


Development of a Provably
Correct Codegenerator for
Hierarchic Statemachines

Diplomarbeit an der
Universität Ulm
Fakultät für Informatik

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·

Norbert Schirmer

2001





Development of a Provably
Correct Codegenerator for
Hierarchic Statemachines

Diplomarbeit an der
Universität Ulm
Fakultät für Informatik

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·

vorgelegt von:

Norbert Schirmer

1. Gutachter: Prof. Dr. F. W. von Henke

2. Gutachter: Prof. Dr. H. Partsch

2001





Abstract

In this diploma thesis a provably correct codegenerator for hierarchic state-
machines is developed. Hierarchic statemachines are a prominent formalism to
describe the behaviour of �nite state systems. They are often used to model
safety critical applications for embedded systems. Thus it is crucial to ensure the
correctness of the generated code. The codegenerator described in this thesis has
a high degree of reliability, because it is formally speci�ed and veri�ed inside the
theorem prover Coq. The combined approach to specify, program and verify the
codegenerator in a single machine-supported process is described and evaluated.





Contents

1. Introduction 1
1.1. Application Context . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Background 4
2.1. Intuitionistic Logic and Type Theory . . . . . . . . . . . . . . . . 4

2.1.1. Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2. Intuitionistic Logic . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3. Propositions as Types . . . . . . . . . . . . . . . . . . . . 7

2.2. Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1. Type Theoretic Background . . . . . . . . . . . . . . . . . 9
2.2.2. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3. Function De�nitions . . . . . . . . . . . . . . . . . . . . . 10
2.2.4. Propositions and Proofs . . . . . . . . . . . . . . . . . . . 12
2.2.5. Maybe Monad . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Hierarchic Statemachine by Example . . . . . . . . . . . . . . . . 19

3. Development 22
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Fundamental Datatypes and Functions . . . . . . . . . . . . . . . 23
3.3. Hierarchic Statemachines . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1. Conditions and Actions . . . . . . . . . . . . . . . . . . . . 23
3.3.2. States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3. Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4. Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.5. Basic De�nitions and Conceptions in a Statehierarchy . . . 26

3.3.5.1. Address of a Node . . . . . . . . . . . . . . . . . 26
3.3.5.2. The Super State . . . . . . . . . . . . . . . . . . 29
3.3.5.3. Expansion Strategies . . . . . . . . . . . . . . . . 30

3.3.6. Evaluation Step of a Statemachine . . . . . . . . . . . . . 31
3.3.7. Behaviour of a Statemachine . . . . . . . . . . . . . . . . . 34

3.4. Target Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



Contents

3.4.1. Evaluation Step of the Implemented Statemachine . . . . . 39
3.4.2. Behaviour of the Implemented Statemachine . . . . . . . . 41

3.5. Translation Function . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6. Correctness of Codegeneration . . . . . . . . . . . . . . . . . . . . 46
3.7. Java Codegenerator . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. General Aspects of the Development 55
4.1. Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1. Constraining the Domain . . . . . . . . . . . . . . . . . . . 56
4.1.1.1. Proof Irrelevance . . . . . . . . . . . . . . . . . . 56
4.1.1.2. Dealing with Partial Functions . . . . . . . . . . 57
4.1.1.3. Implicit Arguments . . . . . . . . . . . . . . . . . 62

4.1.2. Expanding the Range . . . . . . . . . . . . . . . . . . . . . 64
4.1.3. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2. Referencing Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3. Development of Correct Functional Programs . . . . . . . . . . . 66

5. Conclusions 70
5.1. Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2. Possible Extensions to the Codegenerator . . . . . . . . . . . . . . 71
5.3. Coq as Development Environment for Correct Programs . . . . . 73

A. Basic Datatypes and Functions 75

Index 76

Bibliography 79

ii



1. Introduction

Since the invention of the �rst computers in the middle of the last century, the
importance and in�uence of computer software in our everyday life has been
growing enormously. Not only does the obvious presence of PC's, laptops and
workstations in o�ces and homes have an enormous impact on business, com-
merce and recreation. There are many more invisible computers around us, in
embedded devices. No matter if we take modern cars, washing machines, tv sets
or even an electric shaver, there are usually built-in computers with appropriate
software which control some behaviour of them. But due to this omnipresence,
computers and their software become a crucial part of modern society and cor-
rectness problems of software evolve to risks for human society. Recently the
�Y2K bug� demonstrated that today nearly everybody can easily be a�ected by
erroneous software. Today's commercial software products come along with lots
of updates and bug�xes. Software must be produced in very short time, because
to be successful it seems to be more important to be the �rst one on the market
than to o�er an mature product. Software errors in PC's often cause the whole
system to crash, so it has to be rebooted. This is very annoying for the user, but
he seems to get used to it. Updates and bug�xes of PC software are quite com-
mon, since it is relatively easy to distribute and install them (e.g. through the
internet or with cd's or diskettes). But in embedded devices erroneous software
can pose an even greater threat, since the whole device may get useless and, to
do an update, the whole device usually must be returned to the manufacturer.

To remedy this situation lots of progress was achieved in computer science.
Today's software engineering provides methods for the whole software develop-
ment process: From the analysis of the problem to the design and the coding of
the program. To be close to the problem domain and to improve communication
with non computer scientists, often graphical notations and exemplary use cases
of the software are the starting point of the development. A prominent example
is the Uni�ed Modeling Language (UML) [UML00]. To �ght software errors usu-
ally rigorous tests are performed, but these are not su�cient, especially in safety-
and mission-critical software, as they do not guarantee the absence of errors. A
solution to rule out design and coding errors is to use formal (mathematical logi-
cal) methods to be able to prove the correctness of software. In the last few years
machine-checked formal methods have reached a mature degree, which makes it
feasible to develop and check real-life programs.

1



1. Introduction

1.1. Application Context

To control complex systems, e.g. in the context of cars and trains, often special-
ized hardware is used. This hardware ranges from cheap mass market products
to high performance chips for speci�c purposes. To make it convenient for the
application developer to program this hardware, codegenerators are used. They
transform a description (often graphical) of the functionality into optimized code
for the speci�c hardware. Hierarchic statemachines are a common formalism to
describe �nite state systems. Prominent examples are the statechart formalism
of D. Harel [Har87] or the statemachines which are part of the UML modeling
language [UML00]. To develop a codegenerator for statemachines is the aim of
this thesis.

As a basis for this development, the statemachine concept of the developing
tool ASCET-SD by the German company Etas is used. It is su�ciently com-
plex to demonstrate the development process that will be described below, but
leaves out some subtle semantic aspects of comparable systems like Statemate or
Rhapsody.

Since during codegeneration sometimes complex optimizations are applied and
the application domain of the programs often is safety critical, the correctness of
the codegenerator is absolutely crucial. Traditional techniques that separate spec-
i�cation, programming and veri�cation (tests, code reviews), are insu�cient to
develop a correct codegenerator. In this diploma thesis an approach is evaluated,
which combines programming (in the form of a functional program), speci�cation
(by annotating the program with logical propositions) and veri�cation (through
machine-supported proofs) in a single process.

The �eld of type theory provides the theoretical background for such a com-
bined approach. The system Coq, developed at the INRIA Rocquencourt, sup-
ports speci�cation and veri�cation in an expressive type theory. The functional
programs developed in Coq and annotated with logical propositions can be trans-
lated to a common functional programming language (ML or Haskell) by a mech-
anism called extraction. So it is possible to directly embed the developed program
into a larger application.

1.2. Related Work

As hierarchic statemachines are a prominent formalism to describe safety critical
applications, there are lots of formal semantics for the di�erent kinds of statema-
chines: Harel Statecharts [HPSS87], Statemate Statecharts [HN96], RSML
(Requirements State Machine Language) [Wha00], Mini-Statecharts [NRS96] or
UML Statemachines [PL99]. The aim of these semantics is mostly to enable rea-
soning about safety aspects of the modeled application (e.g. with model check-
ers). They cover a broad range of features of hierarchic statemachines. In this

2



1.3. Overview

thesis the statemachine semantics focuses on codegeneration. For RSML also a
provably correct mapping to an imperative programming language is provided
[KH97]. But this approach doesn't lead to an executable codegenerator out of
the formal development. The aim of this thesis is to describe the development of
an executable, provably correct codegenerator from scratch, within the theorem
prover Coq.

1.3. Overview

The structure of this thesis is as follows. Chapter 2 provides the theoretical
background of machine-supported proving, outlines the main parts of the proof
assistant Coq and introduces the features of the statemachine, for which the
codegenerator is developed. In Chapter 3 the development of the codegenerator
is described. The hierarchic statemachine and its semantics and the target lan-
guage and its semantics are formally de�ned. A translation function between the
statemachine and the target language is developed and their correctness is proved.
An example illustrates the embedding of the generated code in an application. In
Chapter 4 some more general aspects of the development are discussed. Finally
Chapter 5 gives a conclusion of the work and points out possible extensions to
the development.

3



2. Background

2.1. Intuitionistic Logic and Type Theory

The theoretical background of the proof assistant Coq, which we used in the de-
velopment of the codegenerator, is given by intuitionistic logic and type theory.
I don't want to discuss these topics in detail but I want to give a rather prag-
matic introduction to the basic concepts of these �elds. Basically we can express
intuitionistic logic in type theory and thus gain a homogeneous framework to
describe computational aspects, strong typing and higher order logic. On top
of this we can build up our desired formal speci�cations and veri�cations. This
introduction is based on [Str99], [BG01] and [Tro99].

2.1.1. Type Theory

Type theory studies the assignment of types to terms. A term is an expression
of a programming language, usually a �-calculus, and a type represents a col-
lection of terms. There is a wide variety of type theories and typed �-calculi.
Usually there are terms for the function application (f a) and the �-abstraction
�x : A:M � de�ning a function with an argument x of type A and a body M �
and the corresponding functional types like A ! B. Some type theories distin-
guish between types and terms, while in others both entities are treated equally.
Practical applications of type theory are the typing systems of typed functional
programming languages like ML [Pau91] or Haskell [Has99] and various theorem
provers like Coq [Bea00], Isabelle [Pau94] or Typelab [vHLS97].

What are the basic questions type theory is interested in? A type theory is
determined by the de�nition of the terms and some typing rules. The type of
a term is �xed by the typing rules. A typing judgment of the form � ` M : A
expresses that term M has type A in the context �, � being a list x1 : T1; :::; xn :
Tn of variable declarations (xi : Ti means, that the variable xi has type Ti). Three
main problems arise in the context of a typing judgment.

� Type Checking Problem: � ` M : A? � given �, M and A , determine
whether � `M : A holds. (Does term M really have type A?)

� Type Inference (Synthesis) Problem: � ` M :? � given � and M , deter-
mine A with � `M : A. (What is the type of term M?)

4



2.1. Intuitionistic Logic and Type Theory

� Type Inhabitation Problem: � `? : A � given � and A, determine M with
� `M : A. (Does a term of type A exist and what is it like?).

Dealing with typed programming languages like Pascal or ML, we are used to
type checking and type inference. These processes are well understood. The type
inhabitation problem is still a topic of active research.

To close this short introduction to type theory, I will present the de�nitions
of terms that are commonly used in various type theories.

Common constructions For a simply typed �-calculus we can de�ne the forma-
tion of function spaces, the cartesian product and the direct sum. The formation
of function spaces A ! B b= ff j8a 2 A:f(a) 2 Bg is the type of all functions
from domain A to range B. The cartesian product A�B b= fha; bi ja 2 A and b 2
Bg is the type of a pair. We can de�ne the disjoint union or direct sum as
A� B b= fh0; ai ja 2 Ag [ fh1; bi jb 2 Bg.

Dependent Types and Sigma Types The simply typed �-calculus can be ex-
tended by adding type dependencies. The most common forms are dependencies
of types on types and types on terms. A systematization of these dependencies
is provided by the �-cube described in [Bar92]. With the dependency of types
on types we can describe polymorphism. A prominent example of a polymorphic
(higher-order) function is the map on lists. The map function takes a function
f and a list lst and applies f to all the elements in the list. As long as the
domain of the function f and the type of the elements in the list agree, it is
immaterial what the exact type of f and lst is. So we can abstract over these
types and give map the type �A;B : Type:(A ! B) ! (ListA) ! (ListB):
We can read � as universal quanti�cation over types. Before we can apply map

to a concrete function e.g. length and a list of strings strlst, the type param-
eters have to be instantiated appropriately. So the function (mapString Nat)
has type (String ! Nat) ! (List String) ! (ListNat) and can by applied to
the arguments length and strlst. In programming languages like ML or Haskell,
the type parameters haven't got to be applied explicitly. They are automatically
inferred by type inference. Programming becomes more convenient this way.

We can also think of a type depending on a value of a term: �x : A:T (x).
The type T (x) depends on the concrete value x of type A and not only on type
A itself. In the C standard I/O library there is a very useful and commonly
used function for doing output, namely printf. The function printf takes a
formatting string as �rst argument and a various number of further arguments.
The number and the type of these additional arguments depends on the for-
matting string. In a functional setting printf "%d" would have a type like
Int ! String and straightforward printf "Name: %s; Age: %d; E-Mail:

%s" would have type String ! Int ! String ! String. So the type of printf
depends on the value of its �rst argument. With types, depending on values

5



2. Background

we can also describe partial functions as done in 4.1.1, or model the family of
polymorphic arrays with a distinct length �n : Nat:(array n). Since the length
of the array is coded into the type, we can provide a function that accesses the
elements without violating the array bounds. So no runtime array bound checks
are necessary anymore, since a static type check can already ensure that every
array access will go well. The dependency of types on terms is essential for
the propositions as types principle (cf. 2.1.3) and therefore often used in proof
systems. But there are also some experimental programming languages which
support dependent types, like Cayenne [Aug98] or Dependent ML [XP99].

Formally the � abstraction is a generalization of the ordinary formation of
function spaces!, to allow us to de�ne dependencies on types and terms. We can
de�ne it the following way: �x : A:T (x) b= ff : (A !

S
x:A T (x)j8x 2 A:f(x) 2

T (x)g. Analogous to this, we can provide a dependent generalization of the
cartesian product, a so called sigma type: �x : A:T (x) b= fhx; ti jx 2 A and p 2
T (x)g. This can be seen as a kind of speci�cation type, were x is a distinct
element that ful�lls the speci�cation T (x). Sigma types are also valuable in the
propositions as types principle.

2.1.2. Intuitionistic Logic

The basic principle which distinguishes intuitionistic (constructive) logic from
classical logic is that every proof is constructive in intuitionistic logic. We cannot
generally assume that a mathematical statement is either true or false. Only
if we either have a proof for a statement A or an argument showing that any
attempt to construct a proof must fail we can assert �A or not A�. So for an
open problem A the �principle of the excluded middle� A_:A is not a tautology
in intuitionistic logic. In this philosophy a proof of an implication A � B1 can
be seen as a method to transform a proof of A into a proof of B. To prove the
conjunction A ^ B we must supply a pair hp; qi such that p is a proof of A and
q one of B. To prove the disjunction A _B we must have a proof for either A or
B and we must know for which one we have the proof. So we must supply a pair
hb; pi, b being either 0 or 1. If b = 0, then p is a proof of A; if b = 1 then p is a
proof of B: There is no proof of ?, the false proposition (or falsum). A proof for
an universally quanti�ed proposition 8a 2 A:P (a) is a method p that transforms
every element a 2 A into a proof of P (a). Finally, to prove an existentially
quanti�ed proposition we must �nd an element which ful�lls the proposition. So
a proof for 9a 2 A:P (x) is a pair ha; pi such that a 2 A and p is a proof of P (a).
The negation can be de�ned as :A = A �?.

Intuitionistic logic can be seen as basis for classical logic. We can enrich a
calculus for intuitionistic logic with axioms, e.g. with the principle of the excluded

1The logical implication is written as � to distinguish the symbol from the formation of
function spaces !.

6



2.1. Intuitionistic Logic and Type Theory

middle, to embed a classical logic into intuitionistic logic.

2.1.3. Propositions as Types

I outlined some features of type theory and the constructive aspect of intuition-
istic logic to be able to introduce the propositions as types principle also known
as Curry-Howard-isomorphism. We can identify a proposition in intuitionistic
logic with a type. This provides a semantics of intuitionistic logic based on type
theory. We get the following mapping from logic propositions to type theoretic
notions:

� The implication A � B is identi�ed with the formation of function spaces
A! B.

� The conjunction A ^B is identi�ed with the cartesian product A� B.

� The disjunction A _ B is identi�ed with the direct sum A� B.

� The falsum ?, can be identi�ed with a special constructor ; representing
the empty type.

� The universal quanti�cation 8a 2 A:P (x) can be identi�ed with the depen-
dent type �a : A:P (x).

� The existential quanti�cation 9a 2 A:P (x) can be identi�ed with the sigma
type �a : A:P (x).

With this interpretation of type theory in mind, let us consider the following
typing judgment:

� `M : A

The type A gets a logical proposition. The term M is a term of type A, so
M is the term of a logical proposition, which means that M is a proof for the
proposition A. The context � describes the set of assumptions for which M is a
proof of A. So let us interpret some type theoretic problems described in 2.1.1
from this point of view:

� Type Checking Problem: � ` M : A? � Proof Checking. Under the
assumptions �, is M a proof for the proposition A?

� Type Inhabitation Problem: � `? : A � Proof Search. Under the assump-
tions �, determine a proof M for the proposition A, so that � ` M : A
holds.

7



2. Background

From this viewpoint we can imagine why the type inhabitation problem is of
interest and a topic of active research. Solving the type inhabitation problem
is �nding a proof. So an e�ective algorithm for type inhabitation is an e�ective
automatic theorem prover.

In an interactive theorem prover like Coq, the proof object is built during in-
teraction with the user, who outlines the proof by applying tactics to the current
goal. After the proof is complete the type checker can test whether the devel-
oped proof is really a correct proof for the given proposition (Type Checking
Problem). Writing the type checker is well understood and can be implemented
in a small program. So one can achieve a very high degree of reliability of the
proof generated by an interactive theorem prover.

As there are many type theories and many calculi for di�erent logics (�rst
order, second order and higher order logic; classical and intuitionistic logic) there
are lots of possibilities to embed the various logics in one of the various type
theories. There are implications on the decidability of e.g. type inhabitation
which arise from them. An overview of prominent embeddings and their speci�c
problems is given in [Bar92].

To summarize this section, type theory provides us with a fully functional
programming language on the one hand and on the other hand we can code
logics in the same type theory. So we gain a single homogeneous formalism to
create program speci�cations and to reason about them.

2.2. Coq

To conveniently develop an executable, provably correct codegenerator for statema-
chines, the following requirements arise for the development system:

� Expressive speci�cation language to formalize the statemachine, the target
language and the translation function.

� A logical framework around the speci�cation language to reason about the
correctness of the translation function.

� A mechanism to extract an executable function out of the speci�cation.

There are lots of theorem provers based on type theory which provide a powerful
speci�cation language and a logic to reason about it, e.g. Coq [Bea00], Isabelle
[Pau94] or Typelab [vHLS97], to mention just a few. But only Coq o�ers a
direct possibility to gain an executable program. We can extract a ML program
out of the speci�cation. This way we can immediately generate an executable
version of the speci�cation. That's why we chose Coq for this development. The
version of Coq we used was 6.3.1.

8



2.2. Coq

In this section I want to give a short impression of the main features of
the speci�cation language and the theorem prover, necessary to understand the
development. It is rather informal. A complete description of Coq can be found
in the Reference Manual [Bea00].

2.2.1. Type Theoretic Background

Coq is based on a type theory called the Calculus of (Co)Inductive Constructions
(Cic in short). Every object has a type. There is no syntactical di�erence between
types and terms. So types are seen as terms of the language and hence should
belong to another type. To bootstrap the typing of types we need some initial
constant types, called sorts. The two basic sorts are Set and Prop. The sort
Prop is the type of all logical propositions. A logical proposition P of type Prop
denotes the class of terms representing proofs of P. So an object pr of type P is
a witness that the proposition P is true, i.e. pr is a proof for P.

The sort Set is the type of speci�cations. These are the informative objects
like booleans, natural numbers lists or even complete programs. Terms of type
Set can be extracted to ML during program extraction, terms of type Prop can't.
Since every type must belong to another type in Coq, Set and Prop must belong
to a type too. But simply typing Set with Set would lead to an inconsistent type
theory. So another sort is introduced. Prop and Set are of type Type. The sort
Type is internally decomposed in an in�nite set of sorts Type(i), i 2 N, with
Type(i): Type(i+ 1), to avoid inconsistencies. But the user just refers to Type.

2.2.2. Data Types

New inductive data types are declared with the keyword Inductive. The natural
numbers nat can be de�ned the following way.

Inductive nat: Set := O : nat | S : nat ! nat.

This de�nition of a new recursive type consists of two main parts. First we
de�ne that the new type nat lies in the universe Set, and then we present the
introduction rules, by which we can construct an element of type nat � O (zero)
or S (the successor) � the so called constructors. E.g. the number 2 is then
represented as (S (S O)). The application of a constructor, like all other kinds
of applications � function application, type application in polymorphic types
and the application of a lemma � are written in parenthesis (...).

We can also de�ne polymorphic types like polymorphic lists:

9



2. Background

Inductive list[A:Set]:Set := nil : (list A) | cons: A ! (list A) ! (list A).

The content type of the list is given as parameter A. The abstraction of
an argument is written in brackets [...]. If we want to de�ne a list of natural
numbers we simply apply the argument nat to the type list: (list nat). All kinds
of de�nitions are introduced with the keyword De�nition.

De�nition natlist := (list nat).

Mutually dependent declarations of inductive types are also allowed. An
example is the de�nition of a rosetree in 3.3.4. An introduction to the features
and limitations of recursive types in Coq is given in [Gim98].

As in many programming languages we can also de�ne records. The rational
numbers may be de�ned as:

Record Rational : Set := mkRational {
top: nat;
bottom: nat;

}.

With this de�nition, we de�ne the new data type Rational; mkRational is its
constructor; top and bottom are the selector functions for the record �elds. As
example the rational number 1

2
is created with (mkRational (S O) (S (S O))).

Records are internally also represented as inductive types.

2.2.3. Function De�nitions

Primitive recursive functions on recursive datatypes are de�ned by the keyword
Fixpoint. Here is the declaration of a function, which calculates the length of a
list.

10



2.2. Coq

Fixpoint length [A: Set; lst: (list A)] : nat :=
Cases lst of

nil ) O
| (cons hd tl) ) (S (length tl))

end
.

Again the brackets [...] de�ne the abstraction of the arguments. This may be
written more familiar as �A:Set; lst: (list A). . . . After the brackets [...] the range
type of the function can by annotated after a colon (nat). Formally the function
is de�ned as primitive recursive function on the last argument in the argument
list, lst in this example. Like in common functional programming languages we
can do case analysis and pattern matching on an inductive type. The keyword is
Cases. In case the list lst is empty (nil) we just return zero, if the list consists of
a head hd and a tail tl we recursively calculate the length of the tail ((length tl))
and add 1 to this length ((S (length tl))).

If we want to apply the function length to a concrete list, e.g. a list of natural
numbers ns: natlst, we can do this by (length ns). But the function length formally
expects two arguments, the type of the list contents A and the list lst. So we would
expect (length nat ns). We only have to supply the second argument, since the
�rst argument is an implicit argument . It can be automatically inferred from the
type of the list by Coq. Coq o�ers the possibility to turn on and o� its feature
to infer the implicit types during the de�nition of a function or lemma. So the
user can vary the behaviour from de�nition to de�nition to improve readability.

The direct de�nition of recursive functions is limited to total and terminating
functions. Coq ensures this by a simple syntactic condition. The recursive call of
a function must be applied to a subterm of the constructor of the case analysis.
In the length example, the recursive call of length is applied to tl, which is a
subterm of (cons hd tl). To de�ne general well-founded recursion, in which the
termination can't be derived from this simple syntactic constraint, an additional
recursive argument, which gets smaller in each recursion step, must be introduced
. This is a kind of termination proof for which the syntactic constraint holds.
For details I refer to [Gim98]. How partial functions can be modeled is discussed
in 4.1.

There is also an if-then-else expression which is just a syntactic macro and
is reduced to case analysis over a boolean value.

Local de�nitions can be introduced with let ident = term1 in term2. This is
also just a syntactic macro. All appearances of ident in term2 are substituted
with term1.

11



2. Background

2.2.4. Propositions and Proofs

I will illustrate the basic concepts of dealing with propositions and doing proofs
on a simple list theorem. If we reverse a list two times we should gain the original
list. To formulate the theorem we �rst need a function to append two lists (app)
and a function to reverse a list (reverse).

Fixpoint app [A: Set; lst1: (list A)] : (list A) ! (list A) :=
[lst2: (list A)]a

Cases lst1 of
nil ) lst2
| (cons hd tl) ) (cons hd (app tl lst2))
end

Fixpoint reverse [A: Set; lst: (list A)]: (list A) :=
Cases lst of
nil ) (nil A)b

j (cons hd tl) ) (app (reverse tl) (cons hd (nil A)))
end.

aWhy do we write this function with two abstractions? The �rst of A and lst1 and the second
of lst2. The Fixpoint keyword creates a recursive function on the last argument in the list
of parameters enclosed with []. But to write the function (app lst1 lst2) we want to do the
recursion on lst1 but not on lst2. So we need to split the arguments. Since we �rst abstract
only of A and lst1, the recursion will be de�ned on lst1.

bWhy do we just write nil on the left hand side of) and (nil A) on the right hand side? On the
left hand side of), pattern matching on the term lst is performed. So the type argument A
is inferred from the term lst on which case analysis is performed. On the right hand side of
) no such context information is available, since we can return arbitrary types. Therefore
we have to explicitly apply the type argument A to the constructor nil (cf. 4.1.1.3).

We can now formulate the theorem with the keyword Theorem.

Theorem reverse_reverse_id:
8A: Set, lst: (list A).
(reverse (reverse lst)) = lst.

We now enter proof mode. The proof mode is interactive. Coq displays
something like the following.

============================
8A: Set, lst: (list A). (reverse (reverse lst)) = lst

12



2.2. Coq

In proof mode we must distinguish two parts separated by the dashed line
(===). Underneath the dashed line is the current goal we must prove � right
now the complete theorem. Above the line resides the local context which consists
of the local assumptions. Currently there are none. To prove the theorem we
do an induction on the list lst by typing in the tactic Induction lst. Coq builds
up two new subgoals: one for the base case when lst = (nil A) and one for the
induction step when lst = (cons hd tl). Lets look at the simple base case �rst.

A : Set
lst : (list A)
============================
(reverse (reverse (nil A))) = (nil A)

The universally quanti�ed variables are automatically lifted to the local con-
text, and the variable lst is substituted by (nil A) in the current goal. The context
can be seen as a list of universally quanti�ed variables. If we apply the tactic
Simpl to the current goal, Coq expands the de�nition of reverse and reduces the
occurrences to their value as far as possible. Referring to the de�nition of reverse
on page 12 a reversed empty list is just an empty list.

A : Set
lst : (list A)
============================
(nil A) = (nil A)

The equality (nil A) = (nil A) can be proved with re�exivity of equality by
applying the tactic Re�exivity. This subgoal is now proved and Coq switches to
the second goal, the induction step.

A : Set
lst : (list A)
hd : A
tl : (list A)
H : (reverse (reverse tl)) = tl
============================
(reverse (reverse (cons hd tl))) = (cons hd tl)

13



2. Background

The list lst is substituted with (cons hd tl) in the current goal and a hypothesis
of induction H is in the local context, which states that our theorem holds for
the tail tl of the list. Again we �rst simplify the goal with the Simpl tactic. The
inner appearance of reverse in the goal can be reduced according to its de�nition.

A : Set
lst : (list A)
hd : A
tl : (list A)
H : (reverse (reverse tl)) = tl
============================
(reverse (app (reverse tl) (cons hd (nil A)))) = (cons hd tl)

The goal can't automatically be simpli�ed further by Coq. Our aim is to
apply the hypothesis of induction H somewhere in the goal. But we currently
don't have a term of the form (reverse (reverse tl)) in the goal. There is just a
similar one: (reverse (app (reverse tl) ...)). If we can swap reverse and app in this
term, we can apply H. So we now introduce a lemma.

Lemma reverse_app:
8A: Set, lst1, lst2: (list A).
(reverse (app lst1 lst2)) = (app (reverse lst2) (reverse lst1))

.

The keywords Lemma and Theorem are interchangeable and merely indicate
the importance the user attaches to a proposition. We now recursively enter proof
mode and must do the proof of this lemma �rst. Let us now consider that we
have already proved this lemma and continue with our theorem. We can rewrite
the current goal with this lemma by the command Rewrite reverse_app. Coq
automatically instantiates the universally quanti�ed variables A, lst1 and lst2 of
the lemma reverse_app with A, (reverse tl) and (cons hd (nil A)) in the current
goal by uni�cation and performs the rewriting.

14



2.2. Coq

A : Set
lst : (list A)
hd : A
tl : (list A)
H : (reverse (reverse tl)) = tl
============================
(app (reverse (cons hd (nil A))) (reverse (reverse tl))) = (cons hd tl)

Now we can rewrite (reverse (reverse tl)) with tl due to the induction hypothesis
H.

A : Set
lst : (list A)
hd : A
tl : (list A)
H : (reverse (reverse tl)) = tl
============================
(app (reverse (cons hd (nil A))) tl) = (cons hd tl)

This goal can again be simpli�ed due to the de�nitions of reverse and app:
(reverse (cons hd (nil A))) = (cons hd (nil A)) and so (app (cons hd (nil A)) tl) =
(cons hd tl).

A : Set
lst : (list A)
hd : A
tl : (list A)
H : (reverse (reverse tl)) = tl
============================
(cons hd tl) = (cons hd tl)

We again can proof this goal with re�exivity of equality and by that have
completed the proof of the theorem. We save the theorem with the command
Qed (�Quod erat demonstrandum�). Coq then checks the proof term which was
generated during this interactive session. The proof is stored as tactic script
right after the theorem de�nition. The complete tactic script for our theorem
reverse_reverse_id is:

15



2. Background

Induction lst.
Simpl.
Auto.

Intros hd tl Ha.
Simpl.
Rewrite reverse_app.
Simpl.
Rewrite H.
Auto.
Qed.

aThe tactic Intros moves the preconditions of a chain of implications in the goal to the local
context. So the preconditions become local assumptions. They can optionally be named as
in this case (Intros hd tl H).

2.2.5. Maybe Monad

A monad is a mathematical concept that arises from category theory. It found
its way to functional programming because it made it possible to model typical
imperative features like state, side e�ects and interaction with the user in a purely
functional setting [Wad95]. Roughly speaking, monads represent computations.
If M is a monad and A is a type then an object of type (M A) represents a
computation producing a result of type A. I want to describe the use of the
Maybe monad as it frequently appears in the development of the codegenerator.

First here is the de�nition of the Maybe type.

Inductive Maybe[A: Set]: Set :=
nothing : (Maybe A)

j ok: A ! (Maybe A)
.

The Maybe type models a computation which might fail for some reason. We
distinguish two cases. If the computation fails the constant nothing is returned;
if the computation succeeded with result a of type A we can return (ok a). So
the Maybe type can be used as result type of partial function 4.1.2.

A prominent example is the implementation of a function that selects the n'th
element of a list. Just in those cases in which the index n is in range of the list
we can calculate a proper result, otherwise we must return nothing.

16



2.2. Coq

Fixpoint nth [A: Set; lst: (list A); n: nat]: (Maybe A) :=
Cases lst of
nil ) (nothing A)

j (cons hd tl) ) Cases n of
O ) (ok hd)
| (S m) ) (nth tl m)
end

end
.a

aIt may be confusing that we have to write (nothing A) but can write (ok hd) instead of (ok
A hd) or just nil instead of (nil A). This is again the mechanism of implicit arguments in
Coq (cf. 4.1.1.3). In the term (ok hd), the argument A is inferred from hd, which has type
A. Since the constructor nothing doesn't have an informative argument like hd, from which
type A could be derived, A has to be applied explicitely. This is di�erent on the left hand
side of ), in the case of nil, where pattern matching is performed. The constructor nil
doesn't have an informative argument too, but we need not write (nil A) here, since type A
is inferred from the term lst of the case analysis.

Usually a monad comes along with a function to give back a value without
other e�ect, called result and provides a method to combine computations called
bind. In context of the Maybe monad a function that signals the error is usually
called fail. The functions result and fail are just the constructors of the Maybe
type, ok and nothing respectively.

De�nition result := ok.
De�nition fail := nothing.

The intention of the bind function is to provide function composition inside
the monad.

De�nition bind[A, B: Set; m: (Maybe A); fun: A ! (Maybe B)]: (Maybe B) :=
Cases m of
nothing ) (nothing B)

j (ok x) ) (fun x)
end

.

In�x 7 ">�>" bind.

17



2. Background

To combine two computations in the Maybe monad, we must �rst execute
the �rst computation m. If the �rst computation already failed, the whole com-
putation fails. If the �rst computation succeeded, we can take its result x and
execute the second computation fun, which may depend on this result. If more
computations are bound together, this gets hard to read with the cascading bind
functions. For this reason there is the in�x de�nition >�> of the function bind,
which should intuitively re�ect the sequential evaluation of the computations that
are bound together.

Let me explain the use of the bind function with an example: the function
select on a matrix of natural numbers. The Matrix is implemented as list of lists
of natural numbers.

De�nition Matrix := (list (list nat)).

The function application (select row_idx column_idx) shall select the proper
element of the matrix, if both the row index and the column index are in range
of the matrix.

De�nition select [matrix: Matrix; row_idx, column_idx: nat]: (Maybe nat) :=
(nth matrix row_idx) >�> [row:(list nat)]
(nth row column_idx)

.

The notation with >�> imitates a imperative language in which we would
write something like:

row := (nth matrix row_idx);
return (nth row column_idx)

Let me explain the de�nition of select in detail. The �rst argument of the
bind function is a computation inside the Maybe monad: the selection of the
row of the matrix (nth matrix row_idx). The second computation is the selection
of the column. Formally, the second argument is a function with a domain
corresponding to the successful result of the �rst computation. So the second
argument is the whole abstraction [row:(list nat)] (nth row column_idx). Only if
the �rst computation is able to give us the selected row, bind executes the second
computation on this row � the selection of the proper column.

18



2.3. Hierarchic Statemachine by Example

2.3. Hierarchic Statemachine by Example

I will explain the basic concepts of the hierarchic statemachine, for which we want
to develop a codegenerator, by presenting an example. The following statema-
chine models a simple clock which can display either the time or the date and
has a primitive stopwatch.

Time
Entry: setMode(TimeMode)

Date
Entry: setMode(DateMode)

Stopwatch

stopped

running

dateButtonPressed

stopPressed/stopStopwatch

startPressed/startStopwatch

not dateButtonPressed

Entry: setMode(StopwatchMode)

resetPressed/resetStopwatch

stopwatchButtonClicked

timeButtonClicked/stopStopwatch

We can see two main graphical elements in this illustration. Boxes represent
states and arrows between them are transitions between the states. So the
clock modeled here has the three main states Time, Date and Stopwatch. The
Stopwatch state has the substates stopped and running, modeling the current
mode of the stopwatch. The double outlined states (Time or stopped) are default
states. At initialization time the clock is in the default state Time. Every time
the state Stopwatch is entered its default state stopped is entered, too. Some
states are annotated with an action that is executed when the state is entered,
e.g. the Time state has the entry action setMode(TimeMode). The transitions are
annotated with a guard condition, which must be ful�lled to allow a transition
to be taken. Additional to this guard there can be an action that is executed
when the transition is �red. This action is annotated after the dash �/� behind
the guard. Let us look at the di�erent states and transitions in detail.

Time If we enter this state, the clock sets its mode to TimeMode and displays
the current time.

19



2. Background

If we press down the button labeled with �Date/Time� (dateButtonPressed)
we switch to the Date state. If we click on the button with the label
�Start/Stop� (stopwatchButtonClicked) we enter the Stopwatch mode.

Date If we enter this state, the clock sets its mode to DateMode and displays
the current date.

As soon as we release the button labeled with �Date/Time� (not dateBut-
tonPressed), we return to the Time state.

Stopwatch If we enter this state, the clock sets its mode to StopwatchMode
and displays a simple stopwatch. Simultaneously the substate stopped is
entered, since this is the default state. If we enter a hierarchic state like
the Stopwatch state, we always reside in a substate, too. We can't only be
in the state Stopwatch, and neither the stopped state nor the running state.
Therefore the current state of a hierarchic statemachine is not only de�ned
by one single state, but by a combination of states corresponding to the
hierarchy. Such a combination or set of states is called super state. So
this statemachine has the four super states: {Time}, {Date}, {Stopwatch,
stopped} and {Stopwatch, running}.

stopped The stopwatch is currently stopped. If we press the button labeled
with �Reset� (resetPressed), we reset the current score of the stopwatch
to zero (resetStopwatch) and reenter the stopped state.

If we press the button labeled with �Start/Stop�, we start the stop-
watch by executing the action startStopwatch and enter the running
state.

20



2.3. Hierarchic Statemachine by Example

running The stopwatch is currently running.

If we press the button labeled with �Start/Stop�, we stop the stopwatch
by executing the action stopStopwatch and enter the stopped state.

As soon as the button labeled with �Date/Time� is clicked (timeButtonClicked),
we stop the Stopwatch by calling the action stopStopwatch and enter the
Timemode again, independently of the substate we are currently in (stopped
or running). The transition of a parent state has priority over the transi-
tions of substates. So if the �Date/Time� button and e.g. the �Start/Stop�
button would be pressed simultaneously, the transition of the Stopwatch
state would always win and the clock would switch back to Time mode.

Besides the entry actions described above, a state can also be annotated with an
exit and a static action. I will describe their e�ect with the following example
transition.

A

E

DDBBB

C

Currently, this statemachine is in the super state {A, B, C}. If we �re the
transition outlined in the illustration, we will switch to the super state {A, D}.
Here is the list of actions which will be �red in the given order:

1. C �res its exit action, since C is exited during the transition.

2. B �res its exit action, since B is exited during the transition.

3. A �res its static action, since A is both in the source and target super state
of the transition.

4. The action of the transition is �red.

5. D �res its entry action, since D is entered during the transition.

21



3. Development

3.1. Overview

In this chapter I will describe the development of the codegenerator in detail.
I start o� by giving an overview of the relationship of the proved parts (devel-
oped in Coq) and the insecure parts wrapped around them in ML, to provide a
complete executable Java codegenerator for hierarchic statemachines. Here is an
illustration that visualizes the whole codegenerator.

t

d

sw

s

r

switch (path_idx) {

case path_to_d: ...

case path_to_t: ...

case path_to s: 

if     (t1.guard) switch_state(s,t);

elseif (t2.guard) switch_state(s,s);

elseif (t3.guard) switch_state(s,r);

break;

...

}
Prettyprinter Java

Editor Javacode

Input

d t sw

s r

switch

case tcase d

if if if

translate

Statemachine

Intermediate Representation

secure kernel

There has to be an editor component to write down a speci�cation of a
statemachine. This description is parsed into the secure kernel. The description
is a simple text �le, and the parser is written in ML. Therefore the simplest form
of a statemachine editor is an ordinary text editor. Internally the statemachine is

22



3.2. Fundamental Datatypes and Functions

represented as a hierarchy or tree of states. Then we translate this statehierarchy
into an intermediate representation, a kind of abstract syntax of a typical im-
perative language. The translation function between the statehierarchy and the
intermediate representation is formally developed and its correctness is proved in
Coq. This translation function is exported to ML by Coq. After the translation
we prettyprint the intermediate representation to Java and gain a Java class that
is ready to be embedded in an application. The prettyprinter again is written in
ML.

In section 3.3 the hierarchic statemachine and its semantics is de�ned. Section
3.4 describes the intermediate representation and its semantics. In section 3.5 the
translation function is developed and in 3.6 the notion of correctness is introduced
and an overview of the correctness proof is given. Finally in section 3.7 the Java
codegenerator is completed, and the embedding of a generated Java statemachine
into a simple application is outlined.

3.2. Fundamental Datatypes and Functions

Here is a small list of all basic datatypes I refer to (their complete de�nitions can
be found in appendix A):

nat The natural numbers with the constructors O and S.

bool The boolean values true and false.

list Polymorphic list with the constructors nil and cons.

list1 Polymorphic non empty list with the constructors one and cons1.

Often some standard functions on lists occur in the description, like selecting the
n'th element of a list or the map function. Since three di�erent kinds of lists
occur during the development (list, list1, RosetreeList, (cf. 3.3.4)), these standard
functions may come along with a subscript su�x denoting the kind of list this
function is de�ned for. Functions for list don't have a su�x. For example there
is map for the map on list, map1 for the map on list1 and maprtl for the map on
RosetreeList.

3.3. Hierarchic Statemachines

3.3.1. Conditions and Actions

In a statemachine states and transitions are annotated with conditions and ac-
tions which, for example, are evaluated when a transition is taken. These anno-
tations represent the logic of the concrete domain which is modeled as a statema-
chine. To prove the correctness of the codegeneration out of a statemachine, the

23



3. Development

language of the annotations doesn't have to be known in detail. The generated
code must re�ect the dynamics of the statemachine, i.e. the statemachine and
the code must test the same conditions and execute the same actions in the same
order. How the conditions and actions are described is not important, as long
as the target language of the code is able to evaluate the same conditions and
execute the same actions as the statemachine. So we haven't got to restrict the
language of conditions and actions, we can leave their speci�cation open. We just
need a mechanism to evaluate the conditions and execute the actions. Such open
points in a speci�cation are introduced by the keyword Parameter in Coq. We
just distinguish between two classes of language constructs, boolean expressions
and statements. To be closer to the terminology of statemachines, a boolean ex-
pression is named condition and a statement is named action. A list of actions
is named actions.

Parameter Condition: Set.
Parameter Action: Set.
De�nition Actions := (list Action).

The semantics of conditions and actions is given by an interpreter function,
which evaluates a condition or an action in a given environment. The environ-
ment is an abstraction of all the global variables a condition and an action could
depend on. As the conditions and actions are parameters of the speci�cation, the
environment is a parameter, too.

Parameter Env: Set.
De�nition ConditionEvaluator := Env ! Condition ! bool.
De�nition ActionEvaluator := Env ! Action ! Env.

If a condition is evaluated in a given environment, we get a boolean value. If
an action is evaluated in a given environment, it is supposed to make an update
to the environment, so we get a new environment as result.

3.3.2. States

A state can execute an action the moment it is entered (entry action) and the
moment it is exited (exit action). If the source and target state of a transition
both reside in a subhierarchy of a parent state, this parent state can execute an
action if this transition is taken (static action). All transitions leaving a state are
associated with this state.

24



3.3. Hierarchic Statemachines

Record State: Set := mkState {
entryActionState: Action;
staticActionState: Action;
exitActionState: Action;
transitionsState: (list Transition)

}.

If more than one transition of a state could be taken, the order of these
transitions in the list transitionsState determines the one that �res (cf. 3.3.6).

3.3.3. Transitions

A transition switches a source state to a target state while an action is executed.
The transition is allowed to �re if the source state is in the current super state
of the statemachine (cf. 3.3.5.2) and the condition guarding the transition is
ful�lled.

Record Transition: Set := mkTransition {
sourceTransition: StateAdr;
targetTransition: StateAdr;
guardTransition: Condition;
actionTransition: Action

}.

The source and target state are referenced by their addresses in the hierarchy
(cf. 3.3.5.1).

De�nition StateAdr := BranchSelectionPath.

3.3.4. Hierarchy

A hierarchic statemachine is described by the hierarchy of states and the tran-
sitions de�ned on the states. The hierarchy can be formalized as a tree with
arbitrary branching degree (rosetree).

25



3. Development

Inductive Rosetree[A, B: Set]: Set :=
leaf: A ! (Rosetree A B)

j inner: B ! (RosetreeList A B) ! (Rosetree A B)
with RosetreeLista[A, B: Set]: Set :=

rtlOne: (Rosetree A B) ! (RosetreeList A B)
j rtlCons: (Rosetree A B) ! (RosetreeList A B) ! (RosetreeList A B)

.

aTo be able to de�ne a mutual recursive induction principle over the mutual inductive types
Rosetree and RosetreeList, we have to de�ne the special datatype RosetreeList, although this
is an instance of list1: (list1 (Rosetree A B))

In this mutual inductive de�nition of a rosetree a leaf node and an inner
node can contain elements of di�erent type (A or B). In the statehierarchy � the
rosetree we want to formalize � these two types are just the same, namely State.

De�nition Statehierarchy := (Rosetree State State).

Since the transitions are stored as components of the state, a hierarchic
statemachine is completely described by the statehierarchy.

3.3.5. Basic De�nitions and Conceptions in a

Statehierarchy

3.3.5.1. Address of a Node

To refer to a state in the statehierarchy (e.g. as target state of a transition, cf.
3.3.3), we need a kind of address of a node in the hierarchy tree. Starting at the
root node, we can describe the position of a given node by following the branches,
which lead to this node. Look at the following example:

x

0
1

2

0 1

x

0
1

1

The path of branch indices 2�0 leads us to the node x in this tree. So we
de�ne the address as list of natural numbers and call it BranchSelectionPath.

26



3.3. Hierarchic Statemachines

De�nition BranchSelectionPath := (list nat).

The empty list refers to the root node of the tree.
But not every list of natural numbers is a valid address in a given hierarchy.

Since we select a branch by its index, we must ensure that there exists a branch
with this index in the current subtree. In the previous example a path 4�0 isn't
valid, because the root node only has three children and thus only the indices 0,1
and 2 are valid.

To distinguish the valid from invalid addresses of a hierarchy, we de�ne the
inductive predicate bs_path_wellformed. A BranchSelectionPath bs_path is a
valid address in the hierarchy h if (bs_path_wellformed h bs_path) holds.

The special sort of BranchSelectionPaths, which address a leaf node are in-
teresting, too. Thus we de�ne another inductive predicate leaf_bs_path. The
predicate (leaf_bs_path h bs_path) holds if the BranchSelectionPath bs_path is
wellformed, with respect to the given hierarchy h and addresses a leaf node of h.

There is an alternative view on a BranchSelectionPath. Since the path ad-
dresses the node by leading us to its position in the tree, it also addresses the
subtree of the hierarchy, with the addressed node as root node. We want to de�ne
a function that calculates this subtree. At this point we encounter the use of the
Maybe monad as described in 2.2.5. As this is the �rst occurrence of the Maybe
monad in the formalization of the statemachine, we will have a closer look at it.

Fixpoint subtree_addressed_by_bs_path
[A, B: Set; rt: (Rosetree A B); bs_path: BranchSelectionPath]
:(Maybe (Rosetree A B))
:=
Cases bs_path of

nil ) (result rt)
j (cons pos tl)

) Cases rt of
(leaf _) ) (fail (Rosetree A B))

j (inner x subtrees)
) (nthrtl subtrees pos) >�> [subtree: (Rosetree A B)]

(subtree_addressed_by_bs_path subtree tl)
end

end.

A function which calculates the subtree addressed by a BranchSelectionPath
can only succeed if the path is wellformed. In the other case it must return

27



3. Development

nothing. This is what the function subtree_addressed_by_bs_path actually does.
Let me go into detail. We �rst make a case distinction about the bs_path itself:

nil: The path is empty, so we address the whole rosetree rt. This always succeeds,
so we just give rt as result.

cons pos tl: The path is not empty. This path can only be valid in a rosetree that
not only consists of a leaf node. So we must look inside the rosetree:

leaf _: A non-empty path can't be valid in this case. So we have to fail
and return nothing.

inner x subtrees: In this case we can be successful if both

1. the head of the path pos is a valid index to select a branch in the
subtrees and

2. if we can �nd the subtree selected by the tail tl in the selected
subtree.

Condition (1) is tested by the call of nthrtl which also leads to a Maybe
type as result. Only if nthrtl succeeds, we can bind the result to the
variable subtree. This binding is done by the in�x de�nition >�> of the
function bind (cf. 2.2.5). Equipped with this subtree, we can perform
our recursive call, which takes care of condition (2).

Since a BranchSelectionPath is only a path of natural numbers, we are also inter-
ested in a path of the node contents, lying along the BranchSelectionPath. In case
of a statehierarchy we are also interested in a path of states besides the path of
natural numbers. The function content_path_by_bs_path covers these require-
ments and is de�ned in an analogous way to the previously introduced function
subtree_addressed_by_bs_path. To simplify matters I just present the signature
here:

De�nition ContentPath[A: Set] := (list1 A)a.
Fixpoint content_path_by_bs_path
[A: Set; rt: (SimpleRosetree A); bs_path: BranchSelectionPath]
:(Maybe (ContentPath A)) := : : :

aSince a Rosetree always consists of at least one node, a ContentPath will always contain
at least one element. Thus for convenience we take the non empty lists list1 to model a
ContentPath.

28



3.3. Hierarchic Statemachines

3.3.5.2. The Super State

Due to the fact that the statemachine is not �at but hierarchic, the current entire
state of a statemachine is not described by a single state but by a set of states.
Such a state set will be referred to as super state in the remaining description.
Let us have a look at the following statehierarchy.

A

E

DDBBB

C

B

A

C

D E

This statehierarchy has three super states: {A,B,C}, {A,D} and {A,E}. The
statemachine always resides in one of these super states. It can't be in a super
state like {A}, {A,B} or {E}. From this example we can see that not all state sets
are valid. We must pay attention to the nesting of the states in the hierarchy.
In words of a path in the hierarchy, a valid super state consists of the states
on a path from the root state down to a leaf state. Such a path is captured by
the predicate leaf_bs_path (c.f .3.3.5.1). Hence a transition should take a state
set, representing the current super state, and lead to a new state set. But the
transition itself just stores the addresses of a single source and target state and
not state sets (cf. 3.3.3). So we need a mechanism to get a valid state set out
of a single state. To be more precise we must expand a path leading to a single
state to a path including this state and ending up in a leaf state of the hierarchy.
Thus we de�ne the following type of function:

De�nition LeafBSPathExpansionFunction :=
8A, B: Set.
(Rosetree A B) ! BranchSelectionPath ! (Maybe BranchSelectionPath).

Such a function takes a hierarchy and a BranchSelectionPath and calculates
a new BranchSelectionPath if the input was wellformed. We just stated that the
outcome of the function should be a path to a leaf node. This is not ensured by
this function signature. We need an additional predicate to guarantee that the
function has the expected behaviour.

29



3. Development

De�nition leaf_bs_path_expansion_function_wellformed :=
[A, B: Set; rt: (Rosetree A B); exp_function: LeafBSPathExpansionFunction]
8bs_path: BranchSelectionPath.
(bs_path_wellformed rt bs_path)
! 9expansion: BranchSelectionPath.

(exp_function A B rt bs_path)a = (ok expansion)
^ (leaf_bs_path rt (app bs_path expansion)).

aIt is an irritating peculiarity of Coq that implicit argument synthesis only works for global
function de�nitions and not for local de�nitions like exp_function. So the arguments A and
B have to be applied explicitely in (exp_function A B rt bs_path).

Let me explain this functional predicate. It takes four arguments � A, B,
rt and exp_function � and returns a predicate. This is just a higher order
abstraction in higher order logic. If we have some arguments, e.g. hierarchy:
Statehierarchy and fun: LeafBSPathExpansionFunction, and apply them to this
functional predicate, we get a more familiar �rst order predicate:

(leaf_bs_path_expansion_function_wellformed hierarchy fun):a

8bs_path: BranchSelectionPath.
(bs_path_wellformed hierarchy bs_path)
! 9expansion: BranchSelectionPath.

(fun A B hierarchy bs_path) = (ok expansion)
^ (leaf_bs_path hierarchy (app bs_path expansion)).

aThe arguments A B are inferred by Coq because they are implicitly known. The type State-
hierarchy of hierarchy carries the information A = State and B = State because it is de�ned
as Statehierarchy = (Rosetree State State).

The arguments are just passed as during an ordinary function application.
If we apply the expansion function fun to the wellformed bs_path, the function
application succeeds (ok expansion), and appending this expansion to bs_path
leads to a path, which ends up in a leaf node (leaf_bs_path hierarchy (app
bs_path expansion)). This is just what we wanted to express.

3.3.5.3. Expansion Strategies

Let me now explain two expansion strategies commonly used in the context of
hierarchic statemachines:

30



3.3. Hierarchic Statemachines

default states: This is a very simple strategy. Every inner state of the statehier-
archy has one dedicated substate which is called the default state. Every
time the inner state is entered, the default state is entered, too. All the in-
formation to do the expansion is statically known, and thereby a expansion
function can be �xed.

history states: Every inner state must remember the substate which was active
the moment the inner state was exited the last time. If the inner state
is entered again, the stored substate is entered, too. So in this case the
expansion function changes its behaviour dynamically during the di�erent
steps of a statemachine. At initialization time there also have to be some
kind of default states, because the history is empty.

3.3.6. Evaluation Step of a Statemachine

Our next aim is to de�ne the step semantics of a statemachine. What must be
done when a single transition is executed?

A transition has two e�ects,

� the statemachine switches its current super state and

� during this switch various actions are executed on the environment.

Considering this description, the statemachine transforms one con�guration,
consisting of a super state and an environment to another con�guration during a
step. A con�guration is described by a pair of environment and super state.

De�nition Con�gSM := Env � StateAdr.
De�nition envCon�gSM [con�g: Con�gSM]: Env := (Fst con�g).
De�nition stateCon�gSM[con�g: Con�gSM]: StateAdr := (Snd con�g).

The projections envCon�gSM and stateCon�gSM are de�ned for a con�guration to
obtain its components. Since a super state can be de�ned by a path in the
statehierarchy, ending up in a leaf node, we can refer to the super state by
referring to the address of the leaf node (StateAdr).

Given a Transition, we have the transition action and the paths to the source
and the target state. As I mentioned in section 3.3.5.2, we must expand these
paths to leaf nodes, so that they represent the super states between the statema-
chine is being switched. This is the purpose of a expansion function. The super
states are determined by the source and target state and the expansion function.
So we get two paths, representing the source and the target super state. The

31



3. Development

source state stored in the Transition lies on the source path, and the target state
lies on the target path.

To gain clarity about the role of the concerned states, let us have a look at
the following example transition:

transition

Exit Enter

Static

All states not shown are not included in the source or target path. They are
not involved in the transition. During a transition, we have to distinguish three
groups of states in the source and target path respectively.

Exit: The source state of the transition, all the states underneath the source
state and the states above the source state and underneath the lowest

common state are exited.

Enter: The target state of the transition, all the states underneath the target
state and the states above the target state and underneath the lowest

common state are entered.

Static: The common states above the source and the target state stay static.

These states execute their exit, entry or static action according to their group
membership.1

And here is the exact ordering of the actions:

1. All exit actions are executed from bottom to top in the hierarchy.

2. All static actions are executed from bottom to top in the hierarchy.

3. The transition action is executed.

4. All entry actions are executed from top to bottom in the hierarchy.
1These rules are still valid if the source and target super state are the same! The source/target
state and all states underneath this state are exited and entered during this transition.

32



3.3. Hierarchic Statemachines

An example of this was given on page 21.
All these calculations are carried out by the function stepTransition.

De�nition stepTransition
[hierarchy: Statehierarchy
;eval_action: ActionEvaluator
;exp_fun: LeafBSPathExpansionFunction
;env: Env;
;transition:Transition
]: (Maybe Con�gSM)
:=
(calculate_transition_actions transition hierarchy exp_fun)
>�> [actions: Actions]
(calculate_target_leaf_adr transition hierarchy exp_fun)
>�> [newLeafAdr: StateAdr]
(result ((update_env env eval_action actions), newLeafAdr))

.

First calculate_transition_actions calculates the list of actions which must
be executed, then calculate_target_leaf_adr expands the target state, stored
in transition to the corresponding target super state according to the expansion
function exp_fun and the hierarchy. Finally update_env sequentially applies
the actions to the environment, using the interpreter function eval_action. After
all, we return the new con�guration, consisting of the updated environment and
the new super state.

Before we can apply stepTransition, we must �rst �nd a transition which �res,
given a super state of the statemachine. The transitions of a parent state have
priority over the transitions of the successor states in the statehierarchy. To �nd
the proper transition, we have to follow the state path corresponding to the super
state from the root to its leaf and select the �rst transition for which the transition
guard is ful�lled. Therefore we de�ne the function select_�ring_transition.

De�nition StatePath := (ContentPath State).
De�nition select_�ring_transition
[env: Env; eval_cond: ConditionEvaluator; path: StatePath]: (Maybe Transition)
:=

(select_fst (transition_enabled env eval_cond) (extract_transitions path))
.

A StatePath is de�ned as non empty list of states. Extract_transitions

33



3. Development

selects the list of transitions from the path of states. Select_fst yields the �rst
element of a list for which a boolean predicate holds. In this case the predicate is
transition_enabled, which states that the transition guard evaluates to true in the
current environment. To decide this, the interpreter function eval_cond must be
supplied. Since it is also valid that no transition guard at all evaluates to true,
the range of the function is (Maybe Transition). In case nothing is the result, this
doesn't mean an error occurred in contrast to the monadic use of the Maybe type
in other places. It is just another valid value besides a transition. Now we are
ready to de�ne the step of the statemachine.

De�nition stepSM
[hierarchy: Statehierarchy
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;expansion_fun: LeafBSPathExpansionFunction
;con�g: Con�gSM
]: (Maybe Con�gSM)
:=
(content_path_by_bs_path hierarchy (stateCon�gSM con�g))
>�> [statePath: (StatePath)]
Cases (select_�ring_transition

(envCon�gSM con�g) eval_condition statePath) of
nothing
) (result con�g)

j (ok transition)
) (stepTransition hierarchy eval_action expansion_fun

(envCon�gSM con�g) transition)
end

.

At the beginning the BranchSelectionPath stored in the con�guration must
be converted to the corresponding path of states (content_path_by_bs_path).
Then select_�ring_transition can check out if there is a transition along this path
for which the guard is true. In case no transition �res, we just return the input
con�guration, otherwise we apply stepTransition to obtain the new con�guration.

3.3.7. Behaviour of a Statemachine

In the previous section the step semantics of a statemachine was �xed. By it-
erating stepSM, starting with an initial con�guration, we get a sequence of con-
�gurations. This sequence describes the behaviour of the statemachine. From

34



3.3. Hierarchic Statemachines

an external point of view two statemachines behave equally if the sequence of
environments, contained in the sequence of con�gurations, are the same. The
other component of a con�guration, the current super state of the statemachine,
is not interesting when comparing two statemachines, but is essential to be able
to calculate the behaviour of the statemachine, since we can only de�ne a step if
we know the current super state of the statemachine. Now I want to introduce
the notion of the internal behaviour of a statemachine, which is the sequence
of con�gurations generated on an initial con�guration, and the external be-

haviour or just behaviour, which we get out of the internal behaviour when we
just focus on the environment components.

De�nition behaviourinternalSM

[hierarchy: Statehierarchy
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;expansion_fun: LeafBSPathExpansionFunction
;con�g: Con�gSM
;n: nat
]: (Maybe (list1 Con�gSM))
:=
(iterateMaybe

(stepSM hierarchy eval_condition eval_action expansion_fun)
con�g
n

)
.

Since we can only describe terminating functions in Coq2, we can only write
a �nite iteration function. Hence, besides the function f to iterate and the initial
value a to apply the function to, we must also pass the number of iteration steps
n to the iteration function. As the outcome of stepSM lies in the Maybe monad,
the iteration has to take place in the Maybe monad, too.

2Coq o�ers the possibility to describe in�nite data with coinductive types. So we could de�ne
a function which creates a in�nite stream of con�gurations. But for ease of presentation we
just focus on the �nite pre�xes of such streams.

35



3. Development

Fixpoint iterateMaybe [A: Set; f: A ! (Maybe A); a: A; n: nat]: (Maybe (list1 A))
:=
Cases n of
O ) (result (one a))

j (S m) ) (f a) >�> [new_start: A]
(iterateMaybe f new_start m) >�> [tail: (list1 A)]
(result (cons1 a tail))

end
.

Now it's easy to de�ne the external behaviour of the statemachine by pro-
jecting the environment list out of the con�guration list, created by the internal
behaviour.

De�nition behaviourSM
[hierarchy: Statehierarchy
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;expansion_fun: LeafBSPathExpansionFunction
;con�g: Con�gSM
;n: nat
]: (Maybe (list1 Env))
:=
(behaviourinternalSM hierarchy eval_condition eval_action expansion_fun con�g n)
>�> [con�g_lst: (list1 Con�gSM)]
(result (map1 envCon�gSM con�g_lst))

.

36



3.4. Target Language

3.4. Target Language

By now we've de�ned the semantics of a statemachine. The next thing to do is
to design an intermediate representation (IR) of our imperative target language
to which the codegenerator will translate a statemachine. The entities of this
target language should be close enough to the language constructs of a typical
imperative language like Java, C or Pascal. To �gure out the language constructs
we need, I will give a sketch of the codegeneration next. Two main questions arise
when we think of how to implement a statemachine in an imperative language:

1. How can a super state be represented in the implementation?

2. How can the dynamics of the statemachine be implemented?

Designing the statemachine, we decided to keep the speci�cation of conditions
(expressions) and actions (statements) open (cf. 3.3.1). Therefore we have to be
able to execute these expressions and statements in our target language. They
appear in the target language as they appear in the statemachine � unchanged.
So the environment on which the target language will be de�ned is just the same
as the environment of the statemachine.

The basic idea of the implementation is to �atten the statehierarchy. The �rst
question is how to represent a super state. A super state is a set of states which
corresponds to a path from the root state to a leaf state in the statehierarchy (cf.
3.3.5.2). So representing a super state can by sized down to represent a path to
a leaf node. Let us have a look at a statehierarchy:

0 n-11 n

We can identify a path to a leaf node (and by it a super state) by enumerating
the paths. That way a super state is represented by a natural number. Let me
now give a sketch of the implementation of a statemachine using an example.

37



3. Development

switch (path_idx) {

case path_to_d: ...

case path_to_t: ...

case path_to_s: 

if (t1.guard) {

... execute actions ...  

switch_state(s,t);

}

elseif (t2.guard) {

... execute actions ... 

switch_state(s,s);

}

elseif (t3.guard) {

... execute actions ...  

switch_state(s,r);

}

break;

case path_to_r: ...

}

d t sw

s r

t1

t2

t3

d t sw

s r

t1

t2

t3

On the highest level we must distinguish in which super state the statemachine
currently is, by a switch over the path indices. Inside the case of a single path
(e.g. case path_to_s) we have to �nd the �rst �ring transition (cf. 3.3.6). This
is done by a cascade of if-elseif statements, which test the transition guards
from the root down to the leaf of the path. When we've �nally found a �ring
transition, we execute the actions caused by this transition and do the proper
state switch (switch_state).

So lets design the language constructs from bottom up.

if branch: A single branch of the if-elseif cascade implements a transition.
We need to know the transition guard we must test and, to perform
the transition, we require the list of actions to execute and the index
of the new super state. This information is stored in an IfBranchIR.

Record IfBranchIR: Set := mkIfBranchIR {
conditionIfBranchIR: Condition;
actionsIfBranchIR: Actions;
nextIfBranchIR: nat;

}.

38



3.4. Target Language

if-elseif cascade: The if-elseif cascade implements a complete path (super
state) of the statehierarchy. This is just a list of the single branches,
representing the transitions lying along this path.

De�nition IfCascadeIR := (list IfBranchIR).

switch: The outermost switch statement implements the whole statehierarchy.
It is just a list of the single cases (super states) to switch.

De�nition SwitchIR := (list IfCascadeIR).

The test expressions for the single cases (path_to_d, path_to_t,
path_to_s, path_to_r) are the indices of the distinct paths in the
statehierarchy. These indices haven't got to be stored explicitely.
They directly map to the indices of the corresponding IfCascadeIR in
the list.

This is a quite a simple language. I should mention that the expressiveness of this
language only allows us to de�ne a default state expansion strategy (cf. 3.3.5.3).
If we like to implement history states, we must extend the language with some
kind of variables or arrays to store the history information. But by now we only
want to implement default states and therefore the language �ts.

3.4.1. Evaluation Step of the Implemented Statemachine

Analogous to the notion of a con�guration of a statemachine we need a con�g-
uration of the implementation. This is a pair, consisting of an environment and
a natural number, storing the state information. The con�guration comes along
with the corresponding projection functions.

De�nition Con�gIR := Env � nat.
De�nition envCon�gIR[con�g: Con�gIR]: Env := (Fst con�g).
De�nition idxCon�gIR[con�g: Con�gIR]: nat := (Snd con�g).

Now we de�ne the semantics of the intermediate representation, again button
up.

39



3. Development

De�nition stepIfBranch
[ifbranch: IfBranchIR; eval_action: ActionEvaluator; env: Env]: Con�gIR
:= ((update_env env eval_action (actionsIfBranchIR ifbranch))

,(nextIfBranchIR ifbranch))
.

To calculate the new con�guration out of a IfBranch, we just update the
environment according to the actions stored in ifbranch, and the state component
of the new con�guration is the index stored in ifbranch. To execute the actions we
need a interpreter function eval_action, as in the case of stepTransition (cf. 3.3.6).

De�nition stepIfCascade
[ifcascade: IfCascadeIR
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;con�g: Con�gIR
]: Con�gIR
:=
Cases (select_fst_active_if

(envCon�gIR con�g) eval_condition ifcascade)
of
nothing ) con�g

j (ok ifbranch) ) (stepIfBranch ifbranch eval_action (envCon�gIR con�g))
end

.

In a cascade of if-elseif statements we must �nd the �rst branch for which
the condition is ful�lled (select_fst_active_if). If no condition is true, we just
return the input con�guration con�g. In the other case, we apply stepIfBranch
to the selected ifbranch. We are now ready to de�ne the step semantics of the
implementation.

40



3.4. Target Language

De�nition stepIR
[switch: SwitchIR
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;con�g: Con�gIR
]: Con�gIR
:=
Cases (select_case_ir switch (idxCon�gIR con�g)) of
nothing
) con�g

| (ok ifcascade)
) (stepIfCascade ifcascade eval_condition eval_action con�g)

end
.

The �rst thing to do, is to switch into the right case (super state) in the list
of all cases. Select_case_ir selects the element of the list switch, corresponding
to the index stored in con�g. If the index wasn't valid we just return the input
con�guration con�g3. In case we get a ifcascade, we can successfully pass the
work to stepIfCascade.

3.4.2. Behaviour of the Implemented Statemachine

Now that the step semantics of the intermediate representation is �xed, we want
to de�ne the behaviour of the implementation, in the same way as in case of
the statemachine. Again the internal behaviour is the sequence of con�gurations
gained, by iterating stepIR on an initial con�guration. The external behaviour is
obtained by focusing on the environment components of the con�gurations.

3We could also lift the function stepIR to the Maybe monad and result nothing, but we wanted
to keep things simple. If the translation to the intermediate representation is correct, this
case will never arise, since a correct translation of a valid statemachine can't generate an
index, which is not de�ned. This is implicitly ensured by the �nal correctness theorem (c.f.
3.6).

41



3. Development

De�nition behaviourinternalIR

[switch: SwitchIR
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;con�g: Con�gIR
;n: nat
]: (list1 Con�gIR)
:=
(iterate
(stepIR switch eval_condition eval_action)
con�g
n)

.

Since stepIR doesn't reside in the Maybe monad, we can use a conventional
iterate.

Fixpoint iterate[A: Set; f: A ! A; a: A; n: nat]: (list1 A) :=
Cases n of
O ) (one a)

j (S m) ) (cons1 a (iterate f (f a) m))
end .

By selecting out the environment components of the sequence created by the
internal behaviour, we obtain the external behaviour.

De�nition behaviourIR
[switch: SwitchIR
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;con�g: Con�gIR
;n: nat
]: (list1 Env)
:=
(map1
envCon�gIR
(behaviourinternalIR switch eval_condition eval_action con�g n))

.

42



3.5. Translation Function

3.5. Translation Function

The statemachine and its semantics is de�ned, the intermediate representation
and its semantics is de�ned, so we can now work out a translation function
between these two sides.

The correspondence between the statemachine and the implementation, de-
scribed in the previous section, directly leads us to a functional decomposition of
the translation task.

� The statehierarchy is translated to a SwitchIR. Every super state of the
statemachine is translated into one single case of this SwitchIR: translateSM

� A super state is a path from the root state to a leaf state in the hierarchy.
Such a path is translated to a IfCascadeIR . Every transition on this path
becomes a branch of the IfCascadeIR: translatePath

� A transition is translated to a IfBranchIR, which stores the guard condition,
the actions, caused by the transition and the index of the next super state:
translateTransition

Since the basic entity is to translate the transition, I'll start to explain this.
Roughly speaking the other functions just pass the work down to the translation
of the transition.

De�nition translateTransition
[transition:Transition
;hierarchy: Statehierarchy
;exp_fun: LeafBSPathExpansionFunction
;leaf_addrs: (list1 StateAdr)
]: (Maybe IfBranchIR)
:=
(calculate_transition_actions transition hierarchy exp_fun)
>�> [actions: Actions]
(calculate_target_leaf_adr transition hierarchy exp_fun)
>�> [new_leafAdr: StateAdr]
(translateStateAdr new_leafAdr leaf_addrs)
>�> [next: nat]
(result (mkIfBranchIR (guardTransition transition) actions next))

.

During the translation of a transition, pretty much of the work of stepTransition
(cf. p. 33) is done. Lots of information which is calculated dynamically if we
execute stepTransition is compiled into the intermediate representation. Since we

43



3. Development

implement the default state expansion strategy (cf. 3.3.5.3), we can directly
implement the behaviour of the expansion function into the code, because all
information is known statically. The calculation of the actions, caused by the
transition and the address of the leaf state, representing the new super state is
carried out by the same functions as in stepTransition (calculate_transition_actions
and calculate_target_leaf_adr respectively). So we could change the semantics
of these functions without any in�uence on the correctness proof. The parameter
leaf_addrs is a list of the addresses of all the leaf states of the statehierarchy. It
is used to �nd the index next of the new super state, which is represented by an
address contained in this list. This is the task of translateStateAdr.

To translate a path of states, which represents a super state, to a cascade of
if-elseif statements, we simply have to translate all transitions on this path and
pick up the single translation results in a list.

De�nition translatePath
[path: StatePath
;hierarchy: Statehierarchy
;exp_fun: LeafBSPathExpansionFunction
;leaf_addrs: (list1 StateAdr)
]: (Maybe IfCascadeIR)
:=
(mapMaybe

[transition:Transition]
(translateTransition transition hierarchy exp_fun leaf_addrs)

(extract_transitions path)
) .

The function mapMaybe is an adaption of the usual map function on lists for
the use inside the Maybe monad. If the function which shall be applied to all the
list elements, yields a result residing in the Maybe monad, we only get a result if
all applications go well.

Fixpoint mapMaybe

[A, B: Set; fun: (A ! (Maybe B)); lst: (list A)]: (Maybe (list B))
:=
Cases lst of
nil ) (result (nil B))

j (cons hd tl) ) (fun hd) >�> [new_hd: B]
(mapMaybe fun tl) >�> [new_tl:(list B)]
(result (cons new_hd new_tl))

end .

44



3.5. Translation Function

To translate the whole statehierarchy we have to create all the paths to leaf
nodes, translate these paths and wrap them together in a SwitchIR.

De�nition translateinternalSM

[hierarchy: Statehierarchy
;exp_fun: LeafBSPathExpansionFunction
;leaf_addrs: (list1 StateAdr)
]: (Maybe SwitchIR)
:=
(mapMaybe1

[bs_path: BranchSelectionPath]
(content_path_by_bs_path hierarchy bs_path)
>�> [statePath: StatePath]
(translatePath statePath hierarchy exp_fun leaf_addrs)

leaf_addrs)
>�> [cascade_lst: (list1 IfCascadeIR)]
(result (list1_to_list cascade_lst))

.

We �rst gain the list of all StatePaths out of the list of all addresses to leaf
nodes leaf_addrs by the function content_path_by_bs_path (cf. 3.3.5.1). Then
we can translate these paths with translatePath. The function list1_to_list just
implements a conversion from the non empty lists list1 to ordinary lists. The
list of all addresses to leaf states leaf_addrs is passed two times as parameter
(for translatePath and mapMaybe1

respectively). To avoid the cost, to generate this

list several times, it is a parameter of translateinternalSM , that is passed down until
translateTransition. Now we put a wrapper function around the translation, that
generates this list just once (extract_leaf_bs_paths):

De�nition translateSM
[hierarchy: Statehierarchy
;exp_fun: LeafBSPathExpansionFunction
]: (Maybe SwitchIR)
:= (translateinternalSM hierarchy exp_fun (extract_leaf_bs_paths hierarchy))

.

45



3. Development

3.6. Correctness of Codegeneration

In the previous section we have de�ned the translation function between a statema-
chine and the intermediate representation. The semantics of both sides are �xed.
Now I want to state what correctness of the translation function means.

If we apply a statemachine and the generated implementation to
corresponding con�gurations, the behaviour of both sides should be
the same.

What does corresponding con�guration mean? We have de�ned the notion
of a con�guration for both the statemachine and the intermediate representation,
Con�gSM and Con�gIR respectively. Both con�gurations consist of an environ-
ment component and a state component. The environment components can be
compared directly, since both have the type Env. The state components can't be
compared directly, since they have di�erent types (stateAdr vs. nat). But they
can be related to each other due to the translation function translateStateAdr. On
statemachine side we have the address of a leaf state. On intermediate repre-
sentation side the translation function creates the index of this address in the
list of all addresses. The following illustration shows the meaning of a correct
codegeneration.

step
SM

step
IR

translateSM

SM

switch(index) { 
case 0: if...
...

}

switch(index) { 
case 0: if...
...

}

IR

step
SM

step
IR

=
State0

0
EnvSM

State0

0
EnvSM

0
EnvSM

State1

1
EnvSM

State1

1
EnvSM

1
EnvSM

1
EnvSM

State2

2
EnvSM

State2

2
EnvSM

2
EnvSM

2
EnvSM

Index0

0
EnvIR

Index0

0
EnvIR

0
EnvIR

0
EnvIR

Index1

1
EnvIR

Index1

1
EnvIR

1
EnvIR

1
EnvIR

Index2

2
Env

IR

Index2

2
Env

IR

2
Env

IR

2
Env

IR

Index0 = translateStateAdr(State0)

0
EnvSM

0
EnvIR =

Index0 = translateStateAdr(State0)

0
EnvSM

0
EnvSM

0
EnvIR

0
EnvIR =

We start the statemachine and the generated implementation with corre-
sponding con�gurations. Both sides generate a sequence of con�gurations de�ned
by their step semantics. If the environment components of the con�gurations are
identical in every step the statemachine and the implementation behave equally.
The codegeneration is correct. This notion of behaviour is de�ned by the func-
tions behaviourSM (cf. p. 36) and behaviourIR (cf. p. 42) respectively.

Let us have a look at the correctness theorem.

46



3.6. Correctness of Codegeneration

Theorem correctness_of_codegeneration:
8n: nat
,hierarchy: Statehierarchy
,eval_condition: ConditionEvaluator
,eval_action: ActionEvaluator
,expansion_fun: LeafBSPathExpansionFunction
,env: Env
,start_state: StateAdr
,start_index: nat
,implementation: (SwitchIR)
,env_lstSM: (list1 Env)
.
(transitions_wellformed hierarchy)
! (leaf_bs_path_expansion_function_wellformed hierarchy expansion_fun)
! (leaf_bs_path hierarchy start_state)
! (translateSM hierarchy expansion_fun)

= (ok implementation)
! (translateStateAdr start_state (extract_leaf_bs_paths hierarchy))

= (ok start_index)
! (behaviourSM hierarchy eval_condition eval_action expansion_fun

(env, start_state)
n)

= (ok env_lstSM)
! env_lstSM
= (behaviourIR implementation eval_condition eval_action

(env, start_index)
n)

.

We want to express that behaviourSM and behaviourIR create the same list of
environments if they are applied to corresponding con�gurations. This is the
�nal conclusion of the theorem. All other preconditions and variables, are neces-
sary to provide the functions with the proper arguments and to ensure that all
calculations in the Maybe monad will be successful. Let me go into detail.

The �rst three preconditions are the really important ones. If all the transi-
tions and the expansion function (expansion_fun) are wellformed and the start
state (start_state) is a valid super state (leaf_bs_path), all other implications
hold. A transition is wellformed, if the addresses of both the source and target
state are proper addresses in the hierarchy. The predicate transitions_wellformed
ensures that all transitions of the hierarchy are wellformed. The other precon-

47



3. Development

ditions, of the form (function application) = (ok x) are used to gain information
about the function which obtained the result x in the Maybe monad. We must
know that the implementation was generated by translateSM, that the start_index
is created by translating the start_state and �nally that the list of environments
env_lstSM is the result of behaviourSM. The statemachine is started on the con�g-
uration (env, start_state) and the implementation is started on the corresponding
con�guration (env, start_index).

Let us focus on the universal quanti�cation to see for which variables the
correctness theorem holds. The codegeneration is correct4

� for arbitrary semantics of conditions and actions of the statemachine, pro-
vided by the interpreter functions eval_condition and eval_action respec-
tively,

� for arbitrary expansion strategies (expansion_fun) which can be calculated
statically (because of the translation process, dynamic expansion strategies
are not provided cf. 3.5).

This correctness theorem is proved in Coq, so I won't do it formally here. I just
want to explain the basic ideas. The theorem is proved by induction over n, the
number of steps applied to the initial con�guration. In the basic case of induction,
n = 0, we don't apply any step at all, and must prove that the environment
components of the initial con�gurations are equal. That is quite easy, because in
both cases it is env. Let us examine the induction step. To prove it, we can't just
focus on the environment components. We must take the full con�gurations into
account. We have to prove that corresponding con�gurations are transformed
to corresponding con�gurations by stepSM and stepIR. Informally, we need the
state information to say that the statemachine and the implementation are in an
equal state, so that future steps on the same environment will lead to an equal
behaviour. Here is an illustration which shows the commuting diagram which is
left to prove.

4We could also factor out the functions calculate_transition_actions and calcu-
late_target_leaf_adr used in the de�nition of translateTransiton and stepTransition as univiersal
quanti�ed variables. Then it would also be visible at this point, that the theorem also holds
for arbitrary semantics of these functions (cf. p. 43, 33)

48



3.6. Correctness of Codegeneration

step
SM

step
IR

translateSM

SM

switch(index) { 
case 0: if...
...

}

switch(index) { 
case 0: if...
...

}

IR

Indexn+1

n+1
EnvIR

Indexn+1

n+1
EnvIR

n+1
EnvIR

Indexn = translateStateAdr(Staten)

n
EnvSM

n
EnvIR =

Indexn = translateStateAdr(Staten)

n
EnvSM

n
EnvSM

n
EnvIR

n
EnvIR =

Indexn

n
EnvIR

Indexn

n
EnvIR

n
EnvIR

Staten

n
EnvSM

Staten

n
EnvSM

n
EnvSM

Staten+1

n+1
EnvSM

Staten+1

n+1
EnvSM

n+1
EnvSM

Indexn+1 = translateStateAdr(Staten+1)

n+1
EnvSM

n+1
EnvIR =

Indexn+1 = translateStateAdr(Staten+1)

n+1
EnvSM

n+1
EnvSM

n+1
EnvIR =

We can size the proof down by following the functional decomposition of the
translation function. I'll explain the proof obligations for the di�erent levels of
abstraction, which arise when proving the induction step. At all levels we start
with two corresponding con�gurations for a statemachine and its implementation.
Then we have to prove that we can apply the appropriate step functions to these
con�gurations and yield two con�gurations which correspond to each other.

Correctness of translateTransition

We focus on a single transition. The implementation of a transition is an IfBranchIR
which is generated by translateTransition. On statemachine side we apply stepTransition
to the con�guration, on implementation side we apply stepIfBranch to the cor-
responding con�guration. We can prove that the obtained new con�gurations
correspond to each other, by comparing the functionality of stepTransition and the
combination of translateTransition and stepIfBranch.

Correctness of translatePath

We focus on a single super state of the statemachine. This is given by a path
from the root state to a leaf state in the statehierarchy. The implementation of
such a path is an IfCascadeIR, which is generated by translatePath. On the side of
the statemachine we apply stepSM to the con�guration, on implementation side
we apply stepIfCascade to the corresponding con�guration. The �rst thing stepSM
does is to search for a transition that �res. Analogous to this, stepIfCascade searches
the conditions of the di�erent branches of the if-elseif cascade to �nd a branch
with a ful�lled condition. If stepSM �nds a �ring transition then strepIfCascade must
also �nd the branch, which is the translation of that transition. If we can show
this, we can build on the correctness of translateTransition and reason that the new
con�gurations correspond to each other.

49



3. Development

Correctness of translateSM

Now we take the whole statemachine into account. The implementation of the
whole statemachine is a SwitchIR generated by translateSM. On statemachine side
we again apply stepSM to the con�guration, the same function as if we focus on
the path abstraction level. On implementation side we apply stepIR to the cor-
responding con�guration. If we look inside both step functions we can see some
di�erences. On implementation side the SwitchIR holds an IfCascadeIR for every
super state of the statemachine. An IfCascadeIR is selected by the index stored in
the con�guration. There is no such selection step necessary on statemachine side,
since the super state, for which we calculate the step, is directly part of the con�g-
uration. So we �rst have to prove that the selected IfCascadeIR on implementation
side is the one generated by translatePath out of the path representing the super
state on statemachine side. Then the correctness of translatePath provides the rest
of the proof.

3.7. Java Codegenerator

Right now we've developed a rather generic codegenerator, and proved its cor-
rectness. The speci�cation left some points open to let us easily adjust the generic
codegenerator to a desired instance. Both the statemachine and the target lan-
guage must be re�ned, to get a concrete codegenerator for Java. We have to
supply a wellformed expansion strategy (c.f 3.3.5.3) and to de�ne the notions of
conditions and actions (c.f 3.3.1). The expansion strategy is quite a simple default
state strategy. The �rst substate in the list of states of an inner state is the default
state of this inner state. This way we can expand a path to an inner state to a path
to the default leaf node, by appending the left most path. This expansion func-
tion is called expand_bs_path_with_left_most_path. One can easily prove
that it is wellformed according to leaf_bs_path_expansion_function_wellformed.

The conditions get boolean Java expressions, the actions get Java statements
and so the environment is the whole name-space of Java. Fortunately we don't
have to de�ne the interpreter functions for conditions and actions. They are
just necessary to de�ne the semantics of the statemachine and the intermediate
representation and to prove the correctness of the translation. To carry out the
translation itself, they are irrelevant. The translations function just takes the
conditions and actions out of the statemachine and puts them into the inter-
mediate representation, with neither changing nor looking inside them. So we
are in the lucky position that we can choose a proper datatype to represent the
conditions and actions, which makes it easy to de�ne the prettyprinter of the
intermediate representation to Java. We simply link conditions and actions to
ordinary strings in ML.

To explain the embedding of the generated code into an application, I will
present the simple clock example. Let us have a look at the statemachine �rst.

50



3.7. Java Codegenerator

Time
Entry: setMode(TimeMode)

Date
Entry: setMode(DateMode)

Stopwatch

stopped

running

dateButtonPressed

stopPressed/stopStopwatch

startPressed/startStopwatch

not dateButtonPressed

Entry: setMode(StopwatchMode)

resetPressed/resetStopwatch

stopwatchButtonClicked

timeButtonClicked/stopStopwatch

The conditions and actions in this statemachine of a simple clock determine
the interface of the statemachine class with the clock class. The statemachine
describes the interactive behaviour of the user with the clock. Here is the interface
of the clock.

public interface Clock

{

// The modes of the clock

public static final int TimeMode = 0;

public static final int DateMode = 1;

public static final int StopwatchMode = 2;

// The actions of the clock

public void setMode(int mode);

public void stopStopwatch();

public void startStopwatch();

public void resetStopwatch();

// The conditions of the clock

public boolean dateButtonPressed();

public boolean timeButtonClicked();

public boolean stopwatchButtonClicked();

public boolean startPressed();

public boolean stopPressed();

public boolean resetPressed();

}

The clock must be able to display the time, the date and a stopwatch. To switch
between these modes the method setMode is used. Then there are methods to
start, stop and reset the stopwatch, and methods to gain information about the

51



3. Development

conditions of the various buttons. This interface is implemented by a graphical
user-interface. Here is a screenshot of the implemented clock, currently displaying
the time.

We can see from this screenshot, that there are only three actual buttons,
but the clock interface distinguishes six buttons. Some of these logical buttons
are mapped on the same button in this implementation. To name them, the
stopwatch button, the start button and the stop button are all implemented in
the same button, labeled with �Start/Stop�. The date button and the time button
are mapped to the button, labeled with �Date/Time�.

The clock statemachine is derived from a basic class of statemachines.

public abstract class Statemachine

{

protected int state;

public Statemachine(){}

public abstract void switchState();

}

The state information is stored in the integer variable state. The only method of
a state machine, besides the constructor, is switchState. If we call switchState
the statemachine performs a transition if necessary and stores the new state in
its state component. So let us have a look at the generated code for the clock
statemachine.

public class DateTimeSM

extends Statemachine

{

public DateTimeSM()

{

state = 0;

}

public void switchState()

{

switch (state)

{

case 0: // state: Time

// transition: Time -> Date

if (MainFrame.getClock().dateButtonPressed())

52



3.7. Java Codegenerator

{

MainFrame.getClock().setMode(Clock.DateMode);

state = 1;

}

else

// transition: Time -> Stopwatch

if (MainFrame.getClock().stopwatchButtonClicked())

{

MainFrame.getClock().setMode(Clock.StopwatchMode);

state = 2;

}

break;

case 1: // state: Date

// transition: Date -> Time

if (!MainFrame.getClock().dateButtonPressed())

{

MainFrame.getClock().setMode(Clock.TimeMode);

state = 0;

}

break;

case 2: // state: Stopwatch - stopped

// transition: Stopwatch -> Time

if (MainFrame.getClock().timeButtonClicked())

{

MainFrame.getClock().stopStopwatch();

MainFrame.getClock().setMode(Clock.TimeMode);

state = 0;

}

else

// transition:

// Stopwatch - stopped -> Stopwatch - running

if (MainFrame.getClock().startPressed())

{

MainFrame.getClock().startStopwatch();

state = 3;

}

else

// transition:

// Stopwatch - stopped -> Stopwatch - stopped

if (MainFrame.getClock().resetPressed())

{

MainFrame.getClock().resetStopwatch();

state = 2;

53



3. Development

}

break;

case 3: // state: Stopwatch - running

// transition: Stopwatch -> Time

if (MainFrame.getClock().timeButtonClicked())

{

MainFrame.getClock().stopStopwatch();

MainFrame.getClock().setMode(Clock.TimeMode);

state = 0;

}

else

// transition:

// Stopwatch - running -> Stopwatch - stopped

if (MainFrame.getClock().stopPressed())

{

MainFrame.getClock().stopStopwatch();

state = 2;

}

break;

}

}

}

If the user interacts with the GUI, implementing the clock interface, the GUI
stores the information, which button is pressed or clicked internally, and calls the
switchState method of the clock statemachine. The statemachine looks up its
state and switches into the corresponding case. The clock statemachine has four
states, representing the Time (case 0), Date (case 1), Stopwatch stopped (case
2) and Stopwatch running (case 3) super state of the speci�cation statemachine.
The conditions and actions are method calls to the clock interface. The path to
the implementation of that interface is MainFrame.getClock()5 . Let me explain
the implementation of the Stopwatch stopped state, case 2. This state has three
branches in the if-elseif cascade. The �rst one implements the transition from
the Stopwatch state to the Time state, the second one implements the transition
from the Stopwatch stopped state to the Stopwatch running state and the third
one implements the transition for which the Stopwatch stopped state is exited and
entered again. Let us focus on the �rst branch, the transition out of the Stopwatch
state into the Time state. This transition is executed if the timeButton is clicked.
The method call stopStopwatch is the transition action of this transition, and
the method call setMode is the entry action of the Time state. After executing
these actions the new state 0 (the Time state) is stored in the state component.

5This was omitted in the illustration of the statemachine just to save drawing space.

54



4. General Aspects of the

Development

In this chapter I will describe some aspects of the development from a more
general point of view and comment on the experiences we made with di�erent
approaches.

4.1. Partial Functions

Since we can only de�ne total functions in Coq, we must �nd a way to deal with
partial functions. For example, if we want to write a function that selects an
element of a list by its index in this list, we can only give a meaningful result if
the index is within the bounds of the list. What shall we do if we look for index
12 and the list only contains 5 elements? Principally, there are two ways to solve
this problem. Let us consider a function from an arbitrary domain A to the range
B: f : A ! B. If this function is partial it is not de�ned for all elements of the
domain A.

� We can constrain the domain of the function, so that the function can only
be applied to valid input values. We could think of a boolean predicate
P : A ! bool which selects the valid input values from the domain A. This
leads us to the following function signature: f

0

: 8a : A:P(a) = true ! B.
Besides the element a we must provide the function with a proof that the
predicate is ful�lled for the element a. For the list selection function this
means, that if the list only contains 5 elements the selection function is only
de�ned for indices 0 to 4.

� We can expand the range of the function with a new result value for all
unde�ned indices. This function is no longer partial. We can for example
use the Maybe monad. So we get another function signature: f

00

: A !
(MaybeB). If we ask for an invalid input value e.g. index 12 in a list of 5
elements the function returns the value nothing.

We tried both solutions in Coq and I will explain some implications and problems
that arise with them. The running example will be the selection of a list element
by its index.

55



4. General Aspects of the Development

4.1.1. Constraining the Domain

Since Coq supports dependent types we can actually de�ne a function with con-
strained domain. So we can de�ne a function that selects an element of a list by
its index, restricted to the valid indices.

Fixpoint nthelem [A: Set; lst: (list A); n: nat; proof: (n < (length lst)) = true]: A
:= ...

Since the type of the proof depends on the values n and lst, the type of the
whole function depends on its input values. Such a type, that depends on values
is called dependent type (cf. 2.1.1). The type of nthelem is the following:

nthelem: 8A: Set, lst: (list A), n: nat.(n < (length lst)) = true ! Aa

aIn type theory we would replace 8 with �.

So with the strong type system of Coq we are able to de�ne partial functions
directly. Since this is very tempting we developed the codegenerator in this
fashion �rst. But this approach introduces some special problems.

4.1.1.1. Proof Irrelevance

A function with constrained domain has a proof argument. In case of nthelem
we supply the proof that the index we look for is in range of the list. The
proof argument is just another argument besides the index and the list, thus
the outcome of such a function could depend on the proof in the same fashion
as it depends on the index or list we supply. It is not clear if the function is
independent of the concrete proof. Our intuition about the function nthelem tells
us, that if we are interested in the second element of a list, this element will be
the same � independent of the concrete proof that the length of the list is larger
than two. But formally we need to prove the following lemma to ensure this.

Lemma nth_elem_proof_irrelev:
8A: Set, lst: (list A), n: nat, proof1,proof2: (n < (length lst)) = true.

(nthelem A lst n proof1) = (nthelem A lst n proof2)
.

So every partial function comes along with a proof irrelevance lemma.

56



4.1. Partial Functions

4.1.1.2. Dealing with Partial Functions

During the development of the codegenerator a lot of partial functions occur.
But every time we apply such a function e.g. to de�ne another function, we
must provide the proof that the input values are wellformed. This makes the
de�nition of functions rather complicated and it gets very hard to distinguish the
proof parts from the pure functionality of the function. To give an impression of
the complications, I will present two examples. I �rst will demonstrate the basic
concepts of writing functions with proof arguments, with the implementation of
nthelem and after that I will de�ne the step semantics of a statemachine in this
fashion, to give a more realistic example.

Fixpoint nthelem
[A: Set; lst: (list A); n: nat]: ((n < (length lst)) = true) ! A :=
<[l: (list A)] (n < (length l)) = true ! A>
Cases lst of
nil ) [prf:(n < O) = true]

(efq A prf)
| (cons hd tl) ) <[n: nat](n < (length (cons hd tl))) = true ! A>

Cases n of
O ) [prf: (O < (length (cons hd tl))) = true]

hd
| (S m) ) [prf: (m < (length tl)) = true]

(nthelem A tl m prf)
end

end
.

The function nthelem is formally de�ned as primitive recursive function on the
index argument n. Therefore the proof argument (n < (length lst)) = true) is not
part of the argument list (cf. 2.2.3). Instead the range of nthelem is a functional
type that maps such a proof argument to the element type A. To de�ne the
function we have to do case analysis on the list lst and the index n. In all the
di�erent branches of this case analysis, we must supply functions from a proof
argument to the element type A to satisfy the type of the whole function. That's
why the terms of the di�erent case branches are all de�ned by abstraction of a
proof argument. But as the case analysis specializes the list lst to nil or (cons hd
tl) and the index n to O or (S m), the proof terms are specialized, too. So the type
of the branches and therefore the type of the whole case expression depends on
the matched terms of lst and n (Dependent Type cf. 2.1.1). To ensure that Coq
can check the specialized types of the proof arguments in the branches against
the general one (of the whole case statement), the case statements are annotated

57



4. General Aspects of the Development

within the brackets <...>. These annotations can be seen as typing hints for Coq.
The type of the case statement depends on the term on which case analysis is
performed. So we need a name for this term to de�ne the type. This is the aim of
the abstractions [l: (list A)] and [n: nat] inside the annotations1. In the �rst case
statement, which destructs the list lst, we have the annotation <[l: (list A)] (n <
(length l)) = true ! A>. The both branches of the case statement must satisfy
this type, with respect to the matched pattern. The variable l of the annotation
is instantiated with nil in the �rst case, and so the term of this branch must have
type (n < (length nil)) = true ! A. This type can be simpli�ed to (n < O) =
true ! A. In the second case, the variable l of the annotation is instantiated with
(cons hd tl) and so this branch must have type (n < (length (cons hd tl))) = true
! A. As we also perform case analysis on the index n in this branch, we must
supply an analogous annotation for this case statement, too: <[n:nat](n < (length
(cons hd tl))) = true ! A>. If the index n is O this type is specialized to (O <
(length (cons hd tl))) = true, if the index is (S m) the type is specialized to ((S
m) < (length (cons hd tl))) = true ! A or simpli�ed: (m < (length tl)) = true !
A. All these specialized types appear in the proof arguments prf of the di�erent
branches. In addition to all these typing annotations for the proof argument, I
want to explain the functionality, too. Let us look at the distinct cases. First we
do pattern matching on the list lst.

nil The list is empty. In this case there can't be an index in range of the list. A
proof of (n < O) = true can't be derived. This is equal to the falsum. So
we can be sure that this branch will never be taken if we have a proof that
the index is in range. But formally we need to de�ne the functionality of
this branch as well. This is quite easy, since we can assume that the falsum
(n < O) = true holds in this branch and so can provide an element of type
A by the theorem efq (�ex falso quodlibet�). This theorem basically states
that we can derive an arbitrary proposition (or type in type theory) if we
assume that the falsum is true.

(cons hd tl) The list is not empty. We do case analysis on the index n.

O We want to select the index 0 out of the list (cons hd tl). This is simply
the head of the lst, hd. The proof argument prf isn't of any interest in
this case.

(S m) If we want to select an index of the form (S m) out of the list (cons hd
tl), the indexed element must be in the rest list tl. The proof argument
guarantees, that the index m is de�ned in the tail tl: prf: (m < (length
tl)) = true. So we can recursively call nthelem on these parameters.

1The variables l and n of the annotations, are local to the annotation and therefore do not
con�ict with variables inside the case expression.

58



4.1. Partial Functions

We can see from this example how we have to deal with a proof argument. We
have to transform it, so that it �ts to the di�erent places where it is needed.

What happens to such a partial function with proof arguments when we ex-
tract it to ML? The proof arguments are omitted during extraction and we get a
function that is formally de�ned for the whole domain, but we know that it will
only be applied to a constrained domain in the context it is used. The partial
function nthelem, for example, is extracted to the following ML function:

let rec nth_elem lst n =

match lst with

Nil -> failwith ``False_rec''

| Cons (hd, tl) -> (match n with

O -> hd

| S m -> nth_elem tl m)

The proof argument (n < (length lst)) = true, is discarded during extraction.
The range of the function is just the element type of the list contents. The
domain of the function is the whole domain of natural numbers, and the indices,
that are not enclosed in the range of the list will cause an exception (failwith
�False_rec�).

Let me now explain the de�nition of the step semantics of statemachines with
this approach. The function stepSM was de�ned in 3.3.6 with the alternative
approach to model partial functions, by extending the range of the function to
the Maybe type. To recall the de�nition, I will repeat it right now.

De�nition stepSM
[hierarchy: Statehierarchy
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;expansion_fun: LeafBSPathExpansionFunction
;con�g: Con�gSM
]: (Maybe Con�gSM)
:=
(content_path_by_bs_path hierarchy (stateCon�gSM con�g))
>�> [statePath: (StatePath)]
Cases (select_�ring_transition

(envCon�gSM con�g) eval_condition statePath) of
nothing
) (result con�g)

j (ok transition)
) (stepTransition

hierarchy eval_action expansion_fun
(envCon�gSM con�g) transition)

end.

59



4. General Aspects of the Development

What has to be changed if we want to write this function directly as partial
function? Generally speaking we must get rid of the Maybe monad. I will now
explain the steps necessary to transform the Maybe function stepSM to the partial
function step

0

SM presented on page 61. If further functions and types must be
modi�ed, too, this will be noti�ed by a su�x ' after the function name.

The �rst occurrence of the Maybe type is the transformation of the address of
the con�guration state to the state path leading to this address (content_path_by-
_bs_path). This transformation can only succeed if the address is wellformed,
thus we need an additional proof parameter to ensure this (stateA_wellformed)
and rewrite the function content_path_by_bs_path to a partial function. The
next thing we do is to search for a transition along the state path that �res
(select_�ring_transition). This is an ordinary total function, since it is valid that
no transition �res at all. If no transition �res (nothing) we simply return the in-
put con�guration con�g. If a transition �res ((ok transition)) we pass the work to
stepTransition. Since stepTransition also yields a Maybe type we must modify this func-
tion to step

0

Transition. What preconditions on the parameters of stepTransition must
be ful�lled to ensure that the function can calculate a proper result? First of all
the addresses of the source and the target state of the �red transition must be
de�ned (trans_src_trg_de�ned). But we can't directly supply this proof, because
we can't do any assumptions on the �red transition on the level of stepSM, since we
don't know if there is a �ring transition at all. We can only state that all transi-
tions of the hierarchy are wellformed (trans_wellformed) and then derive a lemma
that the �red transition must be wellformed, too (milk_transition_wellformed).
To calculate the new super state of the statemachine we need to know, that the
expansion function is wellformed (exp_fun_wellformed). The auxiliary lemma
content_of_stateAdr_in_hierarchy ensures that every state of the state path,
corresponding to the state address inside the con�guration con�g, is de�ned in
the statehierarchy. Here comes the modi�ed version of the step semantics.

60



4.1. Partial Functions

De�nition step
0

SM

[hierarchy: Statehierarchy
;eval_condition: ConditionEvaluator
;eval_action: ActionEvaluator
;expansion_fun: LeafBSPathExpansionFunction'
;con�g: Con�gSM
;exp_fun_wellformed: (leaf_bs_path_expansion_function_wellformed'

hierarchy expansion_fun)
;stateA_wellformed: (bs_path_wellformed hierarchy (stateCon�gSM con�g))
;trans_wellformed: (transitions_wellformed hierarchy)
]: Con�gSM
:=
let statePath = (content_path_by_bs_path' stateA_wellformed) in
let �red_transition = (select_�ring_transition

(envCon�gSM con�g) eval_condition statePath)
in
(
<[maybe: (Maybe Transition)](�red_transition = maybe) ! Con�gSM>
Cases �red_transition of
nothing
) [prf_eq: �red_transition = (nothing Transition)]

con�g
| (ok transition)
) [prf_eq: �red_transition = (ok transition)]

let trans_src_trg_de�ned
= (milk_transition_wellformed

(content_of_stateAdr_in_hierarchy stateA_wellformed)
trans_wellformed
prf_eq)

in (step
0

Transition 1!hierarchy
eval_action
3!expansion_fun
(envCon�gSM con�g)
5!transition
trans_src_trg_de�ned
exp_fun_wellformed)a

end
(re�_equal (Maybe Transition) �red_transition)
)

.

aThe parameters starting with numbers like 1!hierarchy are implicit arguments that can be
inferred by Coq automatically. They are just explicitely written down for clearness of
presentation.

61



4. General Aspects of the Development

Let me explain some technical details of this de�nition. The lemma milk_-
transition_wellformed ensures that the �red transition is wellformed, when we
know that all transitions of the hierarchy are wellformed. To de�ne this lemma,
we must know that the �red transition is calculated by the function select_�ring_-
transition. With case analysis on �red_transition we distinguish between the
probable outcome of select_�ring_transition by pattern matching. We need
to know that the outcome of select_�ring_transition is (ok transition) to ap-
ply it to the lemma milk_transition_wellformed. But a proof argument like se-
lect_�ring_transition = (ok transition) isn't available due to ordinary pattern
matching. So we have to write the case statement as function from such a proof
argument to the range Con�gSM. Therefore we must abstract over the whole
case statement to gain the proof (prf_eq) of the case we are currently in �
�red_transition = (nothing Transition) or �red_transition = (nothing Transition).
This is done by the type annotation inside the brackets <...> directly above
the case statement. But since the result type of the whole function should just
have type Con�gSM and not the functional type, that maps a proof argument to
Con�gSM, we instantly apply the proof argument to the case statement. This is
the line: (re�_equal (Maybe Transition) �red_transition). It is a proof for re�ex-
ivity of the equality �red_transition = �red_transition.

4.1.1.3. Implicit Arguments

Another technical problem occurs in Coq when we deal with partial functions
modeled as dependent types. The use of implicit arguments in Coq. Coq o�ers the
possibility to turn implicit arguments completely on or o�, during the de�nitions
of functions and lemmata. Let me make this clear with the function nthelem. This
function gets four arguments. The type of the list elements A, the list lst, the
index n to look for, and the proof in_range of type (n < (length lst) = true. So
if we turn o� the implicit arguments, we must write down all of them explicitly
during function application: (nthelem A lst n in_range). But if we turn implicit
arguments on, we only must supply the proof term, since all other arguments
can be derived from this term: (nthelem in_range). But both solutions are not
convincing. In the �rst case we get very long and confusing terms with a lot of
redundancy (the parameter A, the type of the list elements, is not very interesting
at all), and in the second case we don't see the informative objects lst and n at
all. This is very cumbersome during the development of functions and proofs.

But besides these problems to understand and maintain the development, we
can get into some technical trouble, when we reason about partial functions, with
implicit arguments turned on. I'll try to explain this by a rather simple lemma
on lists. If we map a function fun on a list and then select the n'th element of
the resulting list, we can also �rst select the n'th element of the original list and

62



4.1. Partial Functions

then apply the function fun on the selected element, as long as the index n is in
range of the list.

Lemma nth_elem_map_fusion:
8A: Set, lst: (list A), n: nat, B: Set, fun: A ! B,
in_range: (n < (length lst)) = true.
(nthelem 1!A 2!(map fun lst) 3!n (map_preserves_index_in_range fun in_range)
=
(fun (nthelem 1!A 2!lst 3!n in_range))

.a

aThe automatic inference of implicit arguments is turned on. To improve readability the
implicit arguments can be annotated with the syntax <argument number>!<argument>
(cf. 4.1.1.3).

The auxiliary lemma (map_preserves_index_in_range fun in_range) provides
us with the proof (n < (length (map fun lst)) necessary to apply nthelem to the
transformed list. The main lemma is proved by induction on the list lst. The
basic case, the empty list, is simple to prove. The problem I want to show arises
during the step of the induction. During the induction step the list has the form
lst = (cons hd tl) for some head hd and tail-list tl. The hypothesis in_range has
the following form in this case:

in_range: (n < (length (cons hd tl))) = true

The goal of the lemma now has the following form:

(nthelem 1!A 2!(map fun (cons hd tl)) 3!n
(map_preserves_index_in_range fun in_range))

=
(fun (nthelem 1!A 2!(cons hd tl) 3!n in_range))

But Coq will not print the implicit arguments, so we get a goal like the
following:

(nthelem (map_preserves_index_in_range fun in_range)
=
(fun (nthelem in_range))

63



4. General Aspects of the Development

Right now we can see that it gets quite hard to understand the goal, since the
informative arguments (map fun (cons hd tl)), n and (cons hd tl) are not visible
anymore. But this is only a problem for the user and not for Coq. Coq internally
can reconstruct the hidden arguments by type inference. The user has to do this
type inference in mind. But as we continue the proof, it can happen that Coq
isn't able to infer the implicit arguments, too. If we simplify in_range during the
proof we gain:

in_range: (n < (S (length tl))) = true

But with this simpli�cation done, the goal of our lemma is not wellformed for
Coq anymore. Just look at the term (nthelem in_range). Coq isn't able to infer
the implicit list argument (cons hd tl) since only the tail tl remains in the proof
argument in_range. The head hd is lost during simpli�cation. If we want to
continue the proof and apply a tactic to (nthelem in_range) we must do the type
inference for Coq and refer to (nthelem 2!(cons hd tl) in_range)2. In this situation
the output terms of Coq aren't valid input terms anymore, and Coq answers our
attempt to input them with an error message. Already in this simple example
this is very confusing, but during the proofs of more complex lemmata this gets
very time consuming and hard to understand.

The theorem prover Typelab o�ers a more �exible and powerful mechanism
to deal with implicit arguments. A PhD thesis on this topic will be available soon
[Lut01].

4.1.2. Expanding the Range

We can also model a partial function by providing an extra result value for all the
invalid inputs. This leads us to the use of the Maybe monad as described during
the development of the codegenerator. The functions are quite straightforward
to de�ne, since we don't have to cope with proof arguments. But the de�nition
of the function is normally not enough. We need an auxiliary lemma which tells
us, for which preconditions on the arguments we will gain a useful result. In case
of the function nth (cf. p. 17) we need a lemma like:

Lemma nth_ok:
8A: Set, lst: (list A), n: nat, x:A. (n < (length lst)) = true ! (nth lst n) = (ok x).

2Analogous to this, (map_preserves_index_in_range fun in_range) must be extended to
(map_preserves_index_in_range 2!(cons hd tl) fun in_range) to be a typeable input term.

64



4.2. Referencing Objects

So we can see that the functionality of the function and the proof parts are
separated in this approach. The de�nition of functions and the reasoning about
those functions is quite clear.

But a small disadvantage of this approach occurs during program extraction.
If we extract the functions to ML, the functions basically keep the same. Here is
the ML function extracted by Coq, for the function nth (cf. p. 17).

let rec nth lst n =

match lst with

Nil -> Nothing

| Cons (hd, tl) -> (match n with

O -> Ok hd

| S m -> nth tl m)

There are no parts of the function that must be omitted in ML. So the ex-
tracted function still operates in the Maybe monad. This means that we always
have to test, if the outcome of a function is nothing or something useful. Even if
we have proved that the function will always return something useful, since it is
only applied to the constrained domain in the context it is used.

4.1.3. Comparison

Let me summarize and compare the two approaches. In the �rst approach we
use the expressiveness of dependent types to model a partial function directly on
its constrained domain. At �rst glance this is a very elegant formalization. But
the costs are high. The development becomes hard to understand and di�cult to
maintain, since the functionality and the proofs aren't separated anymore. Deal-
ing with functions and proofs gets even more di�cult due to the complications
that arise from the combination of dependent types and implicit arguments.

In the Maybe Monad approach the functionality and the proofs are strictly
separated. The function de�nitions are easy to understand and during proofs,
no complications with dependent types arise. The whole development gets much
easier to understand and to maintain, compared to the �rst approach. The only
disadvantage is, that the extracted ML code has to deal with some overhead in-
troduced by the Maybe monad. But the disadvantages of the constrained domain
approach are too grave, hence I clearly prefer the Maybe monad approach, as long
as it is that hard to deal with dependent types.

4.2. Referencing Objects

When we want to �nd the target state of a transition, we need a way to reference
this state. The �rst obvious solution we tried is to name a state with an unique
identi�er . The second approach is to address a state by its position in the
statehierarchy. This is described in 3.3.5.1. In both cases we need a predicate

65



4. General Aspects of the Development

which either states that the identi�er is de�ned in the statehierarchy or that the
address is valid for the statehierarchy. So both approaches seem quite similar.
Why did we �nally choose the address alternative? There is not really one decisive
reason, but many small advantages of the address approach over identi�ers.

The notion of a address in a tree can be de�ned in a generic way, indepen-
dent of the special node contents. We must not assume that every node has an
identi�er. So we can talk about an address in every rosetree not only in the
special case of our statehierarchy. Since the address is de�ned by a list of branch
indices, we also can talk about paths in the tree in an uniform way. The address
of a leaf node is given by the complete path to this leaf node. This way we are
able to represent the whole super state of the statemachine by the addressing
mechanism for simple states. Besides these advantages during the speci�cation
and development of the codegenerator there are some impacts on the e�ciency
of the extracted ML codegenerator, too. When we reference a state by its identi-
�er, we must search the whole statehierarchy and compare the identi�ers of the
states to �nd the referenced state. This is not very e�cient. Given the address
of the state, we don't need such a blind search, because we know the exact path
of branches in the tree, which leads us to the state. With some additional e�ort,
we could of course implement more e�cient lookup methods in both cases. But
the straightforward default implementation of a address lookup is more e�cient
than the one for identi�ers.

4.3. Development of Correct Functional

Programs

Our aim using Coq was to develop an executable functional program. We are able
to de�ne functions and to prove some properties of those functions in Coq. After
all that is done, we can extract these functions to ML and gain a highly reliable
executable program. We use Coq as interactive development environment to
create a provably correct functional program. Let me discuss a di�erent approach
to develop such correct programs. When we look at the development described
in chapter 3 we directly de�ned the functions and then supplied some lemmata
and theorems around them to state the correctness of these functions. To extract
these functions to ML is an easy task for Coq, since there is no feature used in
these functions that is not available in ML. The function extraction is basically
reduced to a syntactic transformation between the Coq speci�cation language
called Gallina and ML. Even if we look at our alternative approach to model
partial function in Coq directly (cf. 4.1.1), we explicitly de�ned the functions.
During program extraction, Coq removes the proof arguments from the functions,
because these are the parts which we can't express in ML. But there is another,
fundamentally di�erent approach to de�ne functions in Coq. Since a proof in

66



4.3. Development of Correct Functional Programs

Coq is constructive we can de�ne a function out of a proof of its speci�cation.
So to de�ne the codegenerator we would start o�, with a speci�cation theorem
like the following:

Theorem codegenerator:
8statemachine: Statemachine.
9implementation: Code. correct(statemachine, implementation).

When we can prove such a theorem, we can extract a function codegenerator
with the desired behaviour. Such an approach seems to be very tempting. We
just think about speci�cations and don't care about the implementation. Let me
illustrate the approach to program a function by proving a speci�cation, on the
example of the function nthelem. The speci�cation lemma is the following:

Lemma nthelem:
8A:Set, lst: (list A), n: nat.
((n < (length lst)) = true) ! A.

This lemma resembles the function signature of the direct de�nition of nthelem
(cf. p. 57). For all lists lst of content type A and all indices n, which are smaller
than the length of the list, we can select a list element of type A. Mention, that
the �nal conclusion of the lemma is just A. This is an ordinary Set type. We don't
claim any properties for the selected element. Here is the proof of the lemma:

Induction lst.
(* Basic case of induction: lst = nil *)
Simpl. Auto. Intros. Apply efq. Auto.

(* Induction step: lst = (cons hd tl) *)
Intros hd tl.
Destruct n. (* Case distinction over index n *)
(* n = O *)
Intros. Apply hd.
(* n = (S n0) *)
Intros n0 H. Apply (H n0).Auto.a

aThe tactic Intros moves the preconditions of a chain of implications in the goal to the local
context. So the preconditions become local assumptions. They can optionally be named
(e.g. Intros hd tl).

67



4. General Aspects of the Development

I don't want to explain the tactic script of the proof in detail. But the broad
structure of the proof can be understood, if we compare it to the direct de�nition
of nthelem on page 57. We prove the lemma by induction on the list lst. In the
basic case, the list is empty and we can supply an element of type A with the �ex
falso quodlibet� lemma efq (cf. p. 58). If the list isn't empty we must do case
analysis on the index n. If the index is zero, we provide the head hd of the list
as solution. If the index is greater then zero, we can prove the lemma, using the
hypothesis of induction H. We can print the proof term that Coq has internally
created by this tactic script, to see the function we have de�ned by the proof.

nthelem=
[A: Set; lst: (list A)]
(list_rec
[n: nat; pr: ((n < O) = true)](efq A pr)
[hd: A;
tl: (list A);
H: 8n: nat. (n < (length tl)) = true ! A;
n:nat
]
<[n0: nat](n0 < (length (cons hd tl))) = true ! A>
Cases n of
O ) [_: ((O < (length (cons hd tl))) = true)] a

| (S n0) ) [H0: (((S n0) < (length (cons a c))) = true)] (H n0 H0)
end

lst)

The induction on the list lst results in the higher order function list_rec which
implements a general recursion scheme on lists. The function list_rec is applied
to the list lst and also gets two parameter functions which implement the distinct
behaviour for the empty and non empty list respectively. The function may get
clearer, if we compare this de�nition with the direct de�nition of nthelem on page
57 or look at the extracted ML code:

let nth_elem lst =

list_rec (fun n -> failwith ``False_rec'')

(fun hd tl h n ->

match n with

O -> hd

| S n0 -> h n0)

lst

with

68



4.3. Development of Correct Functional Programs

let rec list_rec f_nil f_cons = function

Nil -> f_nil

| Cons (hd,tl) -> f_cons hd tl (list_rec f_nil f_cons tl)

But with the �programming by proving� approach some hard complications
arise, which make it insu�cient for program development. The implementation
is done implicitly during the proofs. Roughly speaking, an induction gets a
recursive function. If we take this approach serious we should not be forced to
have a desired implementation in mind and then program the function with a
proof. If we do so, this is a very bad programming technique, since we don't
see any code but must guess the functional behaviour out of the tactic scripts.
If we again refer to the lemma nthelem the �nal conclusion is just A, the type
of a list element. The lemma makes no demands on the selected element. So
every function, which returns an arbitrary element of type A would ful�ll this
speci�cation. The function is under-speci�ed3. A speci�cation which only permits
the desired implementation, would require the notion of the position of an element
in a list.

Let us come back to the starting point, the de�nition of the theorem code-
generator. We must apply the �programming by proving� approach to gain a
functional decomposition of the whole problem. To de�ne a theorem codegener-
ator we must �rst be able to de�ne the predicate correct. To do this we must
ensure that the statemachine is wellformed and need lots of new lemmata and
functions to be able to de�ne the behaviour and step semantics of a statemachine
and its implementation. We need some wellformedness preconditions to be able
to de�ne correct. We again gain partial functions and get into the same trouble
as described in 4.1.1. Since we tried this approach to de�ne some functions, this
was actually the �rst time during the development we encountered the problem
of proof irrelevance (e.g. in the function nthelem). In some proofs the pure speci-
�cation of a function is not enough. We need internals of the function to reason
about it, for example if the function is under-speci�ed like in previous example
of nthelem. But the de�nition is very hard to understand, since it is created by
a proof, and it easily gets very clumsy and unstructured compared with a hand
written function de�nition.

3We could, for example, easily write a function that always returns the head of the list. This
can be done directly in the proof script of the lemma nthelem. We just discard the section of
the script for the non zero index (that resembles the recursive call) and repeat the section
of the zero index. This section supplies the head hd as element of type A.

69



5. Conclusions

I presented the successful development of a provably correct codegenerator for
hierarchic statemachines. A highly reliable program was the bene�t of our ap-
proach to combine development and veri�cation in one single machine-supported
process. The concepts of functional programming and logics seamlessly �t to-
gether. Writing the functional program and proving properties of it went hand
in hand. This way programming errors get visible at an early stage of the de-
velopment. The functional decomposition of the problem leads to manageable
propositions and proofs. The development of veri�ed systems gets feasible due
to this machine-supported development and veri�cation process.

5.1. Statistics

To give an impression of the size of the development and to compare generated
and hand written code, I will list some statistics. First of all let us look at the
formal development in Coq. The lines of speci�cation cover datatype de�nitions,
functions and lemmata on them. Every tactic step of a proof gets one line in the
�lines of proof� statistics.

� Basic library stu�, like list and list1:

Lines of speci�cation Lines of proof

1621 2045

� The main development (rosetree, statemachine, intermediate representa-
tion, translation function and correctness proof):

Lines of speci�cation Lines of proof

3443 6633

These summation covers both attempts to model partial functions: the Maybe
monad approach and the dependent type approach (cf. 4.1). Both versions are
kept together in the same �les to enable a direct comparison and update.

70



5.2. Possible Extensions to the Codegenerator

Out of the formal development in Coq, the translation function and the
datatypes of the statemachine and the intermediate representation are automat-
ically extracted to a ML program. To gain a complete codegenerator that parses
in a textual description of a statemachine and prettyprints the intermediate rep-
resentation to Java, we need to extend the extracted ML code with some hand
written code for the parser and the prettyprinter (cf. 3.1):

Lines of Coq generated ML code Lines of hand written ML code

460 264

The great gap between the lines of speci�cation and the generated ML code
has two reasons. First of all the biggest e�ort in the speci�cation is to describe
the semantics of the statemachine and the intermediate representation. But only
the bare translation function is extracted. The second reason is of course, that
only the functions and datatypes are extracted but no lemmata or theorems.

It may be interesting to look at some statistics of the Java code for the clock
statemachine example, too.

Lines of �xed and generated Java code Lines of hand written Java code

85 372

The �xed code is for the framework that embeds the generated statemachine
inside a Java application (cf. 3.7). The generated code is the one listed on page
52. The hand written code covers the implementation of the clock features (time,
date and stopwatch) and consists mainly of GUI programming (around 200 lines).
The example clock statemachine was quite simple. As the modeled statemachine
grows the proportion of generated to hand written code will change in favor of
the generated code.

5.2. Possible Extensions to the Codegenerator

There are various possibilities to extend the codegenerator. First of all we could
think about extensions to the statemachine. The presented codegenerator can
only deal with default states. Thus we could implement history states next (cf.
3.3.5.3). The step semantics of the statemachine can already deal with history
states, since the expansion strategy is only a parameter. But the implementation
can't. We would have to introduce some kind of variables or arrays into the inter-
mediate representation to store the current history information. An array could
be modeled as abstract data type �rst. This way we can keep the two problems
apart: to provide a correct implementation of an array and to implement the
dynamics of the statemachine. Another prominent feature of statemachines are
parallel states [Har87]. They are used to model independent concurrent parts of
a system. Conceptually, parallel states can be avoided by blowing up the number

71



5. Conclusions

of simple states. But this isn't very desirable since it makes the speci�cation
cumbersome and the generated code will explode, too. To enrich the develop-
ment with parallel states would cause a lot of work, since we must both extend
the statemachine speci�cation and the target language to �t the requirements
introduced by concurrency. Parallel states also introduce some subtle semantic
aspects. For example, what happens if two parallel states have transitions to
di�erent non parallel substates of a parent state? If both transitions are simul-
taneously switched, we get an inconsistent con�guration. So we must be careful
when we de�ne the semantics and wellformedness of such a statemachine.

The codegeneration described in 3.5 �attens the hierarchy. That means that
only the leaf states (precisely the paths to the leaf states) of the hierarchy are
represented in the implementation. The transitions and actions of the successor
states are inherited by the leaf states. This implies that the code generated for
a parent state is duplicated in all its children states. This is a very e�cient
implementation but it blows up the generated code. We could also prefer a more
economical codegenerator, which avoids this duplication of code. But then we
must �nd a way to store the hierarchy in a data structure of the target language.

There are many variants of hierarchic statemachines with di�erent seman-
tics ([vdB94], [Har87], [HN96], [UML00], [NRS96]). It would be interesting to
test di�erent semantics and their implementations. We should try to provide a
formalization of the codegenerator that is almost robust against these seman-
tic di�erences, just as the developed codegenerator is correct for arbitrary static
expansion strategies and arbitrary semantics of conditions and actions (cf. 3.6).

We can also examine some optimizations on both the statemachine side and
the implementation side. If the condition guarding a transition of a parent state
logically implies the condition of a substate transition, the substate transition will
never be �red, since the parent transition has priority over the substate transition.
So we can leave out the substate transition without changing the semantics of
the statemachine. This is a kind of dead code elimination. To do this we must
specify the language of the conditions to reason about it. We can also optimize
the code generated for the actions. If two transitions of a super state lead to the
same target state (with an entry action), we get a code fragment like this:

if guard1 then
actions1;
EntryAction

else if guard2 then
actions2;
EntryAction

end

72



5.3. Coq as Development Environment for Correct Programs

Here we can lift the EntryAction out of the if-statement.

if guard1 then
actions1;

else if guard2 then
actions2;

end
EntryAction;

If we would specify the semantics of actions as well, this would give us further
room for optimizations. In a sequence of actions we could �nd out if some actions
make others obsolete and then leave out these obsolete actions. For example, if we
write to the same variable in two di�erent actions without reading this variable
in the meantime, we can leave out the �rst action. But such optimizations are
also usual in modern compilers and can be viewed as a di�erent topic of research,
independent of the context of statemachines.

5.3. Coq as Development Environment for

Correct Programs

During the creation of the codegenerator, Coq was used as development envi-
ronment for correct functional programs. In general, Coq could be made more
user friendly to support this process. First the speci�cation language could be
extended. It would be nice if some kind of name-spaces would be supported. This
would lead to a modular structure of the development. Also a stronger distinc-
tion between speci�cations and implementations would be �ne. As an example,
we could de�ne an abstract datatype by its speci�cation. When we then want to
deploy a certain instance, the proof obligations should automatically be created
by the system.

The proof handling of Coq is very spartanic, too, even if a front end like
Proof General [Asp00] or Pcoq [Ber] is used. It would be very useful to have a
graphical user interface that shows the proof tree or o�ers a list to select only
those lemmata and rewrite-rules that can be successfully applied to the current
goal. That way it would be easier to get familiar with libraries. Other interactive
theorem provers like Typelab [SLvH98] or KIV [BRSS99] give a good example
of this.

During the development we had to specify the statemachine and the target lan-
guage and their semantics. Then we provided a translation function and proved
its correctness. Many intermediate steps and lemmata were necessary. But the
speci�cation wasn't stable. During some proofs inconsistencies occurred that lead

73



5. Conclusions

to an adaption of the speci�cation. So lots of lemmata had to be proved again
and again as the speci�cation evolved. The proofs are just stored as lists of tactics
applied to the goal. The tactic script itself, without the current proof state, is
not very expressive (e.g. look at the example proof script on page 67). Compared
with programming, dealing with proofs is more like assembly programming than
programming in a modular object oriented or functional language. Without a
stepwise replay of the whole proof, it is hard to �nd the points where the proofs
have to be adjusted. There is no support telling us what parts of the speci�ca-
tions are a�ected by a change and what lemmata have to be redone. There are
three main attempts to solve this problem:

� More automation. Ideally, if all proofs are done automatically by the ma-
chine, the development gets very robust against changes in the speci�cation.
So writing new and powerful tactics should be made easy for the user.

� Reuse of proofs and correctness management. In the system KIV, a lot of
work was invested in this area [Rei95]. If a change is made, the system
automatically invalidates the a�ected lemmata. However, the old proofs
are not discarded, but are used to guide the user and the system to redo
the proofs. The interaction with the user is managed with a sophisticated
graphical user interface.

� Make the proofs more readable for humans. The essential steps of a proof
should immediately be visible for the user, without a stepwise replay of
the proof. This approach was pioneered by the Mizar System [Rud92] and
recently taken up by an extension to Isabelle called Isar [Wen99].

74



A. Basic Datatypes and

Functions

� Natural numbers nat:

Inductive nat: Set := O : nat | S : nat ! nat.

� The boolean values bool:

Inductive bool: Set := true : bool | false : bool.

� Polymorphic lists list and the map function map on them:

Inductive list [A:Set]:Set := nil : (list A) | cons: A ! (list A) ! (list A).
Fixpoint map [A,B: Set; f: A ! B, lst: (list A)] : (list B) :=
Cases lst of
nil ) (nil B)

| (cons hd tl) ) (cons (f hd) (map f tl))
end

.

� Polymorphic non empty lists list1 and the map function map1 on them:

Inductive list1 [A:Set]:Set := one: A ! (list1 A)
| cons1: A ! (list1 A) ! (list1 A).

Fixpoint map1 [A,B: Set; f: A ! B, lst: (list1 A)] : (list1 B) :=
Cases lst of
(one a) ) (one (f a))

| (cons1 hd tl) ) (cons1 (f hd) (map1 f tl))
end

.

75



Index

(), 9
�, 17
[], 10
Cic, 9

abstraction, 10
Action, 24
action, 19, 24
actionTransition, 25
ActionEvaluator, 24
actionsIfBranchIR, 38
app, 12
application, 9

behaviour, 35
external, 35
internal, 35

behaviourIR, 42
behaviourinternalIR , 42
behaviourSM, 36
behaviourinternalSM , 35
bind, 17
bool, 23, 76
BranchSelectionPath, 27
bs_path_wellformed, 27

calculate_target_leaf_adr, 33
calculate_transition_actions, 33
Calculus of (Co)Inductive Construc-

tions, 9
case analysis, 11
Cases, 11
Clock, 51
Condition, 24
condition, 24
conditionIfBranchIR, 38
ConditionEvaluator, 24

Con�gIR, 39
Con�gSM, 31
con�guration, 31

correspondence, 46
cons, 23, 76
cons1, 23, 76
content_path_by_bs_path, 28
ContentPath, 28
Coq, 8
correctness_of_codegeneration, 47

default state, 19, 31
Dependent Type, 5, 6

efq, 59
entry action, 24
entryActionState, 25
Env, 24
envCon�gIR , 39
envCon�gSM , 31
environment, 24
exit action, 24
exitActionState, 25
expand_bs_path_with_left_most_path,

50
expression, 24
extract_leaf_bs_paths, 45
extract_transitions, 33

fail, 17
false, 23, 76
falsum, 6, 7
Fixpoint, 10

guard, 19
guardTransition, 25

history state, 31

76



Index

idxCon�gIR , 39
if-then-else, 11
IfBranchIR, 38
IfCascadeIR, 39
implicit argument, 11
Induction, 13
Inductive, 9
inner, 26
Intuitionistic Logic, 6
iterate, 42
iterateMaybe, 36

leaf, 26
leaf_bs_path, 27
leaf_bs_path_expansion_function_well-

formed, 30
LeafBSPathExpansionFunction, 29
Lemma, 14
length, 11
list, 23, 76
list1, 76

map, 76
map1, 76
mapMaybe, 44
Matrix, 18
Maybe, 16
mkIfBranchIR, 38

nat, 9, 23, 76
nextIfBranchIR , 38
nil, 23, 76
nth, 17
nthelem, 57, 58, 69
nth_elem_proof_irrelev, 57

O, 9, 23, 76
one, 23, 76

Parameter, 24
pattern matching, 11
Prop, 9
propositions as types, 7

Qed, 15

Record, 10
Re�exivity, 13
result, 17
reverse, 12
reverse_app, 14
reverse_reverse_id, 12
Rosetree, 26
rosetree, 25
RosetreeList, 26
rtlCons, 26
rtlOne, 26

S, 9, 23, 76
select, 18
select_case_ir, 41
select_�ring_transition, 33
select_fst_active_if, 40
Set, 9
Sigma Type, 6
Simpl, 13
sourceTransition, 25
State, 25
state, 19
stateCon�gSM , 31
Statehierarchy, 26
Statemachine, 52
statement, 24
StatePath, 33
static action, 24
staticActionState, 25
stepIfBranch, 40
stepIfCascade, 40
stepIR, 41
stepSM, 34
stepTransition, 33
super state, 20, 29
SwitchIR, 39

targetTransition, 25
Theorem, 12
Transition, 25
transition, 19, 25
transition_enabled, 34

77



Index

transitionsState, 25
transitions_wellformed, 47
translatePath, 44
translateSM, 45
translateinternalSM , 45
translateStateAdr, 44
translateTransition, 43
true, 23, 76
Type, 9
Type Theory, 4

update_env, 33

78



Bibliography

[Asp00] David Aspinall. Proof General: A Generic Tool for Proof Development.
In Tools and Algorithms for the Construction and Analysis of Systems,
Proc. TACAS�00, LNCS 1785. Springer, 2000.

[Aug98] L. Augustsson. Cayenne - a language with dependent types. In Pro-
ceedings of ACM SIGPLAN International Conference on Functional
Programming, pages 239�250, 1998.

[Bar92] Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Background: Computational
Structures, volume 2 of Handbooks of Logic in Computer Science, chap-
ter 2, pages 117�309. Oxford University Press, Walton Street, Oxford
OX2 6DP, 1992.

[Bea00] Bruno Barras et al. The Coq Proof Assistant Reference Manual Version
6.3.1. INRIA Rocquencourt - CNRS - ENS Lyon, May 2000.

[Ber] Yves Bertot. Pcoq.
Available from<http://www-sop.inria.fr/lemme/pcoq/authors.html>.

[BG01] Henk Barendregt and Herman Geuvers. Proof-assistants us-
ing dependent type systems. 2001. To appear. Available from
<ftp://ftp.cs.kun.nl/pub/CompMath.Found/barendregt_geuvers.ps.Z>.

[BRSS99] M. Balser, W. Reif, G. Schellhorn, and K. Stenzel. Kiv 3.0 for prov-
ably correct systems. In Current Trends in Applied Formal Methods.
Springer LNCS 1641, 1999.

[Gim98] E. Giminez. A tutorial on recursive types in Coq. Tech-
nical Report RT-0221, INRIA, March 1998. Available from
<http://pauillac.inria.fr/coq/ps/RecTutorial.v.ps>.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. In
Science of Computer Programming, volume 8, pages 231�274. 1987.

[Has99] The Haskell 98 report, 1999. Available from
<http://www.haskell.org>.

79



Bibliography

[HN96] David Harel and Amnon Naamad. The STATEMATE semantics
of statecharts. In ACM Transactions on Software Engineering and
Methodology, volume 5, pages 293�333. 1996.

[HPSS87] D Harel, A Pnueli, J. Schmidt, and R. Sherman. On the formal seman-
tics of statecharts. In Proc. of 2nd IEEE Symp. of Logic in Computer
Science, pages 54�64. Ithaca, 1987.

[KH97] D. J. Keenan and P. E. Heimdahl. Generating Code from Hierarchical
State-Based Requirements. In Proc. of the IEEE International Sym-
posium on Requirements Engineering, Annapolis Maryland, January
1997.

[Lut01] Marko Luther. Elaboration and Erasure in Type Theories. PhD thesis,
Universität Ulm, 2001. To appear.

[NRS96] Dieter Nazareth, Franz Regensburger, and Peter Scholz. Mini-
Statecharts: A Lean Version of Statecharts. Technical Report TUM-
I9610, TUM Technische Universität München, February 1996.

[Pau91] L.C. Paulson. ML for the working programmer. Cambridge University
Press, 1991.

[Pau94] L. C. Paulson. LNCS: Isabelle - a generic theorem prover, volume 828.
Springer, 1994.

[PL99] Iván Porres Paltor and Johan Lilius. The semantics of UML state
machines. Technical Report TUCS-TR-273, TUCS - Turku Centre for
Computer Science, June 28 1999. Mon, 28 Jun 1999 7:54:28 GMT.

[Rei95] W. Reif. The KIV-approach to software veri�cation. In M. Broy and
S. Jähnichen, editors, KORSO: Methods, Languages, and Tools for the
Construction of Correct Software - Final Report, Berlin, 1995. Springer
LNCS 1009.

[RL99] Fethi Rabhi and Guy Lapalme. Algorithms: A Functional Program-
ming Approach. Addison-Wesley, 1999.

[Rud92] P. Rudnicki. An overview of the MIZAR project. In Workshop on
Types for Proofs and Programs, Bastad, 1992. Chalmers University of
Technology.

[SLvH98] M. Strecker, M. Luther, and F. von Henke. Interactive and automated
proof construction in type theory. In W. Bibel and P. Schmitt, editors,
Automated Deduction � A Basis for Applications, volume I: Foun-
dations, chapter 3: Interactive Theorem Proving. Kluwer Academic
Publishers, 1998.

80



Bibliography

[Str99] Martin Strecker. Construction and Deduction in Type Theo-
ries. PhD thesis, Universität Ulm, 1999. Available from
<http://www.informatik.uni-ulm.de/ki/Strecker/phd.html>.

[Tro99] A.S. Troelstra. From constructivism to computer science. In Theoret-
ical Computer Science, volume 211, pages 233�252. 1999.

[UML00] OMG uni�ed modeling language speci�cation version 1.3, 2000. Avail-
able from <http://www.omg.org>.

[vdB94] M. von der Beek. A comparison of statechart variants. In L. de Roever
and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, pages 128�148. Springer-Verlag LNCS 863, 1994.

[vHLS97] F.W. von Henke, M. Luther, and M. Strecker. Typelab: An environ-
ment for modular program development. In M. Dauchet and M. Bidoit,
editors, LNCS, volume 1214, pages 851�854. 1997.

[Wad95] P Wadler. Monads for functional programming. In J. Jeuring and
E. Meijer, editors, LNCS, volume 925, pages 24�52. Springer Verlag,
1995.

[Wen99] Markus Wenzel. Isar - a generic interpretative approach to readable
formal proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Or-
der Logics, 12th International Conference, TPHOLs'99, LNCS 1690.
Springer, 1999.

[Wha00] M.W. Whalen. A Formal Semantics for RSML�e. Master's
thesis, University of Minnesota, April 2000. Available from
<http://www.cs.umn.edu/crisys/>.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In Proceedings of ACM SIGPLAN Symposium on Princi-
ples of Programming Languages, pages 214�227, San Antonio, January
1999.

81



Erklärung

Ich erkläre, daÿ ich die Diplomarbeit selbständig verfaÿt und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den 16. Februar 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Norbert Schirmer


