Saarland University
Department 6.2 - Computer Science
Prof. Dr. W. J. Paul
M. Sc. Petro Lutsyk

Computer Architecture - WS14/15

Exercise Sheet 1 (due: 04.11.12, 32 points)

Exercise 1: (congruence mod k) (2 points)
For integers $a, b \in \mathbb{Z}$ and natural numbers $k \in \mathbb{N}$ and defines a and b to be congruent $\bmod k$ iff they differ by an integer multiple of k.

$$
a \equiv b \bmod k \leftrightarrow \exists z \in Z: a-b=z \cdot k
$$

Prove that congruence $\bmod k$ is an equivalence relation.
Exercise 2: (decomposition lemma) (2 points)
Let $a \in \mathbb{B}^{n}$. Prove that for $k \in[0: n-1]$ the following lemma holds:

$$
\langle a[n-1: 0]\rangle=\langle a[n-1: k]\rangle \cdot 2^{k}+\langle a[k-1: 0]\rangle
$$

Exercise 3: (induction principle) (6 points)
Prove by induction on n :
(a) $\sum_{i=0}^{n} i=n \cdot(n+1) / 2$
(b) $\sum_{i=0}^{n-1} q^{i}=\left(q^{n}-1\right) /(q-1)$
(c) $\sum_{i=0}^{n} i^{3}=\left(\sum_{i=0}^{n} i\right)^{2}$

Exercise 4: (addition algorithm) (4 points)
Prove that addition algorithm works for addition of n-bit numbers: For $a, b \in \mathbb{B}^{n}$ and $c_{0} \in \mathbb{B}$ show that the outputs $s \in \mathbb{B}^{n}$ and $c_{n} \in \mathbb{B}$ of the addition algorithm satisfy:

$$
\left\langle c_{n}, s\right\rangle=\langle a\rangle+\langle b\rangle+c_{0}
$$

Exercise 5: (adder construction) (4 points)

Prove that construction from Fig. 1 implements the addition algorithm.

$$
n>1 \text { : }
$$

$$
a[n-2: 0] b[n-2: 0]
$$

Figure 1: Recursive construction of a carry-chain adder

Exercise 6: (multiplexer construction) (2 points)

Using gates presented in the lecture $(\neg, \wedge, \vee$ and $\oplus)$ give a construction of the circuit which fulfills the following specification:

- inputs: $a, b \in \mathbb{B}^{n}$ and $s \in \mathbb{B}$
- output: $c \in \mathbb{B}^{n}$, s.t.

$$
c= \begin{cases}a & s=1 \\ b & s=0\end{cases}
$$

Exercise 7: (two's complement numbers) (8 points)

Prove the following properties of two's complement numbers:
(a) $[0 a]=\langle a\rangle$
(b) $a \in \mathbb{B}^{n} \rightarrow\left[a_{n-1} a\right]=[a]$
(c) $-[a]=[\bar{a}]+1$
(d) $[a] \equiv\langle a\rangle \bmod 2^{n}$

Exercise 8: (arithmetic unit) (4 points)
Recall the construction of the AU (see Fig. 2) from the lecture. Derive a recipe for the negative bit computation such that it satisfies

$$
n e g \leftrightarrow S<0,
$$

where S is the exact result, for
(a) two's complement numbers $(u=0)$
(b) binary numbers $(u=1)$

Figure 2: Symbol of an n arithmetic unit (AU)

