

Computer Architecture III - WS 03 (due: 12/12/2003)

Excercise 1: (Lower bound proof using Kolmogorov complexity) (4 + 2 points) Let  $\omega = \omega_L \omega_R$  with  $|\omega_L| = |\omega_R| = \frac{n}{2}$ . We want to test  $\omega_L = \omega_R$  on a parallel machine whose n + 1 processors are connected like a tree.  $\omega_L$  is input on the left subtree,  $\omega_R$  on the right subtree connected with the root. We assume that all processors run the same program. Show:

- 1. for some constant c > 0 at least  $c \cdot n$  steps are necessary to determine wether  $\omega_L = \omega_R$ .
- 2. Assume every processor  $P_i$  runs a different program  $u_i$ . Where does the proof of part 1) collapse?

**Excercise 2:** (Relative Kolmogorov complexity) (2 + 2 + 2 points)We define the Kolmogorov complexity of x given y as the length of the shortest description of x given y as auxiliary data:

 $K(x|y) = min\{|u'v| : M_u \text{ started with } v \# y \text{ prints } x \text{ and halts}\}$ 

Let |u| = n. Show:

- 1.  $K(\bar{u}|u) = O(1),$
- 2.  $K(u|v) \leq K(u|y) + K(y|v) + O(logn),$
- 3. there exists u such that  $K(u|v) \ge n$ .

Excercise 3: (Kolmogorov complexity of random bit vectors) (3 points) Let  $x = \{0, 1\}^n$  be a *n*-bit bitvector where all bits are randomly choosen using an uniform distribution. Proof that

$$p(K(x) \ge n - c) = 1 - 2^c.$$

**Excercise 4: (Probability)** (1 point) Let A and B be events. Show that  $p(A \cup B) = p(A) + p(B) - p(A \cap B)$ .