
A Verification Environment for Sequential
Imperative Programs in Isabelle/HOL ?

Norbert Schirmer

Technische Universität München, Institut für Informatik
url://www4.in.tum.de/~schirmer

Abstract. We develop a general language model for sequential impera-
tive programs together with a Hoare logic. We instantiate the framework
with common programming language constructs and integrate it into Is-
abelle/HOL, to gain a usable and sound verification environment.

1 Introduction

The main goal of this work is to develop a suitable programming language model
and proof calculus, to support program verification in the interactive theorem
prover Isabelle/HOL. The model should be lightweight so that program verifi-
cation can be carried out on the abstraction level of the programming language.
The design of a framework for program verification in an expressive logic like
HOL is driven by two main goals. On the one hand we want to derive the proof
calculus in HOL, so that we can guarantee soundness of the calculus with respect
to the programming language semantics. On the other hand we want to apply
the proof calculus to verify programs.

The main contribution of this work is to present a programming language
model that operates on a polymorphic state space, but still can handle local
and global variables throughout procedure calls. By this we can achieve both
desired goals. We can once and for all develop a sound proof calculus as well
as later on tailor the state space to fit to the current program verification task.
Moreover the model is expressive enough to handle abrupt termination, side-
effecting expressions, runtime faults and dynamic procedure calls. Finally we
instantiate the framework with a state space representation that allows us to
match programming language typing with logical typing. So type inference will
take care of basic type safety issues, which simplifies the assertions and proof
obligations. Parts of the frame condition for procedure specifications can be
naturally expressed in this state space representation and can already be handled
during verification condition generation.

? This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
(http://www.verisoft.de) under grant 01 IS C38. The responsibility for this arti-
cle lies with the author.

http://www.verisoft.de

Related Work The tradition of embedding a programming language in HOL goes
back to the work of Gordon [12], where a while language with variables ranging
over natural numbers is introduced. A polymorphic state space was already used
by Wright et. al. [21] in their machnisation of refinement concepts, by Harrison
in his formalisation of Dijkstra [5] and by Prensa to verify parallel programs
[18]. Still procedures were not present. Homeier [6] introduces procedures, but
the variables are again limited to numbers. Later on detailed semantics for Java
[16,7] and C [15] were embedded in a theorem prover. But verification of even
simple programs suffers from the complex models.

The Why tool [4] implements a program logics for annotated functional pro-
grams (with references) and produces verification conditions for an external the-
orem prover. It can handle uninterpreted parts of annotations that are only
meaningful to the external theorem prover. With this approach it is possible to
map imperative languages like C to the tool by representing the heap in refer-
ence variables. Although the Why tool and the work we present in this paper
both provide comparable verification environments for imperative programs the
theoretical foundations to achieve this are quite different: Filliâtre builds up a
sophisticated type theory incorporating an effect analysis on the input language,
whereas the framework of Hoare logics and the simple type system of HOL is
sufficient for our needs. Moreover our entire development, the calculus together
with its soundness and completeness proof, is carried out in Isabelle/HOL, in
contrast to the pen and paper proofs of Filliâtre [3].

The rest of the paper is structured as follows. We start with a brief introduc-
tion to Isabelle/HOL in Section 2; in Section 3 we introduce the programming
language model and the Hoare logics; Section 4 describes the integration into
Isabelle and shows how we deal with various language constructs; Section 5
concludes.

2 Preliminary Notes on Isabelle/HOL

Isabelle is a generic logical framework which allows one to encode different object
logics. In this article we are only concerned with Isabelle/HOL [14], an encoding
of higher order logic augmented with facilities for defining data types, records,
inductive sets as well as primitive and total general recursive functions.

The syntax of Isabelle is reminiscent of ML, so we will not go into detail
here. There are the usual type constructors T 1 × T 2 for product and T 1 ⇒ T 2

for function space. The syntax [[P ; Q]] =⇒ R should be read as an inference
rule with the two premises P and Q and the conclusion R. Logically it is just
a shorthand for P =⇒ Q =⇒ R. There are actually two implications −→ and
=⇒. The two mean the same thing except that −→ is HOL’s ”real” implication,
whereas =⇒ comes from Isabelle’s meta-logic and expresses inference rules. Thus
=⇒ cannot appear inside a HOL formula. For the purpose of this paper the two
may be identified. Similarly, we use

∧
for the universal quantifier in the meta

logic.

2

To emulate partial functions the polymorphic option type is frequently used:
datatype ′a option = None | Some ′a. Here ′a is a type variable, None stands
for the undefined value and Some x for a defined value x. A partial function from
type T 1 to type T 2 can be modelled as T 1 ⇒ (T 2 option). The domain of such
a partial function f is dom f.

There is also a destructor for the constructor Some, the function the:: ′a
option ⇒ ′a. It is defined by the sole equation the (Some x) = x and is total in
the sense that the None is a legal, but indefinite value.

Appending two lists is written as xs @ ys and “consing” as x # xs.

3 Programming Language Model

3.1 Abstract Syntax

The basic model of the programming language is quite general. We want to be
able to represent a sequential imperative programming language with mutually
recursive procedures, local and global variables and heap. Abrupt termination
like break, continue, return or exceptions should also be expressible in the
model. Moreover we support a dynamic procedure call, which allows us to rep-
resent procedure pointers or dynamic method invocation.

We only fix the statements of the programming language. Expressions are or-
dinary HOL-expressions, therefore they do not have any side effects. Nevertheless
we want to be able to express faults during expression evaluation, like division by
0 or dereferencing a Null pointer. We introduce guards in the language, which
check for those runtime faults.

The state space of the programming language and also the representation of
procedure names is polymorphic. The canonical type variable for the state space
is ′s and for procedure names ′p. The programming language is defined by a
datatype (′s, ′p) com with the following constructors:

Skip: Do nothing
Basic f : Basic commands like assignment; f is a state-update: ′s ⇒ ′s
Seq c1 c2: Sequential composition, also written as c1;c2

Cond b c1 c2: Conditional statement
Guard g c: Guarded command, also written as g 7→ c
While b c: Loop
Call p: Static procedure call, p:: ′p
Throw : Initiate abrupt termination
Catch c1 c2: Handle abrupt termination of c1 with c2

DynCom c: Dynamic (state dependant) command: c:: ′s ⇒ (′s, ′p) com

The procedure call above is parameterless. In 4.4 we implement a call with
parameters: call init p return result.

The dynamic command DynCom allows to abstract a statement over the
state. It is fairy general, and we implement side-effecting expressions (4.3) and

3

real “dynamic” statements, like pointers to procedures or dynamic method in-
vocation with it. We model the latter with:

dynCall init p return result ≡ DynCom (λs. call init (p s) return result)

3.2 State Space Representation

Although the semantics is defined for polymorphic state spaces we introduce the
state space representation which we will use later on to give some illustrative
examples. We represent the state space as a record in Isabelle/HOL. This idea
goes back to Wenzel [23]. A simple state space with three variables B, N and M
can be modelled with the following record definition:

record vars = B ::bool N ::int M ::int
Records of type vars have three fields, named B, N and M of type bool resp.

int. An example instance of such a record is (|B = True, N = 42 , M = 3 |). For
each field there is a selector function of the same name, e.g. N (|B = True, N =
42 , M = 3 |) = 42. The update operation is functional. For example, v(|N := 0 |)
is a record where component N is 0 and whose B and M component are copied
from v. Selections of updated components can be simplified automatically e.g.
N (r(|N := 43 |)) = 43. The representation of the state space as record has the
advantage that the typing of variables can be expressed by means of typing in
the logic. Therefore basic type safety requirements are already ensured by type
inference.

3.3 Hoare Logics

We have defined two Hoare logic judgements, for partial correctness of the gen-
eral form Γ ,Θ` P c Q ,A and Γ ,Θ`t P c Q ,A for total correctness. P is the
precondtion and Q and A are the postconditions for normal and abrupt termi-
nation. If we start in a state satisfying P, execution of command c will end up
in a state satisfying Q in case of normal termination and in a state satisfying A
in case of abrupt termination. Total correctness additionally guarantees termi-
nation of the program. Γ is the procedure environment, which maps procedure
names to their bodies, and Θ is a set of Hoare quadruples that we may assume.
Θ is used to handle recursive procedures as we will see later on. We have proven
soundness and completeness of the Hoare logics with respect to an operational
semantics [20]. But this paper will focus on the application of the logic.

The assertions P, Q and A are represented as set of states: ′s set. This means
we do not introduce a special assertion language, but can use ordinary HOL sets
to describe the states.

The Hoare logic is defined inductively. The rules are syntax directed, and
most of them are defined in a weakest precondition style. This makes it easy to
automate rule application in a verification condition generator. Handling abrupt
termination is surprisingly simple. The postcondition for abrupt termination is
left unmodified by most of the rules. Only if we actually encounter a Throw it has

4

to be a consequence of the precondition. This means that the proof rules do not
complicate the verification of programs where abrupt termination is not present.
The approach to split up the postcondition for normal and abrupt termination
is also followed by [4,8].

The rules for the basic language constructs are standard:

Γ ,Θ` Q Skip Q ,A Γ ,Θ` {s. f s ∈ Q} Basic f Q ,A

Γ ,Θ` P c1 R,A Γ ,Θ` R c2 Q ,A
Γ ,Θ` P Seq c1 c2 Q ,A

Γ ,Θ` (P ∩ b) c1 Q ,A
Γ ,Θ` (P ∩ − b) c2 Q ,A

Γ ,Θ` P Cond b c1 c2 Q ,A

Γ ,Θ` P c Q ,A
Γ ,Θ` (g ∩ P) Guard g c Q ,A

Γ ,Θ` (P ∩ b) c P ,A
Γ ,Θ` P While b c (P ∩ − b),A

The command Basic f applies the function f to the current state. An example of
a basic operation may be an assignment N = 2. This can be represented as Basic
(λs. s(|N :=2 |)) in our language model. We can also represent field assignment
or memory allocation as basic commands.

To model runtime faults that may occur during expression evaluation (like
division by zero), we use the guarded command. In order to prove a guarded
command we have to ensure that the guard holds.

The remaining rules will be described in the following section. Most of rules
for total correctness are structurally equivalent to their partial correctness coun-
terparts. We will only focus on those interesting rules with an impact on termi-
nation, namely loops and recursion. The basic idea is to justify termination by
a well-founded relation on the state-space.

4 Verification Environment

Our main tool is a verification condition generator that is implemented as tactic
called vcg. The Hoare logic rules are defined in a weakest precondition style, so
that we can almost take them as they are. We derive variants of the Hoare rules
where all assertions in the conclusions are plain variables so that they are ap-

plicable to every context. We get the following format:
P ⊆ WP . . .

Γ ,Θ` P c Q ,A
. The . . .

may be recursive Hoare quadruples or side-conditions which somehow lead to the
weakest precondition WP. If we recursively apply rules of this format until the
program c is completely processed, then we have calculated the weakest precon-
dition WP and are left with the verification condition P ⊆ WP. The set inclusion
is then transformed to an implication. Finally we split the state records so that
the record representation will not show up in the resulting verification condi-
tion. This leads to quite comprehensible proof obligations that closely resemble
the specifications. Moreover we supply some concrete syntax for programs. The
mapping to the abstract syntax should be obvious. As a shorthand an empty
set Θ can be omitted and writing a Hoare triple instead of the quadruples is an
abbreviation for an empty postcondition for abrupt termination.

5

If we refer to components (variables) of the state-space of the program we
always mark these with ´(in assertions and also in the program itself). Assertions
are ordinary Isabelle/HOL sets. As we usually want to refer to the state-space in
the assertions, we provide special brackets {|. . .|} for them. Internally, an assertion
of the from {| Í ≤ 3|} gets expanded to {s. I s ≤ 3} in ordinary set comprehension
notation of Isabelle.

Although our assertions work semantically on the state-space, stepping through
verification condition generation “feels” like the expected syntactic substitutions
of traditional Hoare logic. This is achieved by simplification of the record updates
in the assertions calculated by the Hoare rules.

lemma
Γ` {| Ḿ = a ∧ Ń = b|} Í := Ḿ ; Ḿ := Ń ; Ń := Í {| Ḿ = b ∧ Ń = a|}
apply vcg-step

1 . Γ` {| Ḿ = a ∧ Ń = b|} Í := Ḿ ; Ḿ := Ń {| Ḿ = b ∧ Í = a|}

apply vcg-step
1 . Γ` {| Ḿ = a ∧ Ń = b|} Í := Ḿ {| Ń = b ∧ Í = a|}

apply vcg-step
1 . {| Ḿ = a ∧ Ń = b|} ⊆ {| Ń = b ∧ Ḿ = a|}

apply vcg-step
1 .

∧
M N . N = N ∧ M = M

4.1 Loops

To verify a loop, the user annotates an invariant. For total correctness the user
also supplies the variant, which in our case is a well-founded relation on the state-
space, which decreases by evaluation of the loop body. Formally this is expressed
by first fixing the pre-state with the rsingleton set {τ}. In the postcondition for
normal termination of the loop body we end up in a state s and have to show
that this state is “smaller than” τ according to the relation: (s, τ) ∈ r. Since
abrupt termination will exit the loop immediately we do not have to take any
care in this case.

wf r ∀ τ . Γ ,Θ`t ({τ} ∩ P ∩ b) c ({s. (s, τ) ∈ r} ∩ P),A
Γ ,Θ`t P While b c (P ∩ − b),A

We make use of the infrastructure for well-founded recursion that is already
present in Isabelle/HOL [14]. The following example calculates multiplication
by iterated addition. The distance of the loop variable M to a decreases in every
iteration. This is expressed by the measure function a − Ḿ on the state-space.

lemma Γ`t {| Ḿ = 0 ∧ Ś = 0|}
WHILE Ḿ 6= a INV{| Ś = Ḿ ∗ b ∧ Ḿ ≤ a|} VAR MEASURE a − Ḿ
DO Ś := Ś + b; Ḿ := Ḿ + 1 OD
{| Ś = a ∗ b|}
apply vcg

6

1 .
∧

M S . [[M = 0 ; S = 0]] =⇒ S = M ∗ b ∧ M ≤ a
2 .

∧
M S . [[S = M ∗ b; M ≤ a; M 6= a]]

=⇒ a − (M + 1) < a − M ∧ S + b = (M + 1) ∗ b ∧ M + 1 ≤ a
3 .

∧
M S . [[S = M ∗ b; M ≤ a; ¬ M 6= a]] =⇒ S = a ∗ b

The verification condition generator gives us three proof obligations, stemming
from the path from the precondition to the invariant, from the invariant together
with the loop condition through the loop body to the invariant, and finally from
the invariant together with the negated loop condition to the postcondition. The
variant annotation results in the proof obligation a − (M + 1) < a − M after
verification condition generation.

4.2 Abrupt Termination

In case of a Throw the abrupt postcondition has to stem from the precondition.
The rule for Catch is dual to sequential composition. Only if the first statement
terminates abruptly the second statement is executed. Thinking of exceptions
the first statement forms the protected try part, whereas the second statement
is the exception handler. Thus the precondition R for the second statement is
the postcondition for abrupt termination of the first statement.

Γ ,Θ` A Throw Q ,A
Γ ,Θ` P c1 Q ,R Γ ,Θ` R c2 Q ,A

Γ ,Θ` P Catch c1 c2 Q ,A

We can implement breaking out of a loop by a THROW inside the loop body
and enclosing the loop into a TRY−CATCH block.

lemma Γ` {| Í ≤ 3|}
TRY WHILE True INV {| Í≤ 10|}

DO IF Í < 10 THEN Í := Í + 1 ELSE THROW FI OD
CATCH SKIP YRT
{| Í = 10|},{}
apply vcg

1 .
∧

I . I ≤ 3 =⇒ I ≤ 10
2 .

∧
I . [[I ≤ 10 ; True]]

=⇒ (I < 10 −→ I + 1 ≤ 10) ∧ (¬ I < 10 −→ I = 10)
3 .

∧
I . [[I ≤ 10 ; ¬ True]] =⇒ I = 10

The first subgoal stems from the path from the precondition to the invariant.
The second one from the loop body. We can assume the invariant and the loop
condition and have to show that the invariant is preserved when we execute the
THEN branch, and that the ELSE branch will imply the assertion for abrupt
termination, which will be {| Í = 10|} according to the rule for Catch and Skip.
The third subgoal expresses that normal termination of the while loop has to

7

imply the postcondition. But the loop will never terminate normally and so the
third subgoal will trivially hold.

To model a continue we can use the same idea and put a TRY−CATCH
around the loop body. Or for return we can put the procedure body into a
TRY−CATCH. To distinguish the kind of abrupt termination we can add
a ghost variable Abr to the state-space and store this information before the
THROW. For example break can be translated to Ábr := ′′Break ′′; THROW.
The matching CATCH will peek for this variable to decide whether it is re-
sponsible or not: IF Ábr = ′′Break ′′ THEN SKIP ELSE THROW FI. This
idea can immediately be extended to exceptions. We just have to make sure to
use a global variable to store the kind of exception, so that it will properly pass
procedure boundaries.

4.3 Expressions with Side Effects

Expressions in our language model are ordinary HOL expressions (functions over
the state-space) and though do not have side effects. The trivial approach is to
reduce side-effecting expressions to statements and expressions without side ef-
fects. A program transformation step introduces temporary variables to store the
result of subexpressions. For example we can get rid of the increment expres-
sion in r = m++ + n by first saving the initial value of m in a temporary vari-
able: tmp = m; m = m + 1; r = tmp + n. But in our state-space model this
approach is somehow annoying since the temporary variables directly affect the
shape of the state record. The essence of the temporary variables is to fix the
value of an expression at a certain program state, so that we can later on refer
to this value. Since our dynamic command DynCom allows to abstract over the
state-space we already have the means to refer to certain program states. In
contrast to Oheimb [16] we do not have to invent a special kind of postcondi-
tion that explicitely depends on the result value of an expression. Similar to the
state monad in functional programming [22] we introduce the command bind e
c, which binds the value of expression e (of type ′s ⇒ ′v) at the current program
state and feeds it into the following command c (of type ′v ⇒ (′s, ′p) com): bind
e c ≡ DynCom (λs. c (e s)). The Hoare rule for bind is the following:

P ⊆ {s. s ∈ P ′ s} ∀ s. Γ ,Θ` (P ′ s) c (e s) Q ,A
Γ ,Θ` P bind e c Q ,A

The initial state is s. The intuitive reading of the rule is backwards in the style
of the weakest precondition calculation. The postcondition we want to reach is
Q or A. Since statement c depends on the initial state s via expression e, the
intermediate assertion P ′ depends on s, too. The actual precondition P describes
a subset of the states of P ′ s.

In the following example the notation e � m. c is syntax for bind e (λm.
c), whereas the second � is just a syntactic variant of sequential composition
to indicate the scope of the bound variable m.

8

lemma
Γ`{|True|} Ḿ � m. Ḿ := Ḿ + 1 � Ŕ := m + Ń {| Ŕ = Ḿ + Ń − 1|}
apply vcg

1 .
∧

M N . True =⇒ M + N = M + 1 + N − 1

M and N are the initial values of the variables. So in the postcondition Ŕ gets
substituted by M + N and Ḿ by M + 1.

4.4 Procedures

To introduce a new procedure we provide the command procedures.

procedures Fac (N |R) =
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI

Fac-spec: ∀n. Γ`{| Ń = n|} Ŕ := PROC Fac(Ń) {| Ŕ = fac n|}

A procedure is given by its signature followed by its body and some named
specifications. The parameters in front of the pipe | are value parameters and
behind the pipe are result parameters. Value parameters model call by value
semantics. The value of a result parameter at the end of the procedure is passed
back to the caller. Most common programming languages do not have the concept
of a result parameter. But our language is a model for sequential programs rather
than a “real” programming language. We represent return e as an assignment
of e to the result variable. In order to capture the abrupt termination stemming
from a return we can use the techniques described in 4.2.

To call a procedure we write Ḿ := CALL Fac(Í). This translates to the
internal form call init ′′Fac ′′ return result with the proper init, return and result
functions. Starting in an initial state s first the init function is applied, in order
to pass the parameters. Then we execute the procedure body according to the
environment Γ . Upon normal termination of the body in a state t, we first exit the
procedure according to the function return s t and then continue execution with
result s t. In case of an abrupt termination the final state is given by return s t.
The function return passes back the global variables (and heap components) and
restores the local variables of the caller, and result additionally assigns results
to the scope of the caller. The return/result functions get both the initial state
s before the procedure call and the final state t after execution of the body. If
the body terminates abruptly we only apply the return function, thus the global
state will be propagated to the caller but no result will be assigned. This is the
expected semantics of an exception. We use the dynamic command to capture
the states s and t in the definition of the procedure call with parameters:

call init p return result ≡
DynCom
(λs. TRY Basic init ; Call p CATCH Basic (return s); THROW YRT;

DynCom (λt . Basic (return s); result s t))

9

Back to our example Ḿ := CALL Fac(Í). The init function copies the
actual parameter I to the formal parameter N : init s = s(|N := I s|). The return
function updates the global variables of the initial state with their values in the
final state. The global variables are all grouped together in a single record field:
return s t = s(|globals := globals t |). The result function is not just a state update
function like return, but yields a complete command, like the second argument
in the bind command. This allows us to use the same technique as described for
side-effecting expressions to model nested procedure calls. In our example the
result statement is an assignment that copies the formal result parameter R to
M : result s t = Basic (λu. u(|M := R t |)). Here s is the initial state (before
parameter passing), t the final state of the procedure body, and u the state after
the return from the procedure. In the example the initial state s is not used.
But if we assign the result of the procedure to a complex left expression and
implement a left to right evaluation strategy like in C we can consider s. For
example consider a pointer manipulating function call: p->next = rev(q). The
left value of p->next is the address where the result is assigned to. It is evaluated
before the procedure call, according to the left to right evaluation strategy. We
can refer to the initial state s to properly implement this semantics.

Procedure specifications are ordinary Hoare quadruples. We use the parame-
terless call for the specification; Ŕ := PROC Fac(Ń) is syntactic sugar for Call
′′Fac ′′. This emphasises that the specification describes the internal behaviour
of the procedure, whereas parameter passing corresponds to the procedure call.
The precondition of the factorial specification fixes the current value Ń to the
logical variable n. Universal quantification of n enables us to adapt the specifica-
tion to an actual parameter. Besides providing convenient syntax, the command
procedures also defines a constant for the procedure body (named Fac-body) and
creates two locales. The purpose of locales is to set up logical contexts to sup-
port modular reasoning [1]. One locale is named like the specification, in our case
Fac-spec. This locale contains the procedure specification. The second locale is
named Fac-impl and contains the assumption Γ ′′Fac ′′ = Some Fac-body, which
expresses that the procedure is defined in the current environment. The purpose
of these locales is to give us easy means to setup the context in which we will
prove programs correct.

Procedure Call By including the locale Fac-spec, the following lemma assumes
that the specification of the factorial holds. The vcg will use this specification to
handle the procedure call. The lemma also illustrates locality of I.

lemma includes Fac-spec shows
Γ` {| Ḿ = 3 ∧ Í = 2|} Ŕ := CALL Fac (Ḿ) {| Ŕ = 6 ∧ Í = 2|}
apply vcg

1 .
∧

I M . [[M = 3 ; I = 2]] =⇒ fac M = 6 ∧ I = 2

If the verification condition generator encounters a procedure call, like Γ ,Θ` P
call ini p ret res Q ,A, it does not look inside the procedure body, but instead

10

uses a specification ∀Z . Γ ,Θ` (P ′ Z) Call p (Q ′ Z),(A ′ Z) of the procedure.
It adapts the specification to the actual calling context by a variant of the
consequence rule, which also takes parameter and result passing into account. In
the factorial example n plays the role of the auxiliary variable Z. It transports
state information from the pre- to the postcondition. A detailed discussion of
consequence rules and auxiliary variables can be found in [9,13].

P ⊆ {s. ∃Z . ini s ∈ P ′ Z ∧ (∀ t∈Q ′ Z . ret s t ∈ R s t) ∧ (∀ t∈A ′ Z . ret s t ∈ A)}
∀ s t . Γ ,Θ` (R s t) res s t Q ,A ∀Z . Γ ,Θ` (P ′ Z) Call p (Q ′ Z),(A ′ Z)

Γ ,Θ` P call ini p ret res Q ,A

The idea of this rule is to adapt the specification of Call p to call ini p ret res.
Figure 1 shows the sequence of intermediate states for normal termination. We

call ini p ret res

s t

P ′ Z

∈

P

∈

Call p

Q ′ Z−→

∈
ini s

∈

Q

res s t

−→

∈

ret s t

R s t

Fig. 1. Procedure call and specification

start in state s for which the precondition P holds. To be able to make use of
the procedure specification we have to find a suitable instance of the auxiliary
variable Z so that the precondition of the specification holds: ini s ∈ P ′ Z.
Let t be the state immediately after execution of the procedure body, before
returning to the caller and passing results. We know from the specification that
the postcondition will hold: t ∈ Q ′ Z. From this we have to conclude that leaving
the procedure according to the function ret will lead to a state in R s t. From
this state execution of res s t ends up in a state in Q. For abrupt termination
the analogous idea applies, but without the intermediate assertion R s t, since
execution of res s t is skipped. Simplifying the record updates and selections of
the side-condition yields the natural proof obligation we have seen before.

The rule for dynamic procedure call is a slight generalisation of the static
procedure call. Since the selected procedure depends on the state, we have the
liberty to select a suitable specification dependent on the state.

P ⊆ {s. ∃Z . ini s ∈ P ′ s Z ∧
(∀ t ∈ Q ′ s Z . ret s t ∈ R s t) ∧ (∀ t ∈ A ′ s Z . ret s t ∈ A)}

∀ s t . Γ ,Θ` (R s t) res s t Q ,A
∀ s∈P . ∀Z . Γ ,Θ` (P ′ s Z) Call (p s) (Q ′ s Z),(A ′ s Z)

Γ ,Θ` P dynCall ini p ret res Q ,A

11

Procedure Implementation — Partial Correctness To verify the proce-
dure body we use the rule for recursive procedures. We extend the context with
the procedure specification. In this extended context the specification will hold
by the assumption rule. We then verify the procedure body by using vcg, which
will use the assumption to handle the recursive call.

lemma includes Fac-impl shows
∀n. Γ`{| Ń = n|} Ŕ := PROC Fac(Ń) {| Ŕ = fac n|}
apply (hoare-rule ProcRec1)

1 . ∀n. Γ ,(
⋃

n {({| Ń = n|}, Ŕ := PROC Fac(Ń), {| Ŕ = fac n|}, {})})
` {| Ń = n|}

IF Ń = 0 THEN Ŕ := 1
ELSE CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI
{| Ŕ = fac n|}

apply vcg

1 .
∧

N . (N = 0 −→ 1 = fac N) ∧ (N 6= 0 −→ N ∗ fac (N − 1) = fac N)

The rule ProcRec1 is a specialised version of the general rule for recursion,
tailored for one recursive procedure. The method hoare-rule applies a single rule
and solves canonical side-conditions. Moreover it expands the procedure body.

Let us now have a look at the general recursion rule. The Hoare logic can
deal with (mutually) recursive procedures. We prove that the procedure bod-
ies respect their specification, under the assumption that recursive calls to the
procedures will meet their specifications. To model this assumption the context
Θ comes in. If a procedure specification is in this context, we can immediately
derive this specification within the Hoare logic.

(P , c, Q , A) ∈ Θ

Γ,Θ` P c Q ,A

To handle a set P of mutually recursive procedures we enrich the context by all
the procedure specifications, while we prove their bodies.

Θ ′ = Θ ∪ (
⋃

p∈P
⋃

Z {(P p Z , Call p, Q p Z , A p Z)})
∀ p∈P. ∀Z . Γ ,Θ ′̀ (P p Z) the (Γ p) (Q p Z),(A p Z) P ⊆ dom Γ

∀ p∈P. ∀Z . Γ ,Θ` (P p Z) Call p (Q p Z),(A p Z)

Since we deal with the set P of procedures we also have to give the pre- and
postconditions for all these procedures. We use the functions P, Q and A, which
map procedure names to the desired entities. Z plays the role of an auxiliary (or
logical) variable. It usually fixes (parts of) the pre state, so that we can refer
to it in the post state. In the Hoare rule for procedure specifications, which we
have described before, we had the freedom to pick a particular Z so that s ∈ P
−→ init s ∈ P ′ Z holds. Since we have the freedom there, we now have to prove
the procedure bodies for all possible Z. Finally, with P ⊆ dom Γ , we make sure
that the calculation will not get stuck.

12

Procedure Implementation — Total Correctness For total correctness the
user supplies a well-founded relation. For the factorial the input parameter N
decreases in the recursive call. This is expressed by the measure function λ(s,p).
sN. The relation can depend on both the state-space s and the procedure name
p. The latter is useful to handle mutual recursion. The prefix superscript in sN
is a shorthand for record selection N s and is used to refer to state components
of a named state.

lemma includes Fac-impl shows
∀n. Γ`t {| Ń = n|} Ŕ := PROC Fac(Ń) {| Ŕ = fac n|}
apply (hoare-rule ProcRec1 t [where r=measure (λ(s,p). sN)])

1 . ∀ τ n. Γ ,(
⋃

n {({| Ń = n|} ∩ {| Ń < τN|}, Ŕ := PROC Fac(Ń),
{| Ŕ = fac n|}, {})})

`t ({τ} ∩ {| Ń = n|})
IF Ń = 0 THEN Ŕ := 1
ELSE CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI
{| Ŕ = fac n|}

We may only assume the specification for “smaller” states {| Ń < τN|}, where
state τ gets fixed in the precondition.

apply vcg

1 .
∧

N . (N = 0 −→ 1 = fac N) ∧
(N 6= 0 −→ N − 1 < N ∧ N ∗ fac (N − 1) = fac N)

The measure function results in the proof obligation N − 1 < N.
In contrast to partial correctness we only assume “smaller” recursive pro-

cedure calls correct while verifying the procedure bodies. Here “smaller” again
is in the sense of a well-founded relation r. We fix the pre-state of the proce-
dure p with the singleton set {τ}. For every call to a procedure q in a state s
which is “smaller” than the initial call of p in state τ according to the relation
(((s,q),(τ ,p)) ∈ r), we can safely assume the specification of q while verifying
the body of p.

Θ ′=λτ p. Θ ∪ (
⋃

q∈P
⋃

Z {(P q Z ∩ {s. ((s,q),τ ,p) ∈ r},Call q ,Q q Z ,A q Z)})
∀ p∈P. ∀ τ Z . Γ ,Θ ′ τ p`t ({τ} ∩ P p Z) the (Γ p) (Q p Z),(A p Z)

wf r P ⊆ dom Γ

∀ p∈P. ∀Z . Γ ,Θ`t (P p Z) Call p (Q p Z),(A p Z)

4.5 Heap

The heap can contain structured values like structs in C or records in Pascal.
Our model of the heap follows Burstall [2]. We have one heap variable f of type
ref ⇒ value for each component f of type value of the struct. References ref
are isomorphic to the natural numbers and contain Null.

13

A typical structure to represent a linked list in the heap is struct list
{int cont; list *next}. The structure contains two components, cont and
next. So we will also get two heap variables, cont of type ref ⇒ int and next of
type ref ⇒ ref in our state-space record:

record heap =
next ::ref ⇒ ref
cont ::ref ⇒ int

record state =
globals::heap
p::ref
q ::ref
r ::ref

We follow the approach of [10], and abstract the pointer structure in the heap
to HOL lists of references. Then we can specify further properties on the level
of HOL lists, rather than on the heap:

List x h [] = (x = Null)
List x h (p # ps) = (x = p ∧ x 6= Null ∧ List (h x) h ps)

The list of references is obtained from the heap h by starting with the reference
x, following the references in h up to Null. With a generalised predicate that
describes a path in the heap, Mehta and Nipkow [11] show how this idea can
canonically be extended to cyclic lists.

We define in place list reversal. The list pointed to by p in the beginning is
Ps. In the end q points to the reversed list rev Ps. The notation r→f mimics
the field selection syntax of C and is translated to ordinary function application
for field lookup and function update for field assignment.

procedures Rev(p|q) =
q́ := Null ;
WHILE ṕ 6= Null
DO ŕ := ṕ; ṕ := ṕ→ ńext ; ŕ→ ńext := q́ ; q́ := ŕ OD

Rev-spec:
∀σ Ps. Γ` {|σ. List ṕ ńext Ps|} q́ := PROC Rev(ṕ)

{|List q́ ńext (rev Ps) ∧ (∀ p. p /∈ set Ps −→ (ńext p = σnext p))|}
Rev-modifies:
∀σ. Γ`{σ} q́ := PROC Rev(ṕ) {t . t may-only-modify-globals σ in [next]}

We give two specifications this time. The first one captures the functional be-
haviour and additionally expresses that all parts of the next-heap not contained
in Ps, will stay the same (σ denotes the pre-state). Fixing a state is part of the
assertion syntax: {|σ. ...|} translates to {s. s=σ ...} and σnext to next σ. The
second specification is a modifies-clause that lists all the state components that
may be changed by the procedure. Therefore we know that the cont parts will
remain unchanged. Thus the main specification can focus on the relevant parts of
the state-space. The assertion t may-only-modify-globals σ in [next] abbreviates
the following relation between the final state t and the initial state σ: ∃next .
globals t = (globals σ)(|next :=next |). This modifies-clause can be exploited dur-
ing verification condition generation. We derive that we can reduce the result
function in the call to Rev, which copies the global components next and cont

14

back, to one that only copies next back. So cont will actually behave like a local
variable in the resulting proof obligation. This is an effective way to express sep-
aration of different pointer structures in the heap and can be handled completely
automatically during verification condition generation. For example, reversing a
list will only modify the next-heap but not some left- and right-heaps of a tree
structure. Moreover the modifies-clause itself can be verified automatically. The
following example illustrates the effect of the modifies-clause.

lemma includes Rev-spec + Rev-modifies shows
Γ`{| ćont=c ∧ List ṕ ńext Ps|} ṕ := CALL Rev(ṕ)

{| ćont=c ∧ List ṕ ńext (rev Ps)|}
apply vcg

1 .
∧

next cont p. List p next Ps =⇒
∀nexta q .

List q nexta (rev Ps) ∧ (∀ p. p /∈ set Ps −→ nexta p = next p) −→
cont = cont ∧ List q nexta (rev Ps)

The impact of the modifies-clause shows up in the verification condition. The
cont-heap results in the same variable before and after the procedure call (cont
= cont), whereas the next-heap is described by next in the beginning and by
nexta in the end. The specification of Rev relates both next-heap states.

Memory Management To model allocation and deallocation we need some
bookkeeping of allocated references. This can be achieved by an auxiliary ghost
variable alloc in the state-space. A good candidate is a list of allocated references.
A list is per se finite, so that we can always get a new reference. By the length
of the list we can also handle space limitations. Allocation of memory means to
append a new reference to the allocation list. Deallocation of memory means to
remove a reference from the allocation list. To guard against dangling pointers
we can regard the allocation list: {| ṕ 6=Null ∧ ṕ ∈ set álloc|}7→ ṕ→ ćont := 2.

The use of guards is a flexible mechanism to adapt the model to the kind of
language we are looking at. If it is type safe like Java and there is no explicit
deallocation by the user, we can remove some guards. If the new instruction of
the programming language does not initialise the allocated memory we can add
another ghost variable to watch for initialised memory through guards.

5 Conclusion

We have presented a flexible, sound and complete Hoare calculus for sequential
imperative programs with mutually recursive procedures and dynamic procedure
call. We have elaborated how to model various kinds of abrupt termination like
break, continue, return and exceptions, how to deal with side-effecting expres-
sions, global variables, heap and memory management issues. The polymorphic

15

state-space of the programming language allows us to choose the adequate repre-
sentation for the current verification task. Depending on the context we can for
example decide, whether it is preferable to model certain variables as unbounded
integers in HOL or as bit-vectors, without changing the program representation
or logics. Guards make it possible to customise the runtime faults we are inter-
ested in. Using records as state-space representation gives us a natural way to
express typing of program variables and yields comprehensible verification condi-
tions. Moreover in combination with the modifies-clause we can lift separation of
heap components, which are directly expressible in the split heap model, to the
level of procedures, without having to introduce a new logic like separation logic
[19]. Crucial parts of the frame problem can then already be handled during
verification condition generation. The calculus is developed, verified and inte-
grated in the theorem prover Isabelle and the resulting verification environment
seamless fits into the infrastructure of Isabelle/HOL.

This work is part of the Verisoft project, a long-term research project aiming
at the pervasive verification of computer systems (hard- and software). We trans-
late a subset of C to the verification environment and have started to verify parts
of an operating system, a compiler and an email client. We also verify the trans-
lation into the verification environment. Moreover we validated the feasibility of
our approach by verifying algorithms for binary decision diagrams, involving a
high degree of side effects due to sharing in the pointer structure [17]. Applying
the verification condition generator to the annotated programs results in quite
sizable proof obligations. But since they closely resemble the control flow the
connection to the input program is not lost. To prove them, we used the struc-
tured proof language of Isar [24] that allows us to focus and keep track of the
various different aspects, so that we can conduct the proof in a sensible order.
Moreover it turned out that the Isar proofs are quite robust with regard to the
iterative adaptation of the invariants resulting from failed proof attempts. The
already established lines of reasoning remained stable, while adding new aspects
to, or strengthening parts of the invariant. Altogether we gained confidence that
our approach is practically useful.

References

1. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Berardi,
M. Coppo, and F. Damiani, editors, Types for Proofs and Programs: International
Workshop, TYPES 2003, Torino, Italy, April 30–May 4, 2003, Selected Papers,
number 3085 in LNCS, pages 34–50. Springer, 2004.

2. R. Burstall. Some techniques for proving correctness of programs which alter data
structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7, pages
23–50. Edinburgh University Press, 1972.

3. J.-C. Filliâtre. Verification of Non-Functional Programs using Interpretations in
Type Theory. Journal of Functional Programming, 13(4):709–745, July 2003.

4. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.

16

5. J. Harrison. Formalizing Dijkstra. In J. Grundy and M. Newey, editors, Theo-
rem Proving in Higher Order Logics: 11th International Conference, TPHOLs’98,
volume 1497 of LNCS, pages 171–188, Canberra, Australia, 1998. Springer.

6. P. V. Homeier. Trustworthy Tools for Trustworthy Programs: A Mechanically Veri-
fied Verification Condition Generator for the Total Correctness of Procedures. PhD
thesis, Department of Computer Science, University of California, Los Angeles,
1995.

7. M. Huisman. Java program verification in higher order logic with PVS and Isabelle.
PhD thesis, University of Nijmegen, 2000.

8. B. Jacobs. Weakest precondition reasoning for Java programs with JML annota-
tions. Journal of Logic and Algebraic Programming, 58:61–88, 2004.

9. T. Kleymann. Hoare Logic and auxiliary variables. Formal Aspects of Computing,
11(5):541–566, 1999.

10. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In
F. Baader, editor, Automated Deduction — CADE-19, volume 2741 of LNCS, pages
121–135. Springer, 2003.

11. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Infor-
mation and Computation, 2005. To appear.

12. M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In G.M.
Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Verifica-
tion and Automatic Theorem Proving (Proceedings of the Workshop on Hardware
Verification), pages 387–439, Banff, Canada, 1988. Springer, Berlin.

13. T. Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer,
2002.

14. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

15. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
16. D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and

Hoare Logic. PhD thesis, Technische Universität München, 2001.
17. V. Ortner. Verification of BDD Algorithms. Master’s thesis, Technische Universität

München, 2004. http://www.veronika.langlotz.info/.
18. L. Prensa Nieto. Verification of Parallel Programs with the Owicki-Gries and Rely-

Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität München,
2002.

19. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. 17th IEEE Symposium on Logic in Computer Science (LICS 2002), pages
55–74, 2002.

20. N. Schirmer. A Verification Environment for Sequential Imperative Programs in
Isabelle/HOL. In G. Klein, editor, Proc. NICTA Workshop on OS Verification
2004, 2004. ID: 0401005T-1, http://www4.in.tum.de/~schirmer.

21. J. von Wright, J. Hekanaho, P. Luostarinen, and T. L̊angbacka. Mechanizing some
advanced refinement concepts. Formal Methods in System Design, 3:49–81, 1993.

22. P. Wadler. The essence of functional programming. In Proc. 19th ACM Symp.
Principles of Programming Languages, 1992.

23. M. Wenzel. Miscellaneous Isabelle/Isar examples for higher order logic. Is-
abelle/Isar proof document, 2001.

24. M. Wenzel. Isabelle/Isar — A Versatile Environment for Human-Readable For-
mal Proof Documents. PhD thesis, Institut für Informatik, Technische Uni-
versität München, 2002. http://tumb1.biblio.tu-muenchen.de/publ/diss/in/

2002/wenzel.html.

17

http://www.veronika.langlotz.info/
http://www4.in.tum.de/~schirmer
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

	A Verification Environment for Sequential Imperative Programs in Isabelle/HOL
	Norbert Schirmer

