
Verification of BDD Normalization

Veronika Ortner and Norbert Schirmer

Technische Universität München, Institut für Informatik
{ortner|schirmer}@in.tum.de

Abstract. We present the verification of the normalization of a binary
decision diagram (BDD). The normalization follows the original algo-
rithm presented by Bryant in 1986 and transforms an ordered BDD in
a reduced, ordered and shared BDD. The verification is based on Hoare
logics and is carried out in the theorem prover Isabelle/HOL. The work
is both a case study for verification of procedures on a complex pointer
structure, as well as interesting on its own, since it is the first proof of
functional correctness of the pointer based normalization process we are
aware of.

1 Introduction

Binary Decision Diagrams (BDDs) are a canonical, memory efficient pointer
structure to represent boolean functions, with a wide spread application in com-
puter science. They had a decisive impact on scaling up the technology of model
checking to large state-spaces to handle practical applications [5]. BDDs were
introduced by Bryant [3], and later on their implementation was refined [2]. The
efficiency of the BDD algorithms stems from the sharing of subgraphs in the
BDD. Some properties of the BDD, like the uniqueness of the representation of
a function, rely on the fact that the graph is maximally shared. So the algorithms
manipulating BDDs have to ensure this invariant. However the formal verifica-
tion of the algorithms has never received great attention. We are only aware of
the work of Verma et al. [14] and of Kristic and Matthews [7]. Maybe one reason
for the lack of formal verification is the problem of reasoning about imperative
pointer programs in general, which is still an area of active research, recently in
two main directions: The integration and mechanization of pointer verification
in theorem provers [1,8,6], and the development of a new logic, namely separa-
tion logic [12]. In this context our work contributes to two aspects. On the one
hand it presents the first formal verification of the pointer based normalization
algorithm for BDDs as presented by Bryant. Verma et al. [14] and also Kristic
and Matthews [7] use a different (more abstract) model of BDDs, where the nor-
malization algorithm is no issue, since they ensure that only normalized BDDs
will be constructed at all. Although modern BDD packages also follow this ap-
proach, and avoid the costly normalization process, the concepts we introduce
to formally describe the invariants on the BDD pointer structure can also serve
as basis in a more involved setting like [2]. On the other hand this work is a case
study on the feasibility of pointer verification based on Hoare logics in a theorem

prover. It carries on the approach of [8] to (recursive) procedures. In contrast
to separation logic, which is difficult to combine with existing theorem proving
infrastructure, our embedding of Hoare logics fits seamlessly into Isabelle/HOL.

The rest of the paper is structured as follows. In Sect. 2 we give a short in-
troduction to Isabelle/HOL in general and the Hoare logic module, that we will
use for our verification work. Sect. 3 gives an informal overview of BDDs and
Sect. 4 introduces our formalization of them. Sect. 5 is devoted to the normaliza-
tion of BDDs, where we explain the algorithm and describe the assertions and
invariants that we have used for the correctness proof. Finally Sect. 6 concludes.

2 Preliminaries

2.1 Isabelle

Isabelle/HOL [10] is an interactive theorem prover for HOL, higher order logic,
with facilities for defining data types, records, inductive sets as well as primitive
and total general recursive functions. Most of the syntax of HOL will be familiar
to anybody with some background in functional programming and logic. We just
highlight some of Isabelle’s nonstandard notation.

There are the usual type constructors T1 × T2 for product and T1 ⇒ T2

for function space. To emulate partial functions the polymorphic option type
is frequently used: datatype ′a option = None | Some ′a. Here ′a is a type
variable, None stands for the undefined value and Some x for a defined value
x. A partial function from type T1 to type T2 can be modelled as T1 ⇒ (T2

option). Lists (type ′a list) come with the empty list [], the infix constructor #
and the infix @ that appends two lists, and the conversion function set from lists
to sets. The nth element of a list xs is obtained by xs ! n. The standard function
map is also available.

2.2 The Hoare Logic Module

Before considering the algorithm of BDD normalization in detail, we first take a
brief look at the verification environment for imperative programs [13] built on
top of Isabelle/HOL. It embeds a sequential imperative programming language
with (mutually) recursive procedures, local and global variables and a heap for
pointer structures into Isabelle/HOL. The expressions used in the language are
modelled as ordinary HOL expressions. Therefore both “pseudo code” and C
programs can be expressed in a uniform framework, giving the user the freedom
to choose the proper abstraction level.

To define the state-space, we use records in Isabelle/HOL [10], which contain
every program variable used in the implementation. We can refer to these state-
space components by specifying v́ for the current state of the component v and
σv for the same component at a fixed state σ. Assertions are sets of states and
we provide special brackets {| |} for them, e.g. {| Ḿ = 2|} is a shorthand for

2

the ordinary set comprehension {s | M s = 2}, which is the set of states where
variable M is equal to 2. M is a record selector of the state-space.

A judgement in our Hoare logic is of the general form Γ ,Θ` P c Q for partial
correctness and Γ ,Θ`t P c Q for total correctness, where P and Q figure as
pre- and postcondition. The two remaining variables are premises of the Hoare
triple, Γ being the procedure environment and context Θ representing a set of
Hoare triples that we may assume. The procedure environment maps procedure
names to their bodies. The Hoare triples in Θ are important for proving recursive
procedures. An empty set of assumptions can be omitted.

Moreover the module supplies a verification condition generator built on top
of the Hoare logic for the programming language.

3 Binary Decision Diagrams

“Many problems in digital logic design and testing, artificial intelligence, and
combinatorics can be expressed as a sequence of operations on Boolean func-
tions.” ([3], p. 1) Thus the representation of Boolean functions by an efficient
data-structure is of high interest for computer science. Binary Decision Dia-
grams, which represent the underlying binary decision tree of a Boolean function
as a directed acyclic graph (DAG), save storage space and computation time by
eliminating redundancy from the canonical representations. Besides, using re-
duced, ordered and shared BDDs allows us to provide a unique representation
for each function. An inner node of the BDD contains a variable over which
the Boolean function is defined, together with a pointer to the left and right
sub-BDD. Given a valuation of the variables the value of the Boolean function
encoded in the BDD is obtained by traversing the BDD according to the val-
uation of the variables. The leaf that we reach holds the value of the function
under the given valuation.

As BDDs are an efficient representation for Boolean functions, which are used
in a lot of domains of computer science, there is a wide variety of imaginable
operations on them. We will only treat the normalization here, which has an
ordered BDD as its argument and removes all redundancies contained in it. The
result is an ordered, reduced and shared BDD implementing the same Boolean
function. The normalization follows the algorithm presented in [3], where it is
used as a central building block for further BDD-algorithms.

The basic transformations on the BDD that occur during normalization are
reducing and sharing (Fig. 1). A node is reduced from the BDD if it is irrelevant
for the encoded Boolean function: if the left and the right child both point to
the same node, it is irrelevant if we choose to go left or right during evaluation.
Two sub-BDDs are shared if they contain the same decision tree. Note that
sharing does not change the structure of the underlying decision tree, but only
the structure of the DAG, whereas reducing also changes the decision tree. None
of the transformations change the encoded Boolean function.

BDDs are an extreme area of application for pointer programs with opera-
tions involving side effects due to the high degree of sharing in the data-structure.

3

i

j j

A B A B

(a) Reducing

i

j k

B CA

i

j k

A B A C

(b) Sharing

Fig. 1. Illustration of normalization operations

Because of their efficiency in computation time and storage, they are highly
popular for the processing of Boolean functions. Altogether BDDs constitute a
perfect domain for a case study for our Hoare logic. They represent a practically
relevant subject and include the important pointer program features, which pose
problems for verification.

4 Formalization of BDDs

4.1 State-Space

In order to represent all variables and the heap used in the program we use
Isabelle records. Our model of the heap follows Burstall’s [4] idea, recently em-
phasized by Bornat [1] and Mehta and Nipkow [8]: we have one heap f of type
ref ⇒ value for each component f of type value of a BDD-node. Type ref is our
abstract view on addresses. It is isomorphic to the natural numbers and contains
Null as an element. Figure 2 shows the C-style structure for a DAG node and
the corresponding Isabelle records we use to represent the state-space. A C-like
selection p->var becomes function application var p in our model. The global
components (in our case the split heap) are grouped together in one field globals
of the state-space-record. The remaining fields are used for local variables and
procedure parameters. The semantics of our programming language model is
defined via updates on this state-space [13]. The separation of global and local
components is used to handle procedure calls.

Every BDD-node contains a variable var which is encoded as a natural num-
ber. We reserve the variables 0 and 1 for the terminal nodes. Besides every node
needs pointers to its children (fields left and right) and its representative (rep),
used during the normalization algorithm. The next pointer links together all
nodes of the same (variable) level in the bdd. This is implemented in procedure
Levellist as marking algorithm using the mark field.

4

struct node {
nat var;

struct node* left;

struct node* right;

struct node* rep;

struct node* next;

bool mark;

};

record heap =
var :: ref ⇒ nat
left :: ref ⇒ ref
right :: ref ⇒ ref
rep :: ref ⇒ ref
next :: ref ⇒ ref
mark :: ref ⇒ bool

record state =
globals :: heap
p :: ref
levellist :: ref list
. . . local variables/parameters . . .

Fig. 2. Node struct and program state

4.2 BDD Model

We follow the approach in [8] to abstract the pointer structure in the heap
to HOL datatypes. For the formalization of BDDs we work on two levels of
abstraction, the decision tree (BDT) and the graph structure (DAG). On the
higher level, we describe the underlying decision tree with the datatype bdt:

datatype bdt = Zero | One | Bdt-Node bdt nat bdt

A bdt is modeled by the constructors Zero and One, which represent the ter-
minal values False and True, and by the constructor Bdt-Node representing a
nonterminal node with two sub-BDTs and the current decision variable.

When looking at this datatype, it becomes clear that we cannot express the
concept of sharing by using this content-based definition. Therefore, we intro-
duce another formalization level in order to describe the graph structure of the
BDD based on references. For the representation of a BDD in the heap we use
datatype dag, which is a directed acyclic graph of binary degree:

datatype datatype dag = Tip | Node dag ref dag

A DAG in the heap is either constant Tip, which is equal to the Null pointer, or
a node consisting of a reference for the root node and two sub-DAGs. This repre-
sentation allows us to express sharing by equal references in the nodes. Moreover
it is convenient to write recursive predicates and functions on a datatype. For
example set-of yields the references stored in the DAG:
set-of :: dag ⇒ ref set

set-of Tip = {}
set-of (Node lt r rt) = {r} ∪ set-of lt ∪ set-of rt

To actually abstract the pointer structure in the heap to the datatype dag we
introduce the predicate Dag. It constructs a DAG from the initial pointer and
the mappings for left and right children:
Dag :: ref ⇒ (ref ⇒ ref) ⇒ (ref ⇒ ref) ⇒ dag ⇒ bool

Dag p l r Tip = (p=Null)

Dag p l r (Node lt a rt) = (p=a ∧ p 6=Null ∧ Dag (l p) l r lt ∧ Dag (r p) l r rt)

This expression is true when starting at pointer p and following heaps l and r we
can construct the DAG passed as fourth argument. The heaps l and r correspond
to the fields left and right in the state-space.

5

To construct the decision tree out of the DAG we introduce the function
bdt. It takes a function indicating the variables assigned to each reference as
parameter. Usually we use field var in the state-space-record for this purpose.
The result of bdt is an option type. This implies that not every dag encodes
a bdt. The terminal nodes of the decision tree, Zero and One, are represented
by an inner node Node Tip p Tip in the DAG, where var p = 0 or var p = 1,
respectively. So every proper DAG will end up in those inner nodes.

bdt :: dag ⇒ (ref ⇒ nat) ⇒ bdt option
bdt Tip var = None
bdt (Node Tip p Tip) var =

(if var p = 0 then Some Zero else if var p = 1 then Some One else None)
bdt (Node Tip p (Node l p2 r)) var = None
bdt (Node (Node l p1 r) p Tip) var = None
bdt (Node (Node l1 p1 r1) p (Node l2 p2 r2)) var =

(if var p = 0 ∨ var p = 1 then None
else case bdt (Node l1 p1 r1) var of None ⇒ None

| Some t1 ⇒
case bdt (Node l2 p2 r2) var of None ⇒ None

| Some t2 ⇒ Some (Bdt-Node t1 (var p) t2))

4.3 Properties on BDDs

We now define predicates and functions on our BDD model that we use for the
specification and verification of the normalization algorithm.

Eval Function eval on BDTs expects the BDT which shall be evaluated and
an environment (a list containing the values for all variables). It traverses the
given BDT following the path indicated by the variable values and finally re-
turns the resulting Boolean value. So eval t denotes the Boolean function that
is represented by the decision tree t.
eval :: bdt ⇒ bool list ⇒ bool

eval Zero env = False

eval One env = True

eval (Bdt-Node l v r) env = (if env ! v then eval r env else eval l env)

Since all functions in HOL are total, indexing the list in env ! v will yield an
legal but indefinite value when the index is out of range.

An interesting concept which arises from this function is eval-equivalence
represented by the operator ∼:
bdt1 ∼ bdt2 ≡ eval bdt1 = eval bdt2

Two BDTs are eval-equivalent if they represent the same Boolean function.

Reduced We call a DAG reduced if left and right non-Tip children differ for
every node contained in it. Note that the order of equations is significant in this
definition. reduced :: dag ⇒ bool

6

reduced Tip = True

reduced (Node Tip p Tip) = True

reduced (Node l p r) = (l 6= r ∧ reduced l ∧ reduced r)

Ordered The variable ordering of a given BDD is checked by predicate ordered.
The root node stores the highest variable and the variables decrease on a path
down to the leaf. For the variable information, the function takes a mapping of
references to their variables (usually field var).
ordered :: dag ⇒ (ref ⇒ nat) ⇒ bool

ordered Tip var = True

ordered (Node (Node l1 p1 r1) p (Node l2 p2 r2)) var =

(var p1 < var p ∧ var p2 < var p) ∧
(ordered (Node l1 p1 r1) var) ∧ (ordered (Node l2 p2 r2) var)

ordered (Node Tip p Tip) var = True

If the DAG properly encodes a decision tree (according to bdt), both children
of an inner node will either be Tips or again inner nodes. So we do not have to
care about the other cases in the definition above.

Shared Bryant [3] calls two BDDs isomorphic if they represent the same decision
tree. If a BDD is shared, then all isomorphic sub-BDDs will be represented by
the same root pointer, i.e. the same DAG. This is encapsulated in predicate
isomorphic-dags-eq, which should be read “if two dags are isomorphic, then they
are equal”:
isomorphic-dags-eq :: dag ⇒ dag ⇒ (ref ⇒ nat) ⇒ bool

isomorphic-dags-eq st1 st2 var ≡
∀ bdt1 bdt2.

bdt st1 var = Some bdt1 ∧ bdt st2 var = Some bdt2 ∧ (bdt1 = bdt2) −→
st1 = st2

i.e. if the decisions trees resulting from st1 and st2 are equal, the two DAGs must
also be equal. The sub-DAG structure forms a partial order:
(t < Tip) = False

(t < Node l p r) = (t = l ∨ t = r ∨ t < l ∨ t < r)

s ≤ t ≡ s = t ∨ s < t

In order to express that a DAG is (maximally) shared, we argue that all its
sub-DAGs respect the isomorphic-dags-eq property:
shared :: dag ⇒ (ref ⇒ nat) ⇒ bool

shared t var ≡ ∀ st1 st2. st1 ≤ t ∧ st2 ≤ t −→ isomorphic-dags-eq st1 st2 var

5 Normalization

BDD normalization is a central algorithm of [3] and quite complex in specifica-
tion and verification. By concentrating on this part, we hope to give an impres-
sion of the provability and the verification complexity of pointer programs.

7

5.1 Overview of the Process of Normalization

We call the process of converting an ordered DAG into an ordered, shared and
reduced DAG “normalization”. It is encapsulated in procedure Normalize which
calls on its part the sub-procedures Levellist, ShareReduceRepList and Repoint.
The implementation follows the procedure called “reduce” in Bryant’s paper [3],
but imposes some simplifications and the decomposition into sub-procedures to
structure the algorithm and the verification (e.g. in Bryants algorithm steps 2
and 3 below are done simultaneously).

From a high-level point of view, one can divide the normalization process
into three main stages:

1. Collect the nodes of the argument DAG according to their variable in a two
dimensional level-list. At index n the level-list contains all the nodes of the
DAG with variable n.

2. Calculate the representative node for each node in the DAG (and store it in
the rep field of the node) level by level and bottom up. This means that we
work on the breadth of the DAG.

3. Repoint the DAG according to the representatives.

a1

a2 a3

a4 a7

a8

a13 a15

a11

a12 a15

a11

a7

a3 a2

a14

3

2

1

0

Level Dag Levellist

a4

a12

a8

a4

a8

a13 a12

Fig. 3. Illustration of the level-list notion

We will now examine these three steps in detail:
Stage 1: Procedure Normalize first instantiates the level-list with an empty

node list for each variable, that can be contained in the argument DAG. The
necessary size of the list is given by the variable stored in the root of DAG, since
the DAG is ordered. Afterwards, the procedure calls Levellist, which fills the
level-list with the nodes contained in the DAG. After the call of Levellist a node
with variable i is contained in the level-list at index i (see figure 3). Note that a
node in level i not necessarily denotes the depth in the DAG, since variables do
not have to appear strictly consecutive on a path through the DAG.

8

Via the level-list we can easily access all nodes with the same variable. Those
are the ones that may have to be shared. In the DAG structure, the nodes con-
taining the same variable can be contained in different sub-DAGs and therefore
are far from each other. With the concept of a level-list, these nodes are much
easier to be compared and processed. The inconvenience of this process is the
complexity of the conversion from the DAG to the two dimensional list, which
is visible in the length of the proof.

Stage 2: After obtaining the two dimensional level-list, we traverse each level
looking for a representative for each node, which is then stored in the field rep.
So we do not change the DAG structure at this stage but just store the pointer
to the representative node in the field rep. Finding the representatives for all
nodes in one level of the level-list is realized by procedure ShareReduceRepList.
It is important to start the normalization with the leaf children (which have the
lowest variables), because procedure ShareReduceRepList consults the represen-
tatives of the children in order to decide if the current node will be shared or
reduced. Therefore the children representatives already have to contain the final
and correct representatives. Working at a specific level we can assume that the
representative DAGs of the lower levels will already be shared and reduced. If
both children representatives point to the same node, we reduce, otherwise we
search for a node in the current level-list with the same children representatives,
which means sharing:

reducing

sharing

rep

levellist ! n

levellist ! (n− 1)

left/right

After procedure Normalize has traversed all the levels of the level-list, ev-
ery node contained in the DAG has got a representative by which it will be
replaced in the shared and reduced DAG to be constructed. All representative
nodes derive from nodes contained in the original DAG. During the process of
normalization we never need to construct new nodes.

Stage 3: The only task to complete now, is the “repointerization” of the DAG.
We follow the DAG of rep-pointers and thereby set the left and right fields in
order to obtain the desired reduced, shared and ordered DAG, which represents
our BDD in the heap.

In order to summarize the functionality described above, let us look at the
source code of procedure Normalize; the auxiliary procedures can be found in
the appendix.
procedures Normalize (p | p) =

ĺevellist := replicate (ṕ→ v́ar + 1) Null;

ĺevellist := CALL Levellist (ṕ, (¬ ṕ→ ḿark) , ĺevellist);

ń := 0;

9

WHILE (ń < length ĺevellist) DO

CALL ShareReduceRepList(ĺevellist ! ń);

ń := ń + 1

OD;

ṕ := CALL Repoint (ṕ)

The bar | divides the parameters in value and result parameters. In the case of
Normalize the input and result parameter is p. The arrow, like in p→var, mimics
the C-style combined pointer dereferencing and field selection p->var. Logically
it is equivalent to var p in our heap model.

Note that the first code line initializes the the levellist array with Null-
pointers. The level-list is implemented as an array of heap-lists in our program-
ming language, where the array size is fixed by the number of variables. Arrays
are represented as HOL-lists.

5.2 Hoare Annotations

Besides the pre- and postcondition around the whole procedure body, we have
inserted another Hoare triple around the while loop, starting with SPEC. This
inner specification characterizes the important intermediate stages of the al-
gorithm. The precondition captures the point between step 1 and 2, and the
postcondition the point between 2 and 3.

In order to be able to distinguish between the different program states we fix
state variables σ for the initial procedure state and τ for the program state at
the beginning of the inner Hoare triple. This state fixing is part of the assertion
syntax: {|σ. . . .|} abbreviates {s | s=σ . . .}. State components decorated with the
prefix ´refer to the current state at the position of the assertion. This helps us
to speak about different stages of the program state. The logical variables τ and
ll that are introduced by SPEC are universally quantified. We will first have a
look at the fully annotated procedure before going into detail on its components.

∀σ pret prebdt. Γ`t

{|σ. Dag ṕ ĺeft ŕight pret ∧ ordered pret v́ar ∧ bdt pret v́ar = Some prebdt ∧
(∀ no. no ∈ set-of pret −→ ḿark no = ḿark ṕ)|}

ĺevellist := replicate (ṕ→ v́ar + 1) Null;
ĺevellist := CALL Levellist (ṕ, (¬ ṕ→ ḿark) , ĺevellist);
SPEC (τ ,ll). {|τ . Dag σp σleft σright pret ∧

ordered pret σvar ∧ bdt pret σvar = Some prebdt ∧
Levellist ĺevellist ńext ll ∧
wf-ll pret ll v́ar ∧ length ĺevellist = (ṕ → v́ar) + 1 ∧
wf-marking pret σmark ḿark (¬ σmark σp) ∧
(∀ pt. pt /∈ set-of pret −→ σnext pt = ńext pt) ∧
ĺeft = σleft ∧ ŕight = σright ∧ ṕ = σp ∧ ŕep = σrep ∧ v́ar = σvar|}

ń :=0;
WHILE (ń < length ĺevellist)
INV {|Dag σp σleft σright pret ∧

ordered pret σvar ∧ bdt pret σvar = Some prebdt ∧
Levellist ĺevellist ńext ll ∧

10

wf-ll pret ll v́ar ∧ length ĺevellist = ((ṕ → v́ar) + 1) ∧
wf-marking pret σmark τmark (¬ σmark σp) ∧
τleft = σleft ∧ τright = σright ∧ τp = σp ∧ τrep = σrep ∧ τvar = σvar ∧
ń ≤ length τlevellist ∧
(∀ no ∈ Nodes ń ll. (∗ reduced, ordered and eval equivalent ∗)

no→ ŕep→ v́ar ≤ no→ v́ar ∧
(∃ t rept. Dag no ĺeft ŕight t ∧

Dag (ŕep no) (ŕep ∝ ĺeft) (ŕep ∝ ŕight) rept ∧
reduced rept ∧ ordered rept v́ar ∧
(∃nobdt repbdt. bdt t v́ar = Some nobdt ∧

bdt rept v́ar = Some repbdt ∧ nobdt ∼ repbdt) ∧
set-of rept ⊆ ŕep ‘ Nodes ń ll ∧
(∀no ∈ set-of rept. ŕep no = no))) ∧

(∀ t1 t2. (∗ shared ∗)
{t1,t2} ⊆ Dags (ŕep ‘(Nodes ń ll)) (ŕep ∝ ĺeft) (ŕep ∝ ŕight)
−→ isomorphic-dags-eq t1 t2 v́ar) ∧

ŕep ‘ Nodes ń ll ⊆ Nodes ń ll ∧
(∀ pt i. pt /∈ set-of pret ∨ (ń ≤ i ∧ pt ∈ set (ll ! i) ∧ i < length ĺevellist)
−→ σrep pt = ŕep pt) ∧

ĺevellist = τlevellist ∧ ńext = τnext ∧ ḿark = τmark ∧
ĺeft = σleft ∧ ŕight = σright ∧ ṕ = σp ∧ v́ar = σvar|}

VAR MEASURE (length ĺevellist − ń)
DO
CALL ShareReduceRepList(ĺevellist ! ń);
ń := ń + 1

OD
{|(∃ rept. Dag (ŕep ṕ) (ŕep ∝ ĺeft) (ŕep ∝ ŕight) rept ∧

reduced rept ∧ ordered rept v́ar ∧ shared rept v́ar ∧
set-of rept ⊆ set-of pret ∧
(∃ repbdt. bdt rept v́ar = Some repbdt ∧ prebdt ∼ repbdt) ∧
(∀no ∈ set-of rept. (ŕep no = no))) ∧

ordered pret σvar ∧ σp 6= Null ∧
(∀ no. no ∈ set-of pret −→ ḿark no = (¬ σmark σp)) ∧
(∀ pt. pt /∈ set-of pret −→ σrep pt = ŕep pt) ∧
ĺevellist = τlevellist ∧ ńext = τnext ∧ ḿark = τmark ∧
ĺeft = σleft ∧ ŕight = σright ∧ ṕ=σp|};

ṕ := CALL Repoint (ṕ)
{|(∃postt. Dag ṕ ĺeft ŕight postt ∧

reduced postt ∧ ordered postt σvar ∧ shared postt σvar ∧
set-of postt ⊆ set-of pret ∧
(∃postbdt. bdt postt σvar = Some postbdt ∧ prebdt ∼ postbdt)) ∧

(∀no. no ∈ set-of pret −→ ḿark no = (¬ σmark σp)) ∧
(∀pt. pt /∈ set-of pret −→ σrep pt = ŕep pt ∧ σleft pt = ĺeft pt ∧

σright pt = ŕight pt ∧ σmark pt = ḿark pt ∧ σnext pt = ńext pt)|}

The Precondition of procedure Normalize assumes all the facts that are essen-
tial for the call of its sub-procedures: The argument pointer must construct a
DAG pret, which is ordered, and transformable into the decision tree prebdt.

11

Because of Levellist being a marking algorithm, all the nodes in this DAG must
be identically marked.

The Postcondition The result of the procedure is a new DAG (postt), which is
reduced, ordered, and shared. Its nodes are a subset of the nodes of the argument
DAG. The decision tree postbdt resulting from the new DAG is ”eval-equivalent”
(operator ∼) to the decision tree that we get from the argument DAG, i.e. the
Boolean function represented by the normalized BDD is still the same. Besides
the marking is inverted in comparison to the beginning of the procedure (which
is performed by procedure Levellist during the level-list construction). The rest
of the postcondition states that, for nodes which are not contained in the orig-
inal DAG, the fields that are normally modified by the procedure will remain
unchanged. The fact that field var does not change, is not captured by this post-
condition. We use an additional specification that exploits our split heap model
and lists all the global state components that may be modified:
∀σ. Γ`{σ} ṕ := CALL Normalize (ṕ)

{t. t may-only-modify-globals σ in [rep,mark,left,right,next]}
The verification condition generator makes use of this extra specification [13].
Therefore the regular postcondition only has to mention properties of the global
entities that potentially do change. That means, a procedure specification can
focus on the relevant portions of the state-space.

The Inner Hoare Triple surrounds the while loop contained in the procedure.
Its precondition contains the outer procedure’s precondition completed by the
results of the call to procedure Levellist and some propositions specifying the
fields which remained unchanged since the beginning of the procedure. Note that
we only have to mention those parts of the state-space here that we refer to in
subsequent assertions, i.e. those that are relevant for our current verification
task. Procedure Levellist adds the following assertions to our precondition:

Levellist ĺevellist ńext ll The constructed level-list is abstracted to the two di-
mensional HOL-list ll of type ref list list. The array ĺevellist contains the
initial pointers to the heap lists that link together the nodes of the same
level via the ńext pointers:
Levellist levellist next ll ≡
map first ll = levellist ∧ (∀ i<length levellist. List (levellist ! i) next (ll ! i))

first ps ≡ case ps of [] ⇒ Null | p # rs ⇒ p

List p next [] = (p = Null)

List p next (a # ps) = (p = a ∧ p 6= Null ∧ List (next p) next ps)

wf-ll pret ll v́ar The level-list is well-formed, i.e. all nodes in the argument DAG
are contained in the level-list on their variable position and all nodes in the
level-list are contained in the argument DAG:
wf-ll pret ll var ≡
(∀p. p ∈ set-of pret −→ p ∈ set (ll ! var p)) ∧
(∀ k<length ll. ∀ p∈set (ll ! k). p ∈ set-of pret ∧ var p = k)

12

length ĺevellist = (ṕ→ v́ar) + 1 The length of the level-list fits to the variables
contained in the DAG.

wf-marking pret σmark ḿark (¬ σmark σp) All nodes in the DAG are marked
contrary to their initial marking:
wf-marking pret mark-old mark-new marked ≡
case pret of Tip ⇒ mark-new = mark-old
| Node lt p rt ⇒

(∀ n. n /∈ set-of pret −→ mark-new n = mark-old n) ∧
(∀ n. n ∈ set-of pret −→ mark-new n = marked)

Now let us think about the inner postcondition. The only action taken af-
ter the inner Hoare triple in the source code is the call to procedure Repoint.
Repoint only redirects the original DAG pret to the DAG of representatives
rept, which already has the desired properties: it is reduced, ordered, shared
and the resulting decision tree repbdt encodes the same Boolean function as
the original one. Moreover, since every node in rept is a representative the rep
field of those nodes will point to the node itself. The DAG of representatives
rept can be obtained out of the original DAG by following the rep pointers:
Dag (ŕep ṕ) (ŕep ∝ ĺeft) (ŕep ∝ ŕight) rept. We begin with the representa-
tive of the root pointer ŕep ṕ, and instead of just following the left and right
pointers we make the additional indirection through rep, by the infix operator
∝. It is defined as an extension of function composition avoiding to consider
representatives of a Null pointer:
rep ∝ f ≡ λp. if f p = Null then Null else (rep ◦ f) p

So in case left p 6= Null, the expression (rep ∝ left) p is equivalent to two
dereferences: p→left→rep.

In addition we preserve some facts that we already know, like the inversion
of the marks, and add the assertion about the parts of the state that are not
modified in the loop. Note that we do not modify the DAG structure, since the
fields left and right remain unchanged. Only the rep field is modified.

The Loop Invariant starts with the repetition of the facts that we already know
from the precondition of the inner Hoare triple. After that the main part of the
invariant describes the properties of the processed levels that we have to lift to
the current level while proving the invariant and that must suffice to derive the
postcondition (of the inner triple) after the loop. Intuitively we have to express
that all sub-BDDs stemming from the representative nodes are ordered, reduced
and shared and encode the same Boolean function as their original counterparts.

To get hold of the processed nodes and DAGs, we introduce two more pred-
icates, which express that we are processing the original DAG level by level:

– Nodes i ll ≡
⋃

k∈{k | k < i} set (ll ! k)

Nodes helps us to speak of all nodes, which are contained in the DAG or
level-list up to level i.

– Dags nodes left right ≡ {t | ∃ p. Dag p left right t ∧ t 6= Tip ∧ set-of t ⊆ nodes}
A DAG is contained in Dags nodes left right if its nodes are all contained in

13

nodes, if it forms a DAG based on the fields left and right and if this DAG
is no Tip.

For every node no that is already processed we know that the representative
will not point to a bigger variable; during sharing the variable remains the same
and reducing decreases the variable. Starting from a node no we can construct
the DAG and the decision tree following the original pointers (t and nobdt)
and following the representative pointers (rept and repbdt). The representative
DAG rept is ordered and reduced, and the encoded Boolean function is preserved
(nobdt ∼ repbdt). The nodes of rept all are representatives of nodes we have
processed so far. This is expressed by set-of rept ⊆ ŕep ‘ Nodes ń ll. Here
the infix ‘ is the set image operation. So we can rephrase the set on the right
hand side with { ŕep no | no ∈ Nodes ń ll}. Moreover the representative of an
representative node will point to the node itself. This ensures uniqueness of the
representatives.

To properly express the sharing of the representative DAGs, we cannot
only refer to a single DAG constructed from a representative node, since we
also have to consider sharing between all sub-BDDs. For every two DAGs t1
and t2 that we construct from the representative nodes, the sharing property
isomorphic-dags-eq has to hold.

The remaining parts of the invariant express that the representative nodes
are contained in the original nodes, and describe the parts of state that remain
unmodified by the loop.

The Loop Variant justifies termination and is specified via a wellfounded rela-
tion. In this case a measure function, expressing that the distance of the loop
variable to the length of the level-list decreases.

Both Verma et al. [14] as well as Kristic and Matthews [7] encounter some
problems regarding termination. They directly map their BDD-algorithms to
recursive functions in Coq or Isabelle/HOL respectively. Since the underlying
logics only support total functions, they have to come up with a justification for
termination upon function definition. The recursive algorithms on BDDs only
terminate for proper inputs (e.g. no cycles). Verma et. al. work around this
problem by formally defining the recursion on an artificial counter (the variable
level). Kristic and Matthews come up with a scheme to simultaneously define
the function together with an invariant. By this they are able to handle the
nested recursion, that occurs because the global state is an explicit parameter of
their functions. Subsequent function application on the left and right sub-DAG
results in nested recursion in their approach.

These problems do not occur in our model (e.g. for the auxiliary procedures
Levellist or Repoint), since we do not directly define them as functions in HOL,
but just define the piece of syntax making up the procedure body. We can easily
restrict the input to well-formed BDDs by the precondition of the Hoare triple,
e.g. Dag ṕ ĺow h́igh pret already ensures that there are no cycles in the pointer
structure.

14

6 Conclusion

The verification of partial correctness of the normalization algorithm and its
auxiliary procedures sums up to about 10000 lines of Isabelle/Isar formalization
and proofs and is based on a master thesis [11]. Adapting the proofs to total
correctness is straightforward and only adds a few lines.

We locate the reasons of the complexity mainly in the data structure, which
involves a high degree of data sharing and side effects, which results in quite
complex invariants, specifications and proofs. We have to keep track of the orig-
inal BDD the level-list and the representative BDD. As an example our proof
that the property marked as (∗ shared ∗) in the invariant is preserved, while we
proceed from level n to n + 1, required about 1000 lines. We consider two arbi-
trary Dags up to level n + 1 and have to show the isomorphic-dags-eq property
for them. We make a case distinction, whether both Dags are already in level
n, one Dag is already in level n, or none of them is in level n. In the latter case
we proceed by inspecting the root nodes to decide whether they where shared
or not. Those kind of case distinctions for various properties add up to the large
proofs.

To prove the verification conditions, we used the structured language Isar [9]
that allows to focus on and keep track of the various aspects of the proof, so that
we can conduct it in a sensible order. Moreover it turned out that the Isar proofs
are quite robust with regard to the iterative adaption of the invariant resulting
from failed proof attempts. The already established lines of reasoning remained
stable, while adding new aspects to, or strengthening parts of the invariant.
The relatively large size of the proofs is partly explained by the fact that the
declarative Isar proofs are in general more verbose than tactic scripts.

The Hoare logic framework and the split heap model appeared to form a
suitable verification environment on top of Isabelle/HOL. The abstraction of
pointer structures to HOL datatypes allows us to give reasonable specifications.
The split heap model addresses parts of the separation problems that occur when
specifying procedures on pointer structures. The overhead of describing the parts
of the heap that do not change is kept small. The main effort of the work goes
into the problem and not into the framework.

The model we used to describe the properties of the BDD pointer structure
can serve as a solid basis for more involved BDD algorithms.

References

1. Richard Bornat. Proving pointer programs in Hoare logic. In J. Oliveira R. Back-
house, editor, Mathematics of Program Construction, volume 1837 of Lect. Notes
in Comp. Sci., pages 102–126. Springer, 2000.

2. Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation
of a BDD package. In Design Automation Conference, 1990. Proceedings. 27th
ACM/IEEE, pages 40–45, june 1990.

3. Randal E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

15

4. Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7,
pages 23–50. Edinburgh University Press, 1972.

5. Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
1999.

6. Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C pro-
grams. In Jim Davies, Wolfram Schulte, and Mie Barnett, editors, Formal Meth-
ods and Software Engineering 6th International Conference on Formal Engineering
Methods, ICFEM 2004, Seattle, WA, USA, November 8-12, 2004, volume 3308 of
Lect. Notes in Comp. Sci. Springer, 2004.

7. Sava Krstic and John Matthews. Verifying BDD algorithms through monadic in-
terpretation. In A. Cortesi, editor, Verification, Model Checking, and Abstract In-
terpretation: Third International Workshop, VMCAI 2002, Venice, Italy, January
21-22, volume 2294 of LNCS, pages 182–195, 2002.

8. Farhad Mehta and Tobias Nipkow. Proving Pointer Programs in Higher-Order
Logic. In F. Baader, editor, Automated Deduction — CADE-19, volume 2741 of
Lect. Notes in Comp. Sci., pages 121–135. Springer, 2003.

9. Tobias Nipkow. Structured Proofs in Isar/HOL. In TYPES 2002, volume 2646 of
Lect. Notes in Comp. Sci. Springer, 2002. http://isabelle.in.tum.de/docs.html.

10. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2002. http://www.in.tum.de/∼nipkow/LNCS2283/.

11. Veronika Ortner. Verification of BDD Algorithms. Master’s thesis, Technische
Universität München, 2004. available from http://www.veronika.langlotz.info/.

12. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. 17th IEEE Symposium on Logic in Computer Science (LICS 2002), pages
55–74, 2002.

13. Norbert Schirmer. A verification environment for sequential imperative programs
in Isabelle/HOL. In F. Baader and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 3452 of Lect. Notes in Art. Int.,
pages 398–414. Springer-Verlag, 2005.

14. Kumar Neeraj Verma, Jean Goubault-Larrecq, Sanjiva Prasad, and S. Arun-
Kumar. Reflecting BDDs in Coq. In Proc. 6th Asian Computing Science Confer-
ence (ASIAN’2000), Penang, Malaysia, Nov. 2000, volume 1961, pages 162–181.
Springer, 2000.

A Auxiliary Procedures

Levellist traverses the DAG, puts unmarked nodes to the front of the corre-
sponding level-list slot, and switches their mark. Marking ensures that nodes
are only collected once and thus no cycles are introduced in the list.

procedures Levellist (p, m, levellist | levellist) =
IF (ṕ 6= Null) THEN

IF (ṕ→ ḿark 6= ḿ) THEN
ĺevellist := CALL Levellist (ṕ→ ĺeft, ḿ, ĺevellist);
ĺevellist := CALL Levellist (ṕ→ ŕight, ḿ, ĺevellist);

16

http://isabelle.in.tum.de/docs.html
http://www.in.tum.de/~nipkow/LNCS2283/
http://www.veronika.langlotz.info/

ṕ→ ńext := ĺevellist ! (ṕ→ v́ar);
ĺevellist ! (ṕ→ v́ar) := ṕ;
ṕ→ ḿark := ḿ;

FI
FI

ShareReduceRepList processes one level of the level-list. Non-leaf nodes with the
same children representatives are reduced, all the others are shared.

isLeaf-pt p left right ≡ left p = Null ∧ right p = Null

procedures ShareReduceRepList (nodeslist) =
ńode := ńodeslist;
WHILE (ńode 6= Null) DO

IF (¬ isLeaf-pt ńode ĺow h́igh ∧ ńode→ ĺow→ ŕep = ńode→ h́igh→ ŕep)
THEN ńode → ŕep := ńode → ĺow → ŕep (∗ reducing ∗)
ELSE CALL ShareRep (ńodeslist , ńode) (∗ sharing ∗)
FI ;
ńode := ńode→ ńext

OD

ShareRep shares node p by searching its representative in the current nodeslist.
In case of leafs, the representative is the first element in the list. Otherwise the
representative is the first node in the list with the same children representatives.
Since p itself is in the list we will always find a node.

repNodes-eq p q left right rep ≡
(rep ∝ right) p = (rep ∝ right) q ∧ (rep ∝ left) p = (rep ∝ left) q

procedures ShareRep (nodeslist, p) =
IF (isLeaf-pt ṕ ĺow h́igh)
THEN ṕ → ŕep := ńodeslist
ELSE

WHILE (ńodeslist 6= Null) DO
IF (repNodes-eq ńodeslist ṕ ĺow h́igh ŕep)
THEN ṕ→ ŕep := ńodeslist; ńodeslist := Null
ELSE ńodeslist := ńodeslist→ ńext
FI

OD
FI

Repoint traverses the DAG while re-pointing the nodes to their representatives.

procedures Repoint (p | p) =
IF (ṕ 6= Null) THEN

ṕ := ṕ→ ŕep;
IF (ṕ 6= Null) THEN

ṕ→ ĺeft := CALL Repoint (ṕ→ ĺeft);
ṕ→ ŕight := CALL Repoint (ṕ→ ŕight)

FI
FI

17

	Verification of BDD Normalization
	Veronika Ortner and Norbert Schirmer

