
Invariants, Modularity, and Rights?

Ernie Cohen1, Eyad Alkassar2, Vladimir Boyarinov3, Markus Dahlweid4,
Ulan Degenbaev2, Mark Hillebrand3, Bruno Langenstein3, Dirk Leinenbach3,

Micha l Moskal4, Steven Obua2, Wolfgang Paul2, Hristo Pentchev2,
Elena Petrova2, Thomas Santen4, Norbert Schirmer3, Sabine Schmaltz2,

Wolfram Schulte5, Andrey Shadrin2, Stephan Tobies4, Alexandra Tsyban2, and
Sergey Tverdyshev2

1 Microsoft Corporation, Redmond, WA, USA
ernie.cohen@microsoft.com

2 Saarland University, Computer Science Dept., Saarbrücken, Germany
{eyad,ulan,obua,wjp,pentchev,petrova,sabine,shadrin,azul,deru}@wjpserver.cs.uni-sb.de

3 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
{Vladimir.Boyarinov,mah,langenstein,Dirk.Leinenbach,Norbert.Schirmer}@dfki.de

4 European Microsoft Innovation Center, Aachen, Germany
{markus.dahlweid,michal.moskal,thomas.santen,stephan.tobies}@microsoft.com

5 Microsoft Research, Redmond, WA, USA
schulte@microsoft.com

Abstract. The quest for modular concurrency reasoning has led to re-
cent proposals that extend program assertions to include not just knowl-
edge about the state, but rights to access the state. We argue that these
rights are really just sugar for knowledge that certain updates preserve
certain invariants.

1 Introduction

Over the years, many approaches to reasoning about concurrent systems have
been proposed. At their core, most of these approaches are based on invariants.
Invariance reasoning is conceptually simple, and compositional across concur-
rent composition. But invariance reasoning also has a downside: to check an
update to the state, you have to check all of the invariants that the update
might break. This is not usually a problem when reasoning about concurrent
algorithms, where you can afford to see all of the invariants. Nor is it usually
a problem when reasoning about concurrent hardware or distributed systems,
where the sharing of data and invariants across components is typically static.
But it is a big problem when reasoning about large concurrent programs, where
sharing is dynamic, and code might break invariants that are out of scope (or,
indeed, might not have even been written when the code is verified).
? Work partially funded by the German Federal Ministry of Education and Research

(BMBF) in the framework of the Verisoft XT project under grant 01 IS 07 008. Work
of the sixteenth author was funded by the German Research Foundation (DFG)
within the program ‘Quality Guarantees for Computer Systems’.



The modern attack on this problem is to strengthen the specification language
to specify not only a thread’s knowledge6 (about the state) but also its rights
(what it is allowed to do to the state), the combination of which we call a thread’s
stuff. For example, the stuff of a thread typically includes exclusive access to its
local data (that is, right to modify the data and knowledge of its exact value),
and lesser rights and knowledge about shared data (e.g., one thread might be
allowed only to increase a counter and another only to decrease it; the former
thread can possess knowledge about its maximum value, the latter about its
minimum).

In rely-guarantee reasoning [5], the stuff in a thread is static over its lifetime.
In more recent approaches, stuff can move in and out of threads, e.g., through
shared objects such as resources. A procedure specification describes the stuff
provided to the procedure on entry, and the stuff returned on exit (or, depending
on methodology, how the stuff can change). (Fork and join are conceptually
similar to procedure call and return.)

The usual way to represent stuff, typified by Concurrent Separation Logic
(CSL) [7], is to describe stuff using a linear logic. This elegant approach has led
to some very beautiful proofs of programs. However, it is not without drawbacks:

1. Rights and knowledge are very different things, governed by very different
mathematics. Knowledge follows the rules of ordinary logic and can be freely
created or destroyed, while rights have to follow some conservation principles
to avoid unsoundness (e.g., from duplicating and distributing an exclusive
right) or resource leakage (e.g., if you forget about your exclusive right to a
chunk of memory). The introduction of linearity features into the logic pro-
duces a substantial jump in computational complexity (e.g., for separation
logic see [1, 2]).

2. There are many ways to form a linear space of rights. For example, in CSL,
one might use either fractional permissions or counting permissions; there
are also other possibilities, such as a tree-like structuring of permissions, or
permission accounting using infinitesimals (as in Chalice [6]), not to mention
more expressive approaches, such as relational permissions [4]. So it seems
odd to build such a commitment into the programming logic.

The point of this paper is that once we have a program logic that provides
ghost state and two-state invariants (which we need anyway to do internal sim-
ulation reasoning7), we no longer need rights within the logic; rights can be
represented as the knowledge that certain updates don’t break certain invari-
ants. (In order to make knowledge – and rights – first class, we use objects as
the carriers of knowledge.) This might seem odd; since knowledge can be freely

6 We use knowledge here in the usual sense of what the thread can deduce about the
state or changes thereto, not in the sense as in logics of knowledge.

7 To show that a program simulates some abstract specification, we make this spec-
ification a (two-state) invariant of an explicit ghost object, with a 1-state coupling
invariant linking it to the concrete state. The ghost object is then updated (either
implicitly or explicitly) so as to maintain these invariants.



duplicated, what makes an exclusive right exclusive? The trick is to view threads
as objects. The invariant of a thread is given implicitly by the annotation one
would put on the thread (i.e., a disjunction with disjuncts of the form “if control
is here, then this predicate holds”). So if thread T uses its exclusive right to a
variable to deduce (in its assertion) that the value of the variable has some value
at some point in its execution, another thread can’t change the value without
breaking T ’s invariant. Since threads are verified without access to what code
might be running in other threads, this means that exclusive rights effectively
prevent modifications by other threads.

The price we pay is that to move rights around, we have to manipulate ghost
state. But this is to be expected, given the complexity gap between validity
checking in ordinary logic and linear logics; the use of linear logics amounts
to folding these manipulations of ghost state into the programming logic. One
advantage to our approach is that, by building rights on top of ghost code and
invariants, the “logic” of rights can be extended by just adding more code; the
substitution of code verification for metatheory is usually a good trade. Equally
important, software engineers understand code and invariants, whereas they are
likely to reject fancy program logics. Nevertheless, our approach is compatible
with the use of fancier linear rights.

The ideas here were developed in the context of the design of the Verifying
C Compiler (VCC) [3], an automatic verifier for concurrent C code. However,
many of the ideas are realized somewhat differently in VCC; we point out some
of these differences in the footnotes.

2 Local Invariance Reasoning

Assume a state consisting of an addressable heap (containing both real state
and ghost state). When we speak of a variable, we mean a heap address, and
when we speak of the value of a variable a, we mean the value [a] stored at
the address a in a given state. Define [A], where A is a set of addresses, to be
the partial (heap) map restricted to the addresses in A. On top of the state,
we imagine a collection of objects,8 each with a unique identifier (so that we
can store object references on the heap), and each with a fixed collection of
invariants (two-state predicates on the heap).9 If o denotes an object identifier,

8 An alternative (but essentially equivalent) approach, used in VCC, is to start with
objects and fields, and to use only ownership between objects. However, we then
need additional system invariants to prevent aliasing objects from existing at the
same time and to make sure that there is always some existing object for each bit
of memory (to prevent memory leakage). Moreover, because it should be possible to
change the owner of an object without having to check the object’s invariant, the
ownership bit for an object has to be treated specially.

9 Note that we are assuming a fixed grain of atomicity; all objects share the same
notion of system step. This might seem inelegant, but has the enormous practi-
cal advantage of allowing invariants of different objects to be freely combined with
conjunction when reasoning about the state.



define inv(o) to be the conjunction of the invariants of o; intuitively, we expect
each object invariant should hold across each state transition (pair of consecutive
states) in every execution of the program. In two-state predicates, old(e) gives
the value of the (single-state) expression e in the prestate, while e gives the value
in the poststate. Define unch(e) ≡ (e = old(e)). Define the single-state invariant
inv1 (o) to hold in a state s iff inv(o) holds across the transition from s to s
(the stuttering transition from s). Finally, define the single-state predicate 〈p〉
(“necessarily p”) to mean that every possible state transition from the current
state satisfies the two-state invariant p.

To enable modular checking that a state update preserves all invariants, we
introduce an ownership policy on state, as follows. We add to ghost state a map
owner from addresses to objects10; if owner(a) = o, we say that o owns a. Define
span(o) ≡ [{a | owner(a) = o}], i.e., the span of o consists of the set of locations
owned by o and the values of the heap at these locations. We require the object
invariants to satisfy the following admissibility condition, for every object o, over
every possible state transition:

(∀o′ : old(inv1 (o′))) ∧
(∀o′ : unch(span(o′)) ∨ inv(o′))
⇒ inv(o)

This condition says that to check that an update preserves all invariants, we
only have to check the invariants of those objects who own an updated location
or who acquired or released ownership of a location, i.e., whose span has changed.
It thus provides the desired modularity when checking an update: we need only
to find a set of objects whose spans cover the updated data, and check the
invariants of these objects (assuming that all single-state invariants hold in the
prestate). Admissibility checking itself is modular – we can check admissibility
of an object invariant without knowing all of the object invariants (although it
usually depends on some of them). Note that admissibility requires in particular
that all invariants are preserved under stuttering.

To allow objects to be created and destroyed, the heap contains for each ob-
ject o a (ghost) Boolean variable exists(o) that says whether that object actually
exists. We think of each object invariant as implicitly containing a hypothesis
that the object exists in the prestate or the poststate. In addition, o has an
invariant that says that it owns exists(o), whether o exists or not11.

To allow object invariants to assert the invariants of other objects, we al-
low invariants to contain terms of the form inv(o), as long as such terms occur
only with positive polarity; this polarity constraint guarantees a consistent in-

10 We are here assuming that owner is not on the heap, to avoid giving it an owner;
equivalently, we could put it on the heap, making its owner a system object whose
only invariant is that it owns owner .

11 It is important for o to own exists(o) even when it doesn’t exist to avoid having to
worry about breaking the invariant of the old owner of exists(o) when truthifying
exists(o).



terpretation of which invariants hold across any state transition12. Let I be the
conjunction of all object invariants; if I ∧ old([exists(o)]) ⇒ p (across every
possible pair of states), we say that o claims p.

3 Structuring Invariants

Some forms of invariants are trivially admissible. For example, an invariant of
object A that can be written as a predicate on span(A) is admissible as long
as it is invariant under stuttering. More generally, any invariant of the form
unch(span(A)) ∨ p is admissible. However, invariants that depend on data owned
by other objects sometimes require help from the owning objects.

Suppose that an invariant of an object B depends on some variable a in
the span of an object A. For example, A might be a lower-level object forming
part of the representation of B, and a might hold some part of the abstract
state of A. Typically, an update to a requires checking some condition on B,
or even concurrent update to B, to avoid breaking B’s invariant. Without some
precaution, this will make B’s invariant inadmissible. We don’t want to put
B’s particular invariant in A, because the implementation of B is not in A’s
scope. (Moreover, in most cases, the particular object dependent on A is state-
dependent, e.g., given by some ghost variable of A, such as its owner.)

One approach is to turn the relevant state of B into an existentially quantified
variable. For example, if B’s invariant is a single-state invariant p that relates
[a] with the value of a variable b in the span of B, we can replace B’s invariant
with the invariant (∃c : p′), where p′ is p with [b] replaced by c. This approach
is suitable only when we don’t need to constrain updates to A, and only need to
mirror them by updating b appropriately13.

An approach that we have found more useful is to allow changes to a only
when some condition on the ghost heap holds, with an invariant (in A) of the
form (unch([a]) ∨ p) (which itself is necessarily admissible). For example, p
might be simply [b], where b is a state bit owned by B, allowing B to inhibit
updates to a by keeping b false; this right can move around with ownership of
b. More sophisticated predicates are also possible; for example, p might require
a more complex test on the state, or even a particular simultaneous update of
the state. The form that we have found most useful is where p is of the form
inv(B), which essentially requires a check of B’s invariant (without saying what
that invariant is) when updating a; we say that B approves changes to a. This
automatically gives B’s invariants admissible use of a. We can allow this power

12 There are various ways to weaken the polarity constraint. For example, one can
stratify the objects according to a static well-founded relation (e.g., on object types),
so that the invariant of object o can use inv(o′) with negative polarity only if o′ < o,
or stratify on the basis of the time when exists(o) becomes true.

13 Another issue is that if other objects refer to b, replacing these references with exis-
tential loses the coherence between the instances. We have considered adding to VCC
existential variables that are defined by such existential formulas, but the defining
formulas of such variables have to be suitably stratified to guarantee consistency.



of approval to move around by replacing the constant B with a state expression,
have multiple approvers by using a conjunction of such invariants, or approve a
more restricted class of changes (e.g., changes that increase a).

The simplest case of approval arises where B claims that (under some con-
dition) A exists. There are many ways to make such a B admissible. One is for
A to keep track of such “clients” with the invariant that A isn’t destroyed while
this set is nonempty and that taking an object out of the set requires approval of
the object. (Note that this doesn’t have to be done for all objects that claim the
existence of A, just for those whose admissibility cannot be established in other
ways.) Because B is a full-fledged object, the existence of B can be claimed
by other objects, creating a graph-like information structure. Another way to
structure this is to extend ownership to objects, and to give each object an im-
plicit invariant that its owner approves its destruction or ownership changes.
Yet another is to assign a fraction in the range (0, 1] to each claimant, with the
invariant that these claims sum to 1, which simulates fractional permissions of
CSL. These can all be mixed together in the same system.

4 Threads

Because the system state is stored on the heap, the continuation of each thread
has to likewise be stored on the heap, and we think of the thread as owning
the locations used to represent its continuation. (For example, in a higher-order
language, we would have a location for each thread that stores its continuation.)
In a standard hardware architecture, we can think of the thread owning (mem-
ory locations corresponding to) the local registers (in particular, the program
counter), the register data saved in the stack frames on the control stack, and
any stack memory reserved beyond the current stack top. Stack variables are
owned by the thread when they are allocated and when they are released, but in
between ownership might pass out of the thread; this is necessary for languages
like C that allow references to stack variables to be stored in data structures.

Checking admissibility of a thread means checking that updates that don’t
change the span of the thread don’t break its (implicit) invariants. This amounts
to checking that any assertion we attach to a control location is stable under any
action that preserves all invariants of updated objects. This stability is normally
proved using the invariants of objects mentioned in the assertion.

The invariant of a thread (like the invariant of any object) can admissibly
talk about any data the thread owns. Similarly it can talk admissibly about any
data whose update is approved by the thread. Note that in contrast to other
approaches, where threads can only update locations that they own exclusively,
nothing logically prevents a thread from changing state owned by another thread
(even its program counter). However, the possibility of such updates do not
effect the verification of the potentially modified thread. Moreover, as a practical
matter, threads typically don’t have access to the actual invariants of other
threads, so we cannot verify threads that change state owned by other threads.



5 Claims

An object that owns no interesting data can nevertheless provide useful knowl-
edge about the state (or how the state may change), through its invariant. Use-
ful knowledge is almost never permanent; for example, knowledge about a data
structure is destroyed when the structure is torn down. Thus, the admissibility
of such knowledge depends on its approving destruction of the relevant parts of
the state, as described in the last section. We call such an object a claim.

Why would we wish to use a claim to pass information around, as opposed to
an ordinary assertion within program code? The answer is that code assertions
can only speak sensibly about state that is owned by the thread running the
code, whereas shared objects (e.g., locks) are usually not owned by the thread.
Even if some property of a shared object is known to hold at some point in a
program, any write to nonlocal state can destroy such information. Verifying that
such information is not destroyed typically requires using invariants of objects
that are out of scope (e.g., because they are invariants of lower level data objects
whose implementation is hidden). Even if the invariants are in scope, this would
force the properties being maintained to be proved over and over again, which
would be a disaster for practical reasoning. Conversely, the knowledge carried
within a claim is guaranteed to stay around until the claim itself is destroyed;
because the claim is typically owned by the thread, this can only happen if the
thread itself destroys the claim. Thus, claims allows knowledge to be broken
up into logical units, these units moved around as necessary (put into data
structures, passed in and out of procedures, etc.).

The admissibility check when forming a claim amounts to checking that its
invariant is stable (i.e., cannot be falsified) as long as the claim exists; it is
essentially analogous to the check of an assertion associated with a program lo-
cation, except that it cannot assume the constancy of data owned by the thread.
Of course the two-state invariant of the claim must hold over the transition in
which the claim is “created” (i.e., when it goes from nonexistence to existence).

It is often convenient to use claims to build new claims. In order to do this,
claims themselves must keep track of these dependent claims, so that the de-
pendents can approve destruction of the claim. Such claims can be destroyed
only when all of its dependents have been destroyed (or are simultaneously de-
stroyed). A program using such a claim thus has to maintain (through program
assertions or object invariants) information about the possible dependents that
might still exist.

Claims are often passed as ghost arguments to procedures14. Typically, a
precondition of the procedure guarantees that the claim exists and is owned
by the thread executing the procedure (so that it remains in existence until
the thread destroys it or gives up its ownership). There are several possible
idioms for what the procedure can do with the claim. The most usual is that the

14 It is also possible to simply assert as a precondition the existence of a claim with
the suitable properties, but passing it as a ghost argument has the advantage of
immediately giving it a name to which it can be referred to in ghost code.



precondition guarantees that the claim is returned with the same dependents as
upon entry15. In some cases, the procedure has to be able to destroy the claim
(e.g., if it is destroying an object referenced by the claim)16; in this case, the
precondition also specifies the claimants that might exist on entry.

Procedures that operate on shared synchronization objects (such as locks)
typically take as a ghost argument a claim that claims that the target object
exists. From these initial claims, a thread can deduce the existence of other ob-
jects (possibly claims themselves). For example, acquisition procedures typically
return an object with ownership of the object transfered to the calling thread;
for exclusive access (as in a writer lock) this object is the very object protected
by the lock, whereas for shared access (as in a reader lock), the object is a claim
claiming the existence of the protected object.

6 Permissions

We return to the question of what it means to have permission to perform an
action. Suppose we want to update the heap at some location, say by atomically
setting it to 0. What would justify such an update?

If the thread owns the updated location, the thread’s invariant is all that
has to be checked. By the form of the thread invariant, this means just checking
that if performing the update from a state satisfying the program assertion
preceding the update results in a state satisfying the program assertion following
the update. This is just ordinary sequential program reasoning.

On the other hand, if the updated location is owned by some object, we
have to check that object’s invariant (as well as that of the thread). The obvious
thing to do is to use the prestate to deduce which object owns the location, and
that the state is such that the update preserves this object’s invariant. Often
this approach is possible. For example, in the code implementing a concurrent
object, the procedures updating some private part of the object state usually
have enough local information to do this check. The majority of atomic updates
in commercial code can be checked in this way (if the hardware intrinsics are
treated as primitives).

However, there are cases where this approach is insufficient. First, procedures
that serve as low-level wrappers of atomic hardware intrinsics (e.g., interlocked
increment,) cannot talk about all possible objects that might own (or refer to)
the updated location. Second, even if code updating the heap knows the object
that owns the data and can see its invariant, this object might use approval or
similar mechanisms that require checking the invariants of other objects; since
these other objects are typically at higher levels, their invariants are likely to be
out of scope (as well they should be).

15 This corresponds to returning the same “amount” of claim in logics based on frac-
tional permissions.

16 To make this more convenient, claims in VCC have the property that once destroyed
they can never again be recreated, allowing the destroyer of a claim to assert that
the claim doesn’t exist on procedure return.



Let us consider a typical example, where an object A has an invariant
unch([a]) ∨ inv(B). We’d like to pass to the code updating a a claim c that
it can use to check the update to a. When updating a, we cannot soundly as-
sume the invariant of c holds across the update, even if the update doesn’t
destroy c. However, we can safely assume that the invariant of c holds over the
transition that stutters from the prestate of the update. To get from this infor-
mation about a nonstuttering transition from the prestate (such as the update
to a, we use a claim with a (single-state) invariant that talks about all possible
transitions from the prestate. To allow the code to update a without breaking
B, we pass to it a claim that claims 〈p ⇒ inv(B)〉. For example, if B has the
invariant [a] ≤ [b], then from a claim that claims that [b] = 5 we can construct a
dependent claim claiming 〈unch(span(B)) ∧ [a] ≤ 5 ⇒ inv(B)〉, which says that
any change that doesn’t change B and satisfies [a] ≤ 5 preserves the invariant
of B.

Note that this technique is more modular than a rely-guarantee condition,
because A might have other approvers besides B (that the client might not even
know about). The claim doesn’t claim that an update satisfying p will satisfy
all invariants (which would be impossible without breaking information hiding),
only that it will not break B’s invariant.

Now, just as we don’t want to expose information about B to the code,
we also don’t want to expose details of the update to the client providing the
claim (since the update to a might need to simultaneously update other data
belonging to A. All that p has to specify (beyond the change to a) is that the
update doesn’t update the span of B. For example, if the whole invariant of B
(beyond ownership of b) is ([exists(A)] ∧ [a] < [b]), a suitable claim would be
one that claims 〈old([a]) ≥ [a] ∧ unch(span(B)) ⇒ inv(B)〉 (which can be read
as: from the current state, any state change that doesn’t increase a and doesn’t
change B preserves the invariant of B). In general, we can view any claim of
the form 〈p〉 as giving information about the effects of potential updates, and
therefore a form of partial permission.

7 Read Permissions

So far, we have talked about permissions that allow a thread to change the state.
Fractional permissions or counting permissions (as described in the implemen-
tation of claims) are often used in logics such as CSL to allow reading part of
the state.

In the view presented here, reading a location requires no permission at
all; the reason for having a read permission is to allow the thread reading the
location to make a subsequent assertion about the location (such as its having
the same value that was read). That is, the read permission is just an invariant
that makes the subsequent assertion admissible. In the CSL tradition, a read
permission specifically guarantees that the location isn’t changing, which can be
expressed in an ordinary invariant.



A natural objection is that this means we would be certifying programs that
read possibly “invalid” regions of memory (which would, of course, result in a
page fault on typical hardware). One response would be that such reads are not
really “reads”, but calls to lower level reading procedures that require that the
memory being read is valid17.

8 Superposition

In some cases, permission isn’t enough. In some cases, b must be updated along
with a, e.g., to preserve an invariant in B of the form [a] = [b]. Note that in real
software, this situation would only arise when b was a ghost variable, whereas
a could be either real or ghost. We call the required update to b that restores
an invariant a compensation. The need for compensation creates a dilemma: we
can’t update b within the code that knows about a (because b is out of scope),
nor in the code that knows about b (since any required updates to private parts
of A would not be possible).

What we need to do is to pass a suitable compensation to the code updating
a; the compensation thus looks like a callback that is called within the atomic
action that updates b. This is a bit tricky, because the compensation has to “run”
starting from a state (after the update of a, but still within the atomic action)
where object invariants might no longer hold (not even for objects that haven’t
been modified). So validation of the callback usually needs to know something
about the update that preceded it. Dually, the atomic action needs to know some
properties of the callback.

We could pass the compensation as an explicit (mathematical) function from
states to states, but since the compensation updates only ghost state, it is suf-
ficient to know that a state representing the result of the compensation exists.
So we can pass a compensation in the form of a claim that claims

(∀S : p(S0, S) ⇒ (∃S′ : q(S, S′) ∧ r(S0, S
′)))

where S0 denotes the current state. Here, p describes what the caller (or whoever
justifies the compensation) knows about the update, q describes what the code
performing the atomic action needs to know about the compensation, and r
describes what it needs to know about the combined effect. So in the case of
the invariant [a] = [b], we could define p ≡ unch(span(B)), q ≡ unch(span(A)),
and r ≡ inv(B). The claim can be constructed18 by defining S′ to be the state
obtained by applying the update b := a to the state S. Within the atomic action,
17 In VCC, in the name of efficacy we dispense with these explicit memory access

procedures, and simply keep track of which memory locations are valid according to
the rules of C, checking that all memory accesses are to valid memory locations.

18 An automatic verifier can hardly be expected to guess the witnessing Skolem func-
tion S′(S0, S) automatically, so the code constructing the compensation claim gives
explicit code performing the necessary compensation, i.e., the code snippet b := a.
Note that, like all ghost code, this code has to be guaranteed to terminate to ensure
soundness, and any nondeterminism can be considered angelic rather than demonic.



the code updates a, then simply moves to an arbitrary state S′ satisfying the
condition given by the claim.

9 Automata

The claim used to provide permission in the last section allows an update to
be done an arbitrary number of times. Sometimes, we want to allow an update
to happen only once. For example, if we are simulating a step of a processor,
we might in a single step write to memory while simultaneously updating the
(virtual) program counter. This permission can only be used once – we don’t
want execution of a single machine instruction to result in multiple writes to
shared memory.

We can get this effect in two ways. One is for the compensation to require
the destruction of the permission as part of the atomic action. (Note that be-
cause permissions are objects, they are effectively additive – if a thread gains two
permission objects, he can use them for two separate updates.) The other ap-
proach is to use a more complex form of permission that, instead of being based
on claims, is based on more general objects that can own additional “local”
state that is updated when the permission is used. Such an object can represent
more complex permissions that allow operations to be performed only according
to some (arbitrarily complex) protocol (given by the invariant of the object).
Moreover, the local state can be used to make sure that the client has actually
used the permission when it returns. (In the case of simulating the processor
step, this allows the caller to ascertain that the virtual program counter has
actually moved forward.)

10 Implementation

The development of VCC has been driven by the verification of the Microsoft
Hypervisor (the core component of Hyper-VTM) as part of the Verisoft XT
project19. The hypervisor, consisting of 100KLOC of concurrent C and about
6KLOC of x64 assembler, runs directly on multiprocessor x64 hardware, turning
it into a number of virtual multiprocessor x64 machines (with an extra level of
virtual address translation, to allow each machine to be given the illusion of 0-
based contiguous memory). Except for moderate size, it is fairly representative
of low-level commercial system software: it contains a small operating system
(albeit without devices), complete with kernel, memory manager, scheduler, de-
bugger, etc. The most complex part of the system (which uses shadow page tables
to provide a virtual TLB) uses a number of very subtle concurrent algorithms,
with a quite complex simulation relation.

In VCC, most objects correspond to structured type declarations within the
code. That is, for each struct declaration, we provide annotations giving its in-
variants; these invariants apply to each instance of the type. By default, each
19 http://www.verisoftxt.de



object owns its fields (except for fields of compound types, which are considered
separate objects; large structs can be broken up by introducing ghost substruc-
tures). The type declarations are proved admissible using only type information
(they don’t need to examine the code). Claims are treated differently from or-
dinary type definitions, because most claims are local to the code of a single
procedure. So the admissibility of a claim is checked at the point at which the
claim is formed in the code.

In VCC, there are actually two levels of object construction. The first level
merely gives an object ownership of some memory; it guarantees that, in any
state, the heap is interpreted in a consistent way. Whenever code accesses mem-
ory using a structured type, it requires existence of the structured object. The
second level of existence is called “closing” an object; it is only while an object
is closed that its declared invariants hold.

In C, there is an important difference between access to variables that are
owned by a thread and those that might be concurrently accessed by another
thread; in the former case, the compiler can safely reorder operations, while in
the latter it cannot. In C, accesses of the later type must be marked as volatile,
to prevent such optimizations. Only volatile data is update in explicit atomic ac-
tions; nonvolatile updates are treated using ordinary sequential reasoning. Non-
volatile fields of an object can only be updated when the object is open and
owned by the updating thread.

11 Conclusion

In the world of security, the rights abstraction was introduced for a very practi-
cal reason: it provides a simple characterization of what a principal (such as a
thread) might do, one that can be simply understood and can be enforced with
simple hardware and software mechanisms in a small trusted computing base. It
also provided a degree of modularity: a thread can check that it has the rights it
needs so that it doesn’t get stuck, and can keep certain rights to itself to make
sure that other threads don’t interfere.

The main lesson of this paper is that rights are a natural derivative of knowl-
edge and invariance, rather than a fundamental notion. From a methodological
standpoint, this is enabled by an alternative approach (admissibility) to the
required modularity of invariance reasoning. In our approach, the expressive-
ness of rights grows naturally with the expressiveness of knowledge, and that
new rights abstractions can be introduced through programming rather than
through extensions to the logic and metatheory. From an implementation stand-
point, it allows reuse of the substantial infrastructure built up to reason about
knowledge, without the need to introduce new program logics.

These observations do not mean that expressive logics combining knowledge
and rights are not a good idea; they provide useful abstractions and guidance for
how proofs of programs can be structured. We have even considered including
such notations in VCC, as syntactic sugar. But we are very conservative when
it comes to extending the program logic itself, and our general policy is to avoid



doing so when the desired functionality can be built at the program level. We
have not yet found such extensions necessary.

References

1. Rémi Brochenin, Stéphane Demri, and Etienne Lozes. On the almighty wand.
In CSL ’08: Proceedings of the 22nd international workshop on Computer Science
Logic, volume 5213 of Lecture Notes in Computer Science, pages 323–338. Springer,
2008.

2. Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and
complexity results for a spatial assertion language for data structures. In APLAS,
pages 289–300, 2001.

3. Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system
for verifying concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Markus Wenzel, editors, Theorem Proving in Higher Order Logics (TPHOLs
2009), volume 5674 of Lecture Notes in Computer Science, pages 23–42, Munich,
Germany, 2009. Springer. Invited paper.

4. Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-
guarantee reasoning. In ESOP ’09: Proceedings of the 18th European Symposium on
Programming Languages and Systems, volume 5502 of Lecture Notes in Computer
Science, pages 363–377. Springer, 2009.

5. Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

6. K. Rustan M. Leino and Peter Müller. A basis for verifying multi-threaded pro-
grams. In Giuseppe Castagna, editor, ESOP, volume 5502 of Lecture Notes in
Computer Science, pages 378–393. Springer, 2009.

7. Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput.
Sci., 375(1-3):271–307, 2007.


