cs,css,s〉 → . . . (∞) then J Proposition A.6

Γ` 〈[c],[],s〉 → . . . (∞) ∨ (∃ t. Γ` 〈c,s〉 ⇒ t ∧ Γ` 〈cs,css,t〉 → . . . (∞)).

It allows to do a case distinction on infinite computations. Either the execution
of the head statement c already leads to an infinite computation, or there is an
intermediate state t such that the execution of c terminates in t, and the rest compu-
tation is infinitary. Consider the case of sequential composition, for example. Given
Γ`Seq c1 c2 ↓ Normal s and the corresponding induction hypothesis for c1 and c2:

• ¬ Γ` 〈[c1],[],Normal s〉 → . . . (∞) (∗)

• ∀ t. Γ` 〈c1,Normal s〉 ⇒ t −→ ¬ Γ` 〈[c2],[],t〉 → . . . (∞). (∗∗)

We assume that there is an infinite computation Γ` 〈[Seq c1 c2],[],Normal s〉 → . . . (∞).
From the small-step semantics we know that the initial step of the computation is
Γ` 〈[Seq c1 c2], [], Normal s〉 → 〈[c1, c2], [], Normal s〉. Hence we get an infinite com-
putation starting from the second configuration: Γ` 〈[c1, c2],[],Normal s〉 → . . . (∞).
With the case distinction proposition A.6 and the induction hypothesis (∗) and (∗∗)
we get a contradiction.

To prove proposition A.6 we analyse the sequence of configurations of an infinite
computation. Consider a computation that starts in configuration 〈c·cs, css, s〉. As
long as execution of the head statement c is not yet finished, the components cs and
css are always part of the subsequent configurations. If c is finished the configura-
tion has the form 〈cs, css, t〉. To characterise the intermediate configurations is more
involved. We relate the configuration sequence to one that is started with the head
statement only: 〈[c], [], s〉. The configuration sequence obtained from this initial con-
figuration describes the pure computation of c. As naming convention we describe
parts of these pure configurations with a prefix p, like 〈pcs, pcss, t〉. The original com-
putation is referred to as compound computation. We can also think of pcs and pcss as
the progress that is made compared to the initial configuration. It describes the delta
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between the current configuration and the initial one. As long as no new blocks
are entered the pure configuration has the form 〈pcs, [], s ′〉. Hence the compound
configuration has the form 〈pcs @ cs, css, s ′〉. Let us now consider a general interme-
diate configuration 〈pcs, pcss, s ′〉 of the pure computation. When a block is entered,
a continuation pair is pushed to the continuation stack. When a block is exited the
top of the continuation stack is popped. So the initial continuation stack css of the
compound computation always remains on the bottom of the stack, as long as c is
calculated. However, the continuation stack is not just of the form pcss @ css. The ini-
tial statements cs have to be appended to the tails of the pure continuation stack pcss.
Let pcss be of the form pcss ′@ [(pcs-normal, pcs-abrupt)]. Then the continuation stack
of the compound computation is pcss ′@ [(pcs-normal @ cs, pcs-abrupt @ cs)] @ css. Al-
together the corresponding compound configuration to a pure configuration 〈pcs,
pcss, s ′〉 has either of the following forms:

• pcss = []: 〈pcs @ cs, css, s ′〉

• pcss , []: 〈pcs, butlast pcss @ [〈fst (last pcss) @ cs, snd (last pcss) @ cs〉] @ css, s ′〉.

Note that in the second case the statement list pcs coincides for the pure and the
compound computation, because the initial cs has moved to the continuation stack.

This relation between configurations of the pure and compound computation
shows up in the following lemmas. Before going into detail with these quite technical
lemmas, a few words on the outline of the argumentation. The goal is to prove the
case distinction proposition A.6 for an infinite computation, started in an initial
configuration 〈c·cs, css, s〉. While the execution of statement c is not yet finished
we can relate the compound configurations to the pure configurations 〈pcs, pcss, s ′〉.
If we never reach a configuration 〈cs, css, t〉 in the compound computation, this
means that we never reach a configuration where pcs = [] and pcss = [] in the pure
computation. Thus the computation of c is infinite: Γ` 〈[c],[],s〉 → . . . (∞). If we
arrive in an intermediate configuration of the form 〈cs,css,-〉, where the statement c
is completely executed, then we also arrive in such a configuration for the first time:

Γ` 〈c·cs, css, s〉 →∗ 〈cs, css, t〉.

Since it is the first time we arrive in a configuration of the form 〈cs,css,-〉, we also get
a pure computation:

Γ` 〈[c], css, s〉 →∗ 〈[], [], t〉.

According to Lemma A.4 this corresponds to a big-step execution:

Γ` 〈c,s〉 ⇒ t.

Moreover, since we know that the computation is infinite the remaining computation
must be infinite: Γ` 〈cs,css,t〉 → . . . (∞).

As outlined above the heart of the argumentation is the case distinction whether
an intermediate configuration of the form 〈cs,css,-〉 is reachable or not. The main
proof technique is induction on the first k steps of the computation. According to
the definition of an infinite computation we talk about a function f that enumerates
the configurations of the infinite computation. To get hold of the statement list, the
continuation stack and the state of a configuration we define the selectors CS, CSS
and S:
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CS 〈cs, css, s〉 = cs
CSS 〈cs, css, s〉 = css
S 〈cs, css, s〉 = s

J Definition A.2

The following lemma describes the effect of a single computation step for a
non-empty statement list:

If Γ` 〈c·cs, css, s〉 → 〈cs ′, css ′, t〉 then J Lemma A.7
∃pcss.

css ′= pcss @ css ∧
if pcss = [] then ∃ps. cs ′= ps @ cs
else ∃pcs-normal pcs-abrupt. pcss = [(pcs-normal @ cs, pcs-abrupt @ cs)].

Proof. By induction on the single step execution. �

To exit a block the continuation stack is popped according to the current state.
The initial css suffix is not affected.

If Γ` 〈[], (pcs-normal, pcs-abrupt)·pcss @ css, s〉 → 〈cs ′, pcss @ css, t〉 then J Lemma A.8
case s of Abrupt s ′⇒ cs ′= pcs-abrupt ∧ t = Normal s ′

| -⇒ cs ′= pcs-normal ∧ t = s.

Proof. By induction on the single step execution. �

The next lemma lifts the previous two lemmas for a single step of computation
to multiple steps:

Given an infinite computation ∀ i. Γ` f i→ f (i+ 1), started in the initial configuration J Lemma A.9
f 0 = 〈c·cs, css, s〉, if a configuration of shape 〈cs,css,-〉 is not yet reached:

∀ i<k. ¬ (CS (f i) = cs ∧ CSS (f i) = css),

then we can identify progress in the configurations with respect to the initial con-
figuration as follows:

∀ i≤k. ∃pcs pcss.
if pcss = [] then CSS (f i) = css ∧ CS (f i) = pcs @ cs
else CS (f i) = pcs ∧

CSS (f i) = butlast pcss @ [(fst (last pcss) @ cs, snd (last pcss) @ cs)] @ css.

Proof. By induction on k. Case 0 is trivial. Case k + 1: The configurations i ≤ k are
covered by the induction hypothesis. By case analysis on the configuration of step
k, we construct the new progress for step k + 1 from the progress obtained from the
induction hypothesis for step k. Lemmas A.7 and A.8 already capture the essential
behaviour of the small step semantics, so we do not need to argue on the different
statements here. �

The next lemmas are used to extract the embedded pure computation from a
compound computation. We start with lemmas for a single step of computation. A
suffix of the continuation stack can be dropped:

If Γ` 〈cs, pcss @ css, s〉 → 〈cs ′, pcss ′@ css, t〉 then Γ` 〈cs, pcss, s〉 → 〈cs ′, pcss ′, t〉. J Lemma A.10

Proof. By induction on the single step execution. �
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So together with Lemma 3.19 we can add and drop the suffix of the continuation
stack.

For the statement list we can only drop a suffix if the continuation stack stays
the same.

If Γ` 〈c·cs @ xs, css, s〉 → 〈cs ′@ xs, css, t〉 then Γ` 〈c·cs, css, s〉 → 〈cs ′, css, t〉.Lemma A.11 I

Proof. By induction on the single step execution. �

If a new block is entered the first time the suffix cs of the compound compu-
tation moves to the continuation stack. This suffix can be removed for the pure
computation:

If Γ` 〈p·pcs @ cs, css, s〉 → 〈cs ′, (pcs-normal @ cs, pcs-abrupt @ cs)·css, t〉 thenLemma A.12 I
Γ` 〈p·pcs, css, s〉 → 〈cs ′, (pcs-normal, pcs-abrupt)·css, t〉.

Proof. By induction on the single step execution. �

These lemmas for a single step of the computation are used in the induction step
of the following lemma, which allows to construct the pure computation from the
compound computation. The induction is on k.

Given an infinite computation ∀ i. Γ` f i→ f (i+ 1), started in the initial configurationLemma A.13 I
f 0 = 〈c·cs, css, s〉, if a configuration of shape 〈cs,css,-〉 is not yet reached:

∀ i<k. ¬ (CS (f i) = cs ∧ CSS (f i) = css),

and the configurations so far can be split up into the parts describing the progress
and the parts from the initial configuration:

∀ i≤k. if pcss i = [] then CSS (f i) = css ∧ CS (f i) = pcs i @ cs
else CS (f i) = pcs i ∧

CSS (f i) =
butlast (pcss i) @ [(fst (last (pcss i)) @ cs, snd (last (pcss i)) @ cs)] @ css,

then the corresponding pure computation can be build from the progress parts of
the configurations:

∀ i<k. Γ` 〈pcs i, pcss i, S (f i)〉 → 〈pcs (i + 1), pcss (i + 1), S (f (i + 1))〉.

Proof. By induction on k.
Case 0 is trivial.
Case k + 1. For i < k the embedded pure computation is provided by the

induction hypothesis. For i = k we construct the last step from i to i + 1 by case
distinction on the configuration of step i and Lemmas A.10, A.11, A.12. As these
lemmas already capture the possible changes in the shape of a configuration by one
step of execution, we do not need to do a case analysis on the head statement. �

Now we prove the case distinction lemma for infinite computations (proposition
A.6).

If Γ` 〈c·cs,css,s〉 → . . . (∞) thenLemma A.14 I
Γ` 〈[c],[],s〉 → . . . (∞) ∨ (∃ t. Γ` 〈c,s〉 ⇒ t ∧ Γ` 〈cs,css,t〉 → . . . (∞)).
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Proof. We have an infinite computation ∀ i. Γ` f i → f (i + 1) starting in the initial
configuration f 0 = 〈c·cs, css, s〉. We do case distinction whether a configuration of
the shape 〈cs,css,-〉 is reachable, which means that the first statement c finished its
computation.

Case ∃ i. CS (f i) = cs ∧ CSS (f i) = css:
Let k be the least number for which we have

CS (f k) = cs and CSS (f k) = css. (∗)

We use Lemma A.9 to identify the progress in the configurations up to step k:

∀ i≤k. ∃pcs pcss.
if pcss = [] then CSS (f i) = css ∧ CS (f i) = pcs @ cs
else CS (f i) = pcs ∧

CSS (f i) = butlast pcss @ [(fst (last pcss) @ cs, snd (last pcss) @ cs)] @ css.

Via the axiom of choice we obtain enumeration functions pcs and pcss for this
progress:

∀ i≤k. if pcss i = [] then CSS (f i) = css ∧ CS (f i) = pcs i @ cs
else CS (f i) = pcs i ∧

CSS (f i) =
butlast (pcss i) @ [(fst (last (pcss i)) @ cs, snd (last (pcss i)) @ cs)] @ css.

(∗∗)

Now we employ Lemma A.13 to extract the first k steps of the embedded pure
computation:

∀ i<k. Γ` 〈pcs i, pcss i, S (f i)〉 → 〈pcs (i + 1), pcss (i + 1), S (f (i + 1))〉. (∗ ∗ ∗)

Using (∗) and (∗∗) we can simplify the initial and final state of the pure computation:

〈pcs 0, pcss 0, S (f 0)〉 = 〈[c], [], s〉
〈pcs k, pcss k, S (f k)〉 = 〈[], [], S (f k)〉.

With (∗ ∗ ∗) we obtain Γ` 〈[c], [], s〉 →∗ 〈[], [], S (f k)〉 by induction on k. According
to Lemma A.4 this corresponds to the big-step execution Γ` 〈c,s〉 ⇒ S (f k). Shifting
the enumeration function f for k steps yields an infinite computation starting in con-
figuration k: Γ` 〈cs,css,S (f k)〉 → . . . (∞). Thus we have derived the right alternative
of the thesis.

Case ∀ i. ¬ (CS (f i) = cs ∧ CSS (f i) = css): With Lemma A.9 we identify the
progress in the infinite configurations:

∀ i. ∃pcs pcss.
if pcss = [] then CSS (f i) = css ∧ CS (f i) = pcs @ cs
else CS (f i) = pcs ∧

CSS (f i) = butlast pcss @ [(fst (last pcss) @ cs, snd (last pcss) @ cs)] @ css.

Via the axiom of choice we obtain enumeration functions pcs and pcss for this
progress:

∀ i. if pcss i = [] then CSS (f i) = css ∧ CS (f i) = pcs i @ cs
else CS (f i) = pcs i ∧

CSS (f i) =
butlast (pcss i) @ [(fst (last (pcss i)) @ cs, snd (last (pcss i)) @ cs)] @ css.

(∗)

We define an enumeration function p for the pure configurations:
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p ≡ λi. 〈pcs i, pcss i, S (f i)〉.

With (∗) we get p 0 = ([c], [], s). With Lemma A.13 we sequence the configurations p
to an infinite computation:

∀ i. Γ` p i→ p (i + 1).

Hence we have shown the left branch of the thesis. �

With this case distinction lemma on infinite computations we can show that
terminating programs cause no infinite computations:

If Γ`c ↓ s then ¬ Γ` 〈[c],[],s〉 → . . . (∞).Lemma A.15 I

Proof. By induction on Γ`c ↓ s and lemma A.14. �

We continue with the other direction. From the absence of an infinite computa-
tion to termination. Analogous to the generalised big-step semantics for statement
lists and continuations we define a generalised termination judgement:

The extended termination judgement Γ`cs,css ⇓ s is defined inductively by theDefinition A.3
Extended termination

judgement for Simpl

I

rules in Figure 2.2, where:

Γ :: ′p⇀ ( ′s, ′p, ′f ) com
s :: ( ′s, ′f ) xstate

cs :: ( ′s, ′p, ′f ) com list
css :: ( ′s, ′p, ′f ) continuation list

Γ`[],[] ⇓ s
(N)

Γ`c ↓ s ∀ t. Γ` 〈c,s〉 ⇒ t −→ Γ`cs,css ⇓ t

Γ`c·cs,css ⇓ s
(C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ`nrms,css ⇓ Normal s

Γ`[],(nrms, abrs)·css ⇓ Normal s
(EBN)

Γ`abrs,css ⇓ Normal s

Γ`[],(nrms, abrs)·css ⇓ Abrupt s
(EBA)

Γ`nrms,css ⇓ Fault f

Γ`[],(nrms, abrs)·css ⇓ Fault f
(EBF)

Γ`nrms,css ⇓ Stuck

Γ`[],(nrms, abrs)·css ⇓ Stuck
(EBS)

Figure A.2: Extended termination judgment for Simpl

We prove that ¬ Γ` 〈cs,css,s〉 → . . . (∞) implies Γ`cs,css ⇓ s in two steps. First,
we provide a well-founded relation on configurations that can be derived from
¬ Γ` 〈cs,css,s〉 → . . . (∞). Then we prove termination by well-founded induction on
this relation.

(≺Γc ) ≡ {(c2, c1). Γ` c→∗ c1 ∧ Γ` c1 → c2}Definition A.4 I
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We have c2 ≺
Γ
c c1, if configuration c1 is reachable from the initial configuration

c and c2 is reachable from c1 by a single step. For a termination computation c2 is
“nearer” to the end.

If ¬ Γ` 〈cs,css,s〉 → . . . (∞) then wf (≺Γ
〈cs, css, s〉). J Lemma A.16

Proof. We do a proof by contradiction. According to Lemma 3.16 we assume that
there is an infinite descending chain, i.e. there is an enumeration f of configurations
such that:

∀ i. Γ` 〈cs, css, s〉 →∗ f i ∧ Γ` f i→ f (i + 1).

By reflexive transitive closure induction we show that we can construct an enu-
meration g that begins with the initial configuration g 0 = 〈cs, css, s〉 such that
∀ i. Γ` g i→ g (Suc i). This contradicts the assumption that there is no infinite com-
putation: ¬ Γ` 〈cs,css,s〉 → . . . (∞). �

If ≺Γ
〈cs, css, s〉 is well-founded: wf (≺Γ

〈cs, css, s〉), and configuration 〈cs1, css1, s1〉 is reach- J Lemma A.17
able: Γ` 〈cs, css, s〉 →∗ 〈cs1, css1, s1〉, then it is also terminating: Γ`cs1,css1 ⇓ s1.

Proof. By well-founded induction on the relation ≺Γ
〈cs, css, s〉 and the configuration

〈cs1, css1, s1〉. As induction hypothesis we get that all configurations 〈cs2, css2, s2〉,
such that Γ` 〈cs1, css1, s1〉 → 〈cs2, css2, s2〉, are terminating: Γ`cs2,css2 ⇓ s2. By case
distinction on configuration 〈cs1, css1, s1〉 and executing the next step symbolically
according the small-step semantics, it is straightforward to construct Γ`cs1,css1 ⇓ s1
from the hypothesis. �

By combining Lemmas A.16 and A.17 and instantiating 〈cs1, css1, s1〉 with the
initial configuration 〈cs, css, s〉we get:

If ¬ Γ` 〈cs,css,s〉 → . . . (∞) then Γ`cs,css ⇓ s. J Lemma A.18

Specialising cs to [c] and css to [] we arrive at:

If ¬ Γ` 〈[c],[],s〉 → . . . (∞) then Γ`c ↓ s. J Lemma A.19

Together with Lemma A.15 we have proven the equivalence Theorem 3.21 for
termination and the absence of infinite computations:

Γ`c ↓ s = (¬ Γ` 〈[c],[],s〉 → . . . (∞)) J Theorem A.20
Termination iff no
infinite computation
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