Saarland University
Department 6.2 – Computer Science
Prof. Dr. W. J. Paul
M. Sc. Petro Lutsyk

Computer Architecture – WS14/15

Exercise Sheet 11 (due: 27.01.15, 36 points)

Exercise 1: (snoop conflict) (12 points)

In the lecture it was suggested to change from the "conservative" definition of the *snoopconfilict* predicate (used in the script) to the following one

$$snoopconflict \equiv \neg sidle \land pa = badin$$

Argue whether this change is reasonable. For that

- (a) explain how the new definition can affect performance of the cache system.
- (b) prove or disprove (using lemmas learned so far) that the new definition breaks the correctness proof of the shared memory construction.

Exercise 2: (data paths) (12 points)

Recall the *data paths* for the data, tag and state RAMs used in the construction of the cache system. Using the lecture notes (or the corresponding sections of the script) repeat the following arguments.

- (a) Explain what we need the auxiliary registers for.
- (b) Explain why we use the register souta' on transition $wait \to m0$, and why not on $flush \to m0$.
- (c) Explain why we forward state I to the inputs of circuit C1.
- (d) Explain why we forward state M to the inputs of circuit C2.

Exercise 3: (bus arbitration) (12 points)

Recall the design of the *master* and *slave* control automata of the cache. Also recall the construction of the *bus arbiter*. Observe that the master automaton keeps its request active in every state of the *hot* phase. Together with the delayed (!) generation of the *grant* signal, this leads to situation when the master being in state *idle* still retains ownership of the bus.

(a) Show that the prescribed is indeed happening. Suggest how to change the control to obtain

$$idle(i)^t \rightarrow \neg grant[i]^t$$

(b) Try to prove that the change from (a) does not affect the overall correctness. In case it does, explain how to modify the design further to make the proof work.