
A Verification Environment for Sequential
Imperative Programs in Isabelle/HOL ?

Norbert Schirmer

Technische Universität München, Institut für Informatik
http://www4.in.tum.de/~schirmer

Abstract. We develop a general language model for sequential impera-
tive programs together with a Hoare logic. We instantiate the framework
with common programming language constructs and integrate it into Is-
abelle/HOL, to gain a usable and sound verification environment.

1 Introduction

The main goal of this work is to develop a suitable programming language model
and proof calculus, to support program verification in the interactive theorem
prover Isabelle/HOL. The model should be lightweight so that program verifi-
cation can be carried out on the abstraction level of the programming language.
The design of a framework for program verification in an expressive logic like
HOL is driven by two main goals. On the one hand we want to derive the proof
calculus in HOL, so that we can guarantee soundness of the calculus with respect
to the programming language semantics. On the other hand we want to apply
the proof calculus to verify programs. During program verification we focus on
one single program for which we want to derive some properties. But for a gen-
eral soundness proof of the calculus we have to regard the whole programming
language, not just a single program. The tradeoff can be illustrated by a simple
program that only concerns two local variables: i and b of type int and bool,
respectively. It is desirable to obtain verification conditions in terms of logical
variables i and b of type int and bool in HOL. But of course we do not want
to fix the state space of the general proof calculus only to programs on these
two variables. One solution is to model local variables as a function, mapping
variable names to values: name ⇒ value. But in this model all variables are
represented by the same logical type, namely value. If the programming lan-
guage supports more than one type for variables we can define the type value
as datatype, e.g.: value = Int int | Bool bool | We tag values with their pro-
gramming language type. The drawback of this approach is that we have to
explicitely deal with programming language typing in assertions and proofs. If
for example a program adds the constant 2 to the variable i we have to know
that the current environment holds a value of the kind Int i and not Bool b to
properly reason about the addition. This knowledge has to stem from a typing

? This research is funded by the project Verisoft (http://www.verisoft.de)

http://www4.in.tum.de/~schirmer
http://www.verisoft.de

constraint. We somehow always have to deal with type safety of the programming
language during program verification.

The main contribution of this work is to present a programming language
model that operates on a polymorphic state space, but still can handle local
and global variables throughout procedure calls. By this we can achieve both
desired goals. We can once and for all develop a sound proof calculus as well
as later on tailor the state space to fit to the current program verification task.
Moreover the model is expressive enough to handle abrupt termination, runtime
faults and dynamic procedure calls. Finally we instantiate the framework with
a state space representation that allows us to match programming language
typing with logical typing. So type inference will take care of basic type safety
issues, which simplifies the assertions and proof obligations. Parts of the frame
condition for procedure specifications can be naturally expressed in this state
space representation and can already be handled during verification condition
generation.

We start with a brief introduction to Isabelle/HOL in Section 2; in Section
3 we introduce the syntax and semantics of the basic programming language
model; Section 4 describes a Hoare logic for partial correctness; Section 5 a
Hoare logic for total correctness; Section 6 will instantiate the framework with
common language features and sketch the integration into Isabelle; Section 7
concludes.

Related Work The tradition of embedding a programming language in HOL goes
back to the work of Gordon [11], where a while language with variables ranging
over natural numbers is introduced. A polymorphic state space was already
used by Harrison in his formalisation of Dijkstra [4] and by Prensa to verify
parallel programs [18]. Still procedures are not present. Homeier [5] introduces
procedures, but the variables are again limited to numbers. Later on detailed
semantics for Java [16,6] and C [15] where embedded in a theorem prover. But
verification of even simple programs suffers from the complex models.

The Why tool [3] implements a program logics for annotated functional pro-
grams (with references) and produces verification conditions for an external the-
orem prover. It can handle uninterpreted parts of annotations that are only
meaningful to the external theorem prover. With this approach it is possible to
map imperative languages like Java to the tool by representing the heap in a
reference variable. Splitting up verification condition generation and their proofs
to different tools is also followed in [10,17].

2 Preliminary Notes on Isabelle/HOL

Isabelle is a generic logical framework which allows one to encode different object
logics. In this article we are only concerned with Isabelle/HOL [14], an encoding
of higher order logic augmented with facilities for defining data types, records,
inductive sets as well as primitive and total general recursive functions.

2

The syntax of Isabelle is reminiscent of ML, so we will not go into detail
here. There are the usual type constructors T 1 × T 2 for product and T 1 ⇒ T 2

for function space. The syntax [[P ; Q]] =⇒ R should be read as an inference
rule with the two premises P and Q and the conclusion R. Logically it is just
a shorthand for P =⇒ Q =⇒ R. There are actually two implications −→ and
=⇒. The two mean the same thing except that −→ is HOL’s ”real” implication,
whereas =⇒ comes from Isabelle’s meta-logic and expresses inference rules. Thus
=⇒ cannot appear inside a HOL formula. For the purpose of this paper the two
may be identified. Similarly, we use

∧
for the universal quantifier in the meta

logic.
To emulate partial functions the polymorphic option type is frequently used:

datatype ′a option = None | Some ′a

Here ′a is a type variable, None stands for the undefined value and Some x for
a defined value x. A partial function from type T 1 to type T 2 can be modelled
as T 1 ⇒ (T 2 option).

There is also a destructor for the constructor Some, the function the:: ′a
option ⇒ ′a. It is defined by the sole equation the (Some x) = x and is total in
the sense that the None is a legal, but indefinite value.

Appending two lists is written as xs @ ys and “consing” as x # xs.

3 Programming Language Model

3.1 Abstract Syntax

The basic model of the programming language is quite general. We want to be
able to represent a sequential imperative programming language with mutually
recursive procedures, local and global variables and heap. Abrupt termination
like break, continue, return or exceptions should also be expressible in the
model. Moreover we support a dynamic procedure call, which allows us to rep-
resent procedure pointers or dynamic method invocation.

We only fix the statements of the programming language. Expressions are or-
dinary HOL-expressions, therefore they do not have any side effects. Nevertheless
we want to be able to express faults during expression evaluation, like division by
0 or dereferencing a Null pointer. We introduce guards in the language, which
check for those runtime faults.

The state space of the programming language and also the representation of
procedure names is polymorphic. The canonical type variable for the state space
is ′s and for procedure names ′p. The programming language is defined by a
datatype (′s, ′p) com with the following constructors:

Skip: Do nothing.
Basic f : Basic commands like assignment.
Seq c1 c2: Sequential composition, also written as c1;c2.
Cond b c1 c2: Conditional statement.

3

Guard g c: Guarded command, also written as g 7→ c.
While g b c: Loop.
Call init p return result: Static procedure call.
DynCall init p return result: Dynamic procedure call.
Throw : Initiate abrupt termination.
Catch c1 c2: Handle abrupt termination.

3.2 Semantic

State Space Representation Although the semantics is defined for polymor-
phic state spaces we introduce the state space representation which we will use
later on to give some illustrative examples. We represent the state space as a
record [14,12] in Isabelle/HOL. This idea goes back to Wenzel [19]. A simple
state space with three local variables B, N and M can be modelled with the
following record definition:

record vars = B ::bool N ::int M ::int

Records of type vars have three fields, named B, N and M of type bool resp.
int. An example instance of such a record is (|B = True, N = 42 , M = 3 |). For
each field there is a selector function of the same name, e.g. N (|B = True, N =
42 , M = 3 |) = 42. The update operation is functional. For example, v(|N := 0 |)
is a record where component N is 0 and whose B and M component are copied
from v. Selections of updated components can be simplified automatically e.g.
N (r(|N := 43 |)) = 43. The representation of the state space as record has the
advantage that the typing of variables can be expressed by means of typing in
the logic. Therefore basic type safety requirements are already ensured by type
inference.

Operational Semantics We give an operational (big step) semantics for the
programming language, written as Γ`s −c→ t. Starting in state s, execution
of command c leads to the final state t. Γ is the procedure environment, which
maps procedure names to procedure bodies. The states s and t are not just
plain state spaces of type ′s, but extended states of type ′s xstate which allow
us to identify runtime faults, stuck calculations and abrupt termination. During
normal execution such an extended state has the form Normal s, during abrupt
termination the form Abrupt s, runtime faults are captured by the (extended)
state Fault and stuck calculation by the (extended) state Stuck. The execution
relation is defined inductively.

Basic commands The command Basic f just applies the function f to the
current state. An example of a basic operation may be an assignment N = 2.
This can be represented as Basic (λs. s(|N :=2 |)) in our language model. We can
also model field assignment or memory allocation as basic commands.

Γ`Normal s −Skip→ Normal s Γ`Normal s −Basic f→ Normal (f s)

4

Composition Sequential composition combines the execution of the two com-
mands.

Γ`Normal s −c1→ s ′ Γ`s ′ −c2→ t

Γ`Normal s −Seq c1 c2→ t

Conditional The conditional statement executes the first or the second com-
mand depending on the branching condition b. We represent boolean expressions
as state sets.

s ∈ b Γ`Normal s −c1→ t

Γ`Normal s −Cond b c1 c2→ t

s /∈ b Γ`Normal s −c2→ t

Γ`Normal s −Cond b c1 c2→ t

Guards The guarded command is used to model runtime faults which may
occur during expression evaluation. The guard g is a boolean expression that
checks for possible faults in the expressions of command c and only executes
c if the test is passed. Otherwise the fault will be signalled. Once a fault has
occurred we cannot leave the error state Fault anymore.

s ∈ g
Γ`Normal s −c→ t

Γ`Normal s −Guard g c→ t

s /∈ g

Γ`Normal s −Guard g c→ Fault

Γ`Fault −c→ Fault

Loop If the guard g for the condition b fails the while loop will end up in the
state Fault. If the guard and the loop condition hold, first the loop body c is
executed, followed by the recursive execution of the while loop. If the guard
holds, but the loop condition does not, we exit the loop.

s /∈ g

Γ`Normal s −While g b c→ Fault

s ∈ g s ∈ b
Γ`Normal s −c→ s ′

Γ`s ′ −While g b c→ t

Γ`Normal s −While g b c→ t

s ∈ g s /∈ b

Γ`Normal s −While g b c→ Normal s

Abrupt termination The Throw statement transforms a Normal state to an
Abrupt state. For Abrupt states execution is skipped. A Catch c1 c2 statement
will handle an Abrupt final state of c1 by continuing execution of c2 in a Normal
state. Otherwise execution of c2 is skipped.

Γ`Normal s −Throw→ Abrupt s Γ`Abrupt s −c→ Abrupt s

Γ`Normal s −c1→ Abrupt s ′

Γ`Normal s ′ −c2→ t

Γ`Normal s −Catch c1 c2→ t

Γ`Normal s −c1→ t ¬ isAbr t

Γ`Normal s −Catch c1 c2→ t

5

isAbr (Normal s) = False
isAbr (Abrupt s) = True
isAbr Fault = False
isAbr Stuck = False

Procedure call To execute a procedure call Call init p return result we first
pass the parameters by applying init to the starting state s. Then we execute
the procedure body that is given by a lookup in the procedure environment Γ p.
If this lookup fails Γ p = None execution gets Stuck. For Stuck states execution
is skipped. If we find a procedure body in the environment the further execution
depends on the kind of state, resulting from the body:

Γ p = None

Γ`Normal s −Call init p return result→ Stuck

Γ`Stuck −c→ Stuck
Γ p = Some bdy Γ`Normal (init s) −bdy→ Fault

Γ`Normal s −Call init p return result→ Fault

Γ p = Some bdy Γ`Normal (init s) −bdy→ Stuck

Γ`Normal s −Call init p return result→ Stuck

Γ p = Some bdy Γ`Normal (init s) −bdy→ Normal t

Γ`Normal s −Call init p return result→ Normal (result s t)

Γ p = Some bdy Γ`Normal (init s) −bdy→ Abrupt t

Γ`Normal s −Call init p return result→ Abrupt (return s t)

If execution of the body fails or gets stuck, the whole call fails or gets stuck. If
execution of the body ends up in a Normal state t, the outcome of the call is
given by result s t. If execution of the body ends up in an Abrupt state t, the
outcome of the call is given by return s t. The function return passes back the
global variables (and heap components), and result additionally assigns results
to local variables of the caller.

The return/result functions get both the initial state s before the procedure
call and the final state t after execution of the body. It is the purpose of return to
restore the local variables of the caller and update the global variables. The result
function will additionally assign the result to the caller. If the body terminates
abruptly we apply the return function, thus the global state will be propagated
to the caller but no result will be assigned. This is the expected semantics of an
exception. Note that we can also store a description of the raised exception in a
global variable so that a Catch can peek at it, to decide whether to handle the
exception or to re-raise it.

As an example for a procedure call, consider a function definition int fac(int
n) and a call to this function m = fac(m). When we do not regard global vari-
ables, we can model this call by: Call (λs. s(|N := M s|)) fac (λs t . s) (λs t .
s(|M := N t |)). The state space of the programming language is flat. We do not
explicitly model a stack. Locality of variables and parameters is maintained by
the return and result functions. The body of fac expects the input to be stored

6

in the formal parameter N. But we call the function with the actual parameter
M. So the init function λs. s(|N := M s|) copies the content of M to component
N. The trivial return function λs t . s gives back the initial state. State s is the
initial state of the caller, and t is the state after executing the body. By this
all local variables of the caller are restored. Consider that the body of fac in-
ternally holds the result of the factorial calculation in its local variable N. Then
the result function has to copy the content of N to component M because of
the assignment m = fac(m). This is implemented by the result function λs t .
s(|M := N t |). The result function just takes the initial state and performs the
necessary update by peeking on the actual state. These ideas can be extended
to global variables. Consider B to be a global variable. We just have to adapt
the return/result function, so that they will copy B back to the caller: return =
(λs t . s(|B := B t |)), result = (λs t . s(|B := B t , M := N t |)).

In contrast to the static procedure call, a dynamic procedure call first calcu-
lates the procedure from the actual state. The rest is handled by the ordinary
procedure call rules.

Γ`Normal s −Call init (p s) return result→ t

Γ`Normal s −DynCall init p return result→ t

Termination To characterise terminating programs we introduce the induc-
tively defined judgement Γ`c ↓ s expressing that in procedure environment Γ
program c will terminate when it is started in state s. The rules should be
self-explanatory:

Basic commands
Γ`Skip ↓ Normal s Γ`Basic f ↓ Normal s

Composition
Γ`c1 ↓ Normal s ∀ s ′. Γ`Normal s −c1→ s ′ −→ Γ`c2 ↓ s ′

Γ`Seq c1 c2 ↓ Normal s

Conditional
s ∈ b Γ`c1 ↓ Normal s

Γ`Cond b c1 c2 ↓ Normal s

s /∈ b Γ`c2 ↓ Normal s

Γ`Cond b c1 c2 ↓ Normal s

Guards
s ∈ g Γ`c ↓ Normal s

Γ`Guard g c ↓ Normal s

s /∈ g

Γ`Guard g c ↓ Normal s
Γ`c ↓ Fault

Loop
s /∈ g

Γ`While g b c ↓ Normal s

s ∈ g s /∈ b

Γ`While g b c ↓ Normal s

s ∈ g s ∈ b
Γ`c ↓ Normal s ∀ s ′. Γ`Normal s −c→ s ′ −→ Γ`While g b c ↓ s ′

Γ`While g b c ↓ Normal s

7

Abrupt termination
Γ`Throw ↓ Normal s Γ`c ↓ Abrupt s

Γ`c1 ↓ Normal s
∀ s ′. Γ`Normal s −c1→ Abrupt s ′ −→ Γ`c2 ↓ Normal s ′

Γ`Catch c1 c2 ↓ Normal s

Procedure call
Γ p = Some bdy Γ`bdy ↓ Normal (init s)

Γ`Call init p return result ↓ Normal s

Γ p = None

Γ`Call init p return result ↓ Normal s
Γ`c ↓ Stuck

Γ`Call init (p s) return result ↓ Normal s

Γ`DynCall init p return result ↓ Normal s

4 Hoare Logic for Partial Correctness

The first question concerning a Hoare logic is how to represent the assertions.
The model of the imperative programming language is quite general. The state
space is polymorphic. So the variables and their types are not fixed until we
regard a program to verify. Therefore the assertion language is not fixed either.
An assertion on states of type ′s is a set of states: ′s set.

We first define a Hoare logic for partial correctness. The judgement is of
the general form Γ ,Θ`P c Q ,A where P is the precondition, c the program,
Q the postcondition for normal termination, A the postcondition for abrupt
termination, Γ the procedure environment and Θ is a set of Hoare quadruples
that we may assume. Θ is used to handle recursive procedures as we will see
later on. The approach to split up the postcondition for normal and abrupt
termination is also followed by [3,7].

The semantics of these judgements is given by the notion of validity:

Γ |= P c Q ,A ≡
∀ s t . Γ`s −c→ t −→ s ∈ Normal ‘ P −→ t ∈ Normal ‘ Q ∪ Abrupt ‘ A

Given an execution of command c which takes us from the starting state s to the
final state t, if s is a Normal state for which the precondition P holds, then the
final state t will either be a Normal state for which the postcondition Q holds, or
an Abrupt state for which postcondition A holds. The Fault and Stuck states are
no valid outcomes. This extends the traditional partial correctness interpretation
to abrupt termination and the additional constraint that no runtime fault may
occur. The assertions P, Q and A are of type ′s set, whereas s and t are of type
′s xstate. We do not have to deal with the extended state in assertions, which
makes them easier. The operator ‘ is the set image (like map for lists). So s ∈
Normal ‘ P can be rephrased by the set comprehension {Normal s. s ∈ P}.

When designing the Hoare logic we should always keep soundness and com-
pleteness in mind, which we have both proven:

8

– theorem soundness: Γ ,{}`P c Q ,A −→ Γ |= P c Q ,A
We can only derive valid Hoare quadruples out of the empty context.

– theorem completeness: Γ |= P c Q ,A −→ Γ ,{}`P c Q ,A
We can derive every valid Hoare quadruple out of the empty context.

The Hoare logic is defined inductively. The rules are syntax directed, and
most of them are defined in a weakest precondition style. This makes it easy to
automate rule application in a verification condition generator. Handling abrupt
termination is surprisingly simple. The postcondition for abrupt termination is
left unmodified by most of the rules. Only if we actually encounter a Throw it
has to be a consequence of the precondition. This means that the proof rules
do not complicate the verification of programs where abrupt termination is not
present.

Basic Commands The rule for Basic f commands is a variation of the classical
assignment rule. If the postcondition is Q, then the precondition is the set of all
states that will lead into Q after applying f.

Γ ,Θ`Q Skip Q ,A Γ ,Θ`{s. f s ∈ Q} Basic f Q ,A

Composition and Conditional The rule for sequential composition and the
conditional are almost standard. In case of sequential composition the postcon-
dition for abrupt termination has to hold in either statement independently, in
contrast to the intermediate assertion R for normal termination. This is simply
because in case of abrupt termination of the first statement the second one will
be skipped.

Γ ,Θ`P c1 R,A Γ ,Θ`R c2 Q,A

Γ ,Θ`P Seq c1 c2 Q,A

Γ ,Θ`(P ∩ b) c1 Q,A
Γ ,Θ`(P ∩ − b) c2 Q,A

Γ ,Θ`P Cond b c1 c2 Q,A

Guards To prove a guarded command correct, we have to show that both the
precondition P of the statement c and the guard g hold. This ensures that no
runtime fault occurs.

Γ ,Θ`P c Q,A

Γ ,Θ`(g ∩ P) Guard g c Q,A

Loop The rule for the while loop is also almost the traditional invariant rule.
But we also have to ensure that the guard g for the conditional b always holds.
Otherwise a runtime fault could occur. The verification condition generator will
use a derived rule which takes an invariant annotation into account.

Γ ,Θ`(g ∩ P ∩ b) c (g ∩ P),A
Γ ,Θ`(g ∩ P) While g b c (g ∩ P ∩ − b),A

9

Abrupt Termination In case of a Throw the abrupt postcondition has to stem
from the precondition. The rule for Catch is dual to sequential composition.
Here the postcondition for normal termination can be derived independently.
The intermediate assertion R is the precondition for the second statement and
the postcondition for abrupt termination of the first statement.

Γ ,Θ`A Throw Q ,A
Γ ,Θ`P c1 Q,R Γ ,Θ`R c2 Q,A

Γ ,Θ`P Catch c1 c2 Q,A

Consequence We have a quite general form of the consequence rule. The tra-
ditional rules like precondition strengthening or postcondition weakening can
easily be derived from it.

∀Z. Γ ,Θ`(P ′ Z) c (Q ′ Z),(A ′ Z)
∀ s. s ∈ P −→ (∃Z. s ∈ P ′ Z ∧ Q ′ Z ⊆ Q ∧ A ′ Z ⊆ A)

Γ ,Θ`P c Q,A

The consequence rule can be used to adapt a given specification Γ ,Θ`(P ′ Z) c
(Q ′ Z),(A ′ Z) about command c to Γ ,Θ`P c Q ,A. The auxiliary variable Z can
be used to transport state information from the pre state to the post state. This
is a crucial tool to deal with procedure specifications, where the postcondition
is defined by means of the pre state. For completeness issues it is sufficient that
Z has the type ′s of the state space. Z can be used to fix the pre-state logically.
That is why the given specification must be valid for all Z and the side-condition
allows us to select a specific Z dependent on the current state s. A more detailed
discussion of consequence rules and auxiliary variables can be found in [8,13,16].

Procedure Call If we encounter a procedure call during verification condition
generation, like Γ ,Θ`P Call init p return result Q ,A, we do not look inside the
procedure body, but instead use a specification Γ ,Θ`(P ′ Z) Call ini p ret res
(Q ′ Z),(A ′ Z) of the procedure. We then adapt the specification to the actual
calling context mainly by a variant of the consequence rule, where we also take
parameter and result passing into account.

∀Z . Γ ,Θ`(P ′ Z) Call ini p ret res (Q ′ Z),(A ′ Z)
∀ s. ini (init s) = init s

P ⊆ {s. (∃Z . init s ∈ P ′ Z ∧
(∀ t . res (init s) t ∈ Q ′ Z −→ result s t ∈ Q) ∧
(∀ t . ret (init s) t ∈ A ′ Z −→ return s t ∈ A))}

Γ ,Θ`P Call init p return result Q ,A

The central idea of this rule is to simulate the actual call Call init p return
result in state s, with a call of the specification Call ini p ret res in state init
s. The following figure shows the sequence of intermediate states for normal
termination of both executions. On the top the actual call, on the bottom the
call of the specification:

10

Γ ps

Γ p v

ut

t

ini

∈

Q

Call ini p ret res

res i

−→

∈∈

P ′ Z

∈

P

∈

i

i

Q ′ Z

init

−→

result s

Call init p return result

We start in state s for which the precondition P holds. To be able to make use
of the procedure specification we have to find a suitable instance of the auxiliary
variable Z so that the precondition of the specification holds: init s ∈ P ′ Z. Let t
be the state immediately after execution of the procedure body, before returning
to the caller and passing results. We know from the procedure specification that
when exiting the procedure according to res the postcondition will hold: res (init
s) t ∈ Q ′ Z. From this we have to conclude that exiting the procedure according
to the actual function result will lead us to a state in Q. For abrupt termination
the analogous simulation idea applies.

The side-condition ∀ s. ini (init s) = init s is no real burden. A procedure
specification will be given with the canonical procedure parameters, according
to the procedure declaration. So ini will be the identity. Also in actual program
verification the formal procedure exit protocol defined by ret and res and the
actual protocol return and result will be closely related to each other. Just
because these protocols are modelled so generically here it might seem tedious
at first sight. But ret and return will both copy back global variables to the
caller (so they will actually be the same), and res will just store the result
of the procedure at the formal result parameter in the callers local variables,
whereas result will store it to the actual one. In the record implementation, the
verification condition generator can use simplification of the record updates and
selections encoded in the functions and the assertions, to achieve the expected
adaption of the specification to the actual calling context.

Procedure Implementation To verify a procedure implementation against its
specification we also need a rule that descends into the procedure body. The
Hoare logic can deal with (mutually) recursive procedures. The basic idea of
a Hoare rule for recursive procedures is simple. We prove that the procedure
body respects the specification, under the assumption that recursive calls to the
procedure will meet the specification. To model this assumption the context Θ
comes in. If a procedure specification is in this context, we can immediately
derive this specification within the Hoare logic.

11

(P , c, Q, A) ∈ Θ

Γ,Θ`P c Q,A

To handle a set Procs of mutually recursive procedures we enrich the context
by all the procedure specifications, while we prove their bodies.

Θ ′=Θ ∪ (
⋃

p∈Procs.⋃
Z .{(P p Z ,Call (Init p) p (Ret p) (Res p),Q p Z ,A p Z)})
∀ p∈Procs. ∀Z . Γ ,Θ ′̀ (P p Z) the (Γ p) (Q ′ p Z),(A ′ p Z)

∀ p∈Procs. ∀Z s t . s ∈ P p Z −→
(t ∈ Q ′ p Z −→ Res p s t ∈ Q p Z) ∧ (t ∈ A ′ p Z −→ Ret p s t ∈ A p Z)

∀ p∈Procs. Init p = (λs. s) Procs ⊆ dom Γ

∀Z . ∀ p∈Procs. Γ ,Θ`(P p Z) Call (Init p) p (Ret p) (Res p) (Q p Z),(A p Z)

Since we deal with the set Procs of procedures we also have to give the pre-
and postconditions and the parameter and return/result passing protocols for
all these procedures. We use the functions P, Q, A, Init, Ret and Res which
map procedure names to the desired entities. Z plays the role of an auxiliary (or
logical) variable. It usually fixes (parts of) the pre state, so that we can refer to
it in the post state. In the Hoare rule for procedure specifications, which we have
described before, we had the freedom to pick a particular Z so that s ∈ P −→
init s ∈ P ′ Z holds. Since we have the freedom there, we now have to prove the
procedure bodies for all possible Z. Think of Z as the pre state. We prove that
the specification holds for all pre states (that satisfy the precondition). When we
later on use the specification to prove a procedure call we instantiate Z to the
actual state to adapt the specification to the current calling context. Whereas
the postconditions for the procedures are given by Q p Z and A p Z we prove
different postconditions for the procedure bodies, namely Q ′ p Z and A ′ p Z.
This stems from the fact that the final state of a procedure body is not the
final state of the corresponding procedure call, since exiting the procedure lies
in-between them. We take the intermediate assertions Q ′ p Z and A ′ p Z to
describe the final state of the procedure body. The big side-condition then links
Q ′ p Z and Q p Z or A ′ p Z and A p Z together. It is worth noticing that
in most cases Q ′ and Q or A ′ and A will actually be the same, since a proper
postcondition will only talk about global variables or result variables of the final
state and their relation to the initial state and not about local variables. Keep
in mind that we verify a procedure specification here. So the init functions will
not pass any parameters (Init p = (λs. s)), and the return/result functions will
only assign to global variables or formal result parameters. So global variables
and result variables at the end of the procedure body will be the same as after
exiting the procedure. Finally, with Procs ⊆ dom Γ , we make sure that the
calculation will not get stuck.

Dynamic Procedure Call The rule for dynamic procedure call is a slight
generalisation of the rule for static procedure call. Since the selected procedure

12

depends on the state, we have the liberty to select a suitable specification de-
pendent on the state.

∀ s∈P . ∀Z . Γ ,Θ`(P ′ s Z) Call ini (p s) ret res (Q ′ s Z),(A ′ s Z)
∀ s. ini (init s) = init s

P ⊆ {s. (∃Z . init s ∈ P ′ s Z ∧
(∀ t . res (init s) t ∈ Q ′ s Z −→ result s t ∈ Q) ∧
(∀ t . ret (init s) t ∈ A ′ s Z −→ return s t ∈ A))}

Γ ,Θ`P DynCall init p return result Q ,A

5 Hoare Logic for Total Correctness

The Hoare logic for total correctness ensures both partial correctness and ter-
mination. The judgement is written as Γ ,Θ`tP c Q ,A. The intended semantics
of this judgement is described by the notion of validity.

Γ |=t P c Q ,A ≡ Γ |= P c Q ,A ∧ (∀ s∈Normal ‘ P . Γ`c ↓ s)

Validity for total correctness directly captures the informal description given
above. The quadruple must be valid in the sense of partial correctness, and the
program c has to terminate for all Normal states that satisfy the precondition
P.

Again we have proven both soundness and completeness of the Hoare logic.

– theorem soundness: Γ ,{}`tP c Q ,A −→ Γ |=t P c Q ,A
We can only derive valid Hoare quadruples out of the empty context.

– theorem completeness: Γ |=t P c Q ,A −→ Γ ,{}`tP c Q ,A
We can derive every valid Hoare quadruple out of the empty context.

Most of the Hoare logic rules for total correctness are structurally equivalent
to their partial correctness counterparts. We will only focus on those interesting
rules with an impact on termination, namely loops and recursion. The basic idea
is to justify termination by a well-founded relation on the state space.

Loop We have to supply a well-founded relation r on the state space, which
decreases by evaluation of the loop body. Formally this is expressed by first
fixing the pre-state with the singleton set {τ}. In the postcondition for Normal
termination of the loop body we end up in a state s and have to show that
this state is “smaller” as τ according to the relation: (s, τ) ∈ r. For Abrupt
termination we do not have to take any care, since it will exit the loop anyway.

wf r ∀ τ . Γ ,Θ`t({τ} ∩ g ∩ P ∩ b) c ({s. (s, τ) ∈ r} ∩ g ∩ P),A
Γ ,Θ`t(g ∩ P) While g b c (g ∩ P ∩ − b),A

13

Procedure Implementation In contrast to partial correctness we now only
assume “smaller” recursive procedure calls correct while verifying the procedure
bodies. Here “smaller” again is in the sense of a well-founded relation r. To be
able to handle mutually recursive procedures the relation r not only relates state
spaces but also takes the procedure names into account. We fix the pre-state of
the procedure p with the singleton set {τ}. For every call to a procedure q in a
state s which is “smaller” than the initial call of p in state τ according to the
relation (((s,q),(τ ,p)) ∈ r), we can safely assume the specification of q while
verifying the body of p.

wf r
Θ ′=λτ. Θ ∪ (

⋃
q∈Procs.

⋃
Z .

{(P q Z ∩ {s. ((s,q),(τ ,p)) ∈ r},Call (Init q) q (Ret q) (Res q),Q q Z ,A q Z)})
∀ p∈Procs. ∀ τ Z . Γ ,Θ ′ τ`t({τ} ∩ P p Z) the (Γ p) (Q ′ p Z),(A ′ p Z)

∀ p∈Procs. ∀Z s t . s ∈ P p Z −→
(t ∈ Q ′ p Z −→ Res p s t ∈ Q p Z) ∧ (t ∈ A ′ p Z −→ Ret p s t ∈ A p Z)

∀ p∈Procs. Init p = (λs. s) Procs ⊆ dom Γ

∀Z . ∀ p∈Procs. Γ ,Θ`t(P p Z) Call (Init p) p (Res p) (Ret p) (Q p Z),(A p Z)

6 Utilising the Framework

In this section we will sketch the integration of the Hoare logics in Isabelle/HOL
and how we can express and deal with typical programming language constructs
in our framework. Our purpose is to give an impression of how program verifica-
tion “feels” like in our verification environment. The main tool is a verification
condition generator that is implemented as tactic called vcg. The Hoare logic
rules are defined in a weakest precondition style, so that we can almost take
them as they are. We derive variants of the Hoare rules where all assertions in
the conclusions are plain variables so that they are applicable to every context.

We get the following format:
P ⊆ WP . . .

Γ ,Θ`P c Q ,A
. The . . . may be recursive Hoare

quadruples or side-conditions which somehow lead to the weakest precondition
WP. If we recursively apply rules of this format until the program c is completely
processed, then we have calculated the weakest precondition WP and are left
with the verification condition P ⊆ WP. The set inclusion is then transformed
to an implication. Then we can split the state records so that the record repre-
sentation will not show up in the resulting verification condition. This leads to
quite comprehensible proof obligations that closely resemble the specifications.
Moreover we supply some concrete syntax for programs. The mapping to the ab-
stract syntax should be obvious. As a shorthand an empty set Θ can be omitted
and writing a Hoare triple instead of the quadruples is an abbreviation for an
empty postcondition for abrupt termination.

14

Basics If we refer to components (variables) of the state-space of the program
we always mark these with ´(in assertions and also in the program itself). As-
sertions are ordinary Isabelle/HOL sets. As we usually want to refer to the state
space in the assertions, we provide special brackets {|. . .|} for them. Internally,
an assertion of the from {| Í ≤ 3 |} gets expanded to {s. I s ≤ 3} in ordinary set
comprehension notation of Isabelle.

Although our assertions work semantically on the state space, stepping through
verification condition generation “feels” like the expected syntactic substitutions
of traditional Hoare logic. This is achieved by light simplification on the asser-
tions calculated by the Hoare rules.

lemma Γ` {| Ḿ = a ∧ Ń = b|}
Í := Ḿ ; Ḿ := Ń ; Ń := Í
{| Ḿ = b ∧ Ń = a|}
apply vcg-step

1 . Γ`{| Ḿ = a ∧ Ń = b|} Í := Ḿ ; Ḿ := Ń {| Ḿ = b ∧ Í = a|}

apply vcg-step

1 . Γ`{| Ḿ = a ∧ Ń = b|} Í := Ḿ {| Ń = b ∧ Í = a|}

apply vcg-step

1 . {| Ḿ = a ∧ Ń = b|} ⊆ {| Ń = b ∧ Ḿ = a|}

apply vcg-step

1 .
∧

M N . N = N ∧ M = M

by simp

Loops The following example calculates multiplication by an iterated addition.
The user annotates the loop with an invariant.

lemma Γ` {| Ḿ = 0 ∧ Ś = 0 |}
WHILE Ḿ 6= a INV {| Ś = Ḿ ∗ b|}
DO Ś := Ś + b; Ḿ := Ḿ + 1 OD
{| Ś = a ∗ b|}
apply vcg

1 .
∧

M S . [[M = 0 ; S = 0]] =⇒ S = M ∗ b
2 .

∧
M S . [[S = M ∗ b; M 6= a]] =⇒ S + b = (M + 1) ∗ b

3 .
∧

M S . [[S = M ∗ b; ¬ M 6= a]] =⇒ S = a ∗ b

The verification condition generator gives us three proof obligations, stemming
from the path from the precondition to the invariant, from the invariant together
with the loop condition through the loop body to the invariant, and finally from
the invariant together with the negated loop condition to the postcondition.

15

For total correctness the user also has to supply the variant, which in our case
is a well-founded relation. We make use of the infrastructure for well-founded
recursion that is already present in Isabelle/HOL [14]. In the example the dis-
tance of the loop variable M to a decreases in every iteration. This is expressed
by the measure function a − Ḿ on the state-space.

lemma Γ`t {| Ḿ = 0 ∧ Ś = 0 |}
WHILE Ḿ 6= a INV{| Ś = Ḿ ∗ b ∧ Ḿ ≤ a|} VAR MEASURE a − Ḿ
DO Ś := Ś + b; Ḿ := Ḿ + 1 OD
{| Ś = a ∗ b|}
apply vcg

1 .
∧

M S . [[M = 0 ; S = 0]] =⇒ S = M ∗ b ∧ M ≤ a
2 .

∧
M S . [[S = M ∗ b; M ≤ a; M 6= a]]

=⇒ a − (M + 1) < a − M ∧ S + b = (M + 1) ∗ b ∧ M + 1 ≤ a
3 .

∧
M S . [[S = M ∗ b; M ≤ a; ¬ M 6= a]] =⇒ S = a ∗ b

The variant annotation results in the proof obligation a − (M + 1) < a − M
after verification condition generation.

Abrupt Termination We can implement breaking out of a loop by a THROW
inside the loop body and enclosing the loop into a TRY−CATCH block.

lemma Γ` {| Í ≤ 3 |}
TRY WHILE True INV {| Í≤ 10 |}

DO IF Í < 10 THEN Í := Í + 1 ELSE THROW FI OD
CATCH SKIP YRT
{| Í = 10 |},{}
apply vcg

1 .
∧

I . I ≤ 3 =⇒ I ≤ 10
2 .

∧
I . [[I ≤ 10 ; True]]

=⇒ (I < 10 −→ I + 1 ≤ 10) ∧ (¬ I < 10 −→ I = 10)
3 .

∧
I . [[I ≤ 10 ; ¬ True]] =⇒ I = 10

The first subgoal stems from the path from the precondition to the invariant.
The second one from the loop body. We can assume the invariant and the loop
condition and have to show that the invariant is preserved when we execute
the THEN branch, and that the ELSE branch will imply the assertion for
abrupt termination, which will be {| Í = 10 |} according to the rule for Catch.
The third subgoal expresses that normal termination of the while loop has to
imply the postcondition. But the loop will never terminate normally and so the
third subgoal will trivially hold. All subgoals are quite simple and can be proven
automatically.

16

To model a continue we can use the same idea and put a TRY−CATCH
around the loop body. Or for return we can put the procedure body into a
TRY−CATCH. To distinguish the kind of abrupt termination we can add
a ghost variable Abr to the state space and store this information before the
THROW. For example break can be translated to Ábr := ′′Break ′′; THROW,
and the matching CATCH will peek for this variable to decide whether it is
responsible or not: IF Ábr = ′′Break ′′ THEN SKIP ELSE THROW FI.
This idea can immediately be extended to exceptions. We just have to make sure
to use a global variable to store the kind of exception, so that it will properly
pass procedure boundaries.

Procedures We provide the command procedures, to declare, define and spec-
ify a procedure.

procedures Fac (N |R) =
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ
FI

Fac-spec: ∀n. Γ`{| Ń = n|} Ŕ := CALL Fac(Ń) {| Ŕ = fac n|}

A procedure is given by the signature of the procedure followed by the procedure
body and named specifications. The signature consists of the name of the pro-
cedure and a list of parameters. The parameters in front of the pipe | are value
parameters and behind the pipe are the result parameters. Value parameters
model call by value semantics. The value of a result parameter at the end of the
procedure is passed back to the caller.

The procedure specifications are ordinary Hoare quadruples. The precondi-
tion here fixes the current value Ń to the logical variable n. Universal quantifi-
cation of n enables us to adapt the specification to an actual parameter. The
specification will be used in the rule for procedure call when we come upon a
call to Fac. Thus n plays the role of the auxiliary variable Z.

The procedures command provides convenient syntax for procedure calls
(that creates the proper init, return and result functions on the fly), defines
a constant for the procedure body (named Fac-body) and creates two locales.
The purpose of locales is to set up logical contexts to support modular reasoning
[1].

One locale is named like the specification, in our case Fac-spec. This locale
contains the procedure specification. The second locale is named Fac-impl and
contains the assumption Γ ′′Fac ′′ = Some Fac-body, which expresses that the
procedure is defined in the current context. The purpose of these locales is to
give us easy means to setup the context in which we will prove programs correct.

By including the locale Fac-spec, the following lemma assumes that the spec-
ification of the factorial holds. The vcg will make use the specification to handle
the procedure call. The lemma also illustrates locality of I.

lemma includes Fac-spec shows

17

Γ` {| Ḿ = 3 ∧ Í = 2 |} Ŕ := CALL Fac (Ḿ) {| Ŕ = 6 ∧ Í = 2 |}
apply vcg

1 .
∧

I M . [[M = 3 ; I = 2]] =⇒ fac M = 6 ∧ I = 2

To verify the procedure body we use the rule for recursive procedures. We
extend the context with the procedure specification. In this extended context
the specification will hold by the assumption rule. We then verify the procedure
body by using vcg, which will use the assumption to handle the recursive call.

lemma includes Fac-impl shows
∀n. Γ`{| Ń = n|} CALL Fac(Ń , Ŕ) {| Ŕ = fac n|}
apply (hoare-rule CallRec1-SamePost)

1 . ∀n. Γ ,(
⋃

n {({| Ń = n|}, Ŕ := CALL Fac(Ń), {| Ŕ = fac n|}, {})})
`{| Ń = n|}
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI
{| Ŕ = fac n|}

apply vcg

1 .
∧

N . (N = 0 −→ 1 = fac N) ∧ (N 6= 0 −→ N ∗ fac (N − 1) = fac N)

The rule CallRec1-SamePost is a specialised version of the general rule for recur-
sion, tailored for one (mutual recursive) procedure, and where the intermediate
assertions for the procedure body and the actual postcondition are the same. The
method hoare-rule applies a single rule and solves the canonical side-conditions
concerning the parameter passing and returning protocols. Moreover it expands
the procedure body.

For total correctness the user supplies a well-founded relation. For the facto-
rial the input parameter N decreases in the recursive call. This is expressed by
the measure function λ(s,p). sN. The relation can depend on both the state-space
s and the procedure name p. The latter is useful to handle mutual recursion.
The prefix superscript in sN is a shorthand for record selection N s and is used
to refer to state components of a named state.

lemma includes Fac-impl shows
∀n. Γ`t {| Ń = n|} Ŕ := CALL Fac(Ń) {| Ŕ = fac n|}
apply (hoare-rule CallRec1-SamePost t [where r=measure (λ(s,p). sN)])

18

1 . ∀ τ n. Γ ,(
⋃

n {({| Ń = n|} ∩ {| Ń < τN |}, Ŕ := CALL Fac(Ń),
{| Ŕ = fac n|}, {})})

`t({τ} ∩ {| Ń = n|})
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI
{| Ŕ = fac n|}

We may only assume the specification for “smaller” states {| Ń < τN |}, where
state τ gets fixed in the precondition.

apply vcg

1 .
∧

N . (N = 0 −→ 1 = fac N) ∧
(N 6= 0 −→ N − 1 < N ∧ N ∗ fac (N − 1) = fac N)

The measure function results in the proof obligation N − 1 < N in the verifi-
cation condition.

Heap The heap can contain structured values like structs in C or records in
Pascal. Our model of the heap follows Bornat [2]. We have one heap variable f
of type ref ⇒ value for each component f of type value of the struct.

A typical structure to represent a linked list in the heap is struct {int
cont; list *next} list. The structure contains two components, cont and
next. So we will also get two heap variables, cont of type ref ⇒ int and next of
type ref ⇒ ref in our state space record:

record list-vars =
next ::ref ⇒ ref
cont ::ref ⇒ ref
p::ref
q ::ref
r ::ref

In this state space next and cont are global variables and p and q are local ones.
This is given to Isabelle by the globals command.

globals list-vars = next and cont

The only effect of this command is that the return/result functions that are
created by the syntax translations will actually pass all global variables back to
the caller. References ref are isomorphic to the natural numbers and contain
Null.

The approach to specify procedures on lists basically follows [9]. From the
pointer structure in the heap we (relationally) abstract to HOL lists of references.
Then we can specify further properties on the level of HOL lists, rather then on
the heap:

19

List x h [] = (x = Null)
List x h (p # ps) = (x = p ∧ x 6= Null ∧ List (h x) h ps)
The list of references is obtained from the heap h by starting with the reference
x, following the references in h up to Null.

We define in place list reversal. The list pointed to by p in the beginning is
Ps. In the end q points to the reversed list rev Ps. The notation r→f mimics
the field selection syntax of C and is translated to ordinary function application
for field lookup and function update for field assignment.

lemma Γ`{|List ṕ ńext Ps|}
q́ := Null ;
WHILE ṕ 6= Null
INV {|∃Ps ′ Qs ′. List ṕ ńext Ps ′ ∧ List q́ ńext Qs ′ ∧

set Ps ′ ∩ set Qs ′ = {} ∧ rev Ps ′ @ Qs ′ = rev Ps|}
DO ŕ := ṕ; ṕ := ṕ→ ńext ; ŕ→ ńext := q́ ; q́ := ŕ OD
{|List q́ ńext (rev Ps)|}
by (vcg ,fastsimp+)

In the loop, pointer p sequentially steps through the list Ps and q accumulates
the reversed list. Therefore the desired outcome rev Ps can be obtained by
appending the the reversed list pointed to by p and the list pointed to by q. This
is expressed by rev Ps ′ @ Qs ′ = rev Ps in the invariant. Separation of the two
lists Ps ′ and Qs ′ is captured by the empty intersection of references: set Ps ′ ∩
set Qs ′ = {}.

The specification of list reversal above, does not capture the information
about the parts of the heap that do not change. But this information is crucial
to properly use the specification in different contexts. We encapsulate this code
fragment in a procedure and give the following, more detailed specification.

procedures Rev(p|q) =
q́ := Null ;
WHILE ṕ 6= Null
DO ŕ := ṕ; ṕ := ṕ→ ńext ; ŕ→ ńext := q́ ; q́ := ŕ OD

Rev-spec:
∀σ Ps. Γ` {|σ. List ṕ ńext Ps|} q́ := CALL Rev(ṕ)
{|List q́ ńext (rev Ps) ∧ (∀ p. p /∈ set Ps −→ (ńext p = σnext p))|}

Rev-modifies:
∀σ. Γ`{σ} q́ := CALL Rev(ṕ) {t . t may-only-modify σ in [next ,q]}

We have given two specifications this time. The first one captures the functional
behaviour and additionally expresses that all parts of the next heap not contained
in Ps, will stay the same (σ denotes the pre-state). The second one is a modifies
clause that lists all the state components that may be changed by the procedure.
Therefore we know that the cont parts will not be changed. The assertion t
may-only-modify σ in [next , p] abbreviates the following relation between the

20

final state t and the initial state σ: ∃next p. t=σ(|next :=next ,p :=p|). This
modifies clause can be exploited during verification condition generation. We
derive that we can reduce the result function in the call to Rev, which copies the
global components next and cont back, to one that only copies next back. So
cont will actually behave like a local variable in the resulting proof obligation.
This is an effective way to express separation of different pointer structures in
the heap and can be handled completely automatic during verification condition
generation. For example, reversing a list will only modify the next heap but not
some left and right heaps of a tree structure. Moreover the modifies clause itself
can be verified automatically. The following example illustrates the effect of the
modifies clause.

lemma includes Rev-spec + Rev-modifies shows
Γ`{| ćont=c ∧ List ṕ ńext Ps|} ṕ := CALL Rev(ṕ)

{| ćont=c ∧ List ṕ ńext (rev Ps)|}
apply vcg

1 .
∧

next cont p.
List p next Ps =⇒
∀nexta q .

List q nexta (rev Ps) ∧ (∀ p. p /∈ set Ps −→ nexta p = next p) −→
cont = cont ∧ List q nexta (rev Ps)

The impact of the modifies clause shows up in the verification condition. The
content heap results in the same variable before and after the procedure call
(cont = cont), whereas the next heap is described by next in the beginning and
by nexta in the end. The specification of Rev relates both next heap states.

Memory Management To model allocation and deallocation we need some
bookkeeping of allocated references. This can be achieved by an auxiliary ghost
variable alloc in the state space. A good candidate is a list of allocated references.
A list is per se finite, so that we can always get a new reference. By the length
of the list we can also handle space limitations. Allocation of memory means to
append a new reference to the allocation list. Deallocation of memory means to
remove a reference from the allocation list. To guard against dangling pointers
we can regard the allocation list: {| ṕ 6=Null ∧ ṕ ∈ set álloc|}7→ ṕ→ ćont := 2.

The use of guards is a flexible mechanism to adapt the model to the kind of
language we are looking at. If it is type safe like Java and there is no explicit
deallocation by the user, we can remove some guards. If the new instruction of
the programming language does not initialise the allocated memory we can add
another ghost variable to watch for initialised memory through guards.

21

7 Conclusion

We have presented a flexible, sound and complete Hoare calculus for sequential
imperative programs with mutually recursive procedures and dynamic proce-
dure call. We have elaborated how to model various kinds of abrupt termination
like break, continue, return and exceptions, how to deal with global vari-
ables, heap and memory management issues. The polymorphic state space of
the programming language allows us to choose the adequate representation for
the current verification task. Depending on the context we can for example de-
cide, whether it is preferable to model certain variables as unbounded integers in
HOL or as bit-vectors, without changing the program representation or logics.
Guards make it possible to customise the runtime faults we are interested in.
The usage of records as state space representation gives us a natural way to
express typing of program variables and yields comprehensible verification con-
ditions. Moreover in combination with the modifies clause we can lift separation
of heap components, which are directly expressible in the split heap model, to
the level of procedures. Crucial parts of the frame problem can then already be
handled during verification condition generation. The calculus is developed, ver-
ified and integrated in the theorem prover Isabelle and the resulting verification
environment is seamless fitting into the infrastructure of Isabelle/HOL.

References

1. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Berardi,
M. Coppo, and F. Damiani, editors, Types for Proofs and Programs: International
Workshop, TYPES 2003, Torino, Italy, April 30–May 4, 2003, Selected Papers,
number 3085 in Lect. Notes in Comp. Sci., pages 34–50. Springer-Verlag, 2004.

2. R. Bornat. Proving pointer programs in Hoare Logic. In R. Backhouse and
J. Oliveira, editors, Mathematics of Program Construction (MPC 2000), volume
1837 of Lect. Notes in Comp. Sci., pages 102–126. Springer-Verlag, 2000.

3. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.

4. J. Harrison. Formalizing Dijkstra. In J. Grundy and M. Newey, editors, Theorem
Proving in Higher Order Logics: 11th International Conference, TPHOLs’98, vol-
ume 1497 of Lect. Notes in Comp. Sci., pages 171–188, Canberra, Australia, 1998.
Springer-Verlag.

5. P. V. Homeier. Trustworthy Tools for Trustworthy Programs: A Mechanically Veri-
fied Verification Condition Generator for the Total Correctness of Procedures. PhD
thesis, Department of Computer Science, University of California, Los Angeles,
1995.

6. M. Huisman. Java program verification in higher order logic with PVS and Isabelle.
PhD thesis, University of Nijmegen, 2000.

7. B. Jacobs. Weakest precondition reasoning for Java programs with JML annota-
tions. Journal of Logic and Algebraic Programming, 58:61–88, 2004.

8. T. Kleymann. Hoare Logic and auxiliary variables. Formal Aspects of Computing,
11(5):541–566, 1999.

22

9. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In
F. Baader, editor, Automated Deduction — CADE-19, volume 2741 of Lect. Notes
in Comp. Sci., pages 121–135. Springer-Verlag, 2003.

10. J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, TACAS00, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1785 of Lect. Notes in Comp. Sci.,
pages 63–77. Springer-Verlag, 2000.

11. M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In G.M.
Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Verifica-
tion and Automatic Theorem Proving (Proceedings of the Workshop on Hardware
Verification), pages 387–439, Banff, Canada, 1988. Springer, Berlin.

12. W. Naraschewski and M. Wenzel. Object-oriented verification based on record
subtyping in higher-order logic. In Theorem Proving in Higher Order Logics: 11th
International Conference, TPHOLs’98, volume 1479 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1998.

13. T. Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer,
2002.

14. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer-Verlag,
2002. http://www.in.tum.de/~nipkow/LNCS2283/.

15. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
16. D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and

Hoare Logic. PhD thesis, Technische Universität München, 2001.
17. C. Pierik and F. S. de Boer. Computer-aided specification and verification of

annotated object-oriented programs. In Formal Methods for Open Object-Based
Distributed Systems 2003, volume 2884 of Lect. Notes in Comp. Sci., pages 163–
177. Springer-Verlag, 2002.

18. L. Prensa Nieto. Verification of Parallel Programs with the Owicki-Gries and Rely-
Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität München,
2002.

19. M. Wenzel. Miscellaneous Isabelle/Isar examples for higher order logic. Is-
abelle/Isar proof document, 2001.

23

http://www.in.tum.de/~nipkow/LNCS2283/

	A Verification Environment for Sequential Imperative Programs in Isabelle/HOL
	Norbert Schirmer

