Excercise 1: (Probability once again)

Show that for a random, r-wise independent, uniform hash function h with n-many hash addresses, r distinct values $y_{1}, y_{2}, \ldots, y_{r}$ and r distinct values $x_{1}, x_{2}, \ldots, x_{r}$ holds:

$$
\operatorname{Prob}\left(h\left(x_{1}\right)=y_{1} \wedge \cdots \wedge h\left(x_{r}\right)=y_{r}\right)=\frac{1}{(n)^{r}} .
$$

Excercise 2: (Algebra)
(3 points)
Show: For r distinct values $y_{1}, y_{2}, \ldots, y_{r}$ and r distinct values $x_{1}, x_{2}, \ldots, x_{r}$ it holds: There exists at most 1 function f with the following property:

$$
f(x)=\sum_{i=0}^{r-1} \beta_{i} x^{i} \quad \text { s.t. } \forall i: f\left(x_{i}\right)=y_{i}
$$

Hint: Use the "Van der Waerden" Theorem from the lecture.

If we don't reach Ranade Routing in the lecture on $01 / 23 / 04$ then the next two exercises are postponed by one week.

Excercise 3: (Ranade Routing)

(3 points)
Remember from the lecture that the probability that a packet is delayed by Δ steps is at most $\Delta n^{4}\left(\frac{2^{9} C e}{\Delta}\right)^{\frac{\Delta}{2}}$. Show that this probability gets extremely small for $C \leq \frac{\log n}{2}$ and $\Delta=\frac{2^{10} e \log n}{\log \left(\frac{\log n}{C}\right)}$.

Excercise 4: (Ranade Routing)
(5 points)
In the lecture we used very big constant factors in Δ. Show how to dramatically reduce these constants for a queue size $Q \geq 6$.
Hint: Try to replace the 2^{10} term with something really small (≤ 10).

