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Abstract. For many aspects of memory theoretical treatment already
exists, in particular for: simple cache construction, store bu�ers and store
bu�er forwarding, cache coherence protocols, out of order access to mem-
ory, segmentation and paging, shared memory data structures (e.g. for
locks) as well as for memory models of multi-threaded programming lan-
guages. It turns out that we have to unite all of these theories into a
single theory if we wish to understand why parallel C compiled by an
optimizing compiler runs correctly on a contemporary multi core proces-
sor. This pervasive theory of memory is outlined here.

1 Introduction

One subproject of the Verisoft-XT project3 is to formally verify as big a portion
as possible of the Microsoft Hyper-V virtualization product that is shipped as
a component of Microsoft Windows Server 2008. This hypervisor is a multi-
threaded C program with involved parallel algorithms and external assembler
functions running in translated mode on contemporary multi core processors.
The veri�cation tool VCC [1] used to verify such programs is developed in parallel
with the veri�cation e�ort for the hypervisor and other programs. This paper
is motivated by the question how one would prove the soundness of VCC. The
rough road map is clear and was for instance followed with formal proofs in the
former Verisoft project4 [2]:

1. De�ne a semantics S for the subset C' of C used in the project. In the former
Verisoft project big step and small step semantics for C'=C0 were used [3�5].

2. Show that the veri�cation condition generator used is sound with respect to
semantics S [5, 6].
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3. Show that the compiler used correctly translates programs from C' to the in-
struction set architecture (ISA) of the processor used. In the Verisoft project
a non optimizing compiler from C0 to the ISA of the VAMP processor [7,8]
was veri�ed [3, 4].

4. in case one has doubts that the ISA in the manuals is the ISA realized by the
hardware: show that the processor hardware correctly interprets the ISA [9].

In the context of the hypervisor e�ort we have to deviate from this road map
due to the following di�culties:

1. Complexity of the processor: the documentation of the x64 ISA of contem-
porary multi core processors consists of thousands of pages [10,11]. Of course
the building plans of the processors are not public. Even if we had access to
them they would be too complex to be completely veri�ed using the present
state of the art tools.

2. Memory model of the processor: modern processors use a weak shared mem-
ory model [12�15]. A ten page white paper [16] is supplied to clarify this
model beyond the thousands of pages of documentation.

3. Complexity of the compiler: in case of the hypervisor an optimizing Mi-
crosoft compiler (to whose source code we could gain access) translates multi-
threaded C programs to the x64 ISA. This compiler is also too complex for
present veri�cation technology.

4. Compiler correctness: the theoretical treatment of compiler correctness for
target architectures with a weak memory model is still a �eld of ongoing
research [17,18].

We proceed as follows: we �rst outline how to reverse engineer a memory system
for processors which is consistent with the documentation [10,11,16] and with our
ideas how to build processors [19,20]. Section 3.2 gives simple su�cient conditions
for store bu�ers (between processors and memory) to become invisible, namely
in case of single processors and, trivially, in case of fenced memory transactions
(a fenced transaction is only executed when the store bu�er is empty). In the
spirit of [7] Section 3.3 sketches very brie�y how to show hardware correctness
of a memory system consisting of a single cache and a main memory. In Section
3.3 we outline a proof of the corresponding result for a cache coherent shared
memory. In order to obtain the result we later need, one has to combine three
arguments: i) a classical transaction based correctness proof for cache coherence
protocols, ii) its extension to compatible families of protocols as introduced in
[21] and used in modern processors, and iii) a construction of the sequential
order from the termination times of hardware transactions. In Section 3.4 we
outline the arguments, why translated `linear memory' is realized by multi level
address translation. In Section 3.5 we reverse engineer a multi core processor
with Tomasulo scheduler, memory management units, store bu�ers as well as
coherency snooping as introduced in [22] and outline the correctness proof.

Assuming that we guessed the memory model correctly we then show in
Section 3.6 how to initialize a contemporary multi core processor such that the
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hardware threads see the weak memory model derived previously in translated
linear memory.

Finally we turn to the theory of compilation for multi-threaded C programs
in weak memory models. Starting from a small step semantics for sequential
programs we derive as a starting point an unrestricted naive parallel C semantics,
which unfortunately we don't know how to compile into an e�cient parallel
assembler program. In Section 4.2 we review the correctness theorem from [3]
for a non optimizing compiler for a sequential subset of C and then modify its
statement (without proof) for optimizing compilers for multi-threading code; for
a formal correctness proof of an optimizing compiler for a sequential subset of
C see [23]. In the short Section 4.3 we sketch how to compile volatile variables
such that in the compiled program they form a sequentially consistent portion
of the weak memory. Using test and set operations on volatile variables we can
implement locks which in turn permit to implement synchronized parallel C; this
last step is explained in Section 4.4.

2 Notation

We denote the concatenation of bit strings a ∈ {0, 1}n and b ∈ {0, 1}m by a ◦ b.
For bits x ∈ {0, 1} and positive natural numbers n ∈ N+ we de�ne inductively
x1 = x and xn = xn−1 ◦ x. Thus, for instance 05 = 00000 and 12 = 11.

Overloading symbols like + , · , and < we will allow arithmetic on bit strings
a ∈ {0, 1}n. In these cases arithmetic is binary modulo 2n (with nonnegative
representatives).

We model memories m as mappings from addresses a to byte values m(a). For
natural numbers d we denote by md(a) the content of d consecutive memory cells
(from right to left) starting at address a, so md(a) = m(a + d− 1) ◦ · · · ◦m(a).
We select ranges of a bit string by x[hi:lo], e.g. x[11:0] to select the 12 least
signi�cant bits of x.

3 Architecture Aspects

3.1 Sequential Memory

The state of a sequential memory with address range A and data range D is
modeled by a function

m : A → D

where m(a) denotes the current content of memory cell with address a. We
consider here three kinds of atomic memory transactions: read, write as well
as test and set. We number transactions with indices i ∈ N0 and de�ne the
predicates

� r(i): transaction i is a read,
� w(i): transaction i is a write, and
� ts(i): transaction i is test and set.
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With each transaction i we associate an address ad(i) and (input or output)
data data(i). We de�ne the memory content before transaction i by mi. The
semantics of read, write and test and set transactions can then be de�ned by:

� r(i) → data(i) = mi(ad(i)) ∧mi+1(a) = mi(a),

� w(i) → mi+1(a) =

{
data(i) if ad(i) = a,

mi(a) otherwise, and

� ts(i) → data(i) =

{
1 if mi(ad(i)) = 0,

0 otherwise

∧

mi+1(a) =

{
1 if ad(i) = a ∧mi(ad(i)) = 0,

mi(a) otherwise.

The predicate

W (a, i) ≡ ∃j < i : ad(j) = a ∧ (w(j) ∨ (ts(j) ∧ data(j) = 1))

says that memory at address a has been written before transaction i. For such a
and i we de�ne the last transaction before transaction i that wrote to address a

last(a, i) = max{j < i : ad(j) = a ∧ (w(j) ∨ (ts(j) ∧ data(j) = 1))}.

Because mj+1(a) = mj(a) for j ∈ [last(a, i) + 1 : i− 1] one has

Lemma 1.

mi(a) =

{
mlast(a,i)+1(a) if W (a, i),
m0(a) otherwise

and hence

r(i) → data(i) =

{
data(last(ad(i), i) if W (a, i)
m0(ad(i)).

Observe that any system obeying the last equation de�nes a memory system,
namely

mi(a) =

{
data(last(a, i)) if W (a, i),
m0(a) otherwise.

3.2 Store Bu�ers

A store bu�er sb is a small queue between processor and memory m storing
pending write transactions (see Fig. 1). We provide store bu�er entries sbe with
the following components:

� sbe.ad: the address of the write transaction,
� sbe.data: the data to be written, and
� the ghost component sbe.index: the index of the write transaction.5
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ad = 7, data = 6 sb.p

ad = 3, data = 2 sb.p− 1

...
...

ad = 3, data = 1 1

...

r(i), ad(i) = 1, data(i) = 0 i

r(i− 1), ad(i− 1) = 3, data(i− 1) = 2 i− 1

w(i− 2), ad(i− 2) = 7, data(i− 2) = 6 i− 2

...

0

0

0

1

3

2

5

3

8

4

1

5

0

6

0

7

0

8

. . .

. . .

Fig. 1. Store bu�er

We model a con�guration of a store bu�er as a pair sb = (sb.p, sb.m) where
sb.p is the number of currently pending store requests and sb.m maps the set
[1 : sb.p] to the set of store bu�er entries. Initially the store bu�er is empty

sb0.p = 0.

If transaction i is a write request, its index, address and data are inserted at the
end of the queue. Thus for the new con�guration sb′ we have

sb′.p = sb.p + 1
sb′.m(k) = sb.m(k)if k < sb′.p

sb′.m(sb′.p).ad = ad(i)
sb′.m(sb′.p).data = data(i)

sb′.m(sb′.p).index = i.

If a write request is sent to the memory, it is deleted from the front of the queue

sb′.p = sb.p− 1
sb′.m(k) = sb.m(k + 1) for 1 ≤ k ≤ sb′.p.

The store bu�er stores requests in temporal order, i.e. we have

5 Recall that ghost components are not implemented and serve only for mathematical
arguments
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Invariant 1

k < k′ → sb.m(k).index < sb.m(k′).index.

Predicate hit(a, sb) signals that a write request with address a is in the store
bu�er:

hit(a, sb) ≡ ∃k ≤ sb.p : sb.m(k).ad = a.

The entire system consists of

� the processor, and
� the memory system consisting of memory and store bu�er.

A memory system step deletes the �rst store bu�er entry and sends it to the
memory. This maintains

Invariant 2 Let j = sb.m(1).index− 1. Then

mi(a) =

{
data(last(a, j)) : W (a, j)
m0(a).

A processor step sends a transaction to the memory system. Write transactions
are written into the store bu�er. A test and set transaction causes the store bu�er
to be �ushed before being executed. Read transactions r(i) are answered using
store bu�er forwarding: in case of a store bu�er hit (hit(ad(i), sb) we determine
the last store bu�er entry which has a write request leading to the hit

k = max{k′ : sb.m(k′).ad = ad(i)}

and return the data in store bu�er entry sb.m(k′). Otherwise we return data
from memory

data(i) =

{
sb.m(k).data hit(ad(i), sb)
m(ad(i)).

The invariants imply that the memory system behaves like a single memory:

Lemma 2.

r(i) → data(i) =

{
last(ad(i), i) if W (ad(i), i),
m0(ad(i)) otherwise.

Thus store bu�ers are invisible in systems with a single processor. If several
processors are connected with store bu�ers to a shared memory (Fig. 2) the store
bu�ers are visible. Consider the following two threads where shared variables x
and y are initially 0 and r1 and r2 are local variables stored in registers:

x = 1;

r1 = y;

Thread 1

y = 1;

r2 = x;

Thread 2
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ad = x, data = 1 sb1.p = 1 ad = y, data = 1 sb2.p = 1

...

r1(1), ad1(1) = y, data1(1) = 0 1

w1(0), ad1(0) = x, data1(0) = 1 0

...

r2(1), ad2(1) = x, data2(1) = 0 1

w2(0), ad2(0) = y, data2(0) = 1 0

. . .

. . .

0

x− 1

0

x

0

x + 1

. . .

. . .

0

y − 1

0

y

0

y + 1

. . .

. . .

Fig. 2. Multiple store bu�ers

Can it happen that both r1 and r2 contain 0 in the end? On a sequentially
consistent machine (for example a machine without store bu�ers), this cannot
happen, since either the assignment to x happens before the assignment to y

or vice versa and the program order is preserved within threads. However, if
we take store bu�ers into account the outcome is valid. Consider the situation
where both the assignment to x as well as to y are in the local store bu�ers, but
have not yet emerged to the memory. Hence the read of y in the �rst thread still
sees the value 0 and the read of x in the second thread also sees 0.

A brute force way to make store bu�ers invisible is to use fenced transactions.

De�nition 1. If t is a transaction, we denote by ft the corresponding fenced
transaction. A fenced transaction from a processor is directly sent to the memory;
it is only executed when its store bu�er is empty.

A trivial consequence is

Lemma 3. If for a time interval T and an address range A all transactions
during T with addresses in A are fenced, then the memory system behaves for
this time interval and address range like a shared memory.

3.3 Caches

Memories m are usually implemented by one or more levels of caches ca which
are backed up by a main memory mm. Caches are small and fast memories; they
can be implemented in many ways [24�26]. A uniform view on all kinds of cache
constructions is provided by abstract caches. Decompose addresses a ∈ A into
(cache) line address a.la and o�set a.off :

a = a.la ◦ a.off
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and let LA be the set of line addresses. The con�guration ca of an abstract cache
is then simply speci�ed by a pair of mappings

� ca.valid : LA → {0, 1}. A line la is present in the cache if ca.valid(la) = 1.
� ca.data : A → D. Formally this is just an ordinary memory con�guration

with the full address range A, but values ca.data(a) are only considered
meaningful, if the corresponding cache line is valid, i.e. if ca.valid(a.la) = 1.

It is easy to see abstract caches are natural abstractions for the usual cache
constructions; we show this for direct mapped caches. Consider the usual de-
composition of addresses a ∈ A ⊆ {0, 1}n

a = a.tag ◦ a.line ◦ a.off

where a.off ∈ {0, 1}o is the o�set within a cache line, a.line ∈ {0, 1}l is the local
address of a cache line in the cache, a.tag ∈ {0, 1}t, and o + l + t = n. A direct
mapped cache c has three memories all addressed by local line addresses line:

� c.data(line) ∈ Do is the cache line stored in the local cache line line,
� c.valid(line) ∈ {0, 1} indicates if the data in line line is valid,
� c.tag(line) ∈ {0.1}t completes the local line address line to a full line address.

The corresponding abstract cache ca(c) can be de�ned by

ca(c).valid(tag ◦ line) = 1 ↔ c.valid(line) = 1 ∧ c.tag(line) = tag

ca(c).data(tag ◦ line ◦ off ) = c.data(line)[off ].

In a correctness proof for a cache system on the hardware level one has � among
others � to consider the following components of the hardware con�guration h:

� the main memory h.mm, and
� in case of a direct mapped cache, the cache memories h.c.data, h.c.tag,

h.c.valid.

From the direct mapped cache h.c one abstracts the abstract cache ca(h.c). From
this one de�nes the (simulated) memory system m(h) simulated by the hardware
in con�guration h as

m(h)(a) =

{
ca(h.c)(a) if ca(h.c).valid(a.line) = 1,

h.mm(a) otherwise.

A hardware correctness proof has also to consider the buses between the cache
and main memory as well as the logic controlling transfers of cache lines between
cache and main memory. Also hardware correctness proofs have to break read
and write transactions etc. down to the cycle level. For memory transaction i
one might have to consider start cycles s(i) (a request signal is activated) and
end cycles e(i) (a busy signal is taken away or is not activated in the �rst place).
A proof6 that this memory system is simulated has to establish (among other
things):

6 for a non pipelined cache
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Lemma 4.

1. A read transaction i starting in cycle s(i) returns in cycle e(i) the data
m(hs(i))(ad(i))

2. A write transaction i starting in cycle s(i) produces after cycle e(i) the sim-
ulated memory

m(he(i)+1)(a) =

{
data(i) if a = ad(i),
m(hs(i))(a)) otherwise.

The �rst formal correctness proofs for memory systems with caches that can
be synthesized to running hardware are reported in [7, 27].

Cache Coherent Shared Memory. The vanilla implementation of shared
memory for p processors P (1), . . . , P (p) is to connect each processor P (i) with
its own cache ca(i) and to back up the caches ca(i) with a main memory mm. The
entire memory system is supposed to simulate a single sequentially consistent
shared memory m [28]. In order to achieve this goal the caches observe each
others' transactions via a special bus (this is called snooping) and run a cache
coherence protocol. Instead of a single valid bit the caches use a set St of several
states for each cache line in order to keep track what cache has what data and
how these data match the data in main memory. In abstract caches we therefore
replace function ca.valid by a state function

ca.s : LA → St.

A very common set of states introduced in [21] is

St = {M,O,E, S, I}.

For s = ca.s(la) the intended meaning is

� s = M : the line is exclusive and modi�ed. `Modi�ed' is not `clean'.
� s = O: the line is shared and modi�ed (`owned').
� s = E: the line is exclusive and clean. `Clean' means that the data in the

caches matches the data in main memory and `exclusive' means that no other
cache holds this line la; we formalize this below.

� s = S: the line is shared and clean. `Shared' is not `exclusive'.
� s = I: the line is invalid.

The caches have to maintain the following invariants about the cache states
of each line.

Invariant 3 Exclusive lines are only in one cache:

ca(i).s(la) ∈ {E,M} ∧ i 6= j → ca(j).s(la) = I.
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Invariant 4 Clean lines match data in main memory:

ca(i).s(la) ∈ {E,S} ∧ a.la = la → ca(i).data(a) = mm(a).

Invariant 5 Lines la owned by di�erent caches match:

ca(i).s(la) = ca(j).s(la) = O ∧ a.la = la → ca(i).data = ca(j).data.

The cache coherence protocol has to decide for each processor transaction
whether to announce it on the special bus (in this case we call the transaction
public) or not (we call the transaction private). Private processor transactions
are: line invalidations on clean or shared data (the local state is changed to I),
read hits (the local state stays the same), write hits on exclusive data (the new
state is M), test and set hit if the cached data is 6= 0 (the local state stays the
same). There is also a private transaction between a cache and main memory,
namely if the cache �ushes (writes to main memory and invalidates) a clean line.
All other transactions are public.

If one views the processors as a distributed system delivering the transactions
one by one7 to their caches then for each of the common protocols it is very easy
to show, that the invariants are maintained. Due to the (unrealistically simple)
distributed system one can number the transactions t(x) simply by the order in
which they are sent to the memory system. The simulated memory mx before
transaction t(x) is

mx(a) =

{
cax(i).data(a) if cax(i).s(a) 6= I for some i,

mmx(a) otherwise.
(1)

Assuming that in the initial caches ca0 all lines la are invalid (ca0(i).s(la) =
I) the invariants imply among other things

Lemma 5.

1. mx(a) is is well de�ned by Equation 1,
2.

mx(a) =

{
data(last(a, x)) if W (ad(x), x),
mm0(ad(x)) otherwise, and

3. if t(x) is a read transaction, then the memory system returns data mx(ad(x)).

Variants of this lemma have been extensively studied and model checked.
Producing at the hardware level a formal correctness proof for a cache coherent
shared memory is still considered a major open problem. Indeed we are not aware
of a paper and pencil proof for this problem. For such a proof one has to give a
complete implementation, e.g. in the style of [19] or [7].

If we denote transaction j of processor i by t(i, j) we have to consider the
start cycles s(i, j) and end cycles e(i, j) of these transactions. Typical durations
7 which is pointless; the very idea of shared memory is to parallelize transactions
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e(i, j)− s(i, j) + 1 might be 1 for read hits, 2 for exclusive write hits and many
more cycles for public transactions. For a straightforward implementation of the
transactions on a single shared data bus between caches and main memory and
a single special bus one will be able to show

Lemma 6. The following transactions do not overlap:

� public transactions,
� private transactions on the same processor,
� private and public transactions with the same address, and
� private writes and any transaction with the same address.

The hardware version of Equation 1 of the memory m(h) simulated by hard-
ware h is

m(h)(a) =

{
ca(i, h).data(a) if ca(i, h).s(a) 6= I for some i,

h.mm otherwise.
(2)

With the help of Lemma 6 one shows that the invariants hold for each cycle,
and one gets

Lemma 7. m(h)(a) is well de�ned by Equation 2.

In the spirit of [7] one can de�ne a total order O(i, j) ∈ N for the transactions
t(i, j) using their end cycles e(i, j): order transactions by their end cycles; order
transactions with the same end cycle arbitrarily. Denote by

M(t) = max{O(i, j) : e(i, j) ≤ t}

the largest index of a transaction that has completed until cycle t. Let z be the
sequential index of a transaction t(i, j) for some i and j, i.e. z = O(i, j) resp.
(i, j) = O−1(z).

We de�ne predicate W ′(a, z) indicating that address a has been written by
a transaction with sequential index z′ = O(i, j) < z:8

W ′(a, z) ≡ ∃z′ < z : ad(O−1(z′)) = a ∧
(w(O−1(z′)) ∨ (ts(O−1(z′)) ∧ data(O−1(z′)) = 1)).

We de�ne last(a, z) as the last sequential index z′ before z of a transaction
writing to ad(i, j):

last(a, z) = max{z′ < z : ad(O−1(z′)) = a ∧
(w(O−1(z′)) ∨ (ts(O−1(z′)) ∧ data(O−1(z′)) = 1))}.

Lemma 8. The hardware simulates a shared memory which is sequentially con-
sistent with respect to ordering O( , ): let z = M(t), then
8 We extend functions ad(j), data(j), w(j), r(j), ts(j) de�ned in 3.1 to multiprocessor
case as ad(i, j), data(i, j), w(i, j), r(i, j), ts(i, j) to take additional parameter i � the
index of a processor.
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1.

m(ht)(a) =

{
data(last(a, z)) if W ′(a, z),
h.mm0(a) otherwise,

2. a read transaction starting in cycle s(i, j) returns in cycle e(i, j) the data
m(hs(i,j))(ad(i, j)), and

3.
W ′(ad(i, j), O(i, j)) → last(a,O(i, j)) < M(s(i, j)).

There is one further highly interesting and important property about cache
coherence protocols which to the best of our knowledge have not received much
theoretical treatment, namely compatibility within a family F of cache coher-
ence protocols. If the special bus between caches helping to control the cache
coherence protocol contains signals like the ones in the classical paper introduc-
ing the MOESI protocol [21], then one can specify with each memory access
(i, j) the cache coherence protocol mmode(i, j) ∈ F to be used for transaction i
on processor j, and one gets

Lemma 9. If a compatible family of cache coherence protocols is used in a mem-
ory system with caches and the memory mode used is speci�ed separately for
each transaction, then the memory system still simulates a sequentially consis-
tent memory.

Consistent families of cache coherence protocols are implemented in the proces-
sors of modern PCs. The result of the lemma is stated quite explicitly in [21].
We have seen neither a paper and pencil proof nor a model checked version of
this important result.

3.4 Memory Management Units

Address Translation. We partition memory into pages; here we use the common
page size 4K = 212. We partition addresses a into page base addresses a.ba and
page o�sets a.pof ∈ {0, 1}12, such that a = a.ba ◦ a.pof . We denote a page with
base address ba of memory m by pg(m, ba). It consists of the 4K consecutive
memory cells starting at address pa ◦ 012:

pg(m, ba) = m4K(ba ◦ 012).

Let V ⊆ A be a set of (virtual user) addresses to be translated by a memory
management unit (MMU) and let

V.ba = {a.ba : a ∈ V }

be the set of page addresses in V . An abstract translation of address range V is
speci�ed by

� a translation function T : V.ba → A.ba specifying where to redirect memory
accesses to pages in A, and
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� rights functions r : V.ba → {0, 1} specifying the access rights to pages. We
consider r = EXE (executable) and r = RW (readable and writable).

For a processor running in translated mode a memory management unit has to
redirect memory accesses to addresses a ∈ V to T (a.ba) ◦ a.pof in the following
situations

� if a comes from the program counter and EXE(a.ba) = 1,
� if a is the e�ective address of a write access and RW (a.ba) = 1, and
� if a is the e�ective address of a read access.

For all other addresses a ∈ V and for all addresses a /∈ V a page fault has to be
generated.

Page Tables are pages that are used to specify abstract translations. They com-
monly consist of page table entries pte occupying 4 bytes resp. one word in a page
table. Within a page we can index the entries with page indices px ∈ {0, 1}10.
Thus we can de�ne entry px of page table (with base address) ba as

pg(m, ba)[px] = pg(m, ba)4(px ◦ 02).

Intuitively multilevel address translation is done by traversing the graph G whose
nodes are the page tables and whose edges are speci�ed by a certain component
pte.ba of the page table entries pte. But notice that the graph G is dynamic: it
can be edited by the processor while the MMU traverses it. Page table entries
pte usually have components like

� pte.ba the base address of the next page table or � at the last step of trans-
lation � a user page,

� the present bit pte.p indicating that the data of the entry is meaningful,
� rights bits pte.r, and
� possibly accessed and dirty bits pte.acc and pte.d; we will skip over them

here most of the time.

Walks. Multi Level Address Translation is achieved by walking resp. traversing
the page tables in K steps; common values are K = 3 or K = 4. The information
gathered during the traversal is summarized in walk. Walk w has the following
components:

� w.vba: the virtual base address to be translated,
� w.ba: the base address of the next page to be accessed,
� w.r for the rights r: the logical AND of bits pte.r in the entries traversed so

far, and
� w.level ∈ [K : 0]: the number of page tables that have yet to be traversed.

Walking starts with initial walks of level w.level = K. No rights have yet been
restricted, so w.r = 1 for all r. The base address w.ba of the page table where the
traversal starts is stored as the ba-component of a processor register dedicated for
this purpose; in x64 processors this register is called CR3 . Thus w.ba = CR3 .ba.
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For the actual traversal we decompose base addresses ba of pages into K page
indices ba.px[i]:

ba = ba.px[K] ◦ ba.px[K − 1] ◦ . . . ◦ ba.px[1] = ba.px[K : 1].

The width of px[i] depends on the size of a page table entry, which can be 4 or
8 bytes. In case of a 4-byte page table entry, there are 4K/4 = 1024 entries per
page table, and, therefore, the width of px[i] is 10 bits. Respectively, for 8-byte
page table entries the width px[i] is 9 bits.

Extension of a level x walk w to a walk wext(w) makes use of the level x
page index w.vba.px[x] of the address to be translated, the MMU accesses entry

pte = pg(m,w.ba)[w.vba.px[x]].

If it is not present (pte.p = 0) a page fault is generated. Otherwise, one sets

wext(w).ba = pte.ba

wext(w).r = w.r ∧ pte.r

wext(w).level = w.level − 1

The walk w is complete if level w.level = 0. The translated base address w.ba
of a complete walk is a translation for the walks virtual base address w.vba. An
iterated walk extension wextx(w) is obtained in the obvious way by wext0(w) =
w and wextx+1(w) = wext(wextx(w))

Translation Look Aside Bu�ers. Walking the page tables is slow as it requires
many memory accesses. Therefore one collects translations (w.vba, w.ba, w.r)
found during the walking in a cache called the translation look aside bu�er resp.
the TLB. However, as processors do not keep this cache consistent with the
page tables, it is the users responsibility to evict translations from the TLB,
that should not be used any more. Translations (there can be several) for single
virtual base addresses are evicted by so called invlpg(vba) instructions. There
are also instructions for clearing the entire TLB.

Implementing an Abstract Translation. Suppose virtual address range V , trans-
lation function T , and rights functions r of an abstract translation are given. We
construct a tree G of page tables such that walking G produces the translations
prescribed by the abstract translation. Denote by

Px = {vba.px[K : x] : vba ∈ V.ba} for 2 ≤ x ≤ K + 1

the set of pre�xes of the virtual base addresses formed by page indices from
K + 1 down to 2. Note that PK+1 = ε is an empty pre�x. Let

P =
K+1⋃
x=2

Px
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be the set of all pre�xes. For each pre�x p ∈ P we allocate in memory m a
separate page table with base address ptba(p), such that

∀q ∈ P : q 6= p ⇒ ptba(q) 6= ptba(p).

The entries of the page table corresponding to pre�x vba.px[K : x] are de�ned
by induction on x from the leaves (x = 2) to the root (x = K + 1). Let pte be
the page table entry with index vba.px[x− 1] in the page table corresponding to
pre�x vba.px[K : x], i.e.

pte = pg(m, ptba(vba.px[K : x]))[vba.px[x− 1]].

For x = 2 set the present bits pte.p = 1 if vba ∈ V.ba, and for present entries set

pte.ba = T (vba)
pte.r = r(vba)

For x > 2 set pte.p = 1 if vpa.px[K : x− 1] ∈ Px−1, and for present entries set

pte.ba = ptba(vpa.px[K : x− 1])
pte.r = 1

and point with special purpose register CR3 to the root of the tree obtained in
this way

CR3 = ptba(ε).

By induction on x one now easily shows

Lemma 10. Let vba ∈ V.ba, let pr = vba.px[K : x + 1] and let w be a walk
with w.ba = vba, w.level = x,w.ba = ptba(pr) and w.r = 1. Then x-fold walk
extension of w gives the desired translation:

wextx(w).ba = T (vba)
wextx(w).r = r(vba).

A similar argument shows that initial walks with w.vba /∈ V.ba hit a not present
entry at level y where

y = max{x : vba.px[K : x] /∈ Px}.

3.5 Out of Order Execution

Tomasulo schedulers as shown in Fig. 3 are the standard mechanism for the
out of order execution of instructions in processors. Instructions are fetched in
program order in the instruction fetch (IF) stage. They wait in the issue stage
for a free reservation station (RS) of a functional unit capable of executing the
instruction, and for a free slot in the reorder bu�er (ROB). From the issue stage
instructions proceed to a reservation station. At this point three things happen:
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functional units

ALU LS. . .

CDB

reorder buffer

writeback

reservation stations

issue

instruction decode

instruction fetch

Fig. 3. Tomasulo scheduler

1. The instruction receives a tag; this is a local number for instructions issued
but not written back. There are as many tags as places in the reorder bu�er.
The reorder bu�er is usually implemented as a RAM implementing a queue
that eventually holds the results (including the interrupts produced or sam-
pled) of instructions; at issue time the instruction is inserted at the end of
the queue. The natural tag to be used for an instruction is its RAM address
in the ROB.

2. Register operands are looked up in the register �les. If a register does not
contain valid data (because an instruction writing the data is in �ight),
a tag �eld associated with the register contains the tag t of the last such
instruction.

3. The results of such instructions with tag t are searched in the ROB and on
the common data bus (CDB). If not all operands are found, the instructions
producing the desired results are still in the reservation stations or the func-
tional units. The reservation station snoops on the common data bus for the
results of instructions with tags t occuring on the CDB. Once all operands
are gathered and the functional unit can accept a new operand, instructions
proceed to the functional unit, then later via the CDB to the ROB. They
are written back when they are at the head of the queue implemented by
the ROB. Thus, retirement of instruction is again in program order.

The classical correctness statement of out of order mechanisms then has the form
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Lemma 11. The mechanism of a Tomasulo scheduler (as shown in Fig. 3) pre-
serves the sequential semantics of machine instructions that do not access mem-
ory; in these situations reservation stations and reorder bu�er are invisible to
the programmer.

A (hopefully) reasonable paper and pencil proof can be found in [19]. There
are numerous formal proofs for this result at various levels of detail. At the most
detailed level the proof concerns synthesizable hardware [20,27].

Load Store Units. If functional units include load store units LS accessing a
memory system m (they should for all practical purposes!) a few extra precau-
tions have to be taken: as long as the functional units do not produce irreversible
results, an instruction that has not passed the head of the ROB and thus has
not reached the write back stage can be rolled back. This permits to implement
precise interrupts (i.e. interrupts with a sequential semantics). But write instruc-
tions in memory units (and read instructions to devices with read side e�ects)
cannot easily be rolled back once they have reached the load store unit. One
possible way to maintain precise interrupts is to send a write instruction (and a
load instruction to an I/O port) to the load store unit only if it is at the head
of the ROB.

One often inserts a store bu�er between the load store unit and the memory
system (see Fig. 4). Because of Lemma 2 the resulting memory system behaves
like a single memory and one gets

Lemma 12. The memory unit shown in Fig. 4 preserves the sequential seman-
tics of machine instructions; thus reservation stations, reorder bu�er and store
bu�er are invisible to the programmer.

A formal proof for synthesizable hardware is reported in [27].

MMU LS. . .

CDB

reorder buffer

writeback

reservation stations

sb

m

Fig. 4. Memory units
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Memory Management Units. Intuitively, the control of a processor with a mem-
ory management unit has to split translated loads and stores into two microop-
erations:

i) �nd the address translation either by quickly looking it up in the TLB or by
slowly walking the page tables, and

ii) perform the memory transaction using the translated address of step i) as
an operand.

Tomasulo schedulers permit to implement this in a natural way. MMU and load
store unit are separate functional units; if a translated memory transaction is
fetched, two microinstructions are issued: one to the MMU computing the desired
translation and a second one to the LS unit performing the actual access. For
MMUs setting `accessed' and `dirty' bits accesses to the tables are potentially
writing. Therefore a conservative implementation would perform the accesses
only if the microinstruction computing the translation is at the head of the
ROB (slowing down the process of page table walking even further). Notice that
it is very natural, that a load instruction whose translation is already in the TLB
overtakes a previous access whose address needs to be translated by walking. As
a result the ROB entries of such load instructions contain kind of precomputed
results; we deal with the problems arising from this in the multi processor case
shortly.

The data path used by the MMU deserves some attention. One can provide
a separate access path bypassing the store bu�er from the MMU to the memory
system m. Also one can forward results from the MMU directly to the LS unit.
Note that due to the di�erent access path into the memory system even in the
case of a single processor Lemma 2 does not apply any more. Thus we get

Lemma 13. The memory unit shown in Fig. 4 with MMU bypassing the store
bu�er almost preserves the sequential semantics of translated machine instruc-
tions: reservation stations and reorder bu�er are invisible to the programmer,
but the store bu�er stays visible.

Thus, a page table walk might miss a sequentially earlier page table update
which is still in the store bu�er.

Coherency Snoops. One would fear that in the multiprocessor case the program-
mer model becomes even more complicated, but in patents like [22] one �nds
counter measures. One of them is coherency snooping: the ROB entries of pro-
cessor j holding (precomputed) results of load instructions (i, j) store also the
translated address a and participate in the snooping protocol of the caches. If
a write to address a is snooped on the cache of a di�erent processor j′ (sequen-
tially earlier writes on processor j are handled by store bu�er forwarding) the
load instruction is either

� rolled back and repeated; this allows other processors to prevent the termi-
nation of the load instruction by repeated writes to address a, or
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� the result of the load instruction is replaced by the data written by processor
j′ to address a; this gives the memory model provided by modern processors.

Lemma 14. Suppose the memory unit shown in Fig. 4 is used with several pro-
cessors connected to a cache coherent shared memory m and uses coherency
snooping. Then locally sequential semantics is almost preserved; reservation sta-
tions and reorder bu�ers are invisible. Store bu�ers are visible.

For the proof we use notation from section 3.3. Let t be the last cycle when
a read transaction (i, j) is in the ROB before it is retired, and let m(ht) be the
memory simulated by the memory system in cycle t as de�ned in Equation 2.
The memory depends only on the write operations which have completed until
cycle t; let z = M(t). Write operations by the LS unit and the MMU are issued
on each processor only when they are at the head of the ROB, i.e. they are issued
in order. Thus memory m(ht) already corresponds to an in order execution on
each processor and we have as before

m(ht)(a) =

{
data(last(a, z)) if W (a, z),
h.mm0(a) otherwise.

Let t′ ≤ t be the last cycle before t when the data for read transaction (i, j)
was updated in the ROB, either by the execution of the load instruction or
subsequently by the coherency snooping. Then the ROB writes back result
m(ht′)(ad(i, j)) for transaction (i, j). Between cycles t′ and t coherency snooping
does not update the ROB for transaction (i, j), hence no write to address ad(i, j)
even started in this period and we have

m(ht′)(ad(i, j)) = m(ht)(ad(i, j))
= data(last(ad(i, j), z)).

3.6 Initializing an x64 Processor

Figure 5 gives a a very schematic view of the instruction set architecture of
contemporary PC processors as documented on about 3000 pages in [10] or only
about 1500 pages in [11]. The major blocks are the processor core, MMU with
TLB, memory system with main memory and caches, store bu�ers as well as
the I/O devices which are accessed like the main memory. Multi core processors
have several processor cores, MMUs and store bu�ers connected to one memory
system and the devices.

Boxes labeled acc stand for memory `access registers' holding addresses, data,
etc. of memory transactions. The core contains numerous user registers R as well
as numerous system registers; for us system register CR3 which serves as the
origin of TLB walks is particularly important. The segmentation mechanism is
a legacy feature going back to the x86 architecture. It can be made invisible
by con�guring the entire physical address space as a single segment with no
restriction of rights. The memory can be accessed in many memory modes. At



20 Ulan Degenbaev, Wolfgang J. Paul, Norbert Schirmer

core

segmentation

acc

CR3

R

mmu
tlb

acc

sb

ca

mm

Fig. 5. x64 memory

least one of them (UC � uncachable) completely bypasses the caches and thus
makes the caches visible to the programmer. The good news is that the memory
modes which do not bypass the caches are compatible. Thus, if no I/O devices
are accessed and only compatible memory modes are used, then by Lemmas 9
and 14 the user sees a sequentially consistent physical memory PM and store
bu�ers (see Fig. 6-a). If I/O devices are accessed in uncachable mode life is
simple too. But if devices are accessed in memory modes using the cache, than
the actual device access only takes place in case of cache misses. This even makes
the states of the cache lines visible.

After a reset signal x64 machines are in a very simple operation mode where
only a single processor is running and paging is switched o�. Because paging is
switched o� the MMU is not visible. Because only one processor is running by
Lemma 2 the store bu�er is not visible. In this mode page tables as speci�ed
in section 3.4 can be written into the physical memory (Fig. 6-a). If we turn
on all processors, clear all TLBs and enable paging (i.e. we run the processors
in translated mode, then by Lemma 10 an abstract translation is realized. In
this mode the MMUs become invisible and the users see store bu�ers and a
sequentially consistent shared `linear' memory LM (Fig. 6-b).

4 Programming Language

4.1 Naive Parallel C Semantics

We are considering parallel C programs whose threads run in an interleaved
fashion on multi core machines. The obvious approach to de�ne the semantics of
such programs is to start with the small step semantics of single threads and then
to interleave the steps of the threads. The con�guration c of a single threaded
abstract C machine can be de�ned essentially using the following components:
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� a program rest c.pr consisting of a sequence of C instructions yet to be
executed,

� a global memory c.gm,

� a heap memory c.hm, and

� a local memory stack c.lms consisting of c.rd (recursion depth) many mem-
ory frames.

For details of the particular semantics used in the Verisoft project9 see [3, 4].
Generalizing this to a con�guration with multiple threads i is straight forward:

� use for each thread i a local program rest c.pr[i] and a local memory stack
c.lms[i],

� share the global memory c.gm and the heap c.hm, and

� now interleave the (small step semantics) steps of the threads de�ned in this
way.

There is no way to beat the elegance of this de�nition. Unfortunately we don't
know how to implement it e�ciently. For threads i let p(i) be the program of
thread i. Before running on a parallel machine C programs p(i) are �rst compiled
to a machine program code(p(i))); even with the simplest non optimizing com-
piler a single small step semantics step is usually translated to several machine
instructions. The hardware then interleaves the machine instructions instead
of the steps of the C semantics. Hence if one wants to de�ne e�ciently imple-
mentable parallel C semantics one has to worry about the process of compilation,
preferably by an optimizing compiler.

9 http://www.verisoft.de
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4.2 Compilation

The compiled programs code(p(i)) � running say in linear memory LM(h) of a
hardware con�guration h � have to simulate the programs p(i) of the C threads.
For now we only sketch compiler correctness for a single thread. A simulation
relation consis(c, alloc, h) between C con�gurations c and hardware con�gura-
tions h is de�ned with the help of an allocation function alloc. This functions
maps elementary C variables x to `allocated (linear) base addresses' alloc(c, x).
We de�ne some typical properties of relation consis.

� For variables x let asize(x) be the number of bytes allocated by the compiler
for variable x; it depends only on the type of x. Let va(c, x) be the value
of variable x in con�guration c. Then the asize(x) bytes in linear memory
LM(h) should coincide with the C value of the variable

LMasize(x)(alloc(c, x)) = va(c, x).

� Suppose p is a pointer; thus its value is another variable va(c, p) = y. As-
sume we have 8 byte addresses. Then the 8 bytes in linear memory following
alloc(c, p) should be the allocated base address of y

LM8(alloc(c, p)) = alloc(c, y).

� For non optimizing compilers code is compiled statement by statement.
The �rst statement of the program rest is head(c.pr). It is translated to
code(head(c.pr)). Let start(code(head(c.pr))) be the address in linear mem-
ory where this piece of translated code is allocated. Then the program
counter h.pc should point there

h.pc = start(code(head(c.pr))).

Clearly, one needs to modify this condition for optimizing compilers.

For non optimizing compilers one obtains the following step by n-step simu-
lation theorem

Lemma 15. For every C computation c0, c1, . . . there exist i) a hardware com-
putation h0, h1, . . ., ii) a sequence of step numbers s0, s1, . . . and iii) a sequence
of allocation functions alloc0, alloc1, . . . such that

consis(cT , allocT , hs(T ))

holds for all T .

For a formal proof of this result see e.g. [4]. Optimizing compilers exploit
the fact, that we do not really care for simulations to hold for every C step. It
su�ces if the relation holds for the `visible' C steps T , for example when the
program does I/O. Let us call these steps I/O steps. Then a possible correctness
statement for an optimizing compiler would look like:
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Lemma 16. For every C computation c0, c1, . . . there exist i) a hardware com-
putation h0, h1, . . ., ii) a sequence of step numbers s0, s1, . . . and iii) a sequence
of allocation functions alloc0, alloc1, . . . such that

consis(cT , allocT , hs(T ))

holds for all I/O steps T .

For a formal correctness proof for an optimizing compiler (with respect to a big
step semantics) see [23].

4.3 Volatile Variables

Compiler directives allow to declare shared variables x as volatile. Intuitively
speaking this warns the compiler that these variables are shared and thus accesses
to such variables should not be optimized to registers. In order to make compiler
construction easy we syntactically restrict the use of volatile variables x. A thread
can only perform assignments of the form

y = x or x = y

where y is a thread local variable. We include any such assignment into the I/O
steps and we implement any such assignment by a fenced read resp. write. By
the trivial Lemma 3 then the store bu�ers in (Fig. 6-b) become invisible for
transactions involving volatile variables and we obtain

Lemma 17. The portion of memory allocated to volatile variables forms a se-
quentially consistent portion of linear memory LM .

4.4 Synchronized Parallel C

Using test and set operations on volatile variables it is straightforward to im-
plement locks using textbook shared memory algorithms [29]. Using locks one
can exclusively reserve memory regions R of the shared C variables (e.g. certain
data structures) temporarily to threads i, for certain intervals I of C-steps. Dur-
ing such intervals I thread i can do computations on region R like in ordinary
sequential C computations: due to the locking no other thread accesses region
R during interval I, thus the store bu�ers are by Lemma 2 invisible. However,
at the end of interval I when the lock is released the compiler must guarantee
that the updates of region R performed by thread i become visible to the other
processors. If the compiler treats a lock release of thread i as an I/O step for the
thread, then this is guaranteed by Lemma 16.

Currently we work on extensions of these basic programming disciplines and
fencing policies for shared memory accesses to cover more programming idioms
by our theory framework.
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