Excercise 1: (Probability)

1. Prove that for two predicates a and a with $a \Longrightarrow b$ holds:

$$
p(b) \geq p(a)
$$

2. Let A and B be events. Show:

$$
A \subset B \text { implies } p(A) \leq p(B)
$$

3. Let for $i \in\{0, \ldots, n-1\}\left(\Omega_{i}, p r_{i}\right)$ be n discrete probability spaces. Let $(\Omega, p r)$ be defined as $\Omega=\Omega_{0} \times \ldots \times \Omega_{n-1}$ and for $\omega_{i} \in \Omega_{i}: \operatorname{pr}\left(\omega_{0}, \ldots, \omega_{n-1}\right)=p r_{0}\left(\omega_{0}\right) \cdot \ldots \cdot p r_{n-1}\left(\omega_{n-1}\right)$. Show that for $A_{i} \subseteq \Omega_{i}$ it holds: $\operatorname{pr}\left(A_{0} \times \ldots \times A_{n-1}\right)=\operatorname{pr}_{0}\left(A_{0}\right) \cdot \ldots \cdot p r_{n-1}\left(A_{n-1}\right)$.

Excercise 2: (Random Number Generators)

Prove that there cannot exist a DLX program ${ }^{1}$ that outputs random bit strings.

Excercise 3: (Butterfly Networks)

Prove: In a r dimensional butterfly network $B(r)$ there exists exactly one path from an input i to output j which has length r.

Excercise 4: (Probability II)
($2+1$ points)
Let Ω^{n} be the n-times cross product of Ω. Let for $A_{i} \subseteq \Omega A_{i}^{\prime}$ be defined as $A_{i}^{\prime}=\Omega^{i} \times A_{i} \times \Omega^{n-i-1}$.

1. Show that the A_{i}^{\prime} are mutually independant.
2. Where exactly was the property from part 1 . used in the proof of lemma 2 ?
[^0]
[^0]: ${ }^{1}$ We don't treat hardware number generators which are actually possible, e.g. circuits exploiting quantum physical effects.

