Saarland University Department 6.2 – Computer Science

Drof Dr. W. I. Davil

Prof. Dr. W. J. Paul

M. Sc. Petro Lutsyk

Computer Architecture – WS14/15

Exercise Sheet 5 (due: 02.12.14, 24 points)

Exercise 1: (no self-modification) (6 points)

In the lecture we introduced two memory regions:

- $CR \subset \mathbb{B}^{29}$ code region, and
- $DR \subset \mathbb{B}^{29}$ data region.
- (a) Explain (in words) what intuition was behind this decision.
- (b) Give a software condition "no self-modification".
- (c) Explain (in words) how the software condition above helps to argue in the correctness proof.

Exercise 2: (delay slot) (6 points)

In the lecture we changed the MIPS semantics, s.t. now the instruction is fetched from the delayed pc:

$$c'.dpc = c.pc$$

 $I(c) = c.m_4(c.dpc)$

- Explain (in words) what the *delay slot* is.
- Show that the link address

$$linkad(c) = c.pc +_{32} 4_{32}$$

is still computed correctly in case of jump-and-link instructions

$$jal(c) \vee jalr(c)$$
,

i.e. we do not fetch the same instruction twice.

Exercise 3: (scheduling functions) (6 points)

Recall definition of the scheduling functions from the lecture:

$$\forall k \in [1:5] \qquad I(k,0) = 0$$

$$I(1,t+1) = I(1,t)+1$$

$$\forall k \in [2:5] \quad I(k,t+1) = \begin{cases} I(k-1,t) & ue_k^t \\ I(k,t) & \text{otherwise} \end{cases}$$

For the "simple" stall engine

$$\forall t \qquad full_0^t = 1$$

$$\forall k \in [1:4] \quad full_k^{t+1} = \begin{cases} 0 & reset^t \\ full_k^t & \text{otherwise} \end{cases}$$

prove the following lemmas:

(a)
$$I(k,t+1) = I(k,t) + \begin{cases} 1 & ue_k^t \\ 0 & \text{otherwise} \end{cases}$$

(b)
$$I(k,t) = I(k-1,t) - \begin{cases} 1 & full_{k-1}^t \\ 0 & \text{otherwise} \end{cases}$$

Exercise 4: (correctness proof) (6 points)

In this exercise we derive proof obligations for the instruction memory and register $X \in \{A, B\}$. For instruction i = I(k, t) show the following:

(a)
$$ima_{\pi}^{t} = ima_{\sigma}^{i} \qquad (k=1)$$

Hint: split cases on where the instruction in hardware is fetched from (pc or dpc).

(b)
$$X_{in \pi}^t = X_{in \sigma}^i \qquad (k=2)$$

Stress the place where a software condition is required.