Exercise 2: (Alignment Shift Limitation)

(10 Points) When adding two IEEE-normal floating-point numbers (s_a, e_a, f_a) and (s_b, e_b, f_b) , it is necessary to align the significands by multiplying the operand having the smaller exponent with $2^{-\delta}$, where we assume $\delta = e_a - e_b \ge 0$ wlog. This is called an *Alignment Shift*. We have shown in the lecture that it is enough to use the p + 1-representative $f' = [2^{-\delta} \cdot f_b]_{p+1}$ instead of $2^{-\delta} \cdot f_b$ in the computation. In particular we had:

$$S = 2^{e_a} \cdot ((-1)^{s_a} \cdot f_a + (-1)^{s_b} \cdot 2^{-\delta} \cdot f_b) =_{p-\hat{e}} 2^{e_a} \cdot ((-1)^{s_a} \cdot f_a + (-1)^{s_b} \cdot f')$$

Now imagine we used only the usual p-representative $f'' = [2^{-\delta} \cdot f_b]_p$ in the computation of the sum S'':

$$S'' = 2^{e_a} \cdot ((-1)^{s_a} \cdot f_a + (-1)^{s_b} \cdot f'')$$

In order to show that this does not suffice, find a counter-example and give values for s_a , s_b , f_a , f_b and δ such that

$$S =_{p-\hat{e}} S''$$

does not hold!

Hint: Compute the normalized representations $\hat{\eta}(S) = (s, \hat{e}, \hat{f})$ and $\hat{\eta}(S'') = (s, \hat{e}, \hat{f}'')$ to obtain $\hat{e}!$

Universität des Saarlandes FR 6.2 - Informatik Prof. Dr. W.J. Paul Dipl.-Ing. Christoph Baumann

Exercise 1: (Leading Zero Counter)

Let $n \in \mathbb{N}^+$, $x \in \mathbb{B}^n$ and $y \in \mathbb{B}^m$ with $m = \lceil \log_2(n+1) \rceil$. For a bit string x, we denote the number of leading zeros of x by lz(x). An n-bit leading zero counter (n-LZC) is a circuit with input x and output y satisfying:

Exercise Sheet 3

Computer Architecture II

(Due: Nov 15th, 2011)

$$\langle y \rangle = lz(x)$$

a) Give a recursive definition for
$$lz(x)$$
!

c) Prove the correctness of your construction!

b) Construct an *n*-LZC for an arbitrary n!

(5+7+8 Points)