
Universität des Saarlandes
FR 6.2 - Informatik

Prof. Dr. W.J. Paul
Dipl.-Ing. Christoph Baumann

Exercise Sheet 5
Computer Architecture II

(Due: Nov 29th, 2011)

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Exercise 1: (Fast ∨-Tree) (3+3+3 Points)

For the Implementation of the sticky bit computation we need an ∨-tree which is a balanced binary
tree of OR gates. The exact delay of the circuit can be reduced by using the inverted gates NOR
(∨) and NAND (∧). Their semantics is given in the tables below.

x1 x2 x1 ∨x2

0 0 1
0 1 0
1 0 0
1 1 0

x1 x2 x1 ∧x2

0 0 1
0 1 1
1 0 1
1 1 0

Obviously the following properties hold:

x1 ∨x2 = x1 ∨ x2 x1 ∧x2 = x1 ∧ x2

The delay of NAND and NOR gates is considered to be 1 in our delay model, compared to 2 for
regular AND and OR gates. The cost for each of these gates is 2.

a) Construct an ∨-tree with inputs a ∈ Bn for n = 2k, output b ∈ B and the specification:

b =
n−1∨
i=0

a[i]

The circuit should have the following delay: D(n) =

{
log n : k even
log n+ 1 : k odd

b) Prove the correctness of your implementation!

c) Show that your construction has the correct delay!

Note: We are using the following notation for a disjunction of n ∈ N boolean terms xi:

n−1∨
i=0

xi ≡ xn−1 ∨ . . . ∨ x0

Exercise 2: (Logical Right Shifter for Arbitrary Numbers) (5+5 Points)

In the unpacker we need a logical right shifter for numbers which are not a power of two. Let
n ∈ N be such a number, i.e. ∀k. n 6= 2k and m = dlog ne. Construct a circuit with inputs x ∈ Bn,
b ∈ Bm such that 0 ≤ 〈b[m− 1 : 0]〉 ≤ n and outputs y ∈ Bn specified by the following formula!

y[n− 1 : 0] = 0〈b〉x[n− 1 : 〈b〉]

Prove the correctness of your implementation!

1 / 2



126

neg
adder (117)

zero(117)

3/2 adder(116)

01

029 029

129
Eb[0:114]

11
13

1

beta
r[−1:54]

fd[55]fd[27:54]fd[−1:25] fd[26]

db

01 db

sfb[25:111]

56Da[0:57] 0 Db[0:57]

0

E[26:54]E[0:25]

inc(55)

0
56

E’[−1:54]

db

127 28

1 0

1 0 db

Figure 1: The FDselect circuit selecting the correct significand for the quotient in the Multi-
ply/Divide unit (taken from Computer Architecture, S. M. Müller, W. J. Paul, Springer 2000)

Exercise 3: (Table Size vs. Number of Iterations) (6 Points)

In the lecture we designed the multiply/divide unit from the book which performs a division based
on the Newton-Raphson method. The iteration starts out with an initial approximation x0 which
is obtained from a 2γ × γ lookup table. The intermediate results are truncated after σ = 57 bits.
The number i of iterations necessary to reach p + 2 bits of precision (i.e. δi < 2−(p+2)) is then
bounded by

i =


1 : (p = 24) ∧ (γ = 16)
2 : (p = 24) ∧ (γ = 8) ∨ (p = 53) ∧ (γ = 16)
3 : (p = 24) ∧ (γ = 5) ∨ (p = 53) ∧ (γ = 8)

Prove that the number of iterations suffices to achieve the desired precision!

Exercise 4: (Optimized FDselect Circuit) (5 Points)

Figure 1 shows the FDselect circuit of the Multiply/Divide Unit in our FPU. In the lecture we
discovered that E = bfa·xcp+1 can actually be represented with p+2 bits. This influences the length
of Eb, too. Additionally Da and Db just store pipelined copies of the unpacked and normalized
significands fa and fb. Consequently FDselect contains superfluous data lines and gates. Give
a short summary which circuitry can be omitted and construct a corresponding optimized version
of FDselect!

2 / 2


