

Excercise 1: (Probability)

1. Prove that for two predicates a and a with $a \implies b$ holds:

 $p(b) \ge p(a)$

2. Let A and B be events. Show:

 $A \subset B$ implies $p(A) \leq p(B)$

3. Let for $i \in \{0, \ldots, n-1\}$ (Ω_i, pr_i) be *n* discrete probability spaces. Let (Ω, pr) be defined as $\Omega = \Omega_0 \times \ldots \times \Omega_{n-1}$ and for $\omega_i \in \Omega_i$: $pr(\omega_0, \ldots, \omega_{n-1}) = pr_0(\omega_0) \cdot \ldots \cdot pr_{n-1}(\omega_{n-1})$. Show that for $A_i \subseteq \Omega_i$ it holds: $pr(A_0 \times \ldots \times A_{n-1}) = pr_0(A_0) \cdot \ldots \cdot pr_{n-1}(A_{n-1})$.

Excercise 2: (Random Number Generators) (2 points) Prove that there cannot exist a DLX program¹ that outputs random bit strings.

Excercise 3: (Butterfly Networks) (3 points) Prove: In a r dimensional butterfly network B(r) there exists exactly one path from an input i to output j which has length r.

Excercise 4: (Probability II) (2 + 1 points) Let Ω^n be the *n*-times cross product of Ω . Let for $A_i \subseteq \Omega A'_i$ be defined as $A'_i = \Omega^i \times A_i \times \Omega^{n-i-1}$.

- 1. Show that the A'_i are mutually independent.
- 2. Where exactly was the property from part 1. used in the proof of lemma 2?

 $^{^{1}}$ We don't treat hardware number generators which are actually possible, e.g. circuits exploiting quantum physical effects.