
Chapter

6
Out-of-Order Execution

6.1 Introduction

�
N THE PREVIOUS SECTIONS, we presented various implementations of
pipelined RISC processors. These implementations strictly processed

the instructions in program order. However, the performance of these de-
signs drops as soon as long latency instructions such as memory accesses
are involved. For example, consider a load instruction with cache miss in
the memory stage. Thus, the stall signal of the stage is activated and the
instructions above the memory stage are stalled.

Furthermore, consider an ALU instruction that follows the load in the
execute stage:

EX: R3:=R1+R2
M: R4:=Mem[R5]

If there is no data dependency, the result of the ALU instruction is al-
ready known in the execute stage and could be written into the register file.
However, the in-order execution rule prohibits this and the ALU instruction
has to wait for the load.

Thus, dropping this rule can result in better performance. This technique
is called out-of-order execution. The most popular out-of-order execution



Chapter 6

OUT-OF-ORDER

EXECUTION

CDB

FU 1

FU 2

FU 3

Decode
IssueIF

�������� ��� � �������

ROBProducersReservation Register-
Stations File

� ��� �

Figure 6.1 Basic structure of a microprocessor with Tomasulo Scheduler and
reorder buffer

algorithms is the Tomasulo scheduling algorithm [Tom67]. It is one of the
most competitive scheduling algorithms and provides CPI rates down to
1.1 on a single-instruction issue machine [Ger98, Del98, MLD

�
99]. The

algorithm is widely used, e.g., by IBM PowerPC, Intel Pentium-Pro or
AMD K5 [Mot97, CS95]. The original Tomasulo scheduler uses out-of-
order termination and therefore does not support precise interrupts with-
out extra hardware. We support precise interrupts by adding a reorder
buffer[SP88]. The reorder buffer sorts the instructions in program order
before termination.

In this chapter, we describe the results of implementing and verifying a
DLX with Tomasulo scheduler, precise interrupts and floating point unit
using PVS. The designs, the scheduling protocols, and most proofs are
taken from [KMP99, Krö99].

6.2 The Tomasulo Algorithm with Reorder Buffer

Figure 6.1 depicts the basic structure of a microprocessor with Tomasulo
scheduler and reorder buffer. The execution begins with the instruction
fetch, as in the in-order machine. The Tomasulo scheduling algorithm
does not cover this phase; it is assumed that the instruction fetch is done in
program order. We will use the very same instruction fetch mechanism as
in the pipelined in-order machines described in the previous chapters.

242



Section 6.3

TOMASULO DATA

STRUCTURES

In the next stage, the instruction is decoded. This includes fetching the
operands if available. The instruction and the operands are then passed to
a reservation station (RS). This is called issue. The reservation stations
are the central data structure of the Tomasulo scheduling algorithm. The
reservation stations act as queue for the instructions and are between the
decode/issue stage and the functional units. Note that the instruction is
passed to the reservation station even if forwarding fails. This is in contrast
to the in-order machine, which stalls in this case.

As soon as all operands are available, the instruction is passed from the
reservation station to the functional unit. This is called dispatch. This
is done without obeying the program order of the instructions, i.e., the
instructions can overtake each other at this point. After the function unit
has finished the execution, the result of the instruction is passed to a special
register, called producer.

In case the producer holds an instruction, it requests a result bus, called
common data bus (CDB). As soon as the request is acknowledged, the re-
sult is put on this bus. This is called completion. In contrast to commerical
designs such as the IBM’s PowerPC, we support only one CDB. The bus
is used for two purposes: 1) The instruction is passed to the reservation
stations that wait for the result because of a data dependency, and 2) the
result is passed to the reorder buffer.

The reorder buffer re-sorts the instructions back in program order. The
benefit of this is that we can write the results into the register file in pro-
gram order (in-order termination). This allows precise interruptions of the
instruction stream.

In the following sections, we will describe the data structures and proto-
cols used to realize this in detail.

6.3 Tomasulo Data Structures

6.3.1 Reorder Buffer

The reorder buffer [SP88] is a ring-buffer that serves two purposes in a
machine with Tomasulo scheduler. The main purpose is to re-sort the in-
structions such that the instructions terminate in program order. For that
purpose, each reorder buffer entry provides space to store the result of an

243



Chapter 6

OUT-OF-ORDER

EXECUTION

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �
0

1

2

3

4

6

7

5

I2

I3

I4

I5

ROBhead

ROBtail

Figure 6.2 Illustration of the reorder buffer pointers

instruction. We support instructions that write multiple registers. This is
useful for supporting double precision floating point instructions.

Furthermore, each reorder buffer entry has a valid bit. The bit indicates
that the result of the instruction is in the reorder buffer entry. A reorder
buffer entry with active valid bit is called valid reorder buffer entry.

The second purpose of the reorder buffer is to provide means to assign
a tag to each instruction. The tag is assigned during instruction issue and
stays unique until the instruction terminates. The tag is the address of the
reorder buffer entry of the instruction. Let ϑ denote the number of tag (i.e.,
ROB address) bits. Thus, the reorder buffer has

Θ : � 2ϑ

entries. We denote the value of the ROB entry with address tag during
cycle T with ROB � tag � T .

The reorder buffer is accessed using to pointers, the head and tail point-
ers. These pointers are stored in ϑ-bit registers. We denote the value of
the head pointer during cycle T by ROBheadT , and the value of the tail
pointer by ROBtailT . Instructions are put in the ROB entry ROBtail points
to, and removed from the entry ROBhead points to. After an instruction is
put in the ROB, the ROBtail pointer is increased. After an instruction is
removed from the ROB, the ROBhead pointer is increased. The pointers
wrap-around if they reach the end of the ROB. This is illustrated in figure
6.2.

Let issue � T � denote that we issue an instruction during cycle T . This
allows defining the values of ROBtail recursively. We initialize the ROB

244



Section 6.3

TOMASULO DATA

STRUCTURES

pointers with zero. The ROBtail pointer is increased iff we issue an in-
struction.

ROBtailT : �
���� 0 : T � 0

ROBtailT � 1 � 1 : issue � T � 1 �
ROBtailT � 1 : otherwise

Note that the incrementation for the case issue � T � 1 � holds is a bitvec-
tor operation as described in chapter 2. Thus, the ROBtail pointer wraps
around.

In analogy to that, let writeback � T � denote that we terminate an instruc-
tion during cycle T . This allows defining the values of ROBhead recur-
sively.

ROBheadT : �
���� 0 : T � 0

ROBheadT � 1 � 1 : writeback � T � 1 �
ROBheadT � 1 : otherwise

As above, the incrementation for the case writeback � T � 1 � holds is a
bitvector operation as described in chapter 2. Thus, the ROBhead pointer
wraps around.

6.3.2 Register File Extentions

As before, the register file holds the values of the specification registers of
the machine. We still denote the set of registers by R (in PVS, we just
number the registers). We denote the value of the register r � R during
cycle T by R � r � T � data. We assume that all registers have a common width.
We denote the set of possible values of a register by W � R � .

The register file is extended with a producer table. The producer table
records which instruction in the machine writes a given register. For that
purpose, the producer table contains two data items for each register.

The first is a valid bit. We denote the value of the valid bit of register r
during cycle T with R � r � T � valid. If it is set, there is no instruction currently
executing with the register as destination. If it is not set, there is such an
instruction. In this case, the second item, a reorder buffer tag, points to the
last instruction with the register as destination. We denote the value of this
tag by R � r � T � tag.

245



Chapter 6

OUT-OF-ORDER

EXECUTION

6.3.3 Reservation Stations

The reservation stations act as queue for the instructions and their source
operands. We give each reservation station a number. We denote the values
in reservation station number rs during cycle T by RS � rs � T . Each reserva-
tion has a full bit RS � rs � � f ull. It indicates that the reservation station is in
use. In addition to that, we store the tag of the instruction in the reservation
station in RS � rs � � tag.

We support instructions with an arbitrary number of source operands.
Let x denote the number of a source operand. For each source operand,
we store a valid bit RS � rs � � op � x � � valid. If the bit is set, the value of the
operand is stored in RS � rs � � op � x � � data. If it is not set, we store the tag of
the instruction producing the value in RS � rs � � op � x � � tag.

6.3.4 Producers

The producers buffer the results from the function units until the CDB
is available. We have a separate producer for each function unit. Each
producer consists of a full bit, a tag, and the result. We denote these items
of producer f u by P � f u � � f ull, P � f u � � tag, and P � f u � � result.

6.3.5 Initial Configuration

We make the following assumptions about the initial values of those regis-
ters.

� The valid bits of the registers must be set in the initial configuration.
We do not make an assumption on the values of the registers or the
tags.

� The full bits of the reservation stations must not be set. We do not
make any assumptions about the other values in the reservation sta-
tions.

� The full bits of the producers must not be set. We do not make any
assumptions about the other values in the producers.

246



Section 6.4

TOMASULO

PROTOCOLS

It is important that we do not make to many assumptions on initial val-
ues, since realizing fixed initial values in hardware is expensive regarding
hardware cost. In particular, assuming initial values of a register usually
prohibits implementing the register as RAM. In particular, note that we do
not make any assumption about the initial values of the ROB entries.

6.4 Tomasulo Protocols

6.4.1 Formalization

In this section, we describe the protocols of the Tomasulo Scheduling al-
gorithm. These protocols form the transition function of a generic and
abstract microprocessor with Tomasulo scheduler. The configuration set
of this machine comprises of the reservation stations, the reorder buffer
including the pointers, the register files, the producers, and the producer
tables.

We denote the configuration of this machine during cycle T by cT
aI (ab-

stract implementation).

The transition function of the machine is denoted by δaI . It maps the
configuration of the machine during cycle T to the next configuration of
the machine during cycle T � 1. We will compose this function using
functional specifications of the Tomasulo protocols, which are issue, CDB
snooping, dispatch, completion, and writeback. We name the functions for
these protocols issue, snoop, dispatch, completion, and writeback. These
functions are called protocol functions.

δaI : � issue � snoop � dispatch � completion � writeback

Thus, the issue protocol has priority over CDB snooping and so on. This
is important if two protocols change the same register value in the same
cycle. The final value in the register is the value provided by the proto-
col with the higher priority. We omit the transition function for the ROB
pointers, since we already specified the values of those pointers above.

Notation We specify the protocols using a notation similar to the nota-
tion used in [KMP99]. The notation is also very similar to the notation

247



Chapter 6

OUT-OF-ORDER

EXECUTION

used in PVS. Consider the following example:

R � 4 � � data : � R � 3 � � data

This is a shorthand for R � 4 � T
�

1 � data � R � 3 � T � data.

As before, we consider a stream of instructions I0, I1, � � � . Each instruc-
tion has source and destination registers. By S � i � x � , we denote the number
of register that is the source operand x. By D � i � x � , we denote the number
of register that is the destination operand x.

By dest � i � r � , we denote the fact that instruction Ii has r as destination
register, i.e., that there is a x with D � i � x � � r.

Embedding Convention In a machine with Tomasulo Scheduler and re-
order buffer, there are different places where results are stored or propa-
gated before writing the results into the register file. These are the pro-
ducers, the CDB, and the ROB. We support multiple destination registers
for a single instruction. By convention, each destination register is on a
well-defined part of the result bus or registers. For example, consider the
DLX with floating point instructions. That machine has a maximum of
three results for each instruction. Thus, the result busses and registers have
space for three 32-bit registers, result � 0 � , result � 1 � , and result � 2 � .

In case of the DLX, we embed the results as follows: By convention, all
floating point registers with odd numbers are on result � 1 � , all other “nor-
mal” registers are on result � 0 � . In order to handle exceptions, we define a
dummy register CA, which is on result � 2 � . This allows handling the IEEE
flags register and exceptions.

For example, the result of a double precision floating point instruction
with destination register FPR0 is embedded as follows: The lower part
of the result, i.e., the part that is written into FGR0, is on result � 0 � . The
higher part, i.e., the part that is written into FGR1, is on result � 1 � . The
exceptions/IEEE flags are on result � 2 � .

Formally, we define an embedding function. Let d denote the maximum
number of destination operands. The embedding function e maps a register
to a number in

�
0 � � � � � d � 1 � . Thus, destination register r is on result � e � r � � .

248



Section 6.4

TOMASULO

PROTOCOLS

6.4.2 Issue

Let Ii be the instruction to be issued during cycle T (figure 6.3). The first
step is to invalidate the destination registers of instruction Ii. Thus, we clear
the valid bit of all registers R � r � with dest � i � r � and set the tag of register r
to ROBtailT .

In contrast to the issue protocols given in [MPK00], we cover two differ-
ent ways to issue an instruction: the first way is as described in [MPK00]
and as done by the original Tomasulo scheduling algorithm. During is-
sue, the instruction is stored in a reservation station along with the source
operands that are available.

The second way is to skip the reservation stations and to store the result
of the instruction in the reorder buffer directly. This speeds up the execu-
tion of simple instructions. Examples for this are branches, jumps, and the
trap instruction.

The result of these instructions is already known in the issue stage. We
indicate these instructions by the predicate issue with result � i � . In case of
such an instruction, the reservation stations are not modified by the issue
protocol. However, we set the valid bit of the ROB entry ROBtail points
to and store the result in the result data item. We denote this result by
issue result � i � . For example, this could be the PC address in case of a
jump-and-link instruction.

Machines that support instructions that are directly issued into the ROB
are usually not covered in the open literature. The Tomasulo implementa-
tion in [Krö99] uses this feature. However, the proof does not cover it.

In case issue with result � T � does not hold, we clear the valid bit of the
ROB entry ROBtailT . Let issue rs � T � rs � hold iff reservation station rs
is used for issue during cycle T . We initialize this reservation station as
follows: we set the full bit of the reservation station and store the ROBtail
pointer in the tag data item. Besides the full bit and tag, the reservation
station holds the source operands.

The Tomasulo scheduling algorithm with reorder buffer supports differ-
ent places to forward the source operands from. For each operand of the
instruction three sources have to be checked:

1. The operand might be in the register file. In this case, the valid bit
of the register is set. If it is not in the register file, the producer table

249



Chapter 6

OUT-OF-ORDER

EXECUTION

provides the tag of the last instruction writing it.

2. The operand might be on the CDB. In order to determine which
instruction is on the CDB, the result on the CDB comes with a valid
bit and a tag. If the valid bit is set, the tag indicates the instruction
on the CDB. Thus, we check the valid bit and compare the tag on the
CDB with the tag from the producer table. If they match, we take
the result on the CDB as source operand according to the embedding
convention.

3. The operand might be in the reorder buffer. This is indicated by the
valid bit of the reorder buffer entry that the tag in the producer table
points to. If the bit is set, we take the result from the ROB according
to the embedding convention.

If none of the three cases above applies, the source register is the desti-
nation of a preceding, incomplete instruction. The tag of this instruction is
in the producer table, and instead of the operand, the tag of this instruction
is stored in the reservation station.

6.4.3 CDB Snooping

During issue, the operands in the reservation station that are not available
are marked as not valid. On completion, the result of an operation is put
on the CDB. Instructions in the reservation stations, which depend on this
result, read the operand data from the CDB (figure 6.4). The reservation
stations identify the results by comparing the tag on the CDB with the tag
in the reservation station.

6.4.4 Dispatch

During instruction dispatch (figure 6.5), an instruction moves from a reser-
vation station entry into the actual function unit. We denote this fact by the
predicate dispatch � T � rs � . If the predicate holds, the instruction in reserva-
tion station rs is dispatched during cycle T .

The reservation stations that are dispatched are determined by the hard-
ware using a fair arbiter, which selects only full reservations with valid

250



Section 6.4

TOMASULO

PROTOCOLS
if issue � T � then�

RS � rs ��� f ull : � 1;
RS � rs ��� tag : � ROBtail;

For all source operands x of Ii, let r be S � i � x � :
if R � r �	� valid then

RS � rs ��� op � x � : � R � r � ;
elsif CDB � tag � R � r �	� tag 
 CDB � valid then

RS � op � x ��� valid : � 1;
RS � op � x ��� data : � CDB � result � e � r ��� ;

elsif ROB �R � r �	� tag �	� valid then
RS � op � x ��� valid : � 1;
RS � op � x ��� data : � ROB � R � r �	� tag �	� result � e � r ��� ;

else
RS � op � x ��� valid : � 0;
RS � op � x ��� tag : � R � r ��� tag;

endif

For all registers r with dest � i � r � :
R � r ��� tag : � ROBtail;
R � r ��� valid : � 0;�

Figure 6.3 Issue protocol for issuing instruction Ii during cycle T .

�
operands x of instruction Ii

if RS � rs � � f ull 
�� RS � rs � � op � x � � valid 

� RS � rs � � op � x � � tag � CDB � tag ��

RS � rs � � op � x � � valid : � 1;
RS � rs � � op � x � � data : � CDB � result � e � S � i � x � � � ;

�

Figure 6.4 CDB snooping protocol for instruction Ii in reservation station rs

251



Chapter 6

OUT-OF-ORDER

EXECUTION

if dispatch � T � rs � then�
Pass instruction, operands,
and tag to FU

RS � f ull : � 0;�

Figure 6.5 Dispatch protocol

operands. Thus, we can assume that the reservation stations rs that are
dispatched are full and have valid operands:

dispatch � T � rs � ��� RS � rs � T � f ull 
�
x : RS � rs � T � op � x � � valid

In addition to passing the instruction to the function unit, the reservation
station is freed during dispatch. Note that clearing the full bit may conflict
with setting the full bit as done by the issue protocol. Since the issue
protocol has priority, the full bit is set in this case.

6.4.5 Completion

During completion (figure 6.6), the result and the ROB tag in a producer
P � f u � are put on the CDB. Let the predicate completion � T � hold iff the
machine completes an instruction. Let f u � compl p � T � denote the num-
ber of the producer that holds that instruction. That number is determined
by the hardware among the full producers using a fair arbiter. Thus, we
can assume that the producer is full:

completion � T � ��� P � compl p � T � � T � f ull

During completion, the according reorder buffer entry is filled with the
result and the valid bit is set. Let FU � f u � T � valid denote that the func-
tion unit provides a result. Let FU � f u � T � result denote that result. Let
FU � f u � T � tag denote the tag that accompanies the result.

If the function unit provides a new result, this result is stored in the
producer. If not so, the full bit of the producer is cleared.

252



Section 6.4

TOMASULO

PROTOCOLS

if completion � T � then�
CDBT � valid � 1;
CDBT � result � P � compl p � T ����� result;
CDBT � tag � P � compl p � T ����� tag;

ROB �CDBT � tag ��� valid : � 1;
ROB �CDBT � tag ��� result : � CDBT � result;�

�
function units f u:
if FU � f u � T � valid then�

P � f u �	� f ull : � 1;
P � f u �	� result : � FU � f u � T � result;
P � f u �	� tag : � FU � f u � T � tag;�

elsif completion � T � 
 compl p � T � � f u then

P � f u �	� f ull : � 0;
endif

Figure 6.6 Completion protocol

253



Chapter 6

OUT-OF-ORDER

EXECUTION

if writeback � T �
for all registers r with dest � i � r � :�

R � r ��� data : � ROB �ROBhead ��� result � e � r � � ;
if ROBhead � R � r �	� tag then

R � r �	� valid : � 1;�

Figure 6.7 Retirement / writeback protocol for instruction Ii.

6.4.6 Writeback

During writeback (figure 6.7), a result of the instruction in the ROB en-
try that ROBhead points to is written into the register file. As introduced
above, we denote this fact by the predicate writeback � T � . We assume that
writeback is done iff the ROB entry is valid and the ROB is not empty. Let
ROBempty � T � denote that the ROB is empty during cycle T . We will later
on define it.

writeback � T � � � ROBempty � T � 
 ROB � ROBhead � T � � T � valid

During writeback, we store the result in the ROB in the registers. Fur-
thermore, we set the valid bit of the register if the tag of the instruction
matches the tag in the producer table.

Note that setting the valid bit may conflict with clearing the valid bit
during issue. As described above, the issue protocol has priority over the
writeback protocol, i.e., the setting of the valid bit is suppressed.

6.5 Data Consistency

6.5.1 Scheduling Functions

We need a formal way to state that “instruction Ii is being issued during
cycle T” or “instruction Ii is being dispatched during cycle T”. We do this
in analogy to the previous chapters using a scheduling function. While this
concept was introduced for in-order machines by [MP00], we extend it to
out-of-order machines in the obvious way.

254



Section 6.5

DATA

CONSISTENCY

Issue We recursively define a function sIissue that maps a cycle T to
the number of the instruction that is in the issue stage. Since we issue in
program order, that number increases by one in case that issue � T � holds
and stays unmodified otherwise. We start with instruction I0.

sIissue � T � : �
�� � 0 : T � 0

sIissue � T � 1 � � 1 : issue � T � 1 �
sIissue � T � 1 � : otherwise

Reservation Stations We also desire a way to define the instruction in a
given reservation station rs during a given cycle T . We do this by defining
a schedule function sIRS � rs � T � for reservation stations. Instructions are
put in a reservation station during issue. In case an instruction is issued
into reservation station rs, we take the value of sIissue � T � 1 � . Otherwise,
the value of sIRS � rs � T � remains unchanged.

sIRS � rs � T � : �
�� � 0 : T � 0

sIissue � T � 1 � : issue � T � 1 �
sIRS � rs � T � 1 � : otherwise

Note that the only point we put an instruction into a reservation station
is during issue. This is in contrast to the implementation given [Krö99],
which moves the instructions from one reservation station into the next.

Reorder Buffer In analogy to the schedule of the reservation stations,
we can provide a schedule for the ROB. The function sIROB � tag � T � de-
notes the instruction that is in the ROB entry with tag tag during cycle T .
We start with � 1, which denotes that no instruction is in the ROB entry.
We need this special value because the ROB entries have no such thing like
a full bit.

sIROB � tag � T � : �

�
�
��
�
�

� � 1 : T � 0
sIissue � T � 1 � : issue � T � 1 � 


tag � ROBtailT � 1

sIROB � tag � T � 1 � : otherwise

Function Units Let dispatch f u � T � f u � denote the number of the reser-
vation station that is used for dispatching an instruction to function unit
f u during cycle T . In hardware, this number is represented unary using
dispatch � T � rs � .

255



Chapter 6

OUT-OF-ORDER

EXECUTION

Let sIdispatch � f u � T � denote the number of the instruction passed to
function unit f u during cycle T . This is defined using the schedule of the
reservation station.

sIdispatch � f u � T � : � sIRS � dispatch f u � T � f u � � T �

We also define schedules for the functional units. Let sI f u � f u � T � denote
the number of the instruction that leaves function unit f u during cycle
T . The most simple functional unit is a combinatorial functional unit that
calculates its result within the same cycle the arguments are passed. The
32-bit ALU presented in chapter 2 is an example. For such a function unit,
sI f u � f u � T � just is:

sI f u � f u � T � : � sIdispatch � f u � T �

In case of more complex function units such as floating point dividers,
one has to construct a scheduling function. There are two ways to do so:
1) one constructs the function such that it matches the pipeline structure
of the functional unit, and 2) one defines the schedule using the tags the
function unit provides.

As an example for the first method, consider a function unit with four
stages and a cycle that allows iterating the instruction in stage 2 (figure
6.8). We denote the instruction in stage k of the function unit f u during
cycle T by sI f u � k � T � . The instruction in stage 0 of the function unit is the
instruction that is dispatched:

sI f u � 0 � T � : � sIdispatch � f u � T �

This instruction proceeds into stage 1 iff the update enable signal ue f u � 0

is active. This update enable signal is local to the function unit f u.

sI f u � 1 � T � : �
���� 0 : T � 0

sI f u � 0 � T � 1 � : ueT � 1
f u � 0 � 1

sI f u � 1 � T � 1 � : otherwise

This must be changed for stage 2, the stage with the back-cycle.

sI f u � 2 � T � : �

�
�
��
�
�

� 0 : T � 0
sI f u � 1 � T � 1 � : ueT � 1

f u � 1 � 1 
 selT � 1
1 � 0

sI f u � 2 � T � 1 � : ueT � 1
f u � 1 � 1 
 selT � 1

1 � 1
sI f u � 2 � T � 1 � : otherwise

256



Section 6.5

DATA

CONSISTENCY

��

from reservation station

to producer

1 0

f1

sel1

f0

ue f u � 0

ue f u � 1

f2

f3

ue f u � 2

sI f u
�
0 � T �

sI f u
�
1 � T �

sI f u
�
3 � T �

sI f u
�
2 � T �

Figure 6.8 Construction of the scheduling function for a function unit with cycles

257



Chapter 6

OUT-OF-ORDER

EXECUTION

For stage 3 of the function unit, the scheduling function is defined in
analogy to the scheduling function of stage 1:

sI f u � 3 � T � : �
�� � 0 : T � 0

sI f u � 2 � T � 1 � : ueT � 1
f u � 2 � 1

sI f u � 3 � T � 1 � : otherwise

Since this is also the last stage of the function unit f u, we have

sI f u � f u � T � : � sI f u � 3 � T �

Producers In analogy to the scheduling function of the reservation sta-
tions, we define the scheduling function of the producer registers. We
denote the number of the instruction in producer number f u during cycle
T by sIP � f u � T � . In case the function unit provides a result, we take the
value from the schedule of the function unit as defined above. If not so, the
value of sIP � f u � T � does not change.

sIP � f u � T � : �
���� 0 : T � 0

sI f u � f u � T � 1 � : FU � f u � T � 1 � valid � 1
sIP � f u � T � 1 � : otherwise

As described above, the instruction in producer with the number given
by compl p � T � is put on the CDB during completion. We therefore define
the following shorthand for the instruction on the CDB during cycle T :

sICDB � T � : � sIP � compl p � T � � T �

Writeback In analogy to sIissue, we recursively define a scheduling
function sIwriteback that maps a cycle T to the number of the instruc-
tion that is in the writeback stage. Since we writeback in program order,
that number increases by one in case that writeback � T � holds and stays
unmodified otherwise. We start with instruction I0.

sIwriteback � T � : �
�� � 0 : T � 0

sIwriteback � T � 1 � � 1 : writeback � T � 1 �
sIwriteback � T � 1 � : otherwise

258



Section 6.5

DATA

CONSISTENCY

6.5.2 Function Unit Axioms

In this section, we describe the assumptions we make regarding data con-
sistency properties of the functional units. We consider the functional units
as a “black box”. In particular, we do not provide implementations for data
memory or floating point function units. The design and verification of a
data memory function unit including virtual memory is subject of the thesis
of Sven Beyer [Bey01]. The design and verification of an IEEE compliant
floating unit including a divider is subject of the thesis of Christian Jacobi
[Jac01].

Inputs and Outputs As described above, FU � f u � T � valid indicates that
function unit f u provides a result during cycle T . FU � f u � T � tag denotes
the tag the function unit provides, and FU � f u � T � result denotes the result
the function unit provides.

Let f uins � f u � T � denote the inputs of function unit f u during cycle T .
This is a defined as follows: Let rs be a shorthand for dispatch rs � T � f u � .
This is the reservation station that is used for dispatching to function unit
f u.

f uins � f u � T � � valid : � dispatch rs � T � rs �
f uins � f u � T � � tag : � RS � rs � T � tag

f uins � f u � T � � source � x � : � RS � rs � T � op � x � � data

Tag Consistency Given that the function unit gets correct tags as inputs
upto cycle T , we assume that the function unit provides the correct tag of
the instruction as output during cycle T .

We formalize “gets correct tags as inputs upto cycle T ” as follows:

�
T �

�
T : f uins � f u � T � � � valid

� � f uins � f u � T � � � tag � I tag � sIdispatch � f u � T � � �

We formalize “provides the correct tag of the instruction” as follows:

FU � f u � T � valid � � FU � f u � T � tag � I tag � sI f u � f u � T � �
259



Chapter 6

OUT-OF-ORDER

EXECUTION

Operand Consistency Given that the function unit gets correct source
operands as inputs upto cycle T , we assume that the function unit provides
the correct results of the instruction as output during cycle T .

We formalize “gets correct source operand as inputs upto cycle T” as
follows:

�
T �

�
T : f uins � f u � T � � � valid

��� f uins � f u � T � � � source � source � sIdispatch � f u � T � � �

We formalize “provides the correct results of the instruction” as follows:

FU � f u � T � valid ��� FU � f u � T � result � result � sI f u � f u � T � �

Phase Consistency In order to show data consistency, we have to argue
that the function units does not generate “garbage output”. We assume two
things: 1) If an instruction leaves the function unit, it entered it before,
and 2) if instructions upto cycle T enter the function unit at most one, the
instructions leave the function unit at most once.

We formalize this as follows: Let in � i � T � f u � denote that instruction Ii

enters the function unit f u during cycle T .

in � i � T � f u � : � � f uins � f u � T � � valid 
 sIdispatch � f u � T � � i

In analogy to that, let out � i � T � f u � denote that instruction Ii leaves the
function unit f u during cycle T .

out � i � T � f u � : � � FU � f u � T � valid 
 sI f u � f u � T � � i

If instruction Ii leaves function unit f u during cycle T , there must be a
cycle T �

�
T such that it entered the function unit:

out � i � T � f u � ��� � T �
�

T : in � i � T � � f u �

If the cycle T �
�

T such that instruction Ii enters the function unit during
cycle T � is unique, then the cycle T � �

�
T such that instruction Ii leaves the

function unit during cycle T � � is unique.

�� �
T �

�
T � in � i � T � � f u � �

�� � 1 ���
�� �

T � �
�

T � out � i � T � � � f u � �
�� � 1

260



Section 6.5

DATA

CONSISTENCY

We do not make further assumptions regarding data consistency. In par-
ticular, this allows that the latency of the function unit is variable and that
the instructions leave the dispatch order within the function unit.

We make further assumptions on the function units in order to show
liveness. We will later on describe these assumptions.

6.5.3 ROB Flags

We need means to determine wether the reorder buffer is full or not. For
this purpose, we take the circuit from [Lei99]. It uses a ϑ � 1 bit counter
register. The counter is incremented if we issue and instruction and do not
writeback one simulataneously. This is indicated by ROBinc � T � .

ROBinc � T � � issue � T � 
 writeback � T �

In analogy to that, ROBdec � T � indicates that we decrement the counter.
This is done if we writeback an instruction but do not issue one simultane-
ously.

ROBdec � T � � issue � T � 
 writeback � T �

Thus, the value of the counter register during cycle T is defined as fol-
lows:

ROBcount � T � : �

�
�
��
�
�

� 0ϑ : T � 0
ROBcount � T � 1 � � 1 : ROBinc � T � 1 �
ROBcount � T � 1 � � 1 : ROBdec � T � 1 �
ROBcount � T � 1 � : otherwise

The ROB is empty iff the counter is zero:

ROBempty � T � � � ROBcount � T � � 0ϑ � 1 �

The ROB is full iff the counter is the number of ROB entries Θ. We use
the binary encoding of Θ.

ROBempty � T � � � ROBcount � T � � 10ϑ �

We make the following assumptions:

261



Chapter 6

OUT-OF-ORDER

EXECUTION

� If we issue an instruction without simultaneous writeback, the ROB
must not be full.

ROBinc � T � ��� ROB f ull � T �
� If we writeback an instruction, the ROB must not be empty.

writeback � T � ��� ROBempty � T �

6.5.4 ROB Properties

Let tag � i be a shorthand for a tag that is incremented i times. Formally,Definition 6.1
tag � i

�
this is defined using a recursion and the bit-vector incrementation as de-
fined in chapter 2:

tag � i : �
�

tag : i � 0
� tag � � i � 1 � � � 1 : otherwise

Note that we increment a bit vector with limited range. Thus, it will
wrap-around. One easily verifies the following properties of the ROB
pointers:

Let i be the number of the instruction in the issue stage. The ROB tailLemma 6.1
�

pointer has been increased i times.

ROBtailT � 0ϑ � sIissue � T �

Let i be the number of the instruction in the writeback stage. The ROBLemma 6.2
�

head pointer has been increased i times.

ROBheadT � 0ϑ � sIwriteback � T �

The proof for both lemmas is easily done using induction on T .

The value in the ROBcount register is smaller or equal than the number ofLemma 6.3
�

ROB entries. �
ROBcount � T ��� � Θ

262



Section 6.5

DATA

CONSISTENCY

PROOF One verifies this claim by induction on T . For T � 0, we have�
ROBcount � T ��� � 0 �

For T � 1, we show the claim by a full case split on the values of
ROBinc � T � and ROBdec � T � .

� If neither ROBinc � T � or ROBdec � T � holds, the value of ROBcount
does not change and the claim is concluded using the induction
premise.

� If ROBinc � T � holds, we assert the claim as follows: in case�
ROBcount � T ����� Θ

holds, the claim is easily concluded. Assume�
ROBcount � T ��� � Θ

holds. In this case, we have a contradiction to the assumption above
since ROBinc � T � holds and the ROB is full.

� If ROBdec � T � holds, we assert the claim as follows: in case�
ROBcount � T ��� �� 0

holds, the claim is easily concluded. Assume�
ROBcount � T ��� � 0

holds. In this case, we have a contradiction to the assumption above
since ROBdec � T � holds and the ROB is empty. QED

Let � Lemma 6.4

instr in rob � T � � sIissue � T � � sIwriteback � T �

denote the difference between the number of issued and terminated instruc-
tions, i.e., the number of instructions in the reorder buffer. We claim that
this number is equal to the binary number interpretation of the value of
ROBcount � T � :

instr in rob � T � �
�
ROBcount � T ���

263



Chapter 6

OUT-OF-ORDER

EXECUTION

PROOF This claim is asserted by induction on T . For T � 0 we have

instr in rob � T � �
�
ROBcount � T ���

sIissue � T � � sIwriteback � T � �
�
0ϑ � 1 �

0 � 0 �
�
0ϑ � 1 � �

For T � 1, we do a full case split on the values of the signals issue � T �
and writeback � T � .

� If neither issue � T � nor writeback � T � holds, both the values of the
scheduling functions and the ROB counter do not change from cycle
T to T � 1. Thus, the claim is concluded by the induction premise.

� If both issue � T � and writeback � T � hold, both scheduling functions
are incremented by one. Thus, the difference stays the same. The
ROB counter does not change from cycle T to T � 1. Thus, the claim
is concluded by the induction premise.

� In case issue � T � holds and writeback � T � does not hold, the differ-
ence is increased by one. The ROB couter is also increased by one.
One asserts that the ROB counter does not wrap around by lemma
6.3.

� In case issue � T � doe not hold and writeback � T � holds, the differ-
ence is decreased by one. The ROB couter is also decreased by one.
One asserts that the ROB counter does not wrap around using the
assumption that we do not writeback in case of an empty ROB. 6.3.QED

The number of instructions in the ROB is greater or equal than zero.Lemma 6.5
�

instr in rob � T ��� 0

One easily asserts this using lemma 6.4.

The number of instructions in the ROB is smaller or equal than the numberLemma 6.6
�

of ROB entries.

instr in rob � T � � Θ

This is easily shown using lemma 6.4 and lemma 6.3.

264



Section 6.5

DATA

CONSISTENCY

The following lemma is easily concluded using lemma 6.5:

The number of issued instructions is greater or equal than the number of � Lemma 6.7
terminated instructions.

sIissue � T ��� sIwriteback � T �

If we terminate an instruction using cycle T , the number of issued instruc- � Lemma 6.8
tions is greater than the number of terminated instructions.

writeback � T � ��� sIissue � T ��� sIwriteback � T �

One easily shows this using lemma 6.7, and lemma 6.4, and the fact that
we only writeback if the ROB is not empty.

The number of issued instructions upto cycle T is greater or equal than the � Lemma 6.9
number of terminated instructions upto cycle T � 1.

sIissue � T � � sIwriteback � T � 1 �

One easily verifies this claim using lemma 6.8 for the case writeback � T �
and using lemma 6.7 otherwise.

As described above, we assign a tag to each instruction during issue. This � Definition 6.2
I tag � i �is the value of the ROB tail pointer. This pointer is increased by one each

time we issue an instruction. Thus, we define a function I tag � i � , which
denotes the tag of instruction Ii, as follows:

I tag � i � : � 0ϑ � i

I tag � i � is the value of the ROB tail pointer during issue of instruction Ii. � Lemma 6.10

ROBtailT � I tag � sIissue � T � �

265



Chapter 6

OUT-OF-ORDER

EXECUTION

This claim is easily concluded using lemma 6.1 and the definition of
I tag.

If an instruction is in ROB entry tag, then the tag of that instruction is tag.Lemma 6.11
�

sIROB � tag � T � � i � � tag � I tag � i �

One shows this claim by induction on T . For T � 0, there is nothing toPROOF
show since there is no instruction in the ROB (formally, sIROB � tag � 0 � is� 1, and there is no instruction I � 1).

For T � 1, the claim is concluded by expanding the definition of sIROB.
If

issue � T � 
 tag � ROBtailT

holds, we have sIROB � tag � T � 1 � � sIissue � T � . The claim is then con-
cluded using lemma 6.10.

If not so, we have sIROB � tag � T � 1 � � sIROB � tag � T � . The claim is then
concluded using the induction premise.QED

We will now show that this tag is unique beginning with the cycle the
instruction is issued until the instruction terminates. Formally, this means
that we can assign a single, unique instruction to each such tag.

Let issued � i � T � hold iff instruction Ii is already issued during cycle T .
We define this predicate using the scheduling function sIissue:

issued � i � T � : � � sIissue � T � � i

However, it is not obvious that instruction Ii was issued before cycle T
if sIissue � T ��� i and vice-versa. It is an implication of in-order issue. The
following lemma asserts one direction.

If issued � i � T � holds, there is a cycle T � � T such that Ii is issued duringLemma 6.12
�

cycle T � .

issued � i � T � ��� � T � � T : sIissue � T � � � i 
 issue � T � �
266



Section 6.5

DATA

CONSISTENCY

PROOF The claim is shown by induction on T . For T � 0, we have
sIissue � 0 � � 0. Thus, sIissue � 0 � � i cannot hold and there is nothing to
show.

For T � 1, we show the claim using a case split on issue � T � .

� If issue � T � holds, we have

sIissue � T � 1 � � sIissue � T � � 1

and therefore sIissue � T � � 1 � i. Let sIissue � T � � i hold. In this
case, we can apply the induction premise and the claim holds. Thus,
let sIissue � T � � i hold. In this case, cycle T satisfies the claim.

� If issue � T � does not hold, we have sIissue � T � 1 � � sIissue � T � and
we can apply the induction premise to show the claim. QED

In analogy to issued � i � T � , we define a predicate terminated � i � T � that
holds iff instruction Ii already terminated before cycle T .

terminated � i � T � : � � sIwriteback � T � � i

Let the predicate τ � i � T � be a shorthand for the fact that instruction Ii is
already issued during cycle T but has not yet terminated.

τ � i � T � : � � issued � i � T � 
 terminated � i � T �

The following lemma will be used in order to show that issue is done in
program order.

Consider the instruction in the issue stage during cycle T . During cycle � Lemma 6.13
T � 1, there is the same or a later instruction in the issue stage.

sIissue � T � 1 � � sIissue � T �

The proof of lemma 6.13 is easily done by expanding the definition of
the scheduling function sIissue � T � 1 � .

The instructions are issued in order, i.e., during cycle T �
�

T there is the � Lemma 6.14
same or an earlier instruction in the issue stage.

�
T �

�
T : sIissue � T � � �

sIissue � T �
267



Chapter 6

OUT-OF-ORDER

EXECUTION

This lemma is easily shown using induction on T and lemma 6.13 as
induction step.

Let i � 0 and j � 0 hold. If one increments a tag i times and after that jLemma 6.15
�

times, this is equivalent to incrementing the tag i � j times.

� tag � i � � j � tag � � i � j �

This is easily shown by induction on j.

Let T and T � � T be cycles. ROBtailT
�

is equal to ROBtailT incrementedLemma 6.16
�

sIissue � T � � � sIissue � T � times.

�
T � � T : ROBtailT

�

� ROBtailT � � sIissue � T � � � sIissue � T � �

By applying lemma 6.1 twice, the claim is transformed into:PROOF

0ϑ � sIissue � T � � !� � 0ϑ � sIissue � T � � � � sIissue � T � � � sIissue � T � �

One shows sIissue � T � � � sIissue � T � � 0 using lemma 6.14. This allows
concluding the claim using lemma 6.15.QED

One easily verifies the following property of tag arithmetic (i.e., bit-
vector arithmetic). It applies for incrementing tags as done for ROBhead
and ROBtail.

If one increments a tag i times, the value of this tag is the value of the oldLemma 6.17
�

tag plus i modulo Θ (number of ROB entries).�
tag � i � �

�
tag � � i mod Θ

The following lemma will be used in order to argue that certain entries
in the ROB are not overwritten.

If one increments a tag at least once and less than Θ times, the incrementedLemma 6.18
�

tag is different from the old tag.

0 � j � Θ ��� � tag � j � �� tag

268



Section 6.5

DATA

CONSISTENCY

PROOF According to lemma 6.17, we have�
tag � j � �

�
tag � � j mod Θ

Assume � tag � j � � tag holds. In this case, the equation above trans-
forms into: �

tag � �
�
tag � � j mod Θ

This only holds if j is a multiple of Θ (this property of mod is shown in
the PVS libraries). This is a contradiction to the premise of the lemma and
we therefore have � tag � j � �� tag. QED

Entries in the ROB are overwritten if the ROB tail pointer wraps around.
This happens each Θ (number of ROB entries) instructions. The following
lemma asserts the fact that instruction Ii in the ROB is overwritten only in
this case.

Let instruction Ii be issued during cycle T � . Consider cycles T � T � . As � Lemma 6.19
long as no more than Θ instructions are issued from cycle T � to T , the
instruction in the ROB entry during cycle T that ROBtailT

�

points to is
instruction i.

issue � T � � 
 sIissue � T � � � i 
 sIissue � T � � � i � Θ �
��� sIROB � ROBtailT

�

� T � � i

The proof proceeds by induction on T . For T � 0, there is nothing to show PROOF
since there is no cycle T � � 0 with T � T � .

For T � 1, let us consider the case T � T � . In this case, the claim holds
by definition of sIROB.

The claim for the case T � T � is (we swap left hand side and right and
side):

i
!� sIROB � ROBtailT

�

� T �

!�
�� � sIissue � T � : issue � T � 


ROBtailT
�

� ROBtailT

sIROB � ROBtailT
�

� T � : otherwise

We argue the two cases above separately. Assume

issue � T � 
 ROBtailT
�

� ROBtailT

269



Chapter 6

OUT-OF-ORDER

EXECUTION

holds. This implies that sIissue � T � 1 � � sIissue � T � � 1 holds because
issue � T � holds. This allows concluding that

sIissue � T � � 1
�

i � Θ

holds. This allows applying lemma 6.18 with j � sIissue � T � � i, which
states:

ROBtailT
�

�� ROBtail � T � � � � sIissue � T � � i �

According to lemma 6.16 for cycles T � and T , we have

ROBtailT � ROBtailT
� � � sIissue � T � � i � �

Thus, this is a contradiction to ROBtailT � ROBtailT
�

. Thus,

issue � T � 
 ROBtailT
�

� ROBtailT

cannot hold. We therefore only have to show sIROB � ROBtailT
�

� T � � i.
This is done using the induction premise.QED

If instruction Ii has been issued but has not not yet terminated, less than ΘLemma 6.20
�

(number of ROB entries) instructions have been issued since Ii was issued.

τ � i � T � � � sIissue � T � �
i � Θ

This claim is easily concluded using lemma 6.6.

The following theorem provides the unique mapping from tags to in-
structions: we just use the ROB schedule. The tag of an instruction is
unique, if the instruction in the ROB.

If instruction Ii has been issued but has not not yet terminated, the instruc-Theorem 6.21
�

tion in ROB entry I tag � i � is instruction i.

τ � i � T � ��� sIROB � I tag � i � � T � � i

According to lemma 6.12, there is a cycle T � � T such that instruction IiPROOF
is issued during cycle T � . According to lemma 6.19 for cycle T � and T and
instruction i, we have:

sIissue � T � �
i � Θ ��� sIROB � ROBtailT

�

� T � � i

270



Section 6.5

DATA

CONSISTENCY

We assert the left hand side of the implication using lemma 6.20. Thus,
we have:

sIROB � ROBtailT
�

� T � � i

It is therefore left to show that ROBtailT
�

is equal to I tag � i � . This is
done using lemma 6.10. QED

From lemma 6.21, one easily concludes the following claim:

Let Ii and I j be instructions. If the tags of the instructions are equal and � Lemma 6.22
both unique, instruction i is instruction j.

I tag � i � � I tag � j � 
 τ � i � T � 
 τ � j � T � ��� i � j

In analogy to lemma 6.10, we show:

The ROBhead pointer during cycle T is the tag of the instruction in write- � Lemma 6.23
back stage.

ROBhead � T � � I tag � sIwriteback � T � �

One easily concludes this claim using lemma 6.2

If we writeback an instruction during cycle T , that instruction is in the � Lemma 6.24
ROB entry that ROBhead points to.

writeback � T � ��� sIwriteback � T � � sIROB � ROBhead � T � � T �

Using lemma 6.23, we transform the claim into: PROOF

writeback � T � ��� sIwriteback � T � � sIROB � I tag � sIwriteback � T � � � T �

The claim is concluded using lemma 6.21. It is left to show that the
premise of lemma 6.21 holds, i.e., we have to show that

τ � sIwriteback � T � � T �
holds. We show that the instruction is already issued using lemma 6.8.
Furthermore, the instruction is obviously not terminated yet. QED

271



Chapter 6

OUT-OF-ORDER

EXECUTION

6.5.5 Instruction Phases

We distinguish the following phases of executing instruction Ii:

� Not issued: Before an instruction is issued, the instruction is in the
”not issued” phase. Formally, this holds if issued � i � T � holds.

� In RS: During issue, the instruction is stored in a reservation sta-
tion unless issue with result � i � holds. Formally, instruction Ii is in a
reservation station during cycle T iff

� rs : RS � rs � T � f ull 
 sIRS � rs � T � � i

holds.

� In FU: During dispatch, the instruction is passed from the reserva-
tion station to a function unit. Formally, we say an instruction is
dispatched during cycle T iff there is a cycle T � � T and a reserva-
tion station rs such that instruction Ii is in reservation station rs and
the instruction in that reservation station is dispatched.

dispatched � i � T �
: � � � T � � T � rs : dispatch rs � T � � rs � 
 sIRS � rs � T � � � i

The instruction leaves the function unit if it is passed to a producer.
Formally, an instruction is executed iff there is a cycle T �

�
T and

a producer f u such that instruction Ii is in the producer f u and that
producer is full.

executed � i � T �
: � � � T � � T � f u : FU � f u � T

� � valid 
 sI f u � f u � T � � � i

Formally, instruction Ii is in a function unit during cycle T iff

dispatched � i � T � 
 executed � i � T �
holds. Note that there are function units (ALU, for example), that re-
turn the result in the same cycle they get it. In this case, the condition
above never holds, although the function unit is not bypassed.

� In producer: After leaving the function unit, the result of the in-
struction is stored in a producer. Formally, an instruction is in a
producer iff there is a producer f u such that instruction Ii is in the
producer f u and the producer is full.

� f u : P � f u � T � f ull 
 sIP � f u � T � � i

272



Section 6.5

DATA

CONSISTENCYin
RS

not
issued

in
FU

in
P

in
ROB

ter-
minated

issue with result � i �
Figure 6.9 Instruction phase state diagram

� In ROB: As soon as the producer gets the CDB, the result in the
producer is stored in the ROB. Formally, an instruction is in the ROB
during cycle T iff there is a ROB entry tag such that the instruction
in that entry is Ii and the entry is valid and the instruction has not
terminated yet.

� tag : ROB � tag � T � valid 
 sIROB � tag � T � � i 
 terminated � i � T �

The phases of “normal” instructions, i.e., instructions Ii that are not
issued with result, are processed in the order above. Instructions with
issue with result � i � skip the phases “in RS”, “in FU”, and “in producer”.
This is illustrated in figure 6.9. The figure shows the different phases and
the transitions between the phases. However, one has to assert this property
of the machine. This is done by the following lemmas.

Let p � i � T � denote that instruction Ii is in phase p during cycle T .

Let pred � p � denote the set of predecessor phases of phase p according
to figure 6.9. For example, the “not issued” phase only has itself as prede-
cessor. The “in ROB” phase has three predecessor phases: “in ROB”, “not
issued”, and “in producer”.

In analogy to pred � p � , let succ � p � denote the set of successor phases of
phase p according to figure 6.9. For example, the “not issued” phase has
two successor phases: “in RS” and “in ROB”.

If instruction Ii is in a given phase during cycle T , and not in any other � Lemma 6.25
phase, we show that the instruction is in at most one successor phase during
cycle T � 1, i.e., the sucessor phases mutually exclude each other.

For most phases, the claim is trivial, because they only thave themselves PROOF

273



Chapter 6

OUT-OF-ORDER

EXECUTION

and another state as successors. The only exception is the “not issued”
phase, which has three successors. We therefore show the claim exemplary
for the “not issued” phase.

� If issue � T � and sIissue � T � � i does not hold, one easily concludes
that instruction Ii stays in “not issued” phase during cycle T � 1.
Thus, we have to show that it is not in a reservation station or in the
ROB. According to the premise of the lemma, the phases of Ii are
unique during cycle T . Thus, Ii is not in the ROB or in a reservation
station during cycle T . Since Ii is also not issued, one easily verifies
that it does not move into the ROB or into a reservation station.

� If issue � T � and sIissue � T � � i holds, one easily concludes that in-
struction Ii either enteres the ROB or a reservation station, depending
on issue with result � i � . If issue with result � i � holds, one verifies
that the instruction cannot be in a reservation station. If not so, one
verifies that the instruction cannot be in the ROB.QED

If instruction Ii is in a given phase during cycle T � 1, we show that itLemma 6.26
�

must have been in one of the predecessor phases as given in figure 6.9
during cycle T :

p � i � T � 1 � ���
�

p
���

pred � p �
p � � i � T �

For example, if instruction Ii is in phase “not issued” during cycle T � 1,
this implies that it must be in phase “not issued” during cycle T .

In PVS, we split this claim into 6 lemmas, one for each phase. We showPROOF
the claim for the “not issued” phase and the “in RS” phase here exemplary.

� The claim for the “not issued” phase is easily asserted by expanding
the definition of “not issued” and by applying lemma 6.13.

� The claim for the “in RS” phase is asserted as follows: according to
the premise, there is a reservation station rs such that

RS � rs � T
�

1 � f ull 
 sIRS � rs � T � 1 � � i

holds. Let issue rs � T � rs � hold. In this case, we have

sIRS � rs � T � 1 � � sIissue � T �
274



Section 6.5

DATA

CONSISTENCY

Thus, the instruction Ii is in issue stage during cycle T . Thus, it is in
“not issued” phase during cycle T , which concludes the claim.

Let issue rs � T � rs � not hold. In this case, one easily asserts that the
full bit RS � rs � T � f ull is active and sIRS � rs � T � � i holds. Thus, the
instruction is in “in RS” phase during cycle T , which concludes the
claim. QED

The phase of instruction Ii during cycle T is unique, i.e., the phases above � Lemma 6.27
exclude each other mutually.

One easily shows this claim by induction on T . For T � 0, one asserts that PROOF
all instructions are in “not issued” phase only.

For T � 1, one shows the claim as follows: according to the induction
premise, instruction Ii is in at most one phase during cycle T . One applies
lemma 6.25, which shows that the successor states mutually exclude each
other.

Furthermore, the instruction Ii cannot be in a phase that is not a successor
phase during cycle T � 1, which is asserted by lemma 6.26. QED

6.5.6 Tag Consistency

We will now show that the tags transported in the machine are consistent
with the scheduling functions, i.e., we will show that the tag stored together
with instruction Ii is I tag � i � .

If a reservation station is full, the tag in that reservation station is the tag � Lemma 6.28
of the instruction in the reservation station.

RS � rs � T � f ull � � RS � rs � T � tag � I tag � sIRS � rs � T � �

The claim is shown using induction on T . For T � 0 there is nothing to PROOF
show because the reservation stations are not full in the initial configura-
tion.

For T � 1, we show the claim as follows: If an instruction Ii is issued
into reservation station rs during cycle T , the value of the tag in reservation

275



Chapter 6

OUT-OF-ORDER

EXECUTION

station is defined by the issue protocol:

RS � rs � T
�

1 � tag � ROBtailT

According to lemma 6.1, this is equivalent to 0ϑ � sIissue � T � . This is
the definition of I tag � i � .

If no instruction is issued into reservation station rs during cycle T , we
apply the induction premise.QED

If there is an instruction in a producer, the tag in the producer matches theLemma 6.29
�

tag of the instruction.

P � f u � T � f ull � � P � f u � T � tag � I tag � sIP � f u � T � �

We show this claim by induction on T . For T � 0, there is nothing to showPROOF
because the producer is not full in the initial configuration.

For T � 1, we show the claim as follows: For the case that the instruc-
tion in the producer did not change from cycle T to T � 1, we apply the
induction premise.

If a new instruction moved into the producer, we conclude the claim by
making the following assumption: if the function unit gets correct tags as
inputs for cycles T � with T �

�
T , this implies that the function unit passes

the correct tag during cycle T . We will later on describe how to verify that
property of the function units. We show that the function units get correct
tags for T � with T �

�
T using lemma 6.28.QED

The tag on the CDB matches the tag of the instruction on the CDB.Lemma 6.30
�

CDBT � valid ��� CDBT � tag � I tag � sICDB � T � �

We assume that we only complete instructions from producers that arePROOF
full. Thus, we can apply lemma 6.29. The tag on the CDB matches the tag
from the producer. Furthermore, the instruction on the CDB matches the
instruction in the producer, by definition of sICDB.QED

276



Section 6.5

DATA

CONSISTENCY

6.5.7 Data Consistency Criterion

In this section we describe our data consistency criterion for the Toma-
sulo protocols. We define a formal notion for the correct input and output
values of an instruction. We do this by defining an abstract machine that
processes an instruction with each transition. We call this machine abstract
specification machine (aS). The configuration set of this machine consists
of the registers.

Given an instruction (configuration of this machine), we define the cor-
rect value of a source register r to be the value of the register r if r �� 0 and
to be zero if r � 0:

source � i � r � : �
�

0 : r � 0
ci

aS
� R : otherwise

The function source � i � maps an instruction to the values of all source
operands. Remember that S � i � x � denotes the number of the register of
source operand x. Let s denote the number of source registers.

source : � ��� W � R � s

source � i � � x � : � source � i � S � i � x � �

Let fi be the function that maps the values of the source operands of
instruction Ii to the values of the destination operands unless we have
issue with result � i � . Let d denote the number of destination registers.

fi : W � R � s ��� W � R � d

Thus, the result of instruction Ii is:

result � i � r � : �
�

issue result � i � : issue with result � i �
fi � source � i � � : otherwise

This allows defining the configurations of the abstract specification ma-
chine. We start with an initial configuration c0

aS and proceed using f . If
instruction i � 1 has register r as destination register, then we take the the
new value of R � r � from the result of Ii � 1. If not so, we take the value from
the old configuration.

ci
aS

� R � r � : �
���� c0

aS
� R � r � : i � 0

result � i � 1 � � e � r � � : i �� 0 
 dest � i � 1 � r �
ci � 1

aS : otherwise

277



Chapter 6

OUT-OF-ORDER

EXECUTION

Proof Strategy We will show the correctness of a DLX implementation
with Tomasulo scheduler as follows:

� We will show that a machine implementing the Tomasulo protocols
given in the previous sections simulates the abstract machine aS.
This is the hardest part of the proof.

� We will show that the DLX implementation with Tomasulo sched-
uler implements the Tomasulo protocols.

We will now conclude several trivial properties of the abstract specifica-
tion machine aS.

If instruction Ii has no destination register R � r � , then R � r � is not changedLemma 6.31
�

by instruction Ii.

dest � i � r � ��� R � r � i
�

1
aS � R � r � i

aS

The proof is done by expanding the definition of R � r � i
�

1
aS .

Let the predicate L � i � r � hold iff there is an instruction j � i such thatDefinition 6.3
L � i � r �

�
instruction I j has destination register r.

L � i � r � : � � � j � i : dest � j � r �

Let i and j
�

i be instructions. If L � j � r � holds, so does L � i � r � .Lemma 6.32
�

j
�

i 
 L � j � r � � ��� L � i � r �

This holds by definition of the predicates.

Let L � i � r � hold. Let last � i � r � denote the number of the last instructionDefinition 6.4
last � i � r �

�
with destination register r prior to instruction Ii. Formally, this is the max-
imum of the set of instructions I j with j � i and dest � j � r � .

last � i � r � : � max
�

j � j � i 
 dest � j � r � �

This set is always non-empty because of L � i � r � . Furthermore, the set
is finite and has an upper bound. Thus, the maximum is defined if L � i � r �
holds.

278



Section 6.5

DATA

CONSISTENCY

The following property is easily shown using the definition of last and
the definition of max.

If L � i � r � holds, the instruction Ilast � i � r � has destination register r. � Lemma 6.33

L � i � r � ��� dest � last � i � r � � r �

Let L � i � r � and i � 1 hold. If instruction Ii � 1 does not have a destination � Lemma 6.34
register r, L � i � 1 � r � holds.

i � 1 
 L � i � r � 
 dest � i � 1 � r � � � L � i � 1 � r �

Because L � i � r � holds, there must be an instruction I j with j � i and PROOF
dest � j � r � . Since this is not instruction i � 1, it must be an instruction with
j � i � 1. Thus, L � i � 1 � r � holds.

Let i � 1 and L � i � r � hold. If instruction Ii � 1 does not have a destination � Lemma 6.35
register r, then last � i � r � is equal to last � i � 1 � r � .

i � 1 
 L � i � r � 
 dest � i � 1 � r � ��� last � i � r � � last � i � 1 � r �

Because of L � i � r � , last � i � r � is defined. According to lemma 6.34, L � i � PROOF
1 � r � holds. Thus, last � i � 1 � r � is defined.

Let j be last � i � r � . By definition of max, this number is element of�
0 � � � � � i � 1 � . Because of dest � i � 1 � r � , j cannot be i � 1. Thus, j is equal

to last � i � 1 � r � . QED

Let i � 1 hold. If instruction Ii � 1 has destination register r, last � i � r � is � Lemma 6.36
equal to i � 1.

i � 1 
 dest � i � 1 � r � ��� last � i � r � � i � 1

This is easily shown by using the definition of max.

Let Ii and I j with j
�

i be instructions. If all instructions I j
� with j

�
j � � i � Lemma 6.37

do not have a destination register r, the value of R � r � does not change from
configuration ci

aS to c j
aS.

j
�

i 
 � � j
�

j � � i : dest � j � � r � ��� R � r � i
aS � R � r � j

aS

279



Chapter 6

OUT-OF-ORDER

EXECUTION

One easily concludes this using induction on i and the transition function
of R � r � .

Let R � r � with r �� 0 be a register and let L � i � r � hold. In this case, theLemma 6.38
�

correct source register of Ii is the result of the last instruction writing R � r � .

r �� 0 
 L � i � r � ��� source � i � r � � result � last � i � r � � � e � r � �

By definition of last � i � r � , the instructions I j with last � i � r � � j � i do notPROOF
have destination register r. According to lemma 6.37, we have

R � r � i
aS � R � r � last � i � r � � 1

aS

The left hand side is source � i � r � by definition, and the right hand side is

result � last � i � r � � � e � r � � by definition of R � r � last � i � r � � 1
aS .QED

Let there not be an instruction that is issued during cycle T with desti-Lemma 6.39
�

nation R � r � . This implies that the value of source register r of instruction
Iissue � T � matches the value of source register r of instruction Iissue � T � 1 � .

issue � T � 
 dest � sIissue � T � � r �
��� source � sIissue � T � � r � � source � sIissue � T � 1 � � r �

If issue � T � does not hold, we have sIissue � T � � sIissue � T � 1 � and thePROOF
claim obviously holds.

If issue � T � holds, we apply lemma 6.37 and expand the definition of
source.QED

6.5.8 Forwarding Tags Consistency

The Tomasulo scheduling algorithm does forwarding at two places: 1) dur-
ing issue, we forward from the CDB and from the ROB, 2) while in a
reservation station, we forward from the CDB.

280



Section 6.5

DATA

CONSISTENCY

Both forwarding from the ROB and from the CDB is done using the tag.
We will now show that the tags used for forwarding are correct.

Let Ii be the instruction in issue stage during cycle T . If a register R � r � � Lemma 6.40
is marked as “not valid” during cycle T in the producer table, there is an
instruction prior to instruction Ii that writes R � r � and the tag of the regis-
ter in the producer table is the tag of the last instruction prior instruction
IsIissue � T � writing R � r � .

sIissue � T � � i 
 R � r � T � valid

� � L � i � r � 
 R � r � T � tag � I tag � last � i � r � �

We verify that claim by induction on T . For T � 0, there is nothing to PROOF
show because we make the valid bits of the registers active in the initial
configuration.

For T � 1, we conclude the claim as follows: In case R � r � T
�

1 � valid holds,
there is nothing to show. Thus, let R � r � T

�
1 � valid not hold. We distinguish

three cases:

� If an instruction with destination register R � r � is issued during cycle
T , we easily assert L � i � r � , since instruction sIissue � T � satisfies the
claim.

We assert R � r � T � tag � I tag � last � i � r � � as follows: we apply lemma
6.36, which states:

last � i � r � � i � 1

Thus, we have to show:

R � r � T
�

1 � tag
!� I tag � i � 1 �

During issue, the ROB tail pointer is stored in R � r � � tag. Thus, the
claim is equivalent to:

ROBtailT !� I tag � i � 1 �

According to the definition of I tag and lemma 6.1, this is equivalent
to:

0θ � sIissue � T � !� 0θ � � i � 1 �
sIissue � T � !� i � 1

281



Chapter 6

OUT-OF-ORDER

EXECUTION

This is concluded using the fact that i � issue � T � 1 � holds, and by
expanding the definition of issue � T � 1 � , and the fact that issue � T �
holds.

� If an instruction with no destination register R � r � is issued during
cycle T , consider R � r � T � valid. If R � r � T � valid holds, this implies that
R � r � T

�
1 � valid, which is a contradiction.

Thus, R � r � T � valid does not hold. This allows applying the induction
premise for instruction Ii � 1 and we get:

L � i � 1 � r � 
 R � r � T � tag � I tag � last � i � 1 � r � �

We conclude L � i � r � from L � i � 1 � r � using lemma 6.32.

As the instruction that is issued during cycle T does not have a des-
tination register R � r � , we have R � r � T

�
1 � tag � R � r � T � tag, which trans-

forms the claim into:

R � r � T � tag
!� I tag � last � i � r � �

Thus, it is left to show that last � i � 1 � r � � last � i � r � holds. This is
concluded using lemma 6.35.

� If no instruction is issued during cycle T , we assert that R � r � T � valid
does not hold as in the case above. This allows applying the induc-
tion premise, which concludes the claim.QED

The following lemma will be used for the induction step for the proof of
lemma 6.42.

Let reservation station rs be full during cycle T � 1 and let the operand xLemma 6.41
�

be not valid. There are two possible reasons for this: 1) this was already
true during cycle T , and 2) an instruction was issued into the reservation
station during cycle T .

RS � rs � T
�

1 � f ull 
 RS � rs � T
�

1 � op � x � � valid

� � � RS � rs � T � f ull 
 RS � rs � T � op � x � � valid ���
� issue � T � 
 issue rs � T � rs � �

One easily asserts this claim by applying the definition of the issue pro-
tocol. Full bits of reservation stations are only set by the issue protocol,
the valid bit of the operand is only cleared by the issue protocol.

282



Section 6.5

DATA

CONSISTENCY

The following lemma will be used to argue the correctness of data that
is forwarded into a reservation station.

Let reservation station rs be full and let instruction Ii be in this reservation � Lemma 6.42
station. Let operand x be not valid, and let r be S � i � x � . This implies that
r is not zero, and that there is an instruction prior to instruction Ii with
destination R � r � and the tag of operand x is the tag of the last instruction
prior to Ii with destination R � r � .

RS � rs � T � f ull 
 sIRS � rs � T � � i 
 RS � rs � T � op � x � � valid

� � r �� 0 
 L � i � r � 
 RS � rs � T � op � x � � tag � I tag � last � i � r � � �

One asserts this claim by induction on T . For T � 0, there is nothing to PROOF
show since the full bits of the reservation stations are not set in the initial
configuration.

For T � 1, we show the claim by applying lemma 6.41. Consider the case
that an instruction is issued into the reservation station during cycle T . In
this case, the claim is easily concluded using lemma 6.40 (correctness of
the tags in the producer tables).

If no instruction is issued into the reservation station during cycle T , the
tag in the reservation station does not change and we have

RS � rs � T � f ull 
 RS � rs � T � op � x � � valid

according to lemma 6.41. This allows applying the induction premise,
which concludes the claim. QED

6.5.9 Tag Uniqueness

We will now show the tag uniqueness properties for the different places
tags are used in the Tomasulo machine.

Recall that this property was shown in lemma 6.21. This lemma uses
τ � i � T � as premise. Thus, we use “tag is unique” and τ � i � T � synonymously.

Let Ii be the instruction in issue stage and let the valid bit of register R � r � � Lemma 6.43
be not set. This implies that there is an instruction prior to Ii writing R � r �
and the tag of the last such instruction is unique.

sIissue � T � � i 
 R � r � T � valid ��� L � i � r � 
 τ � last � i � r � � T �
283



Chapter 6

OUT-OF-ORDER

EXECUTION

PROOF This claim is concluded by induction on T . For T � 0, there
is nothing to show since we make the valid bits of all registers set in the
initial configuration.

For T � 1, we apply lemma 6.40, which states that there is an instruction
prior to Ii writing R � r � and that the tag in the producer table is the tag of
instruction j : � last � i � r � . In order to show the uniqueness of the tag, we
have to assert that instruction I j is already issued but not yet terminated.

One easily asserts that instruction I j is already issued by definition of
last � i � r � .

We show that instruction I j is not yet terminated by distinguishing two
cases:

1. If an instruction with destination R � r � is issued during cycle T , we
show that j � i � 1 holds using lemma 6.36. This instruction cannot
be terminated in cycle T � 1, because this is a contradiction to lemma
6.9.

2. If no instruction with destination R � r � is issued during cycle T , we
assert that the valid bit of register R � r � is not set during cycle T :

R � r � T � valid

This allows applying the induction premise for the instruction issued
during cycle T (instruction sIissue � T � ). Thus, we have:

τ � last � sIissue � T � � r � � T �

If issue � T � does not hold, we have sIissue � T � � i and the claim is
concluded. Thus, let issue � T � hold. We already showed the claim
for the case that instruction sIissue � T � has destination register R � r � .
For the case it does not have such a destination register, we apply
lemma 6.35, which states that

last � i � r � � last � sIissue � T � � r �
holds. Thus, we have:

τ � j � T �

We therefore know that instruction I j did not terminate before cycle
T . It is left show show that it does not terminate during cycle T .
Assume it does terminate during cycle T . One easily asserts that the

284



Section 6.5

DATA

CONSISTENCY

tag in the producer table of register R � r � is the tag of instruction I j

since it is unique according to the induction premise.

Thus, according to the writeback protocol, the valid bit of R � r � is set
during cycle T . This is a contradiction to the fact that R � r � T

�
1 � valid

does not hold. QED

Let Ii be in reservation station rs and let that reservation station be full. � Lemma 6.44
This implies that the tag of instruction Ii is unique.

RS � rs � T � f ull ��� τ � sIRS � rs � T � � T �

One easily concludes that instruction Ii is in phase “in RS”, as formally PROOF
defined above. According to lemma 6.27, the instruction cannot be in two
different phases during cycle T . Thus, it cannot be in “not issued” phase,
which allows concluding that it is already issued.

Furthermore, it cannot be in “terminated” phase. Thus, τ � i � T � holds. QED

Let Ii be an instruction in a full reservation station. Let x be a source � Lemma 6.45
operand that is not valid, and r : � S � i � x � be the source register. There is
an instruction prior to Ii writing R � r � . Let I j be the last instruction prior to
instruction Ii that writes R � r � .

We claim that instruction I j is in one of the following phases: 1) it is in
a reservation station, 2) it is in a function unit, or 3) it is in a producer.

This claim is shown by induction on T . For T � 0, there is nothing to PROOF
show since the reservation stations are not full in the initial configuration.

For T � 1, we conclude the clain as follows: According to lemma 6.41,
there are two cases: an instruction is issued into reservation station rs dur-
ing cycle T or the instruction already was in the reservation station during
cycle T .

� If an instruction is issued into the reservation station during cycle
T , one easily asserts that the valid bit of the source register cannot
be active (otherwise, the valid bit of the reservation station source
operand is set and we have nothing to show). This allows applying
lemma 6.40, which states that the tag of the last instruction writ-
ing the register is in the producer table. According to lemma 6.43,

285



Chapter 6

OUT-OF-ORDER

EXECUTION

the tag is unique, i.e., instruction I j is already issued and has not
yet terminated. Futhermore, the instruction is not in the “in ROB”
phase during cycle T and not on the CDB (otherwise, the valid bit
of the reservation station source operand is set and we have nothing
to show). Thus, it must be in a reservation station, function unit or
producer during cycle T .

We conclude the claim as follows: if the instruction is in a reser-
vation station, we use lemma 6.59 in order to conclude that it ei-
ther stays in that phase or enters a function unit. This concludes the
claim.

If the instruction is in a function unit, we use lemma 6.59 in order to
conclude that it either stays in that phase or enters a producer. This
concludes the claim.

If the instruction is in a producer, we use 6.59 in order to conclude
that it either stays in that phase or moves into the ROB. The last case
cannot happen, since this is a contradiction to the fact that the valid
bit of the operand is not active. This is easily concluded since the tag
of I j is valid because the instruction is in the “in producer” phase.

� If no instruction is issued into the reservation station during cycle
T , one applies the induction premise. The induction premise states
that instruction I j is in a reservation station, a function unit, or in a
producer. After that, the claim is concluded as in the case above.QED

Let Ii be an instruction in a full reservation station. Let x be a sourceLemma 6.46
�

operand that is not valid, and r : � S � i � x � be the source register. There is
an instruction prior to Ii writing R � r � . Let I j be the last instruction prior to
instruction Ii that writes R � r � . The tag of that instruction is unique.

RS � rs � T � f ull 
 sIRS � rs � T � � i 
 RS � rs � T � op � x � � valid

��� L � i � r � 
 τ � j � T �

One easily asserts this lemma by applying lemma 6.45. According toPROOF
lemma 6.27, the phases exclude each other. Thus, I j cannot be in “not
issued” or “terminated” phase, which concludes the claim.QED

Let Ii be in producer f u and let that producer be full. This implies that theLemma 6.47
�

tag of instruction Ii is unique.

P � f u � T � f ull ��� τ � sIP � f u � T � � T �
286



Section 6.5

DATA

CONSISTENCY

PROOF The instruction in the producer is in the “in producer” phase. Ac-
cording to lemma 6.27, the phases exclude each other. Thus, the instruc-
tion cannot be in “not issued” or “terminated” phase, which concludes the
claim.

The tag of the instruction on the CDB is unique. � Lemma 6.48

CDBT � valid ��� τ � sICDB � T � � T �

One easily asserts this lemma by expanding the definition of sICDB � T �
and by applying lemma 6.47.

6.5.10 Data Consistency Invariants

In order to show data consistency, we claim a set of invariants. As done
in the previous chapters, we will show that all these invariants hold by
induction on T . The invariants are taken from [MPK00].

Let instruction Ii be in the issue stage. Let r �� 0 be a register. Let the valid � Invariant 6.1
bit of register R � r � be set. In this case, the register data is correct.

sIissue � T � � i 
 r �� 0 
 R � r � T � valid ��� R � r � T � data � source � i � r �

Let reservation station rs be full and let instruction Ii be in reservation � Invariant 6.2
station rs. If an input operand of the reservation station is valid, the value
in the operand registers is the correct source operand of instruction Ii.

sIRS � rs � T � � i 
 RS � rs � T � f ull 
 RS � rs � T � op � x � � valid

��� RS � rs � T � op � x � � data � source � i � � x �

After all operands are valid, the instruction is passed to the function
unit. Once the instruction leaves the function unit, the result is stored in
a producer. The following invariant asserts that the producer holds the
correct result.

Let producer p be full and let instruction Ii be in producer f u. The result � Invariant 6.3
in this producer is the result of instruction Ii.

sIP � f u � T � � i 
 P � f u � T � f ull ��� P � f u � T � result � result � i �
287



Chapter 6

OUT-OF-ORDER

EXECUTION

Once there is an instruction in a producer, the producer requests the
CDB. After the request is acknowledged, the result is put on the CDB.

Let Ii be on the CDB. The result on the CDB is the result of Ii.Invariant 6.4
�

sICDB � T � � i 
 CDBT � valid � � CDBT � result � result � i �

While on the CDB, the results are written into the ROB. The following
invariant asserts that the results in the ROB are correct.

Let Ii be in ROB entry tag and let that entry be valid. This implies that theInvariant 6.5
�

result in the ROB entry is the result of instruction Ii.

sIROB � tag � T � � i 
 ROB � tag � T � valid

��� ROB � tag � T � result � result � i �

We now show lemmas that form the induction step of the invariant proof.

Let invariant 6.3 (producer data consistency) hold during cycle T . ThisLemma 6.49
�

implies that invariant 6.4 (CDB data consistency) holds during cycle T .

By definition, CDBT � valid only holds iff we complete an instruction, i.e.,PROOF
iff completion � T � holds. The producer the instruction we complete is in, is
denoted by compl p � T � . We assume that we only complete an instruction
in a producer, if that producer is full. Thus,

P � compl p � T � � T � f ull

holds. This allows applying invariant 6.3, which states that the result in the
producer is correct:

P � compl p � T � � T � � result � result � sIP � compl p � T � � T � �

The term on the left hand side is the result on the CDB by definition.

CDBT � result � result � sIP � T � �

288



Section 6.5

DATA

CONSISTENCY

By definition of sICDB � T � , we have sICDB � T � � sIP � compl p � T � � T � .
This concludes the claim.

Let invariant 6.5 (ROB data consistency) and invariant 6.4 (CDB data � Lemma 6.50
consistency) hold during cycle T . This implies that invariant 6.5 (ROB
data consistency) holds during cycle T � 1.

In order to show the claim, we distinguish three cases: PROOF

1. Consider the case that an instruction is issued into ROB entry tag
during cycle T , i.e., we have:

issue � T � 
 ROBtailT � tag

In this case, the ROB entry tag is valid iff we have the result of the
instruction available during issue, i.e., if issue with result � T � holds.
Thus, there is nothing to show unless issue with result � T � holds.
We easily conclude that sIROB � tag � T � 1 � is equal to sIissue � T � .
Thus, the result in the ROB is correct by definition.

2. Consider the case that we do not issue an instruction into ROB entry
tag during cycle T and that we receive a result from the CDB during
cycle T , i.e.:

CDBT � valid 
 CDBT � tag � tag

In this case, the result on the CDB is stored in the ROB and we have
to argue its correctness:

result � sIROB � tag � T � 1 � � !� ROB � tag � T
�

1 � result
!� CDBT � result

According to invariant 6.4 (CDB data consistency), we have:

CDBT � result � result � sICDB � T � �

Thus, the claim holds if we show sIROB � tag � T � 1 � � sICDB � T � ,
i.e., it is left to show that the tag maps to the correct instruction.
These arguments are weak in [MPK00].

We show this formally using lemma 6.48. Lemma 6.48 states that

τ � sICDB � T � � T �
289



Chapter 6

OUT-OF-ORDER

EXECUTION

holds. This allows applying theorem 6.21, which states:

sIROB � I tag � sICDB � T � � � T � � sICDB � T �

Thus, it is left to show:

sIROB � tag � T � 1 � !� sIROB � I tag � sICDB � T � � � T �

According to lemma 6.30, we have tag � I tag � sICDB � T � � . This
transforms the claim into:

sIROB � tag � T � 1 � !� sIROB � tag � T �

This is concluded by expanding the definition of sIROB � tag � T � 1 � .

3. Consider the case that no instruction is issued in ROB entry tag and
that no result for ROB entry tag is on the CDB. We assert this case
using invariant 6.5 for cycle T .QED

Let invariant 6.5 (ROB data consistency) and invariant 6.1 (register fileLemma 6.51
�

data consistency) hold during cycle T . This implies that invariant 6.1 (reg-
ister file data consistency) holds during cycle T � 1.

We distinguish three cases:PROOF

1. Consider the case that we issue an instruction with destination r dur-
ing cycle T . In this case, the valid bit R � r � T

�
1 � valid cannot hold and

there is nothing to show.

2. Consider the case that we writeback an instruction with destination r
during cycle T and let the valid bit of R � r � be not active during cycle
T . We only do this writeback if the ROB entry that the ROB head
pointer points to is valid. According to invariant 6.5, this implies
that the result in the rob entry is the result of the instruction. This
transforms the claim into:

result � sIROB � ROBheadT � T � � � e � r � � !� source � i � r �

The tag of R � r � matches the the ROB head pointer, since otherwise
R � r � T

�
1 � valid cannot hold and there is nothing to show.

290



Section 6.5

DATA

CONSISTENCY

According to lemma 6.40, that tag is equal to the tag of the last
instruction prior to instruction issue � T � that writes R � r � . This trans-
forms the claim into:

result � sIROB � I tag � last � sIissue � T � � r � � T � � � e � r � � !� source � i � r �

According to lemma 6.43, that tag is unique. This allows applying
lemma 6.21, which transforms the claim into:

result � last � sIissue � T � � r � � � e � r � � !� source � i � r �

According to lemma 6.39, we have:

source � sIissue � T � � r � � source � sIissue � T � 1 � � r �

This transforms the claim into:

result � last � sIissue � T � � r � � � e � r � � !� source � sIissue � T � � r �

This is concluded using lemma 6.38.

3. If we neither issue an instruction with destination R � r � nor write-
back an instruction with destination R � r � with R � r � T � valid, assume
R � r � T � valid does not hold. In this case, valid bit R � r � T

�
1 � valid can-

not hold and there is nothing to show.

Thus, R � r � T
�

1 � valid holds. The claim is:

R � r � T � data
!� source � i � r �

After applying the induction premise, this is transformed into:

source � sIissue � T � � r � !� source � i � r �

We assert this using lemma 6.39. QED

Let invariant 6.3 (producer data consistency) hold during cycle T and � Lemma 6.52
invariant 6.2 (reservation station data consistency) hold during cycles T �
with T �

�
T . This implies that invariant 6.3 (producer data consistency)

holds during cycle T � 1.

291



Chapter 6

OUT-OF-ORDER

EXECUTION

PROOF One concludes this claim as follows: if an instruction moves
into the producer during cycle T , we make the assumption that the func-
tion unit delivers a correct result given that it got correct inputs during all
cycles T �

�
T . This is easily asserted using invariant 6.2 (reservation sta-

tion data consistency). For this, we have to assume that we only dispatch
instructions with valid operands.

If no instruction moves into the producer during cycle T , we conclude

sIP � f u � T � � sIP � f u � T � 1 � �
Furthermore, we conclude that P � f u � T � f ull holds and that the value in

P � f u � � result does not change from cycle T to cycle T � 1. This allows
concluding the claim from invariant 6.3 (producer data consistency) for
cycle T .QED

If the tag on the CDB matches the tag of an instruction Ii and the tag ofLemma 6.53
�

that instruction is unique, then the instruction on the CDB is instruction Ii.

CDBT � valid 
 CDBT � tag � I tag � i � 
 τ � i � T � ��� sICDB � T � � i

This is easily shown using lemma 6.30 (uniqueness of CDB tag) and
6.22.

The following two lemmas are used to argue the data consistency of the
reservation stations (invariant 6.2). Since this is where all forwarding is
done, this is the most complicated part of the proof. We therefore split the
proof of invariant 6.2 into two lemmas.

The first lemma shows the claim for the case the operand reading is
done in the issue stage. The second lemma shows the claim for the case
the operand reading is done in the reservation station. The same case split
is also done in [MPK00].

Let invariant 6.2 (reservation station data consistency) and invariant 6.1Lemma 6.54
�

(register file data consistency) and invariant 6.4 (CDB data consistency)
and invariant 6.5 (ROB data consistency) hold during cycle T .

If an instruction is issued into reservation station rs, invariant 6.2 for
reservation station rs holds during cycle T � 1.

292



Section 6.5

DATA

CONSISTENCY

PROOF We show this claim by a case split on the location the operand x
is read from. Let Ii be the instruction in the issue stage and let r � S � i � x �
be a shorthand for the number of the register we read.

� If r � 0 holds, we read zero and the claim holds by definition of
source � i � 0 � .

� Reading from the register file: This is done only iff R � r � T � valid
holds. This allows applying invariant 6.1. This concludes the claim.

� Reading from the CDB: This is done only iff R � r � T � valid does not
hold. This allows applying lemma 6.40, which states that the tag
in the producer table is the tag of the last instruction writing R � r � .
According to lemma 6.43, that tag is unique. This allows applying
lemma 6.53, which states that the last instruction writing R � r � is on
the CDB. According to lemma 6.4, the result on the ROB is the result
of that instruction.

Thus, it is left to show:

result � last � i � r � � � e � r � � !� source � i � � x �

We assert this using lemma 6.38.

� Reading from the ROB: We repeat the arguments from the case
above in order to show that the tag in the producer table is the tag
of the last instruction writing R � r � . Let tag denote the tag. This tag
is unique, and we therefore know that the instruction in ROB entry
tag is the last instruction writing R � r � (lemma 6.21). According to
invariant 6.5, the result in the ROB is the result of this instruction.
As before, we conclude the claim using lemma 6.38. QED

Let invariant 6.2 (reservation station data consistency) and invariant 6.4 � Lemma 6.55
(CDB data consistency) hold during cycle T .

If no instruction is issued into reservation station rs, invariant 6.2 for
reservation station rs holds during cycle T � 1.

Let x be a source operand number. If the valid bit of operand x holds PROOF
during cycle T , one just applies invariant 6.2 for cycle T .

If not so, we snoop an operand from the CDB or we have nothing to
show. The argue the correctness of CDB snooping as follows: Let i be the

293



Chapter 6

OUT-OF-ORDER

EXECUTION

number of the instruction in reservation station rs during cycle T � 1. The
claim of invariant 6.2 is:

RS � rs � T
�

1 � op � x � � data
!� source � i � � x �

By expanding the definition of RS � rs � T
�

1 � op � x � � data on the left hand
side, this is transformed into:

CDBT � result � e � S � i � x � � � !� source � i � � x �

Invariant 6.4 states:

CDBT � result � result � sICDB � T � �

Thus, the claim is transformed into:

result � sICDB � T � � � e � S � i � x � � � !� source � i � � x �

Thus, it is left to show that the result of the instruction on the CDB is the
source operand of the instruction in the reservation station. This is argued
as follows: According to lemma 6.38 with instructions Ii and IsICDB � T � , the
claim above holds if we show the premises of the lemma. These premises
are:

S � i � x � �� 0 
 L � i � S � i � x � � 
 last � i � S � i � x � � � sICDB � T � �

Thus, we have to show that the source register is not register 0 and that
there is an instruction before Ii that writes the register. One easily argues
this using invariant 6.42.

Furthermore, one has to show that the last instruction before Ii writing
the register is the instruction on the CDB. We argue this using the fact
that the tag on the CDB matches the tag stored in the reservation station
for the operand. According to invariant 6.42, that tag is the tag of the last
instruction writing the register.

Lemma 6.44 states that the tags in the reservation stations are unique.
This allows applying lemma 6.53, which concludes the claim.QED

294



Section 6.5

DATA

CONSISTENCY

The following lemma combines the claims of lemma 6.54 and lemma
6.55.

Let invariant 6.2 (reservation station data consistency) and invariant 6.1 � Lemma 6.56
(register file data consistency) and invariant 6.4 (CDB data consistency)
and invariant 6.5 (ROB data consistency) hold during cycle T . This implies
that invariant 6.2 for reservation station rs holds during cycle T � 1.

This claim is shown using lemma 6.54 and lemma 6.55.

The invariants 6.1 to 6.5 hold. � Theorem 6.57

We show this claim by induction on T . We omit the simple arguments for PROOF
cycle T � 0.

The claim for T � 1 is shown by applying lemma 6.50, 6.51, 6.52, and
6.56 for cycle T and lemma 6.49 for cycle T � 1. QED

A machine implementing the Tomasulo protocols above, satisfies the fol- � Theorem 6.58
lowing data consistency criterion:

R � r � T
aI

� data � R � r � sIwriteback � T �
aS

Since all speculation registers are output of the writeback stage, this
criterion exactly matches the data consistency criterion as proposed for
the in-order pipelined machine.

Given the data consistency invariants above, one easily shows this claim PROOF
by induction on T . For T � 0, we have sIwriteback � T � � 0 and we there-
fore have the claim that the registers are in the initial configuration. We
assume this.

For T � 1, we show the claim as follows: In case writeback � T � does not
hold, one easily asserts that

sIwriteback � T � � sIwriteback � T � 1 �
holds and that the registers do not change from cycle T to T � 1. Thus, the
claim is concluded using the induction premise. Let i be a shorthand for
sIwriteback � T � .

295



Chapter 6

OUT-OF-ORDER

EXECUTION

In case writeback � T � holds, we do a case split on dest � i � r � . If dest � i � r �
does not hold, we easily assert the claim using the induction premise.

If dest � i � r � and writeback � T � hold, we have the following claim:

ROBT � ROBhead � T � � � result � e � r � � !� R � r � i
�

1
aS

The register on the right hand side expands to the result of instruction Ii:

ROBT � ROBhead � T � � � result � e � r � � !� result � i � � e � r � �

We assert this using invariant 6.5 for instruction Ii and tag ROBhead � T � ,
which holds according to theorem 6.57.

The claim of invariant 6.5 concludes the claim above. It is left to show
the premises of invariant 6.5, which are:

sIROB � ROBhead � T � � T � � i 
 ROB � ROBhead � T � � T � valid

We assert the first part of this claim using lemma 6.24. The valid bit of
the ROB entry holds since we assume that we only writeback if the valid
bit holds.QED

6.6 Liveness

We propose the following liveness criterion for the Tomasulo machine with
reorder buffer: we will show that all instructions will eventually be in the
terminated phase.

We use a similar liveness proof strategy as employed in chapter 4. We
show our claim by induction on T . Thus, the induction step is: given
all instructions up to instruction Ii � 1 terminated, instruction Ii eventually
terminates.

Informally, we show this as follows: We will show that instruction Ii

must be in a phase. According to lemma 6.27, that phase is unique. We
do a case split on the phase of instruction Ii. If instruction Ii is in “in
ROB” phase, we easily assert that it eventually terminates. If instruction
Ii is in a producer, we assert that it will move into “in ROB” phase. We

296



Section 6.6

LIVENESS
then conclude the claim as before. These arguments are continued until all
phases are covered.

We will now formalize this proof.

If instruction Ii is in phase p during cycle T , this implies that it is in one � Lemma 6.59
of the successor phases of phase p during cycle T � 1.

p � i � T � � �
�

p
� �

succ � p �
p � � i � T � 1 �

We show this claim exemplary for phase “not issued”. Thus, we have to PROOF
show that instruction Ii is still not issued, in a reservation station, or in the
ROB during cycle T � 1.

� If issue � T � and sIissue � T � � i does not hold, one easily concludes
that instruction Ii stays in “not issued” phase.

� If issue � T � and sIissue � T � � i holds and issue with result � i � holds,
one easily shows that instruction Ii is in the reorder buffer during
cycle T � 1.

� Otherwise, we assume that there is a reservation station rs such that
issue rs � T � rs � holds. One easily verifies that instruction Ii is in that
reservation station during cycle T � 1. QED

Instruction Ii is in at least one phase during cycle T . � Lemma 6.60

The claim is concluded by induction on T . For cycle T � 0, we conclude PROOF
the claim easily since all instructions are in the “not issued” phase.

For T � 1, we conclude as follows: According to the induction premise,
instruction Ii is in at least one phase during cycle T . This allows apply-
ing lemma 6.59, which states that instruction Ii is in one of the successor
phases of that phase. This concludes the claim. QED

The following lemmas form the induction step for the liveness proof.

If there is a cycle such that instruction Ii � 1 either not exists or terminated � Lemma 6.61
and instruction Ii is in “in ROB” phase, instruction Ii will eventually termi-
nate.

297



Chapter 6

OUT-OF-ORDER

EXECUTION

PROOF Let T be the cycle given by the premise. According to the
premise, instruction Ii is in “in ROB” phase during cycle T . This implies
that it is not terminated yet. Since we either have i � 0 or the previous
instruction is terminated, we have

i � sIwriteback � T �

We show that instruction Ii terminates during cycle T , i.e., it is left to
show that writeback � T � holds. As described above, we assume that we
always terminate if the ROB is not empty and the ROB entry that ROBhead
points to is valid. One easily asserts that the ROB is not empty during cycle
T using that instruction Ii is in “in ROB” phase during cycle T .

According to the premise, there is a ROB entry tag that is valid and such
that

sIROB � tag � T � � i

holds. Using lemma 6.11, we assert that tag is the tag of instruction Ii.
Using lemma 6.23, we assert that entry tag is the entry ROBhead � T � points
to. Thus, the ROB entry ROBhead � T � points to is valid and we writeback.

QED

If producer f u is full during cycle T , then there is a cycle T � � T such thatLemma 6.62
�

the instruction is put on the CDB.

P � f u � T � f ull ��� � T � � T : completion � T � � 

compl p � T � � � f u 

sIP � f u � T � � � sIP � f u � T �

In order to show this claim, we make the assumption that the CDB requestsPROOF
are served using a fair arbiter. One has to show that instruction Ii stays
in the producer f u until the request is served using induction. For this
purpose, we have to assume that the function unit does not overwrite an
instruction in its producer. This is illustrated in figure 6.10. Formally, the
function unit f u provides a result during cycle T iff FU � f u � T � valid holds.

The producer generates a stall signal if it is full and does not get the
CDB. Let f uins � f u � T � � stall denote the value of this signal during cycle
T .

f uins � f u � T � � stall : � P � f u � T � f ull 

� completion � T � 
 compl p � T � � f u �

298



Section 6.6

LIVENESS

from reservation station

function
unit

result, tag, flags valid
stall

producer

CDB

Figure 6.10 Interface between function unit and producer

We assume that the function unit does not provide a result if it gets a
stall signal.

f uins � f u � T � � stall ��� FU � f u � T � valid

Since the CDB is assigned using a fair arbiter, there is a cycle T � such
that the request is acknownledged. Using the assumption on the function
unit above, one easily shows by induction that the instruction stays in the
producer until this happens and is not overwritten. QED

If there is a cycle such that instruction Ii � 1 either not exists or terminated � Lemma 6.63
and instruction Ii is in “in producer” phase, instruction Ii will eventually
terminate.

Let T be the cycle from the premise of the lemma. Thus, instruction Ii PROOF
is in a producer during cycle T . Let this be producer f u. We will show
that this instruction eventually moves into the reorder buffer. Although we
assume that all instructions prior to instruction Ii already terminated, this is
not obvious. In particular, there might be instructions later than instruction
Ii that block the CDB.

According to lemma 6.62, there is a cycle T � � T such that the request
is served and the instruction is still in the producer. Formally, we have:

completion � T � � 
 compl p � T � � � f u 
 sIP � f u � T � � � sIP � f u � T �

One easily concludes that instruction Ii is in ROB entry I tag � i � dur-
ing cycle T � 1. This allows applying lemma 6.61, which shows that the
instruction eventually terminates. QED

299



Chapter 6

OUT-OF-ORDER

EXECUTION

Note that assuming that the CDB is allocated using a fair arbiter is not
necessary for liveness, we do it for sake of simplicity only. If the CDB
is not allocated using a fair arbiter, we can argue as follows: Informally,
assume instruction Ii is blocked in a producer by instructions later than Ii.
Since we terminate in-order, there is an upper bound for the number of
these instructions, which is the number of ROB entries. Thus, instruction
Ii will eventually get the CDB.

If there is a cycle such that instruction Ii � 1 either not exists or terminatedLemma 6.64
�

and instruction Ii is in “in FU” phase, instruction Ii will eventually termi-
nate.

Let T be the cycle from the premise of the lemma. Thus, instruction Ii isPROOF
in a function unit during cycle T . Let this be function unit f u. We will
show that this instruction eventually moves into the producer P. Although
we assume that all instructions prior to instruction Ii already terminated,
this is not obvious. In particular, there might be instructions later than
instruction Ii that block the function unit or the producer.

In order to show this claim, we have to make the following assumption
on the functional units: Given that the signal f uins � f u � T � � stall is finite
true and that instruction Ii entered the function, there is a later cycle such
that the instruction leaves the unit.

�
T � � T � � � T � : f uins � f u � T � � � � stall 
 in � i � T � f u �

��� � T � � � � Tout � i � T � � � � f u �

One easily asserts that the signal f uins � f u � T � � stall is finite true using
the fact that the CDB is allocated using a fair arbiter. Thus, we have a cycle
T � � � such that the instruction leaves the function unit. One easily asserts that
this instruction moves into the producer during that cycle. We then apply
lemma 6.63 in order to conclude the claim.QED

In analogy to lemma 6.62, we show:

If a reservation station is full during cycle T , there is a cycle T �
�

T suchLemma 6.65
�

that this reservation station is dispatched during cycle T � . Furthermore, the
instruction in the RS during cycle T � is the same as during cycle T .

RS � rs � T � f ull � � � T � � T : dispatch rs � T � � rs � 

sIRS � rs � T � � � sIRS � rs � T �

300



Section 6.6

LIVENESS
PROOF As described above, dispatching is done using a fair arbiter. The
arbiter selects among the reservation stations that are full and valid. The
first thing to assert is that the reservation station is valid. Assume it is
not. In this case, one can apply lemma 6.45, which states that there is
an instruction I j with j � last � i � r � that is in a reservation station, in a
function unit, or in a producer. This is a contradition to the premise that all
instructions I j with j � i are already terminated.

The function unit provides a stall singal. We denote this stall signal by
FU � f u � T � stall. Dispatching is only done if the function unit is not stalled.
We assert this using the following assumption on function units: If the stall
singal that is input of the function unit is finite true, then the stall signal
that is output of the function unit is finite true.� �

T � � T � � � T � : f uins � f u � T � � � � stall �
���

� �
T � � T � � � T � : f uins � f u � T � � � � stall �

One shows that the stall singal that is input of the function unit is finite
true using that the CDB is assigned using a fair arbiter, as above. This
concludes the claim. QED

If there is a cycle such that instruction Ii � 1 either not exists or terminated � Lemma 6.66
and instruction Ii is in “in RS” phase, instruction Ii will eventually termi-
nate.

Let T be the cycle from the premise of the lemma. We conclude this claim PROOF
easily using lemma 6.65. According to this lemma, there is a cycle T � � T
such that the instruction is dispatched. There are two cases:

� The funcition unit returns the result of instruction Ii in the same cy-
cle. In this case, one shows that the instruction moves into the “in
producer” phase and uses lemma 6.63 in order to conclude the claim.

� The funcition unit does not return the result of instruction Ii in the
same cycle. In this case, one shows that the instruction is in “in FU”
phase during cycle T � 1 and uses lemma 6.64 in order to conclude
the claim. QED

If there is a cycle such that instruction Ii � 1 either not exists or terminated � Lemma 6.67
and instruction Ii is in “not issued” phase, instruction Ii will eventually
terminate.

301



Chapter 6

OUT-OF-ORDER

EXECUTION

PROOF We will show that the instruction eventually either moves into
the ROB or into a reservation station, depending on issue with result � i � .
This happens if the instruction is issued. We then conclude the claim using
lemma 6.61 or 6.66, respectively.

Thus, it is left to show that the instruction is eventually issued. The
issue stage belongs to the in-order part of the machine. As done in the
previous chapters, one easily concludes that this happens if the stall signal
of the stage is finite true. The issue stage is stalled if one of the following
conditions hold [Krö99]:

� The ROB is full. One argues that this cannot be the case since all
instructions I j prior to Ii terminated. Thus, we have

sIissue � T � � sIwriteback � T � �
which implies that the ROB is empty (lemma 6.4).

� There is no reservation station available. One easily concludes that
all reservation stations are empty because all instructions are either
in “not issued” or “terminated” phase during cycle T . Thus, they
cannot be in “in RS” phase according to lemma 6.27.

� In case of the DLX, there are some instructions that require stalling
issue because they depend on registers that the Tomasulo scheduler
cannot forward. In case of a conditional branches or jump register
instruction, one has to wait until the source register is valid. Assume
it is not. In this case, we can apply lemma 6.43, which states that
there is an instruction I j with j � last � i � r � that is already issued but
not yet terminated. This is a contradiction.

� In case the instruction is a movs2i and the source register is IEEE f ,
we have to stall issue until the ROB is empty. This arises from the
fact that the Tomasulo scheduling algorithm is not able to forward
this register. As above, one easily concludes that the ROB is empty.

� The desings we verify are based on the designs presented in [Krö99].
The machine stalls issue until the ROB is empty in case the instruc-
tion is an r f e instruction. This arises from the hardware cost con-
straints. We do not have enough read ports for the SPR producer
table to forward ESR, EPC, and EDPC. As above, one easily con-
cludes that the ROB is empty.

Thus, the instruction is issued eventually, which concludes the claim.QED

302



Section 6.7

VERIFYING THE

DLX
IMPLEMENTATION

Note that in contrast to the machine given in [Krö99], we do not have to
stall issue because of busy instruction memory. This arises from the fact
that our stall engine allows stalling stages indepandantly.

The following lemma forms both the induction step and induction base
for the main liveness claim.

If there is a cycle such that instruction Ii � 1 either not exists or terminated, � Lemma 6.68
instruction Ii will eventually terminate.

Let T be the cycle from the premise. According to lemma 6.60, instruction PROOF
Ii is in a phase. If this is “not issued”, we conclude the claim using lemma
6.67. If it is “in RS”, we conclude the claim using lemma 6.66. If it is “in
FU”, we conclude the claim using lemma 6.64. If it is “in producer”, we
conclude the claim using lemma 6.63. If it is “in ROB”, , we conclude the
claim using lemma 6.61. If it is “terminated”, the claim obviously holds. QED

Instruction Ii eventually terminates. � Lemma 6.69

We show this claim by induction on i. For i � 0, we apply lemma 6.68. PROOF
This is also done for the induction step.

6.7 Verifying the DLX Implementation

In this section, we show that the implementation machine I with configu-
rations c0

I � � � � complies with the specification.

6.7.1 Implementation Differences

We do not describe the implementation of the DLX with Tomasulo sched-
uler and reorder buffer, since this design is already presented in [Krö99] in
detail including cost and cycle time analysis.

In this section, we describe the differences between the implementation
given in [Krö99] and the implementation used for this thesis. Figure 6.11
shows an overview of the hardware.

303



Chapter 6

OUT-OF-ORDER

EXECUTION

IM

PC environment

Reservation Stations

ALU FPU1 FPU2 MEMFPU3

ROB

Producers

CDB

GPR FPR SPR

ID

EX

IF

C

WB

IR � 1

DPCPC �

Figure 6.11 Overview of the Tomasulo Hardware

304



Section 6.7

VERIFYING THE

DLX
IMPLEMENTATION

Instruction Fetch In [Krö99], the PC environment from [Lei99] is used.
In order to prevent the destruction of the PC registers, stage 0 and 1 are
always clocked simultaneously. We remove this limitation by using the PC
environment and the stall engine described in chapter 5 (in-order machine
with Delayed PC and speculation) instead.

Issue As described above, we no longer need an issue stall because of
instruction memory stalls. This is a feature of the new stall engine.

Dispatch In contrast to [Krö99], the instructions do not move from one
RS into another. This implementation in [Krö99] is motivated by the live-
ness proof, which uses the fact that one selects the oldest instruction for
dispatch. We use a fair arbiter instead.

Function Units In contrast to [Krö99], we do not implement out-of-
order dispatch for the memory unit. This simplifies implementing paging.
As an example, consider two store instructions. The first one modifies the
page table and the second one modifies a memory cell in a page that is
affected. Passing the instructions in program order to the memory function
unit significantly simplifies the task of building such a functional unit.

CDB In [Krö99], we allocated the CDB round-robin. We use a fair ar-
biter instead (this is weaker than round-robin).

6.7.2 Verifying the Instruction Fetch

In the proofs above, we assumed that the instruction fetch is correctly done.
The instruction fetch mechanism in the stages 0 and 1 operates like the in-
order pipelined machine as described in section 5. The verification of the
forwarding of DPC for the instruction fetch uses the very same arguments
as before.

One combines the two machines as follows: we define that we issue an
instruction if the output registers of the decode/issue stages are clocked.
This happens iff ueT

1 is active, as described in the previous chapters.

issue � T � : � ueT
1

305



Chapter 6

OUT-OF-ORDER

EXECUTION

For the correctness proof, we argue on the schedules of both parts of the
machine. We argue that the schedule of the issue stage of the Tomasulo
part matches the schedule of the issue stage of the in-order pipeline.

issue � T � !� sI � 1 � T �

We show this claim by inducition on T . For T � 0, we have issue � T � � 0
and sI � 1 � T � � 0.

For T � 1, we show the claim by a case-split on ueT
1 . If ueT

1 does not
hold, the value of both scheduling functions does not change from cycle
T to T � 1 by definition. Thus, the claim is concluded using the induction
premise.

If ueT
1 holds, we have

sI � 1 � T � 1 � � sI � 1 � T � � 1

according to invariant 5.1.

By definition, issue � T � holds if ueT
1 holds. Thus, we have

issue � T � 1 � � issue � T � � 1

by definition of issue � T � 1 � . This allows concluding the claim using the
induction premise.

6.7.3 Verifying IEEEf

The IEEE f (IEEE flags) register is a special case for the correctness proof
of the machine, since the IEEE standard [IEE85] requires that the bits in
this register are sticky. Thus, if a floating point instruction generates a
masked IEEE exception, the bit of this exception is set in the IEEE f reg-
ister. The bits that were set previously are maintained. However, in case of
a movi2s instruction with destination IEEE f , all bits are overwritten.

One argues the data consistency of the register by induction. As induc-
tion claim we show the data consistency of the complete machine. For
T � 0, we show the correctness of the initialization. For T � 1, we have
the data consistency upto cycle T as premise. The first thing is to argue the
correctness of the interrupt mask in SRT

I . This holds according to the in-
duction premise. Let i be a shorthand for sIwriteback � T � . We distinguish
three cases:

306



Section 6.7

VERIFYING THE

DLX
IMPLEMENTATION

� If we do not writeback an instruction, we have

sIwriteback � T � � sIwriteback � T � 1 � �
The registers also do not change. Thus, the claim holds.

� If we writeback an instruction that is movi2s with destination register
IEEE f , the correctness is shown as above.

� If we writeback an instruction which sets IEEE flags, we have:

sIwriteback � T � 1 � � i � 1

We assert the correctness of the flags as above using invariant 6.5.
Let ieee f lags � i � denote the IEEE flags generated by instruction Ii:

ROB � ROBhead � T � result � 2 � � ieee f lags � i �

We assert the correctness of the old value in the IEEE flags register
using the induction premise:

IEEE f T
I � IEEE f i

S

The new value written into the IEEE flags register is the old value
OR the masked new one.

IEEE f T
�

1
I � IEEE f T

I � � ROB � ROBhead � T � result � 2 � 
 SRT
I �

The claim is that this the correct value:

IEEE f T
�

1
I

!� IEEE f i
�

1
I

One expands the transition function of the specification machine on
the right hand side:

IEEE f T
�

1
I

!� IEEE f i
I � � ieee f lags � i � 1 � 
 CAi

S �

This is easily concluded using the the equations above.

One cannot forward the IEEE f register using the mechanisms described
above. We therefore stall the issue stage if we read this register until the
ROB is empty. As soon as the ROB is empty, we have

sIissue � T � � sIwriteback � T � �
In this case, one easily concludes the correctness of the value in the

register using the data consistency criterion above.

307



Chapter 6

OUT-OF-ORDER

EXECUTION

6.7.4 Verifying Interrupts

In this section, we describe how to verify a machine that generates inter-
rupts. The proof method is taken from [MP00]. We show the data consis-
tency by induction on T . For T � 0, we have the correctness of the ini-
tialization of the machine. Note that we do not process an interrupt during
cycle T . We realize the reset interrupt by adjusing the initial configuration
accordingly, as done in chapter 5.

Let lastint � T � denote the number of the last cycle before cycle T in
which we processed an interrupt plus one (i.e., the maximum value of
lastint � T � is T ). In case no such cycle exists, we define lastint � T � to be
zero.

In order to show the claim for T � 1, we distinguish two cases:

� If we have an interrupt during cycle T , we argue as follows: accord-
ing to the induction premise, the data consistency for cycle T holds.
The modifications made by an interrupt on the configuration are easy
to verify using this fact.

� If we do not have an interrupt during cycle T , we argue as follows:
We claim that the machine works as the abstract implementation ma-
chine without interrupts above from cycle lastint � T � to cycle T � 1.
We initialize the abstract machine without interrupts using the con-

figuration clastint � T �
I :

c0
aI : � clastint � T �

I

We then show that the transitions made by both machines are equal
from cycle lastint � T � to cycle T � 1 using induction on the cycle
number. For this one uses the fact that there are no interrupts from
cycle lastint � T � to cycle T � 1 by definition of lastint � T � .

Liveness Note that the liveness of the machine with interrupts does not
require extra arguments as required in chapter 5. This arises from the fact
that the instruction that generates the interrupt retires as usual and is not
executed a second time. This is in contrast to the implementation of inter-
rupts given in chapter 5.

308



Section 6.8

LITERATURE
6.8 Literature

In this chapter, we formally verify the Tomasulo scheduling algorithm with
reorder buffer as presented in [MPK00]. In contrast to [MPK00], we verify
the correctness using PVS and argue the uniqueness of the tags.

The parts of the hardware are based on machines described in [Lei99].
The correctness of the designs presented in [Lei99] is not verified by means
of machine.

Hosabettu et.al. verify implementations using a Tomasulo scheduler both
with and without reorder buffer [HGS99, HGS00, Hos00] using the com-
pletion functions approach. The verification is done using PVS at a very
high level of abstraction. Gate-level designs are not verified. The func-
tional units are very simple and do not contain cycles. Despite that, the
size of the PVS proofs in [Hos00] is four times the size of the proofs for
this chapter of this thesis. However, [Hos00] makes extensive use of proof
strategies, which enlarges the PVS proofs significantly.

In [BBCZ98], Clarke et.al. verify out-of-order processors by combin-
ing symbolic model-checking with uninterpreded functions. In [BCRZ99],
Clarke et.al. verify safety properties of a PowerPC, which implements out-
of-order execution and precise interrupts.

Sawada and Hunt [SH99] verify the FM9801, which also features a re-
order buffer, using the theorem proving system ACL2. The number of
lemmas is enormous (nearly 4000).

Henzinger et al. [HQR98] verify a simple out-of-order processor us-
ing a model checker. McMillan [McM98] partly automates the proof by
refinement of Tomasulo’s algorithm presented in [DP97] with the help of
compositional model checking. This technique is improved in [McM99b]
by theorem proving methods to support an arbitrary register size and num-
ber of function units. In [McM99a], McMillan verifies the liveness of a
machine with Tomasulo scheduler using SMV.

Arvind and Shen [AS99] describe how to apply term rewriting systems
in order to model microprocessors. The authors give a simple out-of-order
RISC machine with reorder buffer as an example. The authors suggest the
use of tools such as PVS for verifying large, realistic machines.

309


