Excercise 1: (Marriage Theorem)

(4 points)
In the lecture we proved that the premise of the marriage theorem $\left(\forall V \subset V_{1}: \# V \leq \# E(V)\right)$ is sufficient to proof the marriage theorem. Proof or disprove that it is also neccessary, i.e. that the theorem is wrong without this premise.

Excercise 2: (Probability)
($2+1$ points)
Let ($\Omega_{1}, p r_{1}$) and ($\Omega_{2}, p r_{2}$) be two discrete probability spaces. Let ($\Omega, p r$) be defined as $\Omega=\Omega_{1} \times \Omega_{2}$ and (for $\omega_{1} \in \Omega_{1}$ and $\left.\omega_{2} \in \Omega_{2}\right) p r\left(\omega_{1}, \omega_{2}\right)=p r_{1}\left(\omega_{1}\right) \cdot p r_{2}\left(\omega_{2}\right)$.

- Show that for events $A \subset \Omega_{1}, B \subset \Omega_{2}$ and $A^{\prime}=A \times \Omega_{2}, B^{\prime}=\Omega_{1} \times B$ it holds that A^{\prime} and B^{\prime} are independent.
- Proof that $\operatorname{pr}(A \times B)=p r_{1}(A) \cdot p r_{2}(B)$.

Excercise 3: (Binomial Coefficients)
Proof the following Lemma:

$$
0<y<x \Longrightarrow\binom{x}{y}<\left(\frac{x \cdot e}{y}\right)^{y}
$$

Hint: In your proof you can assume that $n!\geq e \cdot\left(\frac{n}{e}\right)^{n}$.

