
Computer Architecture II:

Memory Management
Id : ca2mm.tex, v1.272003/11/1019 : 25 : 01mahExp

M.A. Hillebrand, D.C. Leinenbach, W.J. Paul

20 May 2003 — 13 June 2003

Contents

1 Introduction 1

2 Notation 4

3 Machines 5
3.1 The Specification Machine DLX S 5
3.2 The Virtual Machine DLX V . 7
3.3 Instruction Execution . 8
3.4 Specification Machine Exceptions 10

4 Hardware Implementation 12
4.1 MMU Design . 13
4.2 MMU Integration . 17

5 Software for the DLX S 24

6 Simulation Theorem 27

1 Introduction
20 May 2003
second halfMemory management deals with techniques (cheap and efficient!) to provide

user programs with sufficient memory especially in a multitasking environment.
We will treat a primitive implementation of virtual memory in which a user
program can access a memory larger than the actual (physical) RAM; excessive
parts are stored dynamically on hard-disc.

Memory management concerns both hardware and (operating system) soft-
ware:

• A new piece of hardware is the memory management unit (MMU).

It has a medium-size, ugly specification.

• The MMU can cause exceptions, hence it interacts with the interrupt
mechanism.

Interrupts mechanisms are ugly, see the start of chapter 5 of [MP00].

1

• One of the exceptions caused by the MMU is the page fault exception. It
leads to the execution of the page fault handler.

This piece of software is part of the operating system (OS).

• As far as the user program is concerned, there are good things that should
happen (simulation theorem) but also bad things that should not happen.

An unwanted interaction with respect to the user program is, that it
should not destroy the operating system. This is a theorem about the
impossibility of hacking. Hence, through the combination of the hardware
mechanism and the operating system it must be guaranteed that no user
program can destroy the operating system.

We have not yet done specifications of software and especially of the oper-
ating system. In fact, such things have been only done for primitive example
implementations. The general approach is the standard one:

• specify operating system components,

• implement these components,

• show that the implementation meets the specification (hierarchical cor-
rectness).

For our lecture, we will do only parts of this. We will take the following
simplified course of action:

• We specify

– the MMU and some additional hardware in the processor,

– the OS software (initialization, page fault handlers)

but only as far as memory management is concerned.

It will be nice and easy to show some desirable properties. The real
problem lies in the (ugly) coordination of hardware and software.

• Then we construct the hardware and the software.

For the hardware part, again, this will be easy. However, to show cor-
rectness for the software, we need, among other things, to show also the
absence of interrupts. This is an open problem.

We now try to sketch the correctness theorem that we will prove for memory
management; we call such a theorem “virtual memory simulation theorem”.

• The correct execution of the user program is formulated by introducing
a new type of memory, the virtual memory (VM). The virtual memory
is accessed by virtual address va ∈ Va from the set of virtual addresses
Va := {0, . . . , 232−1}. Each address stores a byte, hence a virtual memory
configuration vm is a mapping from virtual addresses to bytes:

vm : [Va → {0, 1}8]

The user program accesses the virtual memory with the usual operations;
in an implementation, the user program should ‘see’ a uniform virtual
memory.

2

Instruction I0 Ik+1 Il Il+1 Im Im+1 In In+1 Io

OSUserOSUser

Ik

InitialisationPhase

Figure 1: Simulated User Program Execution on the Implementation

• The difficulty arises from the fact that we do not build implement the
virtual machine directly. Instead the implementation has two memories
that hold the contents of the (user) virtual memory: the (physical) main
memory and the swap memory. The main memory is implemented by
RAM, it corresponds to the regular implementation memory. The swap
memory is implemented as a special file / partition on hard-disc. It is
used to store parts of the virtual memory that are not present in main
memory.

We model both memories as functions mapping addresses to bytes. We
have the set of main memory addresses Ma ⊆ {0, . . . , 232 − 1} and the
swap memory addresses Sa ⊆ {0, . . . , 232 − 1}, which usually are a strict
subset of all the implementable addresses (for cost reasons). With these
sets, a main memory configuration mm and a swap memory configuration
sm map addresses to bytes:

mm : [Ma → {0, 1}8]

sm : [Sa → {0, 1}8]

• When the user program is executed on such an implementation, it can
only directly access the main memory. If it tries to access data that is
not present in the main memory, an exception is caused. The page fault
handler will fix the situation by copying data between the main and swap
memory (I/O, slow). Then, the same user program instruction is repeated
and hopefully also completed.

Hence, a computation of the implementation can be divided into phases.
At the start, the operating system initializes the system. Then, the op-
erating system only takes over if the user program tries to access data
not present in main memory. Hence, the user program and the operating
system take turns in execution. Of course, in terms of execution efficiency,
the less often the operating system is invoked, the better.

This situation is depicted in figure 1.

Data Consistency: Every instruction execution of the user
program that does not cause a page-fault, must have the same
effect, as if the same instruction would be executed on virtual
memory.

Liveness: There must not occur page-faults indefinitely.

Figure 2 shows an overview of the hardware. Between the instruction and
the data cache, there are two MMUs, the instruction MMU (IMMU) and the
data MMU (DMMU). At mark a©, the afore-mentioned virtual memory simu-
lation theorem has to be established: when a user program executes, the MMU
operation should be transparent to it, i.e. the user program should behave like

3

SM

a b

IMMU

DMMU

I/O
PM

ICache

DCache

fetch

load,
store

CPU

Figure 2: Overview of the hardware. At a© we have to establish uniform virtual
memory for the user (that means the MMUs are transparent). At b© we have
to establish uniform (regular) memory (that means the caches are transparent).

it operates on a uniform virtual memory (ignoring the instructions executed by
the operating system and the instructions with page-fault). At mark b©, we
have the well-known cache theorem, that states that the caches provide access
to a uniform (main) memory.

a© Theorem: processor in user mode sees uniform virtual memory.

b© Theorem: Processor sees uniform memory (uniform: memory + definitions
of operations on it) [SvenBeyer]

2 Notation
23 May 2003

We denote addresses a by numbers: a ∈ {0, . . . , 232−1}. Let m ∈ {vm, sm, mm}
be an arbitrary memory and d ∈ N. By md(a) we denote the d byte wide
memory region starting at address a:

md(a) = m[a + d− 1 : a] ∈ {0, 1}8·d

We use this kind of notation only for aligned addresses, i.e. we assume that the
address a is a multiple of d.

We further divide the set of memory addresses into subsets of addresses that
are called pages. Let the parameter K denote the page size; we set K = 212 =
4096. A page is a range of K addresses that starts at a base address being a
multiple of K.

Using the page size, we can uniquely write addresses a as the binary value
of two concatenated bitvectors, the page index px(a) and the byte index bx(a).
The following conditions must be satisfied:

a = 〈px(a), bx(a)〉

〈px(a)〉 ∈ {0, . . . , 220 − 1}

〈bx(a)〉 ∈ {0, . . . , 212 − 1}

The content of the memory page with index x of memory m is defined as
pagem(x) = mK(K · x) where x ∈ {0, . . . , 220 − 1}.

Lemma 1 For any memory m and every address a we have

m(a) = pagem(〈px(a)〉)(〈bx(a)〉) .

4

3 Machines

Introducing the notion of the execution of user programs requires us to intro-
duce a third machine, the virtual memory machine DLX V . Also, the two old
machines (the specification machine DLX S and the implementation machine
DLX I) need modifications to support virtual memory.

1. The virtual machine DLX V is basically the old DLX plus rights. Rights
control whether a program can access (i.e. read or write) certain memory
locations or not. Memory locations, which cannot be accessed are also
called protected.

2. The specification machine DLX S provides the new DLX instruction set
specification.

Most notably, DLX S can run in two different modes, the user mode,
in which the user program is executed, and the system mode, in which
operating system code is executed.

This requires also the addition of some extra registers.

3. The implementation machine DLX I is the hardware implementation of
the DLX S . It features two MMUs to implement the modified (user) in-
struction architecture of DLX S .

With these machines we want to prove the following two simulations theorems :

• simulation3→2: DLX I simulates DLX S (hardware correctness)

• simulation2→1: DLX S and interrupt handlers simulate DLX V (software
correctness)

3.1 The Specification Machine DLX S

The specification machine has an extended special-purpose register file. The
additional registers are:

• The page-table origin register pto ∈ {0, 1}20 and the page-table length
register ptl ∈ {0, 1}20.

Both describe a special region in main memory called the page table. The
page table will be used by the MMU to redirect user mode memory accesses
to a different address. This will be defined below.

• The mode register mode ∈ {0, 1} consists only of a single bit.

The processor runs in system mode if mode = 0; otherwise it runs in user
mode.

• The emode ∈ {0, 1} register keeps a copy of the mode register during
exception handling.

It receives a copy of the mode register on entering the exception handler
and copies its value to the mode register on rfe. Hence, its use is analogous
to the other exception registers (EDPC , ESR, . . .).

5

31 1 0

vwrppx[19 : 0] · · ·

12 11 3 2

Figure 3: Page table entry

(pto, 012) px bx

+

32Page Table 20

ppx

02

maC(va)

20

12

Figure 4: Address Translation for the Virtual Address va = (px, bx)

A configuration of the specification machine DLX S is a triple

C = (R, mm, sm)

where R is a function mapping names of visible registers (e.g. DPC , GPR(x))
to their content, mm is the main and sm the swap memory configuration.
The contents of individual registers are denoted by R(r) ∈ {0, 1}32 where r
is a register name, i.e. r ∈ {DPC ,PC ′,GPR(x), . . .}. For memories, we let
mm(a) ∈ {0, 1}8 and sm(a) ∈ {0, 1}8 denote the contents of memory cell a ∈
{0, . . . , 232 − 1}.

As was already mentioned, the pto and ptl registers specify a table in main
memory that is called the page table. The page table of configuration C maps
indices x ∈ {0, . . . , 〈ptl〉 − 1} to words PTC(x):

PTC : [{0, . . . , 〈ptl〉 − 1} → {0, 1}32]

For (page) indices greater or equal than the page-table length, the page table is
undefined. Such accesses will lead to an exception. For all indices x less than
the page-table length, the page-table entry of x is defined by

PTC(x) = mm4(4096 · 〈pto[19 : 0]〉+ 4 · x) .

The structure of a page table entry can be seen in figure 3. We define abbre-
viations to access the components of a page table entry given a virtual address
va.

• With ppxC(va) = 〈PTC(〈px(va)〉).ppx 〉 we denote the physical page index
of va. Under certain conditions (no exception is caused for the memory
access), it indicates the page in main memory in which the contents of va
are stored.

6

Block

〈sbase〉

232 bytes, 220 blocks of swap memory

Figure 5: Swap Memory

• The valid bit of va is denoted by vC(va) = PTC(〈px(va)〉).v. It is 1 iff
the page is valid (i.e. it is not swapped out and can be found in main
memory by looking at ppxC(va)).

• The read bit of va is denoted by rC(va) = PTC(〈px(va)〉).r. It is 1 iff the
page is readable.

• The write bit of va is denoted by wC(va) = PTC(〈px(va)〉).w. It is 1 iff
the page is writable.

With the physical page index, we can define the translated main memory address
maC(va) of the virtual address va by

mac(va) = ppx c(va) ·K + 〈bx(va)〉

= 〈PTC(〈px(va)〉).ppx , bx(va)〉 .

Figure 4 shows the page-table lookup and the address translation.
If a virtual address is not valid, its page can be found in the swap memory. To

look it up, we need to define a swap-memory address translation mechanism,
which maps a virtual address va to a swap address sa. At the moment, the
exact memory layout of the swap memory is not important, therefore, we define
a trivial translation mechanisms that maps virtual addresses to an associated
swap memory address by merely adding an offset sbase to them. The offset
sbase should be a multiple of the page size K. We define the swap memory
address saC(va) of va by saC(va) = sbase · K + va and the swap page index
spxC(va) by spxC(va) = sbase + 〈px(va)〉. Figure 5 shows this setup.

3.2 The Virtual Machine DLX V

A configuration of the virtual machine DLX V is a triple CV = (RV , vm, r). The
first component RV denotes the virtual machine registers, the second component
denotes the virtual memory and the third denotes the rights function. The rights
function r stores access rights for each virtual address va.1

r : [{0, . . . , 232 − 1} → 2{r,w}]

The rights function controls accesses to virtual memory addresses. We denote
accesses by a pair (va, mw) of a virtual address and a boolean flag.

• A read accesses (va, 0) (which is either a fetch or a load) can be executed
iff r ∈ r(va).

• A write access (va, 1) can be executed iff w ∈ r(va).

1Notation: Given a set M the powerset, i.e. the set of all subsets, of M is denoted by 2M .

7

Rights can only be defined for individual pages, addresses in the same page have
the same access right. Formally, two virtual addresses va and va′ that have the
same page index, also must have the same access rights:

px(va) = px(va′)⇒ r(va) = r(va′)

The definition of the configuration of the virtual machine implies the intended
meaning of some parts of the page table:

• The read bit of page table entry for virtual address va is set iff the read
right r is element of the rights function r of the configuration:

rC(va) = 1⇔ r ∈ r(va)

• The same holds for the write right:

wC(va) = 1⇔ w ∈ r(va)

• The valid bit indicates, whether we can find the contents of va in the main
memory or the swap memory. The specific address is determined by the
main memory or swap memory translation function.

So, we want to satisfy the following equation:

vm(va) =

{

mmC(maC(va)) if vC(va) = 1

smC(saC(va)) otherwise

3.3 Instruction Execution

Now we define the next step function of the specification machine and the virtual
machine:

δS(C) = (R′, mm′, sm′)

δV (CV) = (R′
V , vm′, r′)

For the specification machine, we are interested only in the case in which the user
mode is active, i.e. for this section we generally assume that RV (mode) = 1. In
case that we are in system mode the next step function is the same as for the old
DLX (no translation, no restrictive rights). Additionally, we also assume, that
no exception are caused for the specification machine, i.e. we will not switch to
system mode. Exception handling will be considered in later lectures.

The interesting cases for the next-state functions are obviously the instruc-
tion fetch and the execution of load/store operations. The definitions follow.

• For instruction fetch, we define the (invisible) instruction registers for both
machines. For the virtual machine, the instruction register is obtained by
reading four bytes from the location that the delayed PC points to. For
the specification machine, we read four bytes from the translated address
of the delayed PC.

IRV = vm4(DPC V)

IRS = mm4(maC(DPCS)) if ¬excpC(DPCS , 0)

Note: the exception predicate excpC(va, mw) has yet to be defined.

8

• If IRV is no load/store instruction, the memory contents and the rights
function do not change and the register update can be described by a
function f1 that takes the current registers and the instruction register as
input:

vm′ = vm

r′ = r

R′
V = f1(IRV , RV)

For the specification machine, the update is similar: if IRS is no load/store
instruction, the memory contents do not change and the register update
is described by the same function f1:

mm′ = mm

sm′ = sm

R′ = f1(IRS , R)

• If (any) IR is a load/store instruction, we compute the effective address
by

ea = GPR(RS1 (IR)) + imm(IR)

Also, we have an access width d(IR) ∈ {1, 2, 4, 8}.

For loads, the virtual machine’s load result is computed by a direct access
to the virtual memory. The specification machine’s load result is com-
puted by a translated access to the the main memory provided there is no
translation exception.

Hence, we have:

lresultV = vmd(ea)

lresultS = mmd(maC(ea)) if ¬excp(ea, 0)

For both machines, the updated register content is computed by

R′ = f2(R, IR, lresult)

and the other components of the machine configuration do not change.

For stores, we have a store operand GPR(RD(IR)). The virtual machine
stores the store operand in the effective address’s location of the virtual
memory. The specification machine stores the store operand in the trans-
lated effective address’s location in the main memory provided there is no
translation exception. Otherwise, no memory locations change.

We have:

vmd(ea) = GPR(RD(IRV))

mmd(maC(ea(IR))) = GPR(RD(IRS)) if ¬excp(ea, 1)

For both machines, the updated register content is computed by a function
f3 operating on the old register content and the instruction register:

R′ = f3(R, IR)

9

3.4 Specification Machine Exceptions
27 May 2003

Repetition. We have three machines, the virtual, the specification and
the implementation machine, between which we want to establish simulation
theorems:

DLX V
SW
←− DLX S

HW
←− DLX I

The implementation machine DLX I we have yet to define. For the other two,
the important parts of our definition concerned the memory accesses.

• A configuration of DLX V is a triple CV = (RV , vm, r) where

r : [V a→ {∅, {r}, {w}, {r,w}}]

is the rights function and Va = {0, . . . , 232 − 1} is the set of virtual
addresses.

A memory access is a pair (va, mw) ∈ Va × {0, 1}. We distinguish:

– Fetch, where va = DPC and mw = 0

– Load, where va = ea = GPR(RS1) + imm and mw = 0

– Store, where va = ea and mw = 1

The machine aborts if mw = 0 ∧ r /∈ r(va) or mw = 1 ∧w /∈ r(va).

• A configuration of DLX S is a triple CV = (R, mm, sm). There are extra
registers pto, ptl , mode, and emode ∈ R \RV .

Page-table lookup and translation:

PTC(x) = mm4[4096 · 〈pto〉+ 4x]

=
31 1 0

vwrppx[19 : 0] · · ·

12 11 3 2

va = 〈px(va), bx(va)〉 with px(va) ∈ {0, 1}20, bx(va) ∈ {0, 1}12

ppxC(va) = 〈PTC(〈px(va)〉).ppx〉

rC(va) = PTC(〈px(va)〉).r

wC(va) = PTC(〈px(va)〉).w

vC(va) = PTC(〈px(va)〉).v

maC(va) = ppxC(va) ·K + 〈bx(va)〉 for the page size K = 4096

saC(a) = sbase ·K + sa for sbase ·K ∈ Sa and K divides sbase

The translation mechanism above (which maps C, va to maC(va)) we used
to define the semantics of the (new) DLX S :

• In system mode, mode = 0, “nothing” new happens, no translation.

• In user mode, mode = 1, we map va 7→ maC(va) and use it for the access,
if ¬excpC(va, mwC). The virtual address va is either 〈DPC 〉 or 〈ea〉.

We have yet to define when (and which) exceptions are caused in the DLX S due
to page-table lookups / address translation. We start by defining some auxiliary
signals. Let (va, mw) be a memory access. Corrected

stuff ahead!1. The illegal operation exception illC(va, mw) is signalled if the page in-
dex of va lies outside the page-table, or the memory operation type mw

10

violates the rights stored in the page table entry. For mw = 0, such a
violation is called read rights violation, for mw = 1 it is called write rights
violation. We define:

illC(va, mw) = (〈px(va)〉 ≥ ptl) ∨ (mw ∧ ¬wC(va)) ∨ (¬mw ∧ ¬rC(va))

2. The pagefault exception pf C(va, mw) is signalled if the page-table entry
is not valid (and there is no illegal operation exception):

pf C(va, mw) = ¬illC(va, mw) ∧ ¬vC(va)

3. Both conditions are subsumed in the general translation exception condi-
tion excpC(va, mw):

excpC(va, mw) = illC(va, mw) ∨ pf C(va, mw)

With these definitions, we define three new types of exceptions connected to
memory management:

1. An illegal memory operation exception is caused iff the fetch was an illegal
operation or if the fetch has caused no translation exception but there is
an illegal load/store operation:

illmC ⇔ illC(DPC , 0)∨

¬excpC(DPC , 0) ∧ loadstoreC(IRS) ∧ illC(ea, mw(IRS))

2. A page-fault on fetch exception is caused iff the fetch caused a page fault:

pff C ⇔ pf C(DPC , 0)

3. A page-fault on load/store exception is caused iff the fetch caused no
translation exception but there was a page-faulting load/store operation:

pflsC ⇔ ¬excpC(DPC , 0) ∧ loadstoreC(IRS) ∧ pf C(ea, mw(IRS))

Excursion: Interrupt Handling. In a jump-interrupt-service-routine
condition (JISR = 1), the machine performs several updates simultaneously:

SR = 032

ESR = SR

ECA = MCA

EPC = PC ′, EDPC = DPC for repeat

EPC = nextPC ′, EDPC = nextDPC for continue

EDATA =











imm26 if trap

ea if loadstore

DPC if continue

Conclusion of all these updates:

• the ISR can compute the interrupt level il = min{j | ECA[j] = 1}.

• For pff , pfls and illm it can reconstruct the virtual address va that
caused the interrupt: for pff , it is EDPC , for pfls it is EDATA.

11

p
f
f

p
f
ls

il
lm

JISR

17

SR[7:31]CA[0:31]

Figure 6: JISR Computation

To protect sensitive registers in user mode, we must cause an illegal operation
exception on access of pto, ptl and several other registers if we are in user mode:
movi2s with mode, pto, ptl or emode as destination (and several others, too)
should cause an ill exception.2 Hence, the definition of the illegal operation
exception now depends also on the mode register.

The mode register is reset on JISR and restored from emode on rfe.
This completes the specifications of our machines.

4 Hardware Implementation

Next we will:

1. Construct hardware and prove a hardware simulation theorem.

2. Write handlers for pff and pfls and prove a software simulation theorem.

Naturally, we start with 1.
Arguments for memory accesses are mode for loads, stores and fetches, and,

if mode = 1, also pto and ptl . We want to have a lemma of the form that during
one access the arguments should be stable (using I(k, T) = i and Ri).

• For load/store, we could use extra arguments in reservation station for
load/store functional unit.

• This does not work for pff , hence, we have to establish by other means,
that the arguments do not change during an access.

Conjecture: only a few precautions are necessary, since

• for mode = 1 the registers pto, ptl and mode will stay constant and

• for mode = 0 the registers pto, ptl and mode are not used for address
computation (system mode = untranslated!).

In the following lectures, we will make this precise.

2Attention, ill 6= illm!

12

IMMU

DMMU
load,
store

CPU fetch

memory interface protocol

MM

Figure 7: Processor Overview with MMUs

4.1 MMU Design
30 May 2003

In our processor implementation, we have two MMUs which are placed between
the caches and the processor core. The instruction MMU is used for instruction
fetches, the data MMU is used for loads and stores. This is shown in figure 7.

Recall:

R = RV ∪ {pto, ptl ,mode, emode}

C = (R, mm, sm)

C 7→ PTC(x) = mm4(4096 · 〈pto〉+ 4 · x)

=
31 1 0

vwrppx[19 : 0] · · ·

12 11 3 2

maC(va) = 〈PT c(〈px(va)〉).ppx , bx(va)〉 for va = 〈px(va), bx(va)〉

The MMU performs translation and exception computation if mode = 1.
The following signals form the interface between the processor and a single

MMU:

• MMU inputs from the processor:

– p.addr (= DPC for instruction fetch, = ea for load/store)

– pto, ptl ,mode

– p.mw, p.mr processor memory write and read

– m.data.in for stores

• MMU outputs to the processor:

– m.data.out (= I for instruction fetch, = dout for load)

– m.busy

– Exceptions:

∗ illm

∗ pff

∗ pfls

The interface between the MMU and the cache is unchanged, it is the old
interface between the processor and the cache. Both interfaces must obey the
standard memory protocol, of which figure 8 shows two examples. For a cache
hit, the memory responds in the same cycle the request was started. For a cache
miss, it may take many cycles, before the cache responds with ¬m.busy after it
has loaded the necessary line. As an input convention, the processor has to keep

13

addr

dout

DPC

mbusy

mr

Cache Hit

clk

I

Cache Miss

DPC

I

Figure 8: Memory Protocol Example: Cache Hit and Cache Miss for Instruction
Fetch.

1 0

+<
1 0

0 1

[2 : 0]

m.addr[31 : 2]

[31 : 2]

arce

(r, w, v)

pte[31 : 0]

drce

m.din[63 : 0]

[11 : 0]

(p.addr[31 : 2], 02)

ptl[19 : 0]

[31 : 12]

[31 : 0] 02

pto[19 : 0]

[31 : 0]lexcp

[31 : 12]

add

[31:0]

p.din[31 : 0]

[63:32]

012

p.t

ar[2]

ar[31 : 0]

dr[63 : 0]

Figure 9: Datapaths of the MMU where p.t = t = mode and ar, dr are the
address and the data register.

14

idle

add:

arce,add

p.req &

p.t

seta:

arce

p.req &

/p.t

lexcp

readpte:

m.mr,drce

/lexcp

m.busy

comppa:

arce

/m.busy

pteexcp

read:

m.mr,drce

/pteexcp &

p.mr

write:

m.mw

/pteexcp &

p.mw

/m.busy

m.busy

/m.busy

m.busy

p.mr p.mw

Figure 10: Control of the MMU. Define p.req := p.mr∨ p.mw. Additionally, we
have the Mealy control signal p.busy := (state 6= idle) ∧ (state ′ = idle) where
state ′ denotes the next state of the control automaton.

15

the input data and the requests signals stable (i.e. it must not change them) as
long as the memory is busy.

We will examine a slow MMU design in this lecture. The datapaths of
this design are shown in figure 9, the control of this design (FSD) is shown in
figure 10. The busy signal of the MMU to the processor is a Mealy signal. We
must pay attention that the MMU signals busy even in the first cycle of the
request. Our approach is therefore, to make the MMU signal not busy only
when it enters the idle state again (this also covers the case where exceptions
occur):

p.busy := (state 6= idle) ∧ (state ′ = idle)

Local Correctness of the MMU. We have several cases according to the
following criteria:

• Translated / Untranslated.

• Read operation / Write operation.

• Exception / No exception.

Lemma 2 (Paths) Claims about the path followed for the different cases through
the FSD:

• For translated read without exception, the path followed in the FSD is

idle → add → readpte+ → comppa → read+ → idle .

• Similar claims for all the other cases.

Lemma 3 (Correctness) In case i on path for i “happens what we want” (i.e.
what is defined by the DLX S).

Proof. We proof both lemmas only for the translated read case without
exceptions. The proofs for the other cases are similar.

• Assume the request starts in cycle t in state idle :

p.reqt−1 = 0

p.reqt = 1

statet = idle

• In cycle t + 1 we are in state add . Therefore, the address register at time
t + 2 contains the address of the page-table entry:

〈art+2〉 = 4096 · 〈pto〉t+1 + 4 · 〈px(p.addr t+1)〉

= 4096 · 〈pto〉t + 4 · 〈px(p.addr t)〉 (if inputs stable!)

• Between time t + 2 and t′ for some t′ ≥ t + 2, we access the cache to read

the page-table entry. I.e., we have for t̃ ∈ {t + 2, . . . , t′− 1}, that m.busy t̃

and m.mrt̃. Also, we have ¬m.busyt′ and m.mrt′ .

16

By the cache / the memory specification, the contents of the data register
at time t′+1 correspond to the data read from the memory. More precisely,
the memory read that is acknowledged (i.e. signalled not busy for the first
time) in cycle t′ returns the data of the memory configuration in the same
cycle t′ looked up at the input address that was supplied in cycle t + 2.

drt′+1 =

{

(⋆32, mmt′

4 (art+2)) if art+2[2] = 0

(mmt′

4 (art+2), ⋆32) otherwise
.

Observe, that during the whole request to the cache, the address register
does not change its value, i.e. for all x ∈ {t + 2, . . . , t′} we have arx =
art+2. Since we already assume, that the processor address bus p.addr
does not change, we obtain that this reads the desired page-table entry,
i.e. we have

drt′+1[31 : 0] if art+2[2] = 0

drt′+1[63 : 32] otherwise

}

= PT t′(〈px(p.addr t)〉) .

• As we are in state comppa in time t′+1, we get that the value of the address
register in time t′+1 is correct, i.e. it corresponds to the translation defined
by the DLX S :

〈art′+2〉 = maC(p.addr t)

Attention: to keep this well defined, aside from the regular inputs, the
expressions

PTC(〈px(p.addr)〉), pto, ptl , mode

must stay constant during the request. We will treat this problem when
we integrate the MMU into the whole processor design.

• At time t′+2 we start another memory request (state read). This requests
ends at time t′′ for some t′′ ≥ t′+2. I.e., we have for t̃ ∈ {t′+2, . . . , t′′−1},

that m.busy t̃ and m.mrt̃. Also, we have ¬m.busyt′ and m.mrt′ . The end
of this memory request t′′ is also the end of the MMU request, since
¬p.busyt′′ .

At the time of acknowledgment, the data read from the memory configu-
ration at the time of acknowledgment is returned.

So, finally we have

p.dint′′ = mmt′′

8 (〈art′′ [31 : 3], 000〉)

= mmt′′

8 (maC(p.addr t)) .

As before, we need additional arguments for our implicit assumptions here.

4.2 MMU Integration
3 Jun 2003

In this lecture we explain how the MMU is correctly integrated into the pro-
cessor. Our local MMU correctness proof already has had several assumptions
that all talk about certain inputs of the address translation being constant over
the whole duration of a translation request. Guaranteeing these assumptions

17

IMMU

DMMU
CPU

pto
ptl

mode to SPRs!

directly
connected

MM

Figure 11: MMU SPR Inputs

is a non-trivial task; in fact, we identify four groups of inputs, that all need
different arguments to be provably stable. When we do this, we will (again)
mainly consider the case of a translated read access without exception. Such a
request occurs for instruction fetches or data loads. Of these two cases, we will
concentrate on the instruction fetch. All the other cases are similar or simpler.

We assume that the request starts at time t, i.e. p.reqt and ¬p.req t−1 (or
¬p.busy t−1). We have seen from the proof of the last lecture, that there is a

time t′′ > t, such that for all times t̃ ∈ {t, . . . , t′′ − 1} : p.busy t̃ and ¬p.busy t′′ .
Relevant inputs for a translated memory operation request to the MMU

consist of four groups Gi:

• G0 consists of the “regular” inputs supplied by the processor, p.addr ,
p.mw, p.mr and p.dout .

• G1 consists of the special purpose registers ptl , pto and mode.

• G2 consists of the page table.

• G3 (for reads) consists of the accessed memory contents, mm(ma(va)).

Consider now the instruction fetch of instruction Ii. The time ti at which
this instruction fetch starts, is the minimal time in which the request to the
instruction MMU is active and the scheduling function indicates Ii to be in the
fetch stage:

ti := min{t′ | p.reqt′ ∧ I(fetch , t′) = i}

An access that was started in cycle t is not finished in cycle τ iff the busy signal
is still active. We denote this by the predicate nf (t, τ) that is defined as

nf (t, τ) := τ ≥ t + 1 ∧ ∀x ∈ {t + 1, . . . , τ} : p.busyx = 1 .

Since our MMU is slow, for t = ti the fetch of Ii is not finished.
We define the end of the request. It is the time after the start of the requests

in which the busy signal first becomes inactive:

t′′(t) = min{x ≥ t + 1 : p.busyx = 0}

(The existence of t′′ requires a liveness proof. This proof was implicit in the last
lecture, it uses that m.busy cannot stay active indefinitely for ongoing requests
to the cache.)

The following lemma is an easy implication of the local MMU correctness
shown in the last lecture.

18

Lemma 4 (Translation Lemma) Hypothesis: we assume the input signals
stay constant during the access, i.e. we have for all i ∈ {0, . . . , 3}

(Gi)
τ = (Gt

i) for nf (t, τ) .

Then, the data returned by the MMU is that of the translated memory location
at the start of the request:

p.dint′′ = mmt
8(mat(p.addr t))

Proof. We have seen in the previous lecture, that

p.dint′′ = mmt′′

8 (mat′(p.addr t)) .

With the hypothesis, this already gives the claim.

The big question is now, how do we guarantee the hypothesis (Gi)
τ = (Gi)

t?
As it turns out, we require quite different arguments for the different i.

• G0.

By construction, p.busyτ = 1 (the new busy signal!). Hence, we have
inτ+1 = int for in ∈ {p.addr , p.mw, p.mr, p.dout}, because the processor
does not change the inputs as long as the MMU signals that it is still busy,
i.e. p.busy is active. (This is an inductive argument.)

• G1.

The idea is to stall the instruction fetch. We define the fetch signal which is
the read request signal for the IMMU. This definition consists of two parts.
The first part stalls the instruction fetch if there is an instruction in the
decode stage (stage S1) which may modify pto, ptl or mode. The second
part stalls the instruction fetch if there is a non-terminated instruction
modifying pto, ptl or mode.

IMMU .p.req =

fetch = ¬(S1.full ∧ (S1.ID .rfe∨

S1.ID .movi2s writing pto, ptl ,mode))

∧ pto.v ∧ ptl .v ∧mode.v

See figure 12 for a sketch of how the stage 1 decode signals are computed.

Assume that Ij is a rfe or movi2s writing pto, ptl or mode. If it is issued
at time x, then at time x + 1 stage 1 may be empty, i.e. we possible have

I(issue, j) = x⇒ ¬S1.fullx+1 .

But at time x + 1, one of the valid bits of pto, ptl or mode would be zero,
i.e.

∃y ∈ {pto, ptl ,mode} : ¬y.vx+1 .

Now, assume that Ij terminates in time z, i.e. I(wB , j) = z. Then again,
for all the inspected valid bits are turned on again, ∀y ∈ {pto, ptl ,mode} :
y.vz+1. Then, we can fetch.

19

decode

S1.ID.rfe

S1.ID.movi2s

stage S1

stage S0

S1.IR S1.full

Figure 12: Computation of Stage 1 Decode Signals

ppx Page
Table

MM

Figure 13: Page Table Convention

Lemma 5 (Fetch Lemma) I(fetch, t) = i ∧ fetcht = 1 implies all in-
structions Ij with j < i that write to ptl, pto or mode have terminated.

Hence, we get Gτ
1 = Gt

1 (this works only for fetch, not for data access).

• G2, the page table.

We assume that the operating system satisfies the following page table
convention:

Let s be the index of any page containing a part of the page table. Consider
a page-table entry PT (x). If the page-table entry is valid, PT (x).v = 1,
then the physical page index must be different from s, i.e. 〈PT (x).ppx 〉 6=
s. Hence, in translated mode the page table cannot be accessed (neither
written to or read from).

The convention is visualized in figure 13. Mappings outside the page table
are allowed, mappings inside the page table are not.

The page-table convention gives us the following lemma.

20

Lemma 6 (Page Table Lemma) If the page-table convention holds, the
page table stays constant during translation.

Proof. Consider the translated fetch of Ii starting at time t. Thus, we
have modet = 1.

There exists a cycle t′ < t, where the processor was last in system mode,

i.e. modet′ = 0 and t′ is maximal (∀t̃ ∈ {t′ + 1, . . . , t} : mode t̃ = 1).

Assume that the instruction in the write-back stage at this time t′ has
index j < i,

I(wB , t′) = j .

The instruction Ij can only be an rfe or movi2s writing the mode register.

By the definition of the fetch signal, Ij has already terminated at time t
and also by in-order termination all instructions before Ij have terminated.

By the page-table convention, no user mode instruction Ik for j < k < i
can change the page-table.

Hence, the page table does not change: Gτ
2 = Gt

2.

Let us reiterate. 6 Jun 2003
We have identified four groups of inputs to the MMU. The first two groups

are concerned with the inputs coming from the processor:

G0 : va = p.addr t, p.rdt, p.wrt, p.reqt

G1 : ptot, ptl t,modet

The other two groups are concerned with inputs coming from the memory:

G2 : PT t

G3 : mmt(mat(va)) for reads

We were in the proof of the translation lemma: if the input groups Gi do
not change, the MMU computes translated read operation. We summarize the
reasoning again here and treat the missing case for G3:

• G0

By generation of p.busy

• G1

By fetch stall condition and fetch lemma.

fetch = ¬(S1.full ∧ (S1.ID .rfe ∨ S1.ID .movi2s writing pto, ptl ,mode))
∧pto.v ∧ ptl .v ∧mode.v

Fetch lemma: if Ii set the mode bit then for all j ≤ i, the instruction Ij

is terminated before the translation of fetch for Ii+1 starts.

• G2

By the page-table convention guaranteed by the operating system (fig-
ure 13) and the page table lemma (if the page-table convention holds, the
page table stays constant during translation).

21

• G3

Sync condition: there must be a sync (movs2i R0, IEEEf) before a fetch
from a modified location. Formally, let y be a physical address. If the
instruction Ii is a translated fetch from y, and instruction Ij for j < i
writes to y, there must be a k with j < k < i such that Ik is a sync
instruction.

For this to work, we need a strengthened sync, which prevents fetching
of the next instruction already: S1.full ∧S1.ID .sync should imply ¬fetch.
This gives the following, new fetch signal definition:

fetch = ¬(S1.full ∧ (S1.ID .rfe ∨ S1.ID .movi2s writing pto, ptl ,mode))
∧pto.v ∧ ptl .v ∧mode.v ∧ ¬(S1.full ∧ S1.ID .sync)

Lemma 7 (Sync Lemma) From the sync condition we get (G3)
τ =

(G3)
t for all τ ∈ {t, . . . , t′′}.

Proof. Omitted here, similar to the page-table lemma.

Now we can show the global fetch correctness: the instructions that the
implementation machine fetches correspond to the instructions that the speci-
fication machine fetches.

Theorem 1 (Fetch Theorem) Let I(fetch , t) = i and assume the translation
starts in cycle t and ends in cycle t′′. We claim:

p.dint′′ = IRi
S

Proof. Assume correct simulation until the start of cycle t. With this obtain

ptot = ptoi
S , ptl t = ptl iS , modet = modei

S .

The special purpose register are used in the MMU without testing the valid bits!
But, by the fetch condition, the valid bits are on, since otherwise we would not
yet have started to fetch.

By the assumption, the address fed into the instruction MMU is equal to
the delayed PC of the specification instruction i:

IMMU .p.addr t = DPC i
S

From (G2) we get that PT t = PT i
S and mat(IMMU .p.addr t) = mai

S(DPC i
S).

By induction assumption, the memory contents of time t correspond to the
memory contents of the specification machine at step i:

mmt
4(mat(IMMU .p.addr t)) = mmi

S,4(mai
S(DPC i

S))

Abbreviate y := mai
S(DPC i

S). Let j be the index of the instruction which last
wrote mm(y):

j = max{k < i | k writes mmS(y)}

From the Tomasulo proof we know that mmt(y) = mmi
S(y) if Ij is terminated

at time t. This is true by the sync lemma.

22

By applying the translation lemma we get our claim:

IMMU .p.dint′′+1 = mmt
4(mat(IMMU .p.addr t))

= mmi
S(mai

S(DPC i
S))

= IRi
S

Now we prove a similar theorem for a translated load. 10 Jun 2003
Assume the instruction Ii is a translated load and is in the memory stage at

time t:
I(mem , t) = i

Furthermore, assume that the request signal to the data MMU is already acti-
vated, i.e. DMMU .p.reqt, and that t is minimal with respect to these conditions.

Let t′′ denote the end of the request. Let di ∈ {1, 2, 4, 8} denote the width
of the operation in bytes (and mbw i ∈ {0, 1}8 the corresponding byte write
signals). Let eai denote the effective address.

Theorem 2 (Load Theorem) The data MMU returns at time t′′+1 the spec-
ified load data of instruction i:

DMMU .p.dint′′+1 = mmi
S,di(mai

S(eai
S))

Proof. Assume correct simulation until the start of cycle t. Especially, this
assumption already contains fetch correctness, which we proved in the fetch
theorem. With this obtain

ptot = ptoi
S , ptl t = ptl iS , modet = modei

S .

Because of the assumption, we get that the signals fed to the data MMU
correspond to their specified counterparts:

DMMU .p.addr t = eai
S

DMMU .p.mbw t = mbw i
S

From this, we also obtain mat(DMMU .p.addr t) = mai
S(eat

S). Since we do in-
order load/store, the memory contents in time t correspond to the specified
memory contents in step i, i.e. mmt = mmi

S .
Therefore mmt(mat(DMMU .p.addr t)) = mmi

S(mai
S(eai

S)).
By the assumptions on G2 and in-order load/store, for all x ∈ {t, . . . , t′′} we

also have
mmx(max(DMMU .p.addrx)) = mmi

S(mai
S(eat

S))

This satisfies the assumptions of the translation lemma, we can conclude the
claim

DMMU .p.dint′′+1 = mmi
S,di(mai

S(eai
S))

We will not prove the following theorem, which is similar to the load theorem:

Theorem 3 (Store Theorem) The data MMU executes translated stores cor-
rectly.

All in all, these are the main results to obtain hardware correctness:

23

Theorem 4 DLX I simulates DLX S.

(Actually, we would have to go through the whole Tomasulo proof again to
establish this result. We can argue that the rest of the processor hardware,
apart from the MMUs, was not touched, and so, the same proof will go through
without change. In a theorem prover, like in PVS, this is possibly much work.)

5 Software for the DLX S

We will now talk about the software for the DLX S , especially about the page
fault handler part.

The operating system software enforces a memory organization on the user
program in which the memory used for OS purposes and the memory used by
the hardware (→ translation) is strictly separated from the memory that the
user program can access. The part used by the user program is called the user
memory, the part used by the operating system and the hardware is called
system memory.

In particular, the system memory is part of the main memory. It is modelled
by a set of page indices in main memory Sys ⊆ {0, . . . , 220 − 1}. The following
are examples of the data structures maintained in the system memory by the
operating system:

• Operating system code & data

• The page table

• sbase (from the swap memory translation: sac(va) = sbase + va)

• MRL (an index of the most recently loaded, i.e. swapped-in, page)

The operating system will let the user program access a part of the main
memory that is called the user memory. Through its data structure, the oper-
ating system maintains two sets of page indices:

• allocP is the set of allocated pages for the user memory.

To guarantee that the user program cannot access the system memory
(e.g. the page table), we want that

Sys ∩ allocP = ∅ .

• freeP ⊆ allocP is the set of free pages in the user memory. Any p ∈ freeP
is reserved for the user but has not been used yet.

After initialization, the whole user memory is free, and we have freeP =
allocP . Then, freeP will get smaller whenever a reference for a yet un-
referenced page was made. When freeP = ∅, swapping starts, i.e. if
there is a page fault, one page must be swapped out (written back to the
swap memory) and one page must be swapped in (loaded from the swap
memory).

Additionally, the operating system needs to maintain information on the used
(i.e. non-free) pages of the user memory: for every such page we want to de-
termine efficiently which is the virtual page index that has been mapped to
it.

24

We present now concrete data structures with which we implement the page
fault handlers.

We assume that the operating system is willing to let the user program use
a pages in main memory starting from the page with index abase. These pages
form the user memory. We index the user memory pages from 0 to a− 1; user
memory page i corresponds to the main memory page abase + i.

The operating system keeps a counter b ≤ a that denotes the number of used
(i.e. non-free) pages in the user memory. The used pages will occupy the lower
part of the user memory. This means that the user memory page i is used iff
i < b.

An array of words B[0 : a − 1] is used to keep track of the virtual page
indices of used pages in the user memory: the entry B[i] (for i ∈ {0, . . . , b− 1})
contains the virtual page index of the page occupying the user memory page i.
Let validVP denote the set of all (virtual) page indices stored in the array B,
i.e. we set

validVP = {B[0], . . . , B[b− 1]} .

The set validVP can be used when we look for eviction pages (i.e. pages that
are to be swapped out when the user memory is full—which happens when
a = b). Eviction candidates can be found by choosing elements from the set
validVP \ {MRL}.

The set of page indices we mentioned before can be defined in terms of the
variables a, abase and b:

allocP = {abase, . . . , abase + a− 1}

freeP = {abase + b, . . . , abase + a− 1}

Figure 14 shows a detailed memory map for our system. Recall that we use
for a page index x and any memory m the notation pagem(x) to denote the
contents of page x in memory m:

pagem(x) := m4096(x · 4096)

Handler for Page-Fault on Fetch. The algorithm must handle several
cases. Here, we treat only the easy case: there is a free, allocated physical page
left. The other case will be treated for the handler for page-fault on load/store.

So, assume freeP 6= ∅. Let e denote the minimal element from freeP (in fact
we must have e = abase + b). The page fault handler has to do the following
things:

1. Update the ppx -field of the faulting page-table entry point to the page
index e (where the swapped-in page will be placed):

ppx (EDPC) := e

2. Swap in the page:

pagemm(e) := pagesm(px(sa(EDPC)))

3. The validVP has to be updated by adding px(EDPC) to it. This can be
achieved by storing px(EDPC) in its last entry.

B[b− 1] := px(EDPC)

25

sbase

a

b

abase

B[]

pageabase

...

pageabase+a−1

User

System

MM

PT

MRL

Code

Memory

Memory

Figure 14: Memory Map with the System Area and the User Area

4. Update the freeP set by incrementing b:

b := b + 1

5. Update the MRL variable by setting

MRL := px(EDPC).

6. Return from exception by rfe.

Observe:

• Using rfe satisfies the synchronization condition.

• Since e ∈ freeP ⊆ allocP and allocP ∩ Sys = ∅ we also have e /∈ Sys . This
helps us to keep the PT condition satisfied.

Handler for Page-Fault on Load/Store. We sketch the case for freeP = ∅.
In this case, we must swap out a page to make room in the user memory and
then swap in the faulting page. Choose an eviction candidate victim e from
the set validVP \ {MRL}. (Note: e is now a virtual page index not a physical;
which means it is the upper 20 bits of an address which is interpreted as a
virtual address.)

This choice guarantees e 6= MRL. If we do not have this, we could deadlock
the user program: Consider the following, endless sequence of page faults:

1. Page-fault on fetch, swap-in the fetch page.

26

2. Page-fault on load-store, swap-in the load-store page by evicting the fetch
page (bad!).

3. Page-fault on fetch, swap-in the fetch page by evicting the load-store page
(bad!)

4. Goto 2.

So, choosing a purely random victim will not work for the proof.
Now we perform the following steps:

1. Save the eviction page:

pagesm(px(sa(e))) := pagemm(ppx (e · 4096))

Note: if e is the value of the array entry B[i], then of course, we have
abase + i = ppx (e · 4096) and can simplify the code accordingly.

2. Mark the swapped out page as invalid:

v(e · 4096) = 0

3. Swap in the page:

pagemm(ppx (e · 4096)) := pagesm(px(sa(EDATA)))

4. Update the ppx field and the valid bit v in the PTE:

ppx (EDATA) = ppx (e · 4096)

v(EDATA) = 1

5. If i is the index of e in the array B, then we must update B[i] as follows:

B[i] := px(EDATA)

6. Update the MRL variable by setting

MRL := px(EDATA).

7. Return from exception by rfe.

6 Simulation Theorem
13 Jun 2003

We have already established hardware correctness: DLX I simulates DLX V .

• DLX I is the new implementation machine, i.e. the old DLX I plus two
MMUs and a few gates.

• DLX S is the new specification machine with two modes. In mode 0 (sys-
tem mode), it operates like the old DLX S . In mode 1 (user mode), it
uses address translation for pages that are in main memory and causes a
page-fault exception otherwise.

27

Instruction I0 Ik+1 Il Il+1 Im Im+1 In In+1 Io

OSUserOSUser

Ik

InitialisationPhase

Figure 15: Phases of Computation of DLX S

Now we establish a simulation theorem between the virtual machine DLX V and
the specification machine DLX S . DLX V is the virtual machine. It resembles
the old DLX S (assume for now: without exceptions) and has a rights function
for memory protection. We assume that the rights never change.

Recall how we defined instruction execution for the DLX V and for the DLX S

(in user mode).
Have a virtual machine configuration Ci

V = (Ri
V , vmi

V , ri
V). The (hidden)

instruction register is defined by IRi
V = vmi

V,4(DPC i
V). If IRi

V is no load

nor store instruction (which we denoted by ¬loadstoreCV (IRi
V)), then the next

processor configuration Ci+1
V can be computed by the function f1 applied to the

instruction register and the register contents:

Ci+1
V = (f1(IR

i
V , Ri

V), vmi
V , ri

V)

Have a specification machine configuration in user mode Cj
S = (Rj , mmj

S, Smj
S).

We set IRj
S = (mmj

S,4(maj(DPC j
S))) if the instruction word is in main memory,

i.e. we get no page-fault on fetch exception. The DLX V updates its configura-
tion according to the equation

Cj+1
S = (f1(IR

j
S , Rj), mmj

S , smj
S) .

Note: DLX S has more registers than DLX V . These additional register do not
change their value under f1. (Strictly speaking f1 is another function here).

Theorem 5 DLX S and OS simulate DLX V for the user program.

In this theorem, we denote the configuration of the DLX V machine in step
j by Cj

V . The configuration of the DLX S machine in cycle i is denoted by Ci
S .

We define a projection Π that maps specification machine configurations
to virtual machine configurations. Have CS = (R, mmS , smS) and Π(CS) =
(RV , vmV , r). Then, the components are (uniquely) defined as follows:

• For any register name r of DLX V :

RV (r) := Rs(r)

• r ∈ r(va)⇔ rc(va) = 1

• w ∈ r(va)⇔ wc(va) = 1

• vm(va) =

{

mms(mac(va)) if vc(va) = 1

sms(sac(va)) otherwise

We assume that after power-up (or reset), the machine DLX S reaches a cycle
α + 1 in which the first system mode phase is completed and the initialization

28

of the user program is finished. This means we have modet = 0 for t ≤ α and
modeα+1 = 1.

We take the projected configuration of cycle α + 1 to be the initialization
configuration of the virtual machine.

C0
V := Π(Cα+1

S)

The initialization procedure is actually quite easy. It guarantees that for all
virtual addresses there is nothing in the main memory and the rights are noted
in the page table. Let va ∈ Va. We must have vm(va) = sm(sa(va)), correct
rights in the page table and a cleared valid bit in the page-table entry, i.e.
vα(va) = 0.

Lemma 8 (Step Lemma) Assume the i-th configuration of the specification
machine and the j-th configuration of the virtual machine are equal by projec-
tion, i.e. Π(Ci

S) = C j
V . Then, the projection of the successor configuration of

the next pagefault-free user mode step (of the specification machine) is equivalent
to the next configuration of the virtual machine

Π(C
s2(i)
S) = C j+1

V

where the function s2 is defined in two steps:

1. We define the function s1 which returns for a cycle i either the same cycle
i if no pagefault occurred or the first cycle after the return of the pagefault
handler:

s1(i) =

{

i if ¬pff i ∧ ¬pflsi

min{j > i, modej} otherwise

2. Next, we define s2 for a cycle i. If there is no pagefault in cycle i, we
just increment i. Otherwise, we use the s1 function to obtain the first
cycle after the return of the pagefault handler. If in this cycle, there is no
pagefault, we can again just increment its number. Otherwise, we at the
cycle after still another execution of the pagefault handler and increment
this.

In a compact, this can be written as follows:

s2(i) =

{

i + 1 if ¬pff i ∧ ¬pfls i

s1(s1(i)) + 1 otherwise

Note that our pagefault handlers have the property (liveness!), that in cycle
s2(i)− 1 no pagefault occurs.

Proof. Mainly bookkeeping. Use translated accesses of the DLX S if instruc-
tion / data in main memory. Otherwise, handlers swap the needed pages into
the main memory.

Consider the example case that IRj
V is neither load nor store. Consider the

subcase that there is no pagefault on fetch, i.e. ¬pff i.

29

First we verify that both instruction registers are equal:

IRi
S = mmi

4(mai(DPC i
S))

= vmj(DPC i
S) because vc(DPC i

S) = 1

= vmj(DPC j
V)

= IRj
V

By construction of the instruction set and the assumption of the lemma, we
obtain that the updated registers are equal again:

Ri+1 = f1(IR
i
S , Ri)

= f1(IR
j
V , Rj

V)

= Rj+1
V

Consider now the subcase that pagefault on fetch occurs at address DPC i
S ,

i.e. pff i holds. Validity of this case follows from the specification of the page
fault handler. It guarantees that after its execution the faulting page is swapped
in. Also, by the rfe mechanism, the PCs are restored on the return of the page
fault handlers (page fault is of type repeat!). Therefore, we have cycle s1(i) a
valid fetch page:

vs1(i)(DPC
s1(i)
S) = vs1(i)(DPC i

S) = 1

With this we can establish that both instruction registers are the same again:

IR
s1(i)
S = mm

s1(i)
4 (mas1(i)(DPC

s1(i)
S))

= mm
s1(i)
4 (mas1(i)(DPC i

S))

= smi
4(DPC i

S) (correct swap-in)

= vmj(DPC j
V) (assumption of the lemma)

References

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture. Com-
plexity and Correctness. Springer, 2000.

30

