
Known Errata in ‘Silvia M. Mueller and Wolfgang J. Paul.

Computer Architecture: Complexity and Correctness.

Springer, 2000’

Maintained by Mark Hillebrand (mah at cs dot uni-sb dot de)

Date: 2009-07-21 21:39:34 +0200 (Tue, 21 Jul 2009)

1. Reported by Jörg Fischer, Saarland University
Page 8, Table 2.1: the delay of AND, OR is 2.

2. Reported by Jörg Fischer, Saarland University
Page 22: the brackets 〈·〉 are missing in the equation chain z =

3. Reported by Ulan Degenbaev, Saarland University
Page 26: In Figure 2.15, the signal s0[n : m] should include the topmost 0, otherwise the bit widths
are not correct. Also, the formulae for the cost and delay of the conditional sum incrementer should
refer to Cinc(·) and Dinc(·) instead of CCCI(·) and DCCI(·).

4. Reported by Mark Hillebrand, Saarland University
Page 29: in the equation for (Gi, Pi) the indices for the generate and propagate signals are swapped,
it should read

(Gi, Pi) = (gi, pi) ◦ · · · ◦ (g0, p0) = (g0,i, p0,i) = (ci, p0,i)

5. Reported by Mark Hillebrand, Saarland University
Page 29: the optimization for the g output at the bottom of the page is wrong, the derivation
should read g = g2 ∨ g1 ∧ p2 = g2 ∧ g1 ∧ p2. Cost and delay are not affected since Cnor = Cnand

and Dnor = Dnand.

6. Reported by Dirk Leinenbach, Saarland University
Page 31: at the end of first paragraph it should be sn−1 = pn−1⊕cn−2 instead of sn−1 = pn−1⊕cn−1.

7. Reported by Dirk Leinenbach, Saarland University
Page 33: indices in Figure 2.24 are wrong. It should be rn−i and rn−i−1 instead of ri and ri−1.

8. Reported by Warren E. Ferguson, Intel
Page 44: since 〈a〉 ∈ {0, . . . , 2n − 1} and B2j ∈ {−2, . . . , 2}, it holds

C2j ∈ {−2n+1 + 2, . . . , 2n+1 − 2},

D2j ∈ {0, . . . , 2n+1 − 2}.

Since D2j has an (n + 1)–bit representation d2j (which was not the case for the faulty range
D2j ∈ {0, . . . , 2n+1}), this does not affect the further arguments.

1

9. Reported by Jörg Fischer, Saarland University
Page 46: The definition of S′2j,2k must be

S′2j,2k :=
j+k−1∑
t=j

〈g2k〉 · 4t−1.

10. Reported by Jörg Fischer, Saarland University
Page 47, Lemma 2.7, induction base: · · · < 2n+6 · 22j−2 =

Induction step: the right bracket 〉 is in the wrong place.

11. Reported by Jochen Preiss, Saarland University
Page 47, Lemma 2.7: the second line of the inequality chain must be

· · · < 2n+2j+2k + 2n+5 · 22j+2k−4.

12. Reported by Christian Holler, Saarland University
Page 50, second last paragraph: Out = {0, 1}2 should Out = {0, 1}3, as in the caption of Fig-
ure 2.39.

13. Reported by Christian Holler, Saarland University
Page 51, beginning of Section 2.6.3: ‘outj ∈ Out’ should just be ‘outj for 0 ≤ j < γ’, i.e., one of
the output signals.

14. Reported by Mark Hillebrand, Saarland University
Page 60: in the formula for the accumulated delay A(O(i)) of the output circuit O(i) the data path
circuits should be indexed by j − 1, i.e.,

AO(i) = DO(1) +
i∑

j=2

(DDP (j−1) +DO(j)) .

15. Reported by Jochen Preiss, Saarland University
Page 67, line 1: replace beqz by sgri.

16. Reported by Mark Hillebrand, Saarland University
Page 90, Figure 3.20: the label of the sucessor state of jalR and jalI should be changed from wbI
to wbL.

17. Reported by Mark Hillebrand, Saarland University
Page 94, Table 3.12:

• In the decode state, the output signal Pce should read as PCce.

• In the decode state, the signal shiftI should only be activated conditionally depending on the
instruction word. This would make the automaton a Mealy automaton. To avoid this, the
condition shiftI(IR) can be computed in the locally in the instruction register environment.

18. Reported by Richard Pfeifer, Saarland University
Page 110f., Theorem 4.1: using the induction hypothesis for i − 2 in the induction step is not

2

well-founded. Instead, if bjtakeni = 1, the proof of PC ′i = PCi+1 can be changed as follows:

PC ′i = PC ′i−1 + immi (because bjtakeni = 1)
= PCi + immi (by the induction hypothesisPC ′i−1 = PCi)
= PCi−1 + 4 + immi (becausebjtakeni−1 = 0)
= btargeti

= PCi+1 (because bjtakeni = 1)

19. Reported by Richard Pfeifer, Saarland University
Page 148f., Section 4.4.3: in the first three displayed formulas in this section it should read

Iπ(1, T) = i instead of Iπ(k, T) = 1 ,
Iπ(1 + α, T) = i− α instead of Iπ(1 + αT) = i− α , and
Iσ(1 + α, T ′) = i− α instead of Iσ(1 + αT ′) = i− α .

20. Reported by Richard Pfeifer, Saarland University
Page 149, Lemma 4.9: the hypothesis for this lemma should read ‘Suppose the hypothesis of
Theorem 4.7 holds’.

21. Reported by Mark Hillebrand, Saarland University
Page 132, Duration of Reset: the reset signal must be active long enough to permit an instruction
memory access and the deactivation of reset must coincide with an acknowledgment of the in-
struction memory (otherwise an already updated PC ′ = 4 might be used for the initial instruction
fetch).

22. Reported by Philipp Ritter, Saarland University
Typo: on Page 301 in Figure 6.23 the input signal DMRw should read as MDRw[31 : 0], as in
the text

23. Reported by Dirk Leinenbach, Saarland University
Page 322, property 3 of representable numbers: (−2−emin , 0] must be (−2emin , 0]

24. Reported by Christoph Berg, Saarland University
Page 323, 4th paragraph: e = [[e[n− 1]]]bias must be e = [[e[n− 1 : 0]]]bias

25. Reported by Dirk Leinenbach, Saarland University
Page 329, end of last line of proof of Lemma 7.1: it should be = r(x′) instead of = r′(x).

26. Reported by Chris Jacobi, Saarland University
In the unpack-circuit (page 355), sub-circuits lzero(53) and CLS(53) are used, even though these
circuits were only designed for powers of two in Chapter 2.

One can derive lzero(53) from lzero(64) by padding the input with 1’s, since lz(x) = lz(x 1k).

The cyclic shifter CLS(53) in the unpack-circuits can be replaced by a logic right shifter LRS(53).
It is easy to design logic right shifters for non-power-of-two inputs.

27. Reported by Chris Jacobi, Saarland University
Page 383. In the circuit Sign/ExpMD, a carry-in is fed into the 4/2-adder, although 4/2-adders do
not feature a carry-in. To fix this, add a 3/2-adder(7) which adds lza, lzb (or the inverse) and a
constant 1. The output of the new 3/2-adder is sign-extended and fed into the 4/2 adder, instead
of the inputs lza and lzb.

3

28. Reported by Chris Jacobi, Saarland University
Page 392, 5th item: the input factoring shall not satisfy fr[−1 : 0] = 00⇒ OV F = 0, but

fr[−1 : 0] = 00⇒ e ≤ emax.

Otherwise, the correctness argument for the OVF1-computation in circuit Flags is wrong (e.g.
er = emax + 1, fr = 0.5, i.e. fr[−1 : 0] = 00; no overflow occurs, although OVF1 is asserted).

The new condition for the input factoring is satisfied

• by the adder, since the delivered exponent is the maximum of the input exponents, and hence
er ≤ emax.

• by the multiplier, since it delivers fr < 1 only if one the the operands is denormal, and hence
the sum if the input exponents er ≤ emax.

29. Reported by Chris Jacobi, Saarland University
In circuits ExpNorm (page 400), a carry-in is fed into the compound-adder, although compound
adders do not feature a carry-in (cf. Chapter 2). To fix this, incorporate the constant increment
by 1 into the constant in the 3/2-adder.

30. Reported by Chris Jacobi, Saarland University
Page 407: the circuit for the rounding decision (Figure 8.34) does not conform with Table 8.5 (e.g.,
s = 0, r = st = 1, mode ru). Replace the XOR gate by an XNOR gate.

4

