
Universität des Saarlandes
FR 6.2 - Informatik

Prof. Dr. W.J. Paul

Dipl.-Ing. Christoph Baumann

Exercise Sheet 7
Computer Architecture II

(Due: Dec 10th, 2013)

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Exercise 1: (Significand Normalization Shifter) (10 Points)

Figure 1 depicts the implementation of the significand normalization shifter in the FPU rounding
unit. The significand f ′ = fr/2 > 0 is put in a cyclical left shifter with shift amount 〈sh[5 : 0]〉
where σ = [sh[12 : 0]] ≤ 56 is the desired left shift distance. Additionally masks v, w ∈ B64 are
computed and anded to the shifter output fs to obtain the normalized significand. In the analysis
of the Mask circuit we already derived that v = u and ∀i ∈ [0 : 63]. wi = ui ∧ sh[12] with:

u[0 : 63] =

064−σ1σ : 0 ≤ σ
1|σ|064−|σ| : −63 ≤ σ ≤ −1

164 : σ < −63

Let fn = 〈fn[0].fn[1 : 127]〉. To be proven:

fn =p 2σ · f ′

and(64) and(64)

fn[0:63] fn[64:127]

sh[5:0]fr[−1:55] 0 sh[12:0]

fs[0:63] w[0:63]

CLS(64) MASK

v[0:63]

7

Figure 1: Significand Normalization Shifter

Exercise 2: (Improved Exponent Normalization Shifter) (6+2 Points)

Figure 2 shows the exponent normalization shifter from the FPU rounding unit. One could speed
up this circuit by getting rid of the 3/2 Adder. This is done by combining two of the inputs.

a) Show how this can be achieved and that your construction works.

b) How does this modification affect the overall cost and delay of the circuit ExpNorm?

1 / 2

60

01
UNFen
TINY

OVF1

OVFen
01

01

bias−a+1 bias+1

11 10

bias+a+1

0303

1111

dbr

er[10:0] lz[5:0]

15

1

3/2add(11)

add2(11)

10

10

eni[10:0] en[10:0]

TINY

UNFen

10

emin+1 emin

δ

Figure 2: Exponent Normalization Shifter

Exercise 3: (Fast and Cheap Incrementers) (3+3+3+8+5 Points)

In the significand rounder we need a large (53-bit) incrementer. An n-bit incrementer is a circuit
with inputs a ∈ Bn, inc ∈ B and outputs s ∈ Bn, c ∈ B such that the property

〈c s[n− 1 : 0]〉 = 〈a[n− 1 : 0]〉+ inc

holds. A fast incrementer with logarithmic delay and linear-logarithmic cost can be implemented
in a way similar to the Conditional Sum Adder.

a) Construct an n-bit Conditional Sum Incrementer for n = 2k!

b) Prove the correctness of your construction!

c) How would you optimize your construction for n 6= 2k?

d) Give the exact cost and delay of your Incrementer for n = 2k in non-recursive formulas! Prove
their correctness!

e) Consider a Carry Lookahead implementation of an incrementer! How does it compare to the
Conditional Sum Incrementer concerning cost and delay?

2 / 2

