
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2003; 0:1–10 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

∗

Analysing the Java
Package/Access Concepts in
Isabelle/HOL

Norbert Schirmer

Technische Universität München
Department of Informatics
D-85748 Garching, Germany
Email: schirmer@in.tum.de

SUMMARY

Java access modifiers and packages provide a mechanism to restrict access to members
and types, as an additional means of information hiding beyond the purely object-
oriented concept of classes. In this paper we clarify the semantics of access modifiers
and packages by adding them to our formal model of Java in the theorem prover
Isabelle/HOL. We analyse which properties we can rely on at runtime, provided that
the program has passed the static accessibility tests.

key words: Java Packages, Java Access Modifiers, Theorem Proving, Type Safety

The work presented in this article is part of a comprehensive research effort aiming at
formalising and verifying key aspects of the Java programming language. In particular we have
a type system, an operational semantics (with a proof of type soundness), and an axiomatic
semantics (with a proof of its equivalence to the operational semantics) for a large subset of
Java [8]. All these formalisations and proofs have been carried out in the Isabelle/HOL system
[7].
Access modifiers determine access restrictions and visibility of class or interface types, and their
members. Since safety and security properties of Java are based on the bare language itself,
access modifiers are the main means to protect data. During the effort to formally model
the package/access concept, some intrinsic problems became apparent. The Java Language
Specification (JLS) [3] is imprecise and ambiguous concerning the package/access concepts
and Java implementations do not exactly follow the JLS. Although some of the problems
have already been known for years (cf. BugParade [10], Bug Ids 1240831, 4094611), we have
discovered and reported to Sun, two further inconsistencies (Bug Id’s 4485402, 4493343).

∗This is a preprint of an article accepted for publication in Concurrency and Computation: Practice and
Experience Copyright c© 2003 John Wiley & Sons, Ltd.

Copyright c© 2003 John Wiley & Sons, Ltd.

2 N. SCHIRMER

Information hiding (with packages) and reuse of implementations (with inheritance and
overriding) are conflicting goals but they are both implemented using the same concept of
Java, namely classes. In this article we clarify the semantics and discuss the runtime properties
of access modifiers. Since it is unclear from the JLS what the exact meaning of various relevant
notions concerning the package/access concepts are, or even worse, what exactly the relevant
notions are, we will introduce and clarify the following definitions in this article:

accessible-in: When is a class or interface accessible in a package?

inheritable-in: When can a member be inherited in a package?

member-of : Which are the members of a class, including inherited members?

member-in: Which are the members of a class and its superclasses? This extends member-of
with the members of superclasses that are not inherited.

permits-acc-from: Which classes are permitted to access a member?

accessible-from: Which member accesses are statically valid?

dyn-accessible-from: What are the properties of runtime member access?

overridesS: Compile-time (static) variant of overriding.

overrides: Runtime (dynamic) variant of overriding.

We will make the subtle differences between the two pairs of notions, member-of vs. member-
in, and overridesS vs. overrides precise in this article. The package/access model presented in
this article is based on the JLS. Inner classes are not yet part of our formalisation. In case
of ambiguities or omissions in the JLS we refer to the Java release of Sun (SDK 1.3.1). The
compiler serves as reference for the static semantics and the JVM serves as reference for the
dynamic semantics. As far as we know, the present formalisation offers the most comprehensive
and detailed model of the Java package/access concepts. Most studies on the formal semantics
of Java do not treat access modifiers at all, because of a different focus of interests ([1], [11],
[4], [8]). Other approaches which do model access modifiers take an idealistic view on them
and avoid a lot of the complexities which arose in our formalisation ([9], [5]). The complete
formalisation and the Isabelle theories are available online [12].

This article is structured as follows: Section 1 makes some basic remarks about Isabelle, as
far as they concern the rest of this article. In Section 2, we introduce packages and access
modifiers to our Java model. Section 3 discusses accessibility on the level of types. Section 4
describes accessibility on the level of members in detail. We also clarify the related notions of
overriding and dynamic method lookup here. Section 5 links static accessibility tests to runtime
behaviour. We prove that we can trust some runtime properties concerning accessibility if the
program passes the static accessibility tests of the compiler. For example we will prove that a
private member of a class will never be accessed from outside of the class. Finally we conclude
the work in Section 6.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 3

1. Preliminary Notes on Isabelle

Isabelle is a generic logical framework which allows one to encode different object logics. In
this article we are only concerned with Isabelle/HOL [7], an encoding of higher order logic
augmented with facilities for defining data types, records, inductive sets as well as primitive
and total general recursive functions.
The syntax of Isabelle is reminiscent of ML, so we will not go into detail here. There are the
usual type constructors T 1 × T 2 for product and T 1 ⇒ T 2 for function space. The long
arrow =⇒ is Isabelle’s meta-implication and appears in conjunction with rules or theorems of
the form [[P1; . . . ; Pn]] =⇒ C to express that from the premises P1 to Pn we can conclude
C. Apart from that there is the implication −→ of the HOL object logic, along with standard
connectives and quantifiers.
To emulate partial functions the polymorphic option type is frequently used:

datatype α option = None | Some α

Here α is a type variable, None stands for the undefined value and Some x for a defined value
x. A partial function from type T 1 to type T 2 can be modelled as T 1 ⇒ (T 2 option).
There is also a selector for the constructor Some, the function the:: α option ⇒ α. It is defined
by the sole equation the (Some x) = x and is total in the sense that the None is a legal, but
indefinite value.
We conclude this section with a remark about the usage of fonts and faces in this article. Java
source code is written in typewriter, Isabelle keywords have a bold face, formal entities are
written in italics except for special mixfix syntax introduced in this article, which is typeset
in slanted sans serif.

2. Basic Definitions

In Java, a program is a collection of interfaces and classes, arranged in packages. The aim of a
package is to combine closely related classes (and interfaces) inside a single unit and to offer
privileged access between those classes. We model packages by qualifying all type names for
interfaces and classes with a package name.

record qtname = pid ::pname
tid ::tname

The function pid selects the package name out of such a record, tid selects the type name.
An instance of this record can be written as (|pid=MyPackage, tid=MyType|). Java organises
package names hierarchically. But this internal structure only plays a role during the lookup
process for a package and to manage namespaces. However, as this hierarchy is irrelevant for
accessibility concerns, we do not model it here. For example packages java and java.lang
are two different packages. Package java has no privileged access to the contents of package
java.lang.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

4 N. SCHIRMER

In our formalisation a Java program is a mapping from qualified type names to the structures
describing the corresponding classes and interfaces. The access modifiers are described as an
enumeration:

datatype acc-modi = Private | Package | Protected | Public

The nomenclature resembles the original keywords of Java, except for Package, which models
the nameless default access modifier of Java, that is applied when no other modifier is given
explicitly. We define an ordering on the access modifiers, from the most restrictive to the most
liberal:

Private < Package < Protected < Public.

The order will be used later on to describe the constraints on access modifiers when we override
a method (p. 9). An access modifier is attached to every member (field, method) and to every
class or interface. Consequently there is an accessibility concept on the level of types and on
the level of members.

3. Accessibility of Types

We capture accessibility of types in a predicate Γ ` T accessible-in P stating that in the context
of a program Γ the type T is accessible in package P.

T Γ ` T accessible-in P

PrimT True
Iface I pid I = P ∨ is-public Γ I
Class C pid C = P ∨ is-public Γ C
Array elemT Γ ` elemT accessible-in P

Primitive types like int or bool are accessible in all packages. If an interface or class has the
modifier Public then it is accessible in any package. Otherwise it is only accessible inside the
same package. An array type is accessible in a package if the element type is accessible in this
package.

4. Accessibility of Members

Accessibility of members is more involved than accessibility of types. First we have to clarify
what the members of a class are. Γ ` m member-of C states that m is member of class C in
context of program Γ.

Γ ` mbr m declared-in C declclass m = C
Γ ` m member-of C

(Immediate)

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 5

Γ ` m member-of S Γ ` C≺C1 S Γ ` Class S accessible-in pid C
Γ ` memberid m undeclared-in C Γ ` m inheritable-in pid C

Γ ` m member-of C
(Inherited)

Here m is a pair qtname × memberdecl consisting of the declaration class of the member
and the member declaration itself. With declclass and mbr we can select the parts. The
member declaration itself does not contain the declaration class. It contains information like
the identifier of the member, its access modifier, the type of the member or whether it is a
static or an instance member. Every freshly declared member is immediately member of the
class. Γ ` mbr m declared-in C demands that the declaration mbr m is present in the body of
class C and declclass m = C guarantees that the formal declaration class of m is indeed class
C. A class can also inherit members from its direct superclass†: Γ ` C≺C1 S. In the following
≺C is the transitive closure and �C is the reflexive transitive closure of the direct subclass
relation ≺C1. The Inherited rule describes under which conditions a member is inherited. If
m is an inheritable member of the direct superclass S and S is accessible in the current package
and the class C does not declare a new member with the same memberid, then m is inherited
by C. The memberid of a field is its name, and the memberid of a method is its complete
signature (name plus parameter types). A Private member is not inheritable, Protected and
Public members are always inheritable and Package members are only inheritable inside the
package of the member’s declaration class. With accmodi we can select the access modifier of
a member.

accmodi m Γ ` m inheritable-in P

Private False
Package pid (declclass m) = P
Protected True
Public True

The following example illustrates the impact of inheritance on the notion member-of :

public class A {
private int n;

}
public class B extends A {
}

Since n is private in class A it is not inherited by B. So n is not member-of class B. If a
member is not inherited by a class, it is not member-of that class, although it is member-of

†In the JLS a class also inherits members from the direct super-interfaces it implements. This is not needed
in our model for the following reasons: A wellformedness condition ensures that all interface methods are
implemented by the class hierarchy (abstract classes are not supported). So for method inheritance it is sufficient
to focus on the class hierarchy. Interface fields are not supported in our current model.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

6 N. SCHIRMER

the superclass. Also, if we declare a new member in a class, a member of the superclass with
the same memberid is hidden or overridden. Consequently the member of the superclass is not
member-of the current class, according to this definition. This is important to note, since at
runtime the dynamic type of a reference may be a subclass of the static type. Because of this
fact the member we want to access may not be member-of the dynamic class anymore. Of
course the referenced object will still contain the field, like an object of class B in the example
will contain the field n, since B extends A. There must be a superclass S providing this member,
so we define:

Γ ` m member-in C ≡ ∃ S . Γ ` C �C S ∧ Γ ` m member-of S

All members that are member-of a class are also member-in that class. But additionally all
members of the superclasses that are not inherited are also member-in the class. Therefore in
the previous example n is member-in class B.
The basic access restrictions associated with the modifiers are expressed in the predicate
Γ ` m in C permits-acc-from accC . This is a crucial building block to define accessibility later
on. A member m in class C permits access from an accessing class accC according to the
following table:

accmodi m Γ ` m in C permits-acc-from accC

Private declclass m = accC
Package pid (declclass m) = pid accC
Protected pid (declclass m) = pid accC ∨

Γ ` accC≺C declclass m ∧ (Γ ` C�C accC ∨ is-static m)
Public True

A Private member only permits access from the declaration class itself. A Public member
permits access from every class. A Package member permits access from all classes in the
same package. The restrictions of Protected access are twofold. First the member permits
access from any class in the same package. Secondly the member can also be accessed from
outside the package: all classes involved have to be in the same branch of the class hierarchy.
Note that this may concern three different classes: The declaration class of the member, the
class C the member belongs to (possibly a subclass of the declaration class), and the class
accC that tries to access the member. With Γ ` accC≺C declclass m we ensure that the
accessing class accC already “knows” of the existence of the member by being a subclass
of the declaration class. We could also take �C instead of ≺C here, but the case were the
accessing class and the declaration class are the same is already captured by the first conjunct,
since then both classes are in the same package. For non-static members (also called instance
members or object members) the accessing class must also be a superclass of class C : Γ ` C�C

accC. This is circumscribed as class accC is “involved in the implementation” of class C in the
JLS. The intuition behind this is that a class should be able to access the known content of all
possible subclasses for its implementation. But it should not be possible for a class to change
the content of a superclass. The behaviour of a subclass can always depend on the behaviour
of one of its superclasses. That is why a superclass is involved in the implementation of a

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 7

subclass. For static members (class members) this additional constraint is not necessary, since
the member is in fact the same for all objects of a subclass of the declaration class. Consider
the following example:

package P;
public class A {
protected int n;

}

package Q;
import P.A;
public class B

extends A {
}

package R;
import Q.B;
public class C

extends B {
}

The member n is inherited by both classes B and C. With A.n, B.n or C.n I will circumscribe
the access to field n via a reference of class A, B or C respectively. B is permitted to access
C.n (formally Γ ` n in C permits-acc-from B), since B is a superclass of C. But class B is not
permitted to access A.n (formally ¬ Γ ` n in A permits-acc-from B), since B is not a superclass
of A. Or, in the words of the JLS, class B is involved in the implementation of class C but not
of class A. Of course, class B is permitted to access its own member B.n, since B is both the
accessing and the accessed class and therefore trivially lies in the same package and access of
a Protected member is granted inside the same package (formally Γ ` n in B permits-acc-from
B). If we consider the field n to be declared static in class A, then A.n, B.n and C.n will all
refer to the same field. Therefore to forbid class B to access A.n would be useless. Class B could
always access the same location over B.n.
Note the differences between the Protected case of inheritable-in and of permits-acc-from. In the
JLS inheritance is not defined with an extra notion like inheritable-in, but with accessibility.
That way Protected instance members would never be inherited across package boundaries
(Bug ID: 4485402). This becomes obvious if we again refer to the example. Class B is not
permitted to access A.n. So n would not be inherited by class B if inheritance would be based
on this restriction. Our formalisation models the behaviour of all common compilers here,
were Protected members can always be inherited by subclasses. The JLS does not capture the
intended behaviour of inheritance of Protected members.
Now we are ready to define static accessibility of a member: Γ ` m of C accessible-from accC.
In context of program Γ member m of class C is statically accessible from class accC. The
statically valid member accesses are determined by the two following rules.

Γ ` m member-of C
Γ ` m in C permits-acc-from accC
Γ ` Class C accessible-in pid accC
Γ ` m of C accessible-from accC

(Immediate)

Γ ` (declC ,newM) overridesS old
new = (declC ,mdecl newM) Γ ` new member-of C

Γ ` C ≺C S Γ ` old of S accessible-from accC
Γ ` Class C accessible-in pid accC
Γ ` new of C accessible-from accC

(Overriding)

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

8 N. SCHIRMER

If a member of a class permits access and the class itself is accessible then the member is
accessible. That is the Immediate rule. Note that the class has to be accessible, too. Public
members of a non Public class are only visible inside the package. If a subclass is Public
however, these members become accessible from outside the package as they are inherited
(and not overridden). It may be puzzling, why we have not already required Γ ` m member-of
C in the definition of Γ ` m in C permits-acc-from accC . The reason is that we will also use
the core notion of permits-acc-from for dynamic accessibility (p. 13) where we no longer require
the member m to be member-of the class C but are satisfied with member-in.
The Overriding rule needs more motivation, because it is not apparent in the JLS (Bug ID
4493343). It states that a method becomes accessible from a class accC if it overrides another
method that is already accessible from class accC. With new = (declC ,mdecl newM) we ensure
that the member new is a method newM ; mdecl constructs a member from a method. This
rule is only necessary to cover the special case of Protected methods, the other ones can be
treated by the Immediate rule — Public methods always permit access, Private methods
cannot be overridden at all and from outside of the package we can neither override nor access
Package methods. Consider the following example:

package P;
public class A {
protected void foo(){}

}

package P;
import Q.B;
public class C {
...
B b = new B();
b.bar(); // not accessible
b.foo(); // accessible

}

package Q;
import P.A;
public class B extends A {
protected void foo(){}
protected void bar(){}

}

Equipped with the Immediate rule, C could only access Protected members declared in package
P or in subclasses of C. It could not access B.foo(). But the Sun compiler (SDK 1.3.1) also
implements the Overriding rule. It will allow C to access B.foo(), because C can access
A.foo() (A and C are both in package P), but will reject access to method B.bar(). The authors
of [6] already reported this irritating behaviour. They consider this a flaw in the language
definition. The intention of the language should be that a method overriding another method
should semantically permit “at least as much access” as the overridden one. But the obvious
syntactic indicator that a Protected or Public member permits “at least as much access” as
a Protected one is not sufficient to guarantee this. Due to the twofold nature of Protected
access we can only guarantee “at least as much access” if we actually weaken the modifier to
Public when we override it outside of the package. If we require this the Overriding rule is
dispensable and the semantics gets clearer. The JLS however, is satisfied with Protected or
Public. So [6] suggests to add this restriction and to additionally introduce a new modifier

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 9

private protected permitting access to all super and subclasses, but not to other classes in
the same package. Sun considered the Overriding rule a bug in their compiler and omitted
it in the new release (SDK 1.4.0)‡. Now C can access A.foo() but is not allowed to access
B.foo(). This is also irritating: if B would not redefine foo() it would inherit A.foo(). In
this case, class C would be allowed to access B.foo(). Hence accessibility of B.foo() depends
on class B overriding foo() or not. This does not fit well into the object-oriented paradigm.
Whether it is preferable to support the Overriding rule or not, is not clear from a software-
engineering perspective. As just explained, both solutions lead to some irritating behaviour.
This illustrates the difficulty of integrating module-based encapsulation and inheritance using
the concept of classes. The clearest semantics is obtained when we only allow Public methods
to override Protected methods of a different package.

4.1. Overriding

Since overriding plays a major role for accessibility we now investigate under which
circumstances a new method overrides an old one:

msig new = msig old ¬ is-static new
Γ `Method old inheritable-in pid (declclass new)

Γ ` declclass new ≺C1 S Γ `Method old member-of S
Γ `Method old declared-in declclass old

Γ `Method new declared-in declclass new
Γ ` new overridesS old

(Direct)

Γ ` new overridesS inter Γ ` inter overridesS old
Γ ` new overridesS old

(Indirect)

Let us first focus on the Direct rule. The new and the old method must have the same
signature. Overriding (and dynamic binding) is only defined for instance methods and not
for static methods (¬ is-static new). The old method has to be inheritable in the declaration
class of the new method. In contrast to this the JLS again refers to accessibility here. This
is wrong for the same reasons as discussed for inheritance. In that case a Protected method
could never be overridden in another package. The old method has to be member of the
direct superclass of the new method’s declaration class. Of course, all methods have to be
declared properly. The Indirect rule is just a transitivity rule for overriding. The overridden
method old must also be an instance method. This is not visible in this rule but is ensured
by a more general wellformedness predicate not shown here. This wellformedness predicate
combines a lot of structural constraints on Java programs that we usually have in mind. For
example, all methods in a wellformed program have to be welltyped. Concerning overriding,
wellformedness restricts the overridden method old : if Γ ` new overridesS old holds then old

‡The compilers of IBM (JDK version 1.1.8 and 1.3.1) both implement the Overriding rule.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

10 N. SCHIRMER

must be an instance method (¬ is-static old) and its access modifier must syntactically be at
least as liberal (accmodi old ≤ accmodi new). The following example demonstrates the rules
for overriding.

package P;
public class A {

void foo(){}
}

package P;
import Q.B;
public class C extends B {
public void foo(){}

}

package Q;
import P.A;
public class B extends A {
public void foo(){}

}

B.foo() does not override A.foo(), since A.foo() has Package access and therefore is not
inheritable in package Q. Moreover C.foo() overrides B.foo(), since B.foo() is Public and the
Direct rule is applicable. But does C.foo() override A.foo() of the same package? According
to our rules it does not, since A is not the direct superclass of C and the transitivity rule is
not applicable either, because B.foo() does not override A.foo(). A.foo() and B.foo() are
treated as uncorrelated methods and so it seems obvious that C.foo() should not override both
of them at the same time. The Java compiler of Sun also behaves in a way that is compatible
with these rules. Sun’s Java virtual machine, however, does not. In their JVM, C.foo()
overrides both A.foo() and B.foo()§. The Sun JVM seems to implement the following rules
for overriding:

msig new = msig old ¬ is-static new
Γ `Method old inheritable-in pid (declclass new)

Γ ` declclass new ≺C declclass old
¬ is-static old resTy new = resTy old accmodi new 6= Private

Γ `Method old declared-in declclass old
Γ `Method new declared-in declclass new

Γ ` new overrides old
(Direct)

Γ ` new overrides inter Γ ` inter overrides old
Γ ` new overrides old

(Indirect)

I will refer to these rules as dynamic overriding and to the previous ones as static overriding
(indicated by the subscript S in overridesS). The Direct rule now allows to override not only
methods of the direct superclass but also methods from any superclass if they are inheritable.

§The JVMs of IBM (JDK version 1.1.8 and 1.3.1) implement yet another alternative: C.foo() overrides A.foo()
but not B.foo().

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 11

The other novelties in line 4 of the Direct rule can be viewed as wellformedness conditions
that ensure type safety at runtime. They are built into the notion of dynamic overriding in
the JVM because they are neither tested by the bytecode verifier nor by a runtime check. The
JVM only regards a method new as overriding another method old if it is safe in a certain
sense to call method new instead of the overridden method old. In particular, this is only the
case if the result types conform. A dynamic method lookup can then execute the overridden
method safely. The compiler on the other hand tests these type safety constraints along with
overriding: If Γ ` new overridesS old then the compiler enforces that the result types of the
method conform (resTy new = resTy old),that the new access modifier is at least as liberal as
the old one (accmodi old ≤ accmodi new) and that the overridden method also is an instance
method (¬ is-static old). As mentioned before, this is also ensured in our Java model by a
general wellformedness predicate. Note that dynamic overriding does not ensure that the access
modifier is at least as liberal as the old one. It only has to be non Private.

4.2. Method Lookup

Dynamic overriding is the key component for dynamic method lookup. If we search for a
method at runtime we cannot just start with the dynamic class of the object, walk up the class
hierarchy, and take the first method that matches. We have to take into account whether the
method really overrides the statically expected method. Let the dynamic class of an object be
dynC and the static class be statC. Type safety will ensure that the proper subtype relationship
Γ`dynC �C statC will hold. With super dynC we select the superclass of dynC. In the context
of an acyclic finite class hierarchy we can then define dynamic method lookup for a method
with signature sig the following way:

dynmethd Γ statC dynC sig =
(case methd Γ statC sig of

None ⇒ None
| Some statM ⇒ (case methd Γ dynC sig of

None ⇒ dynmethd Γ statC (super dynC) sig
| Some dynM ⇒

(if Γ ` dynM overrides statM ∨ dynM = statM
then Some dynM
else (dynmethd Γ statC (super dynC) sig))))

The statically expected method is statM and will be found by the function methd if the method
call is well typed. Therefore, in a well-typed program, methd Γ statC sig will always be of the
form Some statM. With methd we can look up all methods that are member-of the class given
as second argument, by searching up the class hierarchy for the first matching method that is
also member-of the given class. So in dynmethd we start in the dynamic class dynC and look
for a method with the correct signature which is member-of the class dynC. If we do not find
a method in the dynamic class itself we just continue the search in the superclass. Note that
it is perfectly valid that we do not find a method which is member-of the dynamic class itself.
If we for example statically expect a method with Package modifier but the dynamic class is

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

12 N. SCHIRMER

defined in another package, the method will not be inherited. In the other case, if we find a
method dynM in the dynamic class, we can stop searching if this method either overrides the
statically expected method statM, or if we have already reached statM. Otherwise we continue
the search in the superclass. Let us reconsider the previous example (p. 10) with the following
code fragment:

A v = new B(); v.foo();

Here v.foo() will call A.foo() and not B.foo(), since B.foo() does not override A.foo().
Our Java formalisation also deals with interfaces and arrays so we have to lift dynamic method
lookup to these types as well:

dynlookup Γ statT dynC sig ≡
(case statT of

IfaceT I ⇒ dynimethd Γ I dynC sig
| ClassT statC ⇒ dynmethd Γ statC dynC sig
| ArrayT ty ⇒ methd Γ Object sig)

For classes we use the previously defined dynmethd function. The methods we can call on an
array are those of Object. For interfaces the auxiliary function dynimethd handles the lookup:

dynimethd Γ I dynC sig ≡
if imethds Γ I sig 6= {}
then methd Γ dynC sig
else dynmethd Γ Object dynC sig

At runtime, a reference to an interface will actually be an object of class dynC. We do not know
which static class this reference had. We just know that it has to implement the interface. On
interfaces we can call the methods defined by the interface itself (including multiple inheritance
of interfaces) and those defined in Object. If the method is defined in the interface (imethds Γ
I sig 6= {}) we can assume that the method is implemented by the dynamic class dynC. As
we lack the static class we cannot use the function dynmethd for method lookup. However,
this is not a problem here, since all interface methods are Public. We know that a method
corresponding to the signature sig has to be member-of the dynamic class dynC itself, since
Public methods are always inherited or overridden by other Public methods. The method
cannot be blocked by package boundaries. That is why we can use methd here. If we have
called an Object method which is not overridden by an interface method we just use dynmethd
with Object as static class. Looking at the description of class Object in the JLS we see that
there are just Public and Protected methods there, no Private or Package methods. Therefore
we could again reduce dynmethd Γ Object dynC sig to methd Γ dynC sig with the same
argumentation as above. Our method lookup is a little bit more general than it has to be.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 13

5. Runtime Properties

5.1. Dynamic Accessibility of Members

In an object-oriented setting it is usual that we can receive an object of class B at runtime if
we statically expect a reference to an object of class A. Class B then has to be a subclass of
A. In Java, it is possible that A is declared Public but B is not. So we can receive an object of
class B outside of its packages, although B is not statically accessible. As accessibility of the
class is a precondition for static accessibility of a member, we cannot expect that at runtime
only the statically accessible members are the members valid to access. This will be illustrated
by the next example.

package P;
public class A {

public void foo(){}
}

package P;
public class C {

public static void callfoo(A b) {
b.foo();

}
}

package Q;
import P.A;
import P.C;
class B extends A {

void do() {
B b = new B();
C.callfoo(b)

}
}

The class B is not Public in package Q and extends class A. From package P we cannot even
statically access class B and hence least of all any of its members. Therefore any access to
B.foo() in package P is prohibited by the static accessibility rules. The method call b.foo()
in class C statically attempts to access A.foo(), since the parameter b has the static type A.
This conforms to static accessibility. But evaluation of method do() will pass a reference of
type B to the parameter b of the method callfoo(). This will lead to a runtime access to
B.foo() which is forbidden by static accessibility. That is why we need a more liberal predicate
to capture the runtime properties we should expect: Γ ` m in C dyn-accessible-from accC. In
context of program Γ member m of class C is dynamically accessible from class accC. The
dynamically valid member accesses are determined by the two following rules.

Γ ` m member-in C
Γ ` m in C permits-acc-from accC

Γ ` m in C dyn-accessible-from accC
(Immediate)

Γ ` (declC ,newM) overrides old
new = (declC ,mdecl newM) Γ ` new member-in C
Γ ` C ≺C S Γ ` old in S dyn-accessible-from accC

Γ ` new in C dyn-accessible-from accC
(Overriding)

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

14 N. SCHIRMER

These rules of dynamic accessibility resemble the rules of static accessibility, but leave out the
precondition that the types must be accessible and switch from member-of to member-in and
from static overriding (overridesS) to dynamic overriding (overrides). We want to ensure that
for a wellformed program (where only statically accessible members are accessed at compile-
time) only dynamically accessible members are accessed at runtime. Static accessibility is
tested by the compiler to decide whether a given program is wellformed or not. It can also
be tested by the bytecode verifier to decide whether or not to run a program. Interestingly,
current bytecode verifiers do not care about these accessibility concerns at all. Instead the
JVM performs some runtime checks. In our model static accessibility is incorporated into the
type system. Dynamic accessibility captures the properties of the actual member accesses that
can occur during execution of the wellformed program. Dynamic accessibility is integrated into
the operational semantics as special tests. They will cause an error if dynamic accessibility is
violated at runtime. The Overriding rule for the dynamic case is not as questionable as for
the static case. If a method overrides another one it will be called anyway, due to dynamic
binding, and therefore we have to accept such calls during runtime. Regardless whether we
support the Overriding rule in the static case or not, in the dynamic case we have to deal
with it. Only in one scenario we can omit the Overriding rule for both the dynamic and
static case: if we enforce that a Protected method can only be overridden outside of its package
by a Public method, all legal accesses are captured by the Immediate rules.

5.2. Main Runtime Theorem

After these auxiliary definitions for dynamic overriding and accessibility, we will now formulate
the main theorem about the connection of static and dynamic accessibility. We model the
runtime behaviour of Java with a big step semantics. Whenever the dynamic accessibility is
violated we throw a special abruption that halts the program and signals the error. The
following theorem states that this situation will never occur when executing wellformed
programs.

Theorem: [[Γ ` s0 −t�→ (v ,s1); (|prg=Γ,cls=accC ,lcl=L|)`t ::T ; wf-prog Γ;
s0::�(Γ,L)]] =⇒ error-free s0 = error-free s1

The assumptions of the theorem are written in the brackets [[. . .]] and are separated with
a semicolon. The conclusion comes after the implication =⇒ of Isabelle’s meta logic. The
assumptions of the theorem can be explained as follows. Evaluating the Java term t leads
us from state s0 to state s1 and gives us v as result. Java statements and expressions are
generalised to terms in this semantics. Statements evaluate to a dummy result. The term t is
welltyped in the body of class accC ((|prg=Γ,cls=accC ,lcl=L|)`t ::T) and the whole program
is wellformed. This guarantees that only statically accessible members are accessed. Finally
the starting state conforms to the environment (s0::�(Γ,L)). This implies that all values
within the state are compatible with their static types. L is the static typing environment
for local variables. Abrupt completion is encoded into the state. Under these assumptions the
conclusion of the theorem then guarantees that if we start in a error-free state we will end
up in an error-free state (no access violation has occurred during evaluation). The state is a

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 15

pair of type abrupt option × store. We have defined the corresponding selectors abrupt and
store for this pair. The abrupt-component signals all kinds of possible reasons for an abrupt
completion: Exceptions, break, continue, return and additional artificial runtime errors.
The usual reasons for abrupt completion can be caught and handled with ordinary language
constructs. The additional runtime errors cannot. We aim to prove that they cannot occur
in a wellformed and welltyped program. The function error-free just ensures that no error is
present in the state:

error-free s ≡ ¬ (∃ err . abrupt s = Some (Error err))

The proof of the theorem is closely related to the type safety proof in [8]. For a better technical
understanding of the theorem we will now have a closer look at how static accessibility is
integrated into the type system, how dynamic accessibility is integrated into the operational
semantics, how the theorem above connects these two levels, and where type safety comes in.
As an example we will examine access to an object field, written e..fn for an expression e and
a field name fn in our Java model. The typing rule for access to a field variable is the following:

(|prg=Γ,cls=accC ,lcl=L|)`e::−Class statC
accfield Γ accC statC fn = Some (statDeclC ,f)

(|prg=Γ,cls=accC ,lcl=L|)`{accC ,statDeclC ,is-static f }e..fn::−(type f)

The expression e must be of static type Class statC and this class statC must contain
an accessible field with name fn: the lookup of the field name accfield Γ accC statC
fn yields a pair (statDeclC ,f) where field f is declared in class statDeclC which may
be a superclass of class statC. The type of the whole field access is the type of the
field itself. The function accfield only searches the accessible fields. It guarantees static
accessibility: Γ`Field fn (statDeclC ,f) of statC accessible-from accC . Another point worth
mentioning is that the syntax of the field access e..fn is enriched with annotations in braces:
{accC ,statDeclC ,is-static f }. The accessing class accC, the declaration class of the Field
statDeclC, and a flag whether the field is static or not (is-static f) is encoded into the syntax.
We can then access these entities in the operational semantics to actually perform the field
access and execute the sanity checks. This becomes clearer if we look at the evaluation rule of
field access:

Γ`(None,s0) −Init statDeclC→ s1

Γ`s1 −e−�a→ s2

(v ,s3) = fvar statDeclC stat fn a s2

s4 = check-field-access Γ accC statDeclC fn stat a s3

Γ`(None,s0) −{accC ,statDeclC ,stat}e..fn�→ (v ,s4)

Starting in an initial state (None, s0), a state where no abruption is present, evaluation of the
field access {accC ,statDeclC ,stat}e..fn will result in the value v and the final state s4. The
operational semantics models class initialisation. Thus we first trigger this class initialisation
of the static declaration class statDeclcC of the field. Then we evaluate the expression e to its

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

16 N. SCHIRMER

address a and look up the value of the field with the auxiliary function fvar which may cause
a null-pointer exception and therefore potentially updates the state. Finally check-field-access
tests if the current field is dynamically accessible and otherwise throws an error. Here, the
annotations {accC ,statDeclC ,stat} of the typing rule serve as parameters. Keep in mind that
we aim to prove that check-field-access will never actually throw an error in a wellformed and
welltyped program. The definition of the auxiliary function check-field-access is quite tedious
because it has to handle static and dynamic fields and involves some details about the store.

check-field-access Γ accC statDeclC fn stat a s ≡
let oref = if stat then Stat statDeclC else Heap (the-Addr a);

dynC = case oref of
Heap a ⇒ obj-class (the (globs (store s) oref))
| Stat C ⇒ C ;

f = (the (table-of (fields Γ dynC) (fn,statDeclC)))
in abupd

(error-if (¬Γ`Field fn (statDeclC ,f) in dynC dyn-accessible-from accC)
AccessViolation)

s

First we obtain the object reference oref. Depending on the flag stat, the field we want to access
can be either a static field of class statDeclC or an instance field of an object. Object references
in our formalisation generalise these two cases in a new datatype with the constructors Stat
or Heap. For static fields, which are stored once per class, the reference is just the class name
statDeclC itself. For object fields we look up the reference in the heap at address a. Next we
calculate the dynamic class dynC of the reference, which is stored in the heap for instance
fields, and the class statDeclC itself for static fields. Then we look up the field f with the
extended name (fn,statDeclC) in the field map of the dynamic class dynC. We have to extend
the field name with the static declaration class of the field, since fields may be overloaded in
Java. The final step is to check whether the access to the field is valid or not and to cause
the evaluation error AccessViolation if dynamic accessibility is violated. The function error-if
performs the test and abupd updates the state according to the outcome of the test.
If we want to prove that no errors can occur, we have to show that the
predicate Γ`Field fn (statDeclC ,f) in dynC dyn-accessible-from accC holds at runtime. We
can assume that the type system has already checked the static accessibility condition:
Γ`Field fn (statDeclC ,f) of statC accessible-from accC . We have to prove that we can switch
from class statC to class dynC and from static to dynamic accessibility. If we refer to the
definitions of static and dynamic accessibility we have to ensure that the field we want to access
is still defined in the dynamic class and that access is permitted. Both can be guaranteed if
we can rely on the fact that the dynamic class dynC is a subclass of (or the same class as)
statC : Γ`dynC �C statC. This is implied by type safety.
For method accesses the basic ideas and lines of reasoning are the same, but here we must also
deal with dynamic binding and therefore with overriding. The basic corner-stone of the proof is
again type safety. Additionally we need a lot of case distinctions for interface methods, instance
methods, static methods etc. and have to relate static overriding with dynamic overriding.
Therefore we omit the technical details of this proof.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 17

5.3. Derived Runtime Properties

As we know now that dynamic accessibility is guaranteed during execution of wellformed
programs, we can look at some derived, more concise properties we can rely on at runtime.

Lemma: [[Γ ` m in C dyn-accessible-from accC ; accmodi m = Private]]
=⇒ accC = declclass m

A Private member can only be accessed from its declaration class. This is a simple conclusion
from the definition of permits-acc-from. Since overriding cannot occur for Private members, we
do not need any further static wellformedness conditions here.

Lemma: [[Γ ` m in C dyn-accessible-from accC ; accmodi m = Package;
wf-prog Γ]] =⇒ pid accC = pid (declclass m)

A Package member can only be accessed from inside the package. This obviously is a desirable
property. For fields it is a simple conclusion from the definition of permits-acc-from. For methods
it is rather involved, since we have to deal with dynamic overriding. As mentioned before,
dynamic overriding does not ensure that the access modifier of the overriding method is at least
as liberal as the modifier of the overridden method. By this we can override a Public method
with a Package method and violate the lemma. But for wellformed programs (wf-prog Γ) we
know that static overriding is only allowed if the modifier is at least as liberal. From a detailed
analysis of the similarities and connections between static and dynamic overriding we can show
that the restrictions for static overriding suffice to prove the lemma.
Unfortunately the JVM does not ensure these restrictions for static overriding, neither during
bytecode verification nor via a runtime test. Therefore the bytecode verifier accepts programs
that are not necessarily wellformed in this sense and the JVM executes them. In hand-written
bytecode it is possible to call a Package method that overrides a Public method from outside
of the package without an error. Consider the following example:

package P;
public class A {

public void foo(){}
}

package P;
import Q.B;
public class C {
public void callfoo() {
B b = new B();
b.foo(); // JVM will call
// B.foo() without complaining.

}
}

package Q;
import P.A;
public class B extends A {

void foo(){} // not wellformed
// static overriding

}

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

18 N. SCHIRMER

In class B we override the Public method A.foo() with the Package method B.foo(). A
proper Java compiler will reject this program as not wellformed. But by subsequent separate
compilation and modification of the Java classes we can cheat the compiler and get the
corresponding class files out of it. The JVM will not complain about anything and so evaluation
of C.callfoo() will access B.foo() from outside of its package. Neither the bytecode verifier
nor a runtime check will signal an error.
The following lemma captures a property for Protected members.

Lemma: [[Γ ` f in C dyn-accessible-from accC ; accmodi f = Protected ;
is-field f ; ¬ is-static f ; pid (declclass f) 6= pid accC]]
=⇒ Γ ` C�C accC

Outside of the package a Protected instance field can only be accessed from a superclass. This
is also a rather simple conclusion from the definition of permits-acc-from. Unfortunately this
lemma cannot be extended to methods due to overriding. Consider the following example:

package P;
public class A {

protected void foo(){}
}

package P;
import Q.B;
public class C {
public void callfoo(A b) {
b.foo();

}
public void do() {
B b = new B();
callfoo(b);

}
}

package Q;
import P.A;
public class B extends A {

protected void foo(){}
}

If we invoke C.callfoo(b) with an object b of class B, like in method C.do(), class C will
actually access the Protected method B.foo() of a different package without being a superclass
of B. This problem can be avoided if we would force the modifier of B.foo() to be public
instead of just protected.

6. Conclusion

In this article we clarified the semantics of Java access modifiers and packages by formalising
them in the theorem prover Isabelle/HOL and proving some key properties. Our model reflects
the subtle interaction between inheritance, overriding, and accessibility in Java. The Java

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

ANALYSING THE JAVA PACKAGE/ACCESS CONCEPTS IN ISABELLE/HOL 19

formalisation [8] was mature enough to let us add and analyse access modifiers. This shows
that it is feasible to formally investigate aspects of a realistic programming language in a
theorem prover. Although Java technology is now available for almost eight years, oversights
and lack of clarity still exist in the language specification. Even in its second edition some
aspects of the semantics remained unclear and ambiguous. Therefore different implementations
of overriding at the compiler and JVM level have arisen. Also various Java compilers disagree
on whether or not to support the Overriding rule. This causes portability problems among
different implementations, which is unsuitable for a language like Java where portability is a
major design goal. Most of the sophisticated rules introduced in this article became apparent
only during theorem proving. Initially, using simpler rules, we failed to prove some expected
properties. The use of proof assistants therefore help in the design of a clear and unambiguous
programming language semantics. Working with a proof assistant forces the user to be precise
and unambiguous. Otherwise it becomes infeasible or impossible to prove even some basic
properties. During theorem proving, problems that have been overlooked become apparent,
particularly for large specifications like the JLS.
From a language design point of view, this work indicates a general problem of object-oriented
languages that combine subtyping, module based encapsulation, and inheritance, using the
concept of classes. The tension between hiding information behind module boundaries and
inheriting members over them causes a lot of trouble. The problems with the protected
modifier make this sufficiently clear. Therefore an approach which keeps the concepts of
subtyping, modules, classes, and inheritance apart [2] can avoid such tedious complications.

ACKNOWLEDGEMENTS

I am grateful to Gilad Bracha, Farhad Metha, Gerwin Klein, Tobias Nipkow, Martin Strecker, Martin
Wildmoser and the anonymous referees for comments on the draft versions of this article.

REFERENCES

1. Sophia Drossopoulou and Susan Eisenbach. Describing the Semantics of Java and Proving Type
Soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1532 of LNCS, pages
41–82. Springer, 1999.

2. Kathleen Fisher and John H. Reppy. The design of a class mechanism for moby. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 37–49, 1999.

3. James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java Language Specification, Second
Edition. Addison Wesley, 2000.

4. Marieke Huisman. Java program verification in higher order logic with PVS and Isabelle. PhD thesis,
University of Nijmegen, 2000.

5. Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Security and dynamic class loading in Java: A
formalisation. In IEEE International Conference on Computer Languages, pages 4–15, Chicago, Illinois,
1998.

6. Peter Müller and Arnd Poetzsch-Heffter. Kapselung und Methodenbindung: Javas Designprobleme und
ihre Korrektur. In C. H. Cap, editor, JIT ’98 Java-Informations-Tage 1998, Informatik Aktuell. Springer,
1998.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

20 N. SCHIRMER

7. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer, 2002. LNCS 2283.

8. David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. PhD
thesis, Technische Universität München, 2001.

9. Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, 2001.

10. SUN. Java Developer Connection. Available from http://java.sun.com/jdc.
11. Don Syme. Proving Java Type Soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of

Java, volume 1532 of LNCS, pages 83–118. Springer, 1999.
12. Verificard at Munich. Available from http://isabelle.in.tum.de/verificard.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 0:1–10
Prepared using cpeauth.cls

http://java.sun.com/jdc
http://isabelle.in.tum.de/verificard

	Preliminary Notes on Isabelle
	Basic Definitions
	Accessibility of Types
	Accessibility of Members
	Overriding
	Method Lookup

	Runtime Properties
	Dynamic Accessibility of Members
	Main Runtime Theorem
	Derived Runtime Properties

	Conclusion

