Exercise Sheet 3 Computer Architecture II (Due: Nov 12th, 2013)

Note: If you want to take the exam you have to register in HISPOS until Nov 17th!

Exercise 1: (Representable Numbers)

Using IEEE floating-point numbers only a finite subset \mathcal{R} of the real numbers can be represented. With respect to some precision α , all numbers not being representable are associated with corresponding α -representatives. In order to obtain the floating-point representation these representatives are converted into a factoring, normalized and rounded according to one of the four IEEE rounding modes.

- a) Determine the binary fractional representation for $\left[\frac{1}{3}\right]_{\alpha}$! Distinguish the cases of even and odd α !
- b) Find the IEEE floating-point representation (s, e[n-1:0], f'[1:p-1]) such that:

$$\llbracket s, e, f' \rrbracket = r_{ne} \left(\frac{1}{3}\right)$$

Consider both single and double precision! Are the numbers even or odd?

Exercise 2: (Properties of α -Equivalence) (3+3+2+6 Points) Let $x, x' \in \mathbb{R}$ and $\alpha, q \in \mathbb{Z}$. Assume $x =_{\alpha} x'$ and prove the following Lemmas:

- a) $-x =_{\alpha} -x'$ and $[-x]_{\alpha} = -[x]_{\alpha}$ (Mirroring)
- b) $2^e \cdot x =_{\alpha e} 2^e \cdot x'$ and $[2^e \cdot x]_{\alpha e} = 2^e \cdot [x]_{\alpha}$ (Scaling)
- c) Let $y = q \cdot 2^{-\alpha}$ then $x + y =_{\alpha} x' + y$ (Translation)
- d) Let $\beta < \alpha$ then $x =_{\beta} x'$ (Refinement)

Exercise 3: (Rounding with Unlimited Exponent Range) (4+2+4 Points)Let $x \in \mathbb{R} \setminus \{0\}$, $\hat{\eta}(x) = (s, \hat{e}, \hat{f})$, and $\hat{r} : \mathbb{R} \to \hat{\mathcal{R}}$ be an IEEE rounding mode for rounding with unlimited exponent range. Prove that:

a)
$$\hat{r}(x) = \hat{r}([x]_{p-\hat{e}})$$

b) If
$$x =_{p-\hat{e}} x'$$
 then $\hat{r}(x) = \hat{r}(x')$

c)
$$\hat{\eta}([x]_{p-\hat{e}}) = (s, \hat{e}, [\hat{f}]_p)$$

(3+5 Points)

Exercise 4: (Significand Rounding)

(4+4 Points)

Assume a real number x with an IEEE-normal factoring (s, e, f) such that $s = 1, f \in [1, 2)$ and $x = [\![s, e, f]\!]$. Let $x_1 = [\![s, e, f_1]\!]$ with $f_1 = sigrd_u(s, f)$. Show for

- a) $|x| \leq X_{max}$
- b) $|x| > X_{max}$

that the significand rounding works correctly:

$$x_{1} = \begin{cases} r(x) & : & |x| \le X_{max} \\ \hat{r}(x) & : & |x| > X_{max} \end{cases}$$