Excercise 1: (Fault tolerance of permutation networks)

1. Suppose in a permutation network as constructed in the lecture one switch gets stuck in the position forward or cross. Show that the resulting network is still a permutation network.
2. Fix the position of as many switches as possible in a $P(n)$ permutation network such that the resulting network is still a permutation network. How many switches can you fix? Why?

Excercise 2: (Routing algorithm for permutation networks)
(3 points)
Route the permutation ($1,3,6,0,2,5,7,4$) on the permutation network presented in the lecture using the routing algoritm presented in the lecture.

Excercise 3: (Binary comma)

1. Make a definition of u^{\prime} such that

$$
\left|u^{\prime}\right|=|u|+\log |u|+O(\log \log |u|) .
$$

2. How short can you makle u^{\prime} ? Why?
